QMamba: Quantum Selective State Space Models for Text Generation

Gerhard Stenzel®?, Michael Kolle, Tobias Rohe, Maximilian Balthasar Mansky, Jonas NiiB3lein and

Keywords:

Abstract:

Thomas Gabor
LMU Munich, Munich, Germany
fi

Quantum Machine Learning, Quantum Generative Models, State Space Models, Variational Quantum
Circuits, Quantum Computing, Sequence Modeling.

Quantum machine learning offers novel paradigms to address limitations in traditional natural language pro-
cessing models, such as fixed context lengths and computational inefficiencies. In this work, we propose
QMamba, the first quantum adaptation of the Mamba architecture, integrating selective state space models
with quantum computation for efficient and scalable text generation. QMamba leverages quantum principles
like superposition and entanglement to enable unbounded context sizes and reduced computational complex-
ity. Our contributions include the development of a quantum generative model optimized for hardware con-
straints, advancements in encoding, embedding, and measurement techniques, and the demonstration of its
performance on pattern reproduction and context-challenging tasks like ”Needle in a Haystack.” Experimen-
tal results confirm QMamba’s potential to maintain high efficiency and performance across varying sequence

lengths, laying the groundwork for future explorations in quantum-enhanced natural language processing.

1 INTRODUCTION

The rapid advancements in large language models
(LLMs) have revolutionized natural language pro-
cessing (NLP). However, their current reliance on
transformer architectures comes with inherent limi-
tations, such as fixed context lengths, high compu-
tational complexity, and inefficiencies in capturing
long-range dependencies. These limitations create
a bottleneck, particularly for tasks requiring exten-
sive sequence analysis and efficient processing. State
space models (SSMs) have emerged as an alternative
architecture, offering linear computational complex-
ity and better scalability for long sequences. How-
ever, their inability to focus on contextually relevant
input significantly limits their performance on ad-
vanced tasks. To address these shortcomings, archi-
tectures like Mamba have introduced selective mech-
anisms, improving context handling while maintain-
ing efficiency.

Quantum machine learning (QML) introduces a
novel paradigm capable of addressing these compu-
tational bottlenecks. By leveraging quantum princi-
ples like superposition and entanglement, QML of-
fers the potential to reduce computational overhead
and enhance model performance. Yet, despite this
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potential, QML in NLP remains underexplored, and
existing quantum generative models often suffer from
limited context sizes and scalability issues.

This work proposes QMamba, the first quantum
adaptation of the Mamba architecture, to bridge these
gaps. By integrating the strengths of state space
models with quantum computation, QMamba aims to
overcome the context and efficiency limitations of ex-
isting architectures, enabling scalable and effective
text generation. This innovation not only demon-
strates the viability of quantum approaches in NLP
but also establishes a foundation for future research
in quantum generative models.

In section 2, we review related work, cover-
ing transformers, state space models (SSMs), the
Mamba architecture, and quantum machine learn-
ing. Section 3 introduces our novel Quantum Mamba
(QMamba) architecture, detailing its encoding and
embedding (Section 3.1), measuring (Section 3.2),
and circuit architecture (Section 3.3). Section 4 out-
lines our experimental setup and evaluation tasks. We
include a simple pattern reproduction test for com-
pression capabilities and the ”Needle in a Haystack”
challenge to assess handling of unbounded context
sizes. Finally, Sections 5 and 6 discuss results and
propose directions for future research.

This paper makes the following contributions:
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* We present the theoretical foundations of quan-
tum state space models, providing a comprehen-
sive framework for understanding their principles
and applications.

* We propose efficient methods for token encoding
and embedding, leveraging quantum properties to
enhance computational efficiency.

* We introduce novel techniques for token decod-
ing and measuring for NLP tasks on hardware-
constrained systems, optimizing the performance
of quantum generative models.

* We develop a new quantum generative model,
QMamba, which integrates quantum computing
with state space models, paving the way for more
efficient and scalable quantum text generation
models.

2 RELATED WORK

2.1 Transformers

The previously rather stale field of models generating
human-like language has seen a massive boost in per-
formance with the introduction of the attention mech-
anism (Bahdanau et al., 2016). This allowed mod-
els to focus on the most relevant parts of the input
sequence, hence allowing for a much better context
understanding. Building on this, transformers using
self-attention mechanisms (Vaswani et al., 2017) like
BERT (Devlin et al., 2019) and ChatGPT (OpenAl,
2024) have become the state-of-the-art in many NLP
tasks (Brown et al., 2020; Touvron et al., 2023) and
even some multi-modal tasks (Llama Team, 2024;
OpenAl, 2024; Gemini Team, 2024; Qwen Team,
2024). As with most models, the solution quality
of transformers roughly scales with their size (Ka-
plan et al., 2020). The main bottleneck of transform-
ers is their context length, which limits the maximum
amount of information that the model can use to gen-
erate the next token (Dao et al., 2022). Even though
there are numerous ways to improve the efficiency of
transformers using better attention mechanisms (Dao
et al., 2022; Dao, 2023; Llama Team, 2024; Gemini
Team, 2024; Yang et al., 2024; Tay et al., 2020), the
search for other model architectures is still ongoing.

2.2 State Space Models

State space models (SSMs) are an end-to-end neu-
ral network architecture, with foundations in statis-
tics, but also usable for sequence generation tasks. It
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consists of two parts: the current input x; (with ¢ be-
ing the current time step) and the current state /,, and
three parameters A, B,C that define the model. State
Space Models can be interpreted as continuous func-
tions, with the state being computed as h,/ = Ah; + Bx;
and the output as x;| = Ch; (we use a slightly differ-
ing notation compared to (Gu et al., 2021; Gu et al.,
2022) to keep consistency with the rest of this paper).
The continuous formulation is however not usable for
training or inference of the model, as it is slow to com-
pute (due to differential equations) and not paralleliz-
able (Gu et al., 2021; Gu et al., 2022).

They can however be discretized using discretiz-
ing functions like zero-order hold, expanding the
model to four main parameters A,B,C,A (equa-
tion (1)). This allows for significantly faster infer-
ence, as the model can be executed in a recurrent man-
ner, with the state being updated at each time step,
while maintaining a ~ O(L) computational complex-
ity (with L being the length of the input sequence).
This makes SSMs a very efficient model for long
sequences, compared to the ~ O(L?) complexity of
transformers. SSMs can be trained very effectively
by precomputing multiple steps of the model and then
using a convolution operation to compute the output
X;+1 = CA'Bxg +CA'""'Bx; + --- + CABx;_| + CBx;,
as the parameters A,B,C,A are not time-dependent
(described as Linear Time Invariance in (Gu et al.,
2021)). The convolutional interpretation allows for
parallelizable initial training. SSMs however lack
performance on advanced tasks, as they are not able to
focus on the most relevant parts of the input sequence,
like transformers (and other attention-based models)
can. This has led to the development of several deriva-
tive models, like Mamba (Gu and Dao, 2024). (Gu
et al., 2021; Gu et al., 2022; Gu and Dao, 2024)

A =exp(AA)
B=(AA)"'(A—1)-AB @
i1 = Ah, + Bx,
X1 =Chy 1y
2.3 Mamba

Mamba (Gu and Dao, 2024) builds upon the SSM
architecture, expanding it to a selective state space
model (SSSM). Instead of using the same parameters
for all input tokens, selective state space models al-
low the models to influence the B, C and A param-
eters of the model (see figure 1, A does not have to
be selective, as it is directly influenced by A). This is
achieved by creating a projection of the current input
token into a high-dimensional space, and then supply-
ing this additional information to the model. A, which
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controls the amount of influence of the previous state
on the current state, is now additionally influenced by
the input token. This allows the model to focus on
the most relevant parts of the input sequence and dis-
card less relevant parts, making it significantly more
efficient than the original SSM. As this violates the
Linear Time Invariance property of SSMs, the model
cannot be parallelized using the convolution method
described above. Instead, the paper proposes other
hardware efficient methods to train the model, like
optimizing which parts of the model should be stored
in the GPUs (slow but big) high-bandwidth memory
or in the (fast but small) low-bandwidth memory. In
combination with the parallel associative scan tech-
nique (Harris et al., 2007), this allows for training and
inference efficiencies comparable or even better than
transformers. (Gu and Dao, 2024)

hi1 hi

Ty Projection and Selection Yt

Figure 1: Structured State Space Models have four groups
of parameters, marked in green. The selection mechanism
is marked in blue. Activations are not shown for clarity.
Figure modified from Mamba (Gu and Dao, 2024).

MambaByte builds upon Mamba, but skips the to-
kenization of the inputs and outputs and instead op-
erates on the byte level. Such an approach is unfea-
sible for transformer-based models, wasting its pre-
cious context size, but is feasible on the Mamba archi-
tecture, as the model can use the selection mechanism
to discard irrelevant parts efficiently (Wang et al.,
2024). RWKYV is another novel approach, combin-
ing concepts of transformers (using a self-attention
mechanism) and Mamba (using a selective state space
model), allowing for unbounded context size, in a
very efficient manner (Peng et al., 2023; Peng et al.,
2024).
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2.4 Quantum Machine Learning

Quantum machine learning (QML) harnesses quan-
tum computing to address the increasing computa-
tional demands of traditional machine learning algo-
rithms (Biamonte et al., 2017; Gabor et al., 2020;
Rohe et al., 2024). Central to QML, variational
quantum circuits (VQCs) serve as quantum analogs
of classical neural networks, functioning as effec-
tive function approximators. VQCs apply parameter-
ized unitary gates to qubits (Barenco et al., 1995),
leveraging quantum phenomena such as superposi-
tion, entanglement, and interference. These param-
eters, typically rotation angles, are optimized using
standard machine learning techniques. A VQC ar-
chitecture consists of three key components: input
state encoding, a trainable quantum circuit, and mea-
surement output decoding. Notably, VQCs can ef-
ficiently process high-dimensional inputs with only
log,(N) qubits (Lloyd et al., 2013). However, they
currently face challenges like substantial qubit over-
head and high error rates on real quantum devices
in the Noisy Intermediate-Scale Quantum (NISQ) era
(Preskill, 2018). Nonetheless, ongoing advancements
are expected to strengthen QML’s essential role in the
future (Preskill, 2018; Gabor et al., 2020; Kolle et al.,
2024).

2.5 Quantum Generative Models

For the topic of quantum machine learning based text
generation models, the focus has been quantum trans-
formers.

The quantum transformer proposed by (Di Sipio
et al., 2022) uses a quantum transformer for senti-
ment analysis by replacing each of the well-known at-
tention mechanism’s parameters with quantum gates,
similar to the paper using a quantum transformer for
gluon classification (Comajoan Cara et al., 2024).
Quixer (Khatri et al., 2024) is a quantum transformer
capable of text generation, albeit with a very limiting
context size of only 32 tokens on the Penn Tree Bank
dataset (Marcus et al., 1993).

To the best of our knowledge, this paper is the first
to propose porting the Mamba architecture to quan-
tum machine learning.

3 QUANTUM MAMBA

3.1 Encoding and Embedding

All input tokens are encoded into a unique combina-
tion of rotations across g;, qubits, utilizing r possible



rotation angles. These angles are evenly distributed
from O (inclusive) to 2w (exclusive), forming the se-
quence © as defined in equation (2). Subsequently,
the tokens are embedded using rotational gates such
as Ry, Ry, or R;. This method allows for the encoding
of up to k% different tokens within a circuit compris-
ing g, states. When k = 2 and the R, gate is used
for embedding, this corresponds to basis embedding.
For higher values of k, this approach facilitates signif-
icant input compression. Obvious limitations include
the increasing difficulty for the model to distinguish
between tokens as the number of possible rotations r
grows, therefore a trade-off between the number of
qubits g;, (and thus execution speed) and the number
of distinguishable tokens k must be made. Addition-
ally, when executing on actual quantum hardware in
the NISQ era, a high number of angles r is negatively
impacted by precision error both during encoding and
measurement.

21n
O=|—
(%

The work by (Comajoan Cara et al., 2024) em-
ploys patch angle embedding (thus hindering paral-
lelism), whereas (Khatri et al., 2024) utilizes clas-
sical tokenization and classical weights to create in-
put embeddings (which limits the potential benefits of
quantum models by requiring classical pre- and post-
processing).

ne{o,l,z,...,k—l}) 2)

3.2 Measuring

The output is processed in a manner analogous to the
inputs: the probability p of each qubit being in the
state |1) is measured in a predefined basis. Subse-
quently, the sequence & (not to be confused with A,
which is a sub-circuit of Mamba) is computed as de-
fined in equation (3), which enumerates the discrep-
ancies between the predicted and target values. The
index corresponding to the smallest error is identified
as the predicted output.

The overall confidence of an output token is quan-
tified by summing the discrepancies across all gy
qubits. This measurement allows for the introduction
of a temperature parameter T, which facilitates con-
trolled randomness in the output by scaling the confi-
dence scores of the output tokens. Specifically, when
T = 0, the model deterministically selects the most
confident token.

= (kfl—p ne{0,1,z,...,k—1}> 3)
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3.3 Circuit Architecture

The naive quantum implementation of the Mamba ar-
chitecture, depicted in figure 2, utilizes e +k+m—+s
qubits. Here, e represents the number of qubits re-
quired for embedding the information, m (approxi-
mately equal to e) for intermediate processing, k for
extracting the most relevant information from the in-
put (also approximately equal to e), and s for storing
the entire state of the model. Consequently, this con-
figuration results in a large circuit with 3e 4 s qubits.
We define A to be |0). The A circuit is executed first.
It is parameterized with x; using re-uploading. This
is comparable to the A matrices in the non-quantum
Mamba (Gu and Dao, 2024), which predicts the im-
pact of the current token x; on the state. This im-
pact is then used as a weight between the A and B,,
sub-circuits. By using this trade-off, the model can
learn to distinguish between relevant and less relevant
features. The non-quantum Mamba draws inspiration
from the discretization of a continuous signal with an
adaptive parameter choosing the step size. For the in-
herently continuous quantum model, this is achieved
by interpreting the A and B gates as controlled by
the result of the A circuit. Notably, their control ba-
sis is complementary, with one activating when the
other is not. This, over the course of multiple discrete
shots or a full quantum state simulation, allows the
model to learn the trade-off between the A and B sub-
circuits. The A circuit stretches over multiple qubit
groups, spanning the qubits holding the last state (A;|,
the result of the input group B and the intermediate
group m. Just like in the classical Mamba, the A cir-
cuit does not contain re-uploading of the input token,
as the input tokens are already encoded into B. The C
sub-circuit (parameterized with re-uploading just as A
and B) transforms the output of A and is followed by
a measurement. Out of the e + k 4+ m + s qubits, only
m get measured, k + e get reset and s holds the state
for the next mamba block.

[ —— Cy — A
o) =+ (B, =4

b, [Bys1)
) A | 1

Figure 2: The naive QMambea circuit with the A, B, C, A sub-
circuits requires e + k 4+ m + s qubits. The A and B sub-
circuits are controlled by the result of the A sub-circuit.

The circuit efficiency can be improved by reusing

the qubits of the C sub-circuit, thus reducing the num-
ber of required qubits to 2k + s (depicted in figure 3).
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Even further improvements can be achieved by exe-
cuting the A operation on a separate circuit, and input
its result using an R, gate. This optimization reduces
the qubit requirement to k+s+ 1. A and B are con-
trolled and anti-controlled as before.

‘hr> L |h1+l>

Figure 3: A more efficient QMamba circuit, using only 2k +
s qubits.

We have implemented our model using the Qan-
dle (Stenzel et al., 2024) framework. The trainable
parameters are packed in strongly entangling layers
of the sub-circuits as R,R R, combinations followed
by a CNOT gate. The individual model configurations
are listed in the appendix (section 6).

4 EXPERIMENTS

We want to evaluate out QMamba model on two main
tasks: text generation based on easy to learn patterns
and the “Needle in a Haystack” task. For pattern
reproduction, the intent is to learn a simple pattern,
testing the model’s capability to compress several to-
kens into as few qubits as possible, using a relatively
small context size. The “Needle in a Haystack” task
is an advanced challenge to test the “lost in the mid-
dle” problem (Liu et al., 2023). It has been shown
that Large Language Models boasting with very high
potential context sizes can’t utilize all of it, causing
the models to ignore parts of context, usually snip-
pets located in the middle of the context (Hsieh et al.,
2024). The Mamba architecture has a theoretically
unbounded context size due to its selection mecha-
nism, allowing it to keep relevant parts in the context
indefinitely (Gu and Dao, 2024). We want to test if
the quantum version of Mamba can keep up with this
promise.

The loss is computed as the mean squared error
between the predicted and target values, attempting
to minimize the discretization error & (as defined in
equation (3)) for each token. The different tasks have
been evaluated on separately trained models.

4.1 Datasets

For the pattern reproduction task, we create a sim-
ple synthetic dataset, containing the words “zero”,

one”, ..., “nine”’. The words are always presented
in the same looping order. As the model operates on
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the character level, the task can be trivially described
to predict the next logical character in the sequence.
During training, the model is represented with a ran-
dom starting character, and the task is to predict the
next character in the sequence. Independent of the
produced character, the model is always presented
with the next character in the sequence parallel. As
the dataset is trivial to test, we can predict the error
rate of the model per token, e.g., the model should al-
ways predict “e” after “z” (from “zero”) and a space
after “x” (“six”).

The Needle in a Haystack” uses a different setup.
We pick n different tokens. Each sequence consist of
a fixed number of tokens (the training context size),
with one of the tokens being replaced with a globally
fixed pointer token. The task for the model is to output
the token directly following the pointer token. During
testing, sequences with a higher length are generated
and primed with an indicator token. All intermediate
outputs are discarded, as the only relevant output fol-
lows after inputting the entire test string. The model
is evaluated on the accuracy of the output token, de-
pending on the test context size and the pointer posi-
tion, ignoring all other outputs.

4.2 Results

n e z e o one t wo t hre
o i rwlir iezh e f i|gle uvt

X' s h'o hghnoghuwuviorf vV g

fwvusvnrx fsrxszhg.i s

Figure 4: The QMamba model produces high probabilities
for the correct tokens in the pattern reproduction task. The
most likely token is listed in the first row, less likely to-
kens listed below. The color indicates the probability of the
token. For a T > 0, non-maximum tokens can be chosen
non-deterministically, weighted by their probability.

On the pattern reproduction task, our QMamba mod-
els show strong performance. Analyzing the predic-
tions of the model in figure 4, we see the expected
behavior: as the beginning of the training strings has
been chosen at random, the model is initially unsure,
which token to produce, outputting a mixed encoding,
containing multiple possible tokens with near equal
confidence (we measure the error from the continu-
ous model outputs to the individual discrete token en-
codings as the confidence in each token). As we have
selected T = 0, we deterministically choose the most
likely token, and feed it back into the model for the
next iteration. With rising number of iteration and
therefore growing context size, the model becomes
more confident in outputting the correct tokens.
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Figure 5: QMamba’s confusion matrix for the pattern re-
production task shows very low error rates. Dark colors
indicate a higher probability.

The strong quality is underlined by the confusion
matrix in figure 5, showing a very strong diagonal dis-
tribution for single token continuation. When tasked
with predicting only the next token, the correct token
is chosen with a very high probability. The few out-
liers fluctuate from run to run, while maintaining a
very acceptable amount.

On the “Needle in a Haystack” task (Hsieh et al.,
2024), our QMamba performs very well (evaluation
in figure 6). On low document lengths like 10 or 20
tokens (10 was the training context size), the models
manage to retrieve close to all target tokens. As the
document length increases, the accuracy decreases,
but reaches a stable level at around 65% accuracy for
a document length of 100 (so ten times the training
context length) tokens. The retrieval quality for nee-
dles in the last 20% of the document does not dete-
riorate, thus showing that the model does not suffer
from a polluted previous context. The stable (albeit
lowered) accuracy for long contexts for needles both
at the beginning and the end of the document shows
that the model does not suffer from the “lost in the
middle” problem, as the difficulty is mostly due to the
increased noise from tokens after the needle then by
a structural learning problem seen in many classical
transformer based models (Liu et al., 2023).

S DISCUSSION

We have introduced the theoretical foundations of
quantum state space models, allowing our quantum
model to repeatedly decide the amount of update al-

QMamba: Quantum Selective State Space Models for Text Generation

lowed to the state based on the current token, allow-
ing for theoretically unbounded context sizes. We
have experimentally shown the effectiveness of our
token encoding, embedding, and measurement strate-
gies and have laid out the path for non-deterministic
sampling. The model has shown impressively low
error rates, with a very strong diagonal in the con-
fusion matrix. From the very promising results on
the ”Needle in the Haystack” task (which the clas-
sical Mamba models and the RWKYV family have al-
ready shown impressive results on despite huge con-
text lengths (Peng et al., 2024)), we conclude that the
strengths of selective state space models are not lost
in the quantum translation. The models allow effi-
cient training on smaller context sizes, losing only
little in performance when running on large context
sizes, like 10 times their original size (as seen in fig-
ure 6). In summary, our QMamba model manages to
reproduce the classical Mamba’s impressive perfor-
mance on current quantum simulators, showing the
unused potential of quantum machine learning in nat-
ural language processing.

6 FUTURE WORK

Our embedding and measurement techniques for em-
bedding natural language in quantum circuits have
shown impressive results. We have, however, noticed
a degradation in the results for more than four dis-
crete embedding angles, limiting the model’s abilities
for more than five angles to a minimum. In a four-
qubit setup, this would still allow embedding a very
impressive 45 = 1024 different tokens, but a deeper
analysis of the drop-off is needed.

As all models operated on synthetic datasets, big-
ger models trained on real-world datasets like the
Penn Tree Bank (Marcus et al., 1993) or the WikiText-
103 (Merity et al., 2016) are needed to evaluate the
models on real-world tasks. The models should be
evaluated on perplexity scores (Jurafsky and Martin,
2008) to compare them to classical models to fully
bridge the gap between quantum and classical text
generation models. These bigger models should be
evaluated with the same time budgets as comparable
classical models to allow for a fair comparison in the
NISQ (Preskill, 2018) era.

In preparation for the post-NISQ era, the mod-
els should be tested for their suitability on running
on large-scale, fault-tolerant quantum computers. As
QMamba only builds upon basic quantum gates like
Ry, Ry, and controlled-not and controlled groups, our
models can be easily ported, allowing for even im-
proved performance on real quantum hardware. Im-
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Figure 6: The QMamba model performs well on the “Needle in a Haystack” task. Dark green indicates a perfect score, while
dark red (not present in the figure) would indicate a total failure with no correct outputs. The score is averaged from 3 models,

with 1000 test sequences each.

plementations using customized encodings in combi-
nations with non-standard circuit layouts could lead
to further improvement.
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APPENDIX

Hyperparameters

Hyperparameters have been determined by using a
constrained grid search for learning rate, optimizer,
and number of parameters in a constrained time frame
per run. All models used quantum weight remapping
for limiting parameter ranges (Kolle et al., 2022) and
the Adam optimizer (Kingma and Ba, 2014). We used
a parameter distribution of 2:1:1:1 ratio, spread out
over the A, B, C, and A sub-circuits (picked after pre-
liminary trials). For the haystack task, we chose a
learning rate of 2¢ and around 1000 parameters in
total.
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Encoding and Decoding

The mapping between angle representation and in-
put/output tokens is distinct for each token set. We
enumerate both the token set and the possible angle
combinations and naively match them up. More ad-
vanced approaches could include a statistical analy-
sis of frequent patterns in the training data, matching
them up with more similar encodings. This would
essentially imply mapping the encoding space to a g-
dimensional space, with the Hamming distance be-
tween two angle embeddings correlating with the fre-
quency of consecutive tokens. This would enable the
model to generate specific patterns more easily, im-
proving short-term performance. We did not pursue
this idea further, as we worried about a possible lack
of output diversity. However, we are confident that in-
vestigating this idea further could lead to a significant
improvement in the model’s performance.
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