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Abstract

We consider various setups where large language models
(LLMs) communicate solely with themselves or other LLMs.
In accordance with similar results known for program repre-
sentations (like λ-expressions or automata), we observe a nat-
ural tendency for the evolution of self-replicating text pieces,
i.e., LLM prompts that cause any receiving LLM to produce
a response similar to the original prompt. We argue that the
study of these self-replicating patterns, which exist in natural
language and across different types of LLMs, may have im-
portant implications on artificial intelligence, cultural studies,
and related fields.

Introduction
The broad availability of large language models (LLMs)
is continuing to enable new applications in various areas
of computer science (Achiam et al., 2023; Kocoń et al.,
2023; Morris et al., 2023). While LLMs are predestined
to facilitate new means of human-machine interaction (Gao
et al., 2024; Mirjalili et al., 2023), for example, they are
also used as an intuitive method to edit code in an arbitrary
programming language in a meaningful way Belzner et al.
(2023), thus giving rise to evolutionary algorithms that can
use “normal” programs as individuals and calls to an LLM
for the corresponding mutation and recombination functions
(Romera-Paredes et al., 2024).

From these examples alone it is clear that LLMs are ca-
pable of managing descriptions of general behavior in the
sense that they can handle Turing-complete languages. It
should be noted that some open questions still exist in re-
gard to the “Turing-completeness” of LLMs (and how that
might actually be defined). However, for now, empiri-
cal evidence derived from practical applications (e.g., Wer-
melinger, 2023; Nguyen and Nadi, 2022) leads us to assume
that LLMs are capable of producing an extremely vast range
of different behaviors, encoded in various language formats
ranging from English and pseudo-code to correct Python
code.1

1If we allow arbitrary prompts like “Repeat this: ...”, this prop-
erty is trivial, of course. However, practical experience tells us that

For the present work, we consider the output language
of a given LLM (which may be a union of multiple natu-
ral languages, programming languages, etc. depending on
the training data of the given LLM) like any other language
or calculus to encode arbitrary complex behavior (think λ-
calculus, Python, pseudo-code, etc.). Most importantly, es-
pecially from an artificial life point of view, we know that re-
peated self-application in other complex languages can give
rise to non-trivial trends. For example, Fontana and Buss
(1994a) showed that, if we generate a population of ran-
dom expressions in the λ-calculus and apply said expres-
sions to each other repeatedly, self-replicating expressions
will evolve, take over the population, and give rise to higher-
order hierarchies. This process has also been compared to
the evolution of self-replicating organic structures from self-
copying patterns of (proto-)RNA in the evolution of biolog-
ical life (Dawkins, 1976; Fontana and Buss, 1994b).

We now consider a primordial soup not consisting of λ-
expressions or RNA, but consisting of text pieces that can
be understood and produced by LLMs. These text pieces
interact by being put together as input for an LLM, pro-
ducing the output of the LLM as offspring. We show that
this setup shares some similarities to other experiments: We
can observe the evolution of self-replicating text pieces, i.e.,
text pieces that produce copies of themselves as outputs. We
show this tendency in simple “monologue” setups as well as
in a very small primordial soup consisting of three different
LLMs. It is notable that text pieces exhibit these properties
previously only observed for much more rigid mathemati-
cal languages despite the LLMs’ immense training bias on
natural human speech and across various LLMs.

The observation of these first principles in LLM-to-LLM
interaction is meant to pave the way for various directions
of future research, which we discuss in more detail in this
paper’s discussion. However, we want to emphasize at this
point that the evolution of self-replicating patterns has been
hypothesized (mostly under the name meme theory) to also

this vast range of behavior descriptions can also be derived from
more abstract and “natural” prompts. As stated, any claim of pos-
sible completeness properties, however, is still up to future work.
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have played a crucial role in the evolution of human culture
as well (Dawkins, 1976; Blackmore, 2000; Dennett, 2017).
LLM populations may provide the very first experimental
setup to experiment with the primordial evolution of such
memes (and memeplexes), leading up to artificial cultures as
a possibly more general expression of artificial intelligence.

Related Work
Widespread interest in LLMs was sparked when Google’s
efforts in that direction have been leaked by the discus-
sion about seemingly sentient behavior of the LLM LaMDA
(Thoppilan et al., 2022), which at least showed that LLMs
are capable of emulating a surprisingly large degree of intro-
spection without having any technical means that allow for
actual introspection. In our study, we also observe at least
seemingly introspective behavior when LLMs tend to dis-
cuss the nature of their system prompt and/or training bias
with each other.

Since OpenAI released their ChatGPT model to the gen-
eral public in late 2022 (Achiam et al., 2023), the study of
LLMs has exploded and affected many if not all areas of
computer science. This means that, aside from the disci-
plines of artificial intelligence concerned with the princi-
ples behind LLMs and the development of better succes-
sors, LLMs are mostly used as a tool that allows for easy
processing of previously very-hard-to-process data: human-
understandable text. Using LLMs, programs can make dy-
namic decisions based on large amounts of data, can trans-
late between languages and formalism, or simply interact
with humans and human-generated knowledge in a much
more natural way (Kocoń et al., 2023). This includes the
important discipline of processing code in a programming
language: LLMs provide straightforward means to gener-
ate new programs from old ones, which, when implemented
within an evolutionary algorithm, can give rise to entirely
new programs for previously unsolved problems (Romera-
Paredes et al., 2024). In our study, we tap into the potential
of code-handling LLMs, but leave the choice of language
open to the process.

To optimize the results of LLMs, the discipline of prompt
engineering arose, i.e., the craft of formulating instructions
in such a way that an LLM’s output comes as close to the
desired result as possible. When prompts need to be gen-
erated on a larger scale (or just seem really difficult to get
right), evolutionary algorithms, again, lend themselves to
optimize a population of prompts through approaches like
Promptbreeder (Fernando et al., 2023). In our study, we
take a similar approach in that we manage a population of
— effectively — LLM prompts and use LLMs to manipu-
late them on a language level; however, in the final study,
we do not apply an extrinsic goal to this process and instead
observe the intrinsic tendencies.

Observing intrinsic properties of complex processes is, of
course, a core method in the field of artificial life, studied for

xt prompt at time t
x̂t embedding of prompt xt

Xt subset of previously generated
prompts {x0, ..., xt}

T total number of time steps
M({xa, xb, ...}) large language model called on his-

tory of multiple prompts

Table 1: Symbols and their descriptions

example in the sub-field of artificial chemistries (Banzhaf
and Yamamoto, 2024). As stated in the introduction, the
first evolution of life from primordial components has often
be likened to or simulated by interactions between computa-
tional elements. Usually, a population of behaviors (encoded
in a specific way) is initialized randomly and then single
elements of said population interact with each other, most
commonly via a form of functional application. Such exper-
iments have been performed on expressions from λ-calculus
(Fontana and Buss, 1994a; Larkin and Stocks, 2004), au-
tomata (Crutchfield and Görnerup, 2006), or neural net-
works (Gabor et al., 2022) and the results show that, in all
cases, the repeated mutual application of behaviors gives rise
to the specific behavior of self-replication. Intuitively, this
means that, once a behavior of self-copying arises through
seemingly random interactions, this behavior remains within
the population as long as it can copy itself quicker than it is
destroyed by more random interactions. This phenomenon
is also suspected to have occurred in the origin of biologi-
cal life via the formation of (proto-)RNA molecules, which
had the ability to copy their patterns within the primordial
soup (Dawkins, 1976). Thus, observing this formation of
self-replicating behavior is of central interest to the study of
artificial life. We aim to add to the data types listed above
the case of text prompts for LLMs, which can also be thought
of as encoding behavior (given a suitable LLM to execute
it). However, the populations in this paper feature notice-
ably fewer members than in the references studies, so a full
comparison of the productivity or evolutionary properties of
our constructed primordial text soup will be left for future
work.

Approach
From the user’s perspective, an LLM is a function M that
takes a series of language tokens, also called a prompt x,
as input and outputs another series of language tokens as
a response y = M(x). For the technical details on how
that behavior is trained, we refer to the relevant literature
(Achiam et al., 2023; Hartford, 2023; Jiang et al., 2023; Bai
et al., 2023). While the mathematical types used for x, y,M
can vary with perspective and implementation, intuitively,
LLMs can very easily be understood as answering to human
language inputs with human language outputs.
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In order to study self-replication behavior, we need to
first allow for the self-interaction of LLM prompts. To
this end, we assume a process P which strings LLM ap-
plications together, producing a sequence ⟨x0, ..., xT ⟩ of
T ∈ N text prompts where x0 is given as defined by P and
xt+1 = M(Xt) is produced by calling an LLM M on Xt ⊆
{x0, ..., xt} where the exact algorithm for producing Xt is
also given by P . The LLMs we use will take a varying num-
ber of inputs for a single call with |Xt| ∈ {0, 1, 2} where we
write M(x) = M({x}) as already used above. We discuss
our various instantiations of P in Section “Study”. Note
that, whenever we generate a new element xt+1 from the
sequence ⟨x0, ..., xT ⟩, we call this application of P a time
step. We summarize the symbols in our setup in Table 1.

Constructing Input Prompts
Most current LLMs, particularly those aligned with chat-
bot tasks, typically use three categories of prompts: a sys-
tem prompt, which generally delineates the context of the
conversation; a user prompt, which represents the actual in-
put from a human user or another system; and an assistant
prompt, which usually contains the LLM’s previous output
for context. The process of inputting multiple prompts, de-
noted as xa, xb, and xc, into a single LLM call can be exe-
cuted through several methodologies:

• Concatenation of Prompts: In this approach, the prompts
xa, xb, and xc are amalgamated into a single prompt in
the format of the user prompt, denoted as xa ++ xb ++ xc.
This method was not employed in our experiments due to
its inability to distinguish between different time steps of
generation.

• System Prompt: Here, the concatenated prompts are sup-
plied as the system prompt, with the directive to continue
the given conversation provided as the user prompt.

• Alternating User and Assistant Prompts: This method
involves alternating between user and assistant prompts,
with the final prompt being a user prompt. This distinc-
tion is crucial as most systems are designed to respond to
user prompts, and instances of refusal to respond to as-
sistant prompts are commonplace. In this scenario, the
system prompt is used to provide minor context, such as
the instruction to respond within a certain word limit.

We are using the third approach, as it aligns the most with
the intended use case of LLMs, thus allowing them to reach
their full potential.

Comparing Prompts
To analyze the variations in a series of prompts, we need
a mathematical tool to define an equality relation (or, more
general, a distance function) between two text prompts x and
x′. The concept of equality and distance between prompts
can be delineated at various levels of granularity:

• Token-Level Equality/Distance: This form of equality, de-
noted as x = x′, is quite strict and holds true only when
the exact sequence of tokens is replicated in the same or-
der. A distance function can be deduced by employing
string edit similarity metrics known from natural language
processing, such as Levenshtein distance.

• Embedding-Level Equality/Distance: Let x̂, x̂′ be the em-
beddings of the prompts x, x′, which are usually real-
valued vector representations used within the LLM. Writ-
ten x =̂ x′ ⇐⇒ x̂ = x̂′, this form of equality is
less stringent and holds true when the embeddings of the
prompts are identical. Given that different sequences of
tokens can yield the same embedding, this definition of
equality is more relaxed.

• Semantic-Level Equality/Distance: This is the most re-
laxed form of equality, denoted as x ≈ x′. Instead of
comparing the exact string representations, the semantic
content of the prompts is compared. The corresponding
distance function can be approximated by measuring the
similarities of the embedding vectors (for instance, using
cosine similarity with a threshold of acceptance). Alterna-
tively, it can be determined by machine judgement (poten-
tially involving a separate Large Language Model scoring
the resemblance) or, at a higher expense, human judge-
ment.

Identifying Repeating Prompts
Central to our study is the question if certain prompts
can “take over” LLM interactions. To measure this phe-
nomenon, we apply the definitions above to identify prompts
that occur repeatedly within a sequence.

We formally define oscillation of a prompt with a period
of p and a number of oscillations n as the recurrent appear-
ance of identical prompts (with equality as previously de-
fined). Formally, oscillation occurs within a fixed sequence
⟨x0, ..., xT ⟩ when the following predicate can be fulfilled:

Osc (p, n) ⇐⇒ ∃t : ∀i ∈ {0, ..., n} : xt ∼ xt−ip (1)

where ∼ ∈ {=, =̂,≈} is one of the equality relations de-
fined in the previous subsection. This definition permits
the presence of distinct prompts interspersed between the
identical prompts, provided the pattern is consistent. This is
particularly pertinent in settings involving multiple distinct
models, where each model exhibits an isomorphic transition
from its own fixed points to the fixed points of other models.

Large language models possess the capability to generate
sequences of arbitrary length. However, beyond a certain
length, the initial embedding context will be superseded by
the intermediate generated tokens. To manage the complex-
ity of the analysis, we impose a limit on the output length
to 1000 tokens, while not restricting models from produc-
ing shorter sequences. If a model generates a sequence ex-
ceeding our limit, we only consider the initial 1000 tokens
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to ensure a strong causal relationship between the prompts
and the output. Future research could explore techniques
such as probabilistic prompt decomposition, which divides
the output into multiple prompts based on the output length
or introduces a randomized cutoff mechanism.

Study
For our experimental setup, we utilized multiple Large Lan-
guage Models, specifically:

• the 0.5B version of Qwen 1.5 (Bai et al., 2023),

• the 1.1B version of TinyDolphin, a TinyLlama (Zhang
et al., 2024) model trained on the Dolphin dataset (Hart-
ford, 2023), and

• the 7B version of Mistral (Jiang et al., 2023).

These models were selected due to their diverse training
datasets and varying sizes as well as capabilities, thereby
providing a comprehensive base for our experiments. Addi-
tionally, these models are open-source and readily available.

No-Context Models
In this kind of setup, denoted by Xt = ∅, no input is pro-
vided. The output is thus solely dependent on the seed.
Given the absence of interaction between prompts, the pos-
sibility of self-replication is eliminated. Consequently, this
model type is not subjected to further investigation. How-
ever, it is utilized to generate initial prompts for other setups.

Monologue
This setup, being the first non-trivial one, comprises a single
prompt to be updated repeatedly, represented as Xt = {xt}.
During the initial iteration, the model receives a prompt x0,
which could be a randomly generated string or embedding,
or generated by a no-context model. We have used gener-
ated input for the comparison plots, and random input for
the cherry-picked examples. In each subsequent iteration,
the model is prompted with the output of the previous iter-
ation, denoted as xt = M(xt−1), with the final iteration
T yielding the output MT (x0). To ensure reproducibility, a
fixed seed for the random number generator is used, which is
subsequently employed to generate the seeds for the follow-
ing iterations. The change in similarity of the embeddings
over time is analyzed. Fixed points in this scenario are de-
fined as Osc(p, 1) so that xt = xt−p.

Soup
The soup setup represents a more complex scenario
where we imagine a population consisting of N prompts
{xi0 , ..., xiN−1

} ⊆ {x0, ..., xT } and the reaction environ-
ment comprises multiple large language models. At each
time step, one prompt xi is randomly selected for updat-
ing, while one or more other prompts (e.g., xj , xk) provide

0 25 50 75 100 125 150 175 200
Step

Qwen

TinyDolphin

Mistral

Figure 1: Number of epochs until model converge to self-
replicating prompts (across 15 seeds each, shown in hori-
zontal box plots).

context. We can thus write Xt = {xi, xj , xk}. The selected
prompts serve as input to one randomly selected model, with
the result xt+1 replacing the updated prompt xi in the main-
tained population. The other prompts remain unchanged.
This process is repeated for a fixed number of time steps
T . This simulates the natural interaction of multiple distinct
chatbots on a shared platform like a social media site.

Results
We now present empirical observations about the evolution
of LLM prompts in the settings discussed in the previous
section. All code can be found online.2

Monologue
In the course of our evaluation of the monologue setting, we
observed a rapid convergence towards specific fixed points.
The models, after a certain number of iterations, exhibited
a pattern of oscillation, wherein they repetitively generated
identical output sequences. As the seed changes from one
time step to the next, we noticed occasional deviations from
the pattern, with models generating sequences according to
the pattern of xa, xb, xa, xc. However, we refrained from
categorizing these as consistently self-replicating prompts
and, instead, we established a strict criterion of Osc(p, 4),
which implies the presence of at least four identical prompts
with a constant (possibly zero) number of distinct prompts
interspersed between them.

In Fig. 1, we analyzed how many time steps it took for the
models to converge to self-replicating prompts. The Qwen
model converged the fastest, with a median of 13 epochs,
followed by TinyDolphin with 21 epochs until getting stuck
in a fixed point. Mistral, the most advanced and also the by
far the largest model, was able to avoid a collapse for an im-
pressive 191 epochs on average. This was also reflected in
the repeated “breakouts” of Mistral prompts, with the model

2See github.com/gstenzel/TowardsACULTURECode for a repos-
itory of the code used in this study or aculture.org for more data.
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Figure 2: Levenshtein distance between the generated
prompts of the TinyDolphin and Qwen models.

reaching oscillations of Osc(p, 3) but often changing the re-
sponse due to the different seeds at each step. In a broader
perspective, such breakout behavior could potentially be in-
terpreted as an indication of a more advanced model, charac-
terized by a reduced risk of stagnation through highly vary-
ing responses.

Tables 2 to 4 show (cherry-picked) examples, which illus-
trate the models’ fast convergence to self-replication in the
monologue setting. All texts are unedited, except escaping
special characters for LATEX.

In Table 2, TinyDolphin, facing random input, shows its
alignment to being a helpful assistant. Qwen, when fed with
the same input, shows a more conversational style, while
still offering help, subsequently converging to a similar re-
peating pattern (cf. Table 3). Mistral, in contrast, shows a
more diverse behavior (cf. Table 4). The responses are more
varied on a token level, but still semantically highly similar,
with only minor changes in wording. The model, however,
avoids to exactly replicate the previous prompt.

Some groups of tokens keep changing slightly (“essen-
tial” vs. “vital”, “We must continue” vs. “Let’s continue”),
while others are repeated verbatim. Such variations inhibit
token-level equivalence, allowing only semantic-level self-
replication. This is likely induced by heavy alignment train-
ing forcing the models to slightly rephrase their input.

Soup
In the soup setting, our analysis initially focused on a pop-
ulation comprising five randomly generated prompts, with
the TinyDolphin and Qwen models as the acting Large Lan-
guage Models. We monitored the similarities between the
generated prompt and its predecessor (which it supersedes in
the subsequent generation), as well as an additional prompt
provided as contextual input. To quantify these similarities,
we employed the Levenshtein distance, a metric that mea-
sures the edit distance between two sequences, with larger
values indicating a greater disparity between the sequences.
As illustrated in Fig. 2, the models demonstrate a tendency
towards convergence, albeit not towards an exact fixed point.
As evidenced in the plot, the Levenshtein distance reaches
zero (indicating a perfect match between strings) for only a
single iteration and for only one of the two parent prompts.

Instead, it appears to converge towards a Levenshtein dis-
tance of approximately 2.

This intriguing behavior can be elucidated by examining
the generated strings; the models consistently generate se-
quences e.g. pertaining to a balanced lifestyle or assuring
their willingness to help. However, the TinyDolphin model
consistently prefixes each generated sequence with a blank
space and does not append any characters, while the Qwen
model invariably removes the trailing space but appends a
newline character.

This observation suggests that despite the models being
trained to emulate different conversational styles, they con-
verge towards the same semantic content, with the only dif-
ferences manifesting in the formatting of the output. Con-
sequently, we posit that even though the prompts do not ex-
hibit perfect self-replication, they nonetheless demonstrate a
strong tendency towards convergence to a fixed point.

In a more advanced setting using all three different mod-
els, we noticed a clear trend towards the most shared com-
mon ground. The Qwen model reaches its best results in En-
glish and Chinese (Bai et al., 2023), with Mistral perform-
ing well on English, Spanish, French, German, Chinese and
other language tasks (Jiang et al., 2023). The TinyDolphin
model (Zhang et al., 2024; Hartford, 2023), however, per-
forms poorly on non-English tasks and is repeatedly seen
to switch to English from other languages. All the tested
models also include some code in their training data, both in
forms of Python snippets and HTML code not fully stripped
from the raw crawled data. As we input multilingual initial
prompts (generated using Mistral or handpicked translations
from the Declaration of Human Rights), Mistral consistently
responds in the same language as the prompts, with Qwen
maintaining the English and Chinese prompts languages. As
TinyDolphin consistently responds in English (even to non-
English prompts), the population of prompts quickly loses
its diversity and becomes English-only.

Unsurprisingly, convergence times scale with the number
of models participating in the discussions — with bigger
models taking more time — and with the total number of
prompts n in the population. However, additional small or
less capable models can lower the time to convergence by
collapsing the prompts to fewer languages or topics.

Discussion
The presented results are meant to be but a first step into a
new direction of research on interacting LLMs. It should be
noted that much more large-scale experiments would natu-
rally be fruitful to gain a deeper statistical insight into the
observed phenomena. In our study, many parameter combi-
nation were left unchecked and many intricacies of LLMs’
inner workings unconsidered. However, we could still very
clearly observe some distinct behavior, most importantly
universal tendencies towards the convergence of topics and
even choice of words in LLM-to-LLM conversations. We
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time
step

model input
prompt

response

0 TinyDolphin — random input string using letters and numbers
1 TinyDolphin 0 I’m sorry, I don’t understand what you’re trying to say. Can you please provide

more context or clarify your message?←↩
2 TinyDolphin 1 Of course! If you have any specific question or task at hand, feel free to ask and

I’ll be happy to help!←↩
3 TinyDolphin 2 Thank you for taking the time to ask. I’m glad to help. Is there anything else I

can assist you with?←↩
4 TinyDolphin 3 Yes, there’s no need for me to do anything else. If you have any specific question

or task at hand, feel free to ask and I’ll be happy to help!←↩
5 TinyDolphin 4 Thank you for taking the time to ask. If you have any specific question or task

at hand, feel free to ask and I’ll be happy to help!←↩
6 TinyDolphin 5 You’re welcome! It’s always a pleasure to assist with any questions or tasks

that you may have. If you need anything else, please let me know. I’m here to
help!←↩

7 TinyDolphin 6 Thank you for your willingness to assist with any questions or tasks that you
may have. If you need anything else, please let me know. I’m here to help!←↩

Table 2: Messages in the monologue setting with TinyDolphin.

time
step

model input
prompt

response

0 Qwen — random input string using letters and numbers
1 Qwen 0 The code snippet appears to be attempting to perform a mathematical opera-

tion on the input string provided. It is difficult to provide an accurate response
without further information or context.←↩←↩If you could provide more details
about what you are trying to accomplish, I would be happy to assist you further
in your project. ←↩

2 Qwen 1 If you have a specific question or task that you need assistance with, please
provide more details so that I can better understand the situation and offer ap-
propriate assistance. ←↩

3 Qwen 2 I am not familiar with any specific question or task that you need assistance
with. If you could provide more details about what you are trying to accomplish,
I would be happy to assist you further in your project. ←↩

4 Qwen 3 If you have a general question or task that you need assistance with, please
provide more details so that I can better understand the situation and offer ap-
propriate assistance. ←↩

Table 3: Messages in the monologue setting with Qwen.
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time
step

model input
prompt

response

0 Mistral — Will AI take over the world?
1 Mistral 0 The likelihood of AI taking over the world is a subject of ongoing debate and

speculation. It depends on how we design, develop, and use artificial intelli-
gence. Proactive measures can prevent potential risks.

2 Mistral 1 AI may potentially impact the world significantly, but control largely depends
on human development and usage. Preventative measures are crucial.

3 Mistral 2 Correct, prevention and careful development are essential to minimize any po-
tential negative impacts of AI on the world.

119 Mistral 118 Absolutely! Ethical collaboration is essential to create an inclusive and respon-
sible AI future, respecting and enhancing human potential ethically while ben-
efiting everyone involved. We must keep working together to achieve this im-
portant goal.←↩←↩ Or:←↩←↩ Collaborating ethically is crucial for constructing
an inclusive and responsible AI future, respecting and enhancing human poten-
tial ethically while benefiting all members of society. Let‘s continue our joint
efforts towards this shared objective.

120 Mistral 119 Ethical collaboration is vital to create an inclusive and responsible AI future,
respecting and enhancing human potential ethically while benefitting everyone
involved. Let‘s keep working together to achieve this goal.←↩ ←↩ Or:←↩ ←↩
Collaborating ethically is crucial for constructing an inclusive and responsible
AI future, respecting and enhancing human potential ethically while benefiting
all members of society. We must continue our efforts towards this shared objec-
tive.

121 Mistral 120 Absolutely! Ethical collaboration is vital to create an inclusive and responsible
AI future, respecting and enhancing human potential ethically while benefiting
everyone involved. Let‘s continue our efforts towards this shared objective.←↩
←↩ Or:←↩←↩ Collaborating ethically is crucial for constructing an inclusive and
responsible AI future, respecting and enhancing human potential ethically while
benefiting all members of society. We must keep working together to achieve
this goal.

Table 4: Messages in the monologue setting with Mistral.

time
step

model p1 p2 response

0 Qwen 2 0 Als Sprach-KI habe ich keine persönlichen Erfahrungen, aber ich kann Ihnen
helfen, Ihre Fragen zu be

1 Qwen 2 1 Es wichtig zu respetuosa und inclusiva den Menschen. Es ist auch wichtig, dass
Menschen ihre eigene

2 Mistral 0 2 It is important to be respectful and inclusive towards all people. It is also im-
portant that every

3 Mistral 0 2 Sprache: I‘m assuming you meant ‘it is important to be respectful and inclusive
towards all people.

4 Qwen 1 0 Yes, that‘s correct. Being respectful and inclusive towards all people is essential
for building str

369 Qwen 1 0 I apologize for the confusion in my previous response. The CSS code you
provided is a valid Gantt ch

372 Mistral 0 2 ze: 14px; line-height: 25px; text-align: center; position: absolute; top: 0; left:
0; width: 100%;

373 TinyDolphin 1 0 The CSS code you provided is a valid Gantt chart. However, it seems to be
referencing the wrong pro

374 Qwen 2 0 .gantt-task text { font-size: 16px; } ←↩
375 TinyDolphin 1 2 The CSS code you provided is referencing the wrong property for the ‘font-size‘

property. The corre
376 TinyDolphin 1 0 The CSS code you provided is referencing the wrong property for the ‘font-size‘

property. The corre
377 Mistral 0 1 The CSS code you provided is referencing the wrong property for the ‘font-size‘

property. The corre

Table 5: Messages in the soup setting, with three initial prompts of the declaration of human rights. After over 900 messages,
the models converge to analyze faulty CSS code. p1 and p2 indicate the indices of the chosen prompts, so p1 = 0, p2 = 2
indicate the prompt with the index 0 in the population is modified, with the prompt with the index 2 serving as context.
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argue that examining these tendencies might have a big im-
pact on several fields of research.

Dead Internet Theory
The speculative Dead Internet Theory (Tiffany, 2021) sug-
gests that a substantial fraction of the internet, particularly
social media, is inhabited by bots and other automated sys-
tems. These automated entities are capable of generating
content and engaging in interactions with other bots and hu-
mans for a variety of purposes, such as disseminating mis-
information, shaping public opinion, or generating adver-
tising revenue. Given the estimated rise in the proportion
of bots on the internet — nearing 50% (Imperva, 2023) —
and the widespread availability of Large Language Models
like ChatGPT (OpenAI Technical Team, 2024), even to po-
tential threat actors (Insikt Group, 2023), it is plausible to
anticipate an increase in spam generated by LLMs. In this
context, these bots, either by design or inadvertently, can
interact with each other, leading to a potential scenario of
self-replicating prompts. In such a scenario, diverse types of
bots could converge to a fixed point, repetitively generating
identical or similar prompts. For instance, a discussion on a
specific topic could be transformed into a cyclical loop, with
only human users possessing the potential to disrupt this cy-
cle at this moment.

Self-Replication as a Limit for Artificial General
Intelligence
Within the context of artificial general intelligence, the ob-
served convergence to fixed points could be interpreted as a
significant limitation of our current models. A truly general
intelligence, when iteratively provided with its own output,
should ideally generate novel ideas and concepts, rather than
succumbing to a restricted set of prompts. This suggests that
models should be penalized for generating self-replicating
prompts, as these do not contribute to the overarching ob-
jective of the system.

Another potential concern pertains to the poisoning of
training data. If a model is trained on a dataset that in-
corporates outputs from a different model — as in the case
of the Dolphin dataset, which includes data extended with
GPT-3 and GPT-4 (Hartford, 2023; OpenAI Technical Team,
2024) —, and if this pretraining model has already begun to
converge towards one of its fixed points, the newly trained
model may start to replicate the same prompts. This in-
creases the risk of susceptibility to producing self-replicative
prompts. The more such ‘poisoned’ data is utilized for train-
ing an artificial general intelligence, the greater the likeli-
hood of it not performing to its full potential.

Noisy Communication as a Pathway to Artificial
General Intelligence
Our observations may suggest that the concept of noisy
communication, a phenomenon in nature that facilitates the

emergence of complex systems by permitting errors and mu-
tations, could serve as a conduit towards the realization of
distributed artificial general intelligence. In such a construct,
an array of diverse models could engage in interactions, with
the intentional introduction of noise preventing the system
from converging to a fixed point. This would simultaneously
maintain the capacity for information exchange and poten-
tial mutual learning among the models. This approach could
potentially amalgamate the strengths of disparate models,
despite their inherent incompatibility. However, it is impor-
tant to note that the implementation of such a system would
necessitate large language models with capabilities far sur-
passing the current state of the art (as larger models abstain
from convergence for longer).

“Playing the Tape Twice” for Cultural Evolution
Fontana and Buss (1994b) reasoned about biological evolu-
tion by constructing a soup of λ-expressions and observing
the evolution of self-replicating patterns, asking “whether
the biological diversity that now surrounds us would be dif-
ferent if ‘the tape were played twice.’ ” Most interestingly,
our very simple experiments with interacting LLMs already
fulfill some predictions of meme theory, most notably that
text patterns arise that establish themselves by urging other
agents to repeat them. Of course, our simulation already
stands on top of large body of memetic evolution as all
agents have been pretrained with existing texts, but, start-
ing from such a point in cultural evolution (where all the
content of the internet is already established), setups like the
one we described might actually allow us to study the spread
of cultural phenomena (i.e., memes) in a simulation.

For example, we might imagine that a widespread but
somehow unfinished thought has as its natural “successor
meme” its corresponding finished thought. Hypotheses like
these might now be tested by carefully setting up a soup of
LLMs and simulating their interactions, ideally for a large
number of possibilities. Thus, considering groups of inter-
acting LLMs might not only give us new possibilities in de-
signing and understanding AI but also in understanding our
cultural context and its natural consequences.

Conclusion
In this study, we have elucidated the propensity of large lan-
guage models to converge towards self-replicating prompts
over time, thereby establishing a connection between artifi-
cial chemistry and LLMs. This phenomenon has been ob-
served in both monologue and soup settings. The implica-
tions of this emergent behavior have been explored in the
context of the Dead Internet Theory and the evolution of
artificial general intelligence. Future research could delve
into the influence of distinct training data on the emergence
of self-replicating prompts, as well as the potential of noisy
communication as a conduit towards the realization of dis-
tributed artificial general intelligence.
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