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Abstract

We consider the dynamics of artificial chemistry systems con-
sisting of small, interacting neural-network particles. Al-
though recent explorations into properties of such systems
have shown interesting phenomena, like self-replication ten-
dencies, social interplay, and the ability for multi-objective
applications, most of these settings are reasoned about in the
abstract weight space. We extend this setup to involve an ap-
plied, stateful positioning task with mutual dependencies and
show that stable configurations can be found jointly in both
the weight space and 3D space. We show that the main con-
tributing factor is enabling the networks to self-adapt their
interaction rates depending on their internal stability or their
ability to position themselves correctly. We find that this
method effectively prepares the network assembly against po-
tentially destabilizing interactions, promoting emergent sta-
bility while preventing convergence to trivial states.

Introduction
Recent explorations of neural network ‘soups’ – inspired by
emergent behaviors in artificial systems – are often com-
prised of multiple interacting neural network agents. While
this specific setting originates from conceptual work that
proposed neural networks with the capability to process their
own weights as inputs (network quines, Chang and Lipson,
2018), research on this topic is situated within the broader
context of artificial chemistries, where prior studies (e.g.,
Gabor et al., 2019) have established systems based on neural
networks acting as particles and now are being further built
upon (Illium et al., 2022; Randazzo et al., 2021; Zorn et al.,
2023).

The goal in these systems is to observe the emergence
of stable particle organization, sometimes with the addi-
tional requirement of learning or executing a given sec-
ondary task. We argue that utilizing the concept of neural-
network chemistries poses a valid alternative to more con-
ventional approaches to such dynamic organization prob-
lems; swarms, for instance, are suitable for such tasks and
might (also) utilize emergent effects but are often in need
of a centralized source of information, like video images,
sound signals, or GPS (Jin et al., 2018; Vanhie-Van Ger-
wen et al., 2021; Cofta et al., 2020). On the other end of

the autonomous behavior spectrum, multi-agent systems (in-
cluding techniques like multi-agent reinforcement learning)
often require communication protocols (Phan et al., 2022)
or precisely crafted reward functions to enable emergent
behaviors (Hahn et al., 2020; Ritz et al., 2021). Artificial
chemistries can be placed somewhere in between these ex-
tremes, interacting (often) with purely randomized interac-
tions without assumptions of locality or non-uniformity. The
central aspect of randomness in the agent interactions has
two major benefits: It alleviates the requirement of design-
ing interaction curricula or protocols, while also ensuring
that the learning progress is never too dependent on single
individuals or agent combinations. This independence nat-
urally offers robustness against agent failures or systematic
interruptions was shown in Gabor et al. (2021).

On the other hand, with the randomness of unstructured
interactions the danger of destabilizing actions or events that
collapse or destroy the whole system presents an important,
safety critical issue for any application in practical multi-
agent tasks. Gabor et al., 2022, 2021 has shown that systems
eventually organize themselves to stable configurations, as
long as the stabilizing actions (or influences on the particles
in general) outweigh any destabilizing events. However, as
long as agents continuously update their network weights
(e.g., to optimize for a secondary task) further stabilization
actions are usually needed, which in turn may impact the
loss of the secondary task and will repeat the update iter-
ation. Unless the system is forced or incentivised to rest,
stable convergence will not be possible.

To counteract these non-stationary effects and explore
potential stabilizing mechanisms, we introduced a self-
adaptive adjustment of interaction rates based on real-time
performance feedback. This mechanism adjusts the rate of
each action in response to observed loss, allowing a dynami-
cally re-set to sustainable action rates in accordance with the
evolving system needs.

In past work, soup interactions and tasks have been sit-
uated on the weight-space level. To illustrate the problem
of an practical secondary task as it could occur in reality,
we model a dynamic, three-dimensional setting with state-
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ful particles that are tasked with positioning themselves in
a predefined pattern, similar to the self-organized control
of e.g., a robot drone swarm. Each network particle in our
soup can perform one of three actions per time step: a desta-
bilization action, a stabilization action (both in the weight
space), and a repositioning interaction (in the 3D space),
with the latter two being trainable to minimize their respec-
tive loss criteria, thereby influencing the collective behav-
ior pattern of the system. We design the position criteria
in a way that will always require the agent to re-adjust it’s
weights as long as other agents in the system move, thus in-
troducing a co-dependent non-stationarity that we then show
to be stabilized by the adaptive interation method. In this
work we show a practical 3D-positioning task, both for sim-
plicity and for visual demonstration, but we argue that the
concept of self-adaptive stability is useful for any kind of
non-convergent multi agent system and merits further re-
search integrating concepts from artificial chemistry into au-
tonomous systems learning tasks.

Our findings suggest that the proposed self-adaptive ap-
proach, by modulating interaction intensity based on imme-
diate past outcomes, can significantly enhance the robust-
ness and resilience of neural network soups against disrup-
tions, allowing for interesting insights into the management
of emergent behaviors in decentralized artificial systems.

We summarize our contribution as follows:

• We adopt mostly abstract concepts of self-replicating neu-
ral network soups and apply them to a stateful positioning
task in three-dimensional space. We propose an extension
to the soup setting of Gabor et al. (2019) based on this po-
sitioning criterion and can adjust their technique for train-
ing self-replicating neural networks to fit our (different)
network dimensionalities.

• We show that by introducing self-adaptive adjustments to
their action and interaction rates – depending on their in-
ternal and external stability – we can find jointly stable
configurations, both in the weight-space representations
of the neural networks, as well as in the 3D space where
they have to position themselves in relation to their peers.

The remainder of this work is structured as follows: We
briefly explore related concepts and give a short overview
of related work and applications. We then define our set-
ting and summarize the background, i.e., the fundamental
building blocks, as we build our artificial chemistry soup in
reference to the work of Gabor et al. (2019). With this for-
malization in place, we explore and discuss our experimental
evaluation before we finally conclude our findings.

Related Work
Swarm Control For improved robustness and scalability,
swarms (e.g., unmanned aerial vehicles (UAV)) are often

considered in favor of single entities. However, while cen-
tral control entities (e.g., Saha and Isto, 2006; Kazanzides
and Thienphrapa, 2008) can maintain safety in smaller dis-
tributed systems (like small particle swarms), such control
is often not practical in a centralized manner when scaled
to larger entity sizes or intricate control objectives (cf. Pan-
telimon et al., 2019). Yet, decentralized control (e.g., Bor-
relli et al., 2004; Tanner and Christodoulakis, 2007) requires
additional communication protocols. Furthermore, safety
might be affected by malicious adversarial entities or the
potential failure of said protocols (Pantelimon et al., 2019).
Therefore, means of robustness need to be built into the
algorithms being applied. We approach the decentralized
control of autonomous particles by randomizing interactions
akin to classical artificial chemistry settings, i.e., without
structured communication, signal processing, or similar de-
terministic requirements. Robustness is then an emergent
effect of actions being applied (with certain probabilities) or
interactions affecting a small subset of random particles in
the soup.

Self-Adaptation Considering that algorithmic parameters
of complex dynamic systems themselves are often subject
to their own optimization, the question of how to choose
those hyperparameters is largely considered to be a field
of research in itself (cf. Feurer and Hutter, 2019). One
such approach, often found in relation to ‘natural comput-
ing’ and machine learning in general, is the concept of
self-adaptation, i.e., automatic or heuristic approximation of
those parameters, depending on the live performance of an
algorithm. Applying self-adaptation has been shown to im-
prove the system’s overall robustness and convergence prop-
erties. Examples can readily be found in the field of evolu-
tionary computing (e.g., Meyer-Nieberg and Beyer, 2007;
Saravanan et al., 1995; Boukhari et al., 2018), where early
self-adaptivity was applied to, e.g., evolutionary mutation
rates and recombination rates. Multi-objective optimization
(Büche et al., 2003) and neural network learning hyperpa-
rameters (Wijayakulasooriya et al., 2002; Li et al., 2015) are
also often subject to self-adaptive methods, as exact (cor-
rect) configurations often require costly parameter tuning or
detailed domain knowledge of the problem at hand.

AI Safety Finally, when dealing with the question of why
alternative approaches to such classical tasks (like posi-
tioning in space) should be considered, recent literature on
machine-learning systems also (by obligation) likes to point
towards aspects of AI Safety, i.e., the ‘secure’ application
of such intelligent agents. As ‘safety’ is usually tricky
to define or scope, much of the discussion is centered on
what ML agents should not do. Some approaches consider
safety as a secondary objective to be fulfilled while invisi-
ble to the agent and only used for external evaluation (Leike
et al., 2017; Amodei et al., 2016; Raji and Dobbe, 2023;
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Hendrycks et al., 2021). According to Amodei et al. (2016),
an agent must fulfill one or, ideally, multiple of the following
criteria to be considered safe:

• Avoiding Side Effects Reward functions should be se-
lected in such a way that no undesirable side effects oc-
cur. This also applies to network soups interacting with
each other and, naturally, undesired interactions should
not completely diverge or collapse a group.

• Self-Modification An agent should also function in en-
vironments in which it can adapt itself. This property is
directly translatable to our setting of self-replicating, i.e.,
weight-modifying networks, and the aspects of gaining
stability (or, rather, avoiding instability).

• Distributional Shift Even if the test environment differs
from the initial environment, an agent should act robustly.
Considering all networks consistently change themselves
and pose change to others, this also naturally includes as-
pects of artificial chemistries.

• Robustness to Adversaries How can an agent recognize
adversaries and deal with their influence safely? While
some of the interactions may be considered adversarial,
only very specific cases include purposefully harmful in-
teractions. However, in many cases, unstable composi-
tions of network states or unfortunate sequences of inter-
action events may have similarly dangerous effects, which
we may want to stabilize against.

The list of requirements by Amodei et al. (2016) includes
further aspects, like safe exploration behavior, that are not
directly relevant here. In this work, the safety of the agent is
indirectly considered in relation to distributional shifts and
robustness against harmful interactions.

Methodology
Preliminiaries
In this work, we consider particle soups, where one is able
to observe interactions by building a population of m mu-
tually interacting network particles M1, . . . ,Mm. Differ-
ent combinations and parameterizations of such individuals
and their various (inter-)actions produce emergent behavior
comparable to an artificial chemistry system (cf. Dittrich
et al., 2001) or artificial life system (cf. Adami and Brown,
1994; Ofria and Brown, 1998). This means a soup evolves
over a fixed amount of epochs, i.e., evolution steps. At ev-
ery epoch, different (inter-)action operators can be applied
to network particles in the population with a certain chance,
resulting in new particles and, thus, a changed soup. The
general setting follows that of Gabor et al. (2021), Randazzo
et al. (2021), and Gabor et al. (2022). For the sake of com-
pleteness, we briefly recap the material related to particle
soups introduced there.

Weightwise Application
As has been introduced in recent literature, self-replicating
neural network can be defined by reasoning about network
weights and their repeated reproduction with the notion of
weightwise application (Gabor et al., 2022). It allows us to
apply a neural network N as input to another neural net-
work M, by applying each encoded weight in N to M once
and re-using the predicted weight value as the ‘replicated’
weight. As will be shown in this work, the self-replication
property is key to stability in applied artificial network sys-
tems.

We also assume that every neural network M in our soup
adheres to the same dense-layered architecture (Goodfellow
et al., 2016) and can thus be fully described by giving its
weights M ∈ R26. Following the network’s architecture,
we also write the vector of weights M = ⟨vl,c,p⟩l,c,p struc-
tured according to the layers, cells, and cell connections of
the neural network so that each vl,c,p ∈ R is the network
weight assigned in layer l for neuron c to the connection to
neuron p in the previous layer.

We can now define the application of one network to an-
other as follows:

Definition 1 (application). Given neural networks M,N .
Let O = M◁N be the application of M to N given by

Ol,c,p = M
(
l, c, p,N l,c,p, 0, 0, . . .

)
. (1)

This notation follows the idea of encoding multiple tasks
within the input vector by masking out unrelated informa-
tion of other tasks with 0, as introduced by Gabor et al.
(2021). The amount of masked information 0, 0, . . . de-
pends on other tasks themselves but can be considered fixed
for later experiments. Since application alone does not pro-
duce stable (non-trivial) replicator networks, we need to fur-
ther introduce the necessary training procedure, as well as
the ‘artificial chemistry’ interactions as outlined by Gabor
et al. (2019, 2021) and Zorn et al. (2023).

Self-Replication Training
Based on the application ◁, we can define self-application
as follows:

Definition 2 (self-application). Given a neural network M.
We call the neural network M′ = M ◁ M the self-
application of M.

In theory, the application ◁ has fixed points, i.e., there
exist M so that M◁M = M. In a similar way to other ar-
tificial chemistry setups (cf. Fontana and Buss, 1994), these
play a special role (Gabor et al., 2019). However, since our
particles are living in a continuous space, related work uses
a relaxed notion called ε-fixpoints:

Definition 3 (ε-fixpoint, self-replication (SR)). Given a
neural network M. Let ε ∈ R be the error margin for the
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fixpoint property.1 We call M an ε-fixpoint iff for all l, c, p∣∣M′
l,c,p −Ml,c,p

∣∣ < ε where M′ = M◁M. We also say
that M is able to self-replicate.

The notion of self-replication in our work is strongly in-
fluenced by Dawkins (2016) in that it focuses on the ability
to simply copy information. We take a first step towards ob-
serving other properties associated with self-replication (like
metabolism, e.g.) by expanding a particle’s feedback loop
for self-sufficient development through its peers. Such stabi-
lization in uncertain systems may also be helpful for simulat-
ing and enforcing interactions between inherently stochastic
processes and systems with inherent fault potentials or inter-
ruption potentials, like multi-agent reinforcement learning
or signal communication problems.

Soup Interactions

With networks interacting together in the context of a soup,
Gabor et al. (2019) define the interaction of applying and
substituting a randomly drawn partner particle to the pre-
dicting network as an attack. This interaction is given as:

Interaction 1 (attack (ATK)). Applied to two random net-
works M,N drawn from the soup, attacking substitutes the
weights of the attacked network M with the weights given
via M′ = N ◁M.

This setting – self-replication and attacks as formalized
here – can be considered essentially in line with recent re-
lated work on such artificial soups (cf. Gabor et al., 2022;
Zorn et al., 2023). For this work, we further augment the
setup with an additional interaction representing stateful,
conditional repositioning of network particles in 3D space.
We assume therefore that network particles are now ad-
ditionally created with an initial, randomly sampled posi-
tion vector −→p := ⟨x, y, z⟩ representing the state position
in the x, y and z coordinate. Borrowing the multiple-goal
approach for encoding inputs of different tasks from the
setup of Gabor et al. (2021), we now let networks interact
with each other in the 3D-state position spaces (besides the
weight space), enabled by a new interaction which we for-
malize as follows:

Interaction 2 (reposition (POS)). Applied to one sampled
random network M with n networks N1, . . . ,Nn as in-
put, drawn randomly from the soup of m available parti-
cles (without replacement). The POS action trains the pre-
dicting network M to update its position (state), given as
−→p M := ⟨x, y, z⟩ ∈ R3, towards a positioning criterion C.
We assume that C is given and appropriate for the task in
question. The predicted update is thus given as application
on such network M : R4+n·3 → R3 via:

p̂M = ⟨0, 0, 0, 0,−→p 1, . . . ,
−→p n⟩, (2)

1For this paper, we assume ε = 10−5.

where −→p j := ⟨x, y, z⟩ ∈ R3 for particles j ∈ [1, . . . , n].
Each of the three outputs corresponds to the positioning up-
date of the x, y and z coordinate in 3D-space respectively.
To steer the resulting positioning effect towards a desired
pattern or design, the given prediction should minimize loss
D, which we compute as the distance of the updated position
in 3D space towards the positioning criterion C, i.e.,

D =
∣∣∣∣∣∣(−→p M + p̂M)− C(−→p 1, . . . ,

−→p n)
∣∣∣∣∣∣, (3)

where || || is an appropriate vector norm (for a 3D space in
our case) and + is the vector addition.

In this formalization, we condition the criterion on the in-
put particles −→p 1, . . . ,

−→p n, however generally, the position-
ing criterion can be freely chosen. In essence, we model
the repositioning task as a local n-particle interaction, where
the predicting particle M should position itself in the geo-
metric center of the randomly chosen n particles’ positions.
The proposed pattern, resulting eventually in (fairly) equally
spaced particles, was chosen here for simplicity and visual
demonstration purposes. Other designs might include po-
sitioning the particles maximally far apart in e.g., spherical
alignment, grid like structures or in patterns robust to colli-
sions (cf. Cofta et al., 2020).

More formally, the position update p̂M should minimize
D towards the center of mass (midpoint) of a group of n
particles with positions −→p 1, . . . ,

−→p n:

C(−→p 1, . . . ,
−→p n) =

〈∑n
i=1 xi

n
,

∑n
i=1 yi
n

,

∑n
i=1 zi
n

〉
. (4)

Finally, following Zorn et al. (2023), we assume a func-
tion id which assigns to every neural network within our
soup a unique identifier, e.g., id(M) ∈ [0; 1] to repre-
sent said network M. We treat these real-numbered values
as IDs for the respective networks without them implying
any structure or ordering. The intended purpose is to test
whether the additional identification input of soup interac-
tion networks is similarly helpful for stateful tasks like repo-
sitioning like it was with weight-space tasks shown by Zorn
et al. (2023).

Experiments using this identification will extend the task
encoding for input particles −→p 1, . . . ,

−→p n in Interaction 2
with their respective id(Nj), j ∈ [1, . . . , n], and the pre-
dicted update changes to an application on a network M :
R4+n·4 → R3 given as:

p̂M = ⟨0, 0, 0, 0, id(N1),
−→p 1, . . . , id(Nn),

−→p n⟩. (5)

We use the terms action rate and chance interchangeably
to mean the application of actions SR, ATK, POS to a pre-
diction candidate network M, with n other networks N1...n

drawn randomly from the soup without replacement (includ-
ing M). We formally abbreviate the chance of these actions
occurring at evolution step t with SR∗, ATK∗, POS∗, where
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we iterate over all m particles in the soup, and either apply
the first of the actions SR, ATK, POS where action∗ ≤ r
of a random sample r ∼ N (0, 1) ∈ [0; 1) drawn from a
random normal distribution or skip over the particle.

Changes to Gabor et al. (2022) Where ATK applies one
network to another, a 1 : 1 application, in the case of the
POS interaction an update is realized with the information of
multiple networks as input in the form of a n : 1 application,
which is novel concept in this context. Furthermore, for this
repositioning to work as formalized, each neural network M
we discuss needs 3 real-numbered outputs to be able to rep-
resent the 3-dimensional position update function. This de-
viates from the original concept of weightwise application,
where previously Gabor et al. (2022) only utilized networks
of the form M : R(·) → R1 to signify the mapping of (·)
inputs to a single output, as the prediction of the currently
feed-forwarded weight encoding. However, by simply re-
ducing the network’s output-dimension from R3 → R1 via
an appropriate reduction function (sum, mean, etc.), we find
that using R3 as our output dimension works functionally
the same for the weightwise application, while also opening
the possibility of extending neural network soups to work
with multi-dimensional output, like we do with our position
update. We found the sum to work best as reduction func-
tion for our purpose, and we consider any mention of self-
replication or SR-interactions in the form of R(·) → R1 to be
the abbreviation of R(·) → R1 :=

∑
(R3) for the remainder

of this work.

Experiments
Given this formalization of artificial soups of neural net-
works, we begin our exploration with a simple system of up
to m = 10 interacting particles, each of which is equipped
with one of three possible actions (ATK, SR, POS). While
ATK is a purely applicative action, SR and POS are both
trainable, i.e., a network will update its weights to minimize
the respective loss criteria as described in Sec. Methodol-
ogy. Only one of SR or POS may occur at any one time
step of the evolution for every network. Any weight train-
ing is computed via the Stochastic Gradient Descent (SGD)
optimizer by the Python pytorch library (cf. Paszke et al.,
2019) with a learning rate of 0.004 and a momentum param-
eter of 0.9. This setting is chosen per Gabor et al. (2019)
to ensure comparable evolution, particularly concerning the
self-replication aspect of the network soup.

For the first proof of concept, we show that positioning
in space (here with 3 dimensions) is possible without di-
rect collapse or divergence of particles, using only the POS-
interactions. Fig.1a shows a visual representation of state-
ful particles p0, . . . pm, each starting from an initial position
vector ⟨x, y, z⟩0≤i≤m, with x, y, z ∈ [0; 1] ⊂ R. As parti-
cles are not able to completely converge to a stable configu-
ration, each randomized interaction between particles leads

to interactive change in the system. Furthermore, since no
‘resting’ patterns are emerging in this setting, any distur-
bances can potentially affect all particles. The movement
trails (last 50 positions per network) are drawn behind the
particles, indicating the erratic behavior of such randomized
interactions. This unstable group position is corresponding
to the average distances D of all m×m particle relations at
evolution step t = 1000, which is also visible as a varied,
unsteady line plot in the initial ablation of effects in Fig 2
(bottom left, blue).

To show how fragile this balance is, we then introduce
destabilization on the weights of the particles themselves, in
our case by additionally including the interaction ATK to be
executed by random particles (even with very low probabil-
ity of ATK∗ = 0.001 per particle per evolution step), and
see drastic impact, first, on the weights themselves and, sub-
sequently, on the resulting movement (as conditional effect,
resulting from the network’s now more imprecise forward
passes). Fig. 3 shows such an exemplary collapse to a single
weight set — a couple of early attacks are enough to diverge
a soup collective without any form of explicit stability (train-
ing). The final state is similar to the trivial 0-fixpoint found
by Gabor et al. (2019). In 3D space, this collapse similarly
contracts all positions together or — in the case of weights
diverging (i.e., growing towards ±∞) — the particles sim-
ply position themselves far outside the visual cube.

Consequently, we hypothesize that the inclusion of the SR
action may prevent this destabilization to a certain degree,
depending on the network’s ability to self-replicate. This
result is to be expected from similar experiments by Gabor
et al. (2019, 2021) or Zorn et al. (2023), although we can
now confirm that this stabilization effect is also helpful in
‘applied’ network realizations (i.e., the actual positioning in
space, which also influences the movement of other parti-
cles), rather than simply the effect on individual weight sets,
as was discussed in their previous works. We can indeed
observe this stabilization to help with soups not diverging
or collapsing, but it does not remedy the issue of interde-
pendent movement shifts around the space. We, therefore,
include the concept of self-adaptivity to automatically regu-
late the hyperparameters governing the action-intensity (i.e.,
SR∗,POS∗).

For our adaptation of self-adaptive interaction rates for
the initial interaction rates action∗

old ∈ [0; 1) (for both SR
and POS) we realize a simple, loss-conditioned rate update
as follows:

action∗
new = clip(action∗

old + losst ∗ (r − 0.5)),

where clip also constrains ratenew ∈ [0; 1) and r ∼
N (0, 1) ∈ [0; 1) is a dynamically sampled random value
(drawn Gauss-uniformly random) at evolution step t.

Although this auto-regulation of hyperparameters now al-
lows for conditional (re-)training of the interactions and self-
regulates the required robustness against degrees of desta-
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(a) (b) (c)

Figure 1: We plot the positioning of 10 individual network particles in 3D space, where every network is initialized with an
initial, randomly sampled position vector −→p := ⟨x, y, z⟩, with x, y, z ∈ [0; 1) ⊂ R. All particles optimize their position w.r.t. a
positioning criterion, here the geometric center of the n randomly sampled, distinct particles from the whole soup. Movement
is indicated as the trail of dots of the last 50 positions −→p t−50, . . . ,

−→p t−1 of each network particle.
We show the following configurations as: (a) One instance of a destabilized soup of erratically moving particles. (b) An initial,
locally-optimal configuration of a different soup instance and the final configuration (c) after multiple (smaller) disturbances,
resulting in a final ε-fixpoint-soup (cf. Gabor et al., 2019).

bilization (i.e., different rates of ATK interactions), to pre-
vent hyperparameters prematurely converging (or entirely
remaining) at values very close to 0.0 (and therefore very un-
likely of ever being applied again), we do need to introduce
two meta-hyperparameters β, γ ∈ [0; 1) that effectively rep-
resent the probability of particles re-evaluating their abilities
or state (i.e., checking self-replication ability with probabil-
ity β or their positioning in space with probability γ) and
re-adapt the hyperparamters should the loss have increased.
In every evolution step, we employ this process via an ex-
clusive decision, where a network that does not enact the
interactions SR or POS has a respective β, γ chance of re-
evaluating their abilities or state.

Fig. 2 shows this approach applied to our soup setting. In
the evaluation over multiple runs, the self-adaptive systems
(bottom right) show more stable and less variant distances
(bottom right, blue). In this context, we have also tested
the effect of including the id-function-identifier with id for
each input network in the application but found it to have
no significant benefit to either the self-replication ability in
the soup or the positioning in space — on the contrary, in
some cases the variance was unexpectedly high over multi-
ple runs (bottom right, orange). Since the inclusion of the
identifiers showed promising results in their application in
the social soups of Zorn et al. (2023), this result is interest-
ing to note, but could also indicate the difference of applica-
bility to stateful tasks (rather than the weight-space-specific
ones). We did, therefore, not include the identifiers in the fi-
nal experimental evaluation, showing the complete setup of

self-adaptive robustness against increased rates.
The plots in Fig. 4 show one representative experiment

run of m = 10 particles over 5000 evolution steps with
the SR and POS interactions both enabled with self-adaptive
rate-adjustments. Both the POS∗ rates (Fig. 4a) and the SR∗

rates (Fig. 4b) are shown to quickly adapt to repeated in-
stances of ATK and, e.g., destabilized networks (red, orange,
grey) adequately re-set their interaction rates to higher val-
ues. This result can also be seen visually, both in the weight
space (Fig. 4c), where the three most affected networks take
visibly longer (over time, i.e., cf. height of the z-axis) to
converge to stable fixpoints.

This evolution to stable patterns in 3D space — which we
observe as emerging ‘checkpoints’ of local optima, where
particles iteratively come to rest (until further agitation) —
can also be observed in the actual resting position (no trails,
i.e., without movement over the last 50 steps) in 3d-space,
first to the pattern seen in Fig. 1b and finally in the pattern
of Fig. 1c, which is also a full group of 10 ε-self-replicators
and fully stable against any further ATK interactions.

Conclusion
In our experiments, we took the primarily abstract concepts
of self-replicating neural network soups originating from
Gabor et al. (2019) and applied them to a stateful position-
ing task in a non-abstract (3D) space. We focus on the issue
of finding jointly stable configurations, both in the weight-
space representations of the neural networks, as well as in
the 3D space where they have to position themselves in re-
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Figure 2: (top row, y-axis) Mean self-replication loss of all
m particles in a soup of 10 networks. (bottom row, y-axis)
Corresponding mean distances of all m×m-particles at the
respective evolution steps (2500 in total). We test whether
the effect of including the id-function-identifier with id (or-
ange) or not (blue) is helpful for finding stable group po-
sitions (loss=pos) or for the self-replication (loss=sr), as
well as depending on whether the self-adaptation is enabled
(right column) or not (left column). For this initial ab-
lation, all parameters were optimistically set and show the
mean and 95% confidence interval over three runs each;
Initially SR∗,POS∗ = 0.1, self-adaptive meta-rates were
β = 0.25%, γ = 0.005% probability per network per evo-
lution step and ATK∗ = 0.0, n = 2. Lower (mean) self-
replication losses are better, and distance losses are better
the more stable (and less variant) they are.

lation to their peers. To achieve this, we have extended the
soup setting of Gabor et al., 2021; Zorn et al., 2023 further
by introducing network-dependent interactions and relaxing
the initial weightwise application of self-replication to ac-
commodate prediction dimensions > 1 for our purposes. To
tackle the challenge of interdependent positioning, we em-
ploy the technique of self-adaptive adjustments of their ac-
tion/interaction rates depending on the stability of their self-
replication or their ability to position themselves correctly
in 3D space. We have found that this method effectively
shields the network assembly against destabilizing interac-
tions and produces emergent stability in the form of optimal
intermediary patterns.

In the future, we would like to explore how far this set-
ting can be generalized. Given that weightwise replication
seems to relax to output dimensions > 1 readily, it would
be interesting to study how large of an output dimension the
self-replication ability can still contest with. Increasing the
network particles and their dimensionalities would also open
many possible applications into even more applied (cooper-

Figure 3: Network weights of a soup of 10 networks are de-
picted as two-dimensional weight space based on the trans-
formed x- and y-axes derived via PCA dimensionality re-
duction. We plot the transformed PCA-X and PCA-Y in the
horizontal plane and show the change of weights overtime
on the z-axis (this is not the same 3D space as in the position-
ing task!). Even with very low probability of ATK∗ = 0.001
and moderately low probability of moving via POS interac-
tion with POS∗ = 0.1 (n = 2) per particle per evolution
step, all networks collapse to a singular point in the weight
space due to randomly but repeatedly occurring ATK inter-
actions on individual network weights.

ative) machine-learning interactions and forms of ML ro-
bustness. Finally, since self-adaptiveness has been shown to
work well individually, we will also test how foreign adap-
tation, i.e., regulation of other particles’ rates in different
degrees of stability, might affect collective soup robustness
as a whole.
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(a) (b) (c)

Figure 4: We plot the setting of 10 individual network particles with self-adaptive interaction rates for SR and POS. The
respective meta-hyperparameters β, γ as chances of re-evaluating the self-replication abilities or the current state position are
set at β = 0.35%, γ = 0.005% per particle per evolution step. The interaction rates themselves are initially set to SR∗ = 1.0
and POS∗ = 1.0 (before self-adaptation). The destabilizing interaction ATK is set at ATK∗ = 0.001 per particle per evolution
step, instances of ATK are shown as gray dashed lines on the x-axis .
We show an exemplary run of action rate self-adaptation of POS∗ (a, y-axis) and SR∗ (b, y-axis) over 5000 the evolution
steps (a/b, x-axis). Of note here are three particles (red, gray, orange). Plot (a) shows all other particles quickly positioning
and stabilizing themselves towards resting positions, as indicated by their almost immediate adaption of POS∗ → 0.0. Plot
(b) shows the corresponding rates of SR∗, and the increased rates of the red, gray and orange particles due to destabilizing
attacks, which in turns effect the positioning abilities leading to the multiple respective re-adaptations of POS∗ over the course
of the soup’s evolution. Both red and orange eventually find stable positions, with POS∗ → 0.0 and SR∗ (without need for
stabilization) then steadily decreasing as intended. Only the gray particle is not able to find a stable position in this run, with
ongoing POS∗ > 0.0, hence never lowering the SR∗ rate either.
The same experiment is also depicted as a two-dimensional weight space based on the transformed X- and Y-axes derived via
PCA dimensionality reduction in plot (c). We plot the transformed PCA-X and PCA-Y in the horizontal plane and show the
change of weights overtime on the z-axis. Depending on the rates of SR∗ and POS∗, particles have varying amounts of training
steps where the restless particles (orange, gray, and red) can also be visually found to self-adapt to longer SR training to stabilize
their self-replication and state position losses.
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