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While exploration in single-agent reinforcement learning has been studied extensively in recent years, consid-
erably less work has focused on its counterpart in multi-agent reinforcement learning. To address this issue,
this work proposes a peer-incentivized reward function inspired by previous research on intrinsic curiosity and
influence-based rewards. The PIMAEX reward, short for Peer-Incentivized Multi-Agent Exploration, aims to
improve exploration in the multi-agent setting by encouraging agents to exert influence over each other to
increase the likelihood of encountering novel states. We evaluate the PIMAEX reward in conjunction with
PIMAEX-Communication, a multi-agent training algorithm that employs a communication channel for agents
to influence one another. The evaluation is conducted in the Consume/Explore environment, a partially observ-
able environment with deceptive rewards, specifically designed to challenge the exploration vs. exploitation
dilemma and the credit-assignment problem. The results empirically demonstrate that agents using the PI-

MAEX reward with PIMAEX-Communication outperform those that do not.

1 INTRODUCTION

One of the main challenges in Reinforcement Learn-
ing (RL) is the exploration vs. exploitation dilemma;
that is, an RL agent must find a suitable trade-off be-
tween exploratory and exploitative behavior to avoid
getting stuck in local optima. This is especially im-
portant for hard exploration problems, which often
exhibit sparse or deceptive rewards; that is, rewards
may occur rarely or be misleading. This issue is
also related to another important problem in RL, the
credit-assignment problem: if a long sequence of ac-
tions without any direct reward must be taken to even-
tually obtain a reward, RL agents might fail to assign
credit to those non-rewarding actions that are tempo-
rally distant from the eventual reward.

In such problems, naive approaches based purely
on random exploration, such as €-greedy policies, of-
ten fail to learn successful policies. Consequently,
many approaches have been proposed to tackle these
challenges. While much work in single-agent RL has
focused on intrinsic curiosity rewards and novelty of
encountered states to aid exploration, there is consid-
erably less literature aimed specifically at multi-agent
exploration. This is likely because the state space
of multi-agent RL (MARL) systems grows exponen-
tially with the number of agents, making exploration
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in this setting a much harder problem than in single-
agent RL.

Inspired by previous work in intrinsic curiosity
and influence-based rewards, this work proposes a
peer-incentivization scheme, in which an agent re-
wards its peers for influencing it to discover novel
states. Accordingly, the main contribution of this
work is the formulation of a multi-agent social in-
fluence peer reward function, the PIMAEX reward,
aimed at improving exploration in multi-agent set-
tings with sparse or deceptive rewards. Additionally,
a multi-agent Reinforcement Learning algorithm em-
ploying this reward, PIMAEX-Communication, is in-
troduced. The PIMAEX reward is a specific instance
of a generalized multi-agent social influence peer re-
ward function, also introduced in this work, com-
prising three terms o, B, and y. The o term is es-
sentially the influence reward introduced by (Jaques
et al., 2018), while the v term is comparable to that
in (Wang et al., 2019) and was part of the proposed
future work in (Jaques et al., 2018). Therefore, the
contribution lies in the B term, which, to the best of
the author’s knowledge, has not yet been proposed, as
well as in the generalized formulation combining all
three terms in a weighted sum.

To evaluate PIMAEX-Communication, this work
uses the Consume/Explore environment, a partially
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observable multi-agent environment with deceptive
rewards, designed specifically to address the ex-
ploration vs. exploitation dilemma and the credit-
assignment problem.

Section 2 reviews research on intrinsic curiosity,
influence-based rewards, and multi-agent exploration.
Section 3 introduces the PIMAEX reward and algo-
rithm. Section 5 outlines the experimental setup. Sec-
tion 6 compares results with baselines. Section 7 sum-
marizes contributions and future work.

2 RELATED WORK

The PIMAEX reward function is inspired by two main
areas in reinforcement learning: intrinsic curiosity re-
wards, which encourage exploration, and influence-
based rewards, where agents receive rewards based
on the impact of their actions on peers. This section
explores these areas, with intrinsic curiosity rewards
in Section 2.1 and influence-based rewards in Sec-
tion 2.3. Influence-based rewards naturally apply to
multi-agent reinforcement learning, where they assist
with coordination and cooperation. An overview of
the related cooperative MARL approaches is given in
Section 2.2, focusing on methods most relevant to the
mechanisms proposed in this work.

2.1 Intrinsic Motivation: Curiosity

Intrinsic curiosity rewards are widely used to drive
exploration, particularly in challenging environments.
These rewards supplement or sometimes replace the
environment’s reward by incentivizing agents to seek
novelty. Two common methods are count-based ex-
ploration and prediction-error exploration. Count-
based methods compute novelty by counting state vis-
its, e.g., by giving a reward proportional to ]:] ok
However, this approach is feasible only in small state
spaces and relies on approximations, such as density
models or hash functions, in larger spaces (Bellemare
et al., 2016; Ostrovski et al., 2017; Tang et al., 2016).

Prediction-error methods, introduced by Schmid-
huber (Schmidhuber, 1991), reward agents based on
the error of a learned model predicting future states.
High prediction errors signify novel states, making
this method effective for exploration. Variants of
this approach use forward dynamics models to pre-
dict next states (Oudeyer et al., 2007; Stadie et al.,
2015) or inverse dynamics models to avoid uncontrol-
lable environmental factors (Pathak et al., 2017). To
overcome issues like the noisy TV problem” (Burda
et al., 2018), where agents get attracted to random,
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high-error stimuli, Burda et al. propose Random Net-
work Distillation (RND) (Burda et al., 2018). In
RND, a randomly initialized neural network serves as
the target for a second network to predict, with pre-
diction errors used as curiosity rewards. This method
is computationally light, but requires observation and
reward normalization to avoid inconsistencies (Burda
et al., 2018).

2.2 Multi-Agent Cooperation and
Coordination

Influence-based rewards are part of broader MARL
approaches that promote agent cooperation. Many
methods leverage centralized training and decentral-
ized execution (CTDE), sharing Q-networks across
agents and decomposing centralized Q-functions (Fu
et al., 2022; Foerster et al., 2017; Rashid et al., 2018).
Communication between agents is also common for
improved coordination (Peng et al., 2017; Sukhbaatar
et al., 2016). Another approach involves counterfac-
tual reasoning to determine individual agent contribu-
tions in the absence of explicit individual rewards, as
in (Foerster et al., 2017). Peer incentivization, where
agents can reward or penalize others, is a relevant di-
rection (Yang et al., 2020; Schmid et al., 2021).

2.3 Social Influence

In settings where agents maximize their own rewards,
social influence can encourage collaboration without
a central reward. Jaques et al. (Jaques et al., 2018)
propose rewarding agents based on the influence they
exert on other agents’ policies, measured via coun-
terfactual reasoning. They evaluate influence by con-
ditioning one agent’s policy on another’s actions and
comparing it with a counterfactual scenario where the
influence is removed. This discrepancy quantifies in-
fluence and encourages coordination by maximizing
mutual information.

In Jaques et al.’s experiments, agents either influ-
ence others through discrete message communication
or use models to predict others’ actions. In the lat-
ter, agents employ a Model of Other Agents (MOA)
to relax the need for centralized training. They note
that social influence reduces policy gradient variance,
which can increase with the number of agents (Lowe
et al., 2017).

Influence-Based Multi-Agent Exploration
Wang et al. (Wang et al.,, 2019) address limita-

tions in single-agent curiosity by proposing two ap-
proaches: exploration via information-theoretic in-

573



ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

fluence (EITI) and exploration via decision-theoretic
influence (EDTI). EITI uses mutual information to
quantify how an agent’s actions affect others’ learning
trajectories, while EDTI introduces the Value of Inter-
action (Vol), which evaluates the long-term influence
of one agent on another’s expected return, including
both extrinsic and intrinsic factors. They achieve this
using neural networks to approximate transition dy-
namics for large state spaces, thereby allowing EITI
and EDTI to be applied to complex environments.

3 PEER-INCENTIVIZED
MULTI-AGENT EXPLORATION

In multi-agent RL, exploration is significantly more
challenging than in single-agent scenarios because the
joint state space grows exponentially with the num-
ber of agents. As state transitions depend on joint ac-
tions, it is improbable that one agent alone can cover
much of the state space, so coordinated multi-agent
exploration is often essential. Although many works
address single-agent exploration or multi-agent coor-
dination, relatively few focus specifically on multi-
agent exploration (Section 2).

Building on prior work in intrinsic curiosity and
influence-based rewards, we introduce the Peer Incen-
tivized Multi-Agent Exploration (PIMAEX) reward
function (Section 3.1). PIMAEX rewards an agent
for influencing others to visit novel or rarely visited
states. It is a specific instance of a generalized multi-
agent social influence reward function (also intro-
duced in Section 3.1), general enough to encompass
approaches from (Jaques et al., 2018; Wang et al.,
2019) and to allow various influence measures and
communication channels.

To demonstrate this in practice, Section 4 presents
PIMAEX-Communication, a multi-agent training al-
gorithm inspired by (Jaques et al., 2018). It employs
a communication channel so agents can send mes-
sages, influencing one another’s behavior. Counter-
factual reasoning marginalizes the influence of each
agent’s message on others, enabling the PIMAEX re-
ward. As PIMAEX-Communication can work with
any actor-critic algorithm, we focus on the modifica-
tions needed for the communication channel, counter-
factual reasoning, and the PIMAEX reward rather than
on policy and value updates. These modifications af-
fect agents’ neural network inference functions and
the acting and learning components of the training
loop, discussed in Section 4.
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3.1 Multi-Agent Social Influence
Reward Functions

We unify prior concepts (Jaques et al., 2018; Wang
et al.,, 2019) into a generalized social influence re-
ward. Within this framework, the PIMAEX reward
encourages exploration of novel states by combining
influence measures with intrinsic curiosity. Two influ-
ence types are included: policy influence (PI), akin to
causal influence in (Jaques et al., 2018), and value in-
fluence (VI), similar to the Value of Interaction (Vol)
in (Wang et al., 2019), detailed in Section 3.1.1.

3.1.1 Policy and Value Influence

Let info;,; denote information from agent ;j avail-
able to agent i at time ¢ (e.g., past actions, observa-

tions, messages). An informed policy ©"/” and value

function V"¢

; for agent i use both o; and info;_,;.

The marginal policy n;"i:gmal and value Vfrfirgmal
clude info;_,;, reflecting how i would behave if unin-
fluenced by ;.

Marginal policies and values are computed by re-
placing info;_,; with counterfactuals in fo;];i and av-
eraging to remove its effect. Policy influence (PI)

measures the divergence between 7/ and L ginal
while value influence (VI) is:
VIj = VMo — s 1)
Using Dk, policy influence is:
P]?g’; = Dg1 [ni:nfom;(zirlginal} ’ 2
and using PM1,
p(a'7 |50‘7inf0 ~>)
PIPM! = jog —— = 3)

plai, |,0:)

3.1.2 Reward Functions

This unified social influence reward integrates direct
influence and the long-term value of that influence.
Following (Jaques et al., 2018; Wang et al., 2019),
agent j’s reward is:

=Y [oc-PI;LkvL[iPlfﬁkor,? YV ;gk] @
=y

where o, P, v weight each term; Plj.‘ * ., and PIE' ok
are influence measures like Dg; or PMI, VI}” e 18
weighted value influence; and r}} is a weighted reward
stream for agent k.

PIMAEX uses both extrinsic and intrinsic rewards

within the weighted influence terms:

}’]‘:/ — Benv X r]inv + Bint A r;'{nt 1% }N_}k )
=™ VI, VI (6)



4 PIMAEX-COMMUNICATION

PIMAEX-Communication is a MARL algorithm in-
spired by (Jaques et al., 2018), where agents use dis-
crete communication policies and values. At each
timestep, agents emit discrete messages, forming a
communication channel for mutual influence. Coun-
terfactual reasoning is then employed to isolate the
effect of each agent’s message on others, enabling the
PIMAEX reward. PIMAEX-Communication can be
combined with any actor-critic approach, so details of
policy and value updates remain part of the underly-
ing method. Here, we focus on modifications needed
for communication, counterfactual reasoning, and the
PIMAEX reward.

4.1 Network Architecture

Two main modifications are required to implement
PIMAEX-Communication. First, each agent must
have a communication policy and value head, plus an
additional value head for intrinsic rewards. Second,
agents must input the joint communication observa-
tion (the concatenated message vector) to their net-
works. Following (Jaques et al., 2018), this message
vector is concatenated with environment features in
the last shared layer for all policy and value heads,
and an embedding layer is added between this shared
layer and the communication heads.

For marginal policy/value calculations, let N be
the number of agents, M the counterfactual mes-
sages per agent, and B the batch size. This creates
(N — 1) X M counterfactual observations per forward
pass. We compute the environment features once,
stack M copies, and merge batch dimensions for ef-
ficient batched calculations.

4.2 Actor and Learner

At each timestep, a PIMAEX-Communication actor
computes three value estimates (extrinsic, intrinsic,
and communication) and samples actions for both
communication and environment policies. For each
agent, M counterfactual communication actions are
also sampled (e.g., all possible discrete messages ex-
cept the one taken). These counterfactual vectors can
be centrally constructed or built individually by each
agent. Influence is computed on the actor side; in-
trinsic and PIMAEX rewards are computed on the
learner side, which uses Random Network Distillation
(RND)(Burda et al., 2018) to normalize intrinsic re-
wards. A one-step delay between communication ac-
tions and PIMAEX rewards aligns with (Jaques et al.,
2018). We use a weighted sum of environment, in-
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trinsic, and PIMAEX rewards for the communication
policy; the environment policy uses environment and
intrinsic rewards only.

4.3 Technical Implementation Details

Our  PIMAEX-Communication  implementation
is built on acme(Hoffman et al.,, 2020) and
JAX(Bradbury et al.,, 2018). Because acme’s
PPO implementation (Schulman et al.,, 2017)
does not allow multiple value functions or reward
streams, we created a version permitting separate
policies, values, and weighted rewards. This flexible
implementation supports PPO, PPO+RND, and
PIMAEX-Communication, allowing distinct hyper-
parameters per reward, value, or policy. We also
adopted observation and reward normalization for
RND as recommended by (Burda et al., 2018).

S EXPERIMENTAL SETUP

This section outlines the setup used to evaluate our
approach. We first introduce the Consume/Explore
environment (Section 5.1), a partially observable
multi-agent task designed to test the exploration-
exploitation dilemma and credit assignment. Then,
we detail agent configurations, including hyperpa-
rameters and network architectures, followed by our
evaluation methodology in Section 5.2, which covers
performance measures collected during training and
inference.

5.1 Consume/Explore Environment

The Consume/Explore environment challenges agents
with partial observability, a deceptive reward, and a
sequential social dilemma(Leibo et al., 2017), where
agents can cooperate or defect. Each of the N agents
owns a production line yielding C items every M
steps, stored in a depot with capacity Spax. If the
depot is full, production pauses until space becomes
available. Agents start with Sjyj; items, and the param-
eters M, Cipit, Cimax, Sinit, Smax control resource abun-
dance.

Agents have three actions: do nothing, consume
for reward R (if items are available), or explore to
eventually increase C but gain no immediate reward.
Increasing C requires cpax successful explore ac-
tions; success depends on E (the coordination thresh-
old) and the number of simultaneous explore ac-
tions. Larger cmax increases credit-assignment diffi-
culty. Unsuccessful exploration can incur a penalty
P.
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Our experiments used four agents per environ-
ment, with cp,x tuned so that increasing C by more
than two levels requires teamwork and £ = 0.5 de-
manding at least two agents to explore simultane-
ously. Each agent’s five-element observation vector
includes three private elements (current supply, depot
capacity status, time to next yield) and two global el-
ements (current C and the count ¢ toward C +1). All
values are normalized to [0, 1].

5.2 Methodology

We evaluated PIMAEX-Communication alongside
two baselines: ’vanilla’ PPO and PPO+RND (using
Random Network Distillation(Burda et al., 2018)).
First, we ran exploratory training with ’vanilla’ PPO
to identify a challenging environment configuration
and used its hyperparameters (Table 2 in the Ap-
pendix) as a starting point. Next, we searched RND-
specific hyperparameters for PPO+RND (Table 3 in
the Appendix), then applied the best settings to all
PIMAEX-Communication agents. To isolate the ef-
fects of each PIMAEX term, we also trained ’single-
term’ agents using only one of a, 3, or .

Each model was trained under three random seeds,
with results averaged. We evaluated inference perfor-
mance over 600 episodes per model (200 per seed),
also averaged. Key metrics include joint return (to
gauge team performance), individual returns (to see
division of labor), action statistics (consume vs. ex-
plore), state space coverage (measure of exploration),
and production yield (indicating cooperation). Faster
progression to higher yield levels implies stronger co-
ordination.

6 RESULTS

We compare the best-performing models of each
agent class: ’vanilla’ PPO, PPO with RND intrinsic
curiosity rewards (abbreviated as RND), and ’single-
term’ PIMAEX agents (PIMAEX a, PIMAEX B, and
PIMAEX 7). Hyperparameter settings for these mod-
els are given in Table 5 in the Appendix. As men-
tioned in the previous section, agent performance is
assessed using various measures, focusing on explo-
ration behavior.

Fig. 1 displays the total episode return (joint re-
turn of all agents) over training. The left figure shows
return for actor processes (agents act stochastically),
and the right shows the evaluator process (agents act
greedily). ’Vanilla’ PPO agents fail to learn a success-
ful policy, performing worse as training progresses.
In contrast, curious agents (PPO+RND and PIMAEX
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agents) initially prioritize maximizing intrinsic return,
resulting in low extrinsic return early on, likely due to
higher prediction error in the RND model at the start
of training. However, this does not hinder long-term
performance: PPO+RND outperforms ’vanilla’ PPO,
and is itself outperformed by ’single-term’ PIMAEX
agents, with PIMAEX [} being the best-performing
method.

Total Episode Return Total Episode Return
from Actor Process run during Training from Evaluator Process run durin

g Training

(a) Actor processes return  (b) Evaluator process return
Figure 1: Overall return per episode for best training run of
each agent category.

These trends are confirmed in Fig. 2, which shows
mean and standard deviation of total joint episode
return and per-agent individual return at inference
time. Again, ’single-term’ PIMAEX agents, with PI-
MAEX f as the best, outperform PPO+RND, which
outperforms ’vanilla’ PPO. Notably, PIMAEX P ex-
hibits significantly less standard deviation than other
methods, a consistent pattern across all performance
metrics.

Total Episode Retur

Episode Agent Retum

) D PMAEXQ  PMAEXA  PIMADXY

(a) Overall episode return  (b) Per-agent episode return
Figure 2: Per-episode overall and per-agent returns from
evaluation runs.

Final Exploration State Space Cover

}

rage Final Agent State Space Coverage
—-ngent1 Agentz  mm Agents  mm Agentd

PMADX  PMAEXE  PIMAEXY.

(a) Exploration state space (b) Agent state space cover-
coverage age

Figure 3: Final state space coverage for best training run of
each agent category.

Differences in state space coverage are less pro-
nounced than those observed in returns. While fi-
nal exploration state space coverage varies slightly
among methods (except for PPO), differences are



Episode Exploration State Space Coverage

Episode Local Agent State Space Coverage

(a) Exploration state space (b) Local agent state space
coverage coverage

Figure 4: Per-episode exploration and local agent state
space coverage from evaluation runs.

more evident when examining coverage within an
episode. Here, PIMAEX «. agents are the best explor-
ers, despite not participating in other agents’ intrin-
sic returns like the B and y agents. This suggests that
influence rewards combined with individual curiosity
may suffice to enhance multi-agent exploration. No-
tably, PIMAEX B agents exhibit significantly reduced
standard deviation in both local agent state space cov-
erage within an episode and final agent state space
coverage after training.

An interesting observation is that PIMAEX [
agents appear to specialize in teams of two: agents
1 and 3 are the best explorers, while agents 2 and 4
explore less, especially within an episode.

Percent of Consume Actions per Episode

Percent of Explore Actions per Episode

(a) Consume actions per (b)Explore actions per agent
agent

Figure 5: Per-episode percentage of consume and explore
actions per agent.

Fig. 5 confirms these findings. It shows that PI-
MAEX [ agents 2 and 4 predominantly consume and
rarely explore. Again, PIMAEX o. agents are the most
active explorers, followed by RND and PIMAEX Y.
This supports the hypothesis that participating in oth-
ers’ intrinsic returns does not necessarily promote
more exploration, and that individual intrinsic returns,
possibly combined with influence rewards, can drive
multi-agent exploration.

Examining the number of simultaneous consume
(left) or explore (right) actions in Fig. 6, none of
the agent classes coordinate explore actions in teams
larger than two, though they do so for consumption.
When focusing on pairs of simultaneous explore ac-
tions, PIMAEX agents explore in teams of two for
about one-third of the episode, closely followed by
RND. Again, PIMAEX [} agents display considerably
less standard deviation than others.
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\eous Consume Actions per Episade Number of n simultaneous Explore Actions per Episode
oordination) (more = more coordination)

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

(a) Simultaneous consume ac-(b) Simultaneous explore ac-
tions tions

Figure 6: Number of simultaneous consume and explore
actions per episode from evaluation runs.

Environment Steps to Yield Level L
Final Yield Level (more is better) (less is better, but 0 = not reached)

B i @ emaexg  PmARKy 04 mm =06 mmL-=05 mm =10

(a) Final yield level (b) Steps to reach yield level
Figure 7: Final yield level and steps to reach yield level
from evaluation runs.

7 CONCLUSION

This work introduced two reward functions: the
PIMAEX reward, a peer incentivization mechanism
based on intrinsic curiosity and social influence, and
a more generalized version usable by agents without
intrinsic curiosity (though not evaluated here). The
PIMAEX-Communication training algorithm, com-
patible with any actor-critic method, adopts a com-
munication mechanism from (Jaques et al., 2018) and
can be implemented easily atop existing algorithms.
The Consume/Explore environment presented in this
work is also a flexible tool for researching multi-
agent reinforcement learning. Empirically, PIMAEX-
Communication improves overall returns in the Con-
sume/Explore task compared to baselines without so-
cial influence. Notably, PIMAEX P achieves the high-
est return, though the findings indicate that participat-
ing in others’ intrinsic returns does not always yield
more exploration. Interestingly, PIMAEX o, which
relies only on social influence and individual curios-
ity, exhibits the strongest exploratory behavior, and
PIMAEX 3 shows the most stable policies.

However, this work has limitations. It uses only
small, feed-forward networks and evaluates PIMAEX
with PPO on a single task and limited training time.
Future work should explore larger or recurrent ar-
chitectures, alternative actor-critic methods (e.g., IM-
PALA(Espeholt et al., 2018)), and more complex
settings with larger state and action spaces or more
agents. Addressing these limitations will help deter-
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mine the broader effectiveness of PIMAEX in multi-
agent reinforcement learning.
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APPENDIX

Table 1: Environment hyperparameters and settings used by
all experiments.

Parameter Value
Number of agents (N) 4
Episode length in steps 5000
Reward per consumption (R) 1
Exploration failure penalty (P) 0
Production cycle time in steps (M) 10
Initial production yield level (Cjpjr) 1
Maximum production yield level (Cpqx) 5
Initial supply (Sinir) 0
Maximum supply depot capacity (S;qx) 10
Exploration success threshold £ 0.5
Num. of successful explore actions ¢y 2000

Table 2: Common training hyperparameters and settings
used by all experiments. All training runs were repeated
with three seeds and results averaged.

Parameter Value
Environment training steps le7
Optimiser Adam
Learning rate le-4
Adam ¢ le-7
Max. gradient norm 0.5
Batch size 16
Unroll length 128
Num minibatches 4
Num epochs 4
Discount Yg 0.999
GAE A 0.95
Entropy cost le-3
PPO clipping € 0.1
Num Actor Processes 16

Table 3: Training hyperparameters and settings used by all
PPO+RND experiments. Lists of values indicate these were
included in hyperparameter search, whereas all other values
remain fixed in all training runs.

Parameter Value

Intrinsic discount y; 0.99

Infinite time horizon for intrin-  True

sic return

Extrinsic and intrinsic reward [(2.0, 1.0), (1.0, 0.5)]

coefficients

Max. abs. intrinsic reward
Separate neural network for in-
trinsic value

Proportion of experience used
for training RND predictor
RND observation normalisa- le5
tion initialisation environment

steps

[False, 1.0]
[False, True]

[0.25, 1.0]

PIMAEX: Multi-Agent Exploration Through Peer Incentivization

Table 4: Training hyperparameters and settings used by
all PIMAEX-Communication experiments. Lists of val-
ues indicate these were included in hyperparameter search,
whereas all other values remain fixed in all training runs.

Parameter Value
Communication discount Yc 0.99
Communication entropy cost 7.89e-4
Communication loss weight [1.0, 0.0758]

Communication reward coefficients
(for extrinsic, intrinsic, and PIMAEX
rewards)

(0.0, 0.0, 2.752)

Policy influence measure [KLp,PMI]
Extrinsic and intrinsic reward coeffi- (1.0, 0.5)
cients

Max. abs. intrinsic reward False

Separate neural network for intrinsic ~ False
value

Proportion of experience used for 0.25
training RND predictor

Table 5: Hyperparameters of best-performing PIMAEX
agents.

Parameter PIMAEX oo PIMAEX[P PIMAEX Y
Communication0.0758 1.0 0.0758
loss weight

Policy in- KLp PMI -

fluence

measure

Extrinsic/intrinsic (0.0, 1.0) 0.0, 1.0)
coefficients

for B and vy

a 1.0 0.0 0.00

B 0.0 1.0 0.00

Y 0.0 0.0 0.01

579



