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Abstract

Hidden Markov models (HMM) are tremendously popular for the analysis of
sequential data, such as biological sequences, speech recognition as well as ges-
ture recognition. However, since the method has got some limitations, that is
mainly the restrictive emission distribution assumption in each hidden state, a
generalised extension of the ordinary HMM is introduced. The method proposed
in this work aims to overcome this limitation through adapting the multivari-
ate Gaussian density so it can handle data obtained from non-Euclidean metric
space. The generalised emission distribution is only dependent on the pairwise
distances of all observations and no longer on a center of mass nor a variance
term. We show that our method performs as good as the original HMM in many
scenarios and even outperforms it in a certain non-Euclidean data situation. In
addition we apply the method to ChIP-chip data in order to find out whether or
not we can determine distinct gene classes that can be distinguished by different
transcription state sequences.

Keywords: Hidden Markov model, ChIP-chip, Lq norm, non-Euclidean,
Viterbi Algorithm, Baum-Welch Algorithm
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1. Introduction

Hidden Markov models (HMM) (Baum et al., 1970) are statistical models that
are closely related, as the name already suggests, to Markov models. In contrast
to ordinary Markov models, where the states are directly visible, the states are
not directly visible in the case of HMM. However, conclusions on the hidden
states can be drawn from an observable output which is depending on the states.
In other words, each hidden state holds different probability distributions that
produce observable output.
Hidden Markov models are particularly applicable to biological sequence data

such as ChIP-chip data (Mayer et al., 2010). ChIP-chip is a technology for the
identification and characterisation of the DNA binding motifs of bound transcrip-
tion factors. The goal of this thesis is to identify distinct gene classes, that are
characterised by their specific sequence of transcription modes. With the help
of hidden Markov models we might be able to determine such gene classes, in
case there are any. In terms of hidden Markov models the different transcription
factor modes, which are not observable correspond to the hidden states and the
expression level of these transcription factors correspond to the visible output.
When applying the hidden Markov model in practice, a multivariate Gaussian

emission distribution in each hidden state is assumed most of the time. This
is essentially based on the fact that there are efficient parameter estimators for
this special case. This distribution assumption, however, does not hold true for
many data sets, including the ChIP-chip data provided by Mayer et al. (2010).
Due to this limitation we improve the HMM in order to make it more applicable
to non-Gaussian data. The extension of the HMM we are going to propose in
this work is based on a generalised emission density. The new derived emission
distribution is expressed in terms of pairwise distances between all observations
and their probabilities of belonging to a certain state and does no longer depend
on a cluster center or a cluster variance. The advantage of this approach is that
in this way we are able to use different distance measures which are well adjusted
for the particular data situation of interest.
In the beginning of chapter two an introduction to the general hidden Markov

model theory is given. Based on this, the generalised hidden Markov model
(GHMM) is proposed and the corresponding parameter estimators are derived.
Chapter three gives an insight into the performance of the introduced GHMM
by applying the method to data generated by different simulation scenarios. It
is shown that the proposed method is able to outperform the original HMM in a
certain data situation. In chapter four the introduced generalised hidden Markov

1



2 1. Introduction

model is applied to ChIP-chip data. We show that the GHMM is able to identify
biologically meaningful transcription states. At the end of this thesis a discussion
and a prospect for further research in this context is given.



2. Methods

2.1. Hidden Markov Models (HMM)

Ordinary Markov chains are often not flexible enough for the analysis of real
world data, as the state corresponding to a specific event (observation) has to be
known. However, in many problems of interest this is not given. Hidden Markov
models (HMM) as originally proposed by Baum et al. (1970) can be viewed as an
extension of Markov chains. The only difference compared to common Markov
chains is, that the state sequence corresponding to a particular observation se-
quence is not observable but hidden. In other words, the observation is a prob-
abilistic function of the state, whereas the underlying state sequence itself is a
hidden stochastic process (Rabiner, 1989) (see figures 2.1 and 2.2). That means,
the underlying state sequence can only be observed indirectly through another
stochastic process that emits an observable output. Hidden Markov models are
extremely popular when dealing with sequential data, such as speech recognition,
gesture recognition (Duda et al., 2001) as well as biological sequences.
Before going into detail, let us first fix some notation used throughout this

thesis. A complete overview about the notation used in this thesis is given in
appendix A.

• K: Discrete number of hidden states in the model (e.g. K = 6).

• T : Discrete number of observations (time points) in a sequence (e.g. T =
1000).

• S = (s1, s2, ..., sT ): Hidden state sequence, which should be determined.

• O = (O1, O2, ..., OT ): Observation sequence.

• π = (π1, ..., πK): Initial state probabilities where πi = P (s1 = i) and∑K
i=1 πi = 1.

• A = {aij|i = 1, ..., K; j = 1, ..., K}: State transition probability where
aij = P (st+1 = j|st = i) and

∑K
j=1 aij = 1 (see figure 2.1).

• B = {bk(Ot)|k = 1, .., K; t = 1, ..., T}: Observation probability where
bk(Ot) = P (Ot|st = k). Typically a multivariate Gaussian distribution

3



4 2. Methods

is assumed, but other distributions can be used as well.

• θ = {π,A,B}: Parameter vector fully specifying a HMM.

Figure 2.1.: Visualisation of the transition probabilities between three hidden
states as well as the resulting probability functions (e.g. Gaussian).
Every state can be reached from every other state with a specific
probability. For some applications however, some transition proba-
bilities aij might be zero. Note, that only the emissions O from the
observation distributions bk(O) are observable, the states are not ob-
servable. Another representation of a HMM can be found in figure
2.2.

To give a better idea of what a hidden Markov model actually is algorithm 1
shows how an HMM observation sequence O = (O1, O2, ..., OT ) is drawn from a
HMM, given a particular model θ. Note that the algorithm just generates the
observation sequence O and not the state sequence S since the state sequence
is hidden. Each observation could have been drawn by each hidden state with
a certain probability. This leads us to another representation of Hidden Markov
Models, where these models can also be viewed as a time-depending clustering
task, where the Markov property holds.
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Algorithm 1: Algorithm to simulate a HMM observation sequence O =
(O1, O2, ..., OT ) given a particular model θ = {π,A,B}.
Data: θ = {π,A,B}
Result: Observation sequence O = (O1, O2, ..., OT )
Choose an initial state s1 according to the initial state distribution π.1

Set t = 12

for Time t ∈ {1, ..., T} do3

Draw Ot from the probability distribution bst(·)4

Go to state st+1 according to the transition probabilities Ast,·5

Set t = t+ 16

Figure 2.2.: Visualisation of the state transitions unfold over time as well as the
resulting observation distributions bk(Ot) (e.g. Gaussian). Note that,
since the states are not observable there are KT possible hidden state
sequences. Another representation of a HMM can be found in figure
2.1.

Given an observation sequence there are three fundamental problems to solve
(Rabiner, 1989):

1. How do we compute the probability of the observation sequence given a
HMM θ = {π,A,B}?

2. How do we get the most likely hidden state sequence corresponding to the
observation sequence given a HMM θ = {π,A,B}?
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3. How do we estimate the model parameters θ = {π,A,B} given one or
several observation sequences?

Problem 1 can also be viewed as the problem how well a given model matches
the observations. Problem 2 aims to detect the hidden part of the model, that
is the state sequence supposed to be correct. However, problem 3 is the most
important one as it allows us to determine optimal model parameters. Without
these parameters we are not able to solve problems 1 and 2 since these problems
expect a given HMM.

2.1.1. Probability of an Observation Sequence

In order to get solutions for the three problems we have to derive the probability
of an observation sequence O given model parameters θ. The joint probability of
an observation sequence and its corresponding state sequence is given by

P (O,S|θ) = P (O|S, θ) · P (S|θ). (2.1)

Hence, we can write the probability of O by summing 2.1 over all possible state
sequences S as

P (O|θ) =
∑

S
P (O|S, θ) · P (S|θ),

in which the probability of an observation sequence given a specific state sequence
S is

P (O|S, θ) =
T∏

t=1

P (Ot|st, θ) =
T∏

t=1

bst(Ot)

and the probability of a fixed state sequence is given by

P (S|θ) = πs1

T∏

t=2

ast−1st .

Altogether we can write

P (O|θ) =
∑

S
πs1

T∏

t=2

ast−1st

T∏

t=1

bst(Ot), (2.2)

which is the probability of observing the data set O = (O1, ..., OT ). In the basic
HMM the observation probabilities bk(Ot) are usually assumed to follow a multi-
variate Gaussian mixture density function but can follow any other distribution
as well.
The straightforward evaluation of equation 2.2 by enumerating and summing

over all hidden state sequences is a computationally unfeasible problem, as there
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are K possible states for each time t, resulting in KT possible state sequences.
However, this equation can also be solved using a so called forward-backward
procedure (Liporace, 1982). Consider the joint probability of the incomplete
observation sequence until a certain time t and state k at time t as being the
forward term

αt(k) = P (O1, ..., Ot; st = k|θ)
and the backward term as

βt(k) = P (Ot+1, ..., OT |st = k, θ).

That is the probability of the remaining observations given state k at time t.
These expressions can be defined inductively as follows:

αt(k) =
K∑

j=1

αt−1(j)ajkbk(Ot)

where α1(i) = πibi(O1)

βt(k) =
K∑

j=1

βt+1(j)akjbj(Ot+1)

where βT (i) = 1

The joint probability of the observation sequence O and state k at time t can
be written as

P (O, st = k|θ) = P (O1, ..., Ot; st = k|θ) · P (Ot+1, ..., OT |O1, ..., Ot; st = k, θ)

= P (O1, ..., Ot; st = k|θ) · P (Ot+1, ..., OT |st = k, θ)

= αt(k) · βt(k),

since the conditional probability of observing Ot+1, ..., OT given st = k is indepen-
dent of O1, ..., Ot. Hence αt(k) and βt(k) are independent and we can write the
probability of a complete observation sequence, that is the solution of problem 1
as

P (O|θ) =
K∑

i=1

P (O, st = i|θ)

=
K∑

i=1

αt(i) · βt(i) =
K∑

i=1

αT (i).

(2.3)

So by using the forward-backward terms we gain a more efficient way to evaluate
equation 2.2 as it only requires on the order of T · K calculations. While the
direct computation method requires on the order of KT calculations. According
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to Rabiner (1989) computing forward-backward variables leads to a saving of
about 69 orders of magnitude, when computing the probability of a sequence of
length T = 100 with K = 5 states. The whole procedure is illustrated in figure
2.3.

Figure 2.3.: Illustration of the required forward and backward terms in order to
compute the forward-backward variables for state 2 at time t, that
is αt(2) and βt(2) respectively. Note the inductive definition of the
forward-backward variables and how state 2 can be reached at time
t from the 3 possible predecessors and successors respectively. The
subscript j represents the states at time t− 1 and t + 1. The figure
is based on Bishop (2006).

In order to make further computations easier let us introduce two auxiliary
variables γt(i) and ξt(i, j). γt(i) = P (st = i|O, θ) is the probability of being in
state i at time t, given parameters θ as well as a sequence O and ξt(i, j) is the
probability of being in state i at time t and being in state j at time t+ 1, given
parameters θ as well as a sequence O. Hence, ξt(i, j) can be interpreted as a time
dependent transition probability P (st = i, st+1 = j|O, θ). These quantities can
be expressed in terms of forward-backward variables as follows:

γt(i) =
αt(i)βt(i)∑K
j=1 αt(j)βt(j)

(2.4a)

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑K

i=1

∑K
j=1 αt(i)aij

(2.4b)
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2.1.2. Viterbi Algorithm

Given an observation sequence and the corresponding model parameter θ we
can calculate the most likely hidden state sequence S∗ by applying the Viterbi
algorithm, originally proposed by Forney (1973). Note that just looking for the
most likely state for every time t could result in an invalid state sequence since
some transitions could have zero probability (aij = 0 for some i and j). In contrast
to computing the most probable state at each instant the Viterbi algorithm aims
to maximize P (S|O, θ), that is the probability of the complete state sequence.
Let us denote

δt(i) = max
s1,...,st−1

P (s1, ..., st = i;O1, ..., Ot|θ)

as the highest probability of a state sequence until time t that ends in state i.
This expression can be calculated using a recursive definition

δt(i) = max
1≤j≤K

[δt−1(j)aji] bi(Ot).

In order to obtain the best state path the following procedure is applied (Rabiner,
1989):

1. Initialisation (∀i):

δ1(i) = πibi(O1)

ψ1(i) = 0

2. Recursion (∀j):

δt(j) = max
i

[δt−1(i)aij] bj(Ot) 2 ≤ t ≤ T

ψt(j) = argmax
i

[δt−1(i)aij] 2 ≤ t ≤ T

3. Termination:
s∗T = argmax

i
[δT (i)]

4. State sequence backtracking:

s∗t = ψt+1(s
∗
t+1) t = T − 1, T − 2, ..., 1,

where ψt(j) is an array that keeps track of the arguments which actually max-
imised δt(j) and S∗ = (s∗1, ..., s

∗
T ) is the resulting optimal state sequence. By

applying the Viterbi algorithm we are able to solve problem 2, mentioned in
section 2.1.
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2.1.3. Baum-Welch Algorithm

The remaining and by far the most challenging problem is finding model pa-
rameters θ = {π,A,B} that maximise the probability of a given observation
sequence. In other words, we want to obtain model parameters that describe
how the given observation sequence comes about best. That means, we want to
find a maximum-log-likelihood solution of the HMM parameters θ = {π,A,B}
given a particular observation sequence O, hence

argmax
θ

log (L(θ|O,S))

where L(θ|O,S) is given by equation 2.2.

Since there are unobserved latent variables involved this problem can not be
solved analytically. However we can solve this problem using the expectation-
maximisation (EM) algorithm (Dempster et al., 1977), that is also known as the
Baum-Welch (Baum et al., 1970) algorithm when dealing with Hidden Markov
models. The EM algorithm is an iterative method which alternates between
an expectation (E)-step and a maximisation (M)-step. According to Dempster
et al. (1977) the expectation of the log-likelihood using a current estimate of the
parameter-vector θ

Q(θ, θold) = E
[
log (P (O,S|θ))|O, θold]

is calculated in the E-step. In the M-step the parameter-vector θ is updated in
the way that the expected log-likelihood of the E-step is maximised

θnew = argmax
θ

Q(θ, θold).

This procedure is repeated iteratively until a local maximum is reached.

Let the state sequence S = (s1, ..., sT ) be the unobserved data and the ob-
servation sequence O = (O1, ..., OT ) be the observed data. In other words, the
incomplete data is given by the observations O and the complete data is given by
the observations O including its corresponding state sequences S. Consequently
the complete data log-likelihood is given by log (L(θ|O,S)). Therefore the Q
function is given by

Q(θ, θold) =
∑

S
P (S,O|θold) · log (L(θ|O,S)). (2.5)
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By inserting L(θ|O,S) into 2.5 and separating the parameters we obtain

Q(θ, θold) =
∑

S
P (S,O|θold) · log

(
πs1

T∏

t=2

ast−1st

T∏

l=1

bsl(Ol)

)

=
∑

S
P (S,O|θold) · log (πs1)

+
∑

S
P (S,O|θold) ·

(
T∑

t=2

log
(
ast−1st

)
)

+
∑

S
P (S,O|θold) ·

(
T∑

l=1

log (bsl(Ol))

)
,

a representation of the Q-function where each term can be optimised separately,
since the parameters are independent of each other. In addition, each summand
can be greatly simplified to

Q(θ, θold) =
K∑

i=1

P (s1 = i,O|θold) · log (πi) (2.6a)

+
T∑

t=2

K∑

i=1

K∑

j=1

P (st−1 = i, st = j,O|θold) · log (aij) (2.6b)

+
T∑

t=1

K∑

i=1

P (sl = i,O|θold) · log (bi(Ot)). (2.6c)

The simplification is based on the fact that we sum over all state sequences S,
but in each summand we only need the state of a particular time, that is s1 in
2.6a, st−1 and st in 2.6b and sl in 2.6c.
Through deriving the Q-function we gained a powerful estimation method for

the computation of the model parameters π, A and B based on the EM algorithm.
Now, in order to derive parameter estimates, one has to maximize equation 2.6
with respect to each parameter of interest separately. A complete derivation of
the parameter update formulas can be found in section 2.2.2.

2.1.4. Limitations

Although HMMs are well tested models that “when applied properly, work very
well in practice for several important applications” (Rabiner, 1989) a number of
limitations exist. One of which is that the results strongly rely on a proper
initialisation of the model parameters. Simulations (Rabiner, 1989) have shown
that uniform initial values of π and A are suitable, but adequate initial values for
the estimation of the B parameters are indispensable. Furthermore, the number
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of hidden states K has to be known in advance. An inadequate number of states
would result in wrong cluster representations. However, there are some methods
to overcome those problems, for example using standard clustering results as
initial values for B as well as the Akaike information criterion (AIC) for the
identification of an appropriate state number.

There are efficient parameter update estimators for HMMs with discrete and
Gaussian emission values. Thus, in practice, when dealing with continuous data a
multivariate Gaussian distribution is assumed most of the time. That, however, is
the strongest limitation. In many real data sets the observations do not even ap-
proximately follow a normal distribution and hence assuming normal distributed
emissions could result in “useless” model parameters. Of course one could replace
the Gaussian distribution by a distribution adapted to the situation of interest.
But in this case, it is not certain whether the distribution can be included in the
Baum-Welch algorithm and hence whether efficient parameter estimators exist.
In addition, there are situations where no known distribution fits the data in an
reasonable extent. Consider the situation pictured in figure 2.4 where the obser-
vations are arranged in non-spherical clusters. In addition the situation in which
a cluster center can not be defined in a proper way may arise. This could be
the case when the observation cannot be represented by a p-dimensional vector,
thus has no location in space, in other words when the observation sample is
obtained from a non-Euclidean metric space. It should be clear that a normal
distribution is not appropriate in this case as well. Moreover, datasets where the
observations belong to more than one state (cluster) at a time with a specific
probability cannot be handled with a normal hidden Markov model. Consider
the case where no explicit boundary between the clusters can be determined. In
this case soft cluster assignments as in fuzzy k-Means (Dunn, 1973) would be
more appropriate.

Given these limitations one has to think about how to adjust the well estab-
lished HMM framework in order to get rid of some restrictions.

2.2. Generalised HMM (GHMM)

To overcome some of the mentioned limitations of the standard hidden Markov
model we suggest to use a generalised emission density that is able to deal with
samples obtained from non-Euclidean metric space. In the following sections we
are going to introduce a density that is only dependent on the pairwise distances
of all observations and no longer on a center of mass nor a variance term. Fur-
thermore the HMM parameter estimates for all included parameters are derived.
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Figure 2.4.: Dataset with non-spherical clusters where the application of Gaussian
emission distributions has limited results. The figure was generated
using R (R Development Core Team, 2009).

2.2.1. Generalised Emission Density

The origin of our generalised emission density is the normal distribution density
with zero covariance and equal variance in all dimensions:

fO(Oi) =
1

(2πσ2
k)

p
2

exp

(
− 1

2σ2
k

(Oi − µk)2
)

(2.7)

where p is the dimension of observation Oi and k a given cluster. This probability
density function however is not applicable when working with data observed from
non-Euclidean metric space. In order to overcome this weakness we suggest to
replace the variance term σ2

k and the center µk in equation 2.7 with expressions
only depending on the pairwise distances of all observations.
The basis of our improvements is formed by the fact that observations can be
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assigned to clusters k = {1, ..., K} in a fuzzy way. Instead of a hard assignment of
an observation i = {1, ..., T} to a cluster k we use soft assignments, referred to as
responsibilities rik ∈ [0, 1] ∀i, k in the further work. That means, each observation
i could have been emitted from each cluster k with a certain probability rik. We
introduce a matrix

R = {rik|i = 1, ..., T ; k = 1, ..., K}, rik ∈ [0, 1] ∀i, k

where each row sum equals one, that is
∑K

k=1 rik = 1 ∀i. Hence R contains the
probability of each sample i belonging to a certain cluster k. In the following
sections Rk will refer to the sum over all observations given a specific cluster k,
thus Rk =

∑T
i=1 rik.

Now, in order to derive the generalised emission distribution we can replace
the variance σ2

k by its empirical estimate

σ̂2
k =

1

Rk

T∑

i=1

(Oi − µk)2

that can be expressed in terms of responsibilities rik and pairwise distances of all
observations according to Lemma 1.

Lemma 1.

σ2
k =

1

2R2
k

T∑

i=1

T∑

j=1

rikrjk||Oi −Oj||2

A proof for Lemma 1 can be found in Müller (2011). By plugging Lemma 1
into the normal probability distribution function 2.7 we get rid of the variance
term σ2

k. In a second step we aim to remove the cluster center µk. According
to Lemma 2 the distance (Oi − µk)

2 in 2.7 can also be expressed in terms of
responsibilities rik and pairwise distances of all observations.

Lemma 2.

(Oi − µk)2 =
1

Rk

(
T∑

j=1

rjk||Oj −Oi||2 −
1

2Rk

T∑

j=1

T∑

l=1

rjkrlk||Oj −Ol||2
)

Lemma 2 states that the distance of a point Oi to the corresponding center of
mass µk can be written as the sum of distances of point Oi to all other points plus
the sum of all pairwise distances. Again, a proof of this Lemma can be found
in Müller (2011). Inserting Lemma 1 and 2 into the normal distribution density
function 2.7 yields a new empirical probability density of observing Oi in state
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k, that is bk(Oi) in terms of hidden markov models.

bk(Oi) = P (Oi|k) =
1

(2πσ2
k)

p
2

exp

(
− 1

2σ2
k

(Oi − µk)2
)

=

(
2π

2R2
k

T∑

l=1

T∑

j=1

rlkrjkdlj

)− p
2

exp


−1

2

(
1

2R2
k

T∑

l=1

T∑

j=1

rlkrjkdlj

)−1

· 1

Rk

(
T∑

j=1

rjkdji −
1

2Rk

T∑

l=1

T∑

j=1

rlkrjkdlj

)]

=

(
π

R2
k

T∑

l=1

T∑

j=1

rlkrjkdlj

)− p
2

exp


− 1

2Rk




∑T
j=1 rjkdji

1
2R2

k

∑T
l=1

∑T
j=1 rlkrjkdlj

−
1

2Rk

∑T
l=1

∑T
j=1 rlkrjkdlj

1
2R2

k

∑T
l=1

∑T
j=1 rlkrjkdlj






=

(
π

R2
k

T∑

l=1

T∑

j=1

rlkrjkdlj

)− p
2

exp

[
−Rk

∑T
j=1 rjkdji∑T

l=1

∑T
j=1 rlkrjkdlj

+
1

2

]
(2.8)

The complete derivation of the generalised emission distribution can be found
above, where dij is some measure for the distance between observation Oi and
observation Oj, e.g. the euclidean distance ||Oi −Oj||2. Note, that this function
is only expressed in terms of pairwise distances between all observations and its
responsibilities belonging to a certain cluster k and does no longer depend on a
cluster center or a cluster variance. A graphical comparison between the derived
generalised emission distribution and the normal distribution can be found in fig-
ure 4.1. The plots illustrate that the two distributions match each other perfectly
when using the squared Euclidean distance as distance measure dij. However, the
advantage in comparison to the original HMM is that we are able to use different
distance measures which are well adjusted for the particular data situation of
interest. An example of an alternative distance measure could be the Manhattan
norm. One could also think about using a weighted distance measure, where the
distances are weighted according to some prior knowledge of the data.

2.2.2. Derivation of the Parameter Estimations

The parameter estimates of θ = {π,A,R} can be derived according to the
Baum-Welch algorithm described in section 2.1.3. As already mentioned we have
to maximize equation 2.6 with respect to each parameter of interest separately
in order to get updates of the parameters.



16 2. Methods

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Observation

D
en

si
ty

Gaussian
Generalized

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Gaussian Density
G

en
er

al
iz

ed
 D

en
si

ty

Figure 2.5.: A comparison of an empirical gaussian distribution and the corre-
sponding generalised distribution (distance dij is the squared eu-
clidean distance) introduced in section 2.2.1 based on n = 1000 sam-
ples from a standard normal density. The plot on the left shows two
perfectly matched density functions and the plot on the right shows
a plot of the generalised density against the empirical normal density
that lies on the bisecting line. The figure was generated using R (R
Development Core Team, 2009).

2.2.2.1. Initial State Probabilities

Taking the partial derivative ofQ(θ, θold) with respect to πi under the constraint∑K
l=1 πl = 1 leads to

0 =
∂

∂πi

[
Q(θ, θold)− λ

(
K∑

l=1

πl − 1

)]

=
1

πi
· P (s1 = i,O|θold)− λ

(2.9)

where λ is the Lagrange multiplier (Luenberger and Ye, 2008). Multiplying 2.9
by πi and summing over i leads to

λ = P (O|θold) (2.10)
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By inserting equation 2.10 into equation 2.9 we obtain

0 =
1

πi
· P (s1 = i,O|θold)− P (O|θold)

πi =
P (s1 = i,O|θold)

P (O|θold)
,

(2.11)

the estimated probability for state i at time 1. Note, that 2.11 can also be
expressed in terms of the forward-backward variables described in section 2.1, as
it exactly meets the definition of the auxiliary variable γt(i) given in equation
2.4a:

πi =
α1(i)β1(i)∑K
j=1 α1(j)β1(j)

= γ1(i) (2.12)

2.2.2.2. Transition Probabilities

In order to obtain the transition probabilties aij we take the partial derivative
of Q(θ, θold) under the constraint

∑K
l=1 ail = 1:

0 =
∂

∂aij

[
Q(θ, θold)− λ

(
K∑

l=1

ail − 1

)]

=
1

aij

T∑

t=2

P (st−1 = i, st = j,O|θold)− λ
(2.13)

Multiplying 2.13 by aij and summing over j yields to:

λ =
T∑

t=2

P (st−1 = i,O|θold) (2.14)

Again, substituting 2.14 into 2.13 yields

0 =
1

aij

T∑

t=2

P (st−1 = i, st = j,O|θold)−
T∑

t=2

P (st−1 = i,O|θold)

aij =

∑T
t=2 P (st−1 = i, st = j,O|θold)∑T

t=2 P (st−1 = i,O|θold)

=

∑T
t=2 αt−1(i)aijbj(Ot)βt(j)∑T

t=2 αt−1(i)βt−1(i)

=

∑T
t=2 ξt−1(i, j)∑T
t=2 γt−1(i)
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which can again be expressed in terms of the auxiliary variables γt(i) and ξt(i).
Note that the estimator of aij is the quotient of the expected number of transi-
tions from state i to state j and the expected number of transitions from state i
(Rabiner, 1989).

2.2.2.3. Responsibilities

Computing an update for the responsibilites R is more complicated since de-
riving a closed form solution of the constrained global non-linear optimisation
problem is not possible. So one has to think about an adequate optimisation
strategy to find the maximum

Rmax = argmax
R

Q({πold, Aold, R}, {πold, Aold, Rold})

under the constraints
K∑

k=1

rik = 1 ∀i

and
rik ∈ [0, 1] ∀i, k.

This task can be solved using analytical optimisation methods such as gradient
ascent. This iterative method aims to optimise a function f(x) by taking steps
τ proportional to the direction of f at a point z, that is the gradient ∇f =
f ′(z). A new point znew = z + τ · f ′(z) is determined at each iteration until
the algorithm reaches a local/global maximum. Disadvantages of the algorithm
are that it can not overcome local maxima plus the results crucially depend
on the step size τ . Too small steps will result in a very long computing time
until convergence and too large values of τ may lead to missed maxima. One
way to overcome the problem associated with the step size is to combine the
gradient ascent with a line search that finds an optimal step size at every iteration.
However, the original algorithm does not take the linear and box constraints into
account, that is why we have to adjust the method such that it can handle the
constraints. The problem associated with the constraints is illustrated in figure
2.6A, where an optimisation of rt· proportional to ∇f might violate the linear
and box constraints.

In order to modify the gradient method to suit our needs we first have to derive
the partial derivative of Q(θ, θold) with respect to rab. In doing so, the closed form
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solution of the gradient is given by

∂

∂rab
Q(θ, θold) = 1 − 2

=
T∑

t=1

P (st = b,O|θold)

[
p

Rb

−
p ·∑T

l=1 rlbdla −
∑T

j=1 rjbdjt∑T
l=1

∑T
j=1 rlbrjbdlj

− Rb

dat ·
∑T

l=1

∑T
j=1 rlbrjbdlj −

∑T
j=1 rjbdjt · 2

∑T
l=1 rlbdla

(
∑T

l=1

∑T
j=1 rlbrjbdlj)

2

]

where expressions 1 and 2 are derived according to pages 21 and 22. For
each observation a = 1, ..., T we have a set of dependant responsibilities ra· =
{ra1, ra2, ..., raK} that have to be updated all at once in each iteration. Thus
the direction information for an responsibility update of a single observation a is
given by

∇L(ra·) =

(
∂

∂ra1
Q(θ, θold),

∂

∂ra2
Q(θ, θold), ...,

∂

∂raK
Q(θ, θold)

)
. (2.15)

As already mentioned updating responsibilities ra· in direction of ∇L(ra·) might
violate the linear constraint

∑K
k=1 rak = 1. We deal with this problem by cal-

culating the projection of the direction information 2.15 onto the line of allowed
solutions, that is the simplex spanned by the corners of the box of feasible solu-
tions [0, 1]K (see figure 2.6). However the box constraint rab ∈ [0, 1] remains an
unsolved problem since an update of the responsibilities might point out of the
box of valid solutions, especially when rab is already close to the borders zero or
one.

To overcome both constraints we proceed as follows: First we are looking for
responsibilities that are sufficiently far away from the box corners, hence that
can be increased or decreased without the risk of leaving the box. We do this by
creating two non disjoint sets

C1 = {k : rak < 1− ε}, ∀k = 1, ..., K

C2 = {k : rak > ε}, ∀k = 1, ..., K

where C1 includes states whose responsibilities may be increased and C2 whose
responsibilities may be decreased. The threshold ε is set to 0.005 here. In a
second step we discretize the direction information by choosing the responsibility
with the largest partial derivative from the set of states which can be increased

m = argmax
k
∇L(rak), ∀k ∈ C1

as well as the responsibility with the smallest partial derivative from the set of
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states that can be decreased

g = argmin
k
∇L(rak), ∀k ∈ C2.

Thus we get ram that should be increased and rag that should be decreased. Note
that the sets C1 and C2 are not empty and that m and g are never equal. In
order to take the linear constraint into account we introduce a weight vector w
which is set to 1 at position m, to −1 at position g and to zero in the remaining
positions. More formally, the weight vector is given by w = (em − eg), where ei
is the i−th unit vector. The responsibilites rak, k /∈ {m, g} are kept constant.
By using the weights w we are able to update the responsibilites ra· for each
observation a = 1, ...T by applying the following update step:

rnew
a· = ra· + τ · w

Note that the linear constraint is met, since we go −τ in direction g and τ in
direction m and hence the sum over all responsibilities for a given observation a
remains the same.
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Figure 2.6.: Update step for the responsibilities. For the sake of simplicity, only
the responsibilities rtj and rti are shown. Using the standard update
formula of the gradient ascent method might violate the linear- and
box constraints (A). To solve this problem ∇L(rt·) has to be pro-
jected onto the line of allowed directions, which are located on the
parallel to the simplex (A). This projection is applied by taking step
τ in direction of the largest partial derivative argmaxk(∇L(rak)) and
−τ in direction of the smallest partial derivative argmink(∇L(rak))
(B). The weight vector w is given by (ei − ej), respectively (ej − ei),
where ei is the i−th unit vector (B). The natural interval for the step
size τ is depending on the current update direction and is given by
[0,min (1− rtj, rti)], respectively [0,min (1− rti, rtj)] (B).

As mentioned in the beginning of this section we perform a line search in
order to determine an optimal step size τ . The line search algorithm detects an
optimal τ for each observation a such that Q({πold, Aold, R}, {πold, Aold, Rold}) is
maximised. There are some restrictions on the feasible values for τ , whereas the
minimum is set to 0 and the maximum to min(1− ram, rag, 0.1). The reason for
the lower bound is that going in the negative direction is already controlled by
the weight vector w and should not be changed by the step size. The maximum
is because 0 ≤ rak + τ · wk ≤ 1 must hold for all k. As only the responsibilities
for states m and g change it is sufficient to take

0 ≤ ram + τ ≤ 1 ⇒ ram + τ ≤ 1

0 ≤ rag − τ ≤ 1 ⇒ 0 ≤ rag − τ

into account. It follows that τ ≤ 1 − ram and τ ≤ rag, which is valid for all
τmax ≤ min(1 − ram, rag). Besides, an artificial restriction of the maximal step
size of 0.1 is included in order to ensure that the responsibilities do not change to a
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large extent in a single step. A graphical illustration of the proposed responsibility
update step and the corresponding natural step size boundary is given in figure
2.6.
In each iteration of the EM algorithm the responsibilities ra· for all observations

Oa, a = 1, ..., T are updated according to the procedure described above. Note
that the convergence of the responsibilities is reached through the EM iterations
and not within each iteration since we just take one step at a time. A summary
of the proposed optimisation method is given in Algorithm 2.

Algorithm 2: Algorithm to obtain new responsibility matrices Rnew

Data: For each sequence s = 1, ..., S: Samples Os = {O1, ..., OT} ⊂ Rp and
Responsibility matrix Rs ∈ [0, 1]T×K . Transition matrix
A ∈ [0, 1]K×K , start probabilites π ∈ [0, 1]K×1

Result: Updated responsibility matrices Rnew
s ∈ [0, 1]T×K

for Sequence s ∈ {1, ..., S} do1

for Time t ∈ {1, ..., T} do2

dt = ∇L(r
(s)
t· )3

let_up = which(r
(s)
t· < 1− ε)4

let_down = which(r
(s)
t· > ε)5

up = argmax (dt[let_up]))6

down = argmin (dt[let_down]))7

w = zeros(K)8

w[up] = 19

w[down] = −110

taumin = 011

taumax = min (1− r(s)t,up, r(s)t,down, 0.1)12

τ = optimizeStep(Os, Rs, A, π, taumin, taumax,w)13

r
new(s)
t· = r

(s)
t· + τ · w14

2.2.3. Method Outline

This section aims to give a short outline of the proposed estimation method
that is based on the expectation-maximisation algorithm. The goal is to max-
imise equation 2.6 with respect to the parameters θ where bi(Ot) is given by our
generalised emission distribution 2.8.
The EM algorithm starts with some initial values of θ, denoted by θold, where

π and A are often initialised uniformly. The responsibilities R however have to
be initialised adequate. Note, that the initial values have to meet the constrained
conditions mentioned in section 2.1. Then we alternate between the expectation
step, in that we evaluate the quantities γt(i) and ξt(i, j) given current values of
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θ and the maximisation step, in that we compute updates for the parameters A,
π and R according to the formulas and procedures presented in section 2.2.2. In
some cases the proposed estimation method might lead to an oscillation between
two parameter settings. For this reason we include a post processing step that
determines the parameter estimates responsible for the maximum likelihood out
of all iterations. The complete estimation method is summarised in Algorithm
3. Figure 2.7 illustrates an example of use. An example of the responsibility
updates during the EM algorithm is given in figures B.1 and B.2 in appendix B.

Algorithm 3: EM (Baum-Welch) algorithm with post processing step to
obtain updated parameter estimates θ.
Data: Initial parameters θold = {πold, Aold, Rold}, Observation sequence

O = (O1, ..., OT ), Threshold ε.
Result: Updated parameters θ = {π,A,R}
begin1

Set L(θnew|O,S) =∞2

Calculate L(θold|O,S)3

Set iter = 04

while L(θnew|O,S)− L(θold|O,S) > ε do5

Set θold = θnew6

Set iter = iter + 17

E step:8

Calculate ∀t, i, j9

γt(i) = αt(i)βt(i)∑K
j=1 αt(j)βt(j)10

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑K

i=1

∑K
j=1 αt(i)aij11

M step:12

Calculate ∀t, i, j13

πnew
i = γ1(i)14

anew
ij =

∑T
t=2 ξt−1(i,j)∑T
t=2 γt−1(i)15

Rnew using algorithm 216

Θiter = θnew17

θ = argmax (L(Θi|O,S))18

end19
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Figure 2.7.: An illustration of a hidden Markov model with generalised emis-
sion distributions. The observation sequence O that was generated
by a HMM with K = 3 hidden states and transition probabilities
a11 = 0.2, a12 = 0.3, a13 = 0.5, a21 = 0.1, a22 = 0.7, a23 = 0.2,
a31 = 0.1, a32 = 0.1 and a33 = 0.8 can be viewed at the bottom. The
responsibilities r·1, r·2 and r·3 computed through the method intro-
duced in section 2.2.2.3 are shown in the middle. Note that some
responsibilities are not equal to zero or one, which is the case when
the observation can not clearly be attributed to any of the states.
Observation 18, which lies between state two and three can be men-
tioned as an example of this effect. In the top diagram one can see
the corresponding true hidden state sequence S as well as the esti-
mated hidden state sequence S∗. As it can be seen, the proposed
method is able to identify all hidden states perfectly.



2.2. Generalised HMM (GHMM) 27

2.2.4. Implementation

An implementation of the proposed method is available for MATLAB (Mat,
R2011a). The implementation is based on a free MATLAB toolbox written by
Murphy (2005), that provides the original Baum-Welch algorithm as well as the
Viterbi algorithm. Due to the computational complexity it is not recommended
to apply the method to more than 10000 observations in one run. For more
details on the running time and for an improvement approach see section 3.6.





3. Simulation

This chapter aims to give an insight into the performance of the proposed
generalised hidden Markov model. In order to see whether the proposed method
is able to analyse data generated by a hidden Markov model we simulate data
based on different HMM parameters and scenarios. As a benchmark we use the
normal hidden Markov model introduced in section 2.1. To be able to compare
the results we introduce a performance measure.

3.1. Performance Measure

In order to compare the results of the common and the generalised hidden
Markov model (GHMM) we use a performance measure that is based on the
state sequences.
The advantage of simulation studies is that we know the true model param-

eters, as well as the true state sequence S. However, since a hidden Markov
model depends on many parameters, which is especially true for the generalised
model, it is not meaningful to use the discrepancies of the true and the estimated
parameters as a performance measure. Furthermore the emission distribution
of the original HMM has different parameters than the emission distribution of
the generalised model, which means that we can not compare the performance
of those models by simply comparing the parameter estimates. Another natural
approach would be to compare the likelihood of each model. This however, can
neither be applied since the generalised model does not have a real probability
distribution.
Though we can use the discrepancy between the true hidden state sequence and

the estimated hidden state sequence S∗ as a measure of model goodness. Where
the estimated state sequence is calculated by means of the Viterbi algorithm,
already introduced in section 2.1.2. In this way we are able to compare models
with different parameters, as it is the case with the original and generalised
HMM. Moreover, all model parameters incorporate into the score since the Viterbi
algorithm makes use of them. The proposed score is given by

P =
|S ∩ S∗|

T
, (3.1)

where T is the number of states in the sequence of interest and |S ∩ S∗| is the
number of correctly identified states. Thus the score is defined in the interval

29



30 3. Simulation

[0, 1] and is just the percentage of correct classified states in a sequence.

3.2. Scenario 1: Initialisation

At first we want to get an idea of how the proposed GHMM performs under
consideration of different initial values. Therefore, we simulate data based on 10
sequences per T = 100 observations with p = 1 dimensions and K = 2 states
according to the simulation procedure described in algorithm 1. In doing so, we
want to generate data where the time depending structure of the HMM is highly
pronounced. Therefore we generate the transition probability matrix A according
to

A = (1− λ) ·
(

0.8 0.2
0.2 0.8

)
+ λ ·

(
0.5 0.5
0.5 0.5

)
,

where λ is a value on the interval [0, 0.2] drawn from a uniform distribution.
The reason for this diagonally dominant matrix is because high probabilities for
staying in a particular state result in data strongly depending on the time infor-
mation. In contrast, uniformly distributed transition probabilities would result
in data simulated for a standard clustering task without any time dependencies.
The initial state probability π is drawn from a uniform distribution. The samples
are drawn from a Gaussian distribution with µ = (0, 4) and σ2 = (1, 1). That
means that there is just a small overlap between the two states and hence the
method should practically be able to identify all hidden states.
As already mentioned in section 2.1.4 the results of the original HMM mainly

depend on the initialisation of the emission parameter and not that much on the
initial values of the transition- and initial-state probabilities. For that reason we
use uniformly distributed initial values for the transitions A as well as for the
initial-state probabilities π. As initialisation for the responsibilities R we use

Rλ
init = (1− λ) · Γ + λ · F, (3.2)

where F is a T × K matrix with all entries equal to 1
K

and Γ = {γt(i)|t =
1, ..., T ; i = 1, ..., K} is given through the forward-backward terms 2.4a computed
by a standard hidden Markov model. Remember that γt(i) is the probability of
being in state i at time t given model parameters and observations. So this seams
to be a suitable initialisation for the responsibility rti. Note that it is also possible
to use a standard fuzzy clustering technique, for example, the non-Euclidean fuzzy
k-means method proposed by Müller (2011) to initialise the responsibilities.
However, we use equation 3.2 with λ values that vary between {0, 0.2, 0.4, 0.6, 0.8}

within each simulation for the initialisation. Thus, in each step we are moving
further away from an optimal initialisation in order to observe a difference in
the performance of the GHMM. In addition to see whether the proposed method
is able to find the hidden states under a “worst-case” initialisation we generate
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random initial responsibilities. In total we compute generalised hidden Markov
models based on six different responsibility initialisations. The score of each
method, which is given by 3.1 is then compared to the score of the standard
HMM.

3.2.1. Results of Scenario 1

The results of the simulation described above are illustrated in figure 3.1. Due
to the computationally expensive nature of the generalised HMM we were only
able to simulate 20 datasets. We used the original hidden Markov model as a
benchmark model which is indicated through the red colored boxplot. As one
can see, the method is able to find almost all hidden states and there is just
little difference between the different responsibility initialisations. What is more,
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Figure 3.1.: Performance of the generalised hidden Markov model under consid-
eration of different responsibility initial values. Where Rλ

init indicates
an initialisation of R according to 3.2. The results are based on 20
datasets with 10 sequences per 100 observations, one dimension and
two clusters with mean µ = (0, 4). The boxplots show the distri-
bution of the mean score for each dataset, whereas the benchmark
model is given by the original HMM. Note that the scale on the Y
axis is interrupted in order to provide a better illustration of the
outliers at the random initialisation.

the proposed method performs at least as good as the original method. In some
cases the GHMM even performs slightly better than the original HMM. However
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there are two huge outliers for the random initialisation. This suggests that the
random initialisation may not always work as good as other initialisations. Note
that this result is based on two well separated clusters with µ = (0, 4). The same
conclusion, however, also holds true for observations drawn from clusters with
greater overlap. See figure B.3 in appendix B for the corresponding boxplot with
cluster centers µ = (0, 2). To summarise, one can say that the method does not
as strongly depend on the initialisation as it is the case with the original HMM.
Nevertheless we suggest using responsibility initial values that are based on γt(i),
since our conclusions are based on merely two rather artificial scenarios. In the
ongoing work we use responsibility initial values of R0

init since this initialisation,
in some cases, performs slightly better than others.

3.3. Scenario 2: Gaussian Distribution

To get a deeper insight into the performance of the GHMM we simulate data
with various difficulties. Again we sample data based on 10 sequences per T = 100
according to the simulation procedure described in algorithm 1. But now the
cluster centers µ are chosen randomly from the interval [0, 5] and the variance
σ2 is fixed to 1. In this way we get clusters with varying overlap and hence
various difficulty. Moreover, we either increase the dimension in each step by two
(d = d+ 2) or the number of hidden states by two (K = K + 2) starting with an
initial K and p of 2. The maximum number of clusters and dimensions was set
to 10, what leads to five different scenarios within each simulation set-up. This
approach aims to show if the results of the proposed method are depending on the
data dimension as well as on the number of states. The transition probabilities
and initial state probabilities were again generated according to the procedure
described in section 3.2.

3.3.1. Results of Scenario 2

The results of scenario 2 are based on 20 datasets in each case and are illustrated
in figures 3.2 and 3.3. We used the original HMM as a benchmark model again.
Figure 3.2 shows the performance when a variation in the number of clusters

is taken into account, whereas the number of dimensions is fixed to d = 2. As
one can see, the median score of the GHMM is either equal or lower compared
to the corresponding score of the original HMM. Taking a random fluctuation
due to the small number of simulations into account we can say that the general
performance levels of both methods are quite similar. With an increasing number
of clusters the performance of both methods decreases. That is obvious since the
more cluster, the higher the probability that some clusters show the same or
similar characteristics. Thus with a higher number of clusters it is much more
difficult to distinguish between them.
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Figure 3.2.: Performance of the generalised hidden Markov model compared to
the original HMM under consideration of different numbers of clus-
ters. The results are based on 20 datasets with 10 sequences per 100
observations and the cluster centers are drawn randomly from the
interval [0, 5]. Each boxplot tuple shows the distribution of the mean
score for each dataset for both algorithms. The number of clusters
increases from one tuple to the next while the number of dimensions
is kept constant (p = 2).

In contrast, figure 3.3 shows the results of the algorithms with an increasing
number of dimensions. In this case the number of clusters is fixed to K = 2.
We can see that the original hidden Markov model is superior to the generalised
model in almost all cases. What is more, the variance of the GHMM is higher
than the corresponding variance of the HMM, at least for the cases with more
than two dimensions. However, we can also observe that an increasing number
of dimensions comes along with an increase of the mean score in both models.
This is quite intuitive since the more dimensions, the easier it is to separate the
clusters from each other.
In total, one can say that the number of clusters does not seem to have a huge

effect on the performance of the GHMM compared to the HMM. The number
of dimensions does, however, have an effect on the performance in the way that
the original HMM provides better results than the generalised HMM. A reason
why the original hidden Markov model outperforms the generalised model in
some cases might be the higher number of parameters that have to be estimated
for the GHMM. Another reason is that the original HMM is predestinated for
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Figure 3.3.: Performance of the generalised hidden Markov model compared to
the original HMM under consideration of different data dimensions.
The results are again based on 20 datasets with 10 sequences per 100
observations and the cluster centers are drawn randomly from the
interval [0, 5]. Each boxplot tuple shows the distribution of the mean
score of each dataset for both algorithms. The number of dimensions
increases from one tuple to the next while the number of clusters is
kept constant by K = 2.

the analysis of Gaussian data as simulated in this scenario since a multivariate
Gaussian distribution is used as emission distribution. For this reason we simulate
non-Gaussian data predestinated for the GHMM in the following section.

3.4. Scenario 3: Lq Norm

So far we have only evaluated the performance of GHMM on spherical data
drawn from a Gaussian HMM, and therefore we could not expect to outperform
the original HMM model. However, as mentioned before with our generalised
emission distribution we are able to use other distance measures respectively
other emission distributions. Suppose we have prior knowledge about the non-
spherical cluster structure and the distance measure that fits the data best. We
want to see whether the prior information has an influence on the results or not.
We use a similar simulation as in scenario 2 but this time we use observations

obtained from a distribution having a non-spherical shaped structure. This leaves
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us with the question of how we are able to simulate data from such a distribu-
tion. In contrast to spherical data, which we can easily sample from a Gaussian
distribution, it is more complicated to sample non-spherical data. However, the
shape of non-spherical clusters meets in many cases some special distance mea-
sure condition. Therefore we have the advantage that we can draw conclusions
on the optimal distance measure dij from the cluster structure. For this reason
we would like to sample data whose structure meets the shape of some particular
norm. A distance measure which is known as the Lq norm, is defined as

||x||q =

(
n∑

i=1

|xi|q
)1/q

, (3.3)

where x = (x1, ..., xn) is a vector and q indicates the norm. The L1 norm is known
as the Manhattan norm, L2 is known as the Euclidean norm and L∞ is known
as the Maximum norm. Figure 3.4 gives a graphical illustration of the three
norms. In order to simulate data with different norm shapes we make use of a

Figure 3.4.: A graphical illustration of three different Lq norms and their cor-
responding unit circles. The distance from the origin is calculated
according to equation 3.3.

rejection sampling (Robert and Casella, 1999), that is described in the following
subsection.

3.4.1. Rejection Sampling

The rejection sampling is based on the idea, that for sampling from the dis-
tribution of interest we can draw samples from a simpler distribution than the
distribution of interest and reject or accept them with a certain probability, de-
pending on the distribution of interest.
Assume we want to draw samples from a difficult distribution f(x), which is

called the target distribution. Instead of directly drawing from f(x), which is
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difficult for some reasons, we can sample from a simpler distribution g(x), which
is called the proposal distribution. We accept samples from g(x) with some
probability

p =
f(x)

M · g(x)
,

where M ∈ R is a rejection constant such that f(x) < M · g(x) for all x. Thus
M · g(x) forms an envelope over the target distribution f(x). We then accept a
sample x from g(x) as a random realisation of f(x) if u < p, where u is a random
sample drawn from a uniform distribution on the unit interval. Otherwise, if
u > p we reject x and repeat the sampling process by drawing a new x from g(x).
Applied to our problem of sampling data from different Lq norms we can gen-

erate L2 norm shaped clusters as a proposal by drawing from a Gaussian distri-
bution. The proposal distribution is then given through the L2 norm by

g(x) =
exp (−||x||2)

2π
.

If we would like to have a random sample of data following a particular Lq norm
shape we can set the target distribution to

f(x) =
exp (−||x||q)

2π
.

Realisations from a distribution preferring a Lq norm shape are then obtained by
proceeding according to the rejection sampling described in the last paragraph.
Examples of clusters drawn from different Lq norms are given in figure 3.5.
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Figure 3.5.: Examples of 2-dimensional clusters drawn from different Lq norms.
Note that the clusters follow the form of the corresponding unit circles
given in figure 3.4.
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3.4.2. Results of Scenario 3

The results of scenario 3 are shown in figure 3.6. The simulations are based
on 20 datasets with 10 sequences per T = 100 observations with a fixed number
of dimensions (d = 2) and a fixed number of clusters (K = 2). The data follows
a L∞ norm shaped structure and is sampled according to the rejection sampling
described in section 3.4.1. The cluster center is set to the origin (0, 0) in one
dimension and drawn randomly from the interval [0,max_dist] in the other di-
mension. We decrease the maximal distance max_dist = {4, 3, 2, 1, 0.5} in each
step. In this way we get clustering tasks with various difficulty since the smaller
the maximum distance, the more overlap between the clusters and thus the more
difficult to distinguish between them.
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Figure 3.6.: Performance of the generalised hidden Markov model on L∞ norm
shaped data. Each boxplot is based on 20 datasets (10 sequences,
T = 100), where the maximal distance between the cluster centers is
decreased from one boxplot double to the next in order to increase the
difficulty. The L∞ norm is used as distance measure for the GHMM
as it is the most adapted measure to the existing data situation. The
number of dimensions (d = 2) and the number of clusters (K = 2) is
fixed.

In contrast to scenarios 1 and 2 where we used the L2 norm as distance measure
we now use the L∞ norm. This is appropriate as we have prior knowledge about
the non-spherical data structure. However, as one can see in figure 3.6, we are
not able to gain considerable advantage compared to the original HMM. The
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generalised model performs worse than the ordinary hidden Markov model in all
considered cases. It can be concluded that in this scenario adapting the distance
measure does not lead to a superior model.

3.5. Scenario 4: Nominal Data

In this section we want to demonstrate that our method is able to deal with a
wider range of data than the ordinary HMM. For this reason, we aim to investigate
how the proposed model performs when we are faced with nominal data. Nominal
data is given when we are dealing with categorical data where the order of the
categories is arbitrary. Note that certain statistical concepts, for example mean
or variance are meaningless for nominal data. However, keep in mind that the
generalised observation density as proposed in section 2.2.1 is not depending on an
expected value or a variance. For this reason we might be able to gain advantage
compared to the original HMM.
We simulate data based on 10 sequences per T = 100 observations with p =

3 dimensions and K = {2, 3, 4} states. Each state emits a three-dimensional
nominal observation where the probability of each category varies amongst the
states. The number of categories is equivalent to the number of states and each
category is preferred by another state. The transition probabilities and initial
state probabilities were again generated according to the procedure described in
section 3.2.
It has to be mentioned that one-dimensional nominal data, where each state is

linked to exactly one category could easily be analysed using a normal Markov
model without hidden states, as there is no variance in the output of each state
and hence the true states are known in advance. However, higher dimensional
nominal data, as in the present case cannot be analysed using a normal Markov
model, since the number of possible states is getting too big for a finite state
model.
It is obvious that in the present case it is not meaningful to use some Lq norm as

distance measure as introduced in section 3.4, because of the unordered structure
of the data. Therefore we use the Hamming distance (Hamming, 1950), which is
the percentage of vector positions that differ:

dij =

∑n
p=1 1{ip 6=jp}

n

Using the generalised HMM we are thus able to work with nominal data without
violating the unordered structure of such data. Strictly speaking, the standard
hidden Markov model is not able to deal with such data, since the Gaussian
emission distribution is dependent on a mean and a variance term. Both, however
can not be defined in a proper way for nominal data.
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3.5.1. Results of Scenario 4

The results illustrated in figure 3.7 are based on scenario 4 and 20 datasets
in each case. Again we use the original HMM as a benchmark model which,
admittedly is not an appropriate model for the present data situation as already
described in the last section. Nevertheless, it serves as a benchmark model in
order to show that our method is a more flexible approach and can be adapted
to different data situations. As one can see the generalised model is superior to
the original model in almost all cases. In the case of two and three clusters the
GHMM was able to find the hidden states without any errors in nearly 50 percent
of the cases. Regarding the case of four clusters, the variance of the GHMM is
larger and the performance declines, but is still better than the ordinary HMM in
most cases. We can conclude that when dealing with nominal data our method
in general outperforms the HMM. The reason for the superioritiy is the adjusted
distance measure, which is adapted to the particular data situation.
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Figure 3.7.: Performance of the generalised hidden Markov model on nominal
emission data. The results are based on 20 datasets with 10 sequences
per 100 observations. The number of clusters, which is equivalent to
the number of categories is increased from one tuple to the next and
the number of dimensions is kept constant (p = 3). The GHMM is
superior to the HMM in this case because of the modified distance
measure which is adapted to the particular data situation.
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3.6. Scenario 5: Running Time

The simulations in scenarios 1 - 4 have shown that the greatest weakness of
the GHMM is the long running time. Compared to the standard HMM we are
faced with an enormous increase in the running time. The increase on the one
hand is based on the fact that the generalised model depends on considerable
more parameters than the ordinary model. On the other hand the responsibility
updates are derived through an analytical optimisation strategy and not through
a closed form. The most time consuming part however is the calculation of the
generalised emission distribution as well as its gradient. Note that the generalised
emission distribution is defined by the sum over all pairwise observation distances.

It should be clear that a distribution based for example on 10000 observations
does not change in a serious way when only a random subset of for example
5000 observations is taken into account. So in cases with many observations it is
not necessary to include all observations in each update step as the distribution
should already be stable when based on only a fraction of the observations.

So in order to speed up the estimation of GHMM parameters we want to
investigate what amount of observations is sufficient to observe the same results
as when using all observations. Furthermore we compare the running time of all
simulations to see if the exclusion of observations leads to a decrease in running
time.

In each iteration of the EM algorithm (see also algorithm 3) we choose a dif-
ferent random subset of observations for which the parameter updates are calcu-
lated. In this way all observations are included by chance and artificial effects are
avoided. However, choosing the subset totally random could result in underrep-
resented states. Consider the case when the subset includes no observations with
highly pronounced responsibilities in a specific state. In this case the respon-
sibility updates for all observations associated with this particular state would
be underrepresented in the affected state. Therefore we make use of a more re-
strictive sampling strategy. Besides sampling randomly we also include 10 of the
most representative observations for each state. Thus we avoid subsamples with
“missing” states.

The procedure described above is evaluated on one-dimensional datasets based
on 10 sequences per T = 100 observations from two different states. The cluster
centers µ are again chosen randomly from an interval between 0 and 5 and the
variance σ2 is set to 1. In addition to the original HMM and the generalised
HMM based on all observations we compute GHMMs based on different fractions
of {80, 60, 40, 20, 10, 5} percent of all observations. Note that we have 1000 ob-
servations in total, since we have 10 sequences per 100 observations. Furthermore
we stopped the elapsed time for each single computation.
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3.6.1. Results of Scenario 5

As one can see in figure 3.8 the score of the GHMM does not change to a great
extent when only a subset of observations is considered. Even in the case when
a fraction of only 5% of the observations is taken into account the distribution of
the score is as good as when all observations are considered. Also in comparison
to the ordinary HMM, the GHMM performs equally well under all considered ob-
servation fractions. If we look at the running time, that is indicated in minutes,
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Figure 3.8.: Performance of the generalised hidden Markov model under consid-
eration of different observation subsets. Whereas the benchmark
model, indicated in red, is given by the original HMM. The corre-
sponding distribution of the running time in minutes is shown on the
bottom. The results are based on 20 datasets with 10 sequences per
100 observations, which means that an observation fraction of 100%
is equivalent to 1000 observations.

of both methods we observe a huge difference. The computation of an original
hidden Markov model takes on average about 9 seconds whereas the computation
of an GHMM can take up to 3600 times longer. Nevertheless, the running time
of the generalised model decreases with decreasing number of considered obser-
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vations. In comparison to the computation of a GHMM with all observations
that takes in average about 54.14 minutes we are faced with a mean running
time of about 2.19 minutes when only 5% percent of all observations are taken
into account. This means that we are able to achieve an improvement in running
time by at least a factor of around 24 at a constant performance level. However,
there might be a trade-off between the number of necessary iterations and the
running time of one iteration. The less observations are taken into account, the
shorter the running time of one iteration, but the more iterations are potentially
necessary. An indication of this might be that in some cases the running time
when all observations are considered is almost as low as when only 20% of the
observations are taken into account. Nevertheless, the proposed running time
optimisation seems to work very well. A reason for this result might be the good
initialisation. Remember that the responsibilities are initialised according to R0

init
in 3.2. Thus the responsibilities are almost perfect at the beginning of the itera-
tions in many cases and do not have to change anymore. For this reason we run
the same simulations with a responsibility initialisation of R0.6

init. In this way we
can see whether the results are just a matter of the good initialisation or if the
results also hold true for weaker initialisations. It turns out that they also hold
true for a responsibility initialisation of R0.6

init. See figure B.4 in appendix B for
the corresponding boxplots. Here, the trade-off mentioned above is clarified by
the lower median running time in case of 100% observations compared to 60%
observations.

3.7. Conclusions

Through the scenarios 1-5 we have gained an insight into the performance of
the generalised hidden Markov model. It has to be noted that the scenarios are
only based on 20 datasets and therefore a random fluctuation of the results due
to the small number of simulations has to be considered in each case.
First we have shown that our method is not highly dependent on the respon-

sibility initialisation. However, we suggest to initialise the responsiblities with
the forward-backward terms 2.4a computed by a standard hidden Markov model.
The same initialisation has been used throughout the remaining scenarios.
Furthermore, when applied to Gaussian data we have shown that the perfor-

mance decreases with an increasing number of clusters and increases with an
increasing number of dimensions. This effect however can also be observed when
the original HMM is applied. Although both models behave similar under the
considered Gaussian scenarios, the original model provides better results than the
generalised model when an increasing dimensionality is taken into account. In
contrast there is no difference between both models when the number of clusters
is increased.
The results in scenario 3 in general do not meet our expectations. We expected
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that the generalised hidden Markov model is superior to the original model when
applied to L∞ norm shaped data because of the adapted distance measure used.
The original model, however, outperforms the generalised model in this scenario.
Thus, having prior information about the data is not beneficial in this particular
case.
For nominal data we have shown that the proposed GHMM provides better

results than the original HMM. The reason for this is the modified distance mea-
sure, which is adapted to the particular data situation. Besides providing better
results we have also achieved a method which can deal with nominal data, with-
out violating some statistical concepts such as variance or mean. This does not
apply to the original HMM. In scenario 4 it becomes clear, that having prior
knowledge about the data and adjusting the distance measure to the needs of
this data structure can lead to GHMM results that are better than the HMM
results.
In the last scenario we have shown that we are able to achieve a great running

time reduction at a constant performance level. The improvement is based on
an adjusted parameter estimation procedure in which in each iteration only a
random subset of observations is taken into account. This approach enables us
to apply the generalised hidden Markov model to larger amounts of data such as
for example sequential biological DNA data.
To summarise the results of the investigated scenarios we can say that the

performance of the original HMM is superior to the performance of the GHMM in
cases with more than two-dimensions. However, when looking at two dimensional
data our method performs as good as the original model. Besides we were also
able to show the potential improvement of an adjusted distance measure in the
case of nominal data. In this case the information about the data leads to results
which are superior to the results of the original HMM.





4. Application to ChIP-chip Data

In the last chapter we have shown that the proposed GHMM is able to analyse
data generated by a hidden Markov process. Now, in order to see how the method
performs when applied to real data, we apply the GHMM to ChIP-chip data
provided by the lab of Patrick Cramer (Mayer et al., 2010). A description of the
data and the related biological question is given in the following section.

4.1. Data Description

The ChIP-chip (also known as ChIP-on-chip) method is a technique for the
determination and characterisation of the DNA binding behavior of a partic-
ular protein of interest (POI), which combines chromatin immunoprecipitation
(ChIP) and microarray technology (chip). Chromatin immunoprecipitation is a
technology that isolates the DNA fragments that specifically bind to that partic-
ular POI and microarray is a method to measure the expression levels of these
DNA fragments.
Proteins that are bound to the DNA of a cell at a certain time are cross-linked

to the DNA. Afterwards the DNA is fragmented into smaller units and the protein
of interest along with the bound DNA fragments is extracted using an antibody
specific for the POI. The resulting DNA fragments are then separated from the
POI and hybridized to a microarray. In this way we are able to determine the
binding position and the corresponding binding intensity of the protein of interest.
This provides valuable insight into the DNA binding motifs of a transcription
factor.
Mayer et al. (2010) investigated the DNA binding behavior of Polymerase II

(PolII) and several transcription factors during the transcription (Müller, 2011).
The goal was to discover, characterise and quantify the different modes (states)
of the PolII. It is well known that the binding behaviour changes during the tran-
scription and that it shows a different phosphorylation pattern at the beginning
than at the end of the transcription (Mayer et al., 2010). However, it is not yet
clear whether there are gene specific transcription state sequences or if there is a
general state sequence for all genes. In case the state sequences vary among genes
the question arises if there are distinct gene classes that can be clearly identified
by the different state sequences.
In order to get an insight into these questions we propose to estimate a hidden

Markov model, where the hidden states correspond to the different transcription
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factor modes and the observations correspond to the ChIP-chip occupancies of the
transcription factors. So one might be able to identify different gene classes, char-
acterised by different transcription states and patterns. As already mentioned in
section 2.1.4 the HMM in the most common case assumes a multivariate Gaussian
emission distribution in each hidden state. Since the ChIP-chip data provided
by Mayer et al. (2010) do not follow a Gaussian distribution (see figure 4.1) we
make use of the generalised hidden Markov model introduced in this thesis.
Mayer et al. (2010) were able to identify a general transcription initiation factor

complex (TFIIB, Kin28, Tfg1 and Cet1), an elongation factor complex (Spt4,
Spt5, Spt6, Elf1, Spn1, Bur1, Ctk1, Paf1 and Spt16) as well as a termination
factor complex (Pcf11). The elongation factors could be separated into three
groups, depending on the time at which the particular group is present during
the transcription (Müller, 2011). This means that Mayer et al. (2010) were able
to identify five different factor groups with 14 transcription factors in total. Given
the already mentioned computational complexity of our method we were only able
to use the normalised ChIP-chip profiles of a subset of ten genes out of 200 genes,
whereas a gene is equivalent to a sequence in terms of hidden Markov models. For
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Figure 4.1.: The occupancy distribution of each transcription factor is shown in
orange, the individual observations are shown in grey bars. The dis-
tribution plots were generated using the beanplot (Kampstra, 2008)
R package.

each gene, we have p = 14 transcription factors (dimensions) as well as T = 1350
positions (observations). The distribution of each transcription factor is shown
in figure 4.1. As we can see we can clearly distinguish between the initiation
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factor distributions and the elongation factor distributions. If we take a look at
the occupancies of all transcription factors at each position of the gene we can
also see differences between factors that are present at the transcription start site
(TSS), during the transcription and around the polyadenylation (pA) site. An
example of the mean transcription factor modifications during the transcription
can be found in figure 4.2.
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Figure 4.2.: The mean occupancy of selected transcription factors during the tran-
scription. The dashed black lines indicate the transcription start site
(TSS) and polyadenylation (pA) site, respectively. Cet1 is one of the
initiation factors, Bur1 one of the elongation factors and Pcf11 is a
termination factor.

4.2. Results

We applied our generalised hidden Markov model with K = 6 hidden states
to the dataset described in section 4.1. The transition and initial probabilities of
the model were initialised uniformly. For the initalisation of the responsibilities
we used

Rinit = {rti = γt(i)|t = 1, ..., T ; i = 1, ..., K},
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that is given through the common HMM as described in section 3.2. The common
HMM, in turn, was initialised through a k-means clustering. In order to accelerate
the estimation of GHMM parameters we used the speed optimised procedure
introduced in section 3.6 with a subset of 200 observations.
The matrix of hidden state sequences determined through the Viterbi algorithm

(see also section 2.1.2) is shown in figure 4.3. As one can see the most dominating
state is the yellow one (state 4), while the blue state (state 3) is hardly visible
and state 6 is not present in any gene at any time. The majority of genes show
the same sequential pattern at the beginning of the transcription, where the
red state is followed by the green state, which in turn is followed by the yellow
state. The pink state mostly appears at the end of the transcription. To get
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Figure 4.3.: Hidden state sequences of the ten examined genes. The sequences
were generated using the Viterbi algorithm (see also section 2.1.2).
Most genes show a sequential pattern of red (state 1), green (state
2) and yellow (state 4) at the beginning of the transcription. Note
that state 3 is rarely present and that state 6 is not present at all.

another idea of the state appearance during the transcription, the histogram in
figure 4.4 shows the frequency of each hidden state for several time points. This
plot emphasises the dominance of the sequential pattern of red, green and yellow
states. A reason why state 6 completely disappeared might be that it is occupied
by the remaining states and their large variability. One approach to tackle this
problem would be to regularise the pseudo-variance term in the denominator of
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the emission distribution 2.8. However, further research is required in this area.
The decreasing frequency of the yellow state and the increasing frequency of the
pink state at the end of the transcription suggests that the pink state in general
might be associated with the transcription termination.
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Figure 4.4.: Frequency of each hidden state during the transcription. As one can
see, the red and the green states are mainly present at the beginning
of the transcription and the yellow state can be found most of the
remaining time. The figure is based on a script from Failmezger
(2011).

When looking at the distribution of the transcription factor occupancies in each
state, which is given in figure 4.5, we can observe considerable differences between
the states. The red and green states show high values in the initiation factors
(Cet1, Kin28, Tfg1 and TFIIB) and low values in the elongation factors. The
yellow state on the other hand shows characteristics contrary to these states. This
outcome was to be expected, since the red and green states are mainly present at
the start of the transcription and so are the initiation factors. The same applies
to the elongation factors, since the yellow state corresponds to clusters with high
values in the elongation factors, which are mainly present after the transcription
initiation. According to Mayer et al. (2010), initiation factors are exchanged for
elongation factors. This pattern can also be found in our state assignments, since
the green state is always followed by a yellow state.
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Figure 4.5.: Distribution (mean ± standard deviation) of the transcription factor
occupancies in each state. Each state color matches the one used
in figures 4.3 and 4.4. The dashed black lines separate the elonga-
tion (Bur1, Ctk1, Elf1, Paf1, Spn1, Spt16, Spt4, Spt5 and Spt6),
initiation (Cet1, Kin28, Tfg1 and TFIIB) and termination (Pcf11)
factors. One can clearly distinguish between states which are present
at the beginning of the transcription (red and green) and states which
are present at the end of the transcription (yellow and pink). Note
that state 6 is not shown at all since it appears at no time during
transcription.
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The outcome described above suggests that we have determined biologically
meaningful transcription states and patterns in the examined genes. However, in
order to find distinct gene classes we would have to apply the proposed method to
more than ten genes, which was not possible in the scope of this thesis due to the
computational complexity of our model. Besides possibly finding distinct gene
classes, increasing the number of considered genes would also lead to an increase
of the accuracy of the observed transcription states. Nevertheless, the application
of our method to ChIP-chip data has proven the ability of our approach to analyse
sequential data and to get meaningful results.





5. Conclusions and Discussion

In this thesis we proposed a generalised modification of the well established
hidden Markov model, which we call the GHMM. We derived a non-Euclidean
generalisation of the emission distribution which is only expressed through pair-
wise distances between all observations and makes the explicit calculation of a
cluster center or a cluster variance unnecessary. This allows us to deal with sam-
ples obtained from non-Euclidean metric space, provided that a proper distance
measure is defined on the samples. Given prior knowledge of a particular distance
measure that fits the non-Euclidean data structure best we are able to gain ad-
vantage over the ordinary hidden Markov model. However, due to the definition,
the generalised emission distribution provides no characteristic cluster properties
such as a mean or a variance term, which might be considered a drawback.
The proposed method is based on a fuzzy cluster assignment, that means on pa-

rameters, representing the probability of each observation belonging to a certain
state. Thus, compared to the original HMM, we have to handle considerably more
parameters. This becomes particularly apparent when calculating the parameter
update during the GHMM estimation procedure. Since there is no closed form
solution for the responsibility update we had to make use of a modified gradient
ascent method. This is the reason why we are faced with an enormous increase in
the running time compared to the common HMM. Apart from the running time
optimisations made in this thesis further improvements are necessary in order to
make the method applicable to more complex problems such as finding distinct
gene classes that can be characterised by different transcription state sequences.
We were able to show that the GHMM performs as good as the original HMM

in two-dimensional cases were the observations are drawn from a Gaussian dis-
tribution. However, it performs worse than the ordinary model the higher the
number of dimensions gets. In addition, we showed the superiority of our model
in cases of nominal emission data. We were able to translate the prior informa-
tion about the data structure into an appropriate distance measure, which leads
to generalised models that are superior to the normal HMM.
Applied to ChIP-chip data we have shown the capability of our method to

analyse real data sets. We have identified biologically meaningful transcription
states and their corresponding sequential pattern. Our method was able to detect
states that are linked to transcription initiation factors, as well as states that are
linked to elongation factors. However, it was not able to identify states associated
with the transcription termination. One reason for this might be that there is
only one factor identified as a termination factor and that the signal is too weak
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to distinguish a termination state from the remaining states.
In conclusion, we can say that we have introduced a generalisation of the

common hidden Markov model that can improve the performance of the standard
HMM when applied to non-Euclidean data.



A. Notation Summary

Symbol Explanation
K Number of hidden states in the model.
T Number of observations (time points) in a sequence.
p Number of dimensions.
S = (s1, s2, ..., sT ) Hidden state sequence.
S∗ = (s∗1, s

∗
2, ..., s

∗
T ) Most likely hidden state sequence, estimated with the

Viterbi algorithm.
O = (O1, O2, ..., OT ) Observation sequence.
π = (π1, ..., πK) Initial state probabilities where πi = P (s1 = i) and∑K

i=1 πi = 1.
A Matrix of transition probabilities where

aij = P (st+1 = j|st = i) ∀i = 1, ..., K; j = 1, ..., K and∑K
j=1 aij = 1.

bk(Ot) Observation probability where bk(Ot) = P (Ot|st = k).
R Matrix of responsibilities where rij = P (si = j|Oi)

∀i = 1, ..., T ; j = 1, ..., K and
∑K

j=1 rij = 1.
Rk =

∑T
t=1 rtk Sum over all observations for a given state k.

Rλ
init Matrix of initial responsibilities where

rinit,λ
ij = (1− λ) · γi(j) + λ · 1/K

θ = {π,A,R} Parameters of a HMM with generalised emission dis-
tribution.

Θ Set of parameter estimates θ determined during the
estimation procedure.

αt(j) Forward variable of the forward-backward procedure.
βt(j) Backward variable of the forward-backward procedure.
γt(j) Probability of being in state j at time t
Γ Matrix of forward-backward terms γt(i)
ξt(i, j) Probability of being in state i at time t and state j at

time t+ 1.

Table A.1.: Explanation of the notation used in the thesis (1/2).
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Symbol Explanation
δt(j) Auxiliary variable of the Viterbi algorithm.
ψt(j) Values which maximize δt(j) in the Viterbi algorithm.
dij Distance measurement between observation i and j e.g.

the Euclidean distance ||Oi −Oj||2
∇L(ra·) Gradient ∂

∂ra·
Q(θ, θold)

τ Step size of gradient ascent (determined through a line
search).

C1 States k : rak < 1 − ε, ∀k = 1, ..., K that can be in-
creased.

C2 States k : rak > ε, ∀k = 1, ..., K that can be decreased.
w Binary weight vector of length K that indicates which

responsibility should be increased and which should be
decrease.

m State that maximises the partial derivative with re-
spect to ra·.

g State that minimises the partial derivative with respect
to ra·.

P Performance measure that is equivalent to the percent-
age of correctly classified states in a sequence.

Table A.2.: Explanation of the notation used in the thesis (2/2).
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Figure B.1.: Visualisation of the responsibilities rt· (top), the corresponding gra-
dient ∇L(rt·) (middle) and the optimal step size τ (bottom) for each
iteration. The responsibilities are updated in each iteration and con-
verge to one for state three after eight iterations. The remaining
iterations are required in order to get converged transition probabil-
ities A and initial state probabilities π. The gradient information in
the middle suggests the direction in which the responsibilities should
be updated (see also section 2.2.2.3). On the bottom one can see the
step size computed with a line search. Note that besides the natural
step size restrictions the maximal step is limited to 0.1.
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Figure B.2.: Visualisation of the trajectory of the responsibilities rt· shown in
figure B.1. The responsibilities are updated during the iterations
and are moving from the initialisation towards state three, which
is the true state. Note that because of the linear constraint the
responsibilities are only updated along the parallel to the simplex
boundaries (see also figure 2.6).



59

0.5

0.6

0.7

0.8

0.9

1

Benchmark R0
init R0.2

init R0.4
init R0.6

init R0.8
init Random

S
co

re

Initialisation

Figure B.3.: Performance of the generalised hidden Markov model under con-
sideration of different responsibility initial values. The simulation is
based on scenario 1 but in contrast to the results illustrated in figure
3.1 we used data with cluster centers µ = (0, 2), in other words with
a greater overlap. Rλ

init again indicates an initialisation of R accord-
ing to 3.2. The results are based on 20 datasets with 10 sequences
per 100 observations, one dimension and two clusters.
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Figure B.4.: Performance of the generalised hidden Markov model under consid-
eration of different observation subsets. The corresponding distri-
bution of the running time in minutes is shown on the bottom. In
contrast to figure B.4, the results are based on a responsibility ini-
tialisation of R0.6

init. The rest of the simulation settings however, are
similar to the scenario described in section 3.6.



C. CD-ROM Content

The attached CD-ROM contains the whole Matlab- and R-Code used in this
thesis, as well as the ChIP-chip data set, the resulting .mat files, the generated
graphics and a digital version of the thesis in hand. A small overview over the
content of the included folders is given below:

I images: All generated graphics in .pdf and .jpg format.

I Matlab-Script: I ChipChip: Matlab files to analyse the ChIP-chip data.

I HMMall: Matlab functions provided by Murphy (2005).

I HMMspecial: Matlab functions for the GHMM.

I Simulations: Matlab files for the simulations.

I workspace: Results of the simulations.

I R-Script: R files and input data.

. Readme file in .txt format.

. This thesis in .pdf format.
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