

Paul Schmidt

Automatische Segmentierung von zerebralen Läsionen auf multiplen MR-Bildern bei der Multiplen Sklerose

Diplomarbeit Institut für Statistik, LMU München Betreuung: Prof. Dr. Volker Schmid

04. August 2010

Danksagung

An dieser Stelle möchte ich den Menschen danken, die mich auf dem Weg zu dieser Arbeit tatkräftig unterstützt haben. Ganz besonderen Dank gilt dabei meiner Familie, in erster Linie meiner Mutter und meinem Vater, ohne deren Unterstützung in sämtlichen Lebenslagen ich das Studium der Statistik nicht in dieser Form hätte führen können. Außerdem danke ich Prof. Dr. Volker Schmid für eine sehr angenehme und flexible Betreuung sowie für den sehr hilfreichen methodischen Input. Ganz herzlich möchte ich mich auch bei Herrn PD. Dr. Mark Mühlau und Herrn Dr. Milan Arsic der Neurologischen Klinik und Poliklinik der Technischen Universität München für die Verfügbarkeit und Aufbereitung klinischer Daten sowie der Beantwortung von Fragen rund um die Multiple Sklerose bedanken. Ein allgemeines Danke gilt natürlich auch meinen Freunden, die mich während des Studiums begleitet haben.

Zusammenfassung

Die Multiple Sklerose ist eine chronisch-entzündliche Erkrankung des zentralen Nervensystems. Aufgrund der sehr heterogenen Symptome dieser Krankheit hat sich die Magnetresonanztomographie (MRT) als unverzichtbares Instrument bei der Diagnose dieser Erkrankung erwiesen. Mit ihr ist es möglich, typische Entmarkungsherde in den Gehirnen von Patienten der Multiplen Sklerose zu erkennen. Da die manuelle Lokalisierung und Segmentierung dieser Läsionen stark von dem durchführenden Experten abhängt, sind automatische Ansätze für die Segmentierung Gegenstand aktueller Forschung. Die vorliegende Arbeit stellt einen neuen Ansatz zur Segmentierung zerebraler Läsionen vor. Kern dieses Ansatzes ist ein Bayesianisch-hierarchisches finites Mischmodell. Die Intensitäten multipler MRT-Bilder können dabei entweder durch multivariate Normal- oder t-Verteilungen modelliert werden. Mithilfe eines Markov-Zufallsfeldes wird die Schätzung regularisiert und bei Bedarf durch einen Gehirn-Atlas stabilisiert. Für die Schätzung des Modells wird von Markov-Chain-Monte-Carlo-Methoden Gebrauch gemacht.

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	g	1
	1.1	Magne	etresonanztomographie	1
		1.1.1	Funktionsweise	1
		1.1.2	Sequenzen	2
	1.2	Multij	ple Sklerose	4
		1.2.1	Epidemiologie	4
		1.2.2	Krankheitsverlauf	5
		1.2.3	Diagnose	6
	1.3	Segme	entierungsansätze	7
2	Mo	dell		10
	2.1	Grund	lmodell	11
	0.0			
	2.2	Model	llierung der Intensitäten	13
	2.2	Model 2.2.1	llierung der Intensitäten	$\frac{13}{15}$
	2.2	Model 2.2.1 2.2.2	llierung der Intensitäten	13 15 18
	2.2	Model 2.2.1 2.2.2 Model	llierung der Intensitäten Modellierung durch multivariate Normalverteilungen Modellierung durch multivariate t-Verteilungen Ilierung der Klassenwahrscheinlichkeiten	13 15 18 21
	2.2	Model 2.2.1 2.2.2 Model 2.3.1	llierung der Intensitäten Modellierung durch multivariate Normalverteilungen . Modellierung durch multivariate t-Verteilungen Ilierung der Klassenwahrscheinlichkeiten Nachbarschaftssystem	 13 15 18 21 22
	2.2	Model 2.2.1 2.2.2 Model 2.3.1 2.3.2	llierung der Intensitäten Modellierung durch multivariate Normalverteilungen . Modellierung durch multivariate t-Verteilungen . Ilierung der Klassenwahrscheinlichkeiten . Nachbarschaftssystem . Markov-Zufallsfelder .	 13 15 18 21 22 23

3	Imp	lemen	tierung	30
	3.1	MZF-I	Parameterschätzung	30
	3.2	Simula	ation der Posteriori-Verteilung	35
		3.2.1	MCMC-Methoden	35
		3.2.2	Simulation	38
	3.3	Stabil	isierung durch einen Gehirn-Atlas	40
	3.4	Initial	isierung	42
	3.5	Parall	elisierung	43
4	Sch	ätzung	gen	46
	4.1	Brain	Neb-Daten	46
		4.1.1	MZF-Parameter	48
		4.1.2	Bildvorverarbeitung	49
		4.1.3	Konvergenzdiagnose	50
		4.1.4	Bildnachbearbeitung	53
		4.1.5	Evaluation	55
	4.2	Klinis	che Daten	64
		4.2.1	MZF-Parameter	64
		4.2.2	Bildvorverarbeitung	65
		4.2.3	Konvergenzdiagnose und Bildnachbearbeitung	65
		4.2.4	Evaluation	66
	4.3	Zusan	nmenfassung	71
5	\mathbf{Dis}	kussior	1 und Ausblick	72
Li	terat	urverz	zeichnis	77
\mathbf{A}	Tab	ellen ı	und Grafiken	87

Tabellenverzeichnis

4.1	Werte des maximalen SI in verschiedenen Veröffentlichungen	63
A.1	MZF-Parameter für die BrainWeb-Daten	89
A.2	MZF-Parameter für die klinischen Daten	90
A.3	Segmentierung bei Normalverteilung und einprozentigem Rau-	
	schen	96
A.4	Segmentierung bei Normalverteilung und vierprozentigem Rau-	
	schen	97
A.5	Segmentierung bei Normalverteilung und dreiprozentigem Rau-	
	schen	98
A.6	Segmentierung bei Normalverteilung und vierprozentigem Rau-	
	schen	99
A.7	Segmentierung bei Normalverteilung und fünfprozentigem Rau-	
	schen	00
A.8	Segmentierung bei t -Verteilung und einprozentigem Rauschen 1	01
A.9	Segmentierung bei t -Verteilung und zweiprozentigem Rauschen 1	02
A.10	Segmentierung bei t -Verteilung und dreiprozentigem Rauschen 1	03
A.11	Segmentierung bei t -Verteilung und vierprozentigem Rauschen 1	04
A.12	Segmentierung bei t -Verteilung und fünfprozentigem Rauschen 1	05

Abbildungsverzeichnis

1.1	T_1 - und FLAIR-gewichtete MRT-Bilder	3
1.2	$T_{1}\text{-}$ und FLAIR-gewichtete MRT-Bilder eines MS-Patienten. $% T_{1}\text{-}$.	6
2.1	Schematische Darstellung der Nachbarschaftsordnungen	23
2.2	Realisierungen des MZFs	29
3.1	Der ICBM452 Gehirn-Atlas	40
3.2	Verwendungsmöglichkeiten des Gehirn-Atlas	42
3.3	Schematische Darstellung der Unabhängigkeitsstruktur	44
4.1	Ergebnisse einer Segmentierung der BrainWeb-Daten	52
4.2	Segmentierte Läsionsmaske der BrainWeb-Daten nach Bild-	
	nachbearbeitung	54
4.3	Vergleich der beiden Läsionsmasken für die BrainWeb-Daten	56
4.4	MRT-Bilder von Patient 1	67
4.5	Vergleich zweier Segmentierungen für Patient 2	69
A.1	Simulierte BrainWeb-Daten	88
A.2	Konvergenzdiagnose für die BrainWeb-Daten	91
A.3	Lage- und Streuungsmaße für die Segmentierung der BrainWeb-	
	Daten	92
A.4	Optischer Vergleich einer Segmentierung mit Läsionsmasken .	93

A.5	Similarity Index für Maske 1 bei Normalverteilung 94
A.6	Similarity Index für Maske 2 bei Normalverteilung 94
A.7	Similarity Index für Maske 1 bei t-Verteilung 95
A.8	Similarity Index für Maske 2 bei t-Verteilung 95
A.9	Vergleich der Energiefunktionen für Patient 1
A.10	Vergleich der Energiefunktionen für Patient 1 nach Bildnach-
	bearbeitung
A.11	Segmentierung ohne Gehirn-Atlas für Patient 2
A.12	Segmentierung mit Gehirn-Atlas für Patient 2
A.13	Streudiagramme der Intensitäten von Patient 1 und 2 110
A.14	Segmentierungsergebnisse für Patient 3
A.15	Streudiagramme der Intensitäten von Patient 3 und 4 112
A.16	Segmentierungsergebnisse für Patient 4

Kapitel 1

Einleitung

Dieses Kapitel soll eine kurze Einführung in die Magnetresonanztomographie und Multiple Sklerose liefern. Außerdem wird ein Überblick über bereits verfügbare Segmentierungsansätze gegeben.

1.1 Magnetresonanztomographie

Anfang der 1970er Jahre entwickelt, stellt die Magnetresonanztomographie (MRT) heute eine der wichtigsten medizinischen Bildgebungsverfahren dar. Die folgenden Ausarbeitungen zur MRT orientieren sich inhaltlich an McRobbie et al. (2007) und Freitag et al. (2000).

1.1.1 Funktionsweise

Herzstück eines jeden MRT-Geräts ist ein starkes statisches Magnetfeld. Betritt ein Proton dieses Magnetfeld, so richtet sich das magnetische Moment dieses Protons entlang des Magnetfeldes aus. Für gewöhnlich wird das Verhalten von Wasserstoff untersucht, da es zwischen 75 und 80 % des menschlichen Organismus ausmacht und somit in jeder interessierenden Gewebeart gefunden werden kann. Nachdem sich das magnetische Moment der Wasserstoffprotone entlang dem statischen Magnetfeld ausgerichtet hat, wird ein weiteres hochfrequentes Wechselfeld eingeschaltet. Dieses sorgt dafür, dass sich das magnetische Moment der Protonen von dem statischen Magnetfeld entfernt. Setzt das Wechselfeld wieder aus, so richtet sich das magnetische Moment des Protons wieder entlang des statischen Magnetfeldes aus. Die Zeit, die für die Wiederausrichtung benötigt wird, die so genannte Relaxation, unterscheidet sich nach Gewebeart und kann gemessen werden.

1.1.2 Sequenzen

Man kann zwei verschiedene Arten von Relaxationen messen; zum einen die Zeit, die benötigt wird, bis sich das magnetische Moment des Protons entlang dem statischen Magnetfeld parallel ausrichtet. Diese Relaxation wird als T_1 -Zeit und die Bilder, die mit dieser Methode gewonnen werden, dementsprechend als T_1 -gewichtete MRT-Bilder bezeichnet. Bei diesen Bildern lassen sich unterschiedliche Gewebearten durch ihren starken Kontrast leicht abgrenzen. Flüssigkeiten erscheinen in der Regel weniger signalstark (hypointens) als festes Gewebe. Zum anderen kann die Zeit gemessen werden, die das Proton benötigt, um sich senkrecht zu dem Magnetfeld auszurichten. Diese Zeit wird als T_2 -Zeit bezeichnet und führt demzufolge zu T_2 -gewichteten MRT-Bildern. In T_2 -Sequenzen sind vor allem Flüssigkeiten sehr signalreich und erscheinen somit heller (hyperintens) als normales Gewebe. Neben den Ralaxationen wird oft die Dichte der Wasserstoffprotonen gemessen, was zu PD-gewichteten Bildern führt (PD, engl. proton density). Diese Bilder verfügen über einen eher geringen Kontrast zwischen den einzelnen Gewebearten und Flüssigkeiten.

Neben T_1 -, T_2 - und PD-gewichteten MRT-Bildern ergeben sich weite-

Abbildung 1.1: Craniale MRT-Bilder des gleichen Schädels. Erste Reihe: T_1 gewichtete Sequenz (TR = 9, TE = 4). Zweite Reihe: FLAIR-gewichtete Sequenz ($TR = 10^4 \text{ ms}, TE = 140 \text{ ms}, TI = 2.750 \text{ ms}$).

re Sequenzen durch Variation bestimmter Parameter. Zu diesen Parametern gehören die Zeit zwischen den Messungen (engl. repetition time, TR), die Echo-Zeit (engl echo time, TE) und die Inversionszeit (engl inversion time, TI), jeweils in Millisekunden (ms). Eine in diesem Zusammenhang bedeutende MRT-Sequenz stellt die Fluid-Attenuated-Inversion-Recovery-Sequenz (FLAIR) dar. Hierbei werden die Signale von Flüssigkeiten bei T_2 gewichteten Bildern unterdrückt, sodass sie gegenüber normalem Gewebe hypointens dargestellt werden.

Abbildung 1.1 zeigt T_1 - und FLAIR-gewichtete MRT-Bilder der gleichen Person. Man kann sehr gut erkennen, dass die weiße Masse (WM) des Gehirns in T_1 gewichteten Bildern hyperintens dargestellt wird. Die Cerebrospinalflüssigkeit (engl. *cerebrospinal fluid*, CSF), die sich am Rand und in den lateralen Ventrikeln des Gehirns befindet, weist eine sehr schwache Signalstärke auf, ist als hypointens. Die graue Masse (GM) befindet sich von der Signalstärke zwischen der WM und CSF. In den FLAIR-gewichteten Bildern verhält es sich zwischen der WM und GM gerade andersherum: die GM erscheint am signalreichsten, die WM etwas schwächer. Die CSF ist auch hier hypointens. Die kontraststarke Abgrenzung der CSF von den anderen Gewebearten in beiden Sequenzen ist der Grund, warum der in dieser Arbeit vorgestellte Segmentierungsansatz zunächst nur auf die Kombination von T_1 und FLAIR-gewichteten Bildern angewandt wird.

Meist ist man in der Lage, aus einzelnen MRT-Schichten dreidimensionale MRT-Bilder (3D-MRT-Bilder) zu erstellen. Die Elemente dieser Bilder sind keine zweidimensionalen Bildelemente (Pixel), sondern dreidimensionale Volumenelemente (Voxel). Ziel dieser Arbeit ist die Klassifikation dieser Voxel eines 3D-MRT-Bildes des Gehirns bei Patienten der Multiplen Sklerose.

1.2 Multiple Sklerose

Multiple Sklerose (MS) ist eine chronisch-entzündliche Erkrankung des zentralen Nervensystems (ZNSs), deren Ursache noch immer ungeklärt ist und auf dessen Konto die meisten frühzeitigen Behinderungen junger Erwachsener gehen (Sellner et al., 2010).

1.2.1 Epidemiologie

Die folgenden Angaben zur Epidemiologie der MS stützen sich auf den MS Atlas der WHO (Dua et al., 2008). Die mediane Prävalenz der WHO-Daten beträgt 30 Patienten pro 100.000 Einwohner. Da die Zahlen von Kontinent zu Kontinent stark variieren und größere Prävalenzen tendenziell häufiger in Ländern beobachtet werden, die weit vom Äquator entfernt liegen, rücken neben Umwelteinflüssen auch genetische und ethnische Faktoren in den Fokus wissenschaftlicher Untersuchungen. Die Bundesrepublik Deutschland rangiert mit 149 MS-Erkrankten pro 100.000 Einwohner auf Platz drei der Prävalenzstatistik der WHO. Das Risiko, an MS zu erkranken, ist für junge Erwachsene am höchsten. Das Durchschnittsalter für den Ausbruch einer MS-Erkrankung beziffert die WHO auf 29,2 Jahre, wobei der Interquartilsabstand von 25,3 bis 31,8 Jahre reicht. Das Verhältnis zwischen erkrankten Männern und Frauen reicht weltweit von 0,4 bis 0,67, mit einem Median von 0,5. Damit weisen Frauen ein ungefähr doppelt so hohes Risiko auf, an MS zu erkranken, als Männer.

1.2.2 Krankheitsverlauf

Bei den meisten Patienten liegt ein schubförmiger Verlauf der Krankheit vor (vgl. Grossman und McGowan (1998)). In einem solchen Fall treten Perioden mit typischen Symptomen der MS auf, von denen sich der Patient oft wieder erholt. Man spricht dann von einer remittierenden MS. Die Anzahl und Länge dieser Schübe sowie die Zeit, bis ein neuer Schub einsetzt, variieren stark von Patient zu Patient. Die während der Schübe auftretenden Symptome sind äußerst heterogen und hängen von der Lokalisation der Entmarkungsherde ab, die durch die Demyelisation, d.h. der Zerstörung der Myelinscheide – der Schutzhülle der Nervenzellen im Gehirn – entstehen. Eine Diagnose der Erkrankung einzig und allein durch ihre Symptome ist damit nicht möglich (Crayton et al., 2004).

Mit zunehmendem Fortschreiten der Erkrankung ist es wahrscheinlicher, dass sich neurologische Defizite nicht wieder voll zurückbilden, so dass dann von Schüben mit inkompletter Remission gesprochen wird. Darüber hinaus kommt es – zumeist erst nach Jahren – auch unabhängig von den Schüben zu einem langsamen kontinuierlichen (nicht schubförmigen) Fortschreiten der Behinderung. Dies ist dann der Übergang in die sekundäre Progression (se-

Abbildung 1.2: Craniale MRT-Bilder des gleichen MS-Patienten nach Entfernung des Schädels. Erste Reihe: T_1 -gewichtete Sequenz (TR = 9, TE = 4). Zweite Reihe: FLAIR-gewichtete Sequenz ($TR = 10^4, TE = 140, TI = 2.750$).

kundär progrediente MS). Sollten die neurologischen Defizite bereits von Beginn an langsam fortschreiten, ohne dass Schübe abgegrenzt werden können, liegt eine primär progrediente MS vor.

1.2.3 Diagnose

Die von McDonald et al. (2001) veröffentlichten Kriterien stellen die Grundlage einer modernen MS-Diagnose dar, wenn bereits ein erster Schub mit MS-typischem Syndrom – das sog. klinisch-isolierte Syndrom (KIS) – beobachtet wurde. Diese Kriterien wurden verschiedenen Überarbeitungen unterzogen, so beispielsweise in Polman et al. (2005). In Abwesenheit eines zweiten Schubes kann demnach eine MS diagnostiziert werden, falls mehrere Entmarkungsherde (Läsionen) auf kranialen MRT-Bildern entdeckt werden. Abbildung 1.2 zeigt FLAIR- und T_1 - gewichtete MRT-Bilder eines MS-Patienten. Man kann sehr gut erkennen, dass Läsionen in T_1 gewichteten Bildern hypointens, in FLAIR gewichteten Bildern dagegen hyperintens erscheinen. Sollten zerebrale Läsionen bei einem Patienten ohne KIS als Zufallsbefund vorliegen, räumlich streuen und können als Ursache andere neurologische Erkrankungen ausgeschlossen werden, so spricht man von einem radiologischisoliertem Symptom (RIS). Wie Sellner et al. (2010) zeigen, ist das Vorliegen eines RIS als mögliches Vorstadium zum Erstereignis einer MS einzustufen.

Neben der Diagnosefunktion erfüllt die MRT eine weitere wichtige Rolle bei der Therapie der MS. So können beispielsweise Größe und Position von Läsionen über einen längeren Zeitpunkt beobachtet werden um eine auf den Grad der Erkrankung abgestimmte Therapie zu ermöglichen.

Die Erkennung und Segmentierung der Läsionen ist eine aufwendige Prozedur und kann eine große Variation zwischen verschiedenen Experten, welche die Segmentierung durchführen, aufweisen. Aus diesem Grund scheint eine automatische, computergesteuerte Extraktion der Läsionen wünschenswert. Hinzu kommt, dass die Größe und Form der Läsionen in den verschiedenen MRT-Sequenzen unterschiedlich dargestellt werden (vgl. Abbildung 1.2). Dieser Sachverhalt rechtfertigt die Einbeziehung mehrerer MRT-Sequenzen bei der Lokalisation von MS-Läsionen.

1.3 Segmentierungsansätze

In der Literatur finden sich seit Ende der 1990er Jahre vermehrt Methoden für die Segmentierung von MS-Läsionen. Im Folgenden soll ein kurzer Überblick über bisher existierende Segmentierungsansätze von MS-Läsionen gegeben werden. Dieser Abschnitt beschränkt sich dabei auf eine kleine Anzahl von Ansätzen und erhebt keinen Anspruch auf Vollständigkeit.

Die Arbeiten von van Leemput et al. (1999a,b) mündeten in einen Segmentierungsansatz für T_1 -, T_2 - und PD-Sequenzen durch Ausreißererkennung (van Leemput et al., 2001). Herzstück dieses Ansatzes bildet ein EM-Algorithmus in Kombination mit einem Markov-Zufallsfeld (vgl. Abschnitt 2.2.1 und 2.3.2). In jeder Iteration des EM-Algorithmus wird für jeden Voxel der Glaube berechnet, zu einer Klasse von Ausreißern zu gehören. Zusätzliche Restriktionen der Intensitäten erlauben dann Läsionen von anderen, dunklen Ausreißern zu trennen.

In der Arbeit von Dugas-Phocion et al. (2004) wird die Information mehrer MRT-Sequenzen (T_1 , T_2 , PD und FLAIR) auf einer hierarchischen Art und Weise zur Segmentierung von MS-Läsionen benutzt. Zuerst wird mit Hilfe aller Sequenzen und des EM-Algorithmus eine Klassifizierung aller Voxel in die Klassen CSF, GM, WM und Ausreißer durchgeführt. Die gesuchten MS-Läsionen werden bei dieser Einteilung der CSF zugeordnet. Damit die Läsionen aus dieser Gruppe extrahiert werden können wird für die FLAIR-Sequenz eine Ausreißerbetrachtung basierend auf der Mahalanobis-Distanz durchgeführt. Dabei ist eine sensible Wahl eines Grenzwertes nötig und missklassifizierte Voxel werden mit Hilfe eines digitalen Gehirn-Atlas (vgl. Abschnitt 3.3) eliminiert.

Khayati et al. (2008) benutzen für die Schätzung der Dichtefunktion der Intensitäten von FLAIR-Sequenzen ein adaptives Mischmodell (AMM, Titterington (1984); Priebe und Marchette (1991); Priebe (1994)). Dabei ist die Anzahl der Komponenten des Mischmodells unbeschränkt, jedem Voxel kann prinzipiell eine eigene Normalverteilung zugeteilt werden. Durch Abstandsbetrachtungen mit der Mahalanobis-Distanz werden die Normalverteilungen zusammengefasst, sodass letztendlich ein Mischmodell mit einer großen Anzahl an Mischkomponenten resultiert. Die so geschätzten Mittelwerte werden anschließend mit Hilfe zweier Grenzwerte in drei Klassen aufgeteilt wodurch eine Klassifizierung der Voxel in drei Klassen resultiert. Für diese werden wiederum separate adaptive Mischmodelle geschätzt und mit Hilfe eines Markov-Zufallsfeldes neue Grenzen für die weitere Klassifikation bestimmt. Die Verallgemeinerung dieses Ansatzes auf multiple MRT-Sequenzen ist nicht so leicht möglich, wie es die Autoren darstellen. Die zweidimensionale Abstandsbetrachtung, die zur Klassifikation der FLAIR-Bilder in die drei Klassen benötigt wird, kann nicht einfach auf den mehrdimensionalen Fall übertragen werden.

Prastawa und Gerig (2008a) schätzen die Dichtefunktionen der Intensitäten der CSF, GM und WM von T_1 -, T_2 - und FLAIR-Sequenzen einzig und allein durch einen digitalen Gehirn-Atlas. Läsionen werden wiederum als Ausreißer durch die Mahalanobis-Distanz erkannt. Anstatt anschließend jeden Voxel einer bestimmten Klasse zuzuordnen, werden Regionen von Voxel gebildet, welche die Kullback-Leibler-Distanz zwischen benachbarten Regionen maximieren. Die so gebildeten Regionen werden klassifiziert und anschließend wird über obige Schritte iteriert.

In den folgenden Kapiteln wird eine neue Methode basierend auf einem Bayesianisch-hierarchischen Modell zur Segmentierung von Läsionen der MS auf multiplen MRT-Bildern vorgestellt. Während Kapitel 2 das verwendete Modell erläutert, geht Kapitel 3 genauer auf einzelne Aspekt der Implementierung ein. Anschließend wird die vorgestellte Methode in Kapitel 4 an simulierten und echten MRT-Bildern angewandt und evaluiert. Eine abschließende Diskussion des Ansatzes findet in Kapitel 5 statt.

Kapitel 2

Modell

Bevor auf die genaue Modellierung des vorgestellten Ansatzes eingegangen werden kann, soll die verwendete Notation erläutert werden.

Der Zufallsvektor der Intensitäten wird durch $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_n)$ zusammengefasst, wobei n die Anzahl der Voxel eines 3D-MRT-Bildes und \mathbf{Y}_i die Intensitäten von Voxel i aller d Modalitäten darstellt:

$$Y_i = (Y_{i1}, \dots, Y_{id}), \quad i = 1, \dots, n.$$

Eine Realisierung von \boldsymbol{Y} wird durch $\boldsymbol{y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n)$ mit $\boldsymbol{y}_i = (y_{i1}, \dots, y_{iD})$, $i = 1, \dots, n$, beschrieben. Der Zufallsvektor $\boldsymbol{X} = (X_1, \dots, X_n)$ enthält die latenten Klassenvariablen, wobei alle Variablen in \boldsymbol{X} als Träger die Menge aller möglichen Klassen bzw. Label $\mathcal{L} = \{1, \dots, K\}$ besitzen. Eine Realisierung von $\boldsymbol{X}, \, \boldsymbol{x} = (x_1, \dots, x_n)$, beschreibt damit die Klassen- oder Labelkonfiguration der n Voxel. Die Menge aller möglichen Klassenkonfigurationen wird mit \mathcal{X} bezeichnet. Die folgenden Ausführungen orientieren sich methodisch unter anderem an den Arbeiten von Zhang et al. (2001); van Leemput et al. (1999a, 2001) und Feng und Tierney (2009).

2.1 Grundmodell

Ziel des vorgestellten Ansatzes ist die Segmentierung der Voxel von multiplen 3D-MRT-Bildern des Gehirns in die vier Klassen Cerebrospinalflüssigkeit (engl. *cerebrospinal fluid*, CSF), graue Masse (GM), weiße Masse (WM) und Läsionen. Damit besteht \mathcal{L} aus vier Elementen:

$$\mathcal{L} = \{ \operatorname{csf}, \operatorname{gm}, \operatorname{wm}, \operatorname{les} \}.$$

Diese Segmentierung ist mit einer Klassifizierung aller Voxel bei Vorliegen der Intensitäten dieser Voxel gleichzusetzen. Formuliert man dieses Klassifikationsproblem Bayesianisch, so wird bei Kenntnis der MRT-Bilder \boldsymbol{y} eine passende Klassenkonfiguration $\boldsymbol{x} \in \mathcal{X}$ gesucht. Dabei bildet die *Posteriori-Verteilung* die Grundlage. Sie beschreibt die Verteilung der Klassenkonfiguration, wenn die Intensitäten der MRT-Bilder bereits beobachtet wurden, also die bedingte Verteilung von \boldsymbol{x} bei gegebenen Intensitäten $\boldsymbol{y}, p(\boldsymbol{x}|\boldsymbol{y})$. Nach dem Satz von Bayes kann die Posteriori-Verteilung berechnet werden als

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})}{p(\boldsymbol{y})}.$$
(2.1)

Dabei bezeichnet $p(\boldsymbol{y}|\boldsymbol{x})$ die Verteilung der Intensitäten bei bekannter Klassenkonfiguration \boldsymbol{x} und $p(\boldsymbol{x})$ die Priori-Verteilung von \boldsymbol{x} . Der Nenner in Gleichung (2.1) stellt die unbedingte Verteilung der Intensitäten dar und dient als Normierungskonstante. Da sie nicht von \boldsymbol{x} abhängt, kann diese im Folgenden vernachlässigt werden. Gleichung (2.1) reduziert sich damit auf das Produkt der Likelihood der Intensitäten und der Priori-Verteilung der Klassenkonfiguration:

$$p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x}).$$
 (2.2)

Häufig wird die Priori-Verteilung $p(\boldsymbol{x})$ in Gleichung (2.2) als die Information über \boldsymbol{x} vor der Datenerhebung interpretiert. Zusammen mit den beobachteten Daten \boldsymbol{y} findet dann eine Aktualisierung dieser Information statt. Diese Interpretation ist auch als *Bayesianisches Lernen* bekannt. Überträgt man diese Interpretation der Priori-Verteilung auf die Segmentierung von MRT-Bildern, so hieße das, dass man bereits vor Aufnahme der Bilder Informationen darüber hat, mit welcher Wahrscheinlichkeit jeder Voxel einer der vier postulierten Klassen zugeordnet werden kann. Dies ließe sich beispielsweise mit einem Gehirn-Atlas, d.h. einer Art Wahrscheinlichkeitskarte für die drei Gewebearten CSF, GM und WM, wie sie unter anderem in Mazziotta et al. (2001) und Mazziotta et al. (1997) präsentiert werden, umsetzen. Die Beachtung einer solchen Priori-Information kann die Segmentierung von MRT-Bildern des Gehirns stabilisieren, würde allerdings die Präsenz von Anomalien wie Läsionen oder eine besondere Form des zu analysierenden Gehirns nicht berücksichtigen.

Auf welche Art und Weise die Priori-Verteilung und die Verteilung der Intensitäten Bayesianisch-hierarchisch modelliert werden können und damit Gleichung (2.2) interpretiert werden kann, ist Gegenstand der nächsten Abschnitte. Kapitel 3 beschreibt, wie die Posteriori Wahrscheinlichkeit simuliert und somit die *optimale* Klassenkonfiguration zu den vorliegenden Intenstäten bestimmt werden kann.

2.2 Modellierung der Intensitäten

Eine Standardannahme bei der Klassifikation von MRT-Bildern des Gehirns ist, dass die Intensitäten von Voxel, die der gleichen Klasse $k \in \mathcal{L}$ entstammen, unabhängig und identisch verteilt sind:

$$\boldsymbol{Y}_i | \boldsymbol{x}_i = k \stackrel{\text{\tiny iid}}{\sim} F_k^d, \quad i = 1, \dots, n.$$
(2.3)

Die Funktion F_k^d stellt zunächst eine beliebige *d*-dimensionale stetige Verteilung mit Parameter $\boldsymbol{\theta}_k$ und Dichtefunktion $p(\boldsymbol{y})$ dar, die in den nächsten Teilabschnitten näher spezifiziert wird. Meist wird vorausgesetzt, dass sich die Verteilungen F_1^d, \ldots, F_K^d nicht in ihrer Form unterscheiden, sondern die Unterschiede einzig und allein in den Parametern der Verteilungen zu finden sind, sodass $F_k^d = F^d$ für $k \in \mathcal{L}$ und $\boldsymbol{\theta} = \{\boldsymbol{\theta}_k \mid k \in \mathcal{L}\}.$

Eine weitere Annahme setzt voraus, dass auch Intensitäten verschiedener Klassen bei Kenntnis der Klassenzugehörigkeit als unabhängig angesehen werden. Damit ergibt sich die bedingte Verteilung der Intensitäten bei gegebener Klassenkonfiguration als finites Mischmodell der Form

$$p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) = \prod_{i=1}^{n} \sum_{k \in \mathcal{L}} p(\boldsymbol{y}_{i}|\boldsymbol{\theta}_{k}) \pi_{k}.$$
 (2.4)

Der Faktor $\pi_k = p(x_i = k)$ bezeichnet dabei den Anteil der k-ten Mischkomponente. Für die Anteile gilt $\pi_k > 0, \ k \in \mathcal{L}$ und $\sum_{k \in \mathcal{L}} \pi_k = 1$.

Gegen die Annahme der unabhängig und identisch verteilten Intensitäten in (2.3) kann man diverse Einwände hervorbringen. So kann man sich vorstellen, dass Voxel an der Grenze zweier Klassen durchaus andere Intensitäten als Voxel in der Mitte dieser Gebiete aufweisen. Dieses Problem verstärkt sich bei MRT-Bildern mit geringer Auflösung, da mit zunehmender Voxel-

größe davon ausgegangen werden muss, dass sich die Intensität dieses Voxels aus einer Mischung mehrerer Gewebearten zusammensetzt. In der Literatur werden verschiedene Möglichkeiten vorgeschlagen, diesem partial volume effect zu begegnen (vgl. beispielsweise Müller-Gärtner et al. (1992); Angel González Ballester et al. (2002) und Feng und Tierney (2009)). Der partial volume effect soll an dieser Stelle nicht weiter betrachtet werden sondern ist Gegenstand der Diskussion in Kapitel 5. Neben dem partial volume effect sind MRT-Bilder oft von einer Ungleichmäßigkeit der Intensitäten (engl intensity non-uniformity INU) betroffen (Sled und Pike, 1998). Verantwortlich für diese Ungleichmäßigkeit sind neben einzelnen Bestandteilen des MRT-Scanners oft auch Interaktionen des Magnetfeldes mit dem zu untersuchenden Objekt. Die INU kann sich dabei in unterschiedlichen Signalstärken von Voxel der gleichen Gewebeart äußern. Dieses so entstehende bias field wird durch die Annahme von identisch verteilten Intensitäten bei gleicher Klassenzugehörigkeit nicht berücksichtigt und kann zu einer instabilen Schätzung der Intensitätsparameter und Klassenzugehörigkeit führen. Neben Ansätzen, die während der eigentlichen Segmentierung das bias field schätzen (van Leemput et al., 1999b, 2001), ist es üblich, die INU der MRT-Bilder durch einen Vorverarbeitungsschritt zum größten Teil zu beseitigen (Anbeek et al., 2004; Herskovits et al., 2008). Auch für die in Abschnitt 4.2 vorgestellten Daten wurde der Segmentierung ein solcher Schritt vorangestellt. Deshalb und auf Grund der starken Vereinfachung des Segmentierungsansatzes wird an Annahme (2.3) festgehalten.

Das Rauschen von T_1 -gewichteten MRT-Bildern folgt gewöhnlich einer Rice-Verteilung (Gudbjartsson und Patz, 1995). Sollten die Werte der Intensitäten im Verhältnis zum Rauschen allerdings größer sein, d.h. ein hohes Signal-Rausch-Verhältnis aufweisen, so kann die Verteilung der Intensitäten gut durch eine Normalverteilung approximiert werden (Sijbers und den Dekker, 2004). Das ist bei den hier behandelten MRT-Bildern in der Regel der Fall. In den nächsten beiden Abschnitten werden zwei verschiedene Verteilungen für F_d vorgestellt, zum einen die multivariate Normalverteilung und zum anderen die multivariate t-Verteilung.

2.2.1 Modellierung durch multivariate Normalverteilungen

Die häufigste Wahl für die bedingte Verteilung der Intensitäten bei gegebenen Klassenzugehörigkeiten ist die multivariate Normalverteilung:

$$\boldsymbol{Y}_{i}|\boldsymbol{x}_{i} = k \stackrel{\text{iid}}{\sim} \mathcal{N}_{d}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}), \quad i = 1, \dots, n.$$

$$(2.5)$$

Hierbei steht \mathcal{N}_d für die multivariate Normalverteilung der Dimension d mit Erwartungswertvektor $\boldsymbol{\mu}_k$ und Kovarianzmatrix $\boldsymbol{\Sigma}_k$. Die bedingte Verteilung des *i*-ten Voxels aus Gleichung (2.4) hat damit die Form

$$p(\boldsymbol{y}_i|\boldsymbol{\theta}_k) = p(\boldsymbol{y}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$= (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\boldsymbol{y}_i - \boldsymbol{\mu}_k)' \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{y}_i - \boldsymbol{\mu}_k)\right\}.$$

Mit dieser Wahl von F_d zählen zu den unbekannten Parametern des Mischmodells in Gleichung (2.4) die Erwartungswertvektoren, die Kovarianzmatrizen und die Anteile der Mischkomponenten

$$\boldsymbol{\theta} = \{ (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k) \mid k \in \mathcal{L} \}.$$

Der Expectation-Maximization-Algorithmus (EM-Algorithmus, Dempster et al. (1977)) bietet eine Möglichkeit, die Komponenten von $\boldsymbol{\theta}$ anhand der Intensitäten zu schätzen. In Iteration t+1 ergibt sich eine neue Schätzung für die k-te Komponente von $\boldsymbol{\theta}$ mit Hilfe der aktuellen Schätzung $\boldsymbol{\theta}^t = \{(\boldsymbol{\mu}_k^t, \boldsymbol{\Sigma}_k^t, \pi_k^t) \mid k \in \mathcal{L}\}$ durch die Gleichungen

$$\boldsymbol{\mu}_{k}^{t+1} = \frac{\sum_{i=1}^{n} p_{ik}^{t+1} \boldsymbol{y}_{i}}{\sum_{i=1}^{n} p_{ik}^{t+1}}, \quad \boldsymbol{\Sigma}_{k}^{t+1} = \frac{\sum_{i=1}^{n} p_{ik}^{t+1} (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{k}^{t+1}) (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{k}^{t+1})'}{\sum_{i=1}^{n} p_{ik}^{t+1}}$$
$$\boldsymbol{\pi}_{k}^{t+1} = \frac{1}{n} \sum_{i=1}^{n} p_{ik}^{t+1} \quad \text{mit} \quad p_{ik} = \frac{\boldsymbol{\pi}_{k}^{t} p(\boldsymbol{y}_{i} | \boldsymbol{\mu}_{k}^{t}, \boldsymbol{\Sigma}_{k}^{t})}{\sum_{k \in \mathcal{L}} \boldsymbol{\pi}_{k}^{t} p(\boldsymbol{y}_{i} | \boldsymbol{\mu}_{k}^{t}, \boldsymbol{\Sigma}_{k}^{t})}.$$

Dieses Vorgehen stellt die Grundlage für viele existierende Algorithmen zur Segmentierung von MRT-Bildern dar, siehe auch Zhang et al. (2001) und van Leemput et al. (2001). In der vorliegenden Arbeit soll dieser Ansatz nicht verfolgt werden. Stattdessen werden die Erwartungswertvektoren und Kovarianzmatrizen als Zufallsvariablen betrachtet, denen selbst wiederum Priori-Verteilungen zugewiesen werden. Die Anteile der Mischkomponenten werden separat modelliert. Damit erweitert sich die Posteriori-Verteilung aus Gleichung (2.2) zu

$$p(\boldsymbol{x}, \boldsymbol{\theta} | \boldsymbol{y}) \propto p(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) p(\boldsymbol{x})$$
 (2.6)

mit $\boldsymbol{\theta} = \{(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \mid k \in \mathcal{L}\}.$

Wahl der Priori-Verteilungen für μ_k und Σ_k

Über die Parameter der multivariaten Normalverteilung liegen a priori nur wenig Informationen vor. Von daher ist es nahe liegend, eine nichtinformative Priori-Verteilung für die Normalverteilungsparameter zu wählen. Eine auf Grund ihrer Einfachheit oft genutzte nichtinformative Priori-Verteilung für die gemeinsame Verteilung von μ_k und Σ_k ist Jeffrey's Priori. Diese ergibt sich im Allgemeinen für einen Parametervektor $\boldsymbol{\theta}$ als

$$p(\boldsymbol{\theta}) \propto \sqrt{|I(\boldsymbol{\theta})|}.$$

Dabei bezeichnet $|I(\theta)|$ die Determinante der Fisher-Information. Im Fall der multivariaten Normalverteilung ergibt sich Jeffrey's Priori als

$$p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \propto |\boldsymbol{\Sigma}_k|^{-\frac{d+1}{2}}.$$

Um später die Posteriori-Verteilung $p(\boldsymbol{x}, \boldsymbol{\theta} | \boldsymbol{y})$ simulieren zu können, müssen unter anderem die vollständig bedingten Verteilungen für $\boldsymbol{\mu}_k$ und $\boldsymbol{\Sigma}_k$ zur Verfügung stehen. Nach Gelman et al. (2003) lassen sich diese als Grenzfall der konjugierten Priori-Verteilung herleiten. Damit ergibt sich die marginale Verteilung für $\boldsymbol{\Sigma}_k$ als

$$\boldsymbol{\Sigma}_k | \boldsymbol{y}_k \sim \mathcal{W}^{-1}(n_k - 1, \boldsymbol{S}_k).$$

Hierbei bezeichnet \boldsymbol{y}_k den Vektor der Intensitäten, die der Klasse k zugeordnet werden und n_k die Anzahl der Voxel in \boldsymbol{y}_k . \boldsymbol{S}_k ist die Summe der quadrierten Abweichungen der Intensitäten von ihrem Mittelwert

$$oldsymbol{S}_k = \sum_{j=1}^{n_k} (oldsymbol{y}_{jk} - oldsymbol{ar{y}}_k) (oldsymbol{y}_{jk} - oldsymbol{ar{y}}_k)',$$

mit $\bar{\boldsymbol{y}}_k = \sum_{j=1}^{n_k} \boldsymbol{y}_{kj}$. $\mathcal{W}^{-1}(\nu, \boldsymbol{\Phi})$ stellt die inverse Wishart-Verteilung mit ν Freiheitsgraden und Präzisionsmatrix $\boldsymbol{\Phi}$ dar. Die bedingte Verteilung von $\boldsymbol{\mu}_k$ gegeben der Kovarianzmatrix und den Intensitäten lautet

$$oldsymbol{\mu}_k | oldsymbol{\Sigma}_k, oldsymbol{y}_k \sim \mathcal{N}_d(ar{oldsymbol{y}}_k, rac{1}{n_k} oldsymbol{\Sigma}_k).$$

Von den Wahrscheinlichkeiten für die Klassenzugehörigkeiten abgesehen, sind damit alle Größen der Posteriori-Verteilung (2.6) ermittelt.

2.2.2 Modellierung durch multivariate t-Verteilungen

Eine Alternative zur multivariaten Normalverteilung stellt die multivariate t-Verteilung dar:

$$\boldsymbol{Y}_{i}|x_{i} = k \overset{\text{iid}}{\sim} t_{d}(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \nu_{k}), \quad i = 1, \dots, n.$$
(2.7)

 t_d bezeichnet hierbei die *d*-dimensionale *t*-Verteilung mit Nichtzentralitätsparameter μ_k , Kovarianzmatrix Σ_k und Anzahl der Freiheitsgraden ν_k . Die multivariate *t*-Verteilung wird oft als robuste Erweiterung zur multivariaten Normalverteilung angesehen (Lin et al., 2004; McLachlan und Peel, 1998; Peel und McLachlan, 2000; Svensén und Bishop, 2005). Die Likelihood-Funktion von \boldsymbol{y}_i bei gegebener Klassenzugehörigkeit lautet unter dieser Annahme

$$p(\boldsymbol{y}_i|\boldsymbol{\theta}_k) = p(\boldsymbol{y}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \nu_k)$$

= $\frac{\Gamma(\frac{\nu_k+d}{2})|\boldsymbol{\Sigma}_k|^{-\frac{1}{2}}}{\Gamma(\frac{\nu_k}{2})(\nu_k\pi)^{\frac{d}{2}}} \left(1 + \frac{1}{\nu_k}(\boldsymbol{y}_i - \boldsymbol{\mu}_k)'\boldsymbol{\Sigma}_k^{-1}(\boldsymbol{y}_i - \boldsymbol{\mu}_k)\right)^{-\frac{\nu_k+d}{2}}.$

Die unbekannten Parameter des so resultierenden Mischmodells sind die Nichtzentralitätsparameter, die Korrelationsmatrizen, die Anzahl der Freiheitsgrade und die Anteile der Mischkomponenten

$$\boldsymbol{\theta} = \{ (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \nu_k, \pi_k) \mid k \in \mathcal{L} \}.$$

Wie Peel und McLachlan (2000) und Lin et al. (2004, 2009) zeigen, lassen sich auch diese Parameter mit dem EM-Algorithmus bzw. mit diversen Modifikationen des EM-Algorithmus schätzen. Wie auch im vorigen Teilabschnitt beschrieben, werden die Parameter μ_k , Σ_k und ν_k hier als Zufallsvariablen betrachtet. Die Wahl der Priori-Verteilungen wird im Folgenden beschrieben.

Wahl der Priori-Verteilungen für μ_k , Σ_k und ν_k

Nach Kotz und Nadarajah (2004) kann eine multivariat-t-verteilte Zufallsvariable \boldsymbol{Y} durch die unabhängigen Zufallsvariablen \boldsymbol{Z} und $\nu \boldsymbol{S}^2/\sigma^2$ dargstellt werden:

$$Y = S^{-1}Z + \mu$$
.

Hierbei folgt Z einer multivariaten Normalverteilung mit Erwartungswertvektor **0** und Kovarianzmatrix Σ und $\nu S^2/\sigma^2$ einer χ^2 -Verteilung mit ν Freiheitsgraden. Diese Darstellung erlaubt nach Liu (2008) die Schätzung der Intensitätsparameter für Modell (2.7) nach dem folgendem Schema: Zusätzlich zu den Intensitätsparametern μ_k und Σ_k werden unabhängige Gewichte $q_i, i = 1, \ldots, n$ definiert, die einer χ^2 -Verteilung mit ν Freiheitsgraden folgen, $q_i \sim \chi^2_{\nu}/\nu$. Bedingt auf die Klassenzugehörigkeit $x_i = k$ und die Gewichte $\mathbf{q} = (q_1, \ldots, q_n)$, folgt \mathbf{y}_i einer multivariaten Normalverteilung mit Erwartungswertvektor μ_k und Kovarianzmatrix Σ_k/q_i

$$\boldsymbol{y}_i | x_i, q_i \sim \mathcal{N}_d(\boldsymbol{\mu}_k, \frac{1}{q_i} \boldsymbol{\Sigma}_k).$$
 (2.8)

Gibt man für μ_k und Σ_k die gleiche nichtinformative Priori-Verteilung wie im Fall der multivariaten Normalverteilung vor, d.h.

$$p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \propto |\boldsymbol{\Sigma}_k|^{-\frac{d+1}{2}},$$

so ergibt sich für die Kovarianzmatrix eine inverse Wishart-Verteilung als marginale Verteilung:

$$\boldsymbol{\Sigma}_k | \boldsymbol{q}_k, \boldsymbol{y}_k \sim \mathcal{W}^{-1}(q_{\cdot k}, \boldsymbol{S}_k).$$

Hierbei umfasst \boldsymbol{q}_k alle Werte von \boldsymbol{q} , die der Klasse k zugeordnet werden. \boldsymbol{S}_k ist definiert als

$$oldsymbol{S}_k = \sum_{j=1}^{n_k} q_j (oldsymbol{y}_{jk} - ilde{oldsymbol{y}}_k) (oldsymbol{y}_{jk} - ilde{oldsymbol{y}}_k)'$$

mit $\tilde{\boldsymbol{y}}_k = \frac{1}{q_{\cdot k}} \sum_{j=1}^{n_k} q_{jk} \boldsymbol{y}_{jk}$ und $q_{\cdot k}$ bezeichnet die Summe über alle Gewichte, die der Klasse k zugeordnet werden: $q_{\cdot k} = \sum_{j=1}^{n_k} q_{jk}$. Bedingt auf \boldsymbol{q}_k und $\boldsymbol{\Sigma}_k$ folgt der Erwartungswertvektor $\boldsymbol{\mu}_k$ einer multivariaten Normalverteilung:

$$\boldsymbol{\mu}_k | \boldsymbol{\Sigma}_k, \boldsymbol{q}_k, \boldsymbol{y}_k \sim \mathcal{N}_d(\tilde{\boldsymbol{y}}_k, \frac{1}{q_{\cdot k}}\boldsymbol{\Sigma}_k).$$

Die Gewichte sind bei bekannten anderen Größen unabhängig χ^2 -verteilt:

$$q_{jk}|m{\Sigma}_k,m{\mu}_k,m{y}_k\sim\chi^2_{
u+d}/[
u+(m{y}_{jk}-m{\mu}_k)'m{\Sigma}_k^{-1}(m{y}_{jk}-m{\mu}_k)]$$

Liu (2008) führt an, dass die Abhängigkeit zwischen Σ_k und q_k in den obigen Verteilungen zu hoch ist, so dass eine effektive Simulation der Größen nicht möglich ist. Stattdessen wird vorgeschlagen, einen weiteren "nuisance Parameter" einzuführen, der Σ_k und \boldsymbol{q}_k miteinander verbindet:

$$(\boldsymbol{\Sigma}_k, \boldsymbol{q}_k) \longrightarrow \gamma_k(\boldsymbol{\Sigma}_k, \boldsymbol{q}_k)$$

= $(\gamma_k \boldsymbol{\Sigma}_k, \gamma_k q_{1k}, \dots, \gamma_k q_{n_k k})$

wobe
i $\gamma_k > 0$ einer χ^2 -Verteilung folgt:

$$\gamma_k | \boldsymbol{q}_k \sim \chi^2_{n_k \nu} / (\nu q_{\cdot k})$$

Eine Alternative zu diesem Vorgehen stellt das gemeinsame Ziehen von Σ_k und \boldsymbol{q}_k dar. Dabei werden in dem in Abschnitt 3.2.1 vorgestellten Gibbs-Sampler neue Zustände für Σ_k und \boldsymbol{q}_k anhand des Metropolis-Hastings-Algorithmus generiert. Näheres dazu in Abschnitt 3.2.

Für die Anzahl der Freiheitsgrade gibt es verschiedene Vorschläge (vgl. Liu (1995)). Üblicherweise wird ν auf einen bestimmten Wert fixiert. Da die multivariate *t*-Verteilung für großes ν in eine multivariate Normalverteilung übergeht, sollte der Wert nicht zu hoch gewählt werden. Liu (2008) schlägt Werte aus dem Intervall [0; 5] vor.

2.3 Modellierung der Klassenwahrscheinlichkeiten

In den letzten Abschnitten wurde dargestellt, wie die bedingte Verteilung der Intensitäten bei gegebener Klassenzugehörigkeit modelliert werden kann. Damit ist das Beobachtungsmodell $p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta})$ und die zugehörige Priori-Verteilung $p(\boldsymbol{\theta})$ der Posteriori-Verteilung (2.6) spezifiziert. In Abschnitt 2.1 wurde bereits darauf hingewiesen, wie die Priori-Verteilung der Klassenkonfiguration $p(\boldsymbol{x})$ im Rahmen der Bayes-Inferenz als Information vor der Datenerhebung angesehen und interpretiert werden kann. Diese Sichtweise ist für das vorliegende Segmentierungsvorhaben nur bedingt geeignet. In den folgenden Teilabschnitten soll gezeigt werden, wie $p(\boldsymbol{x})$ als eine Art Regularisierungsterm angesehen werden kann, indem die Klassenkonfiguration der Nachbarschaft eines jeden Voxels und damit die räumliche Struktur der 3D-MRT-Bilder berücksichtigt wird. Eine solche Modellierung lässt sich mit einem Markov-Zufallsfeld (MZF) realisieren. Bevor darauf eingegangen werden kann, muss zunächst der Begriff des Nachbarschaftssystems erläutert werden. Die Ausführungen orientieren sich zum größten Teil an Li (2009) und Winkler (2006).

2.3.1 Nachbarschaftssystem

Die Voxel eines 3D-MRT-Bildes sind auf einem regulären Gitter angeordnet. Ausgehend von Voxel i bezeichne N_i die Nachbarschaft von i. Eine solche Nachbarschaft wird durch zwei Eigenschaften eindeutig charakterisiert: Zum einen ist i selbst nicht Element seiner eigenen Nachbarschaft

$$i \notin N_i$$

und zum anderen ist Voxel i automatisch Element der Nachbarschaft von Voxel i', wenn i' Nachbar von i ist

$$i \in N_{i'} \iff i' \in N_i.$$

Die Menge der Nachbarschaften aller Voxel, das Nachbarschaftssystem, wird im Folgenden mit N bezeichnet

$$N = \{N_i \mid i = 1, \dots, n\}.$$

Hinter der Betrachtung eines Nachbarschaftssystems steckt die Idee, dass

Abbildung 2.1: Schematische Darstellung der Nachbarschaften erster Ordnung (a), zweiter Ordnung (b) und dritter Ordnung (c).

man die Zuordnung eines Voxels i in eine der Klassen in \mathcal{L} von den bereits getätigten Zuordnungen der Voxel aus N_i abhängig machen will. Damit soll erreicht werden, dass ein Voxel, der beispielsweise nur von WM umgeben ist, auch eine hohe Wahrscheinlichkeit aufweist, dieser Klasse zugeordnet zu werden. In diesem Zusammenhang ist die Größe und Form der Nachbarschaft, d.h. die Anzahl der Voxel in N_i und deren Lage um Voxel i, von zentraler Bedeutung. Man unterscheidet dabei verschiedene Ordnungen der Nachbarschaft. Eine schematische Darstellung der Nachbarschaften erster, zweiter und dritter Ordnung befindet sich in Abbildung 2.1. Die Nachbarschaft erster Ordnung enthält nur die sechs Voxel, die mit einer ihrer Flächen unmittelbar an Voxel i Grenzen. In der Nachbarschaft zweiter Ordnung befinden sich all die Voxel, die mindestens mit einer Kante an Voxel i Grenzen. Sie weist damit 18 Elemente auf. Die Nachbarschaft dritter Ordnung enthält zusätzlich noch die Voxel, die mit einer ihrer Ecken an Voxel i grenzen, also insgesamt 26 Elemente.

2.3.2 Markov-Zufallsfelder

Die Modellierung der Klassenwahrscheinlichkeiten über ein MZF stellt eine Möglichkeit dar, ein vorhandenes Nachbarschaftssystem zu berücksichtigen. Dabei wird $\mathbf{X} = \{X_1, \dots, X_n\}$ als eine Familie von Zufallsvariablen aufgefasst, wobei jede Zufallsvariable Werte in \mathcal{L} annimmt. Damit \mathbf{X} ein MZF bezüglich eines Nachbarschaftssystems N ist, müssen für eine Realisierung $\mathbf{x} = (x_1, \ldots, x_n)$ von \mathbf{X} folgende zwei Bedingungen erfüllt sein:

- 1. $p(\boldsymbol{x}) > 0, \quad \forall x \in \mathcal{X}$
- 2. $p(x_i \mid \boldsymbol{x} \setminus x_i) = P(x_i \mid \boldsymbol{x}_{N_i}).$

Hierbei bezeichnet $\mathbf{x} \setminus x_i$ die Ausprägung von \mathbf{X} ohne x_i und $\mathbf{x}_{N_i} = \{x_{i'} \mid i' \in N_i\}$. Der erste Punkt besagt, dass jede beliebige Klassenkonfiguration eine positive Wahrscheinlichkeit haben muss. Die zweite Bedingung ist als Markov-Eigenschaft bekannt. Sie verlangt, dass bei gegebener Klassenzugehörigkeit aller anderen Voxel, die bedingte Wahrscheinlichkeit für die Ausprägung x_i von Voxel i nur von Elementen aus der Nachbarschaft N_i abhängen darf. Auf diese Weise üben nur benachbarte Voxel einen direkten Einfluss aufeinander aus.

Durch die Markov-Eigenschaft wird ein MZF über seine bedingte Verteilung spezifiziert, sodass zunächst kein einfacher Zugang zu der gemeinsamen Verteilung $p(\boldsymbol{x})$ von \boldsymbol{X} besteht. An dieser Stelle greift das Hammersley-Clifford-Theorem (Hammersley und Clifford, 1971). Es besagt, dass ein MZF äquivalent zu einem Gibbs-Zufallsfeld (GZF) ist. Damit besitzt \boldsymbol{X} eine Gibbs-Verteilung, wodurch die gemeinsame Verteilung $p(\boldsymbol{x})$ geschrieben werden kann als

$$p(\boldsymbol{x}) = \frac{1}{Z} \exp\left\{-\frac{1}{T}U(\boldsymbol{x})\right\}$$
(2.9)

 mit

$$Z = \sum_{\boldsymbol{x} \in \mathcal{X}} \exp\left\{-\frac{1}{T}U(\boldsymbol{x})\right\}.$$

Die Gibbs-Verteilung hat ihren Ursprung in der statistischen Physik, weshalb der Parameter T als Temperatur, die Normalisierungskonstante Z als Partitionsfunktion und $U(\mathbf{x})$ auch als Energiefunktion bezeichnet wird.

Die Temperatur T bestimmt die Varianz der Gibbs-Verteilung. Hohe Werte von T führen dazu, dass die möglichen Klassenkonfigurationen in \mathcal{X} gleichverteilt sind, während bei niedrigen Werten von T die Klassenkonfigurationen $\boldsymbol{x} \in \mathcal{X}$ favorisiert werden, die sich um das globale Maximum der Energiefunktion konzentrieren.

Bei gegebener Nachbarschaft N_i von Voxel i lässt sich die bedingte Verteilung von x_i schreiben als

$$p(x_i|\boldsymbol{x}_{N_i}) = \frac{\exp\left\{-U(x_i|\boldsymbol{x}_{N_i})\right\}}{\sum\limits_{k \in \mathcal{L}} \exp\left\{-U(k|\boldsymbol{x}_{N_i})\right\}}.$$
(2.10)

Damit $p(\boldsymbol{x})$ berechnet werden kann, muss die Partitionsfunktion Z ausgewertet werden, was mit der Berücksichtigung aller möglichen Klassenkonfigurationen in \mathcal{X} einhergeht. Diese Berechnung stellt selbst für eine kleine Anzahl von K möglichen Klassen ein kombinatorisches Problem dar. Aus diesem Grund erscheint die Betrachtung der bedingten Verteilung in (2.10) geeigneter als die gemeinsame Verteilung (2.9).

Die Energiefunktion ist definiert als die Summe der Clique-Potentiale $V_c(\boldsymbol{x})$ über alle Cliquen c:

$$U(\boldsymbol{x}) = \sum_{c \in \mathcal{C}} V_c(\boldsymbol{x}).$$

Als Clique c wird dabei eine Teilmenge von benachbarten Voxel bezeichnet. C stellt den Raum aller möglichen Cliquen für gegebene Voxel und N dar. Die genaue Form der Clique-Potentiale und damit der Energie wird durch die Beschaffenheit von \boldsymbol{x} und durch die Aufgabe des MZFs festgelegt. Bekannte Beispiele sind das Ising- und das Potts-Modell, wie sie unter Anderem in Li (2009) und Winkler (2006) behandelt werden.

2.3.3 Wahl der Energiefunktion

Die hier vorgestellte Energiefunktion hat bereits in früheren Algorithmen zur Segmentierung von MRT-Bildern gute Ergebnisse geliefert (van Leemput et al., 1999a, 2001). Grundlage ist ein verallgemeinertes Ising- und damit ein Potts-Modell der Form

$$U(x_i | \boldsymbol{x}_{N_i}) = \sum_{k \in \mathcal{L}} \beta_{x_i, k} b_{ik}.$$
 (2.11)

Hierbei bezeichnet b_{ik} die Anzahl der Voxel aus N_i mit Klassenzugehörigkeit k und $\beta_{x_i,k}$ die von x_i abhängigen Parameter des Zufallsfeldes. Jede Klasse bekommt damit eigene Parameter zugeordnet, die bestimmen, wie stark verschieden klassifizierte Voxel aus der Nachbarschaft die Regularisierung durch das MZF beeinflussen.

Fasst man die Werte für b_{ik} , $k \in \mathcal{L}$ in einem Nachbarschaftskonfigurationsvektor $\boldsymbol{b}_i = (b_{i1}, \dots, b_{iK})$ zusammen und definiert zusätzlich die $K \times K$ Parametermatrix

$$\boldsymbol{B} = \begin{pmatrix} \beta_{11} & \dots & \beta_{1K} \\ \vdots & & \vdots \\ \beta_{K1} & \dots & \beta_{KK} \end{pmatrix},$$

so kann (2.11) wie folgt geschrieben werden:

$$U(x_i|\boldsymbol{x}_{N_i},\boldsymbol{B}) = \boldsymbol{z}_i'\boldsymbol{B}\boldsymbol{b}_i.$$
(2.12)

Dabei ist der Vektor z_i ein K-dimensionaler Dummy-Vektor, der an der Stellte k eine Eins aufweist, wenn $x_i = k$ gilt.

Um eine Überregularisierung durch das MZF bei der Segmentierung zu vermeiden, schlagen van Leemput et al. (1999a) an dieser Stelle vor, die Parameter in \boldsymbol{B} zu restringieren. Es wird angenommen, dass ein Voxel, der beispielsweise von GM umgeben ist, die gleiche Wahrscheinlichkeit aufweisen soll, zur WM als auch zur GM klassifiziert zu werden. Dies wird erreicht, indem die entsprechenden Parameter in \boldsymbol{B} gleichgesetzt werden, für den angesprochenen Sachverhalt bedeutet das $\beta_{\rm wm,wm} = \beta_{\rm gm,wm}$. Die Autoren verfahren analog mit den anderen Kombinationen der Gewebearten. Da in der vorliegenden Arbeit die Extraktion vorhandener Läsionen im Vordergrund steht, werden der Parametermatrix \boldsymbol{B} nur die Restriktionen $\beta_{\rm les,wm} = \beta_{\rm wm,wm}$ und $\beta_{\rm wm,les} = \beta_{\rm les,les}$ auferlegt.

Eine Alternative Energiefunktion zu (2.11) stellt

$$U(x_i | \boldsymbol{x}_{N_i}) = \beta \sum_{j \in N_i} I(x_j \neq x_i)$$
(2.13)

dar (Woolrich et al., 2005). Mit dem Wert $c_{ik} = \sum_{j \in N_i} I(x_j \neq k)$ und dem Vektor $c_i = (c_{i1}, \ldots, c_{iK})$ kann (2.13) ähnlich wie (2.12) geschrieben werden:

$$U(x_i|\boldsymbol{x}_{N_i}) = \boldsymbol{z}_i \beta \boldsymbol{c}_i.$$

Diese Schreibweise erlaubt es, den Parameter β in ähnlicher Art und Weise zu schätzen, wie die Parameter der anderen Energiefunktion.

Parameterschätzung

Es gibt unterschiedliche Methoden die Parametermatrix \boldsymbol{B} zu schätzen. van Leemput et al. (1999a, 2001) führen in jeder Iteration ihres EM-Algorithmus eine Schätzung basierend auf der Methode der Kleinsten-Quadrate (KQ-Methode) durch. Der Vorteil dieses Vorgehens ist, dass die Parameterschätzung und Segmentierung simultan vollzogen wird und somit nicht auf bestimmte MRT-Sequenzen beschränkt bleibt. Weitere Möglichkeiten für eine gleichzeitige Segmentierung und Schätzung der MZF-Parameter sind in Li (2009) zu finden. In dieser Arbeit jedoch sollen die MZF-Parameter a priori durch ein Pilot-Experiment bestimmt werden. Obwohl diese Methode den Nachteil hat, dass die so erhaltenen Parameter nicht auf jede Situation übertragbar sind, so ist sie doch bei vielen Autoren anzutreffen. So schätzen beispielsweise Feng und Tierney (2009) die Parameter aus zuvor segmentierten Bildern, währenddessen Khayati et al. (2008) experimentell bestimmte Werte verwenden. Kapitel 3 geht näher auf die Schätzung von **B** und auf die Parameterrestriktion ein.

Sind die Parameter geschätzt, so lassen sich Realisierungen eines GZFs mit Hilfe des Gibbs-Samplers (3.2.1) simulieren (Li, 2009). Abbildung 2.2 zeigt Realisierungen für ein GZF mit den angesprochenen Energiefunktionen nach der in Abschnitt 3.1 beschriebenen Parameterschätzung (Tabelle A.2). Die vier verwendeten Graustufen entsprechen von dunkel nach hell den Klassen der CSF, GM, WM und Läsionen. Lässt man die vierte Spalte außer Acht, so kann man keinen Einfluss der Nachbarschaftsordnung erkennen, jedes simulierte Bild wird von Rauschen dominiert. Hinsichtlich der verwendeten Energiefunktionen ist allerdings ein Unterschied feststellbar. Während unter Verwendung von Energiefunktion (2.11) nahezu alle vier Klassen gleichberechtigt nebeneinander stehen, so dominieren die hellen Pixel (WM und Läsionen) in der zweiten Spalte. Dies kann der Parameterrestriktion zugesprochen werden. Die dritte Spalte ähnelt der ersten, allerdings nimmt das Rauschen zu. In der fünften Spalte befinden sich Bilder, die mit Energie-

Abbildung 2.2: Realisierungen des MZFs für verschiedene Nachbarschaftsordnungen und Energiefunktionen. Erste Spalte: Energiefunktion (2.11). Zweite Spalte: Energiefunktion (2.11) mit Parameterrestriktion. Dritte Spalte: Energiefunktion (2.13). Vierte Spalte: Energiefunktion (2.13) mit $\beta = 1$.

funktion (2.13) und $\beta = 1$ simuliert wurden. Die dort sichtbaren Strukturen werden eigentlich auch für die anderen Simulationen erwartet, die geschätzten Parameterwerte lassen dies allerdings nicht zu.

Kapitel 3

Implementierung

Die folgenden Abschnitte sollen einzelne Aspekte der Implementierung aufzeigen. Neben der Parameterschätzung für das MZF wird dargestellt, wie die Posteriori-Verteilung simuliert werden kann. Außerdem wird darauf eingegangen, auf welche Art und Weise die Intensitäts-Parameter und die Klassenkonfiguration initialisiert werden und wie die Segmentierung parallelisiert werden kann.

3.1 MZF-Parameterschätzung

Um die in Kapitel 2 vorgestellte Methode für die Segmentierung von MRT-Bildern einzusetzen, müssen die Parameter des in Abschnitt 2.3.2 eingeführten MZFs geschätzt werden. Gegeben der Segmentierung lassen sich die MZF-Parameter der Energiefunktion (2.11) durch einen Kleinste-Quadrate-Schätzer (KQ-Schätzer) bestimmen (Li, 2009; van Leemput et al., 1999a). Um dies zu ermöglichen, werden die Zeilen der unbekannten MZF-Parametermatrix \boldsymbol{B} als $K^2 \times 1$ -Vektor geschrieben, wobei K die Anzahl der Klassen in \mathcal{L} darstellt:

$$\boldsymbol{\beta} = (\beta_{11}, \ldots, \beta_{1K}, \ldots, \beta_{K1}, \ldots, \beta_{KK})'.$$

Zudem wird die aktuelle Nachbarschaftskonfiguration \boldsymbol{b}_i von Voxel *i* mit den Komponenten des Dummy-Vektors \boldsymbol{z}_i als $K^2 \times 1$ -Vektor zusammengefasst:

$$\boldsymbol{v}_{\boldsymbol{z}_i, \boldsymbol{b}_i} = (z_{i1} \boldsymbol{b}'_i, \dots, z_{iK} \boldsymbol{b}'_i)'.$$

Somit kann die Energiefunktion (2.11) geschrieben werden als

$$egin{aligned} U(x_i | oldsymbol{x}_{N_i}, oldsymbol{B}) &= oldsymbol{z}_i' oldsymbol{B} oldsymbol{b}_i \ &= oldsymbol{v}_{oldsymbol{z}_i, oldsymbol{b}_i} oldsymbol{eta}. \end{aligned}$$

Da \boldsymbol{b}_i die gesamte Nachbarschaftskonfiguration \boldsymbol{x}_{N_i} beinhaltet, kann man $p(x_i | \boldsymbol{x}_{N_i}, \boldsymbol{\beta})$ wie folgt ausdrücken:

$$p(x_i | \boldsymbol{x}_{N_i}, \boldsymbol{\beta}) = p(x_i | \boldsymbol{b}_i, \boldsymbol{\beta})$$

= $\frac{p(x_i, \boldsymbol{b}_i | \boldsymbol{\beta})}{p(\boldsymbol{b}_i | \boldsymbol{\beta})}.$ (3.1)

Ersetzt man die linke Seite von Gleichung (3.1) durch die rechte Seite von Gleichung (2.10), so gilt nach einer Umstellung die Beziehung

$$\frac{\exp\{-U(x_i|\boldsymbol{b}_i,\boldsymbol{\beta})\}}{p(x_i,\boldsymbol{b}_i|\boldsymbol{\beta})} = \frac{\sum_{k\in\mathcal{L}}\exp\{-U(k|\boldsymbol{b}_i,\boldsymbol{\beta})\}}{p(\boldsymbol{b}_i|\boldsymbol{\beta})}.$$
(3.2)

Da die rechte Seite von Gleichung (3.2) unabhängig von x_i ist, gilt das gleiche für die linke Seite. Bezeichnet x_i^* eine andere Klassenzugehörigkeit als x_i , so gilt damit

$$\frac{\exp\{-U(x_i|\boldsymbol{b}_i,\boldsymbol{\beta})\}}{p(x_i,\boldsymbol{b}_i|\boldsymbol{\beta})} = \frac{\exp\{-U(x_i^*|\boldsymbol{b}_i,\boldsymbol{\beta})\}}{p(x_i^*,\boldsymbol{b}_i|\boldsymbol{\beta})}.$$
(3.3)

Durch Einsetzen der Energiefunktion (2.11) und Umformungen erhält man

$$\log\left(\frac{p(x_i, \boldsymbol{b}_i | \boldsymbol{\beta})}{p(x_i^*, \boldsymbol{b}_i | \boldsymbol{\beta})}\right) = \boldsymbol{z}_i^{*'} \boldsymbol{B} \boldsymbol{b}_i - \boldsymbol{z}_i' \boldsymbol{B} \boldsymbol{b}_i$$
(3.4)

$$= \boldsymbol{v}_{\boldsymbol{z}_i^*, \boldsymbol{b}_i}^{\prime} \boldsymbol{\beta} - \boldsymbol{v}_{\boldsymbol{z}_i, \boldsymbol{b}_i}^{\prime} \boldsymbol{\beta}$$
(3.5)

$$= (\boldsymbol{v}'_{\boldsymbol{z}'_i, \boldsymbol{b}_i} - \boldsymbol{v}'_{\boldsymbol{z}_i, \boldsymbol{b}_i})\boldsymbol{\beta}.$$
 (3.6)

Während $\boldsymbol{v}_{\boldsymbol{z}_i,\boldsymbol{b}_i}$ und $\boldsymbol{v}_{\boldsymbol{z}_i^*,\boldsymbol{b}_i}$ bei einer existierenden Segmentierung \boldsymbol{x} beobachtet werden können, müssen $p(x_i,\boldsymbol{b}_i|\boldsymbol{\beta})$ und $p(x_i^*,\boldsymbol{b}_i|\boldsymbol{\beta})$ durch die relative Häufigkeit der Konfiguration x_i und \boldsymbol{b}_i bzw. x_i^* und \boldsymbol{b}_i geschätzt werden. Liegen alle Daten vor, so kann der unbekannte Parametervektor $\boldsymbol{\beta}$ durch Lösen des linearen Gleichungssystems (3.6) geschätzt werden. Um die in Abschnitt 2.3.3 angesprochenen Parameterrestriktionen zu berücksichtigen, werden die betreffenden Spalten in Gleichung (3.6) miteinander addiert.

Möchte man die vorgestellte Parameterschätzung nicht von einer einzigen Segmentierung abhängig machen, so kann man leicht mehrere segmentierte 3D-MRT-Bilder in die Schätzung einbinden. Liegen m segmentierte Bilder mit insgesamt n Voxel vor, so kann der KQ-Schätzer geschrieben werden als

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{V}'\boldsymbol{V})^{-1}\boldsymbol{V}'\boldsymbol{h}, \qquad (3.7)$$

wobei

$$m{V} = ((m{v}_{z_1^*,m{b}_1} - m{v}_{z_1,m{b}_1})', \dots, (m{v}_{z_n^*,m{b}_n} - m{v}_{z_n,m{b}_n})')'$$

und

$$\boldsymbol{h} = \left(\log\left(\frac{p(x_1, \boldsymbol{b}_1 | \boldsymbol{\beta})}{p(x_1^*, \boldsymbol{b}_1 | \boldsymbol{\beta})}\right), \dots, \log\left(\frac{p(x_n, \boldsymbol{b}_n | \boldsymbol{\beta})}{p(x_n^*, \boldsymbol{b}_n | \boldsymbol{\beta})}\right)\right)'.$$

Die Matrix V ist von der Dimension $n \times K^2$. Die Anzahl der Voxel ist bei einem 3D-MRT-Bilder des Gehirns in der Regel sehr hoch, sodass n bei mehreren MRT-Bildern einen extrem hohen Wert annehmen kann. Um dennoch die Größen in Gleichung (3.7) ohne großen computationalen Aufwand berechnen zu können, wird im Folgenden dargestellt, wie der KQ-Schätzer $\hat{\beta}$ aus den Komponenten der KQ-Schätzer der einzelnen MRT-Bilder zusammengesetzt werden kann. Dafür wird die Matrix V und der Vektor h wie folgt geschrieben:

$$\boldsymbol{V} = \begin{pmatrix} v_{11} & \dots & v_{1K^2} \\ \vdots & & \vdots \\ v_{n1} & \dots & v_{nK^2} \end{pmatrix}, \quad \boldsymbol{h} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}.$$

Damit kann man die Größen des KQ-Schätzers darstellen als

$$\boldsymbol{V}'\boldsymbol{V} = \begin{pmatrix} \sum_{i=1}^{n} v_{i1}^{2} & \sum_{i=1}^{n} v_{i1}v_{i2} & \dots & \sum_{i=1}^{n} v_{i1}v_{iK^{2}} \\ \sum_{i=1}^{n} v_{i1}v_{i2} & \sum_{i=1}^{n} v_{i2}^{2} & \dots & \sum_{i=1}^{n} v_{i2}v_{iK^{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} v_{i1}v_{iK^{2}} & \sum_{i=1}^{n} v_{i2}v_{iK^{2}} & \dots & \sum_{i=1}^{n} v_{iK^{2}}^{2} \end{pmatrix}, \boldsymbol{V}'\boldsymbol{h} = \begin{pmatrix} \sum_{i=1}^{n} v_{i1}h_{i} \\ \vdots \\ \sum_{i=1}^{n} v_{i1}v_{iK^{2}} & \sum_{i=1}^{n} v_{i2}v_{iK^{2}} & \dots & \sum_{i=1}^{n} v_{iK^{2}}^{2} \end{pmatrix}$$

Geht man von m MRT-Bildern aus, wobei das j-te Bild n_j Voxel aufweist und $n = \sum_{j=1}^{m} n_j$ gilt, so ergibt sich das Element in der q-ten Zeile und r-ten Spalte aus V'V als

$$V_{qr} = \sum_{i=1}^{n} v_{iq} v_{ir}$$
$$= \sum_{i=1}^{n_1} v_{iq} v_{ir} + \sum_{i=n_1+1}^{n_1+n_2} v_{iq} v_{ir} + \dots + \sum_{i=n-n_m+1}^{n} v_{iq} v_{ir}.$$

Damit kann man die Matrix V'V als Summe der Matrizen V'_jV_j , $j = 1, \ldots, m$ berechnen, wobei es sich bei V'_jV_j um die Matrix V'V für das j-te MRT-Bild handelt:

$$V'V = \sum_{j=1}^m V'_j V_j.$$

Analog kann man mit dem Vektor V'h vorgehen. Hier ergibt sich das Element in der q-ten Zeile von V'h als

$$(\mathbf{V'h})_q = \sum_{i=1}^n v_{iq} h_i$$

= $\sum_{i=1}^n v_{iq} h_i + \sum_{i=n_1+1}^{n_1+n_2} v_{iq} h_i + \dots + \sum_{i=n-n_m+1}^n v_{iq} h_i,$

d.h. auch hier kann man die Größe V'h aus der Summe der aus den einzelnen MRT-Bildern gewonnenen Vektoren V'_jh_j , j = 1, ..., m berechnen:

$$oldsymbol{V}'oldsymbol{h} = \sum_{j=1}^m oldsymbol{V}_j'oldsymbol{h}_j.$$

Insgesamt lässt sich damit der gesuchte KQ-Schätzer (3.7) schreiben als

$$\hat{oldsymbol{eta}} = \left(\sum_{j=1}^m oldsymbol{V}_j'oldsymbol{V}_j
ight)^{-1}\sum_{j=1}^moldsymbol{V}'oldsymbol{h}.$$

3.2 Simulation der Posteriori-Verteilung

In Kapitel 2 wurde die Modellierung der Komponenten der Posteriori-Verteilung

$$p(\boldsymbol{x}, \boldsymbol{\theta} | \boldsymbol{y}) \propto p(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) p(\boldsymbol{x} | N)$$
 (3.8)

dargestellt. Aufgrund der Beachtung der räumlichen Struktur durch das MZF ist es selbst innerhalb des Normalverteilungsmodells nicht möglich, Zufallszahlen direkt aus der Posteriori-Verteilung zu ziehen. Dieser Abschnitt soll zeigen, wie die Posteriori-Verteilung durch Markov-Chain-Monte-Carlo-Methoden (MCMC-Methoden) simuliert werden kann, um zum einen die unbekannten Modellparameter $\boldsymbol{\theta}$ und zum anderen die gesuchte Klassenkonfiguration \boldsymbol{x} zu schätzen. Zunächst wird auf die benötigten MCMC-Methoden allgemein eingegangen. Dabei wird sich zum größten Teil an Gelman et al. (2003) orientiert. Anschließend wird die Simulation von (3.8) durch die vorgestellten Methoden dargestellt.

3.2.1 MCMC-Methoden

In den folgenden Ausführungen stellt $\boldsymbol{\delta}$ einen unbekannten Parametervektor und $p(\boldsymbol{\delta}|\boldsymbol{y})$ die Posteriori-Verteilung dieses Parameters bei gegebenen Daten \boldsymbol{y} dar.

Oft ist es nicht möglich, Zufallszahlen für $\boldsymbol{\delta}$ direkt aus $p(\boldsymbol{\delta}|\boldsymbol{y})$ zu ziehen. MCMC-Methoden bieten eine Möglichkeit, Zufallszahlen für $\boldsymbol{\delta}$ iterativ zu erzeugen. Die Grundidee von MCMC-Methoden ist die Generierung einer Markov-Kette { $\boldsymbol{\delta}^t, t \in \mathbb{N}$ } die als stationäre Verteilung $p(\boldsymbol{\delta}|\boldsymbol{y})$ aufweist. Als Startwert besitzt die Kette den Wert $\boldsymbol{\delta}^0$. In Iteration t + 1 entsteht ein neuer Wert $\boldsymbol{\delta}^{t+1}$ in Abhängigkeit des letzten Wertes durch das Ziehen aus einer Übergangsverteilung $T_t(\boldsymbol{\delta}^{t+1}|\boldsymbol{\delta}^t)$. Die Übergangsverteilung muss dabei so konstruiert sein, dass die Markov-Kette als stationäre Verteilung $p(\boldsymbol{\delta}|\boldsymbol{y})$ aufweist. Da die stationäre Verteilung der Grenzwert der Markov-Kette darstellt, muss eine gewisse Anlaufzeit (Burn-In-Phase) berücksichtigt werden. Diese Anlaufzeit beschreibt die Anzahl an Iterationen, welche die Markov-Kette benötigt, um den stationären Zustand zu erreichen. Es ist üblich, die Werte $\boldsymbol{\delta}^1, \ldots, \boldsymbol{\delta}^{\text{burnin}}$ zu verwerfen und nicht als Ziehungen aus der Posteriori-Verteilung zu berücksichtigen.

Anders als bei der direkten Ziehung von Zufallszahlen aus $p(\boldsymbol{\delta}|\boldsymbol{y})$, liegen bei MCMC-Methoden abhängige Realisierungen für $\boldsymbol{\delta}$ vor. Aus diesen Gründen wird die Menge aller Realisierungen oft ausgedünnt und nur ein Teil der Ziehungen berücksichtigt.

Gibbs-Sampler

Der Gibbs-Sampler wurde von Geman und Geman (1984) zur Simulation von Gibbs-Verteilungen eingeführt. Voraussetzung für die Ziehung von Zufallszahlen für δ mit Hilfe des Gibbs-Samplers ist, dass sich der Parametervektor δ in p Subvektoren partitionieren lässt:

$$oldsymbol{\delta} = (oldsymbol{\delta}_1, \dots, oldsymbol{\delta}_p)$$

Des Weiteren müssen die vollständig bedingten Verteilungen $p(\boldsymbol{\delta}_j | \boldsymbol{\delta}_{-j}, \boldsymbol{y})$ für jede Partition $j = 1, \dots, p$ gegeben und simulierbar sein. Hierbei bezeichnet $\boldsymbol{\delta}_{-j}$ den Parametervektor ohne die *j*-te Partition.

Der Gibbs-Sampler geht nun so vor, dass in Iteration t + 1 der neue Zustand δ^{t+1} komponentenweise erzeugt wird, d.h. die Partitionen werden nacheinander und bedingt auf den aktuellen Zustand aller anderen Partitionen aus den vollständig bedingten Verteilungen gezogen. Nach einer gewissen Anlaufzeit können die Werte der Markov-Kette $\{\delta^t, t \in \mathbb{N}, t > \text{burnin}\}$ als abhängige Realisierungen von δ aufgefasst werden.

Oft ist es so, dass aus den vollständig bedingten Verteilungen direkt gezogen werden kann. Sollte das nicht der Fall sein, so kann die Verteilung mit Hilfe des Metropolis-Hastings-Algorithmus (MH-Algorithmus) simuliert werden.

Metropolis-Hastings-Algorithmus

Der MH-Algorithmus benutzt für die Konstruktion der Markov-Kette eine Vorschlagsdichte g, aus der die neuen Zustände generiert werden. Die Vorschlagsdichte hängt dabei von dem letzten Zustand der Kette ab, sodass

$$\boldsymbol{\delta}^{t+1} \sim g(\boldsymbol{\delta}^{t+1}|\boldsymbol{\delta}^t).$$

Einen über g neu generierten Zustand akzeptiert der MH-Algorithmus mit Wahrscheinlichkeit $\alpha(\boldsymbol{\delta}^t, \boldsymbol{\delta}^{t+1})$ als neuen Zustand der Markov-Kette, wobei

$$\alpha(\boldsymbol{\delta}^{t}, \boldsymbol{\delta}^{t+1}) = \min\left(1, \frac{p(\boldsymbol{\delta}^{t+1}|\boldsymbol{y})g(\boldsymbol{\delta}^{t}|\boldsymbol{\delta}^{t+1})}{p(\boldsymbol{\delta}^{t}|\boldsymbol{y})g(\boldsymbol{\delta}^{t+1}|\boldsymbol{\delta}^{t})}\right)$$

Sollte der durch die Vorschlagsdichte generierte Zustand nicht akzeptiert werden, so wird der alte Zustand δ^t beibehalten.

Gilt für die Vorschlagsdichte $g(\boldsymbol{\delta}^t | \boldsymbol{\delta}^{t+1}) = g(\boldsymbol{\delta}^{t+1} | \boldsymbol{\delta}^t)$, so reduziert sich die Akzeptanzwahrscheinlichkeit $\alpha(\boldsymbol{\delta}^t, \boldsymbol{\delta}^{t+1})$ auf

$$\alpha(\boldsymbol{\delta}^{t}, \boldsymbol{\delta}^{t+1}) = \min\left(1, \frac{p(\boldsymbol{\delta}^{t+1}|\boldsymbol{y})}{p(\boldsymbol{\delta}^{t}|\boldsymbol{y})}\right).$$

Das stellt den ursprünglich von Metropolis et al. (1953) veröffentlichten Metropolis-Algorithmus dar.

3.2.2 Simulation

Bei der Posteriori-Verteilung (3.8) lautet der unbekannte Parametervektor $\boldsymbol{\delta} = (\boldsymbol{\theta}, \boldsymbol{x})$. Die Simulation dieser Verteilung umfasst damit die Generierung von Zufallszahlen für die Intensitätsparameter $\boldsymbol{\theta}$ sowie die Ziehung der Klassenkonfiguration \boldsymbol{x} . Diese Generierung erfolgt abwechselnd, d.h. $\boldsymbol{\delta}$ wird in die Blöcke $\boldsymbol{\theta}$ und \boldsymbol{x} zerlegt und abwechselnd Zustände für $\boldsymbol{\theta}$ und \boldsymbol{x} gezogen.

In Abschnitt 2.2 wurden die vollständig bedingten Verteilungen der Komponenten in $\boldsymbol{\theta}$ für die multivariate Normal- und *t*-Verteilung beschrieben. Aus diesen Verteilungen kann direkt gezogen werden. Die Partitionierung der Klassenkonfiguration $\boldsymbol{x} = (x_1, \ldots, x_n)$ erlaubt das Ziehen der Klassenzugehörigkeit jedes einzelnen Voxels durch die Vollständig bedingten Verteilungen

$$p(x_i | \boldsymbol{y}, \boldsymbol{\theta}_{x_i}, \boldsymbol{x}_{N_i}) \propto p(\boldsymbol{y} | \boldsymbol{\theta}_{x_i}) p(x_i | \boldsymbol{x}_{N_i}).$$

Da aus diesen Verteilungen nicht direkt gezogen werden kann, kommt an dieser Stelle der MH-Algorithmus zum Einsatz. Als Vorschlagsdichte wird dabei eine diskrete Gleichverteilung über \mathcal{L} gewählt. Da somit $g(x_i^t | x_i^{t+1}) = g(x_i^{t+1} | x_i^t)$ gilt, handelt es sich genauer gesagt um den Metropolis-Algorithmus. Die Schritte des Gibbs-Samplers für die gesamte Simulation von (3.8) sind im Folgenden zusammenfassend dargestellt.

Schritt 1: Generierung geeigneter Startwerte x^0 und θ^0 (Abschnitt 3.4).

Ausführen folgender Schritte für $t = 0, \ldots, T$.

- Schritt 2: Schätzung der Intensitätsparameter θ^{t+1} über die vollständig bedingten Dichten.
 - Im Fall multivariater Normalverteilungen: Für $k \in \mathcal{L}$ ziehe $\pmb{\mu}_k$ und

 $\mathbf{\Sigma}_k$ durch

$$\begin{split} \boldsymbol{\Sigma}_{k}^{t+1} | \boldsymbol{y}_{k}, \boldsymbol{x}^{t} \sim \mathcal{W}^{-1}(n_{k}-1, \boldsymbol{S}_{k}) \\ \boldsymbol{\mu}_{k}^{t+1} | \boldsymbol{y}_{k}, \boldsymbol{\Sigma}_{k}^{t+1} \sim \mathcal{N}(\bar{\boldsymbol{y}}_{k}, \frac{1}{n_{k}}\boldsymbol{\Sigma}_{k}^{t+1}). \end{split}$$

• Im Fall multivariater t-Verteilungen: Für $j = 1, ..., n_k$ und $k \in \mathcal{L}$ ziehe

$$q_{jk}|\boldsymbol{\Sigma}_k, \boldsymbol{\mu}_k, \boldsymbol{y}_k \sim \chi^2_{\nu+d}/[\nu + (\boldsymbol{y}_{jk} - \boldsymbol{\mu}_k)'\boldsymbol{\Sigma}_k^{-1}(\boldsymbol{y}_{jk} - \boldsymbol{\mu}_k)]$$

und für $k \in \mathcal{L}$ ziehe γ_k , $\boldsymbol{\mu}_k$ und $\boldsymbol{\Sigma}_k$ durch

$$egin{aligned} &\gamma_k | oldsymbol{q}_k \sim \chi^2_{n_k
u} / (
u q_{\cdot k}) \ & oldsymbol{\Sigma}_k | oldsymbol{q}_k, oldsymbol{y}_k \sim \mathcal{W}^{-1}(q_{\cdot k}, oldsymbol{S}_k) \ & oldsymbol{\mu}_k | oldsymbol{\Sigma}_k, oldsymbol{q}_k, oldsymbol{y}_k \sim \mathcal{N}_d(oldsymbol{ ilde y}_k, rac{1}{q_{\cdot k}} oldsymbol{\Sigma}_k). \end{aligned}$$

Schritt 3: Generierung der neuen Klassenzugehörigkeit
$$x_i^{t+1} = k^{t+1}$$
 für $i = 1, \ldots, n$ über eine diskrete Gleichverteilung auf \mathcal{L} und Akzeptanz der neuen Klassenzugehörigkeiten mit Wahrscheinlichkeit

$$\alpha(x_i^t, x_i^{t+1}) = \min\left(1, \frac{p(\boldsymbol{y}|\boldsymbol{\theta}_{k^{t+1}})p(x_i^{t+1}|\boldsymbol{x}_{N_i})}{p(\boldsymbol{y}|\boldsymbol{\theta}_{k^t})p(x_i^t|\boldsymbol{x}_{N_i})}\right).$$

In Abschnitt 2.2.2 wurde bereits ein alternatives Vorgehen zur Generierung der neuen Zustände für Σ_k und q_k im Rahmen der multivariaten t-Verteilung angesprochen. So kann man anstelle des nuisance Parameters γ einen weiteren MH-Schritt in obigem Gibbs-Sampler einfügen, in dem neue Zustände für Σ_k und q wieder anhand einer Vorschlagsdichte generiert werden und diese mit Wahrscheinlichkeit $\alpha((\Sigma_k^t, q_k^t), (\Sigma_k^{t+1}, q_k^{t+1})$ akzeptiert werden.

Abbildung 3.1: Ausgewählte Schichten des ICBM452 Gehirn-Atlas für die Gewebearten CSF (Oben), GM (Mitte) und WM (Unten).

3.3 Stabilisierung durch einen Gehirn-Atlas

Wie bereits zu Anfang des Abschnitts 2.1 angesprochen, kann die Segmentierung durch einen Gehirn-Atlas, wie beispielsweise dem ICBM452 T_1 -Wahrscheinlichkeits-Atlas¹ des International Consortium for Brain Mapping stabilisiert werden (Abbildung 3.1). Für diesen Atlas wurden T_1 -gewichtete MRT-Bilder von 452 jungen Erwachsenen in die Gewebearten CSF, GM und WM segmentiert und die Ergebnisse gemittelt. Der Atlas stellt damit eine dreidimensionale Priori-Wahrscheinlichkeitskarte für die Gewebearten dar.

Eine Möglichkeit diesen Atlas zur Vermeidung von Fehlklassifikationen einzusetzen, ist die Erweiterung des MH-Schritts bzw. der Akzeptanzwahr-

¹http://loni.ucla.edu/Atlases/

scheinlichkeit zu

$$\alpha(x_i^t, x_i^{t+1}) = \min\left(1, \frac{p(\boldsymbol{y}|\boldsymbol{\theta}_{k^{t+1}})p(x_i^{t+1}|\boldsymbol{x}_{N_i})\pi_{k^{t+1},i}}{p(\boldsymbol{y}|\boldsymbol{\theta}_{k^t})p(x_i^t|\boldsymbol{x}_{N_i})\pi_{k^t,i}}\right),$$
(3.9)

wobei $\pi_{k,i}$ die Wahrscheinlichkeit des Gehirn-Atlas für $x_i = k$ beschreibt. Die obere Reihe von Abbildung 3.2 stellt den Quotienten zwischen den Wahrscheinlichkeiten der WM und der CSF dar und verdeutlicht zwei Probleme, die bei Verwendung dieser Methode auftreten können. Betrachtet man den inneren Teil des Gehirns, so kann man erkennen, dass auch in Bereichen der GM die WM gegenüber der CSF bevorzugt wird. Das kann zu Fehlklassifikationen einzelner Voxel führen, wird aber in der Regel durch die Betrachtung der Priori-Wahrscheinlichkeiten für die GM kontrolliert. Ein größeres Problem ergibt sich am Rand des Gehirns. Wie in Abbildung 3.2 zu erkennen ist, wird die WM auch außerhalb des äußeren Liquorraums, also zwischen Schädelknochen und Gehirn präferiert, ein Ort, an dem eigentlich keinerlei WM vorhanden sein kann. Zwar ist die Wahrscheinlichkeit für die WM an diesen Orten sehr gering, weist die CSF aber an diesen Stellen eine noch kleinere Wahrscheinlichkeit auf, so begünstigt der Atlas die fälschliche Klassifizierung dieser Voxel als WM. Durch die Anpassung des Atlas an das zu segmentierende Gehirn werden zwar einige dieser kritischen Stellen beseitigt, allerdings bleiben genügend übrig, um die Segmentierung negativ zu beeinflussen.

Eine andere Möglichkeit, die Segmentierung der Läsionen durch einen Gehirn-Atlas zu stabilisieren, besteht darin, nur solche Voxel für die Klasse der Läsionen in Frage kommen zu lassen, die nach dem Atlas eine gewisse Wahrscheinlichkeit für die WM aufweisen. Dies scheint nahe liegend, da MS-Läsionen nur in der WM auftreten. Entscheidend bei der Verwendung dieser Methode ist die Wahl der unteren Grenze der Wahrscheinlichkeit. Je größer

Abbildung 3.2: Oberste Reihe: Quotient der Wahrscheinlichkeiten des Gehirn-Atlas für WM und CSF. Untere Reihe: Atlas für die WM für die Grenzwerte 0,05, 0,25, 0,5, 0,75 und 0,9.

diese Grenze ist, desto weniger Voxel kommen in Frage, überhaupt als Läsion erkannt zu werden. Für die Klasse der Läsionen sinkt damit die Wahrscheinlichkeit für Fehlklassifikationen, allerdings nur, wenn sich der Atlas dem zu segmentierenden Gehirn gut anpasst. Je kleiner diese Grenze ist, desto mehr Voxel anderer Gewebearten kommen als Läsionen in Frage, d.h. die Wahrscheinlichkeit für Fehlklassifikationen steigt. Die untere Reihe in Abbildung 3.2 zeigt einen Schnitt des Gehirn-Atlas für verschiedene Grenzen.

3.4 Initialisierung

Für eine schnelle Konvergenz des Gibbs-Samplers ist eine gute Initialisierung der Intensitätsparameter und der Klassenkonfiguration erforderlich. Für die Schätzung von μ_k und Σ_k wird der in Abschnitt 3.3 vorgestellte Gehirn-Atlas verwendet. Um die Startwerte für die CSF und GM zu bestimmen, werden nur solche Voxel betrachtet, die in dem Gehirn-Atlas eine Wahrscheinlichkeit größer als 0,5 für die jeweilige Gewebeart aufweisen. Die Intensitäten dieser Voxel werden dann zur Schätzung der Erwartungswertvektoren und der Kovarianzmatrizen genutzt. Da sich die Entmarkungsherde im Gehirn eines MS-Patienten in der Regel in der WM befinden, wird auf die Voxel, die eine Wahrscheinlichkeit für die WM von über 0,5 aufweisen, ein *k*-Means Algorithmus angewandt, um gesunde WM von Läsionen zu trennen. Die Intensitäten der so erhaltenen Cluster werden zur Schätzung der Erwartungswertvektoren und der Kovarianzmatrizen für die Klasse der WM und der Läsionen benutzt.

Um eine Initialisierung der Klassenkonfiguration \boldsymbol{x} für jeden Voxel zu erhalten, wird eine "harte" Segmentierung ohne Berücksichtigung der Nachbarschaft mit den Startwerten für $\boldsymbol{\theta}_k$ durchgeführt:

$$x_i = \operatorname*{argmax}_{k \in \mathcal{L}} p(\boldsymbol{y}_i | \boldsymbol{\theta}_k).$$

3.5 Parallelisierung

Ändert sich die Klassenzugehörigkeit von Voxel i nach dem MH-Schritt in obigem Algorithmus, so ändert sich damit auch die Nachbarschaftskonfiguration der Elemente in N_i . Damit ist es nicht möglich, den MH-Schritt für jeden der n Voxel parallel durchzuführen. Beschränkt man sich stattdessen auf solche Voxel, die sich in ihren Nachbarschaften ausschließen, so kann der MH-Schritt für diese Voxel gleichzeitig durchgeführt werden. Dazu muss dem MRT-Bild eine Unabhängigkeitsstruktur auferlegt werden. Diese Unabhängigkeitsstruktur bildet disjunkte Teilmengen aller Voxel, sodass ein Voxel einer Teilmenge nicht in den Nachbarschaften anderer Voxel der gleichen Teilmenge vorkommt. Für jede der so gebildeten Teilmengen kann der MH-Schritt parallel durchgeführt werden. Wie Abbildung 3.5 verdeutlicht, hängt die Unabhängigkeitsstruktur von der verwendeten Nachbarschaftsordnung ab. Für

Abbildung 3.3: Schematische Darstellung der Unabhängigkeitsstruktur von vier aufeinander folgenden Schichten für die Nachbarschaft erster (a), zweiter (b) und dritter (c) Ordnung.

die Nachbarschaft erster Ordnung werden zwei, für die zweiter Ordnung vier und für die dritter Ordnung acht Teilmengen benötigt. Diese Unabhängigkeitsstruktur kann auf verschiedene Art und Weisen zu einer Parallelisierung der Schätzungen führen. So erlaubt sie zum einen vektorwertiges Berechnen der Akzeptanzwahrscheinlichkeit des MH-Schritts für die Voxel einer jeden Teilmenge der Unabhängigkeitsstruktur. Damit können beispielsweise zeitaufwendige for-Schleifen in Programmen wie dem statistischen Programmpaket R (R Development Core Team, 2010) oder MATLAB (The MathWorks, Inc, 2007) vermieden werden. Eine weitere Möglichkeit besteht in dem Ausnutzen mehrerer CPUs durch geeignete Software, wie beispielsweise dem Paket multicore in R oder *OpenMP* (Chandra et al., 2000) in C. Durch die Parallelisierung von Schleifen mittels OpenMP ist es nach Feng und Tierney (2009) möglich, die Schätzung auf einem Rechner mit vier CPUs im Vergleich zu der nicht-parallelisierten Implementierung um das ca. Vierfache schneller auszuführen. Die aktuelle Implementierung des in dieser Arbeit vorgestellten Ansatzes liegt in der nicht-parallelisierten Variante in R vor, wobei computational aufwändige Abschnitte in C ausgelagert wurden. Der gesamte Quellcode ist auf der beigelegten CD-ROM zu finden.

Kapitel 4

Schätzungen

Dieses Kapitel präsentiert die Ergebnisse geschätzter Segmentierungen. Um die vorgestellte Methode evaluieren zu können, werden zuerst simulierte Daten betrachtet. Danach wird die Methode auf klinische Daten angewandt. In beiden Fällen steht die Segmentierung der Läsionen im Vordergrund, auf die anderen Gewebearten wird nur am Rande eingegangen. Aus Gründen der Leserlichkeit befinden sich viele der in diesem Kapitel angesprochenen Tabellen und Abbildungen in Anhang A.

4.1 BrainWeb-Daten

Das McConnell Brain Imaging Center des Montreal Neurological Institute stellt im Internet¹ eine Datenbank mit simulierten MRT-Bildern zur Verfügung (BrainWeb) (Cocosco et al., 1997; Kwan et al., 1999, 1996; Collins et al., 1998). Damit hat man die Möglichkeit, sich 3D-MRT-Bilder verschiedener Sequenzen auf Grundlage eines anatomischen Phantoms simulieren zu lassen. Neben normalen Gehirnen lassen sich auch solche mit Läsionen der

¹http://www.bic.mni.mcgill.ca/brainweb

MS generieren. Dabei sind Bilder mit einem hohen, moderaten und geringen Anteil an MS-Läsionen simulierbar. Im Rahmen dieser Arbeit wurden nur Bilder mit einem moderaten Anteil an Läsionen betrachtet.

Der Vorteil dieser simulierten Bilder ist die Tatsache, dass man anhand des Phantoms die Positionen der einzelnen Gewebearten einschließlich der MS-Läsionen genau ausmachen kann und somit Ansätze zur Segmentierung der CSF, GM, WM und der Läsionen evaluieren kann. Damit liegt ein von Experten unabhängiger Goldstandard vor.

Für die Evaluation des in den vorigen Abschnitten vorgestellten Segmentierungsansatzes wurden T_1 - und FLAIR-gewichtete Sequenzen ausgewählt. Leider hat man keine direkte Möglichkeit, sich FLAIR-Bilder simulieren zu lassen. Stattdessen wird einem die Möglichkeit geboten, sich generelle *inversi*on recovery Sequenzen zu generieren und die in Abschnitt 1.1.2 angesprochenen Parameter TR, TE und TI manuell festzulegen. Für die Unterdrückung der Signale der Flüssigkeiten in FLAIR-Sequenzen ist vor allem die Wahl der Inversionszeit TI von Bedeutung. Typische Werte liegen im Bereich von 1.800-2.500 Millisekunden (ms) (McRobbie et al., 2007). Leider blieb die Simulation von FLAIR-Bildern mit den Parameterwerten aus verschiedenen Veröffentlichungen ohne Erfolg, d.h. in jedem Versuch wies die CSF eine höhere Signalstärke als die anderen Gewebearten auf. Letztendlich wurden Einstellungen gewählt, die den Klinischen Bildern aus Abschnitt 4.2 optisch sehr nahe kommen: $TR = 10^4$ ms, TE = 140 ms, TI = 2.000 ms. Die Werte für die T_1 -Sequenzen sind TR = 9 ms und TE = 4 ms.

Typischerweise wird davon ausgegangen, dass mehrere Störquellen die Qualität eines MRT-Bildes beeinträchtigen. Neben einem – mehr oder weniger präsentem – Rauschen ist hier vor allem die in Abschnitt 2.2 angesprochene Ungleichmäßigkeit der Intensitäten (engl. *intensity non-uniformity*, INU) entlang des gesamten 3D-MRT-Bildes zu nennen. Aus diesem Grund wurden MRT-Bilder mit unterschiedlichem Anteil an Rauschen (1 - 5 %) und unterschiedlichem Anteil an INU (0, 20 und 40 %) simuliert. Eine ausgewählte Schicht dieser 15 MRT-Bilder ist in Abbildung A.1 in Anhang A dargestellt. Die Dimension der Bilder ist $181 \times 217 \times 181$ Voxel. Für die Segmentierung der Läsionen wurde die in Abschnitt 3.3 angesprochene Stabilisierung der Schätzung durch einen Gehirn-Atlas verwendet. Damit kommt die Klasse der Läsionen nur für solche Voxel infrage, die eine Priori-Wahrscheinlichkeit für die WM von mindestens 0,5 aufweisen. Grund für diese recht starke Einschränkung ist die Beobachtung der fälschlichen Segmentierung von Voxel der GM am Rande der WM, wenn der Atlas nicht verwendet wird.

Ziel der nächsten Abschnitte ist es festzustellen, welchen Einfluss die Wahl der Energiefunktion, der Nachbarschaftsordnung und die Verteilung der Intensitäten auf die Güte der Segmentierung der MS-Läsionen hat.

4.1.1 MZF-Parameter

Durch das Vorliegen des anatomischen Pahntoms, anhand dessen die MRT-Bilder simuliert werden, ist man in der Lage, die Parameter des MZFs durch das in Abschnitt 3.1 beschriebene Vorgehen zu schätzen. Eine Auflistung der geschätzten Werte ist in Tabelle A.1 in Anhang A zu finden. "E-Fkt. 1" bezeichnet dabei Energiefunktion (2.11), "E-Fkt. 2" Energiefunktion (2.11) mit den Parameterrestriktionen und "E-Fkt. 3" Energiefunktion (2.13). Die drei Nachbarschaftsordnungen werden mit "NO 1", "NO 2" und "NO 3" bezeichnet.

Um die Werte der Parameter interpretieren zu können, sei noch einmal darauf hingewiesen, dass β_{kl} angibt, wie stark Voxel der Klasse l die Wahrscheinlichkeit $p(x_i = k | \boldsymbol{x}_{N_i})$ regularisieren. Je größer also der geschätzte Parameter, desto stärker sprechen anders klassifizierte Voxel in N_i gegen die vorgeschlagene Klassifikation von Voxel *i*. Ein negatives Vorzeichen für β_{kl} bedeutet, dass Voxel der Klasse *l* in N_i zu einer Erhöhung von $p(x_i = k | \boldsymbol{x}_{N_i})$ führen und damit die Klassifizierung $x_i = k$ begünstigen. Für E-Fkt. 1 hat β_{kl} nur dann negative Werte, wenn k = l gilt, d.h. $x_i = k$ wird nur von gleich-klassifizierten Voxel gestützt. An den Schätzungen für E-Fkt. 2 kann man sehr gut erkennen, wie die Parameterrestriktionen greifen. Aufgrund des negativen Vorzeichens von $\beta_{wm,les}$ und von $\beta_{les,wm}$ begünstigen Voxel der WM in N_i die Klassifikation von x_i als Läsion und andersherum. Der Parameter für E-Fkt. 3 gibt an, wie stark der Einfluss der Summe der von x_i verschiedenen Voxel in N_i auf $p(x_i | \boldsymbol{x}_{N_i})$ ist.

Neben den verschiedenen Energiefunktionen gibt es auch Unterschiede hinsichtlich der betrachteten Nachbarschaftsordnung. So lässt sich an den Beträgen der Parameter erkennen, dass mit zunehmender Nachbarschaftsordnung der Einfluss eines einzelnen Voxels geringer wird. Das ist zu erwarten, da die Anzahl der benachbarten Voxel mit der Ordnung der Nachbarschaft steigt und somit der Effekt eines einzelnen Voxels geringer ausfällt.

4.1.2 Bildvorverarbeitung

Bevor die MRT-Bilder segmentiert werden können, wird das umliegende Gewebe sowie der Schädel entfernt. Auch hierfür kann das Phantom benutzt werden, da neben der Information über die Position der CSF, GM, WM und der Läsionen auch die Position der Schädelknochen, des Fetts, der Haut usw. bekannt ist. Damit werden alle Voxel, die nicht zu der CSF, GM, WM und zu den Läsionen gehören, entfernt.

Um den Atlas wie in den Abschnitten 3.3 und 3.4 zur Initialisierung und Stabilisierung der Schätzung nutzen zu können, muss dieser an die Lage und Form der Gehirne in den MRT-Bildern angepasst werden, man spricht von Registrierung. Hierfür wird das Linear Image Registration Tool (FLIRT, Jenkinson und Smith (2001); Jenkinson et al. (2002)) der FMRIB Software Library (FSL, Smith et al. (2004); Woolrich et al. (2009)) benutzt.

Auf die Verwendung eines Filters zur Beseitigung des Rauschens wird bewusst verzichtet, da aufgezeigt werden soll, wie anfällig der vorgestellte Ansatz gegenüber Störeinflüssen ist. Gleiches gilt für die INU.

4.1.3 Konvergenzdiagnose

Wie in Abschnitt 3.2 dargestellt wurde, wird eine gewisse Anzahl an Iterationen als Burn-In-Phase benötigt, bis $p(\boldsymbol{y}|\boldsymbol{\theta})$ als stationäre Verteilung der generierten Markov-Kette angesehen werden kann. Um diese Konvergenz zu diganostizieren, wurden in der Literatur verschiedene Methoden und Kriterien vorgeschlagen. Eine Übersicht über solche Methoden bieten Cowles und Carlin (1996). In der gleichen Arbeit wird allerdings betont, dass all die dort vorgestellten Kriterien bei der Diagnose der Konvergenz versagen können. Deshalb wird sich an dieser Stelle auf grafische Konvergenzdiagnosen beschränkt, wie sie beispielsweise auch in Schmid et al. (2009) Anwendung finden. Dazu zählen neben Zeitreihen der simulierten Komponenten der Erwartungswertvektoren und Kovarianzmatrizen auch Autokorrelationsplots dieser Werte. Während die Zeitreihen ein Gefühl für die Länge der Burn-In-Phase vermitteln sollen, können die Autokorrelationsplots Hinweise liefern, auf welche Art und Weise die verbleibenden Realisierungen ausgedünnt werden können um sie als unabhängige Realisierungen anzusehen. Abbildung A.2 zeigt die Zeitreihen für 30.000 Iterationen für die Segmentierung der BrainWeb-Bilder mit zweiprozentigem Rauschen und 0 % INU. Die Intensitäten wurden hierbei durch die multivariaten Normalverteilungen modelliert und es wurde Energiefunktion (2.11) und die Nachbarschaft erster Ordnung für die Segmentierung verwendet. Die Berechnungen wurden nicht parallelisiert durchgeführt. Die gesamte Schätzung dauerte etwa 24 Stunden auf einem Rechner mit einem AMD OpteronTMDual-Core Prozessor 2.220 mit ca. 16 GB Arbeitsspeicher. Wie an den Zeitreihen zu erkennen ist, kann die Burn-In-Phase als recht kurz aufgefasst werden. Bereits nach 250 Iterationen hat jede Komponente ein bestimmtes Niveau erreicht um das sie im weiteren Verlauf nur noch gering streut. Die Komponenten der Läsionsklasse scheinen dabei stärker zu schwanken als die Komponenten der anderen Gewebearten. Darüber hinaus kann man an diesen Zeitreihen sehr gut die verschiedenen Signalstärken der Gewebearten in den MRT-Sequenzen erkennen.

Eine Segmentierungszeit von über einer Stunde ist aus praktischen Gesichtspunkten unrentabel. Bei einem ähnlichen Segmentierungsansatz führen Feng und Tierney (2009) 100 Iterationen durch für die sie je nach Größe des Gehirns eine bis 16 Minuten benötigen. Sie führen ihre Berechnungen dabei parallel (vgl. Abschnitt 3.5) auf einem Rechner mit zwei Kernen durch. Die geringe Anzahl an Iterationen rechtfertigen sie damit, dass eine Schätzung mit 20.000 Iterationen nur eine geringe Verbesserung gegenüber der mit 100 Iterationen aufweist. Diese Erkenntnis deckt sich mit den Ergebnissen der vorliegenden Arbeit. Während Feng und Tierney (2009) keinen Hinweis auf eine Burn-In-Phase geben, verwerfen Woolrich et al. (2005) bei ihrer Segmentierung von FMRI-Bilder 1.000 von insgesamt 2.000 Schätzungen. Die verbleibenden Ziehungen werden nicht weiter ausgedünnt, sondern fließen als abhängige Realisierungen in die weiteren Analysen ein.

Für die Evaluierung des vorliegenden Ansatzes werden für die 15 BrainWeb-Bilder 2.500 Iterationen mit einer Burn-In-Phase der Länge 500 durchgeführt, was auf einem Rechner mit den oben beschriebenen Daten 75 Minuten beansprucht. Aus den verbleibenden 2.000 Schätzungen wird jede dritte aus-

Abbildung 4.1: Ergebnisse der Segmentierung der BrainWeb-Daten mit zweiprozentigem Rauschen und 0 % INU. In den ersten beiden Spalten sind die simulierten T_1 - und FLAIR-Sequenzen zu sehen. Die restlichen Spalten zeigen die Segmentierung der CSF, GM, WM und der Läsionen.

gewählt, womit insgesamt 667 Schätzungen übrig bleiben. Die resultierende Segmentierung des Beispiels aus Abbildung A.2 ist in Abbildung 4.1 dargestellt. In diesen Abbildungen erscheint ein Voxel dann hell, wenn er in den 667 Iterationen oft der entsprechenden Klasse zugeordnet wurde. Damit werden für jeden Voxel die Wahrscheinlichkeiten geschätzt, aus den Klassen der CSF, WM, GM und Läsionen zu entstammen. Wie man sieht, ist der verwendete Algorithmus in der Lage, die CSF, GM und WM gut zu erkennen und zu segmentieren. Die relativen Häufigkeiten sind in allen Klassen sehr hoch, nur wenige Voxel erscheinen dunkel. Auch die Läsionen werden erkannt, wobei einige Voxel nicht so hell wie die eigentlich segmentierten Läsionen erscheinen. In einem Nachbearbeitungsschritt werden diese Voxel aus der Läsionsmaske entfernt.

4.1.4 Bildnachbearbeitung

Wie im vorigen Abschnitt beschrieben wurde, liegen für jeden Voxel der segmentierten Bilder 667 Realisierungen aus $\mathcal{L} = \{ \mathrm{csf}, \mathrm{gm}, \mathrm{wm}, \mathrm{les} \}$ und damit 667 Realisierungen der Klassenkonfiguration \boldsymbol{x} vor. Die so gewonnene empirische Verteilung von \boldsymbol{x} kann mit diversen Methoden näher untersucht werden. So können Lage- sowie Streuungsmaße berechnet werden, um verschiedene Charakteristika dieser Verteilung aufzuzeigen. Abbildung A.3 in Anhang A zeigt für das vorangegangene Beispiel den Modus, Median und das arithmetische Mittel eines jeden Voxels von ausgewählten Schichten. Für die numerische Berechnung wurden die Klassen CSF, GM, WM und Läsionen den Zahlen 1 bis 4 zugeordnet. Die Berechnung der Lagemaße führt zu unterschiedlichen Segmentierungen, auch wenn die Bilder sich auf den ersten Blick nicht großartig voneinander unterscheiden. Ein genauer Blick auf die Bilder des arithmetischen Mittels lässt allerdings erkennen, dass die Übergänge der Gewebearten glatter sind als bei den anderen Segmentierungen. Neben den drei Lagemaßen wurden außerdem der Interquartilsabstand sowie der Variationskoeffizient, d.h. der Quotient von Standardabweichung und arithmetischen Mittel der Voxel-Klassifikationen berechnet. So kann man feststellen, an welchen Stellen die Segmentierung eventuell etwas instabil ist, d.h. welche Voxel relativ oft verschiedenen Klassen zugeordnet werden. Anhand des Variationskoeffizienten kann man gut sehen, dass die Bereiche der CSF und der Läsionen fast keinerlei Streuung aufweisen, d.h. diese Bereiche werden nach der Burn-In-Phase im weiteren Verlauf der Schätzung kaum umklassifiziert.

Um eine Maske der Läsionen für das segmentierte Gehirn zu erhalten, werden bei den vorliegenden Ergebnissen nur solche Voxel als Läsionen ak-

Abbildung 4.2: T_1 - und FLAIR-Sequenzen sowie die segmentierten Läsionen nach der Bildnachbearbeitung.

zeptiert, die eine gewisse Häufigkeit für diese Ausprägung aufweisen, beispielsweise 90 oder 95 %. Durch diesen Schritt kann es vorkommen, dass in größeren Läsionen einzelne Voxel nicht als Läsion klassifiziert werden. Diese Löcher werden in einem nächsten Schritt beseitigt. Des Weiteren ist die Annahme üblich, dass Läsionen mindestens aus drei Voxel bestehen, sodass all die Voxel entfernt werden, die in ihrer Nachbarschaft erster Ordnung keinen weiteren Läsionsvoxel aufweisen und die in ihrer Nachbarschaft dritter Ordnung keine zwei weiteren Läsionsvoxel besitzen. Insgesamt bleiben damit zusammenhängende Entmarkungsherde mit einer Mindestgröße von drei Voxel übrig. Die Läsionsmaske, die bei einer Auftrittshäufigkeit von mindestens 95 % entsteht, ist für das Beispiel aus Abbildungen 4.1 zusammen mit den T_1 - und FLAIR-Sequenzen in Abbildung 4.2 dargestellt. Optisch lässt diese binäre Läsionsmaske erkennen, dass die Läsionen der MRT-Bilder sehr gut segmentiert werden. Insgesamt sind die extrahierten Läsionen zwar etwas größer als die hellen Bereiche in der FLAIR-Sequenz, der Einfluss dieses konservativen Verhaltens auf die Schätzung ist allerdings gering.

4.1.5 Evaluation

Die BrainWeb-Bilder werden anhand eines anatomischen Modells bzw. Phantoms simuliert. Dieses Phantom beschreibt für jeden Voxel, wie groß der Anteil der verschiedenen Gewebearten an diesem Voxel ist. Da diese Information auch für die MS-Läsionen vorliegt, steht ein Goldstandard zur Evaluierung von Segmentierungsansätzen zur Verfügung. Neben dieser stetigen Läsionsmaske kann man auf eine weitere, diskrete Maske zurückgreifen. Bei dieser werden Voxel als Läsion klassifiziert, wenn diese Klasse in den Voxel des anatomischen Modells den höchsten Anteil aufweist. Üblicherweise wird diese diskrete Läsionsmaske, die im Folgenden als "Maske 1" bezeichnet wird, als Goldstandard zum Vergleich von Segmentierungsansätzen verwendet (Aït-Ali et al., 2005; Bricq et al., 2008; Freifeld et al., 2009; Feng und Tierney, 2009; Forbes et al., 2010a,b). Abbildung 4.3 stellt in den Spalten (c) und (d) das MS-Phantom und die diskrete Läsionsmaske dar. Vergleicht man die Bilder mit der FLAIR-Sequenz, so stellt man fest, dass Maske 1 einige Voxel nicht als Läsion kennzeichnet, die in der FLAIR-Sequenz hyperintens dargestellt werden. Aus diesem Grund wird aus dem MS-Phantom eine weitere diskrete Maske erstellt. Hierfür werden Voxel mit einem Läsionsanteil von über 25 %als Läsion markiert. Um einen fairen Vergleich mit den Segmentierten Läsionen zu ermöglichen, werden in einem weiteren Schritt Entmarkungsherde mit einer Größe von weniger als 3 Voxel entfernt. Spalte (e) in Abbildung 4.3 zeigt Ausschnitte dieser neuen Läsionsmaske, die im Weiteren als "Maske

Abbildung 4.3: Grafischer Vergleich des BrainWeb-Phantoms mit den Läsionsmasken. (a) Simulierte FLAIR-Sequenzen und (b) vergrößerte Ausschnitte, (c) MS-Phantom, (d) Maske 1 und (e) Maske 2.

2" bezeichnet wird. Man erkennt deutlich, dass diese Maske einen größeren Anteil an FLAIR-hyperintensen Voxel beinhaltet als die eigentliche diskrete Maske. Der vorgestellte Ansatz zur Segmentierung von Läsionen wird deshalb sowohl an Maske 1 als auch an Maske 2 evaluiert.

Optischer Vergleich

Ein optischer Vergleich der segmentierten Läsionen aus obiger Beispielsegmentierung mit den beiden Läsionsmasken ist in Abbildung A.4 zu sehen. An diesen Bildern kann man erkennen, dass die vorgestellte Methode die MS-Läsionen sehr gut extrahiert. Insgesamt werden zwar mehr Voxel als Läsionen klassifiziert als in den beiden Masken vorhanden sind, allerdings handelt es sich fast immer um Voxel, die in der FLAIR-Sequenz hyperintens dargestellt werden.

Gütemaße

Neben der grafischen Gegenüberstellung soll die Güte der Segmentierung auch in Maßzahlen ausgedrückt werden. Um geeignete Maße berechnen zu können, müssen zunächst die Anzahlen der Voxel, die

- korrekt als Läsionen erkannt worden sind (engl. true positive voxels, TP),
- die fälschlicherweise als Läsion erkannt worden sind (engl. *false positive voxels*, *FP*),
- die korrekt als Nicht-Läsion erkannt worden sind (engl. true negative voxels, TN) und
- die fälschlicherweise als Nicht-Läsion erkannt worden sind (engl. false negative voxels, FN)

bestimmt werden. Mit diesen Werten werden in der Regel der Overlap Fraction (OF) (Stokking et al., 2000)

$$OF = \frac{TP}{TP + FN},$$

der Extra Fraction (EF)

$$\mathrm{EF} = \frac{FP}{TP + FN}$$

und der Similarity Index (SI) (Dice, 1945; Zijdenbos et al., 1994)

$$\mathrm{SI} = \frac{2 \cdot TP}{2 \cdot TP + FP + FN}.$$

bestimmt. Der OF beschreibt die Sensitivität, schätzt also die Wahrscheinlichkeit, dass ein Läsionsvoxel auch als dieser erkannt wird. Er ist auf das Intervall [0;1] beschränkt, wobei höhere Werte zu bevorzugen sind. Als Gütemaß für die gesamte Segmentierung eignet er sich nicht, da er die Anzahl der fälschlicherweise als Läsionen segmentierten Voxel vernachlässigt (FP). Der EF beschreibt den Anteil der falsch erkannten Voxel an der Gesamtanzahl der korrekten Läsionsvoxel. Je kleiner dieser Wert, desto besser. Wie der OF ist aber auch er kein Maß für die gesamte Güte der Segmentierung. So nimmt er beispielsweise den Wert Null an, wenn kein einziger Voxel fälschlicherweise als Läsion erkannt wurde (TP), unabhängig davon, wie viele Voxel fälschlicherweise nicht erkannt wurden (FN). Der SI stellt den Anteil der TP an der Gesamtanzahl der Läsionsvoxel des Goldstandards als auch des segmentierten Bildes dar. In ihn fließen sowohl die TP, FP als auch die FNein, sodass er als Maß für die gesamte Güte der Schätzung geeignet ist. Wie der OF ist auch der SI auf das Intervall [0;1] beschränkt. Werte größer als 0,7 werden in der Literatur als hervorragendes Ergebnis interpretiert (Zijdenbos et al., 1994; Anbeek et al., 2004; Khayati et al., 2008).

Jedes der 15 simulierten MRT-Bilder wurde für die in Abschnitt 2.3.3 eingeführten Energiefunktionen und für die ersten drei Nachbarschaftsordnungen segmentiert. Außerdem fand noch eine Unterscheidung hinsichtlich der multivariaten Normal- und *t*-Verteilung statt, sodass letztendlich 270 Segmentierungen vorliegen. Die Ergebnisse des SI dieser Schätzungen sind in den Abbildungen A.5 bis A.8 zusammengefasst. Die entsprechenden Anzahlen an TP, FP und FN sowie die Werte des OF und des EF sind in den Tabellen A.3 bis A.12 zu finden.

Multivariate Normalverteilung

Beschränkt man sich zunächst auf die Schätzungen der multivariaten Normalverteilung, so fällt auf, dass der SI für Maske 1 mit zunehmendem Rauschen größere Werte annimmt (Abbildung A.5). Während für einprozentiges Rauschen Werte zwischen 0,3 und 0,49 beobachtet werden, nimmt der SI bei fünf-prozentigem Rauschen Werte zwischen 0,65 und 0,71 an (mit Ausnahme der Schätzung für Energiefunktion (2.11) und Nachbarschaft erster Ordnung). Dieses Verhalten ist darauf zurückzuführen, dass mit zunehmendem Rauschen weniger Voxel als Läsionen segmentiert werden und somit auch weniger FP beobachtet werden (vgl. Tabellen A.3 bis A.7).

Legt man Maske 2 als Goldstandard zugrunde (Abbildung A.6), so verhält es sich ähnlich, allerdings ist statt einem linearen Zusammenhang zwischen Rauschen und SI ein absolutes Maximum bei vierprozentigem Rauschen bei fast allen Energiefunktionen zu beobachten. Insgesamt nimmt der SI für Maske 2 größere Werte an als für Maske 1 und es werden öfter Werte über 0,7 erzielt. Dies ist dadurch zu erklären, da Maske 2 mehr Voxel als Maske 1 enthält und somit die Anzahlen der FP für diese Segmentierungen geringer ausfallen. Bei einem Rauschen von 5 % steigt die Anzahl der FN, sodass der SI wieder abnimmt.

Der Einfluss der INU auf die Schätzungen ist ebenfalls bemerkenswert. Während für geringes Rauschen eine hohe INU einen positiven Einfluss auf die Schätzung hat, so unterscheiden sich die Schätzungen für unterschiedliche INU bei hohem Rauschen nur noch gering. Insgesamt ein Verhalten, dass in dieser Form nicht erwartet wurde.

Sowohl bei dem Vergleich mit Maske 1 als auch mit Maske 2 schnei-

det die Energiefunktion (2.11) mit der Nachbarschaft erster Ordnung am schlechtesten ab. Hier werden vor allem bei einer hohen INU zu viele Voxel fälschlicherweise als Läsionen erkannt. Eine Untersuchung dieser geschätzten Bilder zeigt, dass die Läsionen zwar im Allgemeinen gut segmentiert werden, allerdings im unteren Teil des Gehirns viele Voxel, die eigentlich der GM anzurechnen sind, als Läsionen klassifiziert werden.

Der Einbruch des SI bei Energiefunktion (2.13) und der Nachbarschaft dritter Ordnung ist darauf zurückzuführen, dass die Varianzkomponenten bei dieser Schätzung auch nach 2.500 Iterationen nicht konvergierten. Dies ist kein einmaliges Ereignis, sondern tritt bei der Modellierung mit der multivariaten t-Verteilung noch öfter auf. Bei den klinischen Daten in Abschnitt 4.2 ist dieses Ergebnis allerdings nicht zu beobachten. Lässt man diesen Sachverhalt außer Acht, so ist kein bedeutender Unterschied zwischen den Energiefunktionen und den Nachbarschaftsordnungen auszumachen. Hierfür gibt es zwei mögliche Erklärungen. Zum einen kann es sein, dass das MZF an Einfluss verliert, da für die Klasse der Läsionen nur Voxel in Frage kommen, die nach dem digitalen Gehirn-Atlas eine Priori-Wahrscheinlichkeit von über 0,5 aufweisen. Nach dieser Argumentation sollte jedoch an den Ergebnissen der anderen Gewebearten ein Unterschied hinsichtlich der verwendeten Energiefunktion und Nachbarschaftsordnung erkennbar sein. Ein optischer Verglich der segmentierten CSF, GM und WM kann dies jedoch nicht bestätigen, sodass obige These nicht aufrechterhalten werden kann. Eine andere Möglichkeit, den fehlenden Einfluss zu erklären, stellt die Tatsache dar, dass für jede Nachbarschaftsordnung eine eigene Parameterschätzung durchgeführt wurde, sodass der Einfluss eines anders klassifizierten Voxels in N_i auf die Größe der Nachbarschaft angepasst ist. Gestützt wird diese Argumentation durch die simulierten GZFer in Abschnitt 2.3.3. In diesen Realisierungen war ebenfalls kein Unterschied hinsichtlich der verwendeten Nachbarschaftsordnungen auszumachen. Den fehlenden Einfluss der Energiefunktionen würde das allerdings nicht erklären.

Insgesamt lässt sich festhalten, dass mit zunehmendem Rauschen weniger Voxel als Läsionen segmentiert werden. Der Einfluss der INU ist gering und die Wahl der Energiefunktion und Nachbarschaftsordnungen nach diesen Ergebnissen zu vernachlässigen. Da für den SI in beiden Masken Werte von über 0,7 erzielt werden, können Teile der Schätzungen als *gut* bezeichnet werden.

Multivariate *t*-Verteilung

Die Ergebnisse unter Verwendung der multivariaten *t*-Verteilung sind in den Tabellen A.8 bis A.12 abgetragen sowie die Werte des SI grafisch in den Abbildungen A.7 und A.8 dargestellt.

Anders als bei der multivariaten Normalverteilung liegt mit der Anzahl der Freiheitsgrade ein weiterer Parameter vor, der einen großen Einfluss auf das Gelingen der Segmentierung hat. Werte von vier bis sechs erwiesen sich als ungeeignet, da in diesen Fällen falsch segmentiert wurde oder der Gibbs-Sampler auch nach 5.000 Iterationen nicht konvergierte. Letztendlich wurde der Wert $\nu = 7$ gewählt.

Betrachtet man Maske 1 als Goldstandard, so verbessern sich die Segmentierungen gegenüber der multivariaten Normalverteilung. Bis auf zwei Ausnahmen resultieren für den SI in jedem Fall Werte über 0,7, der höchste Wert liegt sogar bei 0,8314. Grund hierfür ist vor allem eine geringere Anzahl an falsch segmentierten Läsionen (FP) gegenüber der multivariaten Normalverteilung. Die Anzahl der nicht-segmentierten Läsionsvoxel (FN)bleibt nahezu unverändert, sodass der SI insgesamt höhere Werte annimmt.

KAPITEL 4. SCHÄTZUNGEN

Damit steht aber auch fest, dass die Ergebnisse bei dem Vergleich mit Maske 2 schlechtere Werte des SI liefern, da Maske 2 mehr Läsionsvoxel als Maske 1 enthält und somit die Anzahl der nicht erkannten Voxel (FN) zunimmt.

Mit zunehmendem Rauschen werden analog zur multivariaten Normalverteilung weniger Voxel segmentiert. Das hat eine Abnahme der FP und somit einen Anstieg des SI für Maske 1 zur Folge. Gleichzeitig steigt für Maske 2 die Anzahl der nicht erkannten Voxel, womit der SI mit zunehmendem Rauschen geringere Werte annimmt. Eine hohe INU sorgt bei geringem Rauschen für eine Abnahme der FP bei Maske 1 und führt somit zu besseren Ergebnissen des SI. Mit zunehmendem Rauschen verschwindet dieser Unterschied immer mehr. Die Werte des SI bei fünfprozentigem Rauschen und 40 % INU sind nicht in den Abbildungen A.7 und A.8 abgetragen. Grund hierfür sind die überaus schlechten Werte des SI, die eine geeignete grafische Darstellung der anderen Ergebnisse unmöglich machen. Verantwortlich für diese schlechten Ergebnisse ist ein langsames Konvergenzverhalten des Gibbs-Samplers. Bis auf die Wahl der Energiefunktion (2.11) bei der Nachbarschaft erster Ordnung konvergierte keine dieser Schätzungen nach 2.500 Iterationen. Eine erneute Segmentierung dieser Daten führte zu den gleichen Ergebnissen.

Der Einfluss der Energiefunktionen sowie der Nachbarschaftsordnungen ist auch bei der Wahl der multivariaten *t*-Verteilung als gering einzustufen. Lediglich die Ergebnisse der Energiefunktion (2.11) bei der Nachbarschaft erster Ordnung unterscheiden sich von den anderen Kombinationen der Energiefunktionen und Nachbarschaftsordnungen. Die Werte des SI liegen aber auch in diesen Fällen deutlich über denen der multivariaten Normalverteilung.

	Rauschen	INU	Sequenzen	$\mathrm{SI}_{\mathrm{max}}$
Aït-Ali et al. (2005)	$3 \ \%$		T_1, T_2, PD	$0,\!48$
Forbes et al. $(2010b)$	$3 \ \%$	0~%	T_1, T_2, PD	$0,\!86$
Forbes et al. $(2010b)$	$3 \ \%$	40~%	T_1, T_2, PD	0,52
Freifeld et al. (2009)	$3, \ 5 \ \%$		T_1, T_2, PD	0,79
van Leemput et al. (2001)	$3 \ \%$	0~%	T_1, T_2, PD	0,79
van Leemput et al. (2001)	$3 \ \%$	40~%	T_1, T_2, PD	0,76
Prastawa und Gerig (2008b)	—	—	T_1, T_2	$0,\!64$

Tabelle 4.1: Werte des maximalen SI in verschiedenen Veröffentlichungen.

Vergleich mit anderen Segmentierungsansätzen

Damit die erzielten Werte des SI und damit die Güte der vorgestellten Methode beurteilt werden kann, bietet es sich an, den vorgestellten Segmentierungsansatz mit existierenden Methoden zu vergleichen. Dieses Vorhaben wird insofern erschwert, als dass in der Literatur kein Ansatz zu finden ist, der an der Kombination von T_1 - und FLAIR-gewichteten Sequenzen evaluiert wird. Stattdessen wird auf die *Standard*-Sequenzen des BrainWeb zurückgegriffen, d.h. T_1 -, T_2 - und PD-gewichtete MRT-Bilder. Eine Übersicht über die maximalen Werte des SI aus verschiedenen Veröffentlichungen ist in Tabelle 4.1 zu sehen. Der Vergleich mit den Ergebnissen von Prastawa und Gerig (2008b) ist mit Vorsicht zu genießen, da die Autoren dieser Arbeit ihren Ansatz an einer anderen Läsionsmaske evaluieren. Sie bilden aus dem MS-Phantom eine binäre Maske, indem sie nur Voxel betrachten, die einen Anteil an Läsionen von über 50 % aufweisen. Die anderen Autoren verwenden für ihre Evaluierung Maske 1. Die Werte von van Leemput et al. (2001) basieren auf einem Vergleich in Forbes et al. (2010b).

Während sich die Ergebnisse der multivariaten Normalverteilung in dieser Arbeit nicht mit den Werten in Tabelle 4.1 messen können, so liefern bei Verwendung der multivariaten *t*-Verteilung nur Forbes et al. (2010b) bessere Werte für den SI. Sie erzielen einen Wert von 0,86 bei dreiprozentigem Rauschen und 0 % INU. Sobald Bilder mit INU betrachtet werden, ergeben sich für den vorgestellten Ansatz deutlich bessere Werte.

4.2 Klinische Daten

Neben den BrainWeb-Daten soll der vorgestellte Segmentierungsansatz auch auf klinische Daten angewandt werden. Dazu liegen mehr als 300 T_1 - und FLAIR-gewichtete MRT-Bilder von MS-Patienten der Neurologischen Klinik und Poliklinik der Technischen Universität München vor. Die Bilder sind mit einer Dimension von $121 \times 145 \times 121$ Voxel um ein Vielfaches kleiner als die BrainWeb-Daten. Abbildung 1.2 zeigt Schnitte der MRT-Bilder für einen Patienten mit hohem Entmarkungsanteil.

4.2.1 MZF-Parameter

Die klinischen Daten wurden nicht manuell segmentiert, sodass kein Goldstandard für die Schätzung der MZF-Parameter zur Verfügung steht. Stattdessen werden die Ergebnisse eines anderen Ansatzes verwendet, der bisher in dem Klinikum für die Segmentierung benutzt wurde. Es wurden 30 segmentierte Bilder ausgewählt und die MZF-Parameter mit der in Abschnitt 3.1 beschriebenen Methode geschätzt. Die Ergebnisse dieser Schätzung sind in Tabelle A.2 abgetragen. Vergleicht man die Werte mit denen der BrainWeb-Daten in Tabelle A.1, so sind nur geringe Unterschiede feststellbar. Dieser Sachverhalt zeigt, dass für neue Daten nicht notgedrungen auch neue Parameter geschätzt werden müssen, sondern die Parameterschätzungen universell eingesetzt werden können.
4.2.2 Bildvorverarbeitung

Die Bilder wurden bereits von Mitarbeitern des Klinikums vorverarbeitet. So wurden die T_1 - und FLAIR-Sequenzen einander angeglichen (registriert) und die Bilder hinsichtlich der INU korrigiert. Für die Entfernung der Schädelknochen wurde das Brain Extraction Tool (Smith, 2002) der FSL benutzt. Abbildung 1.2 in Abschnitt 1.2 zeigt Schnitte eines Gehirns nach der Schädelentfernung. Die Registrierung des Atlas an die MRT-Bilder wurde analog zu den BrainWeb-Bildern mit FLIRT durchgeführt.

4.2.3 Konvergenzdiagnose und Bildnachbearbeitung

Da die klinischen MRT-Bilder eine geringere Dimension als die BrainWeb-Daten aufweisen, kann die Segmentierung mit der gleichen Anzahl an Iterationen in kürzerer Zeit erfolgen. So konnten die Schätzungen für einen Patienten in ca. 35 Minuten durchgeführt werden. Die Zeitreihen der geschätzten Erwartungswert- und Kovarianzkomponenten unterscheiden sich nur gering von denen der BrainWeb-Daten. Auch hier scheint der Gibbs-Sampler gegen die stationäre Verteilung zu konvergieren. Auf eine Darstellung der Grafiken wird an dieser Stelle verzichtet, allerdings wird betont, dass jede der durchgeführten Schätzungen konvergierte. Von den 2.500 Iterationen wurden wieder die ersten 500 als Burn-In-Phase verwendet und von den verbleibenden jeder dritte ausgewählt, sodass ebenfalls 667 Ziehungen pro Segmentierung vorliegen.

Wie auch bei den BrainWeb-Daten liegt nach der Schätzung für jeden Voxel die empirische Verteilung der Elemente in \mathcal{L} vor. Damit können auch hier Werte wie der Median oder Modus für die Analyse dieser Verteilungen benutzt werden wodurch unterschiedliche Aspekte der Segmentierung beleuchtet werden können. Es sei vorweggenommen, dass die nachfolgenden Abschnitte nicht annähernd so gute Ergebnisse wie die Analyse der BrainWeb-Daten liefern. Aus diesem Grund werden die Abbildungen zum größten Teil die unbearbeiteten Ergebnisse zeigen. Sollten doch Nachbearbeitungsschritte durchgeführt werden, so sind es die gleichen wie in Abschnitt 4.1.4.

4.2.4 Evaluation

Wie bereits erwähnt wurde, liegt kein Goldstandard für die klinischen Daten vor. Auch die Segmentierungen, die zur Schätzung der MZF-Parameter genutzt wurden, sind nicht für die hier betrachteten MS-Patienten verfügbar. Um die Güte der Segmentierung zu messen, kann deshalb nicht auf Werte wie in Abschnitt 4.1.5 zurückgegriffen werden. Stattdessen werden die Ergebnisse grafisch veranschaulicht.

Im Folgenden werden die MS-Patienten in drei Gruppen eingeteilt. Die Einteilung wird hinsichtlich des Krankheitsgrades getroffen: Patienten mit einem hohen Anteil an Läsionen, Patienten mit einem moderaten Anteil an Läsionen und Patienten mit nur wenig Läsionen. Dabei werden die Begriffe "schwere MS", "moderate MS" und "leichte MS" als Synonym für diese drei Gruppen verwendet.

Ziel der nächsten Abschnitte ist es, die Sensibilität des vorgestellten Ansatzes hinsichtlich des Krankheitsgrades der Patienten aufzuzeigen. Wie in Abschnitt 4.1.5 sollen auch der Einfluss der Energiefunktionen und Nachbarschaftsordnungen sowie die Verwendung eines Gehirn-Atlas auf die Schätzung untersucht werden.

Abbildung 4.4: MRT-Bilder von Patient 1. T_1 -Sequenz (Oben) und FLAIR-Sequenz (Unten).

Patienten mit schwerer MS

Abbildung 4.4 zeigt ausgewählte Schnitte der T_1 - und FLAIR-Sequenzen von *Patient 1.* Die Grenzen der Läsionen dieses Patienten sind optisch nur schwer auszumachen. Besonders im oberen Teil des Gehirns befinden sich hyperintense Bereiche ohne klare Abgrenzung zu den restlichen Gewebearten. Die Bilder dieses Patienten sollen dazu dienen, die Unterschiede der vorgestellten Energiefunktionen aufzuzeigen. Während die multivariate *t*-Verteilung in allen untersuchten Fällen die Läsionen einer anderen Gewebeart zuordnet, sind die unbearbeiteten Ergebnisse der Modellierung durch die multivariate Normalverteilung in Abbildung A.9 dargestellt. Abbildung A.10 zeigt die gleichen Ergebnisse nach der Bildnachbearbeitung. Für die Schätzung dieser Bilder wurde die Nachbarschaft zweiter Ordnung verwendet. Entgegen den Ergebnissen aus Abschnitt 4.1.5 sind deutliche Unterschiede in den verwendeten Energiefunktionen sichtbar. Energiefunktion (2.11) segmentiert Läsionen sehr großzügig und dazu noch die Übergänge von der WM zur GM. Beachtet man die Parameterrestriktionen, so wird neben den Übergängen auch die WM selbst segmentiert, die Läsionen fallen allerdings etwas kleiner aus. Außerdem erkennt man, dass in der fünften Spalte in Abbildung A.9 eindeutige Läsionen in der Läsionsmaske der ersten beiden Energiefunktionen fehlen. Diese wurden der CSF zugeordnet. Die segmentierten Läsionen der Energiefunktion (2.13) scheinen die hyperintensen Bereiche der FLAIR-Sequenz am besten zu entsprechen. In der binären Läsionsmaske (Abbildung A.10) bleibt davon allerdings nicht viel übrig. Der Versuch, die Schätzungen mit einem Gehirn-Atlas positiv zu beeinflussen, missglückte leider. In allen Fällen wurde die gesamte WM segmentiert. Zusammenfassend kann man sagen, dass es dem vorgestellten Ansatz nicht gelingt, die Läsionen von Patient 1 korrekt zu erkennen.

Ausschnitte der T_1 - und FLAIR-gewichteten MRT-Sequenzen von Patient 2 sind bereits in Abbildung 1.2 in Abschnitt 1.2 vorgestellt worden. Dieser Patient weist großflächige Läsionen im oberen Teil des Gehirns auf, im unteren Teil sind kleinere Entmarkungsherde auszumachen. Lediglich die Segmentierung mit Energiefunktion (2.11) liefert brauchbare Ergebnisse, unter Verwendung der anderen beiden Energiefunktionen werden die Läsionen als CSF erkannt. Auch die multivariate t-Verteilung führt zu falschen Ergebnissen, d.h. auch hier befinden sich die gesuchten Läsionen in den Klassen der anderen Gewebearten. Abbildung 4.5 vergleicht die Schätzungen von Energiefunktion (2.11) unter Berücksichtigung der Nachbarschaft zweiter Ordnung hinsichtlich des digitalen Gehirn-Atlas. Wie man erkennen kann, stabilisiert der Gehirn-Atlas die Segmentierung erheblich, es werden deutlich weniger Voxel als Läsionen klassifiziert. Besonders deutlich wird das im unteren Teil des Gehirns sowie an den Rändern. Unterzieht man die geschätzten Läsionsmasken den oben beschriebenen Nachbearbeitungsschritten, so wird zwar ein Großteil dieser falsch segmentierten Voxel entfernt, der positive Einfluss des

Abbildung 4.5: Vergleich der Segmentierungen für Patient 2 ohne Gehirn-Atlas (Mitte) und mit Gehirn-Atlas (Unten).

Gehirn-Atlas bleibt trotzdem gut sichtbar (Abbildung A.11 und A.12). Man kann ebenfalls erkennen, dass die Segmentierung der CSF und der GM von der Verwendung des Gehirn-Atlas nicht beeinflusst wird. In den letzten Zeilen dieser Abbildungen ist aber auch zu sehen, dass die Schätzung des Gehirn-Atlas weniger Läsionsvoxel segmentiert, als die Schätzung ohne Atlas. Dies ist auf die Art und Weise, wie der Atlas für die Stabilisierung genutzt wird, zurückzuführen. Der Bereich, in dem die Voxel fehlen, hat nach dem Atlas der WM eine Wahrscheinlichkeit von unter 0,5 und kommen somit nicht in Frage, als Läsionen klassifiziert zu werden.

Auf der Suche nach den Gründen für diese so unterschiedlichen Segmentierungen bei zwei Patienten mit schwerer MS hilft ein Blick auf Abbildung A.13. Dort sind die Intensitäten der T_1 - und FLAIR-gewichteten MRT-Bilder für die Patienten 1 und 2 in Streudiagrammen dargestellt. Hält man sich vor Augen, dass Läsionen in FLAIR-Bildern hyperintens und in T_1 -Bildern eine Intensität zwischen der WM und GM aufweisen, so kann man die Läsionen als länglichen diagonalen Schweif in den Streudiagrammen ausmachen. Dieser ist bei Patient 2 deutlich besser von den anderen Gewebearten abzugrenzen und weist eine stärkere Konzentration auf als bei Patient 1.

Patienten mit moderater MS

Auf den MRT-Bildern von *Patient 3* sind nur wenige Läsionen auszumachen. Wenn überhaupt erkennt das ungeschulte Auge in der letzten Reihe von Abbildung A.14 zwei Läsionen in der FLAIR-Sequenz. Der in dieser Arbeit vorgestellte Ansatz führt egal mit welcher Energiefunktion und Nachbarschaftsordnung zu keiner Segmentierung der MS-Läsionen. Die Verwendung der multivariaten t- statt der multivariaten Normalverteilung führt genauso wenig zu einer Verbesserung wie die Berücksichtigung des Gehirn-Atlas. In Abbildung A.14 ist als Beispiel die Schätzung der multivariaten Normalverteilung mit Energiefunktion (2.11) und der Nachbarschaft zweiter Ordnung dargestellt. Die drei Gewebearten CSF, GM und WM werden im Grunde gut segmentiert, Teile der GM und WM befinden sich allerdings auch in der Klasse der Läsionen. Die gesuchten Entmarkungsherde wurden als CSF klassifiziert. Die obere Grafik in Abbildung A.15 zeigt das Streudiagramm der Intensitäten der beiden MRT-Sequenzen. Anders als bei den Streudiagrammen der Patienten 1 und 2 sind die Läsionen bei Patient 3 nur noch schwer auszumachen. Es ist keine Abgrenzung zu den anderen Gewebearten mehr sichtbar.

Patienten mit leichter MS

Abbildung A.15 zeigt in der unteren Grafik das Streudiagramm der Intensitäten für *Patient 4*, einem Patienten mit nur sehr wenigen Läsionen. Die Ergebnisse der Segmentierung mit den gleichen Einstellungen wie bei Patient 3 sind in Abbildung A.16 zu finden. Während sich die Läsionen in dem Streudiagramm von Patient 3 vielleicht noch erahnen lassen, sind sie bei Patient 4 nicht mehr zu erkennen. Es liegen einfach zu wenig FLAIR-hyperintense Voxel vor, als dass sie durch die vorgestellte Methode erkannt werden können.

4.3 Zusammenfassung

Die Erkenntnisse der BrainWeb-Daten können an den klinischen Daten nicht bestätigt werden. Entgegen den Ergebnissen aus Abschnitt 4.1.5 unterscheiden sich die Segmentierungen für unterschiedliche Energiefunktionen erheblich. Ein geringer Einfluss der Wahl der Nachbarschaftsordnung konnte an den klinischen Daten ebenfalls beobachtet werden. Die Modellierung der Intensitäsverteilungen durch die multivariate *t*-Verteilung lieferte für die echten Daten in keinem Fall brauchbare Ergebnisse, sodass die hervorragenden Resultate der BrainWeb-Bilder für die klinischen Daten keine Gültigkeit besitzen. Anders als bei den simulierten Daten konvergierte jede Schätzung der klinischen MRT-Bilder, allerdings wurden nur in Fällen mit einer hohen Anzahl an Läsionsvoxel tatsächlich Läsionen segmentiert. Eine ausführliche Diskussion dieser Resultate befindet sich in dem folgenden abschließenden Kapitel.

Kapitel 5

Diskussion und Ausblick

In der vorliegenden Arbeit wurde ein Bayesianisch-hierarchisches Modell für die Segmentierung von Läsionen der Multiplen Sklerose aus T_1 - und FLAIRgewichteten MRT-Bildern vorgestellt. Ausgehend von dem Satz von Bayes werden die Voxel der 3D-MRT-Bilder anhand ihrer Intensitäten einer der vier Klassen CSF, GM, WM oder Läsionen zugeordnet. Die Verteilung der Intensitäten kann dabei durch eine multivariate Normalverteilung oder durch eine multivariate t-Verteilung modelliert werden. Die Zuordnung der Voxel wird durch ein MZF beeinflusst und kann durch einen digitalen Gehirn-Atlas gestützt werden. Die Wahl der in dieser Arbeit benutzten MRT-Sequenzen wurde nicht willkürlich gewählt. In der Neurologische Klinik und Poliklinik der Technischen Universität München gehören T_1 - und FLAIR-gewichtete MRT-Bilder schon seit einigen Jahren zu den Standard-Sequenzen zur Lokalisierung von MS-Läsionen.

Die Evaluation des Ansatzes in Kapitel 4 hat gezeigt, dass die Methode sehr unterschiedliche Ergebnisse produzieren kann. Während bei der Segmentierung von künstlichen Daten zum Teil hervorragende Resultate erzielt werden, ergaben sich für die klinischen Daten in den seltensten Fällen brauchbare

Schätzungen. Ein Hauptgrund für die guten Segmentierungen der BrainWeb-Daten scheint die Beschaffenheit der simulierten MRT-Bilder zu sein. Hier ist vor allem die kontraststarke Abgrenzung der Läsionen von den anderen Gewebearten in den FLAIR-Sequenzen zu nennen. Auch bei einem geringen Signal-Rausch-Verhältnis lassen sich die Läsionen gut ausmachen (vgl. Abbildung A.1). Bei den klinischen Daten ist das nicht der Fall. Hier sind die Läsionen in den meisten Fällen zwar auch optisch gut zu erkennen, allerdings grenzen sie sich von der GM und WM nicht so gut ab, wie in den simulierten MRT-Bildern. Als Grund für diesen Unterschied in der Qualität der FLAIR-Sequenzen ist die manuelle Wahl der Parameter TE, TI und TR bei der Simulation der Bilder zu nennen. Mit diesen Parametern können zwar MRT-Bilder simuliert werden, die den klinischen FLAIR-Bildern optisch sehr ähneln, richtige FLAIR-Sequenzen stellen sie allerdings nicht dar. Der in Abschnitt 4.1.5 fehlende Einfluss der Energiefunktionen auf die Schätzungen muss ebenfalls auf den Unterschied der MRT-Bilder zurückgeführt werden. Da die klinischen MRT-Sequenzen mit demselben Code analysiert wurden, kann ein Programmierfehler an dieser Stelle ausgeschlossen werden. Ein weiteres Problem bei der Evaluierung von Segmentierungsansätzen anhand der BrainWeb-Daten stellt der verfügbare Goldstandard dar. Keiner der in der Literatur vorgestellten Ansätze wird an dem MS-Phantom evaluiert. Stattdessen beschränken sich die meisten Autoren auf die verfügbare binäre Läsionsmaske (Maske 1). Allerdings muss in diesem Zusammenhang die Frage diskutiert werden, wie sinnvoll ein Goldstandard für die Position und Größe von Läsionen ist, wenn er sich nur zum Teil mit den sichtbaren Läsionen auf den betrachteten MRT-Bildern deckt. Dies wird sicher auch ein Grund dafür sein, warum viele Autoren auf eine Evaluation ihres Ansatzes anhand der BrainWeb-Daten verzichten und stattdessen auf eine manuelle Segmentierung der Läsionen als Goldstandard setzen (vgl. van Leemput et al. (2001); Anbeek et al. (2004); Wu et al. (2006); Seghier et al. (2008); Khayati et al. (2008)). Anhand der aufgezählten Gründe kann zusammenfassend gesagt werden, dass die Evaluierung von Segmentierungsansätzen, welche auf FLAIR-Sequenzen basieren, nicht an simulierten Daten des BrainWebs erfolgen sollte. Stattdessen sollten klinische Daten, für die ein manuell erstellter Goldstandard oder eine Schätzung aus anderen Methoden zur Verfügung steht, in den Mittelpunkt der Evaluierung rücken.

Ein Hauptgrund für die misslungenen Segmentierungen in dem vorigen Kapitel wird die in vielen Fällen sehr geringe Anzahl an Läsionsvoxel sein. Diese können nicht dadurch extrahiert werden, indem ihnen eine eigene Verteilung zugeordnet wird. Selbst bei einer sehr guten Initialisierung würden sich die diese Verteilung einen anderen Schwerpunkt der Daten suchen und einen Teil der anderen Gewebearten segmentieren (vgl. Schätzungen für Patient 3 und 4). Dies erkannten bereits van Leemput et al. (2001), die Läsionen als Ausreißer markierten. Eine Möglichkeit, diesem Verhalten entgegenzuwirken, bestünde darin, die Intensitätsparameter nach einer guten Initialisierung nicht mehr zu aktualisieren, sondern lediglich die Klassenzugehörigkeiten der Voxel neu zu bestimmen. Bei der Bestimmung der neuen Klassenzugehörigkeiten gibt es ebenfalls Alternative Vorgehensweisen, die bessere Schätzungen liefern könnten. So kann man statt der diskreten Gleichverteilung als Vorschlagsdichte andere Verteilungen wählen. Denkbar wäre es, den Vorschlag der Klasse k für Voxel i von der Anzahl der bisherigen Realisierungen dieser Klasse für diesen Voxel abhängig zu machen. Eine weitere Möglichkeit besteht in der Verwendung von Priori-Informationen, wie beispielsweise einem digitalen Gehirn-Atlas. Ein solcher Atlas kann die Schätzung zudem auch auf andere Wege positiv beeinflussen. Wie der Vergleich der Segmentierungen von Patient 2 veranschaulicht, ist der Atlas durchaus in der Lage, die Segmentierung der Läsionen zu stabilisieren. Abschnitt 4.2.4 zeigt aber auch, dass die Art und Weise, mit welcher der Atlas in dem vorliegenden Ansatz verwendet wird, zu Fehklassifikationen führen kann. Generell ist der Einfluss des Atlas auf die Schätzung von der Qualität des verwendeten Atlas sowie von der Form des zu segmentierenden Gehirns abhängig. Je nach verfügbarem Registrierungsansatz benötigt der Atlas außerdem eine gewisse Zeit, bis er sich dem Gehirn angepasst hat. Aus diesen Gründen ist eine Methode, die auf die Verwendung eines Atlas verzichtet, zu bevorzugen.

Als Ursache für die schlechten Ergebisse der klinischen Daten kommen weitere Aspekte infrage. So ist zum einen die geringe Auflösung der MRT-Bilder zu nennen. Mit 2.122.945 Voxel fallen sie deutlich kleiner aus, als die Bilder des BrainWebs (7.109.137 Voxel). Dieser Umstand verschärft mögliche *partial volume Effekte*, die bereits Gegenstand des Abschnitts 2.2 waren. Bei MRT-Bildern mit geringen Auflösungen muss davon ausgegangen werden, dass sich die Intensität eines Voxels aus der Mischung mehrerer Gewebearten ergibt. Feng und Tierney (2009) präsentieren für einen ähnlichen Ansatz eine Erweiterung zur Berücksichtigung möglicher partial volume Effekte. Sie unterteilen jeden Voxel in acht Subvoxel und klassifizieren diese in die Gewebearten CSF, GM und WM.

Eine weitere Möglichkeit, die Schätzung zu verbessern, stellen diverse Vorverarbeitungsschritte dar. Als Beispiel seien Filter, wie beispielsweise der Non-Local-Means-Filter (Buades et al., 2005; Manjón et al., 2010) zu nennen, die – trotz eines evtl. hohen zeitlichen Aufwands – die Bilder bereinigen und die Schätzung maßgeblich beeinflussen können.

Wie die Diskussion zeigt, gibt es viele Möglichkeiten, den vorgestellten Ansatz doch noch zu einer erfolgreichen Methode zur Segmentierung von MS- Läsionen auszubauen. Die etwas ältere Arbeit von van Leemput et al. (2001) ist – soweit bekannt – der einzige Ansatz speziell zur Segmentierung von MS-Läsionen, welcher der wissenschaftlichen Gemeinschaft frei zur Verfügung steht¹. Aus diesem Grund soll in einer weiteren Zusammenarbeit mit der Neurologischen Klinik und Poliklinik der Technischen Universität München der bestehende Ansatz zu einer funktionstüchtigen Methode weiterentwickelt und implementiert werden.

 $^{^{1}\}mathrm{EMS}$, http://www.medicalimagecomputing.com/downloads/ems.php

Literaturverzeichnis

- L. S. Aït-Ali, S. Prima, P. Hellier, B. Carsin, G. Edan, und C. Barillot. STREM: A Robust Multidimensional Parametric Method to Segment MS Lesions in MRI. *MICCAI LNCS 3749*, pages 409–416, 2005.
- Petronella Anbeek, L. Koen, Matthias J. P. van Osch, Robertus H. C. Bisschops, und Jeroen van der Grond. Automatic segmentation of differentsized white matter lesions by voxel probability estimation. *Medical Image Analysis*, 8:205–215, 2004.
- Miguel Angel González Ballester, Andrew P. Zisserman, und Michael Brady. Estimation of the partial volume effect in MRI. *Medical Image Analysis*, 6:389–405, 2002.
- S. Bricq, C. Collet, und J.-P. Armspach. Lesions detection on 3d brain mri using trimmed likelihood estimator and probabilistic atlas. *Fifth IEEE International Symposium on Biomedical Imaging ISBI'08, Paris, France*, pages 93–96, 2008.
- A. Buades, B. Coll, und J. M. Morel. A Review of image denoising algorithms, with a new one. *Multiscale Model. Simul.*, 4(2):490–530, 2005.
- R. Chandra, R. Menon, L. Dagum, und D. Kohr. Parallel Programming in OpenMP. Morgan Kaufmann, San Francisco, 2000.

- C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, und A. C. Evans. BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. *NeuroImage*, 4(4):425, 1997.
- D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, und A. C. Evans. Design and Construction of a Realistic Digital Brain Phantom. *IEEE Transactions on Medical Imaging*, 17(3):463–468, 1998.
- Mary Kathryn Cowles und Bradley P. Carlin. Markov Chain Monte Carlo Convergence Diagnostics: A Comprehensive Review. *Journal of the American Statistical Association*, 91:883–904, 1996.
- Heidi Crayton, Rock A. Heyman, und Howard S. Rossman. A multimodal approach to managing the symptoms of multiple sclerosis. *Neurology*, 63: 12–18, 2004.
- A.P. Dempster, N.M. Laird, und D.B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.
- L. R. Dice. Measures of the amount of ecological association betwee species. Ecology, 26:297–302, 1945.
- Tarun Dua, Paul Rompani, World Health Organization, und Multiple Sclerosis International Federation. Atlas: multiple sclerosis resources in the world, 2008. World Health Organization Geneva, Switzerland :, 2008. ISBN 9789241563758 9241563753. URL http://www.who.int/mental_health/neurology/Atlas_MS_WEB.pdf.
- G. Dugas-Phocion, M. A. GonzAjlez, C. Lebrun, S. Chanalet, C. Bensa,

G. Malandain, und N. Ayache. Hierarchical Segmentation of Multiple Sclerosis Lesions in Multi-Sequence MRI. In ISBI'04, 2004.

- Dai Feng und Luke Tierney. MRI Tissue Classification Using High Resolution Bayesian Hidden Markov Normal Mixture Models, 2009.
- F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, und M. Dojat. Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation. *IEEE International Symposium on Biomedical Imaging (ISBI), The Netherlands*, pages 14–17, 2010a.
- F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, und M. Dojat. A weighted Multi-sequence Markov model for brain lesion segmentation. Y.W. Teh and M. Titterington (Eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, JMLR:W CP 9, pages 225-232, 2010b.
- Oren Freifeld, Hayit Greenspan, und Jacob Goldberger. Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution. International Journal of Biomedical Imaging, vol. 2009, Article ID 715124:13 pages, 2009.
- P. Freitag, L. Kappos, und E.W. Radü. Stellenwert der Magnetresonanztomographie bei Diagnose und Krankheitsmonitoring der Multiplen Sklerose. Schweizer Archiv für Neurologie und Psychiatrie, 151:47–56, 2000.
- Josa M. Frischer, Stephan Bramow, Assunta Dal-Bianco, Claudia F. Lucchinetti, Helmut Rauschka, Manfred Schmidbauer, Henning Laursen und Per Soelberg Sorensen, und Hans Lassmann. The relation between inflammation and neurodegeneration in multiple sclerosis brains. *Brain*, 132: 1175–1189, 2009.

- A. Gelman, H. Stern, J. Carlin, und D. Rubin. Bayesian data analysis. Chapman & Hall/CRC, 2nd edition, 2003.
- S. Geman und D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. *IEEE Transactions on Pattern Ana*lysis and Machine Intelligence, 6:721–741, 1984.
- Robert I. Grossman und Joseph C. McGowan. Perspectives on Multiple Sclerosis. Am. J. Neuroradiol., 19:1251–1265, 1998.
- Hakon Gudbjartsson und Samuel Patz. The Rician Distribution of Noisy MRI Data. Magn Reson Med, 34(6):910-914, 1995.
- J.M. Hammersley und P. Clifford. Markov Fields on Finite Graphs and Lattices. unpublished, 1971.
- E.H. Herskovits, R.N. Bryan, und F. Yang. Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study. Advances in Medical Sciences, 53(2):182–190, 2008.
- M. Jenkinson und S. M. Smith. A global optimisation method for robust affine registration of brain images. *Medical Image Analysis*, 5(2):143–156, 2001.
- M. Jenkinson, P. R. Bannister, J. M. Brady, und S. M. Smith. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. *NeuroImag*, 15(2):825–841, 2002.
- Rasoul Khayati, Mansur Vafadust, Farzad Towhidkhah, und S. Massood Nabavi. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model. *Computers in Biology and Medicine*, 38:379–390, 2008.

- S. Kotz und S. Nadarajah. Multivariate t distributions and their applications. Cambridge University Press, 2004.
- R. K.-S. Kwan, A. C. Evans, und G. B. Pike. An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC96). Lecture Notes in Computer Science, 1131:135–140, 1996.
- R. K.-S. Kwan, A. C. Evans, und G. B. Pike. MRI simulation-based evaluation of image-processing and classification methods. *IEEE Transactions* on Medical Imaging, 18(11):1085–1095, 1999.
- Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer-Verlag, 3rd edition, 2009.
- Tsung I. Lin, Jack C. Lee, und Huey F. Ni. Bayesian analysis of mixture modelling using the multivariate t distribution. *Statistics and Computing*, 14:119–130, 2004.
- Tsung I. Lin, Hsiu J. Ho, und Pao S. Shen. Computationally efficient learning of multivariate t tmixture models with missing information. *Statistics and Computing*, 24:375–392, 2009.
- Chuanhai Liu. Missing Data Imputation Using the Multivariate t distribution. Journal of Multivariate Analysis, 53:139–158, 1995.
- Jun S. Liu. *Monte Carlo Strategies in Scientific Computing*. Springer, corrected edition edition, 2008.
- José V. Manjón, Pierrick Coupé, Luis Martí-Bonmatí, D. Louis Collins, und Montserrat Robles. Adaptive Non-Local Means Denoising of MRI Images with Spatially Varying Noise Levels. Journal of Magnetic Resonance Imageing, 31:192–203, 2010.

- J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancasterund K. Zilles, R. Woods,
 T. Paus, G. Simpson, B. Pike, C. Holmes, L. Collins, P.M. Thompson,
 D. MacDonald, M. Iacoboni, T. Schormann, K. Amunts, N. Palomero-Gallagher, S. Geyer, L-Parsons, K. Narr, N. Kabani, und G. Le Foualher. A probabilistic atlas und reference system for the human brain: International Consortium for Brain Mapping (ICBM). *Philosophical Transactions of the Royal Society of London. Series B, Biolog*, 356(1412):1293–1322, 2001.
- J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, und J. L. Lancaster. Atlases of the human brain. In Koslow SH & Huerta MF; Neuroinformatics: An overview of the Human Brain Project. Lawrence Erlbaum Associates, 1997.
- W. Ian McDonald, Alistair Compston, Gilles Edan, Donald Goodkin, Hans-Peter Hartung, Fred D. Lublin, Henry F. McFarland, Donald W. Paty, Chris H. Polman, Stephen C. Reingold, Magnhild Sandberg-Wollheim, William Sibley, Alan Thompson, Stanley van den Noort, Brian Y. Weinshenker, und Jerry S. Wolinsky. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol, 50:121–127, 2001.
- Geoffrey J. McLachlan und David Peel. Robust Cluster Analysis via Mixtures of Multivariate t-Distributions. In SSPR '98/SPR '98: Proceedings of the Joint IAPR International Workshops on Advances in Pattern Recognition, pages 658–666, London, UK, 1998. Springer-Verlag. ISBN 3-540-64858-5.
- Donald W. McRobbie, Elizabeth A. Moore und Martin J. Graves, und Martin R. Prince. MRI From Picture to Proton. Cambridge University Press, 2nd edition, 2007.
- N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, und E. Tel-

ler. Equations of State Calculations by Fast Computing Machines. Journal of Chemical Physics, 21(6):1087–10921, 1953.

- Hans W. Müller-Gärtner, Jonathan M. Links, Jerry L. Prince, R. Nick Bryan, Elliot McVeigh, Jeffrey P. Leal, Christos Davatzikos, und J. James Frost. Measurement of Radiotracer Concentration in Brain Gray Matter Using Positron Emission TomograÃ¹/₄hy: MRI-Based Correction for Partial Volume Effects. Journal of Cerebral Blood Flow and Metabolism, 12:571–583, 1992.
- D. Peel und G. J. McLachlan. Robust mixture modelling using the t distribution. Statistics and Computing, 10:339–348, 2000.
- Chris H. Polman, Stephen C. Reingold, Gilles Edan, Massimo Filippi, Hans-Peter Hartung, Ludwig Kappos, Fred D. Lublin, Luanne M. Metz, Henry F. McFarland, Paul W. O'Connor, Magnhild Sandberg-Wollheim, Alan J. Thompson, Brian G. Weinshenker, und Jerry S. Wolinsky. Diagnostic Criteria for Multiple Sclerosis: 2005 Revisions to the 'McDonald Criteria'. Ann Neurol, 58:840–846, 2005.
- Marcel Prastawa und Guido Gerig. Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning. Proceedings of the Grand Challenge II Workshop, Int Conf Med Image Comput Comput Assist Interv. MICCAI 2008, 2008a.
- Marcel Prastawa und Guido Gerig. Brain Lesion Segmentation through Physical Model Estimation. ISVC 2008, Part I, LNCS 5358, pages 562–571, 2008b.
- Carey E. Priebe. Adaptive Mixtures. Journal of the American Statistical Association, 89(427):796-806, 1994.

- Carey E. Priebe und David J. Marchette. Adaptive Mixtures: Recursive Nonparametric Pattern Recognition. Pattern Recognition, 24(12):1197– 1209, 1991.
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010. URL http://www.R-project.org. ISBN 3-900051-07-0.
- Volker J. Schmid, Brandon Whitcher, Anwar R. Padhani, N. Jane Taylor, und Guang-Zhong Yang. A Bayesian Hierarchical Model for the Analysis of a Longitudinal Dynamic Contrast-Enhanced MRI Oncology Study. *Magnetic Resonance in Medicine*, 61:163–174, 2009.
- Mohamed L. Seghier, Anil Ramlackhansingh, Jenny Crinion, Alexander P. Leff, und Cathy J. Price. Lesion identification using unified segmentationnormalisation models and fuzzy clusterng. *NeuroImage*, 41:1253–1266, 2008.
- J. Sellner, L. Schirmer, B. Hemmer, und M. Mühlau. Radiologisch-isoliertes Syndrom. Wenn nur das MRT 'Multiple Sklerose' sagt. *Nervenarzt*, 2010.
- J. Sijbers und A. J. den Dekker. Maximum Likelihood estimation of signal amplitude and noise variance from MR data. *Magnetic Resonance in Medicine*, 51(3):586–594, 2004.
- John G. Sled und G. Bruce Pike. Understanding Intensity Non-uniformity in MRI. Medical Image Computing and Computer-Assisted Intervention – MICCAI'98, pages 614–622, 1998.
- S. M. Smith. Fast robust automated brain extraction. *Human brain Mapping*, 17(3):143–155, 2002.

- S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. J. Behrens, H. Johansen-Berg, P.R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, und P. M. Matthews. Advances in functional and structural MR image analysis and implementation as FSL. *NeuroImage*, 23(S1:208-219, 2004.
- R. Stokking, K.L. Vincken, und M.A. Viergever. Automatic morphologybased brain segmentation (MBRASE) from MRI-T1 data. *NeuroImage*, 12:726–738, 2000.
- Markus Svensén und Christopher M. Bishop. Robust Bayesian Mixture Modelling. *Neurocomputing*, 64:235–252, 2005.
- The MathWorks, Inc. MATLAB The Language of Technical Computing, Version 7.5. Natick, Massachusetts, 2007. URL http://www.mathworks. com/products/matlab/.
- D. M. Titterington. Recursive Parameter Estimation using Incomplete Data. Journal of the Royal Statistical Society B, 46(2):257–267, 1984.
- K. van Leemput, F. Maes, D. Vandermeulen, A. Colchester, und P. Suetens. Automated model-based tissue classification of MR images of the brain. *IEEE Transactions on Medical Imaging*, 18(10):897–908, 1999a.
- K. van Leemput, F. Maes, D. Vandermeulen, A. Colchester, und P. Suetens. Automated model-based bias field correction of MR images of the brain. *IEEE Transactions on Medical Imaging*, 18(10):885–896, 1999b.
- K. van Leemput, F. Maes, D. Vandermeulen, A. Colchester, und P. Suetens. Automated Segmentation of Multiple Sclerosis Lesions by Model Outlier Detection. *IEEE Transactions on Medical Imaging*, 20(8):677–688, 2001.

- Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/ book.
- Gerhard Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction. Springer, 3rd edition, 2006.
- M. W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T. Behrens, C. Beckmann, M. Jenkinson, und S. M. Smith. Bayesian analysis of neuroimaging data in FSL. *NeuroImage*, 45:173–186, 2009.
- Mark W. Woolrich, Timothy E.J. Behrens, Christian F. Beckmann, und Stephen M. Smith. Mixture Models With Adaptive Spatial Regularization for Segmentation With an Application to FMRI Data. *IEEE Transactions on Medical Imaging*, 24(1):1–11, 2005.
- Ying Wu, Simon K. Warfield, I. Leng Tan, William M. Wells III, Dominik S. Meier, Ronald A. van Schijndel, Frederik Barkhof, und Charles R. G. Guttmann. Automated segmentation of multiple sclerosis lesions subtypes with multichannel MRI. *NeuroImage*, 32:1205–1215, 2006.
- Y. Zhang, M. Brady, und S. Smith. Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. *IEEE Transactions on Medical Imaging*, 20(1):45–57, 2001.
- A.P. Zijdenbos, B.M. Dawant, R.A. Margolin, und A.C. palmer. Morphometric analysis of white matter lesions in MR images: method and validation. *IEEE Transactions on Medical Imaging*, 13:716–724, 1994.

Anhang A

Tabellen und Grafiken

Dieser Anhang enthält Grafiken und Tabellen für die Schätzungen aus Kapitel 4. Die Tabellen und Grafiken treten dabei in der gleichen Reihenfolge wie in Kapitel 4 auf.

Der Quellcode ist zusammen mit den MRT-Bildern von drei MS-Patienten auf der beigelegten CD-ROM zu finden.

Abbildung A.1: Schicht 85 der 15 T_1 - und FLAIR-gewichteten BrainWeb-Bilder.

E-Fkt. 1	NO 1	NO 2	NO 3
$\beta_{\rm csf, csf}$	-0,430985	-0,145843	-0,10725
$\beta_{\rm csf,gm}$	$0,\!140127$	0,045754	0,027893
$\beta_{\rm csf,wm}$	$0,\!130091$	0,049896	$0,\!018151$
$\beta_{\rm csf,les}$	$0,\!12937$	$0,\!053078$	0,0259
$\beta_{\rm gm,csf}$	$0,\!133626$	$0,\!054763$	$0,\!035225$
$\beta_{\rm gm,gm}$	$-0,\!396676$	-0,140831	-0,10312
$\beta_{\rm gm,wm}$	$0,\!129478$	$0,\!049586$	$0,\!017954$
$\beta_{\rm gm,les}$	$0,\!135313$	$0,\!052735$	$0,\!024539$
$\beta_{\rm wm,csf}$	0,13782	$0,\!055094$	$0,\!034336$
$\beta_{\rm wm,gm}$	$0,\!134547$	$0,\!042619$	$0,\!025582$
$\beta_{ m wm,wm}$	$-0,\!393575$	-0,129917	-0,107697
$\beta_{ m wm,les}$	$0,\!134148$	$0,\!051882$	0,02801
$\beta_{\rm les,csf}$	0,13794	$0,\!054447$	$0,\!033494$
$\beta_{ m les,gm}$	$0,\!135452$	$0,\!043332$	$0,\!025701$
$\beta_{\rm les,wm}$	$0,\!132042$	$0,\!049957$	$0,\!017688$
$\beta_{\rm les, les}$	-0,421026	$-0,\!158417$	-0,119724
E-Fkt. 2			
$\beta_{\rm csf, csf}$	-0,428302	-0,157587	-0,104543
$\beta_{\rm csf,gm}$	0130503,	$0,\!04644$	$0,\!027828$
$\beta_{\rm csf,wm}$	$0,\!173769$	$0,\!058438$	$0,\!064922$
$\beta_{\rm csf,les}$	$0,\!111006$	$0,\!05018$	$0,\!033543$
$\beta_{ m gm,csf}$	$0,\!138443$	$0,\!044279$	$0,\!038959$
$eta_{ m gm,gm}$	-0,405604	-0,13983	-0,102941
$eta_{ m gm,wm}$	$0,\!156538$	$0,\!051751$	$0,\!060008$
$eta_{ m gm,les}$	$0,\!124072$	$0,\!059396$	$0,\!03258$
$\beta_{ m wm,csf}$	0,14564	$0,\!046599$	$0,\!039877$
$eta_{ m wm,gm}$	$0,\!099066$	$0,\!031238$	$0,\!016136$
$eta_{ m wm,wm}$	-0,34605	-0,119395	$-0,\!05927$
$eta_{ m wm,les}$	-0,259876	$-0,\!077165$	$-0,\!050115$
$\beta_{\rm les,csf}$	$0,\!131995$	$0,\!036793$	$0,\!031072$
$\beta_{\rm les,gm}$	0,181074	0,070126	0,046081
E-Fkt. 3			
β	0,008329	0,001366	$0,\!00\overline{0682}$

Tabelle A.1: Geschätzte Parameterwerte des MZFs für die BrainWeb-Daten für unterschiedlieche Nachbarschaftsordnungen und Energiefunktionen

E-Fkt. 1	NO 1	NO 2	NO 3
$\beta_{\rm csf, csf}$	-0,438794	-0,160654	-0,112964
$\beta_{\rm csf,gm}$	$0,\!140653$	$0,\!050395$	$0,\!036543$
$\beta_{\rm csf,wm}$	$0,\!129828$	$0,\!045206$	$0,\!030667$
$\beta_{\rm csf, les}$	$0,\!136984$	$0,\!057666$	$0,\!041419$
$\beta_{ m gm,csf}$	$0,\!144505$	$0,\!052911$	$0,\!038634$
$eta_{ m gm,gm}$	-0,400994	-0,139017	-0,096249
$eta_{ m gm,wm}$	$0,\!130007$	$0,\!048053$	$0,\!033729$
$\beta_{ m gm,les}$	$0,\!083532$	$0,\!021892$	$0,\!014218$
$\beta_{ m wm,csf}$	$0,\!158153$	$0,\!053687$	$0,\!039218$
$eta_{ m wm,gm}$	$0,\!133307$	$0,\!046679$	$0,\!034284$
$\beta_{ m wm,wm}$	$-0,\!398009$	-0,135104	-0,095128
$eta_{ m wm,les}$	$0,\!175837$	$0,\!071657$	$0,\!050152$
$\beta_{\rm les,csf}$	$0,\!150087$	$0,\!051667$	$0,\!036774$
$\beta_{\rm les,gm}$	$0,\!132165$	$0,\!046679$	$0,\!032721$
$\beta_{\rm les,wm}$	$0,\!128588$	$0,\!044849$	$0,\!030199$
$\beta_{\rm les, les}$	$-0,\!397007$	-0,146145	-0,098715
E-Fkt. 2			
$\beta_{\rm csf, csf}$	-0,443464	-0,157083	-0,112716
$\beta_{\rm csf,gm}$	$0,\!130916$	$0,\!043579$	$0,\!029571$
$\beta_{\rm csf,wm}$	$0,\!182932$	0,062048	$0,\!041411$
$\beta_{\rm csf,les}$	$0,\!138417$	$0,\!051506$	$0,\!039122$
$\beta_{ m gm,csf}$	$0,\!141383$	$0,\!057520$	$0,\!039749$
$eta_{ m gm,gm}$	-0,409179	-0,145029	-0,102574
$eta_{ m gm,wm}$	$0,\!161089$	$0,\!056626$	$0,\!038402$
$eta_{ m gm,les}$	$0,\!069287$	$0,\!010960$	$0,\!009193$
$eta_{ m wm,csf}$	$0,\!164437$	$0,\!064057$	$0,\!045091$
$eta_{ m wm,gm}$	$0,\!092370$	$0,\!025714$	$0,\!016453$
$eta_{ m wm,wm}$	-0,33971	-0,115548	-0,082133
$eta_{ m wm,les}$	-0,20254	$-0,\!058717$	-0,029037
$\beta_{\rm les,csf}$	$0,\!128018$	$0,\!043914$	$0,\!027556$
$\beta_{\rm les,gm}$	$0,\!191102$	0,070597	$0,\!050718$
E-Fkt. 3			
β	$0,\!007391$	$0,\!00\overline{1033}$	0,000486

Tabelle A.2: Geschätzte Parameterwerte des MZFs für die klinischen Daten fürunterschiedlieche Nachbarschaftsordnungen und Energiefunktionen

Abbildung A.2: Konvergenzdiagnose. Oben: Zeitreihen der Erwartungswertkomponenten. Unten: Zeitreihen der Kovarianzkomponenten.

Abbildung A.3: Masken der Lage- und Streuungsmaße der Segmentierung. (a) T_1 - und (b) FLAIR-Sequenzen, (c) "harte" Segmentierung (Modus), (d) Median, (e) arithmetisches Mittel, (f) Interquartilsabstand und (g) Variationskoeffizient.

Abbildung A.4: Optischer Vergeleich der Segmentierung mit den beiden Läsionsmasken. (a) T_1 - und (b) FLAIR-Sequenzen, (c) Maske 1, (d) Maske 2 und (e) Segmentierung.

Abbildung A.5: Similarity Index für Maske 1 bei Normalverteilung.

Abbildung A.6: Similarity Index für Maske 2 bei Normalverteilung.

Abbildung A.7: Similarity Index für Maske 1 bei t-Verteilung.

Abbildung A.8: Similarity Index für Maske 2 bei t-Verteilung.

SI_{M2}	$0,519 \\ 0,481$	0,481	0,482	0,482	0,481	0,482	0,481	0,481	0,463	0,584	0,584	0,591	0,585	0,584	0,583	0,585	0,585	0,314	0,634	0,636	0,632	0,633	0,634	0,637	0,632	0,633	
EF_{M2}	1,238 1,341	1,341	1,336	1,339	1,336	1,340	1,340	1,341	1,652	0,842	0,842	0,840	0,837	0,838	0,846	0,837	0,837	3,098	0,473	0,473	0,486	0,479	0,472	0,468	0,480	0,477	
OF_{M2}	$0,785 \\ 0,741$	0,741	0,742	0,743	0,740	0,743	0,741	0,742	0,799	0,759	0,760	0,772	0,759	0,759	0,759	0,759	0,759	0,762	0,683	0,686	0,687	0,685	0,683	0,686	0,684	0,684	
FN_{M2}	$1632 \\ 1968$	1966	1964	1957	1973	1955	1969	1959	1528	1833	1825	1736	1830	1834	1831	1829	1831	1811	2407	2383	2379	2392	2409	2385	2399	2404	
FP_{M2}	$9406 \\ 10189$	10189	10152	10174	10154	10184	10184	10192	12557	6396	6398	6385	6359	6372	6433	6359	6364	23544	3594	3595	3695	3639	3589	3555	3646	3624	
TP_{M2}	5968 5632	5634	5636	5643	5627	5645	5631	5641	6072	5767	5775	5864	5770	5766	5769	5771	5769	5789	5193	5217	5221	5208	5191	5215	5201	5196	
SI_{M1}	$0,319 \\ 0,304$	0,304	0,304	0,304	0,305	0,304	0,304	0,304	0,273	0,383	0,383	0,381	0,384	0,383	0,382	0,384	0,384	0,183	0,488	0,487	0,483	0,486	0,489	0,489	0,486	0,487	
EF_{M1}	3,520 $3,668$	3,669	3,659	3,667	3,657	3,670	3,667	3,672	4,444	2,609	2,612	2,633	2,599	2,602	2,620	2,600	2,600	7,495	1,647	1,654	1,683	1,664	1,645	1,641	1,664	1,657	
OF_{M1}	0,857 0,837	0,836	0,836	0,837	0,837	0,837	0,836	0,837	0,861	0,854	0,854	0,855	0,855	0,854	0,854	0,854	0,854	0,857	0,855	0,855	0,855	0,855	0,855	0,856	0,855	0,855	
FN_{M1}	501 573	576	576	573	573	573	575	574	490	512	512	509	509	512	512	512	512	502	508	508	508	510	509	507	508	511	
FP_{M1}	12363 12882	12887	12852	12878	12842	12890	12878	12895	15607	9163	9173	9246	9126	9138	9202	9130	9133	26323	5783	5808	5912	5845	5777	5765	5843	5819	
TP_{M1}	$3011 \\ 2939$	2936	2936	2939	2939	2939	2937	2938	3022	3000	3000	3003	3003	3000	3000	3000	3000	3010	3004	3004	3004	3002	3003	3005	3004	3001	
NO	1 0	ŝ	1	0	ი	1	0	3	1	0	ი	1	0	ი	-	0	3	1	0	ი	1	0	ი	1	0	ი	
E-Fkt.		1	2	7	2	ი	თ	3	1	1	1	2	7	7	ი	en en	3	1	1	1	2	7	2	e C	e C	ი	
INU	88 00	% 0	% 0	% O	% 0	% O	% 0	0 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	
Rauschen	1 % %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1.%	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	
Verteilung	N ormal N ormal	N ormal	N ormal	Normal	N ormal	N ormal	N ormal	Normal	Normal	N ormal	Normal	N ormal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	. :

Tabelle A.3: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit einprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).

gun	Rauschen	INU	E-Fkt.	ON	TP_{M1}	FP_{M1}	FN_{M1}	OF_{M1}	EFM1	51M1	$^{\mathrm{TP}M2}$	FP_{M2}	FN_{M2}	OF_{M2}	EF_{M2}	SI_{M2}
nal	2 %	% 0	1	1	3017	8214	495	0,859	2,339	0,409	6023	5208	1577	0,792	0,685	0,640
lal	2 %	% 0		2	2975	7785	537	0,847	2,217	0,417	5604	5156	1996	0,737	0,678	0,611
lal	2%	% 0	1	ŝ	2988	8235	524	0,851	2,345	0,406	5824	5399	1776	0,766	0,710	0,619
nal	2 %	% O	2	-	2976	7977	536	0,847	2,212	0,417	5590	5153	2010	0,736	0,678	0,610
nal	2 %	%0	0	0	2974	7773	538	0,847	2,213	0,417	5589	5158	2011	0,735	0,679	0,609
nal	2 %	% 0	2	ი	2989	8244	523	0,851	2,347	0,405	5827	5406	1773	0,767	0,711	0,619
nal	2 %	% O	n	-	2977	7776	535	0,848	2,214	0,417	5596	5157	2004	0,736	0,679	0,610
nal	2 %	% 0	ი	2	2977	7763	535	0,848	2,210	0,418	5587	5153	2013	0,735	0,678	0,609
nal	2 %	% 0	33	3	2994	216859	518	0,853	61,748	0,027	5808	214045	1792	0,764	28,164	0,051
nal	2 %	20 %	1	1	3019	7784	493	0,860	2,216	0,422	6045	4758	1555	0,795	0,626	0,657
mal	2 %	20 %	1	2	3000	7347	512	0,854	2,092	0,433	5747	4600	1853	0,756	0,605	0,640
mal	2 %	20 %	1	ŝ	3000	7305	512	0,854	2,080	0,434	5740	4565	1860	0,755	0,601	0,641
nal	2%	20 %	2	-	2999	7327	513	0,854	2,086	0,433	5743	4583	1857	0,756	0,603	0,641
nal	2 %	20 %	2	7	2999	7335	513	0,854	2,089	0,433	5738	4596	1862	0,755	0,605	0,640
nal	2 %	20 %	2	ŝ	3000	7347	512	0,854	2,092	0,433	5745	4602	1855	0,756	0,606	0,640
nal	2 %	20 %	ი	-	3001	7320	511	0,855	2,084	0,434	5734	4587	1866	0,754	0,604	0,640
nal	2 %	20 %	ი	0	3000	7344	512	0,854	2,091	0,433	5741	4603	1859	0,755	0,606	0,640
nal	2 %	20 %	ი	ი	3001	7355	511	0,855	2,094	0,433	5745	4611	1855	0,756	0,607	0,640
nal	2 %	40 %	1	1	3016	24664	496	0,859	7,023	0,193	5918	21762	1682	0,779	2,863	0,336
nal	2%	40 %	1	2	3005	5556	507	0,856	1,582	0,498	5513	3048	2087	0,725	0,401	0,682
nal	2 %	40 %	1	ი	3004	5517	508	0,855	1,571	0,499	5523	2998	2077	0,727	0,395	0,685
mal	2%	40 %	2	-	3004	5527	508	0,855	1,574	0,499	5516	3015	2084	0,726	0,397	0,684
mal	2 %	40 %	0	0	3002	5524	510	0,855	1,573	0,499	5501	3025	2099	0,724	0,398	0,682
nal	2 %	40 %	2	ŝ	3003	5542	509	0,855	1,578	0,498	5523	3022	2077	0,727	0,398	0,684
nal	2 %	40 %	n	-	3003	5551	509	0,855	1,581	0,498	5520	3034	2080	0,726	0,399	0,683
nal	2 %	40 %	n	7	3002	5518	510	0,855	1,571	0,499	5506	3014	2094	0,725	0,397	0,683
nal	2%	40 %	ŝ	იე	3002	5542	510	0,855	1,578	0,498	5518	3026	2082	0,726	0,398	0,684

rozen-	
t zweip:	
en mit	
des OF, EF und SI für Maske 1 $(M1)$ und Maske 2 $(M2)$ für die BrainWeb-Daten mi	edlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).
Ergebnisse	n, untersch
lle A.4:]	Rauscher
Tabe	tigem

1																											I
SI_{M2}	0,706	0,686	0,688	0,688	0,687	0,687	0,686	0,687	0,690	0,695	0,698	0,696	0,695	0,697	0,695	0,698	0,697	0,694	0,425	0,701	0,701	0,703	0,703	0,704	0,702	0,701	0,700
EF_{M2}	0,440	0,330	0,327	0,325	0,325	0,321	0,325	0,325	0,323	0,462	0,375	0,380	0,433	0,373	0,380	0,377	0,375	0,381	1,831	0,278	0,280	0,278	0,280	0,277	0,278	0,284	0,279
OF_{M2}	0,785	0,694	0,696	0,694	0,693	0,691	0,692	0,692	0,697	0,779	0,736	0,736	0,762	0,735	0,736	0,738	0,735	0,734	0,763	0,689	0,691	0,692	0,694	0,694	0,691	0,692	0,689
FN_{M2}	1632	2323	2311	2323	2331	2347	2339	2337	2305	1678	2004	2005	1806	2016	2010	1992	2014	2021	1801	2363	2351	2337	2325	2329	2345	2337	2366
FP_{M2}	3340	2505	2482	2470	2470	2443	2470	2468	2457	3512	2847	2892	3291	2837	2887	2865	2850	2893	13912	2116	2129	2115	2127	2103	2112	2159	2122
TP_{M2}	5968	5277	5289	5277	5269	5253	5261	5263	5295	5922	5596	5595	5794	5584	5590	5608	5586	5579	5799	5237	5249	5263	5275	5271	5255	5263	5234
SI_{M1}	0,470	0,522	0,524	0,524	0,525	0,527	0,524	0,525	0,524	0,466	0,500	0,498	0,477	0,501	0,499	0,499	0,500	0,499	0,259	0,548	0,548	0,547	0,545	0,547	0,548	0,545	0,548
EF_{M1}	1,792	1,376	1,371	1,366	1,363	1,351	1,363	1,362	1,367	1,828	1,553	1,565	1,731	1,546	1,562	1,560	1,551	1,561	4,755	1,246	1,251	1,252	1,260	1,252	1,248	1,264	1,247
OF_{M1}	0,858	0,839	0,842	0,840	0,841	0,840	0,839	0,840	0,841	0,859	0,851	0,852	0,856	0,852	0,852	0,852	0,851	0,851	0,857	0,848	0,849	0,849	0,848	0,848	0,849	0,849	0,848
FN_{M1}	498	564	556	561	559	561	567	563	560	497	523	521	507	520	521	519	522	522	502	535	529	531	535	534	529	531	535
FP_{M1}	6294	4834	4815	4796	4786	4745	4786	4782	4800	6419	5454	5496	6080	5429	5486	5480	5446	5482	16701	4376	4395	4397	4425	4396	4384	4441	4379
TP_{M1}	3014	2948	2956	2951	2953	2951	2945	2949	2952	3015	2989	2991	3005	2992	2991	2993	2990	2990	3010	2977	2983	2981	2977	2978	2983	2981	2977
NO	1	2	იე	1	0	ი	1	0	3	1	0	ი	1	0	ŝ	1	2	ი	1	2	ი	1	2	ი	1	2	3
E-Fkt.	1	-	1	2	2	2	en en	က	3	1	1	1	2	2	2	თ	თ	en en	1	1	1	2	7	2	en en	თ	3
INU	% O	% 0	% 0	% 0	% 0	% 0	% 0	% 0	% 0	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %
Rauschen	3 %	3%	3%	3%	3 %	3%	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3%	3%	3 %	3 %	3%	3%	3 %	3 %	3%	3 %	3%	3 %
Verteilung	Normal	N ormal	Normal	Normal	Normal	Normal	Normal	N ormal	N ormal	Normal	Normal	Normal	N ormal	Normal	Normal	Normal	Normal										

Tabelle A.5: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit dreiprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).

SI_{M2}	0,740 0.738	0,736	0,736	0,737	0,734	0,737	0,734	0,737	0,723	0,733	0,732	0,732	0,732	0,732	0,733	0,731	0,730	0,553	0,711	0,711	0,710	0,711	0,711	0,711	0,710	0,711
EF_{M2}	$0,291 \\ 0.136$	0,136	0,136	0,140	0,141	0,141	0,137	0,141	0,336	0,186	0,187	0,188	0,189	0,186	0,188	0,190	0,189	0,931	0,173	0,170	0,173	0,171	0,167	0,168	0,172	0,170
OF_{M2}	0,757 0.664	0,662	0,661	0,664	0,662	0,666	0,659	0,666	0,757	0,686	0,685	0,686	0,686	0,684	0,688	0,686	0,684	0,738	0,647	0,645	0,646	0,645	0,644	0,644	0,645	0,645
FN_{M2}	1843 2555	2567	2573	2552	2570	2539	2592	2540	1848	2386	2395	2387	2384	2400	2373	2389	2403	1994	2682	2701	2691	2696	2702	2709	2696	2695
FP_{M2}	$2213 \\ 1035$	1036	1032	1061	1068	1072	1039	1068	2555	1417	1422	1427	1434	1414	1431	1440	1433	7074	1314	1292	1312	1296	1272	1275	1304	1293
TP_{M2}	5757 5045	5033	5027	5048	5030	5061	5008	5060	5752	5214	5205	5213	5216	5200	5227	5211	5197	5606	4918	4899	4909	4904	4898	4891	4904	4905
SI_{M1}	0,522 0.611	0,612	0,613	0,609	0,609	0,608	0,613	0,609	0,509	0,581	0,581	0,581	0,581	0,582	0,580	0,581	0,581	0,371	0,601	0,604	0,601	0,603	0,604	0,605	0,602	0,603
EF_{M1}	$1,416 \\ 0.897$	0,893	0,891	0,905	0,903	0,911	0,888	0,910	1,509	1,050	1,048	1,051	1,053	1,044	1,056	1,054	1,050	2,756	0,940	0,929	0,939	0,932	0,924	0,922	0,934	0,932
OF_{M1}	0,853 0.835	0,835	0,835	0,834	0,833	0,835	0,834	0,835	0,856	0,839	0,839	0,840	0,840	0,839	0, 839	0,840	0,838	0,855	0,834	0,834	0,833	0,833	0,833	0, 833	0,833	0,833
FN_{M1}	515 581	580	581	582	586	579	583	579	505	567	567	563	561	566	564	562	568	510	582	584	588	586	587	585	585	587
FP_{M1}	4973 3149	3137	3128	3179	3172	3200	3118	3195	5300	3686	3682	3691	3699	3668	3710	3701	3686	9678	3302	3263	3297	3274	3245	3239	3281	3273
TP_{M1}	2997 2931	2932	2931	2930	2926	2933	2929	2933	3007	2945	2945	2949	2951	2946	2948	2950	2944	3002	2930	2928	2924	2926	2925	2927	2927	2925
NO	1 2	က	1	2	ŝ	-	2	3	1	2	ŝ	-	2	ŝ	-	2	3	1	2	ი	-	2	ი	-	0	°
E-Fkt.		1	2	2	2	en en	က	3	-1	1	1	2	2	2	n	en en	3	1	1	1	2	2	2	ი	თ	3
INU	% 0 0	° %	% 0	% 0	% 0	% 0	% 0	% 0	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %
Rauschen	4 7% %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %
Verteilung	N ormal N ormal	Normal	N ormal	Normal	Normal	Normal	N ormal	N ormal	N ormal	N ormal	Normal	N ormal	Normal	Normal	N ormal	Normal	Normal	N ormal	Normal	N ormal	Normal	Normal	N ormal	Normal	N ormal	N ormal

Tabelle A.6: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit vierprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).

	SI_{M2}	$0,746 \\ 0,687$	0,687	0,686	0,686	0,686	0,688	0,686	0,685	0,729	0,712	0,711	0,713	0,713	0,713	0,713	0,714	0,714	0,682	0,688	0,689	0,686	0,688	0,688	0,688	0,687	0,686	
	EF_{M2}	$0,190 \\ 0.036$	0,037	0,037	0,036	0,037	0,035	0,036	0,036	0,259	0,091	060,0	060'0	0,089	0,092	060'0	0,088	0,089	0,352	0,082	0,082	0,085	0,082	0,081	0,079	0,084	0,084	
	OF_{M2}	$0,708 \\ 0,542$	0,543	0,541	0,541	0,542	0,543	0,541	0,540	0,722	0,603	0,601	0,604	0,603	0,605	0,604	0,603	0,605	0,700	0,568	0,569	0,566	0,567	0,567	0,566	0,567	0,566	
	FN_{M2}	$2220 \\ 3480$	3475	3488	3488	3483	3476	3488	3496	2112	3018	3029	3012	3016	3003	3013	3014	2999	2280	3286	3279	3298	3291	3290	3299	3288	3299	
	FP_{M2}	1448 275	280	282	275	284	267	277	277	1971	692	688	683	677	703	686	668	679	2678	623	627	644	622	617	602	636	636	
	TP_{M2}	$5380 \\ 4120$	4125	4112	4112	4117	4124	4112	4104	5488	4582	4571	4588	4584	4597	4587	4586	4601	5320	4314	4321	4302	4309	4310	4301	4312	4301	
Verteilung Rauschen INU E-Fkt. NO TP $_{M1}$ F $_{M1}$ Or $_{M1}$ E_{M1} Or In OF In OF In D In In D In In In In In In In D In In In In D In In D In In D In In D <th< td=""><td>SI_{M1}</td><td>0,575 0,713</td><td>0,711</td><td>0,713</td><td>0,711</td><td>0,712</td><td>0,713</td><td>0,712</td><td>0,712</td><td>0,543</td><td>0,649</td><td>0,648</td><td>0,648</td><td>0,649</td><td>0,646</td><td>0,649</td><td>0,649</td><td>0,647</td><td>0,516</td><td>0,666</td><td>0,664</td><td>0,664</td><td>0,666</td><td>0,666</td><td>0,668</td><td>0,666</td><td>0,665</td><td></td></th<>	SI_{M1}	0,575 0,713	0,711	0,713	0,711	0,712	0,713	0,712	0,712	0,543	0,649	0,648	0,648	0,649	0,646	0,649	0,649	0,647	0,516	0,666	0,664	0,664	0,666	0,666	0,668	0,666	0,665	
Verteilung Rauschen INU E-Fkt. NO TP $_{M1}$ F $_{M1}$ O $_{M1}$ O_{M1} $O_{$	EF_{M1}	$1,098 \\ 0,449$	0,453	0,449	0,449	0,452	0,448	0,449	0,448	1,275	0,690	0,688	0,690	0,688	0,699	0,690	0,686	0,693	1,431	0,605	0,609	0,608	0,603	0,602	0,595	0,607	0,606	
Verteilung Rauschen INU E-Fkt. NO TP $_{M1}$ F M_{M1} F M_{M1} Normal 5 % 0 % 1 2 2818 1577 694 Normal 5 % 0 % 1 2 2815 1557 694 Normal 5 % 0 % 2 1 2 2815 1577 694 Normal 5 % 0 % 2 1 2 2815 1577 694 Normal 5 % 0 % 3 2 2815 1577 696 Normal 5 % 0 % 3 2 2815 1577 696 Normal 5 % 0 % 3 2 2814 1575 696 Normal 5 % 0 % 3 2 2414 666 Normal 5 % 20 % 1 3 2414 666 Normal 5 % 20 % 3 2444 244	OF_{M1}	0,846 0,802	0,801	0,803	0,800	0,801	0,802	0,801	0,799	0,849	0,811	0,809	0,810	0,810	0,810	0,811	0,810	0,810	0,846	0,801	0,800	0,800	0,801	0,801	0,801	0,802	0,799	
VerteilungRauschenINUE-Fkt.NOTP $_{M1}$ FP $_{M1}$ Normal5 %0 %112 9723856Normal5 %0 %112 9131577Normal5 %0 %112 9131576Normal5 %0 %212 8151590Normal5 %0 %222 8151576Normal5 %0 %322 8151576Normal5 %0 %322 8151576Normal5 %0 %322 8161575Normal5 %0 %32 28151574Normal5 %0 %32 28161574Normal5 %20 %12 28162424Normal5 %20 %13 28462416Normal5 %20 %32 28462414Normal5 %20 %32 28462414Normal5 %20 %32 28462414Normal5 %20 %32 28462434Normal5 %20 %32 28462434Normal5 %20 %32 28462434Normal5 %20 %32 28462434Normal5 %2 0 %32 28462139Normal5 %4 0 %32 28462136Normal5 %<	FN_{M1}	$540 \\ 694$	269	693	703	269	695	698	704	531	662	670	666	667	666	663	668	666	540	698	703	702	669	200	002	696	704	
Verteilung Rauschen INU E-Fkt. NO TP_{M1} Normal 5 % 0 % 1 2 2818 Normal 5 % 0 % 1 2 2818 Normal 5 % 0 % 1 2 2815 Normal 5 % 0 % 2 1 2 2815 Normal 5 % 0 % 2 2 2 2809 Normal 5 % 0 % 3 1 2 2815 Normal 5 % 0 % 3 1 2 2814 Normal 5 % 0 % 3 2 2 2 Normal 5 % 20 % 1 2 2 2 Normal 5 % 20 % 3 2 2 2 Normal 5 % 20 % 3 2 2 2 Normal 5 % 20 % 3 3 2	FP_{M1}	$3856 \\ 1577$	1590	1575	1578	1586	1574	1575	1573	4478	2424	2417	2425	2416	2454	2424	2410	2434	5026	2123	2139	2136	2118	2115	2091	2132	2129	
VerteilungRauschenINU E -Fkt.NONormal5 %0 %11Normal5 %0 %12Normal5 %0 %211Normal5 %0 %223Normal5 %0 %221Normal5 %0 %323Normal5 %0 %323Normal5 %0 %323Normal5 %20 %112Normal5 %20 %133Normal5 %20 %123Normal5 %20 %333Normal5 %20 %333Normal5 %20 %333Normal5 %20 %333Normal5 %40 %333<	TP_{M1}	$2972 \\ 2818$	2815	2819	2809	2815	2817	2814	2808	2981	2850	2842	2846	2845	2846	2849	2844	2846	2972	2814	2809	2810	2813	2812	2812	2816	2808	
VerteilungRauschenINUE-Fkt.Normal 5% 0% 1 Normal 5% 0% 2 Normal 5% 0% 2 Normal 5% 0% 3 Normal 5% 20% 3 Normal 5% 40% 3 Normal 5	NO	- 0	ი	1	5	n		0	3	1	0	n	1	5	n		5	3	1	5	ი		0	n		0	ი	
VerteilungRauschenINUNormaal 5% 0% Normaal 5% 20% Normaal 5% 40% <td>E-Fkt.</td> <td></td> <td>1</td> <td>5</td> <td>2</td> <td>2</td> <td>ი</td> <td>en</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>ი</td> <td>ი</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>7</td> <td>2</td> <td>ი</td> <td>ი</td> <td>ი</td> <td></td>	E-Fkt.		1	5	2	2	ი	en	3	1	1	1	2	2	2	ი	ი	3	1	1	1	2	7	2	ი	ი	ი	
VerteilungRauschenNormal5 %Normal5 %	INU	% % 0 0	% 0	% 0	% 0	% 0	% 0	% 0	0 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	
Verteilung Normal Norma	Rauschen	ი ი %%	5%	5%	5%	5%	5%	5%	5 %	5%	5%	5%	5%	5%	5%	5%	5%	5 %	5 %	5%	5%	5%	5%	5%	5%	5%	5%	
	Verteilung	Normal Normal	Normal	N ormal																								

Tabelle A.7: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit fünfprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).
SI_{M2}	0,749	0,721	0,722	0,720	0,721	0,722	0,721	0,721	0,720	0,759	0,720	0,719	0,717	0,721	0,720	0,719	0,721	0,720	0,706	0,695	0,693	0,693	0,694	0,696	0,694	0,692	0,695		
EF_{M2}	0,008	0,002	0,002	0,002	0,002	0,001	0,001	0,002	0,002	0,011	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,117	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001		•
OF_{M2}	0,604	0,565	0,566	0,564	0,564	0,565	0,564	0,565	0,564	0,619	0,563	0,563	0,560	0,565	0,563	0,562	0,564	0,564	0,610	0,533	0,531	0,531	0,532	0,534	0,531	0,529	0,533		
FN_{M2}	3010	3307	3298	3317	3311	3304	3313	3307	3313	2896	3322	3324	3343	3309	3322	3327	3315	3317	2966	3551	3564	3564	3554	3545	3562	3577	3546	- -	
FP_{M2}	59	13	16	13	12	11	11	15	14	83	10	12	11	10	10	11	x	12	893	ю	ю	2	œ	ю	2	œ	ņ		
TP_{M2}	4590	4293	4302	4283	4289	4296	4287	4293	4287	4704	4278	4276	4257	4291	4278	4273	4285	4283	4634	4049	4036	4036	4046	4055	4038	4023	4054	;	
SI_{M1}	0,731	0,761	0,761	0,761	0,762	0,761	0,762	0,761	0,762	0,718	0,762	0,761	0,763	0,761	0,761	0,762	0,761	0,762	0,657	0,782	0,782	0,782	0,781	0,782	0,783	0,785	0,782		
EF_{M1}	0,475	0,379	0,382	0,377	0,377	0,379	0,377	0,379	0,377	0,514	0,375	0,375	0,370	0,378	0,376	0,374	0,376	0,376	0,728	0,312	0,309	0,309	0,313	0,314	0,309	0,305	0,312	-	
OF_{M1}	0,849	0,847	0,848	0,847	0,847	0,848	0,847	0,847	0,847	0,849	0,846	0,846	0,845	0,846	0,845	0,846	0,846	0,847	0,845	0,842	0,841	0,842	0,841	0,843	0,842	0,843	0,843		
FN_{M1}	531	536	534	539	536	535	538	536	536	531	541	542	543	540	543	542	541	539	543	555	558	556	557	553	554	553	550		
FP_{M1}	1668	1330	1340	1323	1325	1330	1324	1332	1325	1806	1317	1318	1299	1329	1319	1314	1322	1322	2558	1097	1087	1087	1099	1101	1087	1072	1097	-	
TP_{M1}	2981	2976	2978	2973	2976	2977	2974	2976	2976	2981	2971	2970	2969	2972	2969	2970	2971	2973	2969	2957	2954	2956	2955	2959	2958	2959	2962		
ΟN	1	2	n	1	2	n	1	0	3	1	5	ŝ		2	ი	1	2	3	1	2	ი	1	0	ი	1	0	ი	ļ	
E-Fkt.	1	1	1	7	2	5	ი	en en	3	1	1	1	2	7	2	en en	en en	3	1	1	1	7	2	7	ი	ი	ი	, F	
INU	% 0	% O	% 0	% O	% O	% 0	% 0	% 0	0 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %		
Rauschen	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	1 %	- - -	
Verteilung	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t		
																												• •	

Tabelle A.8: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit einprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).

SI_{M2}	0,734	0,688	0,688	0,689	0,688	0,688	0,688	0,690	0,690	0,749	0,698	0,697	0,697	0,698	0,698	0,696	0,698	0,697	0,725	0,684	0,683	0,682	0,685	0,683	0,683	0,684	0,683
EF_{M2}	0,008	0	0	0	0	0	0	0	0	0,014	0,001	0,002	0,001	0,001	0,001	0,001	0,002	0,001	0,057	0,001	0,001	0,001	0,001	0,001	0	0,001	0,001
OF_{M2}	0,584	0,525	0,524	0,526	0,525	0,525	0,525	0,526	0,527	0,607	0,536	0,535	0,536	0,536	0,536	0,534	0,537	0,536	0,601	0,520	0,519	0,518	0,521	0,519	0,519	0,520	0,519
FN_{M2}	3162	3612	3617	3602	3613	3611	3611	3599	3596	2988	3523	3530	3529	3524	3523	3540	3517	3529	3031	3644	3655	3661	3637	3654	3658	3650	3655
FP_{M2}	62	4	ന	4	7	2	ന	1	4	107	10	12	7	10	11	11	12	11	430	9	×	5 C	9	7	4	9	2
TP_{M2}	4438	3988	3983	3998	3987	3989	3989	4001	4004	4612	4077	4070	4071	4076	4077	4060	4083	4071	4569	3956	3945	3939	3963	3946	3942	3950	3945
SI_{M1}	0,741	0,789	0,790	0,788	0,789	0,789	0,789	0,789	0,787	0,724	0,780	0,780	0,780	0,780	0,780	0,781	0,779	0,780	0,696	0,789	0,791	0,792	0,789	0,791	0,792	0,791	0,791
EF_{M1}	0,436	0,294	0,292	0,297	0,294	0,294	0,294	0,296	0,298	0,495	0,320	0,319	0,318	0,320	0,320	0,316	0,322	0,319	0,581	0,288	0,285	0,282	0,290	0,285	0,282	0,286	0,285
OF_{M1}	0,846	0,843	0,843	0,843	0,842	0,843	0,843	0,844	0,843	0,849	0,844	0,843	0,843	0,844	0,845	0,843	0,844	0,844	0,843	0,840	0,841	0,841	0,841	0,840	0,841	0,841	0,841
FN_{M1}	542	553	551	552	554	553	553	549	551	531	547	550	550	548	546	550	548	549	552	562	560	560	560	561	558	560	560
FP_{M1}	1530	1033	1025	1042	1031	1032	1033	1039	1047	1738	1122	1120	1116	1122	1122	1109	1131	1119	2039	1012	1001	992	1017	1002	992	1004	1000
TP_{M1}	2970	2959	2961	2960	2958	2959	2959	2963	2961	2981	2965	2962	2962	2964	2966	2962	2964	2963	2960	2950	2952	2952	2952	2951	2954	2952	2952
ΟN	1	2	ი		5	ന	1	2	ი	1	2	e S	1	2	ი	1	5	თ	1	5	ი	1	2	ი	1	2	3
E-Fkt.	1	1	1	2	2	2	en en	en M	en en	1	1	1	2	2	2	en en	n	en en	1	1	1	2	2	2	en en	en en	3
ΠNΙ	% 0	% O	% O	% 0	% 0	% 0	% O	% 0	% O	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %
Rauschen	2 %	2 %	2 %	2 %	2%	2 %	2 %	2 %	2 %	2 %	2 %	2%	2 %	2 %	2 %	2 %	2%	2 %	2%	2%	2 %	2 %	2 %	2 %	2 %	2 %	2 %
Verteilung	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t

Tabelle A.9: Ergebnisse des OF, EF und SI für Maske 1 (M1) und Maske 2 (M2) für die BrainWeb-Daten mit zweiprozentigem Rauschen, unterschiedlichen Energiefunktionen (E-Fkt.) und Nachbarschaftsordnungen (NO).

Rauschen	ΠNΙ	E-Fkt.	NO	TP_{M1}	FP_{M1}	FN_{M1}	OF_{M1}	EF_{M1}	SI_{M1}	TP_{M2}	FP_{M2}	FN_{M2}	OF_{M2}	EF_{M2}	SI_{M2}
3 %	% 0	1	1	2945	1341	267	0,839	0,382	0,755	4209	27	3391	0,554	0,010	307,0
3 %	% O	1	0	2916	731	596	0,830	0,208	0,815	3644	en	3956	0,479	0	0,648
3 %	% O	1	ი	2918	714	594	0,831	0,203	0,817	3628	4	3972	0,477	0	0,646
3 %	% O	2	1	2914	710	598	0,830	0,202	0,817	3621	en	3979	0,476	0	0,645
3 %	% O	2	0	2919	737	593	0,831	0,210	0,814	3653	en	3947	0,481	0	0,649
3 %	% O	2	ი	2921	731	591	0,832	0,208	0,816	3650	2	3950	0,480	0	0,649
3 %	% O	ი	1	2914	721	598	0,830	0,205	0,815	3633	2	3967	0,478	0	0,647
3 %	% O	ი	0	2915	733	597	0,830	0,209	0,814	3646	2	3954	0,480	0	0,648
3 %	% 0	e.	ი	2918	602	594	0,831	0,202	0,818	3625	2	3975	0,477	0	0,646
3 %	20 %	-	1	2957	1559	555	0,842	0,444	0,737	4404	112	3196	0,580	0,015	0,727
3 %	20 %	1	0	2929	823	583	0,834	0,234	0,806	3749	en	3851	0,493	0	0,660
3 %	20 %	1	ი	2927	832	585	0,833	0,237	0,805	3752	7	3848	0,494	0,001	0,661
3 %	20 %	2	1	2927	833	585	0,833	0,237	0,805	3757	en	3843	0,494	0	0,661
3 %	20 %	2	0	2932	806	580	0,835	0,230	0,809	3737	1	3863	0,492	0	0,659
3 %	20 %	2	ი	2929	818	583	0,834	0,233	0,807	3744	იე	3856	0,493	0	0,660
3%	20 %	ი	-	2930	827	582	0,834	0,235	0,806	3752	ŋ	3848	0,494	0,001	0,661
3%	20 %	ი	5	2926	815	586	0,833	0,232	0,807	3737	4	3863	0,492	0	0,659
3 %	20 %	3	3	2926	832	586	0,833	0,237	0,805	3756	2	3844	0,494	0	0,661
3 %	40 %	1	1	2938	1699	574	0,837	0,484	0,721	4458	179	3142	0,587	0,024	0,729
3 %	40 %	1	0	2921	836	591	0,832	0,238	0,804	3750	7	3850	0,493	0,001	0,660
3%	40 %	1	ŝ	2918	827	594	0,831	0,235	0,804	3738	7	3862	0,492	0,001	0,659
3 %	40 %	5	1	2931	841	581	0,835	0,239	0,805	3765	2	3835	0,495	0,001	0,662
3 %	40 %	5	0	2933	837	579	0,835	0,238	0,805	3762	x	3838	0,495	0,001	0,662
3 %	40 %	5	ი	2924	819	588	0, 833	0,233	0,806	3737	9	3863	0,492	0,001	0,659
3 %	40 %	en en		2923	830	589	0,832	0,236	0,805	3749	4	3851	0,493	0	0,660
3 %	40 %	ი	0	2924	839	588	0, 833	0,239	0,804	3758	ŋ	3842	0,494	0,001	0,661
3 %	40 %	en	ი	2919	817	593	0, 831	0,233	0,805	3731	ŋ	3869	0,491	0,001	0,658

für die BrainWeb-Daten mit dreipro-	ordnungen (NO).
Maske 1 $(M1)$ und Maske 2 $(M2)$	onen (E-Fkt.) und Nachbarschafts
A.10: Ergebnisse des OF, EF und SI für N	Rauschen, unterschiedlichen Energiefunktic
belle .	ntigem

SI_{M2}	0,683	0,594	0,090	107 0	10,0	0,090 0	0,596	0,593	0,597	0,699	0,614	0,611	0,614	0,612	0,613	0,612	0,615	0,614	0,707	0,632	0,628	0,631	0,632	0,630	0,631	0,630	0,633
EF_{M2}	0,011	-		0 005		0	0	0	0	0,016	0	0	0	0	0	0	0	0	0,021	0	0	0	0	0	0	0,001	0
OF_{M2}	0,525	0,423	0,424	0,444	0-0-0	0,423	0,424	0,421	0,425	0,546	0,444	0,440	0,443	0,440	0,442	0,440	0,444	0,443	0,558	0,462	0,458	0,461	0,463	0,460	0,461	0,460	0,464
FN_{M2}	3610	4388	40/9 1901	1007		4383	4375	4399	4367	3451	4229	4259	4236	4252	4244	4252	4228	4234	3358	4088	4116	4093	4085	4105	4098	4106	4076
FP_{M2}	86 9	N 7	c	٩ć	4 C	N	1	1	1	124	2	1	1	1	2	1	1	2	159	4	იე	4	7	ი	ი	ŋ	2
TP_{M2}	3990	3212	1770	1150	4015-	3217	3225	3201	3233	4149	3371	3341	3364	3348	3356	3348	3372	3366	4242	3512	3484	3507	3515	3495	3502	3494	3524
SI_{M1}	0,762	0,828	160,0	0,748	0,140	U,831	0,830	0,831	0,829	0,744	0,824	0,822	0,825	0,826	0,821	0,824	0,823	0,822	0,735	0,813	0,818	0,816	0,817	0,818	0,817	0,815	0,817
EF_{M1}	0,337	0,122	0,121,0	611,0	# 10° 0	0,12U	0,122	0,117	0,124	0,392	0,153	0,149	0,150	0,147	0,153	0,148	0,153	0,154	0,425	0,187	0,178	0,184	0,184	0,179	0,181	0,183	0,185
OF_{M1}	0,824	0,793	0,705	0,820	0,020	067,U	0,796	0,795	0,796	0,824	0,807	0,802	0,808	0,807	0,803	0,805	0,807	0,805	0,828	0,814	0,815	0,816	0,817	0,817	0,817	0,814	0,819
FN_{M1}	620	07/	714 7002	631	100	01/	715	721	715	617	677	695	675	678	691	684	678	686	605	654	651	648	642	643	644	655	637
FP_{M1}	1184	428	424	5121 1313	0101	423	429	411	437	1378	538	525	528	515	537	521	539	542	1494	658	626	647	647	629	637	642	651
TP_{M1}	2892	02/2	0617	2881	1007	06J.Z	2797	2791	2797	2895	2835	2817	2837	2834	2821	2828	2834	2826	2907	2858	2861	2864	2870	2869	2868	2857	2875
NO		2 0	0 -	ء ہ	4 C	n		0	0	1	2	ŝ	1	2	ŝ	1	2	3	1	2	n	1	2	ŝ	1	2	en en
E-Fkt.		·	-	40	4 C	2	ი	იე	3	1	1	1	2	2	2	ი	ი	3	1	1	1	2	2	2	ი	ი	°°
INU	80	% X ⊃ 0	8 b 0 0	۶ ۶ ۵ с	200	% i	% 0	% O	% 0	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %
Rauschen	4 %	4 8 8	* * % %	۶ ۶ ۲ ۲	? E	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %	4 %
erteilung	t ,	,	1	2 +	2 4	1	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t

SI_{M2}	0,628 0.649	0.538	0,535	0,537	0,536	0,537	0,535	0,537	0,663	0,569	0,568	0,571	0,567	0,570	0,569	0,570	0,573	0,677	0,353	0,353	0,412	0,419	0,418	0,142	0,132	0,132	
EF_{M2}	0,009 0.013	0	0	0	0	0	0	0	0,013	0	0	0	0	0	0	0	0	0,019	1,721	1,734	0,159	0,698	0,705	6,581	7,370	7,370	
OF_{M2}	0,462 0.486	0.368	0,365	0,367	0,366	0,367	0,365	0,367	0,503	0,398	0,397	0,400	0,396	0,398	0,398	0,399	0,401	0,522	0,584	0,586	0,301	0,450	0,450	0,580	0,594	0,594	
FN_{M2}	4086 3905	4805	4823	4807	4818	4810	4822	4810	3779	4577	4582	4562	4591	4573	4575	4568	4551	3634	3160	3149	5313	4178	4177	3195	3089	3089	
FP_{M2}	68 96	0	1	1	1	7	1	1	101	1	1	1	1	1	1	1	1	142	13078	13181	1210	5303	5360	50017	56010	56010	
TP_{M2}	3514 3695	2795	2777	2793	2782	2790	2778	2790	3821	3023	3018	3038	3009	3027	3025	3032	3049	3966	4440	4451	2287	3422	3423	4405	4511	4511	
SI_{M1}	0,765	0.813	0,817	0,815	0,813	0,816	0,816	0,816	0,758	0,817	0,817	0,822	0,817	0,820	0,818	0,821	0,821	0,749	0,265	0,264	0,596	0,395	0,393	0,095	0,086	0,086	
EF_{M1}	0,248 0.290	0.066	0,059	0,064	0,064	0,062	0,061	0,063	0,315	0,101	0,100	0,099	0,098	0,098	0,101	0,099	0,102	0,358	4,194	4,226	0,401	1,796	1,813	14,713	16,445	16,445	
OF_{M1}	$0,772 \\ 0,790$	0.731	0,732	0,732	0,729	0,733	0,730	0,732	0,802	0,760	0,760	0,766	0,759	0,764	0,761	0,765	0,767	0,812	0,794	0,795	0,595	0,688	0,688	0,783	0,788	0,788	
FN_{M1}	800 738	946	942	943	953	939	947	942	969	842	844	821	847	830	839	826	819	660	724	720	1422	1096	1096	763	744	744	
FP_{M1}	870 1017	231	208	225	224	219	214	221	1106	354	351	348	345	346	353	347	357	1256	14730	14840	1407	6309	6367	51673	57753	57753	
TP_{M1}	$2712 \\ 2774$	2566	2570	2569	2559	2573	2565	2570	2816	2670	2668	2691	2665	2682	2673	2686	2693	2852	2788	2792	2090	2416	2416	2749	2768	2768	
NO	1 %	က	1	2	ი	-	2	3	1	2	ი	1	2	ŝ	1	2	ი	1	2	ი	1	2	ი	-	2	က	
E-Fkt.			5	2	2	ი	ი	3	1	1	1	2	2	2	იე	იე	ი	1	1	1	2	2	2	ი	ი	en	
ΠNΠ	% 0 0	8	0%	% O	% O	% 0	% O	% 0	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	20 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	40 %	
Rauschen	5 2 2 %	5 2 2 2	5 %	5%	5%	5%	5%	5 %	5 %	5%	5%	5%	5%	5%	5%	5%	5 %	5 %	5%	5%	5%	5%	5%	5%	5%	5%	
Verteilung	+ +	<i>t</i> .	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	

$\pm 1~(M1)$ und Maske 2 (M2) für die BrainWeb-Daten mit fünfpro-	(E-Fkt.) und Nachbarschaftsordnungen (NO).
elle A.12: Ergebnisse des OF, EF und SI	igem Rauschen, unterschiedlichen Energieft
Tał	zent

Abbildung A.9: Vergleich der Energiefunktionen für Patient 1. (a) T_1 - und (b) FLAIR-Sequenzen, segmentierte Läsionen mit (c) Energiefunktion (2.11), (d) Energiefunktione (2.11) mit Parameterrestriktionen und (e) Energiefunktion (2.13). Nachbarschaft zweiter Ordnung.

Abbildung A.10: Vergleich der Energiefunktionen für Patient 1 nach der Bildnachbearbeitung. (a) T_1 - und (b) FLAIR-Sequenzen, segmentierte Läsionen (c) Energiefunktion (2.11), (d) Energiefunktione (2.11) mit Parameterrestriktionen und (e) Energiefunktion (2.13). Nachbarschaft zweiter Ordnung.

Abbildung A.11: Segmentierung ohne Gehirn-Atlas für Patient 2. Energiefunktion (2.11) und Nachbarschaft zweiter Ordnung. (a) T_1 - und (b) FLAIR-Sequenzen, (c) segmentierte CSF, (d) GM, (e) WM und (f) Läsionen nach der Bildnachbearbeitung.

Abbildung A.12: Segmentierung mit Gehirn-Atlas für Patient 2. Energiefunktion (2.11) und Nachbarschaft zweiter Ordnung. (a) T_1 - und (b) FLAIR-Sequenzen, (c) segmentierte CSF, (d) GM, (e) WM und (f) Läsionen nach der Bildnachbearbeitung.

Abbildung A.13: Streudiagramme der Intensitäten von Patient 1 (Oben) und 2 (Unten).

Abbildung A.14: Segmentierung für Patient 3. Energiefunktion (2.11) und Nachbarschaft zweiter Ordnung. (a) T_1 - und (b) FLAIR-Sequenzen, (c) segmentierte CSF, (d) GM, (e) WM und (f) Läsionen.

Abbildung A.15: Streudiagramme der Intensitäten von Patient 3 (Oben) und 4 (Unten).

Abbildung A.16: Segmentierung für Patient 4. Energiefunktion (2.11) und Nachbarschaft zweiter Ordnung. (a) T_1 - und (b) FLAIR-Sequenzen, (c) segmentierte CSF, (d) GM, (e) WM und (f) Läsionen.

Eigenständigkeitserklärung

Hiermit erkläre ich, dass es sich bei der vorliegenden Diplomarbeit um eine selbständig verfasste Arbeit handelt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden.

München, 04. August 2010

Paul Schmidt