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Abstract

We propose a class of estimation techniques for scalar-on-function regres-
sion in longitudinal studies where both outcomes, such as test results on motor
functions, and functional predictors, such as brain images, may be observed at
multiple visits. Our methods are motivated by a longitudinal brain diffusion ten-
sor imaging (DTI) tractography study. One of the primary goals of the study is
to evaluate the contemporaneous association between human function and brain
imaging over time. The complexity of the study requires development of meth-
ods that can simultaneously incorporate: (1) multiple functional (and scalar)
regressors; (2) longitudinal outcome and functional predictors measurements per
patient; (3) Gaussian or non-Gaussian outcomes; and, (4) missing values within
functional predictors. We review existing approaches designed to handle such
types of data and discuss their limitations. We propose two versions of a new
method, longitudinal functional principal components regression. These methods
extend the well-known functional principal component regression and allow for
different effects of subject-specific trends in curves and of visit-specific deviations
from that trend. The different methods are compared in simulation studies, and
the most promising approaches are used for analyzing the tractography data.
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1 Introduction
Increasingly, longitudinal studies collect data, such as curves or images, that is
functional in nature. Interest often centers on using these functional observations
to predict longitudinal or time-invariant scalar outcomes. To be specific, we
are motivated by a neurological study on disease progression and corresponding
changes in diffusion tensor images of the brain in multiple sclerosis (MS) patients.
Interest lies in relating changes in neuronal tract properties extracted from the
diffusion tensor images to disability scores measured at each visit, as well as in
discriminating between MS patients and controls. Figure 1 displays the fractional
anisotropy along the corpus callosum and the left corticospinal tracts for one of
the MS patients observed at 6 different visits over a period of 4 years.

80 100 120 140 160

0.
3

0.
4

0.
5

0.
6

0.
7

measurement along tract

fr
ac

tio
na

l a
ni

so
tr

op
y

visit

1
2
3
4
5
6

Corpus Callosum

10 20 30 40 50

0.
3

0.
4

0.
5

0.
6

0.
7

measurement along tract

fr
ac

tio
na

l a
ni

so
tr

op
y

Left Corticospinal Tract

Figure 1: Fractional anisotropy along the corpus callosum and the left corticospinal tract for
a multiple sclerosis patient, observed at 6 visits and measured at 93 and 55 sample points,
respectively.

In addition to fractional anisotropy, several other measurements of water dif-
fusivity including mean diffusivity, parallel diffusivity and magnetization transfer
ratio are available; measurements for other white matter tracts in the brain are
also given. The study is one example of a rapidly increasing number of biomedical
studies where, in contrast to simpler scalar-on-function regression, both outcomes
and functional predictors are observed repeatedly over time, outcomes may be
non-gaussian, and there are multiple functional predictors. Any realistic method
for such a problem will have to deal with additional non-functional covariates,
such as age and sex, as well as partly missing or noisy functional predictors.

There exists a rich literature dedicated to scalar-on-function regression. For
normally distributed outcomes the functional linear model (Ramsay and Silver-
man, 2005) is implemented in the R package fda (Ramsay et al., 2011). The

2



P-spline approach by Marx and Eilers (1999) can also be applied for cases when
functional data are measured at the same equidistant points. In contrast to
the fda package, P-splines can be used with outcomes that are not normally dis-
tributed. The functional linear model has been extended to non-gaussian data by
James (2002), Müller and Stadtmüller (2005) and James and Silverman (2005).
Ferraty and Vieu (2006) proposed methods for nonparametric functional regres-
sion and classification, and Reiss and Ogden (2007, 2010) developed generalized
functional principal components regression and partial least squares. Goldsmith
et al. (2011) used mixed models methodology for fitting generalized functional
linear models. In Goldsmith et al. (2012) these penalized functional regression
methods are extended to longitudinal data, that is, to the cases when both the
outcome and the functional data are measured at multiple visits. R implemen-
tations of functional principal component regression (FPCR) and longitudinal
penalized functional regression (LPFR) are found in the add-on package refund
(Crainiceanu and Reiss, 2011), which is using fda (Ramsay et al., 2011) and mgcv
(Wood, 2006, 2011) with all tuning parameters being estimated by REML.

Despite these important advances, scalar-on-function regression remains an
active area of research. Indeed, in practice one is interested in methods that
can work for: (1) outcomes that are normally or non-normally distributed; (2)
multiple functional predictors that are measured with sizeable noise and with
different patterns of missing data; and (3) sampling designs that are complex.
The brain tractography application has all these features, as outcomes can be
cognitive/motor outcomes (continuous, but slightly skewed) or multiple sclero-
sis status (0-1), there are multiple predictors due to the various types of water
diffusion measurements along multiple tracts, measurements along tracts exhibit
between 20% and 30% missing data, and brain images and outcomes are measured
at multiple visits.

Before proceeding with the description of our approach we provide a one-
stop description of the state-of-the-art of scalar-on-function regression; see Table
1. In what follows, we will focus only on methods that have associated pub-
lished software or code and compare them with respect to their ability to handle:
multiple functional and scalar predictors, non-gaussian outcomes, longitudinal
data, and missing values. A check mark in parentheses in Table 1 indicates that
such data could, in principle, be handled, but no software is currently avail-
able. Currently, only longitudinal penalized functional regression (LPFR) can
handle regression where functional data are observed at multiple visits. We
conclude that, in spite of the extensive research described here, the scalar on
function regression methodology and software contains many gaps. These prob-
lems are especially serious with respect to availability of software, which is lim-
ited at best. For example, for FLiRTI (James et al., 2009) software is available
(http://www-bcf.usc.edu/~gareth/), but methods are implemented only for
the functional linear model. The blockwise boosting approach (Gertheiss and
Tutz, 2009; Tutz and Gertheiss, 2010) is currently implemented for gaussian and
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multiple functional/ non-gaussian longitudinal missing values
method scalar predictors outcomes data in the curves

P-splines X X
FLM X X

GFLM (X) (X) (X)
FAME (X) (X) (X)
FLiRTI (X)

BB X
NPFDR X
FPCR (X) X X
LPFR X X X X

Table 1: Some functional regression methods and desired properties for typical biomedical
data, including the tractography data. Considered are P-splines (Marx and Eilers, 1999), the
functional linear model (FLM; Ramsay and Silverman, 2005), its generalization (GFLM; James,
2002; Müller and Stadtmüller, 2005), functional adaptive model estimation (FAME; James and
Silverman, 2005), functional linear regression that’s interpretable (FLiRTI; James et al., 2009),
blockwise boosting (BB; Gertheiss and Tutz, 2009; Tutz and Gertheiss, 2010), nonparametric
functional data regression (NPFDR; Ferraty and Vieu, 2006), functional principal component
regression (FPCR; Reiss and Ogden, 2007, 2010), longitudinal penalized functional regression
(LPFR; Goldsmith et al., 2012). A check mark indicates if the respective method can be applied
to such data, parentheses indicate that such data could in principle be handled, but no software
for doing so is currently available.

binary outcomes only (http://www.statistik.lmu.de/~gertheiss/). Exten-
sions of functional principal components regression (FPCR) to multiple functional
(and scalar) predictors, based on multivariate functional PCA (see Ramsay and
Silverman, 2005), are currently not available in the refund package.

Here we propose to use the longitudinal functional principal component anal-
ysis (LFPCA) proposed by Greven et al. (2010) to extend the FPCR framework
to the case when functional data are observed at multiple visits. Two LFPCA-
based regression methods will be developed. These approaches: (1) allow different
subject- and visit-level effects on the outcome; (2) can be used when curves are
observed with missings, or measured with error; (3) are applicable for both Gaus-
sian and non-Gaussian outcomes; and (4) have freely available software imple-
mentations. The first point is highly relevant in applications where the interest
will center on identifying a specific component of variability that is associated
with the outcome. The second point will allow the efficient use of information
and will avoid discarding predictors that exhibit missing data.

The paper is organized as follows. In Section 2 we review and extend existing
techniques for longitudinal functional regression, and in Section 3 we propose two
possible versions of longitudinal functional principal components regression. In
Sections 4 and 5, we compare the different approaches via simulation studies and
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analytically. The methods that performed well in the simulation studies are then
used to analyze the tractography data in Section 6. We close with a discussion in
Section 7. For all computations we used R (R Development Core Team, 2011),
with code being provided in a web appendix.

2 Generalized Linear Mixed Models with Func-
tional Predictors

We start with reviewing the generalized linear mixed effects model with functional
predictors and the longitudinal penalized functional regression (LPFR) method
for estimating the parameters in this model (Goldsmith et al., 2012).

We observe data of the form (Yij, Xij1, . . . , Xijp, Zij0, . . . , Zijg, Wij1(s), . . .
. . . ,Wijq(s)), where Yij denotes the response value for individual i at visit j
(i = 1, . . . , n; j = 1, . . . , ni); Wijm(s) are functional predictor curves over domain
Dm, m = 1, . . . , q; Xij = (Xij1, . . . , Xijp)

⊤ and Zij = (Zij0, . . . , Zijg)
⊤ denote

(vectors of) additional scalar explanatory variables. For such data, Goldsmith
et al. (2012) proposed the model

µij = h(ηij) and ηij = α +

p∑

l=1

Xijlβl +

g∑

v=0

Zijvbvi +

q∑

m=1

∫

Dm

Wijm(s)γm(s) ds,

(1)
with fixed effects β1, . . . , βp, and independent and identically distributed (iid)
vectors of random effects (b0i, . . . , bgi)

⊤ = bi ∼ N(0,Γ). Function h is as-
sumed to be a known link function. For given (nonfunctional and functional)
covariates Xij , Zij,Wij1, . . . . . . ,Wijq and random effects bi, the distribution of
Yij is assumed to be from an exponential family with conditional mean µij =
E(Yij|bi, Xij , Zij,Wij1, . . . . . . ,Wijq). For details about the generalized linear
mixed model, see e.g. McCulloch et al. (2008).

Model (1) can be estimated using the LPFR approach developed in Gold-
smith et al. (2012). Briefly, this method decomposes the functional predictors
Wijm(s), m = 1, . . . , q, using functional principal components analysis (FPCA)
ignoring the repeated and non-independent observation of curves within subjects
i across visits j. Next, coefficient functions γm(s) are expressed using a flexible
spline basis. With these expansions, model (1) can be expressed in a mixed model
framework that induces smoothness in the coefficient functions and incorporates
random effects bi that account for correlation in the outcomes Yij. Easy-to-use
functions for fitting longitudinal functional regression models with random inter-
cepts and penalizing non-linear γm(s) using the LPFR approach are implemented
in the R package refund (Crainiceanu and Reiss, 2011).

Several advantages of the mixed model approach to longitudinal functional
regression are apparent. First, well-developed software can be used to fit such
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models either through the refund R package designed with functional data anal-
ysis in mind or through the general mixed model software in mgcv (Wood, 2006,
2011). The mixed model framework also allows the construction of confidence
intervals for estimated coefficient functions; see, for example, Goldsmith et al.
(2011), Ruppert et al. (2003) or Wood (2006) for details. Smoothing param-
eters that control the shape of the coefficient functions can be automatically
estimated by ML or REML, and testing for constancy or linearity of the coeffi-
cient function is possible through testing whether the smoothing parameters are
nonzero (Crainiceanu et al., 2005; Greven et al., 2008). For the LPFR approach
in particular, the FPCA expansion of functional predictors allows one to borrow
strength across subjects in estimating basis functions; this is particularly useful
when curves are partially unobserved.

However, the LPFR approach to longitudinal functional regression has major
drawbacks. Foremost, it does not account for the longitudinal structure of the
data in modeling the effect of the functional predictor on the outcome, but only in
the subject-specific random effects. In particular, the term

∫
Dm

Wijm(s)γm(s) ds
appearing in (1) does not separate the subject- and visit-level effects of the curve
Wijm which is of interest in many scientific settings. On the one hand, any impact
of Wijm on Yij may be driven by visit-specific deviations from a subject-specific
mean; on the other hand, the visit-specific deviations may also be essentially noise
masking the effect of the subject-specific mean. Similarly, the FPCA decompo-
sition used to expand functional predictors ignores the longitudinal structure of
the observations and may miss important sources of variability.

3 Longitudinal Functional Principal Components
Regression

As an extension of principal components regression (PCR; Massy, 1965; see also
Frank and Friedman, 1993) to functional data, functional principal components
regression (FPCR) has been proposed; see Reiss and Ogden (2007) and references
therein. In our case, however, functional predictors are not independent but are
instead repeated observations on the same individuals. Therefore we will extend
FPCR to longitudinal functional data. We will present two possible ways of con-
ducting longitudinal functional principal components regression (LFPCR) based
on longitudinal functional principal components analysis (LFPCA). The methods
allow for different effects of subject-specific trends in curves and of visit-specific
deviations from that trend. So it may be checked, for example, whether such visit-
specific deviations are informative, or mostly constitute functional measurement
error. Moreover, LFPCR is easy to implement (see web appendix).
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3.1 Longitudinal Functional Principal Components Analy-
sis

Functional principal components analysis can be used for decomposing the vari-
ability in functional data. Since, however, some curves are obtained from the
same individual, measurements are dependent. Hence, we use the functional ran-
dom intercept and random slope model (Greven et al., 2010) where for subject i
at visit j measurement Wij(s) at location s ∈ D is modeled as

Wij(s) = η(s, Tij) +Bi,0(s) + TijBi,1(s) + Uij(s) + εij(s). (2)

Time point Tij indicates the time of visit j for subject i, and η(s, T ) is the
overall smooth mean surface. The random processes Bi(s) = {Bi,0(s), Bi,1(s)},
Uij(s) and εij(s) are assumed to be mean zero, squared-integrable and mutually
uncorrelated. The components Bi,0(s) and Bi,1(s) of Bi(s) denote a functional
random intercept and a random slope, respectively, capturing between-subject
variation. Uij(s) is a visit-specific functional deviation from the subject-specific
functional trend, capturing visit-to-visit functional variation on the same subject
(‘within-subject variation’). εij(s) is white noise measurement error with variance
ς2, capturing random uncorrelated variation within each curve, cf. Greven et al.
(2010). Thus, model (2) allows to decompose functional variation into three parts:
subject-specific variation Bi(s), visit-specific variation Uij(s), and measurement
error.

The Karhunen-Loève expansions of the random processes Bi(s) and Uij(s) are

Bi,0(s) =

∞∑

k=1

ξikφ
0
k(s), Bi,1(s) =

∞∑

k=1

ξikφ
1
k(s), Uij(s) =

∞∑

r=1

ζijrφ
U
r (s), (3)

where the principal component scores ξik =
∫
D Bi,0(s)φ

0
k(s) ds+

∫
D Bi,1(s)φ

1
k(s) ds

and ζijr =
∫
D Uij(s)φ

U
r (s) ds are uncorrelated random variables with mean zero

and variances λk and νr, respectively. LFPCA estimates model (2) using a trun-
cated version with NB and NU components of the expansions in (3), cf. Greven
et al. (2010). Thus, model (2) becomes

Wij(s) ≈ η(s, Tij) +

NB∑

k=1

ξik(φ
0
k(s) + Tijφ

1
k(s)) +

NU∑

r=1

ζijrφ
U
r (s) + εij(s). (4)

For illustration, fractional anisotropy along the corticospinal tract is analyzed.
Figure 2 shows the first two estimated functional principal components {φ̂0

k, φ̂
1
k},

k = 1, 2, and the first two curves φ̂U
r , r = 1, 2. Additional figures can be found

in the web appendix. Apparently, for both within-subject and between-subject
variation, the largest part of variation is explained by variation in the general
level of fractional anisotropy in distinct regions along the corticospinal tract.
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Figure 2: Estimated functional principal components {φ̂0
k, φ̂1

k}, k = 1, 2 (top/middle), and φ̂U
r ,

r = 1, 2 (bottom). Depicted are the overall time-constant mean (solid line) ±2
√

λ̂k times φ̂0
k

or φ̂1
k, and ±2

√
ν̂r times φ̂U

r , respectively (+/–). Percentages give the proportion of overall
variance that is explained by the respective component.
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The B-process varies most strongly roughly between measurement points 25 and
50, top left); and for the U -process the interesting region is roughly the first half
of the tract.

To choose the number of components NB and NU that are used to model
the B- and U -processes, the proportion of explained variation can be used. Un-
der some assumptions (in particular, for standardized visit times), total vari-
ation is given by

∫
D Var{Wij(s)} ds =

∑∞
k=1 λk +

∑∞
r=1 νr + ς2. So NB and

NU may be chosen as the minimum numbers such that {∑NB

k=1 λ̂k +
∑NU

r=1 ν̂r +

ς̂2}/
∫
D

̂Var{Wij(s)} ds ≥ L, where L is a pre-specified proportion of explained
variance, such as L = 0.90 or L = 0.95, cf. Greven et al. (2010).

Another important feature of LFPCA is that missing values in the curves are
imputed automatically. Similarly to the FPCA-based approach (see Section 2),
all available observations are used to estimate the principal component bases for
all model components, and best linear unbiased prediction yields estimates of
corresponding scores and curves. With LFPCA, however, curves are not simply
pooled across subjects, but the longitudinal structure of the data is taken into
account, allowing the differential analysis of subject- and visit-level variability.

3.2 Regression Modeling using LFPCA Scores

The first and more intuitive of our LFPCA-based regression methods directly
extends FPCR to the longitudinal setting. For modeling response Yij of sub-
ject i at visit j, we may use a PCR model where Yij is regressed on the scores
ξik and ζijr from Section 3.1. To account for the repeated measures structure
in Yij, we use a mixed model with subject-level random effects bi. Further-
more, we note that scores in the LFPCA model (2) only refer to deviations
from the mean surface η(s, Tij). Therefore we include a time-varying intercept∫
ϕ(s)η(s, Tij) ds = α(Tij), which can be estimated using penalized splines in the

mixed models framework (see, e.g., Wood, 2011). Thus, our first LFPCR model
is given by

µij = h(ηij) and ηij = α(Tij) + bi +

p∑

l=1

βlXijl +

NB∑

k=1

θkξik +

NU∑

r=1

δrζijr, (5)

where µij denotes the conditional mean of Yij given the covariates and random ef-
fects. We assume bi ∼ N(0, τ 2) and conditionally independent Yij with a distribu-
tion from a simple exponential family. In addition to the scores ξk (k = 1, . . . , NB)
and ζr (r = 1, . . . , NU), we specify fixed effects βl, e.g. for age and sex. Poten-
tial random effects (beyond bi) may be added as done in the linear mixed model
with functional covariate (1). Additional functional predictors would result in
additional LFPCA scores and could thus be easily included. The model can also
be simplified by focusing only on the scores from one level, as between-subject
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(ξik) or within-subject (ζijr) variation. For estimation of model parameters, anal-
ogously to traditional scalar PCR, scores obtained from LFPCA are plugged in
the regression model, and coefficients can, for example, be estimated in the gen-
eralized additive mixed models framework (Wood, 2011).

Due to the construction of scores, model (5) can also be interpreted as a
functional linear model where predictor and coefficient curves are expressed in
the same orthonormal basis; see also Section 5. As in cross-sectional FPCA, the
choice of the truncation lag is an important consideration. In Sections 4 and 5,
we investigate and discuss how the quality of our LFPCR model is influenced by
the numbers of components NB and NU .

3.3 Functional Regression using Decomposed Curves

In addition to estimates of the scores ξk and ζr, LFPCA also yields estimates of
the functional principal components {φ0

k(s), φ
1
k(s)} and φU

r (s), k = 1, . . . , NB, r =
1, . . . , NU . Thus, between-subject variation Bi(s, Tij) = Bi,0(s) + TijBi,1(s) over
the domain of the functions, D, and time T , as well as within-subject variation
Uij(s) can be reconstructed using (4). Here, Bi(s, Tij) represents the systematic
trend in subject i over time, while Uij(s) denotes visit-specific deviations from
this trend. Both parts may be important as predictors. For example, Bi(s, Tij)
may be more relevant if Uij(s) constitutes mostly measurement error, while Uij(s)
might be the more important component if curves that are unusual for this person
are highly predictive for the outcome Yij.

Functional covariates Bi(s, Tij) and Uij(s) can now be used in a functional
regression model for Yij. Since response values Yij from the same individual
will still be correlated we include a random intercept bi, as described in 3.2.
Because Bi(s, Tij) and Uij(s) only give deviations from the general trend η(s, Tij)
the intercept should be allowed to vary over time. Thus, our second LFPCR
approach is given by the model

µij = h(ηij) and ηij = α(Tij)+bi+

∫

D
γB(s)Bi(s, Tij)ds +

∫

D
γU(s)Uij(s)ds, (6)

with Bi(s, Tij) = Bi,0(s) + TijBi,1(s) and Bi,0(s) =
∑NB

k=1 ξikφ
0
k(s), Bi,1(s) =∑NB

k=1 ξikφ
1
k(s), Uij(s) =

∑NU

r=1 ζijrφ
U
r (s), and conditional mean µij. As in (5), we

assume a random intercept bi ∼ N(0, τ 2) and conditionally independent observa-
tions. Additional scalar covariates can be included as fixed (or random) effects.
Smooth effects of scalar covariates can easily be included in the mixed models
framework (see, e.g., Wood, 2011). Additional functional predictors would be in-
cluded as additional B- and U -processes resulting from LFPCA of these curves.
After LFPCA is carried out for the functional predictors and Bi(s, Tij) and Uij(s)
are obtained, regression model (6) becomes a generalized linear mixed model with
functional predictors which is analogous to model (1). Hence, the same methods
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as described in Section 2 can be used for fitting it – for example, functions from
mgcv (Wood, 2006, 2011); see the web appendix for details.

Compared to Section 3.2, this approach is particularly advantageous if the co-
efficient functions cannot be well expanded in the first few principal components.
Only such an expansion would reduce the model to one with the first few scores
as sole predictors (see also Section 5).

4 Simulation Studies
To investigate and compare the performance of different longitudinal functional
regression approaches presented in the previous sections, we perform several sim-
ulation studies. To judge the performance of each method, we look at the re-
spective observed mean squared error (MSE) 1

n

∑
i,j(µij − µ̂ij)

2 on the simulated
data. This is the mean of squared differences between the true (conditional)
mean µij of individual i at visit j, given the covariates and random effects, and
the corresponding estimated mean µ̂ij, with n denoting the overall number of
observations. We do not compare fitted values to observed ones, because this
would favor over-fitting methods. The reason for considering the MSE as defined
above is that (a) it takes prediction of random effects into account and (b) the
estimated coefficient functions are not directly comparable between the differ-
ent models and/or to the true underlying model structure because of different
model assumptions (see also Section 5). A summary of all methods considered is
found in Table 2. In addition to LFPCR, we consider two versions of LPFR and
three simple benchmark methods. The first LPFR approach uses predictor curves
directly and penalized B-splines for fitting the coefficient functions (LPFR_B).
Observations with missing values in the predictor curves are omitted. The second
approach uses a truncated power basis for the coefficient functions and FPCA of
predictor curves to impute missing values (LPFR_TRi), as described in Section
2 and implemented in refund (Crainiceanu and Reiss, 2011). The three simple
benchmark regression tools that are considered are (1) a saturated model, i.e.,
µ̂ij = yij, where yij denotes the observed response value for individual i at visit
j, (2) a simple random intercept model without any covariates, and (3) a random
intercept model without covariates but with a fixed smooth trend f(Tij) over
time points Tij .

In our first scenario we consider single longitudinal predictor curves Wij(s)
that are constructed according to the LFPCA model (2). For φ0

k(s) and φ1
k(s)

we use an orthonormal sine/cosine basis, and for φU
k (s) we take Legendre poly-

nomials, as done by Greven et al. (2010). Also, the visit times Tij are simulated
analogously to Greven et al. (2010), such that the mean for each subject is zero,
and increments Tij − Tij−1 are independent draws from U [0, 1]; then times are
scaled to have unit variance. Scores ξik and ζijr are assumed to be normal with
ξ-variances λk = 0.5k−2, k = 1, . . . , 6, and zero otherwise; for ζ-variances νr, we
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method name description

OF A model with complete over-fitting, i.e., µ̂ij = yij.
RI A simple random intercept model without any covariates.

RI_tv As in RI, but with an additional fixed time-varying intercept.
LFPCR, B/U90 Longitudinal functional principal components regression based

on the B- and U -processes from LFPCA with 90% variance
explained; see 3.1 and 3.3.

LFPCR, B/U95 As LFPCR, B/U90, but with 95% variance explained;
see 3.1 and 3.3.

LFPCR, S90 Longitudinal functional principal components regression based
on the scores from LFPCA with 90% variance explained;
see 3.1 and 3.2.

LFPCR, S95 As LFPCR, S90, but with 95% variance explained;
see 3.1 and 3.2.

LPFR_B, l A (generalized) functional linear model with random intercept
where deviations from linear coefficient functions are penalized.
Coefficient functions are estimated using B-splines, and predictor
curves are used directly.

LPFR_B, c As LPFR_B, l, but penalizing deviations from
constant functions.

LPFR_TRi, l As LPFR_B, l (i.e., penalizing deviations from linear functions),
but using a truncated power basis for the coefficient functions
and FPCA of predictor curves to impute missing values.

LPFR_TRi, c As LPFR_TRi, l, but penalizing deviations from
constant functions.

Table 2: Methods for longitudinal functional data regression that are compared in simulation
studies.

have νr = 0.5r, r = 1, . . . , 4, and zero otherwise. For the measurement error
variance we assume ς2 = 0.01. Our design is unbalanced with on average four
observations per individual i = 1, . . . , 100. After generating the functional pre-
dictor curves, we simulate response values Yij according to the linear mixed model
with functional covariate and random intercept with variance τ 2 = 2. Response
Yij is assumed to be (conditionally) normal with variance σ2 = 2. For the true
coefficient function γ(s) we consider (a) a nonlinear function, (b) a linear and (c)
a constant one (see Figure 3, left). The simulation scenario is designed such that
the signal-to-noise ratio is similar to/smaller than the one found when analyzing
the tractography data. Data generation, model estimation and evaluation of the
MSE is independently repeated 100 times and the resulting errors for scenario (a)
are summarized in Figure 4 (top left). One can see that methods which assume
the true underlying model structure (namely LPFR_B/TRi) perform best, but
that LFPCR also performs quite well (in particular when using the B/U -based
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Figure 3: Assumed true coefficient functions for simulation scenarios 1a (solid), 1b (dashed),
1c (dotted), and γ1(s) (dashed/dotted) and γ2(s) (solid) for scenario 2.

approach). Results for (b) and (c) are similar (only shown in the web appendix).
The over-fitting model of course produces errors around variance σ2 = 2. If the
B/U -based approach is applied it is apparently not important how much vari-
ability is exactly explained by LFPCA, as long as it is a large proportion such as
90% or 95%. This makes sense because regularization is imposed when coefficient
functions are fit.

In a second scenario, we keep variances σ2 and τ 2 as before, but consider two
functional predictors defined on (0, smax) and generated by Wij·(s) = 1

100
(15 +∑5

t=1 θijt sin{2πs(3−θijt)/smax}−ϑijt), where θijt = θ̃it +ψijt and ϑijt = ϑ̃it +υijt.
θ̃it, ψijt, ϑ̃it, υijt are independent random variables with θ̃it ∼ U [0, 4], ϑ̃it ∼
U [0, 2π], ψijt ∼ U [−4/5, 4/5], υijt ∼ U [−2π/5, 2π/5] for predictor curve Wij1(s),
and θ̃it ∼ U [0, 6], ϑ̃it ∼ U [0, 2π], ψijt ∼ U [−6/10, 6/10], υijt ∼ U [−2π/10, 2π/10]
for Wij2(s). For functional covariates Wij1(s) and Wij2(s) we have smax = 50 and
smax = 70, respectively. Here, the LFPCA model (2) is not used for generating
the functional predictors, but curves are directly simulated (in a manner simi-
lar to Tutz and Gertheiss (2010)). The assumed true coefficient functions γ1(s)
and γ2(s) are shown in Figure 3 (right). The design is now balanced with five
functional observations per subject i = 1, . . . , 100. Before fitting the regression
models, we add white noise measurement error with variances 0.0082 and 0.0042

to Wij1(s) and Wij2(s), respectively. As before, data generation, model estima-
tion and evaluation of errors is independently repeated 100 times. Results (see
web appendix) are similar as before: LPFR_B/TRi, which assume the correct
model, perform best, but superiority over LFPCR is only moderate. The only
big difference to scenario 1 is that now RI performs as good/bad as RI_tv.
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Figure 4: Results of simulation scenarios 1a, 3–7 in terms of the (observed) mean squared error
(MSE) 1

n

∑
i,j(µij − µ̂ij)2. Abbreviations are defined in Table 2. For 1a, the box for RI is not

completely shown because a number of error values were too extreme.
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When the data generating process deviates from this simple model, however,
LFPCR is distinctly superior to regression modeling where model (1) is assumed;
see Figure 4 (top right, middle). Data generation for those and further scenarios
is summarized below:

• Scenario 3 : The same specifications as in scenario 1, but now the ξ- and
ζ-scores are used as predictors with all regression coefficients equal to 1.

• Scenario 4 : Again the same specifications as in scenario 1, but now only
the U -process from (2) is used as functional predictor in a functional linear
model with random intercept and with the true coefficient function having
a shape like the nonlinear function from scenario 1 (see Figure 3, left). That
means, between-subject variation is due only to the random intercept.

• Scenario 5 : As in scenario 4, but now the U -process is seen as additional
measurement error, and the only relevant functional predictor is the B-
process Bi,0(s) + TijBi,1(s).

• Scenario 6 : For generating the linear predictor the same specifications as
in scenario 2 are used, but after employing the logistic function as the link
binary outcomes are sampled.

• Scenario 7 : As scenario 6, but in both sets of predictor curves 50 blocks of
2–4 missings are randomly distributed.

It can be seen that in such cases where the general functional trend η(s, T )
is irrelevant but only deviations from that trend are informative (scenarios 3–
5), a linear mixed model with functional covariate is inadequate. Furthermore,
LFPCR based on B- and U -processes seems to be superior to the score-based
approach. In Section 5 we will have a closer look at connections between the
different regression approaches.

For the logit model (Figure 4, bottom) results are qualitatively the same as for
linear modeling (scenario 2). If missings are found in the predictor curves (Figure
4, bottom right), imputing missing values is apparently superior to omitting
curves with missing values. The latter is done by LPFR_B, whereas LPFR_TRi
uses imputation as described in Section 2.

5 Comparing Different Approaches
Deeper insight into connections and differences between the methods considered
will help us understand some of the findings from the simulations. In Figure 4
we saw, for example, that B/U -based LFPCR tends to perform better than an
approach using scores.
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5.1 Comparing Different LFPCR Approaches

First, we compare the two presented versions of LFPCR, the one using LFPCA
scores as predictors and the functional version based on B- and U -processes. The
“functional part” in model (5) is

NB∑

k=1

θkξik +

NU∑

r=1

δrζijr =

NB∑

k=1

θk

(∫

D
Bi,0(s)φ

0
k(s)ds+

∫

D
Bi,1(s)φ

1
k(s)ds

)

+

NU∑

r=1

δr

∫

D
Uij(s)φ

U
r (s)ds

=

∫

D
Bi,0(s)

NB∑

k=1

θkφ
0
k(s)ds+

∫

D
Bi,1(s)

NB∑

k=1

θkφ
1
k(s)ds

+

∫

D
Uij(s)

NU∑

r=1

δrφ
U
r (s)ds.

This is a functional linear model with predictors Bi,0(s), Bi,1(s) and Uij(s),
and corresponding coefficient functions restricted to spaces spanned by the first
eigenfunctions. These restrictions may explain problems in some situations.
A more flexible approach would be to estimate these coefficient functions di-
rectly, which gives a third way to do LFPCR – a version that also uses B- and
U -processes as predictors, but Bi,0(s) and Bi,1(s) separately. Since, however,
Bi(s, Tij) = Bi,0(s)+TijBi,1(s) as the systematic trend in subject i over time can
be nicely interpreted, we prefer (6). From the considerations above it becomes
clear that the latter approach and the score-based approach are neither equivalent
nor is one a special case of the other.

Another important difference between the B/U -based and the score-based
approach is that in the latter case regularization is imposed by selecting the
number of functional principal components. This number is tied to explaining
the variability in the predictor curves and not to the parameter functions. If the
B/U -based approach is applied, however, regularization through penalized splines
is directly applied to the coefficient curves. This makes the approach more robust
to over-fitting; over-fitting may become a problem for the score-based approach
if a too high proportion of explained variance is chosen or if the B- or U -process
is not associated with the response, as for example in simulation scenario 5. A
possible way to alleviate these problems could be to use regularization when
fitting the regression coefficients θk and δr.

5.2 Comparing LPFR and LFPCR

The score-based LFPCR model can be seen to be a special case of the LPFR
model only in particular cases. Consider the case where variability over time in

16



η̂(s, T ) is very low and the influence of Bi,1(s) can be neglected (see, e.g., φ̂1
k in

Figure 2). Furthermore, assume that only the score ζij1 is associated with the
outcome. Then, it can be shown (see the web appendix) that the linear predictor
has approximately the form α̃ + b̃i +

∑p
l=1Xijlβl +

∫
DWij(s)δ1φ

U
1 (s) ds. This is

an LPFR model with random intercept b̃i and coefficient function δ1φ
U
1 (s). In

general, however, the score-based LFPCR model and LPFR are different.
Next, we investigate the differences between LPFR and the B/U -based LF-

PCR seen in the simulation studies. Assume that model (1) and decomposition
(2) hold. Then we have

∫

D
Wij(s)γ(s)ds =

∫

D
γ(s)η(s, Tij)ds+

∫

D
γ(s)(Bi,0(s) + TijBi,1(s))ds

+

∫

D
γ(s)Uij(s) +

∫

D
γ(s)εij(s)ds

= α(Tij) +

∫

D
γ(s)Bi(s, Tij)ds+

∫

D
γ(s)Uij(s)ds+ ε̃ij,

where ε̃ij is noise with mean zero. If Wij(s) is assumed to be a smooth curve
without measurement error εij(s), noise ε̃ij disappears and the (generalized) func-
tional linear model (1) can be seen as a special case of LFPCR using B- und
U -processes where γB(s) = γU(s) = γ(s) and α(Tij) has a specific form. Thus, if
(1) holds, LFPCR using B- und U -processes will also be an adequate modeling
approach as long as (2) is a reasonable approximation to the (functional) data
generating process, as seen in simulation scenarios 1, 6 and 7. By contrast, if the
LFPCR model is correct and the overall mean trend η(s, Tij) is not relevant for
the response, or if γB(s) 6= γU(s), the functional linear part in (1) is not appro-
priate, as observed in scenarios 3–5. In summary, LFPCR is more general than
methods based on model (1), such as LPFR. If the latter model is correct, the
performance of LFPCR suffers slightly due to its generality. On the other hand, if
specific LPFR assumptions are incorrect, LPFR does not adequately estimate the
association between functional predictors and outcomes. In the web appendix,
we additionally compare the B/U -based LFPCR model to much simpler mixed
models.

6 Application to the Tractography Data
Multiple sclerosis (MS) is a neurological disease that affects the central nervous
system and in particular damages white matter tracts in the brain through le-
sions, myelin loss and axonal damage. Diffusion tensor imaging (DTI) is a mag-
netic resonance imaging technique that allows the extraction of information on
individual tracts and thus allows a better understanding of damages in neuronal
tracts and how these relate to disease progression. In our study, 176 MS patients
were repeatedly scanned over time for an average of 1.27 years to follow disease
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progression, measured by disability scores such as the 9 hole peg test (peg9 ),
and corresponding changes in DTI measurements. The peg9 measures the time
required to put nine pegs into nine holes and then remove them (cf. Cutter
et al., 1999). Several summary indices including the fractional anisotropy and
the magnetization transfer ratio were extracted from the DTI images along sev-
eral important tracts, including the corpus callosum, the corticospinal tract and
the optic radiations tract. Our primary goal is to relate changes in disability to
corresponding changes in tract profiles.

As seen in Section 4, methods based on the (generalized) functional linear
model perform well as long as this model corresponds to the true underlying
regression structure. For the tractography data it seems reasonable to assume
that the functional covariates as a whole (for example fractional anisotropy along
a tract of interest) contain relevant information. Therefore the linear mixed model
with functional predictors may be an adequate tool for analyzing the relationship
between measures from tractography and disability of MS patients.

To investigate whether the assumption of equal effects for trend and deviation
from the trend holds, we will also consider our new LFPCR approach. Following
results from the simulation study, we will use the better-performing estimation
approach based on B- and U -processes.

6.1 Generalized Functional Linear Models with Random
Intercept

We consider the fractional anisotropy (FA) along the corpus callosum, the corti-
cospinal tract that is contralateral to the dominant hand, and the optic radiations
tract as potential functional predictors for the peg9 score for the dominant hand.
In addition to functional predictors, we consider scalar covariates sex and age,
and a dummy variable indicating whether this is the patient’s first visit or not.
The latter is done to account for a potential learning effect with respect to the
conducted test (see Goldsmith et al., 2012). We first fit a generalized functional
linear model with random intercept. Since the (conditional) distribution of the
peg9 scores is slightly skewed and scores are positive, we assume a Gamma dis-
tribution with log-link, instead of a normal distribution with identity-link. We
found that there is only a clear dependence between measures along the corti-
cospinal tract and peg9 (see the web appendix), which is biologically plausible in
that the corticospinal tract connects the motor cortex to the opposite side of the
body, and therefore mediates motor signals.

In addition to fractional anisotropy, we may also consider the magnetiza-
tion transfer ratio (MTR) along the corticospinal tract as a potential predictor
for peg9. Figure 5 shows estimated coefficient functions for a generalized func-
tional linear model with random intercept and these two functional predictors
(and scalar ones as above). The solid black line is obtained for LPFR with a
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Figure 5: Estimated coefficient functions when a generalized functional linear model with ran-
dom intercept is fit to data with functional predictors fractional anisotropy and magnetization
transfer ratio of the corticospinal tract (and scalar predictors visit > 1, sex, age). Considered
are the results of a complete-case analysis using LPFR with a B-spline basis for the coefficient
functions and penalizing deviations from a constant line (solid black), the same penalty but
using a truncated power spline basis with knots at each observation point and imputing miss-
ing values using FPCA (dashed red), and the refund implementation, where deviations from
a linear function are penalized and missings are imputed (dashed/dotted blue). The shaded
region corresponds to 90% pointwise confidence intervals as provided by mgcv.

penalized B-spline basis for the coefficient functions and penalizing deviations
from a constant line. The red dashed line refers to the same penalty but using
a truncated power spline basis with knots at each observation point. The blue
dashed/dotted line is the refund implementation lpfr(), where deviations from
a linear function are penalized. In the latter two cases missing observations are
imputed as described in Section 2. In the first case, curves with missing values
are omitted (reducing sample size by 38%). Since missings typically occur for
technical reasons, it can be assumed that curves are missing at random, and
hence a complete-case analysis is reasonable. The shaded region corresponds to
90% pointwise confidence intervals as provided by mgcv. Apparently there is a
dependence between measures along the corticospinal tract and peg9, where high
values of fractional anisotropy in the first half of the tract result in lower disability
scores. This makes sense because decreasing fractional anisotropy indicates dis-
ease progression (see Harrison et al., 2011). When looking at the solid and dashed
lines for MTR, where deviations from a constant are penalized, it seems that in
this case using mean MTR is a sufficient way to include anatomical information.
Note that if deviations from linearity (dashed/dotted blue) are penalized, both
coefficient functions are estimated to be non-constant, but linear. This, however,
seems to us an artifact of the penalization.
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GFLM LFPCR
variable estimated coefficient p-value estimated coefficient p-value

(Intercept) 4.3772 0.0000 2.8877 0.0000
visit > 1 −0.0436 0.0111 −0.0598 0.0024
sex 0.2377 0.0007 0.2049 0.0009
age 0.0065 0.0165 0.0063 0.0098

Table 3: Estimated fixed effects for scalar predictors when a generalized functional linear model
with random intercept is directly fit to data with functional predictors fractional anisotropy and
magnetization transfer ratio along the corticospinal tract (GFLM, left), or when the model is
fit to data with LFPCA B-and U -processes of the fractional covariates being used as functional
predictors (LFPCR, right).

Results for the scalar covariates (complete case analysis) are given in Table
3 (left). Apparently there is a learning effect after the first visit. Older patients
tend to have higher disability scores, but the largest effect is found for sex, with
males having distinctly higher scores than females.

6.2 Longitudinal Functional Principal Components Regres-
sion

We carry out LFPCA of fractional anisotropy (compare Figure 2) and magnetiza-
tion transfer ratio along the corticospinal tract. The scores and functional prin-
cipal components are then used to reconstruct the respective B- and U -processes
Bi(s, Tij) and Uij(s) for each patient i at visit j. Resulting curves for the first five
patients are shown in Figure 6, with colors corresponding to the patients’ peg9
scores. These curves are then used to build a generalized functional linear model
with random intercept, and additional scalar predictors age, sex and visit > 1
and time-varying intercept (see 3.3). Estimates for scalar covariates are given in
Table 3 (right), estimated functions in Figure 7. Since missing values are already
imputed when constructing B- and U -processes, differences between different fit-
ting procedures for the regression model can be neglected, as only the bases differ.
Effects of scalar covariates are estimated to be similar to estimates above (Table
3, left). The large difference between intercepts occurs because in the (general-
ized) functional linear model predictor curves are not centered, whereas the B-
and U -processes are centered by construction (see 3.1). The time-varying inter-
cept in Figure 7 (top left) indicates that the disability score increases over time,
as expected in a diseased population. From the coefficient functions for both
the B- and U -process of fractional anisotropy (Figure 7, middle), it follows that
patients with higher FA values than the ‘average patient’ in the first half of the
tract tend to have lower disability scores, which is in accordance with findings
from 6.1. Assuming equal coefficient functions for these two processes, as done
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Figure 6: B- and U -processes estimated by LFPCA for FA and MTR along the corticospinal
tract. For illustration, the results for the first five patients are shown, colors correspond to the
patients’ peg9 disability scores at the corresponding visit.

in 6.1, seems reasonable. Estimated coefficient curves for magnetization transfer
ratio (Figure 7, right) indicate that mean MTR along the tract is highly infor-
mative with respect to peg9 when, for example, different patients are compared
(between-patients variation). Within-patient variation (the U -process) of MTR
seems to be less informative and may constitute mostly measurement error.

Correlation between peg9 scores predicted by the generalized functional lin-
ear model with random intercept and the scores predicted by LFPCR is greater
than 0.99. Variances of scores predicted by the two methods are similar (232,
resp. 237). That implies that peg9 predictions using either method are very sim-
ilar (see also the web appendix). In the generalized functional linear model, the
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Figure 7: Estimated coefficient functions when a generalized functional linear model with ran-
dom intercept is fit to peg9 scores with LFPCA B- and U -processes of fractional anisotropy
(FA) and magnetization transfer ratio (MTR) of the corticospinal tract being used as functional
predictors, and with scalar predictors visit > 1, sex, age.

fitted function for MTR (see dashed line in Figure 5) seems to be a compromise
between the coefficient functions of the B- and U -processes of MTR (see Figure
7, right).

7 Summary and Discussion
We presented and compared different tools for scalar-on-function regression that
can be applied when observations are taken repeatedly over time. We proposed
two novel versions of principal components regression: longitudinal functional
principal components regression (LFPCR), based on longitudinal functional prin-
cipal components analysis (LFPCA). The first approach uses scalar scores ob-
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tained from LFPCA as explanatory variables in a longitudinal mixed model. The
second version proposed uses the LFPCA decomposition of functional covariates
to construct a mixed model with (multiple) functional predictors. For each func-
tional covariate, two processes are obtained that are then used as predictors. (1)
a process describing systematic trends within subjects over time and (2) visit-
specific deviations from that trend. By contrast to the score-based approach,
the second method also uses the covariates’ functional character when building
the regression model, and it has been shown in simulation studies that it tends
to perform better. Furthermore, it yields nice interpretations. For example, if
deviations from subject-specific functional trends are just measurement error, ir-
relevant for the response variable, the corresponding coefficient function will be
around zero. But as in a standard functional linear model, the coefficient function
for the subject-specific trend will indicate the interesting regions in the signals’
domain, and the functional shape of the influence on the response. LFPCR dis-
tinctly outperforms mixed models that use functional covariates directly when
the overall trend in the functional predictors is not important for the response.
On the other hand, it is competitive if the (generalized) functional linear model
is (close to) the true model and the LFPCA model is a good approximation to
the functional data generating process.

The presented LFPCR approach can also be applied when only the functional
predictors vary over time, but the response does not change from visit to visit.
For example, consider the subjects’ case status when it is to be discriminated
between MS patients and controls. In a case like this, we focus on the subject-
specific deviations from the overall trend, and use this processes as functional
predictors in an adequate regression model; for example, in a logit model, if the
aim of the analysis is binary classification (as case/control). As the trend in
the functions might be an important predictor, advantages over taking just the
functions’ average can be expected. Such an analysis of the tractography data is
provided in the web appendix.

All the proposed methods result in a (generalized) additive mixed model with
scalar or vector-valued random effects, scalar and functional fixed effects and
potentially smooth effects of covariates such as time. Such models can be fit
using R package mgcv (Wood, 2006, 2011). If LFPCA is to be applied before fit-
ting the regression model, R-code available at http://www.statistik.lmu.de/
institut/ag/fda/research.html can be used. With LFPCA, missing values
in the predictor curves are imputed automatically. If curves are used directly,
imputation and model fitting is also possible, as described here and implemented
in refund (Crainiceanu and Reiss, 2011).

Since the final regression model considered here is additive, it can easily be ex-
tended, for example by two-dimensional surfaces describing interactions of scalar
predictors, modeling higher-dimensional functional predictors such as images, or
spatial effects. All such models can be implemented within the mixed models
framework in mgcv (Wood, 2006, 2011).
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