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A B S T R A C T

We present a statistical model, GERNERMED++, for German medical natural language processing trained for
named entity recognition (NER) as an open, publicly available model. We demonstrate the effectiveness of
combining multiple techniques in order to achieve strong results in entity recognition performance by the
means of transfer-learning on pre-trained deep language models (LM), word-alignment and neural machine
translation, outperforming a pre-existing baseline model on several datasets. Due to the sparse situation of
open, public medical entity recognition models for German texts, this work offers benefits to the German
research community on medical NLP as a baseline model. The work serves as a refined successor to our first
GERNERMED model. Similar to our previous work, our trained model is publicly available to other researchers.
The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-
pp.
1. Introduction

Extraction and processing of key information from medical notes
and doctors’ letters pose a common challenge in the advanced dig-
itization of healthcare systems. In particular, research-oriented data
mining of non-research-centric data sources (often referred to as second
use) often requires expensive data harmonization processes in order to
transform unstructured or semi-structured data into strictly structured,
uniform data representations such as HL7 or FHIR. While manually
solving these processes can be carried out for document analysis on
certain studies, it is rendered impractical for large-scale text analysis
on legacy data or processing day-to-day clinical data [1,2].

Handling heterogeneous data from text-based documents is a central
subject of natural language processing. In recent years deep learning-
inspired approaches have been applied successfully to tackle various
NLP tasks effectively. However, training deep language models requires
proper datasets in regard to aspects like corpus size, annotation work,
data diversity and overall dataset quality, in order to retrieve well-
performing models. In medical NLP, obtaining such annotated datasets
remains rather difficult for various reasons [3]. For instance, the use
and publication of medical data is highly restricted for the reasons of
privacy and country-dependent data protection legislation [3]. Even
though medical datasets have been published in English, such datasets
for German texts in contrast are still frequently unavailable to external
researchers [1].
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E-mail addresses: johann.frei@informatik.uni-augsburg.de (J. Frei), ludwig.freistuber@med.uni-muenchen.de (L. Frei-Stuber),

frank.kramer@informatik.uni-augsburg.de (F. Kramer).

In this paper, we propose an approach of combining multiple ideas
to obtain a German medical NLP model, which we refer to as GERN-
ERMED++ and which serves as a successor to our previous GERN-
ERMED [4] model:

• Translation: The state of German medical corpora is limited and
the use of internal datasets for training and publication of such
models is legally unclear. In contrast, medical datasets in English
have already been published and therefore, neural machine trans-
lation (NMT) can be applied to obtain German data from English
datasets.

• Annotation Projection: Annotation of large corpora is crucial for
supervised learning and determines the quality of the final perfor-
mance of the model. However the cost of obtaining gold-standard
annotations from scratch is prohibitively expensive. Given our
set of NMT-based German data, word alignment estimation can
be used to project token-level annotations from English data to
German data without manual intervention.

• Transfer-Learning through Model Fine-Tuning: To further im-
prove the downstream performance of the NLP model under the
constraints of our small, task-specific dataset, a larger, pre-trained
German LM is used for advanced semantic, context-aware feature
extraction and further fine-tuning.
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Fig. 1. Effect of mask replacements on the English and German sentences for two exemplary samples.
Our method and our results highlight the effectiveness of non-
erman data sources for training a German NER model for medical

emantic annotation such as medication detection. Our model can
urpass the performance of the prior German NLP model GGPONC
[5] which is traditionally trained on German text data. In principle,

he method is not inherently limited to German because NMT and
ord alignment techniques also exist for several other languages and

herefore, it could be applied to other languages as well.

.1. Related work

In the recent decade, in particular in the last five years, the field of
atural language processing has been radically transformed by the use
f data-driven, neural methods that are able to surpass previous state-
f-the-art performances [2,6]. This development is likewise reflected
y several empirical facts such as quantity of published research or
roject funding [2]. The introduction of the attention-based trans-
ormer model [7] in the field of NLP led to various follow-up works
uch as BERT [8] and similar deep language models that are trained and
pplied on domain-specific contexts [9–14]. All these domain-specific
orks share in common that their research focus lies primarily on
nglish application and use.

The training of novel transformer-based German NLP models re-
uires large, well-suited datasets with respect to size and quality.
n purely supervised scenarios, this also includes the need for gold-
tandard annotation labels. While several works with internal datasets
xist, their datasets are not shared among the research community
nd remain undisclosed [15–26], and thus this presents major hurdles
or open research and independent reproducibility. The situation on
ublic, English datasets is more convenient and several large datasets
ike MIMIC-III [27] or the i2b2 challenges with datasets such as the
2c2 2018 dataset [28] have been published, as well as the multilingual
antra GSC [29] dataset from the biomedical domain. Only in recent

ears has the German medical NLP research community addressed this
ssue and developed novel German medical datasets that are publicly
ccessible as foundation for future NLP work [30,31]. Regarding the
GPONC [30], an updated iteration has been presented [5].

With regards to novel German medical NLP systems, commercial
oftware like Averbis Health Discovery [32]1 and German Spark NLP for

1 https://averbis.com/de/health-discovery/.
2

Healthcare [33]2 are proprietary and require licenses. As an exception,
mEx [34] is freely available, but the model weights can only be
requested and used under data use agreement. An updated iteration has
been presented as well [35]. For German medical NER tasks, only few
public, open neural models are available to the best of our knowledge,
such as GGPONC [5] and GERNERMED [4].

Statement of significance

Summary Description
Problem or
issue

Training data for NLP annotation models is a
major limiting factor for successful model
training.

What is
already
known

For several reasons, matching datasets are
often not available in a certain target language.

What this
paper adds

We combine multiple techniques to utilize data
from outside of the target language to obtain a
annotation model for our selected target
language. Our results show the model’s ability
to surpass the performance of the baseline
model trained traditionally with internal data.
Consequently, our work highlights a way to
utilize datasets of nontarget languages for a
certain target language. We apply our method
in the context of medical semantic text
annotation in German which is a novel
contribution to the field.

2. Methods

2.1. Dataset acquisition

The dataset retrieval pipeline for German texts follows the approach
proposed in GERNERMED [4]: As a starting point, the 2018 n2c2
shared task on ADE and medication extraction in EHR dataset serves
as an English source dataset of medical entities from anonymized
electronic health records. The English source dataset is decomposed
into sentences as the initial preprocessing step. During that process,

2 https://nlp.johnsnowlabs.com/2021/03/31/ner_healthcare_de.html.

https://averbis.com/de/health-discovery/
https://nlp.johnsnowlabs.com/2021/03/31/ner_healthcare_de.html
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text spans that have been replaced with an anonymized identifier text
bracket by the editors of the source dataset are detected and replaced
with randomized synthetic data from the Faker Python module in order
to reduce the number of irregular text occurrences while updating the
initial annotation span indices accordingly. For instance, this includes
text entities like first and family name, dates and postal addresses. For
illustration purposes, two samples from the corpus are shown in Fig. 1.

We apply the publicly available FAIRseq transformer.wmt19.en-de
[36] NMT model for sentence-wise automatic translation, which fea-
tures a transformer-based neural model for translating sentences from
English to German. Since the annotation information from the English
source dataset cannot be directly preserved for German sentences,
the reconstruction of the annotation spans for the translated German
sentences can be estimated by the means of a bitext word alignment
as a postprocessing step. Artifacts in translation and alignment have
been discussed for GERNERMED [37]. In contrast to the approach in
GERNERMED, we refine the word alignment estimation step in regard
to the following aspects:

• Improved Tokenization: The tokenization of sentences for the
word alignment differs from modern tokenizers that generate
sub-word-level tokens optimized through techniques such as byte
pair encoding schemes. Most word alignment methods operate on
word-level tokenization with whitespace-based token splitting. In
order to reduce the number of misaligned words, we further re-
fined the word-level tokenization by separating punctuation from
words instead of only relying on tokenization splits on whitespace
characters. In our previous work [4], the projected German label
spans often included trailing punctuation because a whitespace-
based tokenization does not separate trailing punctuation from
words and therefore, the label span reconstruction algorithm is
unable to differentiate between words and punctuation within
a token. This effect impedes subsequent model training but is
countered by the improved, punctuation-aware tokenization.

• Word Alignment Technique: In NLP bitext word alignment is
the task of determining the semantic correspondence between
words from a bilingual sentence pair consisting of the source and
translated sentence. In previous work, the Fast_Align [38] imple-
mentation has been used for establishing such correspondences.
It uses the IBM 2 alignment model for alignment estimation in a
purely unsupervised fashion. While there are also other models
inspired by statistical machine translation [39,40], recent work
has been done towards neural approaches [41,42]. For this work,
we use the pre-trained model from Awesome-Align [42]. In short,
the model tackles the task by encoding both sentences through
a pre-trained cross-lingual language model in order to obtain
contextualized word vector embeddings. Although the words of
the sentence pairs largely differ with respect to their syntactic and
linguistic features, the implementation makes use of the assump-
tion that corresponding words are similar in terms of their word
vectors in embedding space in order to find the word correlations
in each sentence.

After the translation of the sentences, applying the word align-
ment estimation on the set of sentence pairs given the refinements
for tokenizer and word alignment yields essential information on the
relationship between the annotation spans of the English entity labels
and their German counterparts. This step is crucial because potentially
misaligned labels are further propagated and impede the quality of the
dataset and NER scores of the final model. The process is illustrated by
Fig. 2.

As a minor disadvantage of the common Pharaoh alignment format,
the difference in annotation granularity cannot be preserved completely
on character level. Even though the annotation spans of the source
dataset are provided as character-level indices, the word-level tokeniza-
tion restricts the ability to reconstruct sub-word-level annotation spans
in the German target data when the backprojection of the word-level
indices from the word alignment estimation onto the character-level
indices of the target sentence text string is evaluated.
3

r

Table 1
The distribution of annotations in the (raw) synthesized German dataset in absolute
numbers. Note that a single tag sample count may include multiple tokens. The dataset
consists of 16 632 sentences. Abbreviations: named entity recognition (NER).

NER tag Count

Drug 26 003
Route 8 560
Reason 6 244
Strength 10 546
Frequency 9 794
Duration 956
Form 10 546
Dosage 6 700
ADE 1 557

2.2. Entity recognition training

The training of our entity recognition model employs the entity
recognition parser from the SpaCy library which follows a transducer-
based parsing approach [43] with a BILOU [44] scheme (Begin, Inside,
Last, Outside, Unit ; an extension to the IOB [45] scheme) instead of a
state-agnostic token tagging approach.

Slim model: Without the use of a transfer-learning-based approach,
n SpaCy the transformation from discrete tokens into a dense vector
epresentation is implemented by a model that is usually trained from
cratch. Such model includes the embedding of the tokens into vectors
ia Bloom [46] embeddings and further uses convolutional and dense
ayers to establish context-awareness and feature abstraction.
Transfer-learning: Inspired by the success of transformer-based

eural networks and their effectiveness on language modeling through
re-training on large-scale text corpora, transfer-learning-based meth-
ds using deep transformer models can also contribute to stronger
ntity recognition performance by providing contextualized token em-
eddings through earlier pre-training without the need to train such
arge models from scratch. As one instance, the masked language model
ERT and several descendants have been released with pre-trained
eights for various different languages including German, making it
ell-suited for transfer-learning.
Entity Parsing: The entity parser from the SpaCy implementation

s strongly influenced by the state-based text chunking algorithm from
ample et al. [43]. The parser uses the feature vectors from previous
tages (such as from the slim model or the transfer-learning approach)
nd aggregates a feature vector from the current parsing state to predict
he next valid action which likewise annotates the current token during
ER parsing. The whole process is shown in Fig. 3.

. Results

.1. Dataset acquisition

The English source dataset from the 2018 n2c2 shared task on
DE and medication extraction in EHR consists of 404 annotated text
ocuments. The annotation includes the labels Strength, Form, Dosage,
oute, Frequency, Drug, Duration, Reason, ADE. The documents are split

nto sentences using the SpaCy sentencizer for English texts. After the
entence-wise translation we apply the word alignment step. During
his process we discard sentences whenever an annotation label cannot
e reconstructed due to incomplete word alignment mappings. We
btain our raw German dataset with 17 938 sentences. The annotation
istribution of the raw German dataset is shown in Table 1.

For further clean-up of the raw dataset, sentences that do not
ontain any entity label at all are discarded from the set of sentences,

esulting in a total of 16 632 sentence samples.
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Fig. 2. Whitespace-based tokenization and additional Pharao-based tokenization for word alignment with subsequent annotation projection. Annotations in the text samples are
highlighted by bold font. Only Drug annotations are shown in this example.

Fig. 3. Logical text processing steps for text encoding and entity parsing in SpaCy. The feature encoding can utilize pre-trained deep embeddings via transfer-learning or SpaCy’s
native Bloom embeddings [46]. Abbreviations: named entity recognition (NER).
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Table 2
Information on the filtered German dataset. Overlapping annotation spans were
removed. The following named entity recognition (NER) tags were omitted: Route,
Reason, ADE.

Dataset Split # Tokens # Entities # Sentences

Train set 0.8 293 693 50 955 13 306
Validation set 0.1 37 218 6 420 1 663
Test set 0.1 36 168 6 064 1 663

Total 1.0 367 079 63 439 16 632

3.2. Entity recognition training

For the training of the NER model, we ignore the following annota-
tion labels for the following reasons3:

• ADE : The scope of the English source dataset covers the analysis
of medical texts with respect to adverse drug effects. We consider
the task of detecting adverse drug effects in texts as of lesser gen-
eral interest and observed low scores in preliminary experiments
when we trained a NER model on all labels including ADE. In
general, the decision on text phrases in the ADE class is complex
and context-dependent across datasets.

• Reason: Similar to ADE, its usefulness depends on the nature of
the dataset and the context, and in preliminary experiments the
label class yielded low scores.

• Route: While we consider Route to be of potential general interest,
we found that the label diversity in the English source dataset
is quite low. For instance, 5356 times (out of 8560 total Route
annotations) the phrases’ value is ‘‘PO’’. The second most frequent
value is ‘‘IV’’ (874 times). We decided to refrain from including
the Route label class because its lack of diversity yields to high
scores on the test set and could lead readers to draw misleading
conclusions about the actual annotation capabilities of a model
for this label class.

Before the entity recognition model is trained, we split the previ-
usly described, filtered German dataset into training, validation and
est set (80%,10%,10%). The split statistics are provided in Table 2.
ince the IOB-based entity recognition parser requires the annotated
ataset to contain only non-overlapping annotation spans, annotation
verlaps are resolved by removing the annotation span of shorter length
hile only preserving the longest span.

We investigate the ability of improving the entity recognition per-
ormance by the means of transfer-learning on deep language models
n the basis of two German models:

• German BERT [47]4 (bert-base-german-cased): The model from
Deepset AI follows the default architecture of BERT and has been
specifically pre-trained on German data. The pre-training dataset
stems from German Wikipedia, OpenLegalData, and German news
articles.

• GottBERT [48]: The model is based on the RoBERTa architecture
and has been trained on the OSCAR dataset using the fairseq
implementation. OSCAR is a German subset of CommonCrawl.

Both language models are publicly available. We retrieve both mod-
ls from the Huggingface platform. For fine-tuning the entity recognizer
n top of the language model, we utilize SpaCy for training. In this
ontext, the model-specific tokenizer is inherited from the language
odel.

3 Experimental results on NER model training for all label classes as well
he visualization of class-specific label text distributions are provided as
upplementary data.

4 https://www.deepset.ai/german-bert.
5

The training was performed on a single Nvidia Titan RTX. The
training took 8–47 min (German BERT : 47 m, GottBERT : 26 m, Slim:
8 m). Due to our observations from the preliminary hyperparame-
ter search, we chose to stick to the default hyperparameters from
SpaCy (Adam with weight decay, 𝛼 = 0.00005 (GottBERT, German-
BERT)/0.001 (Slim), 𝛽1 = 0.9, 𝛽2 = 0.999, batch size = 128 (GottBERT,
GermanBERT)/1000 (Slim)) as we did not find major score-wise im-
provements. In order to measure the differences in performance scores,
we also compare the SpaCy Slim model using the same training and test
set as baseline model, as well as the publicly available GERNERMED
model as static model evaluated on the test set. It should be noted that
the GERNERMED model scores must be considered as tainted because
its weights are trained on a dataset that might partially contain samples
from our test set. For evaluation, the NER procedure is considered
as a token-wise multi-class classification problem. We computed the
precision (Pr), recall (Re) and F1 score (F1) for each individual label
class as well as its respective (class-frequency-weighted) average score
(Total). The final results on the test set are depicted in Table 3.

Both transfer-learning-based approaches exhibit strong performance
in absolute numbers. Though to our surprise, German BERT achieves
notably inferior performance scores in direct comparison to GottBERT
by 0.7% total F1 score difference. We attribute this performance gap to
the differences in pre-training dataset sizes for German BERT (12 GB)
and GottBERT (145 GB) and the use of the RoBERTa architecture as for
NER such observation and conclusion have been reported and drawn by
the authors of GottBERT as well for monolingual models [48].

To verify the robustness of our observations and estimate the degree
of a test set selection bias, we re-trained the GottBERT model using 10-
fold cross-validation on the dataset. GottBERT was chosen due to its
strongest total F1 score in Table 3. The mean and standard deviation of
the 10-fold models are provided as well as the distance to the GottBERT
results from Table 3 to the mean scores. The results are shown in
Table 4.

3.3. Out-of-distribution evaluation

The evaluation on the test set does not provide valuable information
on how a model can maintain its scores beyond the scope of the train
and test set. A known property of neural networks as statistical models
is their ability to overfit to the training dataset. While strong perfor-
mance on the test set indicates the ability to abstract from individual
samples without blunt sample memorization, it cannot measure the
model’s reliance on the inherent bias of the dataset and its ability
to generalize to out-of-distribution(OoD) samples. To investigate the
OoD generalization ability, we retrieved 30 text samples provided by
independent physicians annotated with equivalent labels to our dataset
and evaluated the models’ performance on this separated dataset. Since
the physicians were instructed to use the class labels from our initial
dataset, the OoD samples are annotated with matching label classes and
can be directly used for full evaluation of our models. The results are
shown in Table 5.

The results display the impact of the transfer-learning-based NER
models in order to preserve strong performance on OoD data samples.
However similar to the results on the test set, German BERT performs
inferior to the GottBERT-based model by an increased margin according
to the weighted F1 score. In contrast, the baseline models suffer from
substantially degraded scores in comparison to their scores on the test
set.

Due to the sparseness and independent origin of the OoD dataset,
the number of labels is imbalanced across individual class labels and
explains that the evaluation scores can yield 1.0 or 0.0 in several
situations. While the reliability of the scores in these cases remains
a major limitation, the scores still indicate the degree of abstraction
beyond the in-distribution bias in other cases, because the evaluation
on the test set is unable to quantify such in-distribution biases.

https://www.deepset.ai/german-bert
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Table 3
Evaluation of models’ performance scores on test set for the labels Strength, Duration, Form, Dosage, Drug and Frequency. Precision, Recall
and F1-scores are evaluated. Abbreviations: named entity recognition (NER).
Scores on test set NER tags

Model Str Dur Form Dos Drug Freq Total

GERNERMED++
(GottBERT)

Pr 0.971 0.806 0.947 0.967 0.969 0.880 0.942
Re 0.964 0.825 0.969 0.971 0.923 0.953 0.950
F1 0.967 0.815 0.958 0.969 0.945 0.915 0.946

GERNERMED++
(GermanBERT)

Pr 0.944 0.791 0.956 0.963 0.969 0.859 0.932
Re 0.973 0.825 0.962 0.971 0.933 0.924 0.947
F1 0.958 0.807 0.959 0.967 0.951 0.890 0.939

GERNERMED++
(SpaCy Slim)

Pr 0.965 0.823 0.965 0.958 0.929 0.855 0.926
Re 0.967 0.749 0.950 0.971 0.884 0.966 0.941
F1 0.966 0.784 0.957 0.964 0.906 0.907 0.932

GERNERMED
[4]a

Pr 0.916 0.613 0.842 0.915 0.644 0.739 0.790
Re 0.917 0.697 0.882 0.959 0.634 0.901 0.841
F1 0.917 0.652 0.861 0.937 0.639 0.812 0.814

Note:
a Specific training set might be tainted by samples from the test set.
Table 4
Averaged scores of test folds from 10-fold cross-validation for labels Strength, Duration, Form, Dosage, Drug and Frequency. All fold-wisely
trained models are based on GottBERT. For reference, the score differences to the presented GottBERT model from Table 6 are given.
Abbreviations: named entity recognition (NER), standard deviation (std dev), difference to reference (diff to ref).
10-fold Cross-validation NER tags

(GottBERT model) Str Dur Form Dos Drug Freq Total

Precision
𝜇 (mean) 0.967 0.798 0.964 0.962 0.938 0.961 0.950
𝜎 (std dev) 0.008 0.043 0.012 0.015 0.012 0.009 0.004
𝛥 (diff to ref) −0.004 −0.008 0.017 −0.005 −0.031 0.081 0.008

Recall
𝜇 (mean) 0.967 0.841 0.953 0.958 0.958 0.863 0.939
𝜎 (std dev) 0.010 0.066 0.010 0.010 0.010 0.014 0.008
𝛥 (diff to ref) 0.003 0.016 −0.016 −0.013 0.035 −0.09 −0.011

F1
𝜇 (mean) 0.967 0.817 0.958 0.960 0.948 0.909 0.944
𝜎 (std dev) 0.006 0.033 0.006 0.010 0.008 0.008 0.004
𝛥 (diff to ref) 0.000 0.002 0.000 −0.009 −0.003 0.003 −0.002
Table 5
Evaluation of models’ performance scores on separated out-of-distribution (OoD) dataset for the labels Strength, Duration, Form, Dosage, Drug
and Frequency. Precision, Recall and F1-scores are evaluated. Abbreviations: named entity recognition (NER).
Scores on OoD Dataset NER tags

Model Str Dur Form Dos Drug Freq Total

GERNERMED++
(GottBERT)

Pr 0.866 1.000 1.000 0.125 0.891 0.923 0.883
Re 0.960 0.400 0.632 0.250 0.932 0.615 0.835
F1 0.911 0.571 0.774 0.167 0.911 0.738 0.845

GERNERMED++
(GermanBERT)

Pr 0.955 1.000 0.909 0.077 0.830 0.456 0.817
Re 0.832 0.800 0.526 0.250 1.000 0.667 0.797
F1 0.889 0.889 0.667 0.118 0.907 0.542 0.794

GERNERMED++
(SpaCy Slim)

Pr 0.951 0.000 1.000 0.111 0.690 0.486 0.778
Re 0.772 0.000 0.316 0.250 0.659 0.462 0.623
F1 0.852 0.000 0.480 0.154 0.674 0.474 0.679

GERNERMED
Pr 0.851 0.000 0.500 0.045 0.460 0.390 0.619
Re 0.624 0.000 0.158 0.250 0.523 0.410 0.500
F1 0.720 0.000 0.240 0.077 0.489 0.400 0.541

#Labels 37 3 19 4 36 20 119
3.4. Related datasets

We select three relevant datasets in order to further evaluate our
models. To put our results in perspective, we also evaluate the reference
model from GGPONC [5] on these datasets. The entity labels from the
datasets differ from the labels of our training dataset and our OoD
dataset. This limits our ability to perform a complete comparison of
our model with respect to all label classes. All related datasets provide
annotation information on entities that we consider to be semantically
strongly related to the class label Drug, although the datasets commonly
6

lack clear and homogeneous definitions on their label classes. We
evaluate the scores as a classification task on token- and character-level.
The results are shown in Table 6.

To no surprise, the GGPONC reference model archives better per-
formance on its native GGPONC dataset [30], yet all our models
with transfer-learning-based, pre-trained BERT encoder outperform the
reference model, our slim model and the baseline GERNERMED model.
Considering that the baseline GGPONC model was developed in tradi-
tional fashion using a manually crafted German dataset, the archived

performance margins from both GottBERT- and GermanBERT-based
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Table 6
Evaluation of models’ F1 scores on related dataset. The GGPONC reference model [5]
is evaluated for comparison. To allow fair comparison, only Drug-related label classes
are selected. Annotations from the GGPONC [30] dataset do not align onto the tokens
from the SpaCy tokenizer and are therefore omitted. Precision, Recall and F1-scores
are evaluated.
Scores on related datasets F1 scores

Model/Dataset Drug (char-wise) Drug (token-wise)

Medline Dataset [29] Drug = CHEM

GERNERMED++
(GottBERT)

Pr 0.858 0.837
Re 0.701 0.706
F1 0.772 0.766

GERNERMED++
(GermanBERT)

Pr 0.885 0.875
Re 0.638 0.686
F1 0.742 0.769

GERNERMED++
(SpaCy Slim)

Pr 0.437 0.500
Re 0.182 0.216
F1 0.257 0.301

GERNERMED
Pr 0.477 0.414
Re 0.207 0.235
F1 0.288 0.300

GGPONC [5]
Pr 0.822 0.771
Re 0.488 0.529
F1 0.612 0.628

GGPONC Dataset [30] Drug = Chemicals_Drugs

GERNERMED++
(GottBERT)

Pr 0.535 n/a
Re 0.664 n/a
F1 0.592 n/a

GERNERMED++
(GermanBERT)

Pr 0.522 n/a
Re 0.645 n/a
F1 0.577 n/a

GERNERMED++
(SpaCy Slim)

Pr 0.185 n/a
Re 0.433 n/a
F1 0.260 n/a

GERNERMED
Pr 0.089 n/a
Re 0.303 n/a
F1 0.138 n/a

GGPONC [5]
Pr 0.636 n/a
Re 0.737 n/a
F1 0.683 n/a

BRONCO Dataset [31] Drug = MEDICATION

GERNERMED++
(GottBERT)

Pr 0.673 0.726
Re 0.789 0.752
F1 0.726 0.739

GERNERMED++
(GermanBERT)

Pr 0.684 0.730
Re 0.677 0.637
F1 0.680 0.680

GERNERMED++
(SpaCy Slim)

Pr 0.320 0.378
Re 0.512 0.486
F1 0.394 0.425

GERNERMED
Pr 0.155 0.148
Re 0.478 0.482
F1 0.234 0.227

GGPONC [5]
Pr 0.573 0.346
Re 0.449 0.430
F1 0.504 0.384

models are unexpected. Throughout the tasks, the GottBERT-based
model beats the GermanBERT-based model which is consistent with
previous observations.

4. Discussion

Our results indicate strong performance of all models on the test
set, however our evaluation on the OoD dataset as well as on external,
related datasets shows the impact of using the transfer-learning abili-
ties of pre-trained BERT-based feature encoders to solidify the robust
performance on such external datasets. Considering the fact that our
7

models were developed without additional manual work of annotating
datasets and only a public non-German dataset was used, the obtained
models compete surprisingly well with the pre-existing reference model
and are able to outperform it on independent datasets. The lack of more
independent annotated datasets, lacking matching annotation labels
and unclear label class definitions still limit the possibility to deeper
evaluate and compare novel models and methods. In this context, the
small sample size of our OoD dataset remains a major limitation of our
work and emphasizes the continuous need for German medical corpora
with diverse label annotations.

In general, considering the current poor availability of open medical
NLP systems for non-English natural languages as well as for German in
particular, our refined approach demonstrates a powerful opportunity
to build a strong medical NER model solely by the use of a public
English dataset.

5. Conclusion

In this work, we presented a fine-tuned German NER model for
semantic medical entity annotation using deep pre-trained language
models by the means of transfer-learning. We demonstrated its ability
to outperform the basic baseline model on the test set and on an out-of-
distribution dataset. In comparison to the existing GGPONC reference
model, we showed competitive results on external datasets and outper-
formed the reference model on all independent datasets. Furthermore,
we described the process and its relevant improvements to obtain a
medical-specific German dataset without the use of internal data. Our
open NER model is publicly available for third-party use on GitHub.
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