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Abstract

Random Forests are commonly applied for data prediction and interpretation. The latter purpose is supported
by variable importance measures that rate the relevance of predictors. Yet existing measures can not be
computed when data contains missing values. Possible solutions are given by imputation methods, complete
case analysis and a newly suggested importance measure. However, it is unknown to what extend these
approaches are able to provide a reliable estimate of a variables relevance. An extensive simulation study
was performed to investigate this property for a variety of missing data generating processes. Findings and
recommendations: Complete case analysis should not be applied as it inappropriately penalized variables that
were completely observed. The new importance measure is much more capable to reflect decreased information
exclusively for variables with missing values and should therefore be used to evaluate actual data situations.
By contrast, multiple imputation allows for an estimation of importances one would potentially observe in
complete data situations.

Keywords: Random Forests, variable importance measures, missing data, multiple imputation, surrogates,
complete case analysis

1 Introduction

Random Forests (cf. Breiman, 2001) are popular ap-
proaches for regression analysis. On account of their
easy applicability and interpretability they are com-
monly used in many research fields such as social,
econometric and clinical science. Further strong ad-
vantages over common approaches like regression anal-
ysis are their ability to implicitly deal with high dimen-
sional data, missing values, complex interactions and
collinearity (cf. Cutler et al., 2007; Lunetta et al., 2004,
for corresponding discussions). Likewise, Random
Forests provide variable importance measures which
can be used to identify variables that are of relevance
for prediction. In a subsequent step these measures are
often used for variable selection (cf. Tang et al., 2009;
Yang and Gu, 2009; Rodenburg et al., 2008; Sandri and
Zuccolotto, 2006; Dı́az-Uriarte and Alvarez de Andrés,
2006; Altmann et al., 2010; Archer and Kimes, 2008).

So far, it has not been investigated how to proceed
for the computation of such measures when there is

missing data. Complete case analysis and imputation
(e.g. mean, hot-deck, conditional mean and predic-
tive distribution substitution) are two potential solu-
tions to this issue. However, it has been shown that
these ad hoc methods may lead to biased inference
when the data is not missing completely at random
(cf. Schafer and Graham, 2002; Horton and Klein-
man, 2007). Multiple imputation by chained equations
(MICE; cf. van Buuren et al., 2006; White et al., 2011)
is meant to solve this problem and its superiority has
been shown in many publications (e.g. Janssen et al.,
2009, 2010). A third solution has been proposed ear-
lier (cf. Hapfelmeier et al., 2012) by a new variable
importance measure. It is closely related to existing
approaches – and therefore retains appreciated prop-
erties – yet handles missing values in an intuitive way.

The predictive accuracy of Random Forests has been
explored for the analysis of missing data by Rieger
et al. (2010); Hapfelmeier et al. (2011): comparisons
of models fit with and without imputation of missing
values showed only negligible differences. By contrast,
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the following study focuses on the assessment of a vari-
ables relevance by means of importance measures. As
a result the ability to produce reliable estimates well
differs between complete case analysis, multiple impu-
tation (executed by MICE) and the new importance
measure. An extensive simulation study that involves
various missing data generating processes is conducted
for both, regression and classification problems. Find-
ings about predictive accuracy are retraced in an ad-
ditional analysis of a simulated test dataset.

2 Missing Data

In early works Rubin (1976, 1987) specifies the issue of
correct statistical inference with missing values by the
definition of missing data generating processes:

• Missing completely at random (MCAR):
P (R|Xcomp) = P (R)

• Missing at random (MAR):
P (R|Xcomp) = P (R|Xobs)

• Missing not at random (MNAR):
P (R|Xcomp) = P (R|Xobs,Xmis)

Whether a value is missing is indicated by a binary
variable R and depends on its probability distribution
P (R). The complete variable set Xcomp consists of
the observed values Xobs and the missing ones Xmis:
Xcomp = {Xobs,Xmis}. Therefore in a MCAR scheme
the probability for a missing value is independent of
the observed and unobserved data. By contrast for
MAR this probability is dependent on the observed
information. In MNAR the probability depends on
unobserved variables or the missing values themselves.

Little and Rubin (2002) showed that usual sample
estimates – for example in linear regression – stay un-
affected by the MCAR scheme. By contrast, in classi-
fication and regression trees even MCAR may induce a
systematic bias, that may be carried forward to Ran-
dom Forests based on biased split selections (cf. Strobl
et al., 2007). Also, it is well-known that complete case
analysis is prone to biased inference when the data
is not MCAR. Therefore, in the following simulation
study, one MCAR, four MAR and one MNAR scheme
to generate missing values are investigated.

3 Methods

3.1 Random Forests

The most famous representative of recursive partition-
ing is the CART algorithm (cf. Breiman et al., 1984).
It constructs trees by sequential binary splits that pro-
duce subsets of the data which are as homogeneous
as possible in terms of the outcome. Breiman (1996)

also showed that the performance of single trees ben-
efits from “bagging” (bootstrap aggregation). In bag-
ging, several trees are fit to bootstrapped or subsam-
pled data. As a further advancement, Random Forests
(Breiman, 2001; Breiman and Cutler, 2008) have been
introduced for which splits are performed in random
selections of variables. This makes a more diverse set
of variables contribute to the joint prediction. The
latter is found by averaged values or majority votes of
each single tree in a Random Forest. The so called
‘out of bag’ (OOB) samples – i.e. observations not
used to fit the respective trees – can be used for an
unbiased estimate of a Random Forests error, viz. the
OOB-error.

When there are missing values surrogate splits need
to be employed. They mimic the initial split of the
data as they try to archive the same partitioning of
complete observations. When several surrogate splits
are computed they can be ranked according to their
ability to resemble the initial split. An observation
that contains more than a single missing value is pro-
cessed along this ranking until a decision is found.

The CART and the C4.5 algorithms – and conse-
quently all Random Forest algorithms based on the
same construction principles – have been shown to be
prone to biased variable selection (cf. Breiman et al.,
1984; Strobl et al., 2007; White and Liu, 1994; Kim and
Loh, 2001; Dobra and Gehrke, 2001; Hothorn et al.,
2006). Therefore, Random Forests used in this work
base on the recursive partitioning approach of Hothorn
et al. (2006). It follows the same rationale as Breiman’s
original approach and guarantees unbiased variable se-
lection and variable importance measures when com-
bined with subsampling (as opposed to bootstrap sam-
pling; cf. Strobl et al., 2007).

3.2 A new variable importance mea-
sure for missing data

The most popular and most advanced variable impor-
tance measure for Random Forests is the permutation
accuracy importance. It is assessed by a comparison of
a trees prediction accuracy before and after the random
permutation of a predictor variable. If the latter is of
relevance the accuracy is supposed to drop as the orig-
inal association to the response and further predictors
is destroyed by permutation; the importance measure
takes large values in such a case. The major issue is
that there is no straightforward way to compute this
measure when there are missing values. In particular,
it is not clear how conclusions about the importance of
variables can be drawn from the permutation approach
when surrogate splits are involved in the computation
of the accuracy.

A new approach was proposed earlier (cf.
Hapfelmeier et al., 2012) to overcome this pit-
fall. In order to retain appreciated properties it is
closely related to existing methodology, yet differs
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in one substantial aspect: Instead of permuting
the values of a variable X (that may be missing),
observations are randomly send to the daughter nodes
if a parent node k is split in X. The probability to
be sent left is determined by the relative frequency
p̂k of observations that initially went this way. The
algorithm to compute the new importance measure is
given by:

1. Compute the OOB accuracy of a tree.

2. Randomly assign each observation with p̂k to the
left (or right) child node if the parent node k is
split in X.

3. Recompute the OOB accuracy of the tree.

4. Compute the difference between the original and
recomputed OOB accuracy.

5. Repeat step 1 to 4 for each tree and use the aver-
age difference over all trees as the overall impor-
tance score.

This procedure simulates – like for the random per-
mutation in the original permutation importance – the
null hypothesis that the allocation of observations does
not depend on the particular predictor variable. It
solves any problems associated with the occurrence of
missing values and the application of surrogate splits
as decisions are detached from the raw values of a vari-
able.

3.3 Multivariate Imputation by
Chained Equations

Single imputation can lead to severe underestimation
of variance (cf. Harel and Zhou, 2007). A simple and
popular solution to this problem is the application of
multiple imputation (MI; cf. Rubin, 1987, 1996). In a
first step a proper MI approach is supposed to draw M
estimates θ(1), ..., θ(M) from P(θ|Xobs) for the multi-
dimensional parameter θ which determines the data
distribution. These are subsequently used in the con-
ditional distributions P(Xmis|Xobs; θ̂

(t)), t = 1, ...,M
to draw multiple imputations for missing values. This
way several imputed datasets are created. Finally, any
measure of interest can be assessed by the average of
estimates for each of the imputed datasets. Little and
Rubin (2002) point out that the approach makes stan-
dard complete-data methods applicable to incomplete
data (e.g. the original permutation importance mea-
sure).

The case of more than one variable with missing val-
ues demands for a special imputation procedure. A
practical approach which makes it possible to bypass
the specification of a joint distribution is MICE (some-
times also called fully conditional specification (FCS);
cf. van Buuren et al., 2006; van Buuren, 2007; van
Buuren and Groothuis-Oudshoorn, 2010; White et al.,

2011). It cycles through incomplete variables to itera-
tively update imputed values and parameter estimates
until convergence. The procedure is repeated several
times to produce multiple imputed data sets. An ap-
parent advantage is that imputation of the data can be
achieved by a flexible specification of predictive models
for each variable.

MICE is especially suitable in MAR settings though
Janssen et al. (2010) state that it should also be pre-
ferred to ad hoc methods like complete case analysis
even in MNAR situations. Likewise He et al. (2009)
and White et al. (2011) point out that MICE is also
capable to deal with MNAR schemes as the imputa-
tion model becomes more general and includes more
variables to make MAR plausible.

4 Simulation study

An extensive simulation study was designed to investi-
gate the ability of complete case analysis, multiple im-
putation by MICE and the new importance measure to
produce reliable estimates of a variables relevance. In
addition, the predictive accuracy of Random Forests
that base on each of these approaches was explored for
a simulated test dataset. There are several factors of
potential influence that needed to be explored; there-
fore the amount of missing values, correlation schemes,
variable strength and different processes to generate
missing values were of particular interest. A detailed
explanation of the setup is given in the following.

• Influence of predictor variables

The simulated data contained both, a classifica-
tion and a regression problem. Therefore, a cat-
egorical (binary) and a continuous response were
created in dependence of six variables with coeffi-
cients β:

β = (1, 1, 0, 0, 1, 0)>.

Repeated values for β make it possible to compare
importances of variables which are, by construc-
tion, equally influential but show different correla-
tions and different fractions of missing values. In
addition, the non-influential variables with β = 0
help to investigate possible undesired effects and
serve as a baseline.

• Data generating models

A continuous response was modeled by means of
a linear model:

y = x>β + ε with ε ∼ N(0, .5).

The binary response was drawn from a Bernoulli
distribution B(1, π) with π which was assessed by
means of a logistic model

π = P (Y = 1|X = x) =
ex

>β

1 + ex>β
.
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The variable set X itself contained 100 observa-
tions drawn from a multivariate normal distribu-
tion with mean vector ~µ = 0 and covariance ma-
trix Σ:

• Correlation

Σ =




1 0.3 0.3 0.3 0 0
0.3 1 0.3 0.3 0 0
0.3 0.3 1 0.3 0 0
0.3 0.3 0.3 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




As the variances of each variable are chosen to
be 1, the covariance equals the correlation in this
special case. The structure of Σ reveals that there
is a block of four correlated variables and two un-
correlated ones.

• Missing values

Several MCAR, MAR and MNAR processes to
create missing values were implemented. For each
scheme, a given fraction m ∈ {0.0, 0.1, 0.2, 0.3}
of values is set missing for the variables X2,
X4 and X5. The number of observations that
contain at least one missing value is given by
1 − (1 − %missing)nvariables . Thus, a dataset that
contains three variables with 30% missing values
includes 1− (1− 0.3)3 = 65.7% incomplete obser-
vations on average. This seems to be a rather huge
amount though it is not unlikely for real life data.
Therefore, m comprises a wide range of possible
scenarios.

In the MAR setting, the probability for missing
values in a variable depended on the values of an-
other variable. In the MNAR scheme this proba-
bility was determined by a variables own values.
Accordingly, each variable that contained missing
values had to be linked to at least one other vari-
able or itself. Table 1 lists the corresponding re-
lations.

Table 1: List of variables that contain missing values
determine the probability of missing values.

contains missing values determines missing values

(MCAR, MAR & MNAR) (MAR) (MNAR)

X2 X1 X2

X4 X2 X4

X5 X6 X5

The schemes to produce missing values are:

– MCAR: Values are randomly replaced by
missing values.

– MAR(rank): The probability of a value to
be replaced by a missing value rises with the
rank the same observation has in the deter-
mining variable.

– MAR(median): The probability of a value to
be replaced by a missing value is nine times
higher for observations whose value in the de-
termining variable is located above the cor-
responding median.

– MAR(upper): Those observations with the
highest values of the determining variable are
replaced by missing values.

– MAR(margins): Those observations with the
highest and lowest values of the determining
variable are replaced by missing values.

– MNAR(upper): The highest values of a vari-
able are set missing.

An independent test dataset served the purpose to
evaluate the predictive accuracy of a Random For-
est. It was created the same way as the training data
though it contained 5000 observations and was com-
pletely observed. The accuracy was assessed by the
mean squared error (MSE) which equals the misclassi-
fication error rate (MER) in classification problems.

In summary, there were 2 response types in-
vestigated for 6 processes to generate and 3 pro-
cedures to handle 4 different fractions of miss-
ing values. This sums up to as much as 144
simulation settings. The simulation was repeated
1000 times. Corresponding R-Code is available
online at http://www2.imse.med.tu-muenchen.de/

r-code/hapfelmeier/RF_VI_missingData.r .

5 Results

The following investigations are based on the classifi-
cation analysis. Results for the regression problem are
presented as supplementary material in section A (cf.
Figure 5) as they showed similar properties.

A general finding which holds for each analysis ac-
centuates the well-known fact that unconditional per-
mutation importance measures rate the relevance of
correlated variables higher than that of uncorrelated
ones (cf. Strobl et al., 2008). This becomes evident by
the example of variables 1, 2 and 5. Although they
are of equal strength the latter is assigned a lower rel-
evance as it is uncorrelated to any other predictor; in
some research fields this effect is appreciated to un-
cover relations and interactions among variables (cf.
Nicodemus et al., 2010; Altmann et al., 2010). Also,
there were no artificial effects observed for the non-
influential variables in any analysis setting.

Findings for the new variable importance measure
which is able to implicitly deal with missing values
are displayed by Figure 1. According to expectations,
the importance of variables 2, 4 and 5 decreased as
they contained a rising amount of missing values. It
is interesting to note that meanwhile the importance
of variable 1 rose, although it does not seem to be
directly affected. However, Hapfelmeier et al. (2012)
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showed that this gain of relevance is justified: variables
that are correlated and therefore provide similar infor-
mation replace each other in a Random Forest when
some of the information gets lost due to missing val-
ues. Accordingly, variable 1 takes over for variable 2
which reflects in an increased selection frequency of
variable 1 in the tree building process. In conclusion,
this approach is allowed to be affected by the occur-
rence of missing values as it mirrors the situation at
hand, i.e. the relevance a variable takes in a Random
Forest under consideration of the information it actu-
ally provides. The new importance measure appeared
to be well suited for any of the missing data generating
processes as results did not differ substantially.

Results for the complete case analysis – given by
Figure 2 – showed undesired effects. A rising amount
of missing values lead to a decreased importance of
the complete variable 1. This is due to the simple
fact that some observations are completely discarded
from analysis; importance measures typically diminish
when Random Forests are fit to less data. However,
its importance is not supposed to drop below that of
variable 2 which is of equal strength yet contains the
missing values. Unfortunately, this latter effect can
be observed for every missing data generating process,
except for MNAR(upper). It is most pronounced for
MAR(upper) and MAR(margins). There is no ratio-
nal justification for this property as variable 1 sustains
its information while other variables loose it. A proper
evaluation of a variables relevance is supposed to re-
flect this fact. Considering this vulnerability of com-
plete case analysis to different missing data generating
processes it should not be used for the assessment of
importance measures when there is missing data.

An examination of Figure 3 reveals that multiple im-
putation – with only as few as five imputed data sets
– is a convenient way to maintain and recover the im-
portance of variables that would have been observed
if there was no missing data at all. This equally held
for variables that contained missing values and those
which were completely observed; none of their impor-
tances was arbitrarily decreased or increased. Even the
importance of variable 5 which is only related to the
outcome and therefore is associated with a rather weak
imputation model remained unaffected by the amount
of missing values. The example of variable 4 shows
that the imputation of non-influential variables did not
induce artificial importances. All missing data gener-
ating processes showed these advantageous properties,
except for the MNAR(upper) setting.

The prediction error produced by each approach for
the independent test sample is displayed in Figure
4. For multiple imputation the prediction accuracy
only slightly decreases with a rising amount of miss-
ing values. This effect is more pronounced for Ran-
dom Forests that use surrogate splits; though there
are only minor differences to multiple imputation (cf.
Rieger et al., 2010; Hapfelmeier et al., 2011, for ac-
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Figure 4: MSE observed for the classification problem
(m = % of missing values in X2, X4 and X5).

cording findings). Complete case analysis appears to
be much worse and leads to very high errors with a
rising fraction of missing values. Missing data gener-
ating processes are comparable within each approach.
However, there is one exception for the MNAR setting
that always causes the worst results. A corresponding
evaluation of the regression problem is given as sup-
plementary material in section A (cf. Figure 6).

6 Conclusion

The ability of a new importance measure, complete
case analysis and a multiple imputation approach to
produce reasonable estimates for a variables impor-
tance in Random Forests has been investigated for
the case of data that contains missing values. There-
fore, an extensive simulation study that employed sev-
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Figure 1: Median variable importance observed for the new importance measure in the classification problem
(m = % of missing values in X2, X4 and X5).
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Figure 2: Median variable importance observed for the complete case analysis in the classification problem
(m = % of missing values in X2, X4 and X5).
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Figure 3: Median variable importance observed for the imputed data in the classification problem (m = % of
missing values in X2, X4 and X5).

eral MCAR, MAR and MNAR processes to generate
missing values has been conducted. There are some
clear recommendations for application: Inappropriate
results have been found for the complete case analy-
sis in the MAR settings; it penalized the importance of
variables that were completely observed in an arbitrary
way. As a consequence the sequence of importances
was not able to reflect the true relevance of variables
any more. This approach is not recommended for ap-
plication to real life data. By contrast the new im-
portance measure was able to express the loss of infor-
mation exclusively for variables that contained missing
values. Therefore, it should be used to describe the rel-
evance of a variable under consideration of its actual
information. In some cases one might prefer to investi-
gate the relevance a variable would have taken if there
had been no missing values. Multiple imputation ap-
peared to serve this purpose very well except for the
MNAR setting. An additional evaluation of predic-
tion accuracy revealed that Random Forests that base
on multiple imputed data were mostly unaffected by
the occurrence of missing values. Results were only
slightly worse when surrogate splits were used. Com-
plete case analysis lead to models with the lowest pre-
diction strength.
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A Supplementary Material

Figure 5 displays median importance measures ob-
served for the regression problem.
Figure 6 displays the evaluation of prediction error for
the regression problem.

B Computational Details

The R system for statistical computing (R Develop-
ment Core Team, 2011, version 2.14.1) was used to
implement the simulation study. The package party

(Hothorn et al., 2008, version 1.0) provides unbiased
Random Forests based on conditional inference by the
function cforest(). Its settings were chosen to fit
ntree = 50 trees. Each node was determined from
mtry = 3 randomly selected variables and backed by
maxsurrogate = 3 surrogate splits. There were no re-
strictions on the significance of a split (mincriterion =
0) and trees were grown until terminal nodes con-
tained less than minsplit = 20 observations while child
nodes had to contain at least minbucket = 7 observa-
tions. MICE is given by the function mice() of the
package mice (van Buuren and Groothuis-Oudshoorn,
2010, version 2.11). It was used to produce five im-
puted datasets. A normal linear model was applied to
impute continuous variables, a logistic regression for
binary variables and a polytomous regression for vari-
ables with more than two categories; defaultMethod =
c(”norm”, ”logreg”, ”polyreg”). Each variable con-
tributed to the imputation models. The fraction of
imputed data is approximately 1 − (1 − m)3, m ∈
{0.0, 0.1, 0.2, 0.3}. The computation of permutation
importance measures was performed by the function
varimp() for the complete case analysis and multi-
ple imputation. The new importance measure was im-
plemented following the principles described in section
3.2.
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Figure 6: MSE observed for the regression problem
(m = % of missing values in X2, X4 and X5).
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(a) new importance measure
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(b) complete case analysis
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(c) multiple imputation

Figure 5: Median variable importance observed for the regression problem (m = % of missing values in X2, X4

and X5).
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