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Illustration of LFPCA

For illustration of LFPCA, the estimated mean function η̂(s, T ) when modeling frac-
tional anisotropy along the corticospinal tract is shown in Figure 1. It is seen that
variation of η̂(s, T ) over time T is very low. Figures 2 and 3 show the first three es-
timated functional principal components {φ̂0

k, φ̂
1
k}, k = 1, 2, 3, and the first two curves

φ̂U
r , r = 1, 2. The estimated variance components λ̂k and ν̂r, k = 1, . . . , 15, r = 1, . . . , 8,

are found in Figure 4. These 15 + 8 components are needed to explain 90% of the vari-
ance in the data. Apparently, for both within-subject and between-subject variation,
the largest part of variation is explained by variation in the general level of fractional
anisotropy in distinct regions along the corticospinal tract. The B-process varies most
strongly roughly between measurement points 25 and 50 (see Figure 2, top left); and
for the U -process the interesting region is roughly the first half of the tract (see Figure
3, left).

Results of Simulation Studies

Results for scenarios 1b, 1c and 2, that are not shown in the main paper, are found in
Figure 5. For a description of simulation scenarios and the definition of abbreviations,
see the main paper (Gertheiss et al., 2012).

Additional Comparisons between Methods

• Connections between LPFR and LFPCR using Scores: In some cases, results
from a regression model using LFPCA scores can be used for estimating the
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†Department of Statistics, Ludwig-Maximilians-Universität Munich, Germany.
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measurement s
time T

η̂(s, T)

Figure 1: Estimated mean function η̂(d, T ) when modeling fractional anisotropy along the
corticospinal tract by LFPCA.

LPFR model. Since

ζijr =

∫
D
Uij(s)φ

U
r (s) ds

and
Uij(s) = Wij(s)− η(s, Tij)−Bi,0(s)− TijBi,1(s)− εij(s),

we have

ζijr =

∫
D
Wij(s)φ

U
r (s) ds −

∫
D
Bi,0(s)φ

U
r (s) ds

−
∫
D
η(s, Tij)φ

U
r (s) ds −

∫
D
TijBi,1(s)φ

U
r (s) ds −

∫
D
εij(s)φ

U
r (s) ds.

If variability over time of η̂(s, T ) is very low (see Figure 1) and also the influence
of Bi,1(s) can be neglected (see, e.g., φ̂1

k in Figure 2), we have

ζijr ≈
∫
D
Wij(s)φ

U
r (s) ds+ b̃i,r + cr −

∫
D
εij(s)φ

U
r (s) ds,

with constant cr and “random intercept”

b̃i,r = −
∫
D
Bi,0(s)φ

U
r (s) ds.
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Figure 2: Estimated functional principal components {φ̂0
k, φ̂

1
k}, k = 1, 2, 3. Depicted are the

overall time-constant mean (solid line) ±2
√
λ̂k times φ̂0

k or φ̂1
k. Percentages give the proportion

of overall variance that is explained by the respective component.
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Figure 3: The first two functional principal components φ̂U
r , r = 1, 2. Depicted are the overall

time-constant mean (solid line) ±2
√
ν̂r times φ̂U

r . Percentages give the proportion of overall
variance that is explained by the respective component.
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Figure 4: Estimated variance components λ̂k and ν̂r, k = 1, . . . , 15, r = 1, . . . , 8.
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Figure 5: Results of simulation scenarios 1b, 1c, and 2 in terms of the (observed) mean squared

error (MSE) 1
n

∑
i,j(μij − μ̂ij)

2. Abbreviations are defined in the main paper (Gertheiss et al.,
2012). Boxes for RI are not completely shown because a number of error values were too
extreme.
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Error εij(s) is just white noise. So if in the score-based LFPCR model besides
Xijl only ζij1 is used as predictor, we have

E(Yij |bi, b̃i,1,Xij1, . . . ,Xij1, ζij1) ≈ h(α̃+ b̃i +

p∑
l=1

Xijlβl +

∫
D
δ1Wij(s)φ

U
1 (s) ds),

with α̃ = α + δ1c1 and random intercept b̃i = bi + δ1b̃i,1 (with unknown dis-

tribution). That means, δ̂1φ̂
U
1 (s) can also be seen as an estimate of coefficient

function γ(s) in a functional linear model with random intercept. Note, however,
only in special cases as above a regression model using scores from LFPCA as
predictors can be transformed into a (generalized) functional linear model with
scalar random effects as assumed when LPFR is applied.

• Comparing LFPCR to Simple Mixed Models: We consider the LFPCR model
based on the B- and U -processes, and in particular

∫
D
γB(s)Bi(s, Tij)ds =

∫
D
γB(s)(Bi,0(s) + TijBi,1)ds

=

∫
D
γB(s)Bi,0(s)ds + Tij

∫
D
γB(s)Bi,1(s)ds

= bi,0 + Tijbi,1.

If the process Uij(s) corresponds to functional measurement error and is not
relevant for response Yij , we have γU (s) ≈ 0 in the LFPCR model. Then, the
LFPCR model can also be seen as a simple linear mixed model with random
intercept bi + bi,0 and random slope bi,1 with a modified distribution. This
explains why in simulation scenario 5 (see the main paper) the simple random
intercept model with time-varying α performs relatively well (the relatively small
changes in Bi(s, T ) over time T cause that a random slope bi,1 is not necessary
here). However, if such a simple model is fit directly, substantial insight into
dependencies between response and predictors will be lost.

Additional Information on the Analysis of Tractography Data

First, we show results for our regression model which have not been shown in the main
paper (Gertheiss et al., 2012). As mentioned there, we consider the fractional anisotropy
along the corpus callosum, the corticospinal tract that is contralateral to the dominant
hand, and the optic radiations tract as potential functional predictors for the peg9 score
for the dominant hand. In addition to these functional predictors, we consider scalar
covariates sex and age, and a dummy variable indicating whether it is the patient’s first
visit or not. We fit a generalized functional linear model with random intercept. Given
the covariates and the random intercept, peg9 scores are assumed to follow a Gamma
distribution with log-link. Resulting estimates of coefficients curves are given in Figure
6. The solid black line is obtained when a penalized B-spline basis is used for the
coefficient functions and deviations from a constant line are penalized. The red dashed
line refers to the same penalty but using a truncated power spline basis with knots
at each observation point. The blue dashed/dotted line is the refund (Crainiceanu
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and Reiss, 2011) implementation lpfr() where deviations from a linear function are
penalized. In the latter two cases missing observations are imputed as described in
Gertheiss et al. (2012). In the first case (solid black), curves with missing values
are omitted. The shaded region corresponds to 90% pointwise confidence intervals as
provided by mgcv (Wood, 2006, 2011). Apparently there is only a dependence between
measures along the corticospinal tract and peg9.

When using fractional anisotropy and magnetization transfer ratio along the cor-
ticospinal tract as functional predictors for peg9, predicted scores for LFPCR and a
generalized functional linear model with random intercept are very similar, as men-
tioned in the main paper. Figure 8 shows corresponding scatterplots of fitted peg9
scores, as well as plots of predictions with respect to the linear predictor for the used
Gamma model with log-link.

In addition to MS patients, 49 healthy volunteers were also scanned, and we in-
vestigate differences between MS patients and controls. Since the case status does not
change from visit to visit, we focus on the person-specific deviation from the overall
trend η(s, T ). Since both the person-specific (functional) level Bi,0 and the person-
specific trend Bi,1 may be interesting, we consider these two processes separately as
predictors in a functional logistic regression model (with cases being coded as 1). Since
these processes and class membership are observed only once for each person, obser-
vations are independent, and we do not include random effects in the linear predictor.
However, we still correct for age and sex. LFPCA B0- and B1-processes of fractional
anisotropy (FA) and magnetization transfer ratio (MTR) of the corpus callosum (CCA),
the corticospinal tract (CST) and the optic radiations tract (OPR) are used as func-
tional predictors. That means that a logit model with 12 functional and 2 scalar
covariates is fit (using mgcv). Figure 8 shows the resulting estimated coefficient func-
tions. When fitting these curves, we penalized deviations from a constant, and tuning
parameters were determined by REML. Interpretation of the results, however, is dif-
ficult. Some curves (such as coefficient functions for B0 of MTR/CST or FA/OPR)
indicate that lower values of FA or MTR are associated with cases, but others do
not. In addition, (90% pointwise) confidence intervals (as provided by mgcv) indicate
that uncertainty is rather high. Apparently the relevant functional predictors are the
B0-processes of FA/CCA, MTR/CCA and MTR/CST, as well as the B1-processes of
FA/CST, FA/OPR and MTR/OPR.

Example R Code

This section contains some example R code that can be used to carry out the proposed
longitudinal functional principal components regression (LFPCR) and longitudinal pe-
nalized functional regression (LPFR). At first, we need some packages

> library(mgcv)

> library(refund)

> library(orthopolynom)

For reproducibility, we set

7
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Figure 6: Estimated coefficient functions when a generalized functional linear model with ran-
dom intercept is fit to data with functional predictors fractional anisotropy (FA) of the corpus
callosum, corticospinal tract and optic radiations tract (and scalar predictors sex, age, and
indicating if visit > 1).
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Figure 8: Estimated coefficient functions when a functional logistic regression model is fit
to data with LFPCA B0- and B1-processes of fractional anisotropy (FA) and magnetization
transfer ratio (MTR) of the corpus callosum (CCA), the corticospinal tract (CST) and the optic
radiations tract (OPR) being used as functional predictors (and scalar predictors sex, age).
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> set.seed(123)

For illustration, we write a function that uses the functional random intercept/slope
model and the Karhunen-Loève expansion (assume normal ζ/ξ) to generate functional
data. Arguments are:

subj vector of subjects (sorted)

tps grid on which functions are observed

varx measurement error variance

eta mean function eta(tps, times) with arguments tps and times

phiU eigenfunctions phiU(tps, k) with arguments tps and k

phi0 eigenfunctions phi0(tps, k) with arguments tps and k

phi1 eigenfunctions phi1(tps, k) with arguments tps and k

times vector of visit times

nu variances of the zeta scores

lambda variances of the xi scores

... additional arguments to phiU, phi0, phi1

> simFREnor <- function(subj, tps, varx, eta, phiU, phi0, phi1 = NULL,

+ times, nu, lambda, ...) {

+ nI <- length(unique(subj))

+ n <- length(subj)

+ Jvec <- table(subj)

+ slope <- length(phi1) > 0

+ nU <- length(nu)

+ nX <- length(lambda)

+ etam <- t(outer(tps, times, eta))

+ phiUm <- matrix(NA, nU, length(tps))

+ phi0m <- matrix(NA, nX, length(tps))

+ if (slope)

+ phi1m <- phi0m

+ for (k in 1:nU) {

+ phiUm[k, ] <- phiU(tps, k, ...)

+ }

+ for (k in 1:nX) {

+ phi0m[k, ] <- phi0(tps, k, ...)

+ if (slope)

+ phi1m[k, ] <- phi1(tps, k, ...)

+ }

+ zeta <- matrix(rnorm(nU * n), n, nU) %*% diag(sqrt(nu))

+ xi <- matrix(rnorm(nX * nI), nI, nX) %*% diag(sqrt(lambda))

+ U <- zeta %*% phiUm

+ X0 <- xi[rep(1:nI, Jvec), ] %*% phi0m

+ if (slope)

+ X1 <- xi[rep(1:nI, Jvec), ] %*% phi1m

+ else X1 <- NULL

10



+ eps <- matrix(rnorm(length(tps) * n, 0, sqrt(varx)), n, length(tps))

+ Y <- etam + X0 + ifelse(slope, X1 * matrix(rep(times, length(tps)),

+ n, length(tps)), 0) + U

+ Yobs <- Y + eps

+ return(list(funx = Y, funcs = Yobs, zeta = zeta, xi = xi,

+ U = U, X0 = X0, X1 = X1))

+ }

Now we define functions phi0, phi1, phiU:

> phi0 <- function(tps, k, tmin = min(tps), tmax = max(tps)) {

+ tpsc <- 2 * pi * (tps - tmin)/(tmax - tmin)

+ if (k%%2 == 1)

+ result <- sin(ceiling(k/2) * tpsc)

+ else result <- cos((k/2) * tpsc)

+ return(result/sqrt(tmax - tmin))

+ }

> phi1 <- function(tps, k, tmin = min(tps), tmax = max(tps)) {

+ tpsc <- 2 * pi * (tps - tmin)/(tmax - tmin)

+ if (k == 1)

+ result <- rep(1/sqrt(2), length(tpsc))

+ else if (k%%2 == 1)

+ result <- cos((ceiling(k/2) + 1) * tpsc)

+ else result <- sin((k/2 + 2) * tpsc)

+ return(result/sqrt(tmax - tmin))

+ }

> phiU <- function(tps, k, tmin = min(tps), tmax = max(tps)) {

+ tpsc <- 2 * (tps - tmin)/(tmax - tmin) - 1

+ result <- as.function(legendre.polynomials(k, normalized = TRUE)[[k]])(tpsc)

+ return(result/sqrt((tmax - tmin)/2))

+ }

We are going to create data for an unbalanced design with 100 subjects, each with
four visits on average.

> nI <- 100

> nV <- 4

We have one functional predictor with 100 measurement points.

> tps <- seq(0.5, 99.5, by = 1)

Measurement error and score variances are:

> varx <- 0.01

> lambda <- 2 * 0.5^((1:6) - 1)

> nu <- 0.5 * 0.5^((1:4) - 1)

We generate visit times.
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> myfun <- function(j) {

+ times <- 0

+ if (j > 1) {

+ for (jj in 2:j) {

+ times <- cbind(times, sum(times) + runif(1))

+ }

+ }

+ return(times - mean(times))

+ }

The assumed η-function is:

> eta <- function(tps, times) {

+ (times/4 - tps/max(tps))^2/2

+ }

The true coefficient function is assumed to be:

> btrue <- 10 * dgamma(tps, 5, 1/5)

And for variances of the random intercept and the error term we set:

> vare <- 2

> vary <- 2

So now, we generate subjects:

> ncl <- c(1:nI, sample(1:nI, (nV - 1) * nI, replace = T))

> Jvec <- as.numeric(sort(table(ncl), decreasing = T))

> n <- sum(Jvec)

> subj <- rep(1:nI, Jvec)

Visit times with uniform increments:

> times <- unlist(lapply(table(subj), FUN = myfun))

> times <- times/sqrt(var(times))

We generate functional predictors:

> funData <- simFREnor(subj, tps, varx, eta, phiU, phi0, phi1,

+ times, nu, lambda, tmin = 0, tmax = 100)

> funcs <- funData$funcs

> funx <- funData$funx

The random intercept and response values according to the functional linear model
(as assumed by LPFR):

> ref <- rep(rnorm(nI, 0, sqrt(vare)), Jvec)

> mutrue <- ref + funx %*% btrue

> y <- mutrue + rnorm(n, 0, sqrt(vary))
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Now we start with the analysis. First we apply the LPFR function from the refund
package.

> lpfrResult <- lpfr(Y = y, funcs = funcs, subj = subj)

Plot the result and compare it to the true function, or check the MSE:

> plot(tps, lpfrResult$BetaHat[[1]], type = "l")

> lines(tps, btrue, col = 2)

> mean((mutrue - lpfrResult$fitted.vals)^2)

[1] 0.5191954

Alternatively, function gamm() from mgcv can be used. For specifying the inte-
gral in functional linear model, the smooth term has to be chosen as s(X,by=L),
where the matrix X contains in its rows a grid of s-values s1, . . . , sm, and the matrix
L contains the functional predictor curves Wij(s) evaluated at s1, . . . , sm, and multi-
plied by weights ω1, . . . , ωm for numerical integration, such that

∫
D Wij(s)γ(s) ds ≈∑m

r=1 ωrWij(sr)γ(sr). In the simplest case with equidistant sr and sr − sr−1 = 1, we
may use

∫
D Wij(s)γ(s) ds ≈ ∑m

r=1Wij(sr)γ(sr). Coefficient function γ(s) is typically fit
as a spline. When gamm() is used, various bases can be chosen, such as cubic B-splines,
and deviations from a constant line, a linear function or higher degree polynomials can
be penalized. In addition, different types of random effects bi can be included, including
but not limited to random intercepts.

So for fitting the model, we need the matrix of measurement points.

> Tps <- matrix(tps, nrow(funcs), ncol(funcs), byrow = T)

Since points are equidistant here, we can easily fit the model. Concerning the
estimation of the coefficient function, we use a P-spline approach and choose to penalize
deviations from linearity (as with refund), i.e. m = 2, and from a constant line, i.e. m
= 1.

> subjf <- as.factor(subj)

> gammResult1 <- gamm(y ~ s(Tps, by = funcs, bs = "ps", m = 1),

+ random = list(subjf = ~1), method = "REML")

> gammResult2 <- gamm(y ~ s(Tps, by = funcs, bs = "ps", m = 2),

+ random = list(subjf = ~1), method = "REML")

Again, plot the results and compare them to the true function:

> par(mfrow = c(1, 2))

> plot(gammResult1$gam)

> lines(tps, btrue, col = 2)

> plot(gammResult2$gam)

> lines(tps, btrue, col = 2)

Alternatively, we may also check the MSEs:

> mean((as.numeric(mutrue) - predict(gammResult1$lme))^2)
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[1] 0.5198476

> mean((as.numeric(mutrue) - predict(gammResult2$lme))^2)

[1] 0.5192673

For longitudinal functional principal components regression (LFPCR) we first need
the LFPCA R-function:

> source("http://www.statistik.lmu.de/institut/ag/fda/software/LFPCA.r")

Then we can carry out longitudinal functional principal components analysis, here
with 90% variance explained.

> lfpca90 <- LFPCA(Y = funcs, subject = subj, Time = times, L = 0.9)

For the LFPCR approach that is based on scores, we first need to construct the
matrix of new regressors.

> zetas <- lfpca90$zeta

> xis <- matrix(NA, length(subj), ncol(lfpca90$xi))

> for (i in unique(subj)) {

+ xis[subj == i, ] <- matrix(lfpca90$xi[unique(subj) == i,

+ ], sum(subj == i), ncol(lfpca90$xi), byrow = T)

+ }

Now we can fit a mixed model, for example a random intercept model:

> subjf <- as.factor(subj)

> scoresResult <- gamm(y ~ s(times, bs = "ps", m = 1) + xis + zetas,

+ random = list(subjf = ~1), method = "REML")

And check the MSE:

> mean((as.numeric(mutrue) - predict(scoresResult$lme))^2)

[1] 0.5865393

For the approach based on B- and U -processes, we need the corresponding matrices
of (functional) covariates:

> B0 <- lfpca90$xi %*% t(lfpca90$phi.0)

> B1 <- lfpca90$xi %*% t(lfpca90$phi.1)

> B0x <- matrix(NA, length(subj), ncol(B0))

> for (i in unique(subj)) {

+ B0x[subj == i, ] <- matrix(B0[unique(subj) == i, ], sum(subj ==

+ i), ncol(B0), byrow = T)

+ }

> B1x <- matrix(NA, length(subj), ncol(B1))

> for (i in unique(subj)) {
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+ B1x[subj == i, ] <- matrix(B1[unique(subj) == i, ], sum(subj ==

+ i), ncol(B1), byrow = T)

+ }

> Ux <- lfpca90$zeta %*% t(lfpca90$phi.U)

> Tps <- matrix(tps, nrow(Ux), ncol(Ux), byrow = T)

Then a mixed model can be fit by using mgcv:

> BUResult <- gamm(y ~ s(times, bs = "ps", m = 1) + s(Tps, by = (B0x +

+ B1x * times), bs = "ps", m = 1) + s(Tps, by = Ux, bs = "ps",

+ m = 1), random = list(subjf = ~1), method = "REML")

And the MSE is:

> mean((as.numeric(mutrue) - predict(BUResult$lme))^2)

[1] 0.5699787
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