Nguegnang et al. Advances in Continuous and Discrete Models (2024) 2024:23 Advances in Continuous

https://doi.org/10.1186/s13662-023-03797-x .
P 9 and Discrete Models

RESEARCH Open Access
()]

Check for
updates

Convergence of gradient descent for
learning linear neural networks

Gabin Maxime Nguegnang' @, Holger Rauhut'?@ and Ulrich Terstiege?

“Correspondence:
nguegnang@math.Imu.de Abstract

'Department of Mathematics, Wi dv th . f di q f inina d l
Ludwig-Maximilians-Universitat e stu yt € convergence propertleso gra lent descent ortrammg eep linear

Minchen, Theresienstr. 39, 80333, neural networks, i.e, deep matrix factorizations, by extending a previous analysis for

Mdinchen, Germany o the related gradient flow. We show that under suitable conditions on the stepsizes

Full list of author information is . . . . .

available at the end of the article gradient descent converges to a critical point of the loss function, i.e, the square loss
in this article. Furthermore, we demonstrate that for almost all initializations gradient

descent converges to a global minimum in the case of two layers. In the case of three

or more layers, we show that gradient descent converges to a global minimum on the

manifold matrices of some fixed rank, where the rank cannot be determined a priori.

Keywords: Deep Learning; Gradient descent; Boundedness; Balancedness and
Convergence

1 Introduction

Deep learning is arguably the most widely used and successful machine learning method,
which has led to spectacular breakthroughs in various domains such as image recogni-
tion, autonomous driving, machine translation, medical imaging and many more. Despite
its widespread use; the understanding of the mathematical principles of deep learning is
still in its early stage, and has not yet been fully developed. Particular widely open ques-
tions concern the convergence properties of commonly used (stochastic) gradient descent
(S)GD algorithms for learning a deep neural network from training data: Does (S)GD al-
ways converge to a critical point of the loss function? Does it converge to a global mini-
mum? Does the network learned via (S)GD generalize well to unseen data? We contribute
to the first two questions in the case of GD for linear neural networks.

To approach these questions, we study gradient descent for learning a deep linear net-
work, i.e., a network with activation function being the identity, or in other words, learn-
ing a deep matrix factorization. While linear neural networks are not expressive enough
for most practical applications, the theoretical study of gradient descent for linear neural
networks is highly nontrivial and, therefore, expected to be very valuable. The difficulty
in deriving mathematical convergence guarantees results from the minimizing functional
being non-convex in terms of the individual matrices in the factorization. We are con-
vinced that the case of linear networks should be well-understood before passing to the
more difficult (but more practically relevant) case of nonlinear networks. We expect that
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some principles (though not all) will carry over to the nonlinear case, and the mathemat-
ical analysis of the linear case will provide valuable insights.

This article is a continuation of the work started in [5], where a theoretical analysis of
the gradient flow related to learning a deep linear network via minimization of the square
loss has been studied. Extending earlier contributions [2, 3, 7], it was shown in [5] that gra-
dient flow always converges to a critical point of the square loss. Moreover, for almost all
initializations, it converges to a global minimizer in the case of two layers. It is conjectured
that this result also holds for more than two layers, but currently, it is only shown in [5]
that for more layers, gradient flow converges to the global minimum of the loss function
restricted to the manifold of matrices of some fixed rank k for almost all initializations,
where unfortunately the result does not allow to determine k a priori.

We note here that the square loss in connection with linear networks has the nice prop-
erty that all local minimizers are global, see [18], so that our analysis boils down to prov-
ing that (strict) saddle points are avoided almost surely. This remarkable property of the
square loss is very specific and connected to the notion of Euclidean distance degree and
properties of the manifold of fixed rank matrices, see [26, Appendix A.2] for more details.

As another interesting discovery, [5] considers the flow of the product matrix resulting
from the gradient flow for the individual matrices in the factorization and identifies this
flow of the product matrix as a Riemannian gradient flow. More precisely, the flow of the
product matrix takes place on the manifold of matrices of a fixed rank k with respect to
a nontrivial and explicitly given Riemannian metric on that manifold. This result requires
that at initialization, the tuple of individual matrices is balanced, a term that the authors
of [2] introduced. It is important to note that balancedness is preserved by the gradient
flow, i.e., this property is related to the natural invariant set of the flow.

In this article, we extend the convergence analysis in [5] from gradient flow to gradient
descent. Under certain conditions on the stepsizes, we show that the gradient descent
iterations converge to a critical point of the square loss function. Moreover, for almost
all initializations, our convergence is towards a global minimum in the case of two layers,
while for more than two layers, we obtain the analog of the main result in [5] that for
almost all initializations, the product matrix converges to a global minimum of the square
loss restricted to the manifold of rank k matrices for some k.

We believe that the extension of the analysis from the gradient flow case to gradient de-
scent is an important step, which turned out to be much more involved than one might ini-
tially expect. In fact, there are many works related to the convergence analysis of (stochas-
tic) gradient descent methods in both convex and non-convex situations see, for instance,
[17, 21, 22] and references therein. However, we are not aware of any results that are di-
rectly applicable to our setting of deep linear networks (and also not to most nontrivial
setups for nonlinear networks). In fact, it is common to assume a loss function with Lip-
schitz gradient. However, due to factorization of the layers and unbounded domain, such
Lipschitz assumptions will not be satisfied. Note that our analysis shows the boundedness
of all the iterates so that we could, in principle, restrict to a bounded domain, but this
needs to be shown first, which is a major part of this work. Hence, our analysis required
work without such Lipschitz gradient assumptions and, therefore, may be of independent
interest. Moreover, the existing gradient flow analysis in [3, 5] does not provide any hint
on conditions on the stepsizes that ensure convergence of its discrete version gradient
descent, which is another reason why we believe that our work can be of value.



Nguegnang et al. Advances in Continuous and Discrete Models (2024) 2024:23 Page 3 of 28

The difficulties in establishing the extension of the gradient flow analysis to the gradient
descent are due to the fact that the gradient descent iterations no longer satisfy exactly
the invariance property related to the balancedness. This property of the gradient flow,
however, was heavily used in the convergence proof in [5]. In order to circumvent this
problem, we develop an induction argument inspired by the article [11], which covers the
significantly simpler special case of two layers. The induction proof tracks, in particular,
how much the balancedness condition is perturbed during the iterations. In fact, such
perturbations stay bounded under suitable assumptions on the stepsizes. In particular,
this allows for the bounding of all the individual factors in the linear network.

Learning linear networks are currently also studied in the context of the so-called im-
plicit bias of gradient descent and gradient flows [2, 8, 14, 15, 19, 24, 28, 30]. We expect
that the convergence analysis of gradient descent performed in our paper will also be a
useful tool for the detailed analysis of the implicit bias of (stochastic) gradient descent in
learning deep overparameterized neural networks.

1.1 Relation to previous work

For the scenario of learning deep linear networks, works done in [2, 6, 13, 27-29, 31]
study the convergence of gradient descent. The authors of [13] provided a guarantee of
convergence to global minimizers for gradient descent with random balanced near-zero
initialization. Their proof proceeds by transferring the convergence properties of gradient
flow to gradient descent. In contrast, based on the Lojasiewicz theorem, we directly prove
that gradient descent converges to a critical point of the square loss of deep linear net-
works. Then we extend the result in [5] that for almost all initializations gradient descent
converges to the global minimum for networks of depth 2. For three or more layers, we
prove that gradient descent converges to a global minimum on a manifold of a fixed rank.
The convergence result in [13] is restricted to a simple scalar regression problem with
near-zero initialization and constant stepsize, whereas our result works for the general
multivariate case, almost all initializations and not necessarily constant stepsize. Under
certain conditions, convergence of the stochastic (sub)gradient method to a critical point
has been established in [9]. This result requires the subgradient sequence to be bounded
and the cost function to be strictly decreasing along any trajectory of the differential in-
clusion proceeding from a noncritical point. In addition, the authors of [9] comment that
the boundedness of the iterates may be enforced by assuming that the constraint set on
which the set valued map is defined is bounded or by a proper choice of a regularizer.
In contrast, we do not require these conditions. We rather prove the boundedness of the
gradient descent sequence and demonstrate the strong descent condition of this sequence.
The authors of [10, 16] address a multivariate regression problem and prove that gradi-
ent descent with Gaussian resp. orthogonal random initialization and constant stepsize
converges to a global minimum. The result in [16] requires that the hidden layer dimen-
sion should be greater than the dimension of the input data with orthogonal initialization,
and the one in [10] assumes that the hidden layer dimension is greater than the dimen-
sion of the output data. Compared to these results, our result is more general in the sense
that it does not require these conditions which exclude some important models such as
auto-encoders where the dimensions of the intermediate layers are commonly less than
the input and output dimensions. Moreover, our result does not require the initialization
to be close enough to a global minimum (as in [2]), and the maximum allowed stepsize in
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Theorem 2.4 does not decay exponentially with depth (Remark 2.5(b)). In this sense, our
theorem is less restrictive.

Our article is structured as follows. Section 2 introduces deep linear networks and gra-
dient descent, recalls the recent results from [5] on gradient flows, and presents our two
main results on convergence to a critical point and convergence to a global minimizer for
almost all initializations. Section 3 provides the proof of convergence to critical points (in
the sense described above), while Sect. 4 is dedicated to the proof of convergence to global

minimizers. Finally, Sect. 5 presents numerical experiments illustrating our results.

1.2 Notation

The standard ¢,-norm on R will be denoted by llll, = (Z]‘il |x/|1’)1/p for1 <p<oo. We
write the spectral norm on R as [|A| = max x|,-1 [|A%[l2 = Omax(A), Where omax(A) is
the largest singular value of A. Moreover, we let oyin(A) = min,,-1 [|Ax||> be the smallest

singular value of A. The trace of a matrix A is denoted as tr(A), and its Frobenius norm is

defined as ||A||r = Vir(ATA) = /Zj,k |A;|2. We will often combine matrices Wi,..., Wx

—
into a tuple W = (W3,..., Wy). We define the Frobenius inner product of two such tu-

— — - — N - ) )
ples Wand V as (W, V)r = ijl tr(VVj V;) and the corresponding Frobenius norm as

- [— —
IWile = vV(W,W)r = (Zﬁl | W;l12)/2. The operator norm of a mapping .A acting be-
%
tween tuples of matrices will be denoted as || Al p—F = max”VVH . ILA(W)]||r. We introduce
.
(4] ={1,2,...,d;} with d; e N.

2 Linear neural networks and gradient descent analysis

A neural network is a function f : R% — R% of the form

f(x) :fW1,...,WN,b1,...,bN(x) :gN OgN—l e Ogl(x))

where the so-called layers g; : R%-1 — R% are the composition of an affine function with

a componentwise activation function, i.e.,
_ dixd;_ d;
g2 =o(Wiz+ b)), for W; e RY*%1,b; e RY,

where o : R — R applied to a vector w € RY acts as (o (w))x = o (i), k € [d;]. Here, dy = d,
and dy = d,, while d},...,dy_1 € N are some numbers. Prominent examples for activation
functions used in deep learning include o (¢) = ReLU(#) = max{0, ¢} and o (¢) = tanh(¢), but
we will simply choose the identity o () = £ in this article.

Learning a neural network f' = fiy,,.,wy b,,..5y COnDsists in adapting the parameters W, b,
based on labeled training data, i.e., pairs (x;,y;) of input data x1,...,%,, € R% and output
neural network f should generalize well to unseen data, i.e., it should predict well the label
y corresponding to new input data x. However, we will not discuss this point further in this
article.

The learning process is usually performed via optimization. Given a loss function ¢ :

R% x R% — R, (usually satisfying £(y,y) = 0), one aims at minimizing the empirical risk
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function

i=1

with respect to the parameters Wi,..., Wy, by,...,by. Gradient descent and stochastic
gradient descent algorithms are most commonly used for this task. Convergence analy-
sis of these algorithms is challenging in general since, due to the compositional nature of
neural networks, the function L is not convex in general.

Due to this difficulty, we reduce to the special case of linear neural networks in this
article, i.e., we assume that o (f) = ¢ is the identity and that b; = 0 for all j. Consequently, a
linear neural network takes the form

f(x) =f\x/1w,\x/N(x) = WN s Wlx = Wk, where W = WN . WN—I s Wl.

While linear networks may not be expressive enough for many applications, convergence
properties of gradient descent applied to learning linear neural networks are still nontrivial
to understand. We will concentrate on the square-loss £(z, w) = % llz— w3 here, so that our

learning problem consists in minimizing
1< 1
N 2 2
LY (Wy,...,Wn) = 3 ?:1 ly: = Wa --- Wixill; = §||Y— Wi --- WiX|lz,

where the data matrix X € R%*" contains the data points x; € R%,j=1,...,mas columns
and likewise the matrix ¥ € R»*" contains the label points y; € R%, i = 1,...,m. The
function L! is given by
1 L 2

L{(W) = S 1Y - WXL
Note that the rank of the matrix W = Wy --- W) is at most r := min;__y d;, which is
strictly smaller than min{d,,d,} if one of the “hidden” dimensions d; is smaller than this
number. Hence, we can also view the learning problem as one of minimizing L' (W) under
the constraint rank(W) < r. Instead of directly minimizing over W, we choose an over-
parameterized representation as W = Wy --- W} and consider gradient descent with re-
spect to each factor W;. While overparameterization seems to be a waste of resources at
first sight, it also has certain advantages as it can even accelerate convergence [4] (at least
for £,-losses with p > 2) or lead to solutions with better generalization properties [30].
Moreover, we expect that understanding theory for overparameterization in linear neural
network will also give insights for overparameterization in nonlinear networks, which is
widely used in practice. While the speed of convergence or implicit bias are certainly of in-
terest on their own, we will not delve into this but rather concentrate on mere convergence
here.

We consider gradient descent for the loss function LN with stepsizes 7y, i.e.,

Wj(k +1) = Wj(k) = Vg, LN (WA (K), ..., Wi (K)). 2.1)
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We further define the matrix W at each iteration k by
W (k) = Wx (k) --- Wi (k).

Before discussing gradient descent itself, let us recall previous results for the related gra-

dient flow, which will guide the intuition for the analysis in this paper.

2.1 Gradient flow analysis
—_—
The gradient flow W (£) = (W1(2),..., Wx(2)), t € R, for the function LV is defined via the

differential equation

d .
WO = =Vw L (Wi(®),... Wx(®),  Wj(0)=Wjo, j=1....N, (2:2)
for some initial matrices Wjo € R%*4-1, This flow represents the continuous analog of the
gradient descent algorithm and has been analyzed in [2, 3, 5, 7].

An important invariance property of the gradient flow (2.2) consists in the fact that the

differences
WL OWn @) - WOW @), j=1...N (23)
—
are constant in time, see [2, 3, 5, 7]. This motivates to call a tuple W = (W, ..., Wy) bal-
anced if
Wi Wi = W;W forallj=1,...,N. (2.4)

If W(O) = (Wi0,..., Way) is balanced, then ?V(t) is balanced for all ¢ € R, as a conse-
quence of the invariance property. Note that by taking the trace on both sides of (2.4), we
see that balancedness implies || Wj||r = || W1l forallj=1,...,N.

It is useful to introduce the “end-to-end” matrix W (¢) = Wy (¢) - - - W1(¢), which describes
the action of the resulting network and is the object of main interest. It was shown in [3]
that if the initial tuple V)V(O) (and hence W(t) for any ¢ > 0) is balanced then the dynam-
ics of W() can be described without making use of the individual matrices Wj(t). More

precisely, it satisfies the differential equation

d
ZW() = ~Aw (VL (W), (2.5)

where Ay : R%*% — R4 is the linear map

N N—j =1
z)=Y (ww')~ . Z (WIw)~.
j=1

One feature of the flow in (2.5), see [5, Theorem 4.5], is that the rank of W (¢) is constant
int,ie., if W(0) = Wx(0) - - - W1(0) has rank r then the W (¢) stays in the manifold of rank r
matrices for all £ > 0 (but note that the rank may drop in the limit). This property may fail
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for non-balanced initializations [5, Remark 4.2]. Another interesting observation (which,
however, will not be important in our article) is that (2.5) can be interpreted as Riemannian
gradient flow with respect to an appropriately defined Riemannian metric on the manifold
of rank r matrices, see [5] for all the details.

The convergence properties of the gradient flow (2.2) (in both the unbalanced and bal-
anced case) can be summarized in the following theorems. The first one from [5, Theo-

rem 3.2] significantly generalizes the main result of [7].

—
Theorem 2.1 [5, Theorem 3.2] Assume that XX has full rank. Then, the flow W (t) defined
by (2.2) is defined and bounded for all t > 0 and converges to a critical point of LN ast — 0.

This result is shown via the Lojasiewicz theorem [1], which requires, in turn, to show

boundedness of all components W;(t) of ?V(t). While the boundedness is straightforward
to show for W(t), it is a nontrivial property of the W;(¢). In fact, the proof exploits the
invariance of the differences in (2.3).

While convergence to a critical point is nice to have, we would like to obtain more infor-
mation about the type of critical point, whether it is a global or local minimum or merely
a saddle point. Note that the function LV built from the square loss has the nice (but rare)
property that a local minimum is automatically a global minimum [18, 26]. This means
that we only need to single out saddle points. Also, observe that we cannot expect to have
convergence to a global minimizer for any initialization because the flow will not move
when initializing in any critical point, so we cannot expect convergence to a global mini-
mizer if that critical point is not already a global minimizer. The following result, valid for
almost all initializations, was derived in [5, Theorem 6.12]. In order to state it, we need to
introduce the matrix

-1/2
’

Q=vx"(xx") (2.6)

assuming that XX has full rank.

Theorem 2.2 [5, Theorem 6.12) Assume that XXT has full rank, let q = rank(Q), r =

min;_o, n d; and r = min{q, r} where Q is the matrix defined in (2.6).

(a) For almost all initializations W(O), the flow (2.2) converges to a critical point
W* = (W5, ..., W}) of LN such that W* := W} --- Wy is a global minimizer of L' on
the manifold of matrices of fixed rank k for some 0 <k <r.

(b) If N =2, then for almost all initial values W1(0),..., Wn(0), the flow converges to a
global minimizer of LN on R9*% 5 ... x RIN-1%dN,

We conjecture that the statement in part (b) also holds for N > 3, or in other words, that
we can always choose the maximal possible rank k = 7 in (a), but unfortunately, the proof
method employed in [5] is not able to deliver this extension without making significant
adaptations. In fact, the proof relies on an abstract result, see [20] and [5, Theorem 6.3],
which states that for almost all initializations, so-called strict saddle points are avoided as
limits. Unfortunately, if N > 3, then minimizers of L' restricted to the manifold of ma-
trices of rank k < 7 may correspond to non-strict saddle points of LV, see [18] and [5,
Proposition 6.10], so that the abstract result does not apply to these points.
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2.2 Gradient descent analysis

Our main goal is to extend Theorems 2.1 and 2.2 from gradient flow (2.2) to gradient
descent (2.1). The balancedness, or more generally, the invariance property, see (2.3), does
not appear explicitly in the statements of these theorems for gradient flow, although the
invariance property is key in showing boundedness of the flow in the proof of Theorem 2.1.
It turns out that balancedness does play an explicit role in the conditions for the stepsizes
ensuring convergence. Unfortunately, the invariance of the differences in (2.3) does not
carry over to the iterations of gradient descent, which prevents directly following the proof
strategy of [5] for showing the boundedness of the iterates. Nevertheless, we will prove
that under suitable conditions on the stepsizes, the differences in (2.3) will stay bounded

—

in norm, which then allows us to show the boundedness of the components Wj(k) of W (k)
and to apply Lojasiewicz’ theorem to show convergence to a critical point.
In order to state our main results, we introduce the following definition.

—
Definition 2.3 We say that a tuple W = (W7,..., Wy) has balancedness constant § > 0 if

[y

Wi - W;W/| <8 forallj=1,...,N-1. (2.7)
ﬁ

Obviously, (2.7) quantifies how much the tuple W deviates from being balanced, mea-

sured in the spectral norm. Note that the authors of [2] introduced a very similar notion

and said VV = (W1,..., Wy) to be §-balanced if (2.7) holds with the spectral norm replaced
by the Frobenius norm.

The following Theorem 2.4 indicates that GD with approximately balanced initializa-
tion converges to a critical point of LV . This theorem provides suitable conditions on the
stepsizes that guarantee convergence.

Theorem 2.4 Let X € R Y € RY*" be data matrices such that XX is of full rank.
Suppose that the initialization ?V(O) of the gradient descent iterations (2.1) has balanced-
ness constant «d for some § >0 and o € [0,1). Assume that the stepsizes ni > 0 satisfy
Y oo Mk = 00 and

2(1 —@)é
< (1-a) forall k € N, 2.8)

—>
4IN(W(0)) + (1 — «)3B;s

where

N_
By := 2eNKN V||| + eNK;2 | xYT, (2.9)
Ks:= MY + (N +1)%5, (2.10)
_)
V2UN(W() +[[Y]] V2] = Wx(0)- - Wi(0)X||r + || Y|
M= - . (2.11)
Omin (X ) Omin (X )

—
Then, the sequence W (k) converges to a critical point of LN.

The theorem regarding convergence to a critical point of LN stated above will be proven
in the upcoming Sect. 2.4.
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Remark 2.5
9
(a) If W(0) is balanced, i.e., has balancedness constant 0, we can choose o = 0 above.
Then, for any § > 0, choosing the stepsizes 1 such that (3.14) below is satisfied

ensures convergence to a critical point and that all the iterates ?V(k), k € N, have
8, see Proposition 3.4. This latter property will be a crucial ingredient for the proof
of the theorem.

(b) Intuitively, the stepsizes nx should be chosen as large as possible in order to have fast
convergence in practice, while it does not seem to be crucial to have the
balancedness constant § as small as possible during the iterations. This suggests
maximizing the right-hand side of (2.8) with respect to § in order to make the
condition on the stepsizes as weak as possible. While analytical maximization seems
difficult, this may be done numerically in practice. A reasonably good choice for §
seems to be

1
§=— M
NN +1)2

Zjw

Then, K5 = (1 + %)M ¥ so that KN < eM? where e is Euler’s constant. Since

—_
2IN(W(0)) < o2, (X)M?, Condition (2.8) is then satisfied if

min

2
(X) + 26> N NM> R | X2 + 8 NMI R | XYT||

Nk =< 2
2(1 - @) IN(N + 1)2M* N o2

min
For a network of depth, this means that § is of the order § = O(N~2), and the
stepsizes are required to be of order n = O(N73).

(c) The stepsizes nx in the theorem can be chosen a priori, for instance, n; = n (constant
stepsize), or ng = ck™® for some « € [0, 1), or adaptively, i.e., depending on the
current iterate ?V(k), as long as the stepsize condition (2.8) is satisfied. In practice, it
seems that a large constant stepsize leads to the best performance in terms of
convergence speed.

Of course, more information on the type of critical point to which ?V(k) converges is
desirable. Our next theorem states the analog of Theorem 2.2 that essentially convergence
is towards global minimizers for almost all initializations. Since Condition (3.14) on the
stepsizes 1 ensuring mere convergence to a critical point depends on the initialization
V)V(O), we can only expect to state a result for almost all initializations for sets of tuples ?V
of matrices for which the balancedness constant § and M in (3.14) have a uniform upper
bound. Consequently, we choose B C RAoxd1 x ... x RAN-1¥4N g be bounded and let

T T
b5 = sup max [ W, Wi - WW'], (2.12)
weB
9
Lg = sup LN(W), Mp = (V2Lg + | Y])omh(X). (2.13)
\/_V)GB

Note that 5 and M are finite (assuming that XX has full rank) since LV is continuous.
Let us also recall the definition of the matrix Q = YXT(XX7T)~1/2 in (2.6).

Page 9 of 28
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Theorem 2.6 Let B C Ré%*d x ... x RIN-1%4N be g bounded set with constants 8z < o8
as in (2.12) for some § >0 and o € [0,1) and Lg, Mp defined by (2.13). Let g = rank(Q),
r = min{dy,...,dy} and v = min{q, r}, and let (ni)ren, be a sequence of positive stepsizes
such that

2(1 - )

< Z90 Ik € N, 2.14
S it (—aypB, 1O keNo @19

where
2 N _
Ky := MY + (N +1)%, B := 2eNK} || X||* + v/eNK;? ! |xy ™.

Assume that additionally one of the following conditions is satisfied.
(1) The sequence (ny) is constant, i.e., ng = 1 for some n >0 for all k € N.
(2) It holds

1
Nk > CE forsome C>0 and klim Nk = 0.

Then, the following statements hold.

(a) For almost all initializations W(O) = (W1(0),..., Wn(0)) € B, gradient descent (2.1)
with stepsizes Ny converges to a critical point ?V of LN such that W =Wy --- Wi isa
global minimum of L' on the manifold My of matrices of rank
k =rank(W) € {0,1,...,7} on Rin*do,

(b) For N =2, gradient descent (2.1) converges to a global minimum of LN on

—
RA4*41 5 R%% for almost all W(0) = (W1(0), W»(0)) € B.

The proof of the global convergence theorem stated above can be found in Sect. 4.

Similar to Theorem 2.2, we conjecture that part (b) extends to N > 3 or equivalently
that part (a) holds with k = 7. As for Theorem 2.2, the current proof method based on a
strict saddle point analysis cannot be extended to show this conjecture.

It is currently not clear whether the theorem holds under more general assumptions on
the stepsizes 1y, i.e., whether it is necessary that one of the two additional conditions on
ni holds. The current proof can only handle those two cases, for corresponding abstract

results are available, see [20, 23]. It seems crucial for these general results that the stepsizes

—
are chosen a priori and independently of the choice of W(0) (or the further iterates). In
particular, adaptive stepsize choices are not covered by our theorem. We note that the
bounds on the stepsizes are reasonable for practical purposes. In particular, the stepsize

choices in our numerical experiments meet these bounds.

3 Convergence to critical points
ﬁ
We will prove Theorem 2.4 in this section. For W = (W7,..., Wy) will always denote the

corresponding product matrix by

W =Wy Wi,
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and similarly, we denote by W (k) = Wy (k) - - - W1 (k) the sequence of product matrices as-
sociated to a sequence VV(/() = (Wi(k),..., Wn(k)), k € Ng. We recall from [2, 3, 5, 7] that

vLr(w) = wxxT - yxT, (3.1)
Vi LN (Wh,..., W) = Wi - Wy VLI W)W - W (32)

3.1 Auxiliary bounds
We start with a useful bound for || W|| in terms of L1(W).

Lemma 3.1 Assume that XX has full rank. Then, W € R%*% satisfies
W< (I1Y = WX]| + 1Y )0 (X) < (V2LHW) + 1Y []) 0 (X (3.3)

— —
Consequently, if LN (W (k)) < LN(W(0)), then

W) = | Wa ) W) < (2L (W) + 1Y) oz ().

Furthermore,
VLI W) < WX - YIIX] < 2LY (W)X (3.4)
Proof Arguing similarly to the proof of [5, Theorem 3.2] gives

Wl = [ wxx™ (xXx®) ™| < IwX I X7 (7)< (1Y = WX+ Y1) o (0

< (1Y = WXz + 1Y) opghX) = (V2LHW) + [|Y[[) o (X).

—
The second claim follows then as an easy consequence recalling that L1 (W (k)) = LN (W (k)).

For the third claim, we use the explicit formula (3.1) for the gradient of L! to conclude
that

VLI W) | = [ WXXT - YXT| < IWX = YII[XT]| < IWX = YII£lIX] = V2L1 (W)X
This completes the proof. O

A crucial ingredient in our proof is to show the boundedness of all matrices W;(k), k €
No. While boundedness for the product W (k) = Wi (k) - - - W1 (k) follows easily from the
previous lemma, it does not immediately imply boundedness of all the factors W/(k). For
instance, multiplying one factor W;(k) by a constant > 0 and another factor W, (k) by o™
leaves the product W (k) invariant but changes the norm of Wj(k) and W, (k). In particular,
letting & — oo shows that a bound for W (k) alone does not imply boundedness for W;(k),
k € Ny. This is where the balancedness comes in. In particular, if a tuple V)V =(Wi,..., Wn)
has balancedness constant § > 0, then we can bound |Wj]|,j=1,...,N, by an expression

(continuously) depending on || W||. This is the essence of the next statement.
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—
Proposition 3.2 Let W = (W1,..., Wy) € R%*4 ... x RN-1%N with balancedness con-
stant § > 0, and let W = Wy --- W1. Then,

IW; 2 < WX + (N +1)% forallj=1,...,N.
Remark 3.3 With a significantly longer proof, one can improve this result to
IW;12 < WX +N% forallj=1,...,N.

However, since this does not significantly improve our results, we decided to present the
slightly weaker bound in order to keep the proof short.

Proof We will first prove that

IWAIPN < W1 + Qus (I WAII? + 8), (3.5)
where Qy s is the polynomial of degree N — 1 defined as

Qnsx) =x(x +8)(x +28)--- (x +(N - 1)8) -V,

In order to prove this claim, we let D; := Wj_4 VV]TI - VV]TW, forj=2,...,N and note that

ID;]l < 6 by assumption. Moreover,

W12 = | W Wj|| = |Wjo W, =Dy < Wl +6, forallj=2,...,N, (3.6)
and consequently

W12 < Wil +(—1)8 forj=1,...,N. (3.7)
We observe that by basic properties of the spectral norm

WA = [ (W wa)™ | = W (waw)™ " w |
= | W (W Wy + Do) |

< [wi (W wa) ™

N-2 N -1 .
+Z( P IEAI LA NN R A
k=0

o (3.8)
< [ wi (W; W)

/N-1
+ ||W1||2<Z ( X )||W2||2/<5N—k—1 _ ||W2||2(N‘1)>

k=0

Wi

= | W w T (Waw N 2w wy |

+ ||W1||2((|| W2||2 + S)N_l iy W2||2(N_1)).
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In the first inequality, we expanded (W) W, + D;)N~! as a (matrix) polynomial in W] W,
and D,, observing that the highest degree term is (W, W,)N~!. Applying the triangle in-
equality separates this term from the rest of the polynomial. Applying the submultiplica-
tivity of the spectral norm to all the summands and collecting terms (which now consist
of commuting scalars, i.e., the spectral norms || W, ||, | W.] W5 || and || D, |) gives the sum in
(3.8), where the index k = N — 1 is left out as it was already taken care of in the first term
in (3.8).

We continue in this way, replacing (W, W/ )N=2 by (W W3 + D3)N~2, and so on. Using
also (3.7), we observe that similarly as above, forj=2,...,N -1,

Wi W (ww ) T W |

§||W1T"'VV1£1

(W W)™ Wy i |

F W WA IR W )2+ 8)"7 = W5, 2N7)
< Wi W (W W) 7 Wi wh|

WA (IWAL +8) - (IWL1” + (= 1)3)

x (1wl + G+ D8)™ = (Iwal? +8)"7)

<[ Wi W (Wi Wi

) W

+ (W% + 8) (I WAlI> +28) - - (I W |* +3)
, N-j  AN-j
< ((IWAIP + G+ 18)™ = (1wl +j8)™7).
Hereby, we have also used that the function x > (x +8)¥7 —xN7/ is monotonically increas-

ing in x# > 0. With this estimate, we obtain, noting below that the sum in the second line

is telescoping, that

IWAIPN < | Wy - Wy Wi - Wil

N-1

+ Z(”Wﬂlz 8) (1WA +25) - (1WA +6)

(1WAl + G+ 08) 7 — (1WA 2 +58))

= [[W - WAl + (IWal1® + 8) (1WA ll> + 28) - (I WAl|* + N§)
—(Iwal? + )"

= W%+ Qus (1WAl + 8).

This proves claimed inequality (3.5).
The fact that for all z, € R it holds z(z + &) < (z + %)2 implies that

x+8)x+28)---(x+N§) = ((x+8)(x+N8)) c(x+ 28)(x+ (N - 1)8))~~~

N+1\Y
§(x+ 5 8). (3.9)

Page 13 of 28



Nguegnang et al. Advances in Continuous and Discrete Models (2024) 2024:23 Page 14 of 28

Setting x = | W1[|?, @ = | W||? and b = 2416 and combining inequality (3.5) and the defini-
tion of Qu 5 with (3.9), leads to xV < a + (x + b)N — (x + 8)N and hence

AN <a+@x+b)N -V, (3.10)
The mean-value theorem applied to the map x — xN gives

(x+b)N =aN + NEN71b  for some & € [x,x + b].
Hence,

AN <a+NEN b <a+Nx+b)N b

We assume now that a > 0 and will comment on the case a = 0 below. Then, the previous

inequality implies

N (x+bN-1p
Looan2E2 2
a a

which is equivalent to

x \N x b\ b

aN aN aN aN
1 1
Setting z = a Nx and ¢ = a”N b, we obtain
2N <1+ Ne(z+c)N L

We claim that z < 1 + 2Nc. Assume on the contrary that z > 1 + 2Nc. Then, (3.11) gives

1 A\ c N-1 1/2\N
z<——+Nc|1+ - <1+Nc|l+ <1+Nc(l1l+—
ZN- z 1+2Nc N

= _N-1
1
<1+ Nce2.

The last inequality implies z < 1 + 2Nc, which is a contradiction. Thus, we showed the

claim that z < 1 + 2Nk, that is, xa’%\f <1+ 2Na’ﬁ b, which is equivalent to
x < a% + 2Nb. (3.12)

The last inequality also holds in the case a = 0, since for a = 0 inequality (3.10) remains true
if we replace 4 by any positive number ¢ and then by our reasoning above x < ¢ N +2Nb.
Since this is true for any ¢ > 0, it follows that for a = 0 we have x < 2Nb = a% + 2Nb, thus
(3.12) also holds for a = 0.

Using the definitions of a, b and x, we obtain from (3.12) that

2
IWil> < IWIIV + N(N +1)s5.
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Forany;j=1,...,N, (3.7) implies then that
W2 < IWAIP + G = 1)8 < [WII¥ + NN + D)8 + = 18 < [WI¥ + (N + 1)?%.
This completes the proof. 0

3.2 Preservation of approximate balancedness
The key ingredient to the proof of Theorem 2.4 is the following proposition. It is a highly
nontrivial extension of [11, Lemma 3.1] from N = 2 layers to an arbitrary number of layers.

—
Proposition 3.4 Assume that XXT has full rank and W (0) = (W1(0),..., Wx(0)) has bal-
ancedness constant ad for some § >0 and o € [0,1). Assume that the positive stepsizes

Nk satisfy (3.14). Then, the gradient descent iterates W(k) = (W1 (k),..., Wn(Kk)) defined by
(2.1) satisfy, for all k € Ny:

(1) W(k) has balancedness constant §, i.e.,

Wi, (k) Wy (k) = Wiy Wi (k)| <8 forallj=1,...,N-1; (3.13)

) IN(W(K) < LN(W(0));
3) IW;(k)II> < Ks =M% + (N + 1) forj=1,...,N;
(@) IN(W(K) - LN (W (k + 1)) = o e VN (W (K) 12

Proof We will show statements (1), (2), and (3) by induction under the condition that

2(1-0) o(1-w)s

e < min{ } forallk € N, (3.14)
)

’ —
Bs o (W(0)

hold for some o € (0,1). The choice

4LN (W(0))

o= —
4IN(W(0)) + (1 — a)8Bs

reduces (3.14) to (2.8). In the induction step for (2), we will show that if (3) holds for &,
then (4) also holds for k. Below, we will always denote W (k) = Wy (k) - - - W1 (k).

Since V)V(O) has balancedness constant a8 < § by assumption, (3.13) is clearly satisfied for
k = 0. Statement (2) is trivial for k = 0. The bound in (3) follows from a direct combination
of Proposition 3.2 with Lemma 3.1, i.e,, forj=1,...,N,

V2LN(W(0)) + ”Y”)g, RIS

Omin(X)

W) < |W©)| ¥ + (v +1)2% < (
- MY + (N +1)35,
using also the definition of M in (2.11).

For the induction step, we assume that (1), (2), and (3) hold for 0, 1, ..., k and prove that
these three properties also hold for k + 1.
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Step 1: We first prove statement (2) for k + 1. To do so, we will show that if statement (3)
holds for &, then statement (4) also holds for k. This also proves (4) once the induction for
(1), (2), and (3) is completed.

We consider the Taylor expansion

LN (W(k+ 1)) = LN (W(K) + (VLN (W(K), Wk +1) - W (k)

e IV 1) = W) VLN (A ), Wik + 1) - W),
where

Vo, LN (W (K))
—
VLN (W (k)) =

Vv, LN (W (k)

—
and A = (Al,...,AéV) with

Ag— ()+§'(W(k+1) W,»(k)) for some &£ €[0,1], i=1,...,N.

Since by definition Wj(k +1) = W;(k) - Nk Vw; IN(w ( (k)), this Taylor expansion can be writ-
ten as

N (VV(k +1)) = LN(W(k)) - n( VLN (VV(k)), vIN (V)V(k)))F

1 — —
+ oM VLN (W (R), VELY(A VLN (W(K)),.
By the Cauchy—Schwarz inequality, we obtain

LN (W () - LN (W (k + 1))

> | VIN (W (k)

1 - —
[z = 5m VLY (W) VLN (A D),

> (1= V2l ) 92 (0 615

—
The crucial point now is to show that |V2LN( A ¢)|r—F is bounded by the constant B;
N
defined in (2 9). By setting A = (Al, . Ay) with A; e RYG*%-1, 5 = 1,. N and writing

VZLN(W)( A, A) for VZLN(W) A), the quadratic form VZLN(W)( A, A ) defined by
the Hessian can be written as

N N 27N
VIN(W)(K, A) = ZZ< ,,% >
j=

=

N N N
S s )

i=1 J=
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In order to compute mixed second derivatives, we introduce the notation

9
Q(W,A) =Wy Wi AWy - WX,

—> Wy Wi AWy - Wi AW - W ifj >,
Pi(W, A, A)) = N T e ' ] .
Wn - Wi AW - Wi AW - W ifj <,

with the understanding that W;_; - W; =Id fori=1 and Wy --- W;,; = Id for i = N. Using
the first partial derivatives of LN, cf. (3.2), we obtain, fori = 1,..., N,

< 92LN (W)
Ai’ - .5

W2 Ai> = (Qi(?y: Aj), Qi(W; A))= | Qi(VV» Aj) ”i

The mixed second order derivatives are given, for i #j, by

< 92LN (W)

: 7A4>=<Q4(W A, Q(W, AY) + (LN (W), Py(W, Ay, A)
24 8%8\)7] ] ! [N » = s > = =g

This implies that

N N
VzLN(Xg)(Z, A)= Z I Qi(l_“)s, A;) Hi + Z(Qi(l_‘{g, Ai); Qj(l_‘\)&’ A))
i-1

ij=1
i
al T T
+§ (AsXXT = YXT,Pij(A g, Ay A)),
ij=1
i

where A; = Aé\[ . -A%. The Cauchy—Schwarz inequality for the trace inner product to-
gether with ||AB||r < ||A||l||B||r for any matrices A, B of matching dimensions gives, for
i>],
T T p (A
(AeXXT = YXT,Pj(Ae, Ay A))|
T T\T 4N i+1 i—1 j+1 j-1 1
= |tr((AeXXT - YXT) AY - AT NATT AT NAD AL
T T\T 4N i+1 i~1 JHL A 41 1
< J(AXXT = YXT) AT AT A AT AT A A

< JAexxT - yxT | |a¥] - [ag fame gt ] A a4 - |4g

’

and similarly, for i < j. Another application of the Cauchy—Schwarz inequality gives
— — — —
[(Qi(Ae 20, QA6 A =< QAL AN [ Q(Ae A -

Consequently,

— N — —
IVIN@AD(R, K = YA e A)| QA e )]
ij=1

Page 17 of 28
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N N

+ 3 [AeXXT - YXT| [ AdllFl Al T T A
1?;} g;é

ij=1

N N N
<Xy ||Ai||p||A,||p<1_[||A§ ||) (HllAé H)

k=1 k=1

ki k#j

N N N
> ||A,-||p||A,-||p<||X||2]‘[HAg I+ YXT||> [T14%]- 3.16)

ij=1 k=1 k=1
i k#ij

Using the recursive definition of W;(k + 1) and that & € [0, 1], we further obtain, for i =
1,...,N,

||A§ || = || Wi(k) + & (Wi(k + 1) — W;(k)) || < || ‘)Vi(k)” + || Wik + 1) — W;(k) ||
= [ Wi | + | eV LY (WK) |

= | Wi®)|| + ne| WL (K) - - WE R VLW R) Wi (k)T - Wi () .

It follows from (3.4) and induction hypothesis (2) for k that

[VEN (W) < 28 (W) I1X] </ 2L (W (0)) X . (317)

Using induction hypothesis (3) for & this gives

N
4] < i@ ] + nk\/zw@(onnxu(num)n)

j=1
Jj#i

— N-1
< K3+ iy 2L (W(0)) I XIIK; 2

By assumption (3.14) on the stepsize n; and the definitions of Ks and Bj;, we have

— N-1

iy 2LN (W(0)) 1 X1IK; 2
/ — N-1
2(1-o0) — No1 - 2 2LN(W(O))||X||K5 2

<2 (WO)IXIK, < 2eNKN 1| X2
N-1 2 Nt
eNKN-Y| X2~ eNKN-1 2N ¢

In the first inequality of the last line, we used the fact that by definition of M

2N (W(0)) = Momin(X) = [ Y]] < Momin(X),

and in the last inequality of the last line, we used MR + N2§ < MF + (N +1)%8 = K.

Page 18 of 28
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It follows that
Ai <1 1 I<1/2
] < (14 = )i
Substituting this bound into (3.16), we obtain
- > —
[VZLN(Ae)(A, A)

1 2N-2 N
< (1 * m) KX 1Al Al

ij=1

1 2N-2
+ ((1 + W) KN1x )2
N-—

1 2 N
; (1 ; m) K nyT”) >

Jj=1

M-

I
Boyan

AN AillE

i

N 2 N 2
<eK) X2 (Z ||A,-||) + (eKY XN + e K| XY T)) (Z ||A,||>

j=1 j=1

< [2eNKN1 X + eNKY 2 XY T I K |2,

2N N e
where we have used the fact that (1 + 1/(2N))*¥ < e and that ijl [ AwllF < VNI A |l
Hence, we derived that

N
¥

9
VLY (A¢ < 2eNK}) || X||* + v/eNK;

er= |xY"] = B

Substituting this estimate into (3.15) and using that the stepsizes satisfy (3.14) gives

IN(W(R) - 1¥ Wik + 1) 2 (1 - %nk36>’7k [v2¥ (W)

> o | VIN (W(K) |2 > 0. (3.18)

This shows statement (4) for k. It follows by induction hypothesis (2) for k that
— — —
LN(W(0)) = IN(W (k) = LN (W (k + 1)).
This shows statement (2) for k + 1.
Step 2: Let us now show that statement (1) holds at iteration k + 1. Forj=1,...,N - 1,

we obtain

| WLk + D Wjar(k + 1) = Wik + W] (k + 1) |
= (W1 (0) = 1V, LY (W (00)) T (W1 (K) = e Vg, LY (W (R)))

— (W50 = meV g LY (W) (W (K) = e Vg LN (W(K))) |

Page 19 of 28
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= | W5, (k) W1 (k) — W (k) W (k)
+ k(=W (Wi (k) ... W (k) VLY (W (k) W (k) - - W (k)
- Wj(k)- - WiV LY (W (K)) W (k) - - - Wja (k) W1 (K))
+ Wi (k) Wy (k) - - Wi (k) VLY (W () Wiy (k) - - - W (k) W (k)

+ Wi ()WL, (k) - - - W (k) VLY (W (k) W (k) - - - WL, (k) W (k)

+n,f(V§,/+1LN(W(k))VW+1LN( (k)) - VWLN(W(k))VTLN( )

< [ WL Wt (0) = Wi W ()| + 02 (| Vi LY (WK | + | s LY (W R) |)-

Applying this inequality repeatedly, we obtain

| Wtk DWa (ke + 1) = Witk + DW/ (k+ 1)

< [ W, 0 W},.1(0) - W)W} (0)]|

k
302 (| Y LY (W) + | 9w LY (W) )
£=0
k
<as+ 2( max m) S ne| LN (W) |2 (3.19)
""" £=0

%
where we have used the fact that W(0) has balancedness constant «§ by assumption and
that

[VLY (W) = max [V LY (W) [
= (9w @) + [Vl (W) ).

Inequality (3.18) from the previous step gives
k

IN(W(0) - LN (Wi + 1) = S (LN (W) - LN (Wi + 1))
j=0
k N )
>0 > nk| VIN(W(K) ;- (3.20)
j=0

Combining inequalities (3.19) and (3.20) yields

| Wiy (k + )W (k +1) = Wik + W (k +1)]|

.....

where we have used Condition (3.14) on the stepsizes. This proves statement (1) for k + 1.

Page 20 of 28
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Step 3: For the proof of statement (3) for k + 1, we use the fact that we have already shown
that (1) and (2) hold for k + 1. It follows from Proposition 3.2 and Lemma 3.1 that

—

2
2 2IN(W (0 YII\¥
W,k + D < | Wik+ ) F + N+ 1)2 < ( ( (())(); ” ”) PN+ K,
Omin
This shows (3) for k + 1 and completes the proof of the proposition. O

3.3 Convergence of gradient descent to a critical point
We will use a result from [1] to prove Theorem 2.4, which is based on the following defi-

nition.

Definition 3.5 (Strong descent conditions [1]) We say that a sequence x; € R” satisfies

the strong descent conditions (for a differentiable function f : R” — R) if

S) —frsn) = o | V@) | 11 — %l (3.21)

and f(xx41) = f(k) = Xpe1 = (3.22)
hold for some ¢ > 0 and for all k larger than some K.

The next theorem is essentially an extension of the Lojasiewicz theorem to discrete vari-

ants of gradient flows.

Theorem 3.6 [1, Theorem 3.2] Let f : R" — R be an analytic cost function. Let the

sequence {xi}i=1z,. Satisfy the strong descent conditions (Definition 3.5). Then, either

oo

limg— o [|%k|| = +00, or there exists a single point x* € R such that
lim x = x*
k— o0
Now, we are ready to prove Theorem 2.4.

— — —
Proof By point (4) of Proposition 3.4 and since W (k + 1) — W (k) = n, VLN (W (k)) for all
k € Ny, we have

N (W) - 1N (Wk + 1)) > o | VEN (W) |, | Wk + 1) - W (k)

(3.23)

P

which means that the first part (3.21) of the strong descent condition holds. This im-
plies then that also the second part (3.22) of the strong descent condition holds, since

— —
if IN(W (k + 1)) = LN(W (k)), it follows that

| VLY (W) || Wik + 1) = W), =0,

— — — — —
hence W (k + 1) = W(k) or VLN(W (k)) = 0, but the latter again implies W (k + 1) = W (k).
— — — —
Thus, indeed W(k + 1) = W (k) if LN(W (k + 1)) = LN (W (k)).
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—
Since by Proposition 3.4, the sequence (W (k))ken, is bounded and LY is analytic, it fol-

—
lows from Theorem 3.6 that there exists W* such that

— —
klim W(k)=w*.

. - . oy . N . N - . . . -
It remains to show that W* is a critical point of L". Since VLY (W) is continuous in W,

- —
it follows that VLN(W*) = limg_, . VLY (W (k)) and that

— ) —
VLYW, - fim | V2¥ (W (0)] e

—
In order to show that W™ is a critical point, it suffices to show that ¢ = 0. A repeated
application of point (4) of Proposition 3.4 gives

k
N (V)V(O)) —IN (?V(k +1)) >0 Z | VLN(;)V(j)) ||12r for any k € N,
=0

hence, taking the limit,

LY(W(0) =0 Y 0| VLY (W) -
k=0

Assume now that ¢ # 0. Then, ¢ > 0, and there exists k; € N such that

| VLY (W (k)

lr=5 vk=k

But then

o0 2 oo
INWO) =0 Y n VIV (W) ;= S0 Y me
k=ko k=ko

—
which by o > 0 contradicts our assumption that ) -, 7x = 0o. Thus, indeed ¢ = 0, and W*
is a critical point of L. O

4 Convergence to a global minimum for almost all initializations

Let us now transfer [5, Theorem 6.12] to our situation of the gradient descent method by
showing Theorem 2.6. Our proof is based on the following abstract theorem, which basi-
cally states that gradient descent schemes avoid strict saddle points for almost all initial-
izations. The case of constant stepsizes (condition (1)) was shown in [20, Proposition 1],
while the one for stepsizes converging to zero was proven in [23, Theorem 5.1]. We call a
critical point z* of a twice continuously differentiable function f a strict saddle point if the
Hessian V2f(z*) has at least one negative eigenvalue. Intuitively, this means that there is a
direction (indicated by the eigenvector corresponding to a negative eigenvalue) in which
the function decreases like a square function. Such decay is fast enough in order to di-
rect almost all trajectories away from the saddle point (and towards such directions of
decrease). This intuition is made rigorous in the following theorem.
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Theorem 4.1 Letf:RP — R be a twice continuously differentiable function and consider

the gradient descent scheme
2(k + 1) = 2(k) = i Vf (2(k)),

where (nx) satisfies one of the following conditions.
(1) The sequence (ny) is constant, i.e., ng = 1 for some n >0 for all k € N,
(2) It holds

1
Nk > CE for some C>0 and klim i =0.

Then, the set of initializations z(0) € R?, such that (z(k))x converges to a strict saddle point

of f, has measure zero.

Now, we are ready to prove Theorem 2.6 by exploiting the analysis of the strict saddle
points of LV that has been performed in [5], extending [18, 26].

Proof Due to definitions (2.12), (2.13) of the constants 83, L, and Mp together with con-
dition (2.14) on the stepsizes 7y, the conditions of Theorem 2.4 are satisfied for each ini-
tialization V)V(O) € B. Hence, ?V(k) converges to a critical point of LV for all W(O) eB.
By Theorem 4.1, the convergence of gradient descent with initial values in 5 and with
stepsizes 1y to a strict saddle point occurs only for a subset of B that has measure zero.
The rest of the proof is the same as the corresponding reasoning in the proof of [5,
Theorem 6.12]. Let us repeat only the main aspects from [5]. Recall that g = rank(Q) (cf.
,,,,, x d; and denote by W = (W1, ..., Wy) the limit of W(1), W = Wy --- W)
and k = rank(W). Then, k < r, and W is a critical point of L! restricted to manifold M
of rank k matrices [5, Proposition 6.8(a)]. Then, [5, Proposition 6.6(1)] implies that k < g.

(26)), r= miIl]*=()

If W is not a global minimizer of L! restricted to My, then W is a strict saddle point of
LN by [5, Proposition 6.9]. As argued above, the set of initializations converging to such a
point has measure zero, showing part (a). (Note that for N > 3 and k < min{r, g} a global
minimizer of L! restricted to M may correspond to a non-strict saddle point V)V of LN,
see [5, Proposition 6.10].) If N = 2, then by [5, Proposition 6.11] any critical point ?V =
(W1, Wy) such that W = W, W is a global minimum of L! restricted to M, for some k < 7
is a strict saddle point of L2, which shows part (b) of the theorem. 0

5 Numerical experiments
In this section, we illustrate our theoretical results with numerical experiments. In particu-
lar, we test convergence of gradient descent for various choices of constant and decreasing
stepsizes and with N =2, N = 3 and N =5 layers.

The sample size is chosen as m = 3 - d with d = 70. For our experiments, we generate our
dataset X € R%*" randomly with entries drawn from a mean zero Gaussian distribution
with variance o2 = 1/d, where d, = d. The data matrix Y € R is a random matrix of

rank r = 2, which is generated as described below. We initialize the weight matrices W; €

—
R%*4%-1 such that W(0) = (W,,..., Wy) is balanced, i.e., has balancedness constant 0 so
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that o = 0 in Theorems 2.4 and 2.6, in the following way. The rank parameter is chosen as
r =2 and the dimensions d; as

do=d, dy=r, d,»:round<r+(j—1)d_r>, j=2,...,N,
N-1
where round(z) rounds a real number z to the nearest integer. We randomly generate or-
thogonal matrices U; € R4, V; € R%*%,j=1,...,N, according to the uniform distribu-
tion on the corresponding unitary groups and let J; € R%>*%, j=2,...,N be the matrix
composed of the first d; columns of V;_;. We then set

T
Wi = Vfld/vdluj )

where for any n;,n, € N the matrix I, ,, € R"*" is a rectangular diagonal matrix with
ones on the diagonal. By orthogonality and construction of Uj.1, it follows that for all
j=1,...,N -1, we have

W Wi = Upalaya,, Vi Viedaa Uy = U UL

T T
j+1 i1 Vjitl j+l = ‘/f[djvdll’[j L[]Jdl,dj‘/j

= WjoT

so that the tuple (Wj,..., Wy) is balanced. The random matrix ¥ € R of rank 2 is
generated as ¥ = % e WlX with matrices VAV/, generated in the same way as the matrices
W;. We decided to choose a matrix Y of rank 2 so that the global minimizer of L' is also of
rank 2 and convergence to it means that LV converges to zero, which is simple to check.

In our first set of experiments, we use a constant stepsize, i.e., nx = 1. Using « = 0, the
sufficient condition in Theorem 2.4 reads

268
NS —— :

- (5.1)
4LN (W (0)) + 8B;

with B; in (2.9). We choose

2
MN

§=—.
N3

This slightly differs from the choice of § suggested by Remark 2.5(b), but corresponds to
the choice of § that we would obtain at this point using the bound given by Remark 3.3
(instead of Proposition 3.2) allowing us to set Ks = MR 4+ N2 (instead of K5 = M¥ 4 (N+1)?)
in our results.

In Fig. 1, LN (?V(k)) is plotted versus the iteration number. For the plot 1a, the stepsize
is chosen to exactly meet the upper bound in (5.1) (with § = M?*N/N?3), resulting for this
experiment in the values n = 7.73 - 107, n = 1.29 - 10~* and 5 = 3.91 - 107 for depth 2,3
and 5, respectively. For the plot 1b, the stepsize 1 is chosen somewhat smaller than the
upper bound in (5.1), while for plots 1c and 1d the bound (5.1) is not satisfied. Since we
observe convergence in plot 1c, this suggests that the bound of Theorem 2.4 may not be
entirely sharp. However, increasing the stepsize beyond a certain value leads to divergence
as suggested by plot 2d so that some bound on the stepsize is necessary (see also [8, Lemma
A.1] for a necessary condition in a special case).
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Global convergence for fixed X of size d=70 m? Global convergence for fixed X of size d=70
1001 [
iy
;‘; 5
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Iterations Iterations
(A) Constant step size n meeting upper bound (5.1) (B) Constant step size n = 107°
Global convergence for fixed X of size d=70 - Loss function progress for fixed X of size d=70
100 F
[ ‘UAO
;T: -5
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n
f 107
107
10° 10! 109 108 10" 10%
Iterations Iterations
(c) Constant step size n = 1072 (D) Constant step size n = 0.05
Figure 1 Progress of loss function L" for training linear networks via gradient descent for various values of
the constant stepsize

In our second set of experiments, we use a sequence of stepsizes 1y that converges to

zero at various speeds. For some decay rate y > 0 and some constants a1, a,, we set

Nk = min{al, (kf—zl))’ }y >0, forallkeN. (5.2)

The upper bound of Theorem 2.4 is satisfied for (see also the beginning of the proof of

Proposition 3.4)
N —>
2(1-0) 4LN(w(0))
al:d2:7B , O=—0s— (5.3)
8 4IN(W(0)) + 8B;s

Again, we choose § = A%M % , which corresponds to the choice of § using the bound given
in Remark 3.3 when testing with these values for a; and a,.

The plots in Fig. 2 illustrate the convergence behavior for various choices of the con-
stants 4, a; and decay rate y in (5.2), for N = 2,3,5. Plot 2a and 2b show convergence
for the choices a;,a, in (5.2) and for y = 0.2 and y = 0.4, respectively, leading to step-
sizes satisfying the condition of Theorem 2.4. In these experiments, the resulting values
of a; =ay area; =7.73-107* for N = 2, a; = 1.29 - 10~ for N = 3 and 4; = 3.91 - 10~ for
N = 5. Comparing the two plots, as well as with the plots for constant stepsize in Fig. 1,
shows that fast decay of the step size leads to slower convergence of gradient descent, as
expected. Note that we observe that larger values of y are possible but will further slow

down convergence, so we decided to omit the corresponding experiments here.
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Global convergence for fixed X of size d=70 and ~ =0.2 Global convergence for fixed X of size d=70 and  =0.4
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() Step sizes ng in (5.2) with v = 0.2 and a1, az in (B) Step sizes n in (5.2) with v = 0.4 and a1, a2 in
(5.3) (5.3)

Loss function progress for fixed X of size d=70 and v =0.2 Loss function progress for fixed X of size d=70 and v =0.2

107

1090

10710

L

107! 10°
10° 10! 102 10% 10* 10% 10° 10°
Tterations Tterations
(c) Step sizes ny in (5.2) with v = 0.2, a1 = 0.1, (D) Step sizes m in (5.2) with v = 0.2, a1 = 0.05,
az = 0.01 as = 0.1

Figure 2 Gradient descent with decreasing stepsizes nx as in (5.2)

Plot 2¢ shows convergence for a decay rate of y = 0.2 even though the constants 4; and
ay are such that n; does not satisfy the bound of Theorem 2.4 for all k, while further
increasing the value of a, leads to divergence as illustrated in Plot 2d.

6 Conclusion

In this article, we analysed convergence properties of GD for learning linear neural net-
works. We established the boundedness of GD iterates and proved its convergence to a
critical point of the square loss under suitable conditions on the stepsizes. We then ex-
tended the convergence results towards a global minimum in [5] from gradient flow to
gradient descent. Our work provides precise conditions that ensure convergence for both
constant and decreasing stepsizes. Moreover, our maximal allowed stepsize does not van-
ish exponentially with the number of layers, and we also showed numerically that violating
the bound for our stepsizes may result in divergence. We believe that our findings will con-
tribute to the analysis of nonlinear neural networks. Extending the insights of this study
from gradient descent to stochastic gradient descent is reserved for future work.
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