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Chapter 1

Introduction

The aim of cluster analysis is to identify groups with similar objects and discover
patterns, subsets and correlations of certain data sets. The main task of the analysis
is to classify objects into respective categories, which is known as a cluster. The
data points of the objects shall be more similar to each other in the same cluster
than points of different groups, i.e. the greater the homogeneity within a group, the
more distinct the clustering. As a method of unsupervised learning cluster analysis
has applications in different fields such as Market Research, Medical Science, and
Engineering. For example, in Market Research the segmentation of customers is
very important for knowing their affiliation. The clustering procedures can group
customers with similar buying interests into the same cluster.

As cluster analyses provide a sufficient way to discover structures within data with-
out necessarily providing underlying reasons, many cluster algorithms have been
developed over time. Examples are hierarchical clustering, k-means or k-medoids
algorithm for partitioned clustering and the EM-algorithm for density-based clus-
tering. Advantages and disadvantages of these techniques gives for example Hastie
et al. (2009).

Cluster validation techniques are used to evaluate an applied cluster algorithm, i.e.
to describe the quality of clustering. Hence, cluster algorithms need to be validated
in terms of their general goodness of fit. Literature provides a wide range of tech-
niques with different approaches. The main distinctive feature lies between external
and internal performance measures. External validation techniques sources to the
stability of the cluster partition, meaning that the focus of these techniques is based
on the knowledge of the correct class labels. Major disadvantage of these measures
is the true assignment has to be known for external indices. Therefore, internal val-
idation techniques are used when their true cluster structure or correct class labels
are unknown. No additional knowledge for the cluster assignments is required, but
is generally based on their quality of labeling of data alone. The purpose of these
validation techniques is to evaluate several cluster algorithms to obtain the best
algorithm for the present data with an adequate result of a performance measure.



Most of the techniques and their achievement describes Halkidi et al. (2001) and
Handl et al. (2005).

Currently, cluster analysis consists of three steps (Handl et al., 2005): (1) Data trans-
formation (variable selection, normalization and choice of distance functions); (2) Se-
lection of the cluster algorithm, associated with their parameters and, of course, the
application of the algorithm to the data; (3) Evaluation of the cluster algorithm as
an useful check of the partitioning. For the last step, cluster validation techniques
are needed to improve the algorithms as well as the data transformations from the
first two steps. This thesis will focus on the cluster validation techniques, gained by
the strength and weakness of each validation measure.

Benchmarking experiments in statistical learning are empirical studies with the aim
of comparing and ranking algorithms with respect to a performance measure. In
these experiments, the primary intention is to evaluate certain algorithms. In par-
ticular, the aim of these studies is to find out which algorithm has the best fit for
a given data set. Hothorn et al. (2005) define a statistically sound framework; Eu-
gster et al. (2008) use the framework and give a practical direction for benchmark
experiments with supervised learning algorithms. Following this direction, this the-
sis investigates benchmark experiments in case of unsupervised learning techniques.
More specific, and in combination to common benchmark experiments, it validate
the performance measure and not the candidate algorithm. Common validation mea-
sures in up-to-date publications are the Rand-Indez as an external validation index
(used, e.g. in Dolnicar and Leisch (2010) and Campello (2007)) and the Calinski-
Indez as an internal one (used, e.g. in Dolnicar and Leisch (2010) and Kryszczuk
and Hurley (2010)). However, there exist a set of other indices, and no evidence
is given that the mentioned measures are the best. In fact, the authors believe is,
that the behaviour may depends on the data set. While discussing the strengths
and weaknesses of each single validation index by changing small steps of the data
with the respect to the cluster algorithm. Furthermore, it is aimed to find groups
of validation measures and to test these measurements against each others.

This thesis is structured as follows: Section 2 gives an introduction to the data gen-
erating process and a review of several cluster validation indices, external as well
as internal ones. The main focus is the reproducibility of these indices given by
Hothorn et al. (2005) . Section 3 describes the generated data, which are developed
suitable for benchmarking experiments, and the practical application of the cluster
algorithm with flexclust (Leisch, 2006) is shown as well. Then, the external clus-
ter indices are computed by using methods from the package clv (Nieweglowski.,
2009). The internal measures are calculated using the package c1Valid (Brock et al.,
2008) and cclust (Dimitriadou, 2009). Furthermore, the first descriptive analysis
of the validation indices is done. Section 4 tests the indices among each others. In
Section 5 the description of implemented R package is introduced to combine all
further assumptions. Section 6 draws conclusions based on the previous chapters.



Chapter 2

Design of the Benchmark
Experiment

The first part in chapter 2 shows the structure of the data generating process for
reproducibility the data for the benchmarking experiment. Afterwards the cluster
algorithm is introduced. This algorithm, in particular the k-means algorithm does
not change in the whole experiment. The number of clusters only modifies the
structure of the algorithm. Then, the validation indices are computed, either the
external or the internal ones. By changing the generated data regarding their dimen-
sions such as the standard deviation, i.e. from widely spaced clusters to completely
noisy ones, it is assumed that the measures are acting differently. According to the
computation, each group of validation indices (external and internal) is computed
differently by certain samples of the generated data sets. The external indices are
based on a pre-specified structure of the data and the internal indices are compared
by the separation and compactness of each cluster. Caused to this computation, the
reproducibility of the measurements are different of internal and external ones.

2.1 Bootstrapping Segmentation

The benchmark experiment follows the general framework by Hothorn et al. (2005),
i.e. the real-world problem. The benchmark study consists of the following elements:

1. The data set X = (z1,...,2y), where B samples of size N are drawn using
the sampling method with replacement (bootstrapping):

X' = {azl,.. 2N}~ X
X8 = {28 2By~

2. The cluster algorithm a with a(- | X°) is the fit of a learning sample X°.
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3. Then, the performance measure is given by a scalar function s:
s’ = s(a, X*) ~ S = S(X)

Thus, s® are samples drawn from the distribution S(X) of the performance
measures for the algorithm a on X. As already noted, the interests lies in
different performance measures s; (i = 1,...,1):

st = s;(a, X®) ~ S; = Si(X)

4. A method to draw the test data set X° is to empirically determine s?:

8 = si(a, X*) ~ S; = Si(X)
Hence, X° is computed through the following method t = 1,. .., 3:

1.) All observations of the original data are used, i.e. X on size N.

2.) The data points of a new sampled data are sampled from the original data
set, i.e. X% on size N.

3 ext.) An out-of-bootstrap sample is drawn for the external validity indices,
e (X \ X)) N(X\ X)) = X998 which is a ninth of the original size.

3 int.) An out-of-bootstrap sample is drawn for the internal validity indices,
ie. X\ X0 = X298 which is a third of the original data size.

That implies the definition for each performance measure in the respect to
their sample method, announced as follows:

§?t = 51;(%th) ~ 8 = gz(X)

Furthermore note, that S looks different for the external and internal validation
indices, which are defined in section 2.3.1 and 2.4.2, respectively.

2.1.1 Structure of the data sets

This section shows the replication of the data sets in the simulation study by the
R package mlbench. The description bases on Leisch and Dimitriadou (2010). Fur-
ther functions of generating artificial data sets for benchmark experiments are listed
there as well.

All of these artificial data sets are Gaussian distributed with several standard de-
viations. This should show the cluster problem from a well-separated dataset to a
completely noisy data with no identifiable pattern caused by an increasing standard
deviation. Figure 2.1 shows an example with several standard deviations, whereas
the visualization is very simple. The first two items are visualized in two figures,
while the third and fourth item are difficult for visualisation. By taking a look to
Figure 2.1b, the last two explanations are more understandable.
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Figure 2.1: Generated data sets on certain standard deviations

The data set X is generated by four certain scenarios:

Three clusters in two dimensions: The clusters are Gaussian distributed and
the centers of each cluster are placed in a circle around the origin with the
radius v/3. This data set consists of 500 data points, each cluster of around 166
points. Figure 2.1a shows three different Gaussian clusters of four standard
deviations. As seen in this figure the well-separated cluster solution becomes
more noisy with increasing variance. These deviations are defined from 0.1 up
to 1 in the interval of 0.1 steps, i.e. 10 certain datasets are computed for each

cluster problem.

Four clusters in two dimensions: These clusters are as well Gaussian distributed
and the centers of each cluster are placed in each corner of a 2-dimensional
cube. The number of clusters are computed by 2¢ with d as the number of the
dimension, in particular for this case: 22 = 4. The data set consists of 624 data
points, each cluster of 156 points. Figure 2.1b is visualizing the four different
Gaussian clusters of four several standard deviations, i.e. the grid lies between
0.1 up to 0.4. For the following scenarios, these four standard deviations are
chosen in the benchmark study.



8 clusters in three dimensions: These clusters are Gaussian distributed such as
in the previously computed dataset. The cluster centers are placed in each
corner such as above, i.e. 23 = 8 clusters in each corner of a cube. Furthermore,
the data set consists of 1,248 data points, i.e. each cluster exists of exactly 156
points.

32 clusters in five dimensions: The cluster centers of this data set are in the
corners of a 5-dimensional hypercube and each cluster is Gaussian distributed,
i.e. 25 = 32 cluster in such a hypercube. Hence, this data set should consist
of an increased number of data points as the previously generated data sets,
in particular it consists of 4,992 data items, i.e. as well 156 data points within
each cluster. This last cluster problem is added to look at the limits of the
performance measures in high-dimensional datasets.

The choice of the inadequate looking size in all the data sets lies in the cluster as-
signment of the data points. In this case, the same number of points in the clusters
is given for each dimension of the artificial data for comparing different dimensions.
Formerly choices of the size in the data were 600 items for the two-dimensional cube,
1,500 items for the three-dimensional cube and 4,992 items for the five-dimensional
hypercube. The five-dimensional data should be generated with 5,000 data points,
but the functions passes a value which is dividable for the indicated number of clus-
ters.

2.2 k-means Algorithm

In practice certain algorithms for cluster analysis are utilized. As announced in the
previous chapter one cluster algorithm is used for the evaluation. Hence, the most
popular partitioning method to locate natural clusters in a dataset is the k-means
algorithm. Therefore, it is helpful to present this algorithm in a well-known form.
This description is based on Hastie et al. (2009) and parts from Leisch (2006), es-
pecially for benchmark experiments.

The first step of this procedure is to start with a random set of K initial center
points of the cluster C'(¢), which the user pre-specified. These are the current cluster
centers, i.e. the cluster centers are a set of K data points {my,...,mg}. In a second
step each data points are assigned to the closest cluster center and the updated
cluster centers are the current cluster means for the observed partition. For the
third step a current set of means, the within cluster variance, will be minimized by
using the euclidean distance, which is often used as a dissimilarity measure:

C(i) = argmin || x; — my ||2
1<k<K
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Then, the steps are an iterative repeated algorithm until convergence, i.e. the assign-
ments of the data points do not change anymore. With a finite number of partitions
to a local optimum the convergence in a finite number of iterations is guaranteed
(Leisch, 2006).

The k-means algorithm can also generate empty clusters, which are identified and
randomly re-initialized in every iteration by the used implementation. If there are
empty cluster convergence would not reach in finite. By setting a maximum (100
times) of iterations the convergence is enforced. Furthermore, to reduce the non-
optimal cluster solution the k-means algorithm runs repeatedly (10 times) by using
randomized initializations. Only the best result with the smallest within cluster
variance is returned (Handl et al., 2006).

Figure 2.2: Example for a three cluster solution with their cluster centers

In Figure 2.2 an example for a three cluster problem is shown. The cluster centers
are labeled randomly in the algorithm. This will be very important for computation
of the external cluster indices. The data example is well-separated. Therefore, the
convergence is reached in a small number of iterations.
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2.3 Evaluating Reproducibility of External Clus-
ter Indices

In the following, the external indices are calculated in a similar way as in Dolnicar
and Leisch (2010), such as the reproducibility of these indices. Given the partitions
X; and X, of two different bootstrap samples X?, the cluster membership is pre-
dicted on the basis of the cluster algorithm by assigning each data point to the closest
cluster center. Then, in order to the different samples of X?, the k-means algorithm
is computing the partition C®. Using the predicted partltlons C, and C,, whereas
respectively C} is computed by the sampling method of X', the validation indices
can be computed, as described in the following section 2.3.1. Each measurement is
defined as

si’t = (silt = s(é’l, CN’Q), . ,sft = 3(023_1, OQB)) ~ S = S;(XxY)

where ¢ stands for external validation indices, which are defined in the next section
2.3.1. The index t describes the certain sample methods. In addition, with 2B
bootstrap partitions B independent and identically distributed replications of the
external validation indices are computed, i.e. the algorithm runs twice and measures
afterwards external validation index. The k-means algorithm runs 100 times, that
altogether 50 passes are utilized for the training data set and 50 passes for the test
data set. For calculating the external indices, one training data set and one test
data set has to be drawn. In the following section, this process is described.

2.3.1 External Validation Indices

The external indices are calculated in a similar matter. The data points are counted
in a pairwise co-assignment. Given two partitions named C; and Cs, the quantities
a, b, c and d are computed for the pairs of the data points z; and x; and their cluster
assignments cc, (5), Cc(j), Cos(s) and cey,(;) (Handl et al., 2005):

Hxiwmj | CCy(z;

a ) = CCi(y i) T

b ‘{xz, Tj | CCy(@) = COv(x;) N COx(ai) 7 CCQ(;EJ)H
c = Hxia%‘ | CCy(ai) 7 CCux;) N COulas) = COs(ay) }|
d [{2i, 25 | cons) # o) N Cos(an) # Ca(ap ]

The numbers a and d are counted as the agreements between the two cluster parti-
tions C and Cy, whereas b and ¢ are the disagreements of these two partitions. Due
to the random selection of the clusters, the pairs of data points are calculated. The
cluster assignments are shown in Table 2.1 (Albatineh et al., 2006).
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Table 2.2 (Albatineh et al., 2006) lists the external validation indices, which are
counted by a, b, ¢ and d. Most of the indices are between a range of 0 and 1, but
however, the validation indices Hamann, McConnaughey, Peirce, Gamma, Kruskal
and Pearson are defined on [—1, 1] and Fager ranges between —3 and 1. Caused to

Partition Cy

Number of pairs

same cluster

different cluster

Partition Cy

same cluster

a b

different cluster

c d

Table 2.1: Similarity table of the cluster partitions

the similarity of each other, these indices are self-explanatory.

’ Name ‘ Symbol ‘ Formula ‘ Range ‘
Rand R 3 t%i% =B [0, 1]
Hamann H letd)(bte) [-1,1]
Czekanowski cZ 2&% ™ [0, 1]
Kulczynski K %(ﬁ_b + %) [0,1]
McConnaughey MC (afri)% [—1,1]
Peirce PE % [0,1]
Fowlkes and Mallows | F.M m [0, 1]
Wallace (1) W1 e [0,1]
Wallace (2) W2 ate [0,1]

ad—bc N
Gamma I \/(a+b)(a+c) (c+d) (b+d) =1.1]
Sokal and Sneath (1) | SS1 %(ai% + 2t am T a) | [0,1]
Russel and Rao RR TThterd [0,1]
Fager and McGowan | FMG \/(aJrZ)(aJrc) NG [—3.1]

. ad—bc

Pearson pP Tt e d o) [—1,1]
Jaccard J aTire [0,1]
Sokal and Sneath (2) | S52 207 [0,1]
Sokal and Sneath (3) | SS3 \/(a+b)(a+‘1‘§(c+d)(b+d) [0, 1]
Gower and Legendre GL #—&i)—i—d [0,1]

2
Rogers and Tanimoto | RT % [0,1]
Goodman and Kruskal | GK Zg;gg [—1,1]

Table 2.2: List of External Cluster Indices
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2.4 Evaluating Reproducibility of Internal Clus-
ter Indices

In the following, the internal indices are calculated in a similar way as in section 2.3.
Given the partition X?, which is drawn by a sample method with replacement, the
cluster membership is predicted on the basis of the cluster algorithm by assigning
each data point to the closest cluster center. Then, the k-means algorithm is com-
puting the partition C}. Using the predicted partition Cy, whereas respectively C is
computed by the sampling method of X, the validation indices can be computed,
as described in the following section 2.4.2. Each measurement is defined as

st = (s%t = 5(CY),...,s28 = S(C'QB)> ~ Sl = S;(X")
where 7 stands for internal validation indices, which are defined in the next section
2.4.2. The index t describes the certain sample methods. Hence, with 2B bootstrap
partitions, 2B independent and identically distributed replications of the internal
validation indices can be computed, i.e. the algorithm runs once and measures after-
wards the internal validation indices, respectively. In total, the k-means algorithm
runs 100 times, that altogether 100 passes are utilized for the different data samples
and 100 certain validation indices can be computed.

2.4.1 Preview of the Internal Validation Indices

Other than external validation indices, the internal ones take the clustering on the
basis of the used partition as the input. They use the obtained results information
intrinsic of the data to assess the quality of clustering. The internal indices can be

categorized into three certain types, as well as a combination of the categorization
(Handl et al., 2005):

Compactness The data points of the same cluster should be as close to each other
as possible, in particular regarding their homogeneity. The intra-cluster vari-
ance is one of the representatives of this category. Another measure is the sum-
of-squared errors variance criterion, which is locally optimized by the k-means.
Both of these measures are yielding to minimize their value for optimization.

Connectedness This type of validation technique attempts to assess that the
neighbouring data points should share the same cluster. In principle density-
based cluster algorithms are chosen for such a grouping problem. This is well-
suited for arbitrary shaped clusters, but in fact it loses robustness in spatial
separation.

Separation The clusters should be widely spaced between each other. There are
certain distance possibilities to measure the space between two clusters.

14



Besides the internal cluster validation indices, there exist the relative criteria. This
group of indices is evaluating cluster structure by comparing other cluster validation
schemes, i.e. evaluating of the same cluster algorithm by using validation measures
with different and changeable parameter values. Halkidi et al. (2001) announced
the Dunn-like indices, which is similar to the below listed Dunn-Index, e.g. by us-
ing other linkage distances for separation of several clusters. As well announced
is the SD-Index by using different weighting measures for the relation of the inter-
or intra-cluster variance. In this benchmark experiment, the relative criteria is not
considered in this thesis.

2.4.2 Internal Validation Indices

Before introducing the internal validation indices, let define the maximization or
minimization criteria in the respect to their differences. Some of the validation in-
dices have their criteria regarding the computed values of the performance measure,
but however, other validation indices have the stopping rule at the maximum or
minimum difference between the investigated cluster solutions, either regarding the
first or second differences. Hence, the stopping rule is also known as the "elbow”
criteria, i.e. there is a positive or negative jump between the cluster solutions. For
a better understanding of the differences, Figure 2.3 gives an overview of the first
and second differences.

(Skt1 — Sk) Sk — Sk—1) Second Differences
Sk — Sk—1) (Sk+1 — Sk) First Differences

/\/\

Sk+1 Performance Measure

Figure 2.3: Hierarchy level of the first two differences in respect to the computed
validation measurement.

The lowest hierarchy level is the computed performance measure, which are used
either to minimize or to maximize regarding their criteria. However described in the
definitions, a couple of the validation measures has to be maximized in the respect to
the first differences. To reach either a positive or a negative "elbow”, the maximum
or minimum value of the second differences has to be reached.
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The following description of the internal validity indices is based on the description
by Handl et al. (2005), Brock et al. (2008) and Halkidi et al. (2001). The first
four internal indices are most-common as validation techniques for the previous an-
nounced problems in order to investigate the correct number of clusters. Afterwards,
the internal validation indices of Weingessel et al. (2002) are presented.

Connectivity Measure

The Connectivity Index shows the degree of connectedness of each cluster by eval-
uating its degree to each of all neighbouring data points in the same cluster. Let
nn;jy be the jth neighbour of the data point x;; so Tinny ;) is zero if z; and nn,(;) are
in the same cluster, otherwise the value is computed by % For the cluster partition
C ={C,...,Ck} of each observation with the respect to the size N into K disjoint
clusters, the measurement is computed as

N L

Conn(C) = Z Z Ti

i=1 j=1

where as mentioned above

{ 1/j  if BCy:i € Cx Anny(y) € Cy

Tinnig) = 0 otherwise.
Furthermore, L determines the number of neighbours that contribute to the connec-
tivity measure. The measure is lying between zero and oo and has to be minimized.

Silhouette Index

The Silhouette Width for a particular partition is computed as the average Silhouette
value for each data point. The value measures the degree of confidence in a particular
cluster assignment for each individual data point x; and is computed as

b — a:
Say) = %
(w:) maz(a;, b;)
where
1 , dist(z;, ;)
a; = Z dist(x;,x;) and b= min —
|C'(x;)] preri CreC\C(x;) et |Ck|

The value a; is the average distance between the data point x; to all the other
observations in the same cluster; and b; is the average distance between data point

16



x; to all other points from the closest neighbouring cluster. In addition to this, b;
yields to minimum distance, of which the Euclidean distance is used as dissimilarity
measure. Thus, certain distances can be chosen to get the minimum, such as the
Manhattan distance. Furthermore, C'(x;) denotes the cluster containing the data
point z; and |C] is the number of elements in a particular cluster (cardinality). The
Silhouette Width is limited between —1 and 1 and has to be maximized. The width is
computed for each data point. To compare the width with other internal validation
measures, the Silhouette Index is the average value of all the widths, but as well
other measures of locations can be chosen, either median or mode.

Dunn Index

The Dunn Inder measures the ratio of the shortest distance between each data
point, which are not in the same cluster and the largest intra-cluster distance, i.e. it
attempts to yield well-separated clusters. The measurement is computed as

min ( min  dist(z, :)33)>
Cy,C1eC,Cr#C; \ z;€C,x;€C

D(C)

. )
Inax diam(C,,)

where diam(C,,) is maximum distance between each data item in the cluster C,,,
and dist(z;, z;) is the distance between the pairs of the data points x; and x; within
several clusters. This measurement lies between zero and oo and has to maximized.

Davies Bouldin index

The Davies Bouldin index is a similarity measure between two clusters C; and C}.
This validity index measures the dispersion of each observed cluster (s;) and the
dissimilarity between two clusters (d;;). Then, R;; is defined as

Si—i—Sj

Rij = d..
ij

and R;; has to satisfy the following conditions:
1. Ri; >0
2. Rij = Rj;
3. if s; =0 and s; = 0, then R;; =0
4. it s; > s and d;; = dii, then R;; > Ry,

5. if S5 = Sk and dij < dikm then Rij < Ry,

17



Thus, R;; is the entry of a non-negative and symmetric matrix and the diagonal
entries of this matrix have to be zero. The index is finally computed as

where R; = max;—1,_gnixj ;. The minimum value has to be taken as the proposed
number of clusters.

Further Internal Cluster Performance Measures

As announced in 2.4.2, coming internal validation indices are based on the descrip-
tion of Weingessel et al. (2002) and firstly together published in Milligan and Cooper
(1985).

These validation indices are divided into two several groups. The first group of
indices is based on the distances of the sum-of-squares within the clusters (SSW)
and the sum-of-squares between each cluster (SSB) in the solution. To simplify the
computation, the SST, which is the sum-of-squares total, is defined as

SST = (z; — )
i=1

with the corresponding

k Ng
SSW = Z Z(IU — i’j)2
j=1 i=1
and
k
i=1
Here, g = 1, ...,k are the number of groups, n = Zle n; are the number of data

points and Z; stands for the center point of each cluster. Furthermore, SST' can be
written in an identity form, which is given as SST = SSW + SSB.

e The Calinski index, computed as %, has to be minimized at the second

difference to investigate the correct cluster solution.

e The Hartigan index is based on the ratio of the logarithm between the within
and between sum-of-squares. It is computed as log %. To indicate the cor-
rect cluster solution, the minimum at the second differences has to be reached.
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e The Ball Index is only based on the average distance of all the data points to
their corresponding cluster centroid and is defined as % The maximum of
the second differences has to be taken as the correct number of clusters.

e The Index provided by Xu is computed as dlog(+/SSW/(dn?)) + log(k) with
d as the dimension of the data points. As well to indicate the correct number
of clusters, the maximum value of the second differences should be taken.

e The last index of the group is the Ratkowsky index. This validation mea-
sure is also based on the sum-of-squares, but this time on the sum-of-squares
of each variable by its own. Then, the index is computed as ¢/ Vk with
¢ = meany/varSSB/varSST. The abbreviation 'var’ stands for each variable.
In particular, varSST is the total sum-of-squared distance for each variable.
Accordingly, the mean is calculated for the ratio between distance of the vari-
ables and total distance of each variable to the overall mean. As the correct
number of the clusters the maximum difference at the right side is taken as
the best solution.

The second part of the internal validation indices are based on the statistic of T,
which is the scatter distance matrix of the data points. Hence, the total scatter
matrix of n data items (Friedman and Rubin, 1967) is given by

T = Z(g; —z)(z; — z)

Furthermore, to compute the indices, the pooled-within groups scatter matrix is
needed and is defined as W. To compute this matrix, the within scatter matrix of
each group W, is given by

Ng

Wy = Z(xig — Zg)(Tig — Z)’

i=1

where g = 1, ..., k the number of groups, n = Zle n; and T, as the center point in
each group. Then, W can defined as

such as B, which is the between groups scatter matrix, given as

k

—

B = E N;T;T;.
i=1
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Finally, the equation T" = W + B is valid, whereas the identity form is similar to
the mentioned equation of SST'.

e The Scott index is defined as nlog jjtt((g/)), in which n is the number of the
data points. Here, the maximum difference at the left has to be reached for
the proposed number of clusters.

e Marriot is computed as k% det(T1¥), where k is the number of clusters in the
investigated cluster solution. The maximum of the second differences has to
be reached to get the proposed number of clusters in the solution.

e For trace(covW) the minmum of the second differences is the best for the
investigated cluster solution.

e Similar to the performance measure above the next index is defined as trace(W)
and has to be maximized at the second differences for the proposed number in
the cluster approach.

e The validation measure Friedman is computed as trace(W—'B). The dif-
ference reaches their maximum at the left side for the proposed number of
cluster.

e Rubin is defined as det(7")/det(W) and has to reach its minimum at the
second differences for the proposed number of clusters.

In the R package cclust, three more indices were provided. One of these performance
measures, known as the C Indez, is for evaluating binary data sets, which are not
considered in this benchmark study. Another one is known as SSI, an abbreviation
for Simple Structure Indez. For this performance measure, unfortunately the formula
is not provided in Weingessel et al. (2002). As the last of these measurements, the
Likelihood, shortly NLL, is also not considered in this experiment. This measurement
has displayed to much errors for the test data sets, and therefore this validation
measure is dropped out of the benchmark experiment.
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Chapter 3

Explorative Analysis

Firstly, the beginning of this section deals with the gained data structure. Ex-
emplary, the results for external validation indices is shown for the three-cluster
solution in a representable way. The implementation results in a four dimensional
array with the first dimension the sampling, the second the cluster size, the third
the certain standard deviations of the generated data sets and the fourth dimension
are the given validation indices. The structure of the internal validation indices are
similar, but the first dimension is doubled to the structure of the external indices
results; i.e. the external indices are computed 50 times, while the internal measures
are computed 100 times.

> str(result.2dnorm.orig)

num [1:50, 1:6, 1:10, 1:20] 1 0.149 1 0.149 0.149 ...

- attr(*, "dimnames")=List of 4

..$ : NULL

..$ : chr [1:6] "2m n3" wgnm v

..$ : chr [1:10] "O.1"™ "0.2" "0.3" "0.4"

..$ : chr [1:20] "Hamann" "Czekanowski" "Kulczinski" "McConnaughey"

> dim(result.2dnorm.orig)
[1] 50 6 10 20

Furthermore, to be mentioned before analysing the external and internal validation
indices, the following results are only a small choice of the whole benchmark study.
The analysis of all results would exceed the scope of the thesis, due to a high amount
of the investigated results. For details of all solutions, the results are given in the
electronic appendix of this thesis.
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3.1 Discussion of the External Validation Mea-

sures

This section shows the external validation indices among each other. Furthermore,
this section covers the strength and weakness of the external indices by a choice of
the generated data sets and the corresponding standard deviation; and the sample
method is selected, in which the indices are computed.

3.1.1 Proposed Number of Clusters Resulted by a Three
Cluster Solution

Firstly, to keep the overview of the external validation indices, Figure 3.1 shows
the Box-Wisker-Plots of the validation indices. As announced in previous sections,
each external validation index has to reach its maximum value at 1 for the proposed
number of clusters given by the algorithm and through the generating of the ar-
tificial data sets. In this figure, the three-cluster solution is the correct number of
clusters. Already in this figure, it is peculiar, that only two measurements are acting
kind of unusual as the other ones. Most of the external validation indices have their
maximum at the correct number of clusters, i.e. the proposed number of clusters
is, in fact, the correct number. Except two of them, in particular the Pearson and
Russel Indez, are proceeding unlike as favored.

Comparison
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Figure 3.1: Comparison of the external validation measurements by their computed
indices in well separated data
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2 3 4 5 6 7T 2/3 2/4 3/4 2/3/4 2/3/4/5

Czekanowski 0 29 0 O 0 0 20 0 0 1 0
Fager 21 29 0 O 0 0 0 0 0 0 0
Folkes 0 29 0 O 0 0 20 0 0 1 0
Gamma 0 29 0 0 0 0 20 0 0 1 0
Gower 0 29 0 O 0 O 20 0 0 1 0
Hamann 0 29 0 O 0 0 20 0 0 1 0
Jaccard 0 29 0 O 0 0 20 0 0 1 0
Kruskal 0 29 0 0 0 0 20 0 0 1 0
Kulezingki 0 29 0 O 0 0 20 0 0 1 0
McConnaughey 0 29 0 O 0 O 20 0 0 1 0
Pearson 0 6 0 4 12 28 0 0 0 0 0
Peirce 0 29 0 O 0 0 20 0 0 1 0
Rand 0 29 0 O 0 O 20 0 0 1 0
Roger 0 29 0 O 0 0 20 0 0 1 0
Russel 21 0 0 O 0 O 29 0 0 0 0
Sokall 0 29 0 0 0 O 20 0 0 1 0
Sokal2 0 29 0 0 0 O 20 0 0 1 0
Sokal3 0 29 0 0 0 O 20 0 0 1 0
Wallacel 0 29 0 O 0 O 20 0 0 1 0
Wallace2 0 29 0 O 0 0 20 0 0 1 0

Table 3.1: Proposed number of clusters through the indices, whereas the maximum
values are counted. Indices are computed by a new sample data. The data is
generated with a standard deviation of 0.3 and should reflect a two-dimensional
3-cluster solution.

To explain the weakness, such as the strength of the validation indices, further
graphics are given to compare all the external indices among each other. Table 3.1
shows the proposed number of clusters for the first scenario in the simulation study.
Here, the cluster assignment is predicted on the original data set. The three cluster
solution is well-separated, in particular the data is generated with a standard devia-
tion of 0.3. Figure 2.1a of the previous section shows the cluster solution for such a
scenario. This table reflects the maximum value for each index and the investigated
cluster solution, i.e. how often the index has its maximum value in different clus-
ter scenarios. In some cases the maximum value is ambiguous, i.e. more than one
value reaches the maximum value of 1 accurately. Then, these ties are counted as
themselves between the proposed cluster solution, e.g. the maximum value reaches
1 in the two- and three-cluster solution. Hence, the maximum value is counted as
a tie between the two solutions. Sometimes the maximum value is simultaneously
existing in three different results. Thus, the tie is between all of the cluster solutions.
Furthermore, the external indices differ in their ranges (compare section 2.3.1 for
details), but in this example the maximum value is taken, either their ranges are
between [—1, 1] or [0,1]. However, most of the indices choose the maximum value
for the three cluster solution.

23



3.1.2 Proposed Number of Clusters Resulted by a Eight
Cluster Solution

4 6 8 10 12 4/6 4/8 6/8 4/6/8

Czekanowski 3 0 47 0 0 0 0 0 0
Fager 3 0 47 0 O 0 0 0 0
Folkes 3 0 47 0 0 0 0 0 0
Gamma 2 0 48 0 0 0 0 0 0
Gower 0 O 50 O 0 0 0 0 0
Hamann 0 0 50 0 0 0 0 0 0
Jaccard 3 0 47 0 0 0 0 0 0
Kruskal 1 0 49 0 0 0 0 0 0
Kulczinski 3 0 47 0 0 0 0 0 0
McConnaughey 3 0 47 0 O 0 0 0 0
Pearson 0 0 31 12 7 0 0 0 0
Peirce 2 0 48 0 0 0 0 0 0
Rand 0 O 50 O 0 0 0 0 0
Roger 0 O 50 O 0 0 0 0 0
Russel 36 6 8 0 0 0 0 0 0
Sokall 2 0 48 0 0 0 0 0 0
Sokal2 3 0 47 0 0 0 0 0 0
Sokal3 2 0 48 0 0 0 0 0 0
Wallacel 3 0 47 0 0 0 0 0 0
Wallace2 3 0 47 0 0 0 0 0 0

Table 3.2: Proposed number of clusters through the indices, whereas the maximum
values are counted. Indices are computed by a new sample data. The data is
generated with a standard deviation of 0.2 and should reflect a 8-cluster solution in
a cube.

Table 3.2 reflects the external validation indices are computed by the prediction to
third data sample. The data is well-separated such as in the example above. In this
solution the proposed number of the clusters should be eight. The membership of
the data points can be either to a particular cluster or the cluster assignments of the
points will be to a neighbouring cluster. Hence, the maximum values are located in
the 8-cluster solution, however the maximum value will be reached by the weaker
indices, which were announced in Table 3.1. From now on, further tables provides
another stepwise solution of the performance measures for each number of clusters.
That means, the identification of the maximum value can be either in 2 steps or as
seen in the next example in 3 steps between the clusters. The Fager Index is looking
much better for the three-dimensional generated data. Notable is, that nearly all
indices reaches their maximum value for the true number of clusters; and none of
the external validation indices reaches their maximum values with ties and every
index reaches at least one of the maximum in the three dimensional scenario. This
could be a relation to the curse of the dimensionality, i.e. the results are ambiguous
in high-dimensional cluster solutions.
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3.1.3 Proposed Number of Clusters Resulted by a 32 Clus-
ter Solution

26 29 32 35 3826 29 32 35 38

Czekanowski 0 2 8 17 23 0 0 29 21 0
Fager | O 2 &8 17 23| 0 0 29 21 0
Folkes | 0 2 8 17 23 0 0 29 21 0
Gamma | 0 2 8 17 23 0 0 29 21 0
Gower | 0 0 3 16 31 0 0 19 27 4
Hamann | 0 0 3 16 31 0 0 19 27 4
Jaccard 0 2 8 17 23 0 0 29 21 0
Kruskal | 0 0 6 21 23 0 0 27 23 0
Kulczinski 0 2 8 17 23 0 0 29 21 0
McConnaughey | 0 2 8 17 23| 0 0 29 21 O
Pearson | 0 0 0 6 44| 0 0 5 30 15
Peirce 0 1 3 17 29 0 0 29 21 0
Rand | 0 0 3 16 31 0 0 19 27 4
Roger | 0 0 3 16 31 0 0 19 27 4
Russel | 41 7T 2 0 0|13 12 25 0 0
Sokall 0 2 8 17 23 0 0 29 21 0
Sokal2 0 2 8 17 23 0 0 29 21 0
Sokal3 0 2 8 17 23 0 0 29 21 0
Wallacel 0 1 8 20 21 0 0 29 21 0
Wallace2 0 1 3 18 28 0 0 29 21 0

Table 3.3: Left-sided the well-separated cluster solution (sd=0.1) and right-sided
the noisier one (sd=0.3) of the original data set.

Table 3.3 shows an overview of the results in a well-separated dataset with sd = 0.1
(left-sided) and noisy dataset with sd = 0.3 (right-sided). For the proposed num-
ber of clusters should be chosen 32 groups as the number with the most maximum
values. Not indicated for such a well-separated data set are the correct number
of these groups, well seen in the table. Better results are provided by the noisy
data, i.e. more external validation indices indicate their maximum values at the true
number of clusters. However, it is unnecessary to compute the indices with ties. In
such high-dimensional data sets, ties are implausible. Hence, if the case access as
a result, ties between cluster solutions are disabled caused by choosing randomly
the number of clusters. Furthermore, Figure 3.2 realizes the maximum value with
a small peak at the correct number. Through the randomly chosen initial points of
the k-means algorithm, some data points cannot assign to a particular cluster. The
well-separation of the data sets could be a reason for it, because of the empty space
between each cluster. Due to this, the respectively clusters, which is generated in the
original data set, cannot be found in a finite time and the assignment to particular
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clusters is forced by the implementation of the algorithm.

Comparison of two datasets

well-separated sd=0.1 noisy sd=0.3
Max — —
> —
Min —
| | | | | | | | | |
26 29 32 35 38 26 29 32 35 38
Wallacel Wallacel
Jaccard <~ =—— Jaccard <~ =——
Folkes == Folkes ~ =——

Figure 3.2: Overview of three chosen performance measures valued with two kinds
of datasets

As an example, the Rand Index provides the correct grouping as the proposed num-
ber of clusters in the table. In details, Figure 3.3 shows the peak at the true number
of clusters, but indeed the index works worser than the other ones. For the Rand
Indez, the proposed number of clusters should be chosen between 32 and 35 clusters.
From the left side, it seems that the Rand Index increases more than on the right
side at the correct number of clusters (32). The maximum difference on the left, like
it seems, is reached for the proposed number of clusters as the true ones. Unfortu-
nately, differences, however until now, are not an issue for external validation indices.

For aimless results of the external indices aspects the curse of the dimensionality as
well. Due to large number of clusters and the corresponding small number of data
items in the generated data sets, non-ambiguous results of the indices cannot be
reached as the correct number of clusters. Here, only a group of number of clusters
can be given for proposed numbers.
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Rand Index

Max - A~ ~

Min 4 7 -

26 29 32 35 38

Figure 3.3: Detailed aspect of the Rand Index in a noisy generated dataset

3.1.4 Problems of the External Validation Indices

In Figure 3.4, six indices are selected to show badly fitting and well fitting validation
indices. The validation indices are computed by the same data, as described above.
The Pearson and Russel Index indicate neither their maximum nor minimum for the
correct number of cluster. A better visual result is given in Figure 3.5. Here, it can
be seen that the Pearson Index is not only a straight line, i.e. the index reaches its
maximum at the three-cluster solution, but indeed dispers after it. Only the Fager
Index seems to indicate most of its maximum values for the correct cluster solution,
but has an ambiguous maximum between the two and three-cluster solution. Seen
in Table 3.1, most maximum values are at ties between these two solutions. The
Rand Indexr seems to be very similar to the Fager Index, but is better indicating
its maximum value for the correct cluster solution. Possible explanations for the
fluctuation of the maximum values in the computation such as in the formula of the
validation indices are:

Russel Index

The weakness of Russel Index is described at first. This performance measure is
very similar to the Rand Indezr. In fact, the denominator of both measurements
are the same, but the numerator is different. Russel counts the sum of pairs in
the same cluster, while ignoring pairs in different clusters of two partitions. The
validation index is disable to reflect the randomness of cluster assignments in k-
means such as other algorithms, either hierarchical or partitioned clustering. Due to
the randomness of the assignment, well-performed results cannot be achieved, such
as the value 1 for best-fitting clusters. Thus, the validation index might be useless
for validation of cluster algorithms, however if there are provided better validation
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Performance measures

Bad fitted Well fitted

Min — —

Fager — Folkes
Russel — = Jaccard =—
Pearson Rand —

Figure 3.4: Selection of six performance measures, which are bad such as well fitted
for the generated data in a three cluster solution. Illustrated are the validation
indices computed by a new sampled dataset with the standard deviation of 0.3.

indices:

a a-+d
Russel = 7= Rand =~ —"

Pearson Index

The Pearson Index, as the next validation index, is also achieving poor results for
proposing the correct number of clusters. A better fit for the assignment with nearly
the same formula is announced from the Gamma Indez, in which the denominator
differs in extracting the square root. Definitely, this results better solutions for the
proposed number of clusters, such as ranges in the same limits of the validation
index. Shown in a case study below, the example illustrates the better-working
measurement:

Pearson = ad — be
(a+b)(a+c)(d+b)(d+c)
Gamma = ad — be

Via+b)(a+c)(d+b)(d+c)
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Performance measure details

Max — -

Min -

Figure 3.5: Detailed view to the Pearson Index of the previous provided figure 3.4

l.a=d=100and b=c=0:
Pearson = 100?/100* = 1/10000 =~ 0
Gamma = 100?/v/100* = 1
Here, a and d is computed with the same values, but in practice d results much
higher values than a, caused by the random selection of cluster denotation by
the algorithm. To simplify the case study, d is the same value as a.

2. a=d=b=c=100:
Pearson = (100? — 100?)/100* = 0
Gamma =0

In fact the Gamma Index did not reach its maximum value of 1, mostly their results
are below, but this index is almost better than Pearson Index.

Fager Index

The Fager Index fits almost the proposed cluster solution, but the index is weak for
the proposed number of cluster in some cases. The Folkes Index with nearly the
same formula, is not penalized by the second term. Therefore, this validation index
is well-performed for finding the correct number of clusters.

a4 ! Folkes = a4

Va+b(ate 2vV/atb @+b)a+to

Fager =
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3.2 Discussion of the Internal Validation Perfor-
mance Measures

The design of this simulation study is very similar to the study of the external val-
idation indices. In difference to the external ones, the internal validation indices
should not only be maximized to propose the correct number of clusters. For the
proposal of clusters the computing is slightly intricate, because the difference be-
tween the number of clusters has to be reviewed. The differences are an important
tool to indicate the number of clusters. As seen in section 2.4.2, the first difference
such as the second difference has to be determined.

3.2.1 Proposed Number of Clusters Resulted by a Three
Cluster Solution

In order to the first example of the external validation indices, Tables 3.4, 3.5 and
3.5 shows the proposed number of clusters by their maximization or minimization
criteria. Here again, the maximum or minimum values are accumulated for propos-
ing the number.

2 3 4 5 6 7

silhouette 0 100 0 0 0 O
dunn 0 100 0 O O O

db 0 100 O O O O
connectivity 54 46 0 0 0 O

Table 3.4: Amount of the values, which should indicate the three cluster solution
as the true number of clusters with the respect to their minimization or maximiza-
tion criteria. Shown are the results of the predicted generated data with standard
deviation 0.3.

In particular, in Table 3.4 the validation index is either maximized or minimized
regarding its computed value. The Silhouette, the Dunn and the Davies Bouldin
Index are performing the true numbers of clusters very well, while the Connectivity
Indez locates a lower number of clusters as the true one. The fluctuation of the
measurement might indicate that only minimization is not well-fitting for the true
number of clusters in these generated data sets.

In Table 3.5, the first difference between each cluster solution is shown. As an-
nounced in section 2.4.2, Scott such as Friedman should be maximized at the left
side, i.e. if the maximum of the first difference lies between the two and three cluster-
solution, i.e the three cluster solution should be chosen as the proposed number of
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2to3 3to4d 4tob Htob6 6to7

friedman 86 0 0 6 8
ratkowsky 100 0 0 0 0
scott 100 0 0 0 0

Table 3.5: Amount of the values, which should indicate the three cluster solution as
the true number of clusters with the respect to their first differences. Shown are the
results of the predicted generated data with standard deviation 0.3.

clusters. Or rather, these validation indices are locating the true number of clusters
in the generated data. Indeed, the same solution can be seen in each other gener-
ated data set. While maximization these validation measures on the left side, the
Ratkowsky Index shall locate its maximum difference at the right side. Seen in this
example such in each other one, this validation index has the high amount of the
maximum values at the left side. This suggests that the choice of these values to
the right side could be wrong.

3 4 5 6

ball 100 0 0 O
marriot 100 0 0 O
xuindex 100 0 0 O
tracew 100 O O O
trcovw 0 27 28 45
rubin 93 0 0 7
calinski 100 0 0 O
hartigan 100 0 0 O

Table 3.6: Amount of the values, which should indicate the three cluster solution as
the true number of clusters with the respect to their second differences. Shown are
the results of the predicted generated data with standard deviation 0.3.

Last but not least, the measurements which either maximize or minimize their val-
ues at the second difference is shown in Table 3.6. Most of these validation indices
find the high amount of the values at the true numbers of clusters. Rubin seems
to be weaker than the other validation measures, but still minimization the second
difference fits the proposed number of clusters correctly. However, trace(cov(W))
breaks the ranks. This validation index seems to bop around the proposed number
of clusters announced by the algorithm. In other calculations of this index in each
data set, the index is acting similar.
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3.2.2 Proposed Number of Clusters Resulted by a Eight
Cluster Solution

The next example as well in order to the declaration of the external validation in-
dices, in which is shown the eight clustered solution in Tables 3.7, 3.8 and 3.9.
The validation indices are computed with the respect to prediction to the new sam-
pled data with a standard deviation of 0.2. Such a standard deviation represents
a well-separated data set, i.e. the space between the clusters should be far enough
for the internal measurements. As in the previous example the amounts are accu-
mulated, in which the measurement shall be minimized or maximized in respect to
their criteria, i.e. the measurement itself, the first difference or the second difference.

4 5 6 7 8 9 10 11 12

silhouette 0 O 0O O 100 0O O O O
dunn 7 3 0 1 73 7 4 4 1

db 0O O O O 100 O 0O O O
connectivity 22 1 0 0 77 0 0 0 O

Table 3.7: Amount of the values, which should indicate the eight cluster solution
as the true number of clusters with the respect to their minimization or maximiza-
tion criteria. Shown are the results of the predicted generated data with standard
deviation 0.2.

In details, Table 3.7 shows the cumulated amounts, in which the validation indices
should be either maximized or minimized regarding its definition. Particularly, no-
ticeable is the well-performing of the Connectivity Index, whereas less clusters are
indicated as the correct number, as in the previous example.

4tod Htob6 6to7 T7Tto8 8to9 9tol1l0 10to 11 11 to 12

friedman 3 6 2 89 0 0 0 0
ratkowsky 12 20 31 37 0 0 0 0
scott 9 12 13 66 0 0 0 0

Table 3.8: Amount of the values, which should indicate the eight cluster solution as
the true number of clusters with the respect to their first differences. Shown are the
results of the predicted generated data with standard deviation 0.2.

In Table 3.8, the indices are referenced, which has to be maximized in the respect
to their first differences. Scott and Friedman are indicating the true number of clus-
ters. Scott gives weaker values than in the three-cluster solution, but altogether the
highest amount of these values are indicating the correct solution. Ratkowsky shows
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the same weak solution as in the previous example. As well, the same problem
arise, i.e. the indication of the number on the right side are untouched and in par-
ticular in column notation "8 to 9”7, whereas the first difference should be maximized.

5 6 7 8 9 10 11

ball 91 8 0 1 0 0 0
marriot 13 17 6 64 0 0 O
xuindex 0 0 O 100 0 0 O
tracew 0 0 0O 100 O O O
trcovw 32 20 2 0 7 25 14
rubin 0 0 O 100 0O 0 O
calinski O 0 O 100 0 O O
hartigan 0 0 0 100 0 O O

Table 3.9: Amount of the values, which should indicate the eight cluster solution as
the true number of clusters with the respect to their second differences. Shown are
the results of the predicted generated data with standard deviation 0.2.

Last, Table 3.9 is visualizing the performance measure in respect to their second dif-
ferences. The measurement trace(cov W) is as well not indicating the true number
of clusters as it should propose regarding minimization the second difference. Not a
value is locating the artificial generated clusters. Such as the index before, Ball is
badly fitting yet, instead as proposed in the lower dimensional example. Nearly all
of the values are proposing a five cluster solution as the true number of the groups.
This could be due to the fact, that the generated data is not well performing for the
validation measurement. All of the other validation measurements are indicating
the true number of clusters, but it seems that the Marriot Index is weaker in higher
dimensions than in the lower ones. In summary, only five validation indices are
locating the correct number of clusters by their second differences.

3.2.3 Proposed Number of Clusters Resulted by a 32 Clus-
ter Solution

Such in order to the results of the external validation measures, of course, the in-
ternal validation indices have to be interpreted for the 32 clustered solution. The
following tables show the maximum or minimum values in order to their definition.
At this time, the results are only providing a relatively well-separated data set, i.e
the validation indices are computed on the basis of the original generated data with
a standard deviation of 0.2. Trough better results of this standard deviation, other
examples are disregarded for analyzing these indices.
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28 29 30 31 32 33 34 35 36

silhouette 0 2 14 20 30 25 9 0
dunn 64 28 6 0 O O 2 0

db 0 0 4 3 14 33 46 O
connectivity 60 34 6 0 0 0 0 O

o O O O

Table 3.10: Amount of the values, which should indicate the 32 cluster solution as
the true number of clusters with the respect to their minimization or maximiza-
tion criteria. Shown are the results of the predicted generated data with standard
deviation 0.2.

In Table 3.10, the resulted validation indices give an overview to the true values in
order to their criteria. Most of the Silhouette Indices are at the correct cluster solu-
tion and Davies-Bouldin has most values around the true number of clusters. But
Connectivity and Dunn are proposing a lower number of clusters and differs in its
solution. However, keep in mind that the results reflecting the search of the number
in a high-dimensional data set with many clusters. Thus, Silhouette Davies- Bouldin,
which are either maximized or minimized in their computed values, are working well
in these cluster patterns.

28/29 29/30 30/31 31/32 32/33 33/34 34/35 35/36

friedman 19 17 20 15 18 11 0 0
ratkowsky 3 11 9 15 34 28 0 0
scott 22 26 15 13 16 8 0 0

Table 3.11: Amount of the values, which should indicate the 32 cluster solution as
the true number of clusters with the respect to their first differences. Shown are the
results of the predicted generated data with standard deviation 0.2.

Not as good as provided before, the measurements on minimization their first dif-
ferences are disabled to find the true number of clusters, seen in Table 3.11. Scott
and Friedman are providing most of the maximum in their first difference for the
lower number of clusters, as it would be correct. As the proposed number of clusters,
these indices are indicating the real number as 30 clusters. Not as bad for such high
number, but however, better results are given in the examples before. Ratkowsky, as
the last of these three, differs a lot in the maximum value of its first difference. This
index has to provide the cluster solution on the right side, but indeed the maximum
difference are equally shared between the correct solution. Eventually, these indices
indices are less informative for proposing the true number of the generated clusters.

Last but not least in discussion of the internal validation indices, Table 3.12 shows
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29 30 31 32 33

ball 30 34 16 10 10
marriot 50 38 11 1 0
xuindex 9 17 16 30 28
tracew 20 23 18 22 17
trcovw 23 22 28 18 9

w
=~
w
(@

O O OO oo oo
O O OO oo oo

rubin 3 8 16 38 35
calinski 5 12 18 34 31
hartigan 9 17 16 30 28

Table 3.12: Amount of the values, which should indicate the 32 cluster solution as
the true number of clusters with the respect to second differences. Shown are the
results of the predicted generated data with standard deviation 0.2

the overview to the performance measures, in which either the maximum or min-
imum value of their second differences has to be reached. Surprisingly, the Xu,
Rubin, Calinski, and Hartigan Index are able to find the correct number of clusters
in their second difference. Not as bad as announced before, the trace(cov W) il-
lustrates better results in the higher level solution. Nearly, most minimum values
are at the correct number of clusters; however, the distinction between 32 and 33
clusters as the true one in such dimensions is well-fitting for these kind of data. Ball
provides as well bad predictions for the generated cluster patterns. Weaker than in
previous examples, the Marriot Index turns to a lower number of clusters than the
other validation measures.

3.2.4 Problems of Several Validation Measurements

Through the computation of the internal validation indices, some weakness follows in
the performance measures from the generated data. In the next part, these problems
are announced and if appropriate, it will be solved.

Ratkowsky

The Ratkowsky Index is not working very well in this Benchmark study. This vali-
dation index provides acceptable results, but once in a while the validity index gives
a NaN as a result. Figure 3.6 shows an example, in which this validation index pro-
vides useless results. Represented is a cluster solution with two cluster centers in
a data set generated with seven certain groups. This figure visualizes the problem,
but does not appear in the benchmark study anymore. The groups are lying around
zero, as the center point for the generated data. Here, the data represents separated
cluster with noise inside. If these groups are underrated, i.e. the cluster algorithm
choses less groups than in reality exists, then the validation index performances the
group assignment not as requested. Major possibility is announced as follows. In
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Figure 3.6: Officially 7-cluster solution with assignment in two clusters with their
corresponding centers

an example, the cluster algorithm divides the data set in two individual groups on a
straight line with x = 0 and the y-value of the center points in each cluster is zero.
The z-values of the center points are widely spaced. Then, the validation index is
taken the within sum-of-squares of each variable, shortly varSSW. Afterwards, the
column sum of each within sum-of-squares is calculated. The varSSW of the y-value
is rather small, whereas the varSSW of the z-value is larger in relation. Further-
more, the total sum-of-squares of each variable, shortly varS ST, is computed by the
squared sum of the distance to the overall mean in the whole data set. Hence, the
varSST is nothing more than the Euclidean distance to the mean of the variable.
For computing the Ratkowsky Index, the varSSB is demanded, which is simply the
difference of varSST to the varSSW, i.e. varSST = varSSW + varSSB. Thus, it
occurs that the varSSW of one variable can be larger than the varSSW of the same
variable, and the computed varS.S B can be a negative value. The conclusion for this
inconsistency in the validation index is the accidentally sensitivity to the generated
data. The main problem for this validation index is the generated data set around
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zero and only robust for more noisy data in the same area. On the other side, it is
a general problem, if the centers of each variable have nearly the same value around
the zero point. Such a validation index should be independent to the data sets, but
indeed the Ratkowsky Index is improper for validation.

2d-norm 2d-corn 3d-corn 5Hd-corn

original generated data 6 263 21 2
bootstrapped data 22 243 35 5
out-of-bootstrap data 64 315 21 8

Table 3.13: Sum of NA returning values over all results

Due to the announced problem, this validation index cannot be computed, caused
through the abort of the computation. In such cases, the implementation of this
validation index is caught by a function, which returns NA instead of abortion. Table
3.13 shows the results, how often NA is counted for every data set in this empirical
benchmark experiment. Most NA-values are produced in the four-grouped cluster
solution. It is produced, while the k-means algorithm investigated two-clusters as
the best solution for the four-cluster data. The center points are located totally be-
tween these two clusters in well-separated data sets, as seen in the earlier mentioned
example.

SD 0.1 0.2 03 04
original generated data 100 89 67 7
bootstrapped data 92 78 63 10

out-of-bootstrap data 94 96 93 32

Table 3.14: Sum of NA returning values for the several standard deviation in the
two-dimensional cubed scenario

Table 3.14 shows the sum of the produced NA’s in details. Here, the most of the
NA-values are produced for the well-separated data, while less of these values ap-
pear in the noisy data sets. Main reason for the announced problem can be, that
the centers are in empty areas, completely between the clusters, because most NA’s
were produced in the well-separated data. In such a case, both center points in the
variable are located nearly at the same value. Thus, the above announced problem
occurred. For noisy data, i.e. by increasing the standard deviation, the problem
disappears by degrees.
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Connectivity

The focus is on the Connectivity Index, which gives bad results for the number of
clusters by its minimization criteria. As seen in the previous sections, this validation
index did not reach most values of its minimum rank for the proposed number of
clusters.

4 Cluster Solution of the Connectivity Measure
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Figure 3.7: Computation of the Connectivity Index on the four cluster solution of
the two-dimensional original data with different standard deviation.

In Figure 3.7 on the left side, the average value for each proposed number of clus-
ters is shown. Due to the high amount of the validation index, the average value is
taken. On this reason, the visualization is better working to compare this validation
measure for certain standard deviations of the generated data in the four cluster
solution. The validation index is computed to the corresponding original generated
data, and this validation index is performing similar to the computation regarding
each other sampled data, i.e. to sampled or out-of-bootstrapped data. Hence, a
conclusion cannot suggested in the respect to the minimization criteria. Noticeable,
it seems that the performance measure has a sharp curvature at the true number
of cluster. At least, this is shown for the well-separated data, visualized with the
standard deviations of 0.1 and 0.2. Therefore, the second difference should be reach
its maximum value for the highest curvature. Thus, the second difference measures
a positive "elbow” caused to the original minimization criteria. Such as for the well-
separated data, the noisy generated data also measures a positive “elbow” for the
validation measurement.

38



8 Cluster Solution of the Connectivity Measure
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Figure 3.8: Computation of the Connectivity Index on the eight cluster solution of
the three-dimensional out-of-bootstrapped data with different standard deviation.

Likewise as suggested in Figure 3.7, the eight cluster solution is given the same so-
lution, comparisons to this are shown in Figure 3.8. Hence, the second difference
has to be maximized as well to reach its positive “elbow”. In this example, the
performance measure is computed regarding the out-of-bootstrap data. The results
are not changing significantly on the other generated data, such as the original data
and the new sampled one. The best fit for the internal validation index gives the
generated data with the standard deviation of 0.2, represented by the high peak in
the illustration. However, each of the standard deviations gives an obvious peak for
the true number of clusters.

Trace(cov W)

Next, the internal validation index trace(cov W) is badly fitting to search the correct
number of clusters. The identification for minimum of the second difference could
not be the best solution, i.e. the validation index provides different solutions for the
proposed number of clusters.

On the left side of Figure 3.9, there is seen the average of the original computed
validation measure on certain standard deviations. Furthermore, the eight cluster
solution on the predicted sample data is visualized in the figure. The right side is
showing the second difference of the measurement, in which the validation index
should be reach its minimum value for the correct number of clusters. The second
difference of the validation index tries to get a solution in order to the elbow crite-
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8 Cluster Solution of trace(Cov(W))
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Figure 3.9: Computation the average of trace(Cov(W)) on the eight cluster solution
of the three-dimensional new sampled data with different standard deviation.

ria. Thus, the elbow is not identifying the true clusters, i.e. the local minimum of
the difference has not been found in the artificial generated data. In fact, the right
side of the figure shows that the index is delayed in locating the correct number of
clusters. As a reason for that, minimization the second differences could be useless
as the correct criteria for such an index.

Ball Index

The Ball Index is such badly proposing for the number of clusters as the previous
performance measures. Likewise, this validation index has to reach its maximum
value at the second difference, but is not indicating the correct number of clusters
in the three-dimensional scenario.

In Figure 3.10, the eight cluster solution of the validation index is shown on the left
side. To verify the solutions, the figure shows the validation index for the prediction
on the original data set on several standard deviations. Due to the similarity of
this index with Connectivity in regard to their trend, the second difference has to
be visualizing for comparing the solutions. On the right side of Figure 3.10, it can
be seen that the maximum values of the second difference lies for slightly number
of clusters. Nevertheless, the local maximum of these differences are indicating the
correct number of clusters, i.e. the positive "elbow” is around the correct number of
clusters. In fact, only counting the maximum of second differences cannot solve the
cluster identification problem. Thus, visualization of the results is very helpful to
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8 Cluster Solution of the Ball Measurement
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Figure 3.10: Computation the average of the Ball Index on the eight cluster solution
of the three-dimensional new sampled data with different standard deviation.

get an idea of the correct number of clusters.
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Chapter 4

Testing and Modelling

In this analysis, a model is searched for getting the correct number of clusters in
dependence of the validation indices, the used sample for computing the performance
measurement, the standard deviation and the dimension. Therefore, the question
of such an analysis is to find out the parameter for the influence of these factors.
Hereby, in such an order, a logit model can be used to predict the probability for
finding the correct number of clusters by each index.

4.1 Data Preparation

Before analysing, the data has to be prepared for modelling. Firstly, each index has
to be evaluated regarding their maximization or minimization criteria, either in its
computed value, first or second differences. Afterwards, the true number of clusters
have been retained in the prepared data, i.e. other proposed number of clusters
by the validation indices are cut for modelling. Other cluster solutions cannot be
reviewed in the analysis, because the true number of clusters are changing in every
dimension. Following, the included factors of the prepared data are listed below:

1. Success for correct clusters found: This value gives the success, that the true
number of cluster is found by each criterion, i.e. 0 stands for finding other
number of clusters and 1 stands for finding the correct number of clusters.

2. Validation Index: The name of each index is given, i.e. in total, there are 35
certain validation indices in the data for modelling the success for finding the
true number of clusters. Furthermore, there is no distinction for external or
internal validation indices.

3. Data sample for computing the index: Each validation index is computed by
several data samples, i.e. from the original generated data (orig), a new boot-
strapped data (sam) and the out-of-bootstrapped data (0ob).
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4. Dimension of the generated data set: The data sets are generated in three
certain dimensions. For modelling, the Gaussian distributed clusters with
the centers in each corner of a hypercube are used. Hence, there are the two-
dimensional (2dcorn), the three-dimensional (3dcorn), and the five-dimensional
generated data sets (5dcorn).

5. Standard deviation of the generated data: The standard deviation are in a grid
from 0.1 till 0.4. For different deviations are used to show the difference from
well-separated to completely noisy data.

A better understanding of the last two items was given in section 2.1.1. Furthermore,
the data is assumed from the simulation and finally structured for the analysis, seen
in Figure 4.1:

success name sample sd dimension
1 0:52793 ball : 3600 orig:30000  0.1:22500 2dcorn:30000
2 1:37207 calinski : 3600 sam :30000 0.2:22500 3dcorn:30000
3 connectivity: 3600 oob :30000 0.3:22500 5dcorn:30000
db : 3600 0.4:22500
dunn : 3600

friedman : 3600
(Other) :68400

N O Ot

Table 4.1: Structure of the data for analysing

A detail also ought to be mentioned. Certain internal validation indices are produc-
ing NA’s. Previous sections discussed some reasons for such purposes. Due to the
reason, the maximum or minimum validation indices are ambiguous regarding their
criteria. The value in the variable success is zero in such a situation.

4.2 Modelling and Results of the Logit Model

The dependent variable in this model is success, which indicates the true number of
clusters. As announced, this variable is either zero, if other numbers of clusters are
found or one, if the true number corresponds to the proposed number of clusters,
given by the validation index. One of the independent variable is name, which re-
flects each index. Another independent variable is sd, which is nothing more than
the standard deviation of each single data set, whether dimension is chosen. The
squared value of sd is used as well to get more flexibility in the model. Last but not
least, the sample is another parameter in the model.

43



Thus, the probability for finding the correct number of clusters can be given by the
formula according to the definitions of Fahrmeir et al. (2007):

7 = P(success; = 1| name;, sample, sds, sd2,, dimensions)
exp(1;)
1+ exp(n;)

Hence, the linear predictor is given by

1; = Bo + Biname;; + Bosample;s + Pasdiz + B4sd?4 + Bsdimension;s.

4.2.1 Discussion of the Logit Model

Table 4.2 shows the estimators of each coefficient in the logit model. The standard
deviation is highly significant and its behaviour is completely different to the ref-
erence category with the standard deviation of 0.1. Indeed, the linear term of the
standard deviation is positive, but however, the quadratic term is negative. Hence,
the quadratic term prevails the linear one and a higher standard deviation implies
bad results for finding the correct number of clusters. Also, a higher dimension of
the generated data sets implies worser results as in the two-dimensional reference
category, due to highly significance of the variable dimension. In higher dimen-
sions, the prediction for the success of finding the correct number is considerably
more difficult than in lower dimensions. This dimension effect, such as the effect
of the standard deviation can be already seen in the previous sections. Unlike as
expected, the sample method 0ob makes no difference as the sample orig. The new
bootstrapped sample is differently, but however not that highly significant to the
reference category.

Nevertheless, most of the external validation indices behaves similar to the Cze-
kanowski Index, which is classified as the reference category. As already shown in
the explorative analsyis, three of the external indices are acting different to the refer-
ence category, in particular, the Fager, the Pearson and the Russel Index are highly
significant and the negative prefix of the estimators implies a worser result for find-
ing the correct number of clusters in the benchmark study. All of the internal indices
are acting different to the reference category, seen in the statistically significance of
the variables. The negative prefix of Connectivity, Ratkowsky, Ball and trace(cov W)
implies worser predictions for the success of finding the true number of clusters; and
these internal validation indices are already known by their weaknesses. Notable,
the estimators of Scott and Silhouette are covered as well with a negative prefix. The
negative value of Scott can be explained with some non-produced values. In particu-
lar, some values are covered with NA’s due to the implementation of the index in the
package cclust, e.g. by finding empty clusters in the sample method. Then, the first
differences cannot be calculated and finding the true number of clusters is proving to
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Estimate  Std. Error  z value Pr(>|z|)

(Intercept) 0.2231 0.0857 2.60 0.0092
nameFager -0.5936 0.0878 -6.77 0.0000
nameFolkes 0.0000 0.0893 0.00 1.0000
nameGamma 0.1329 0.0897 1.48 0.1387
nameGower 0.2065 0.0900 2.29 0.0218
nameHamann 0.2065 0.0900 2.29 0.0218
nameJaccard 0.0000 0.0893 0.00 1.0000
nameKruskal 0.2519 0.0902 2.79 0.0052
nameKulczinski 0.0000 0.0893 0.00 1.0000
nameMcConnaughey -0.0080 0.0893 -0.09 0.9289
namePearson -1.9101 0.0906 -21.09 0.0000
namePeirce 0.1451 0.0898 1.62 0.1061
nameRand 0.2065 0.0900 2.29 0.0218
nameRoger 0.2065 0.0900 2.29 0.0218
nameRussel -3.1375 0.1088 -28.84 0.0000
nameSokall 0.1492 0.0898 1.66 0.0967
nameSokal2 0.0000 0.0893 0.00 1.0000
nameSokal3 0.1410 0.0898 1.57 0.1163
nameWallacel 0.0721 0.0895 0.81 0.4204
nameWallace2 0.0160 0.0893 0.18 0.8582
nameball -2.6538 0.0832 -31.89 0.0000
namecalinski 1.4742 0.0808 18.24 0.0000
nameconnectivity -2.5423 0.0822 -30.93 0.0000
namedb 0.4220 0.0782 5.39 0.0000
namedunn -0.7172 0.0764 -9.39 0.0000
namefriedman 0.6626 0.0788 8.41 0.0000
namehartigan 0.9259 0.0795 11.65 0.0000
namemarriot 0.4711 0.0783 6.01 0.0000
nameratkowsky -4.4214 0.1227 -36.04 0.0000
namerubin 1.2418 0.0802 15.48 0.0000
namescott -4.5998 0.1303 -35.31 0.0000
namesilhouette -3.4352 0.0943 -36.44 0.0000
nametracew 0.6120 0.0787 7.78 0.0000
nametrcovw -4.3266 0.1190 -36.36 0.0000
namexuindex 1.5928 0.0812 19.63 0.0000
sd 18.5394 0.5171 35.85 0.0000

1(sd~2) -48.7077 1.0255 -47.50 0.0000
samplesam -0.0577 0.0244 -2.37 0.0180
sampleoob -0.0036 0.0244 -0.15 0.8836
dimension3dcorn -0.4165 0.0224 -18.58 0.0000
dimension5dcorn -3.9888 0.0307 -130.11 0.0000

Table 4.2: Logit-Estimations

be difficult regarding its maximization criteria. Through the statistically significance
and positive estimators of Calinski, Rubin and the Xu Indez, these validation indices
provides better results for the success as the reference category. These validation in-
dices were already discussed and made a positive impression in the previous sections.
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Interpretation of the Probabilities in the Logit Model

For better overview of the logit model, the probabilities by the prediction are given
for each dimension. In the following figures, the probabilities are shown for the suc-
cess of finding the true number of cluster divided by the standard deviation in each
dimension.

Prediction of 3dcorn
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Wallacel — 4 LR R 4
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Sokall — * *e o
Russel | ¢ ¢+ »
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Peirce — * *e »
Pearson — . > o
McConnaughey — 4 *e o
Kulczinski — . *e o
Kruskal — . *o 0
Jaccard — . *e o
Hamann — . *e o
Gower — . *s
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Figure 4.1: Prediction of the probabilities for success in finding the correct cluster
solution of the external validation indices divided by the standard deviation.

Due to the similarity in the results of the probabilities for the two- and the three-
dimensional solution, Figures 4.1 and 4.2 show the probability of the three-dimen-
sional data set. Here, eight clusters should be found as the correct number of
clusters concerning their certain standard deviations. Firstly, the success of finding
the correct number attempts better with a higher standard deviation, but indeed,
through the quadratic term, the probability drops rapidly by noisier data structure.
As announced, nearly all external indices implies good results, except the mentioned
ones in the previous section. Calinski, Rubin and Xu, as representatives for well-
fitting internal validation indices, provides better results as the mentioned internal
indices with the negative prefix.
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Prediction of 3dcorn
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Figure 4.2: Prediction of the probabilities for success in finding the correct cluster
solution of the internal validation indices divided by the standard deviation.

Last, the probabilities of the five-dimensional data set is given in Figures 4.3 of the
external indices and Figure 4.4 of the internal ones. Such as in the example above,
the indices are divided by certain standard deviations, i.e. from well-separated data
to completely noisy ones. Here, the probabilities decreased in its values by increasing
the dimensions. The proposed number of clusters would be 32, but however in
such dimensions, finding the true number of clusters is very difficult. The external
validation indices are acting similar to each other. Finding the correct number
is nearly impossible. Due to higher dimensions, the external indices are not that
good as in lower dimensions. The three representatives of the internal indices are
providing better results according their probabilities. Indeed, these indices are the
weaker as in the three-dimensional data set, but their probability lies between 0.3
and 0.4. These indices the best-fitted in the benchmark study, even in such high
dimensional data sets.
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Figure 4.3: Prediction of the probabilities for success in finding the correct cluster
solution of the external validation indices divided by the standard deviation.
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Figure 4.4: Prediction of the probabilities for success in finding the correct cluster
solution of the internal validation indices divided by the standard deviation.
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Chapter 5

Implementation in R

The first part in this chapter shows the changes, which was done to run the bench-
mark experiment of the internal indices. Afterwards, the implementation of the
validation functions is described. In this package are implemented the external and
internal validation indices, which were used during the simulation study.

5.1 Implementation of the Internal Indices in R

The first modification of the function clustIndex exists in the pass of the training
data set. In this implementation, however a function to predict the new cluster
assignments of the data items was not provided in the package. For such a bench-
mark experiment, an implementation should exist for predicting the data points to
a particular cluster. The training data for the algorithm, which is not the same as
test data, provides problems in the computation of these internal indices. This prob-
lem is solved in the implementation through the function predict of the R package
flexclust. Furthermore, clustIndex needs objects generated by S3 class systems,
while functions of the package flexclust are providing objects in the new S4 class
system. These methods does not match among each other. Further problems are
listed below.

5.1.1 Sum-of-Squares Within

The first problem in the implementation of clustIndex appears in the pass of
the sum-of-squares within the clusters by the cluster object. These sum-of-squares
within the clusters are not the same as in the training data set and has to be com-
puted by its own. However, this function already existed in clustIndex, but was
untouched the certain internal validation indices. The sum-of-squares should handed
in by the cluster object for the particular algorithm, which is indeed wrong. Due
to the different size and data points of the test data set, NA’s were produced and
the function maybe interrupt. In order to circumvent this, the already implemented
function is attached into clustIndex, and the sum-of-squares corresponds to their
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cluster size. The cluster centers remains in their original computation by the cluster
algorithm.

5.1.2 Distance Matrices

Further difficulties occurs in the second group of the performances measures, an-
nounced previously in section 2.4.2. In certain cases, it appears that the clusters
exists only of a few data points which are assigned to this particular cluster. In the
new predicted cluster assignment for a test data set (e.g. the out-of-bootstrapped
data), several clusters are allocated with non or at least one data point. Through
the implementation in the function clustIndex the scatter matrices are computed
via cov(x) corrected with the size of the test data set. For the total scatter matrix
T, this problem in the computation cannot appear. In certain groups, the within
scatter matrix W, does not exist, caused by computation with the help of the already
announced penalized covariance. Though, the pooled within groups scatter matrix
W does not exist with all the scatter matrices of each cluster. If this inconvenience
occurs, the cluster should be crossed out of the investigated cluster solution. For
this reason, the performance measures in the second group returns NA, i.e. Scott,
Friedman, Rubin, Marriot, such as trace(covWW) and trace W are not defined in these
cases.

5.1.3 Davies Bouldin

Another weakness of this performance measurement lies again in the computation
in clustIndex. As announced previously, some cluster are empty through the as-
signment of the predict function. Through the assignment of the data points in
weakly engaged clusters, empty groups can be generated. However, in the compu-
tation of the function, these problems are not caught by an auxiliary function. In
these cases, the calculation are stopped for all the internal validation indices. Thus,
the problem is solved through an auxiliary function, which NA returns, and so on,
the computation of the internal validation indices are not stopped anymore.

5.2 R package - ”validator”

The functions, which are used in the benchmark study, are implemented in an R
package, called validator. The package validator is already uploaded on CRAN
and can be viewed on the website http://CRAN.R-project.org/package=validator.
The package follows on the description of Leisch (2008). There are two function
calls in the package, which includes the functions of the external and internal vali-
dation indices. These function calls are listed in the appendix for further details of
implementation.

o1



5.2.1 Function Call extVal

Firstly, the external validation indices are based on the similarity table from the
package clv. Only four of the twenty used validation indices were implemented,
which is completed by the implementation of the function extVal. Even the weaker
validation indices were implemented in the new package. On this reason, the user
can decide between these indices to reproduce the gained results of this thesis. The
package validator is supplemented with the new external validation indices, which
are described in this thesis and based on Albatineh et al. (2006). Through the func-
tion call extVal, all of the external validation indices are selected. Furthermore,
each of these indices can be called by its own. The function call only needs vec-
tors with the true and the proposed cluster assignments, also the agreement of two
cluster partitions can be evaluated, such as done in this thesis. Then, the external
validation indices were computed on the base of the similarity table of clv.

In example on the base of the R package mlbench, an artificial two-dimensional and
gaussian distributed data set is generated in the following way:

> x <- mlbench.2dnormals (500, 3)
> str(x)

List of 2
$ x : num [1:500, 1:2] 1.984 -1.938 0.746 1.352 1.628 ...
$ classes: Factor w/ 3 levels "1","2","3": 1 213112122 ...
- attr(*, "class")= chr [1:2] "mlbench.2dnormals" "mlbench"

The generated data is structured as follows. The first part of the data set includes
the artificial data and the second part is the group assignment of the generated data
set. This is the correct cluster assignment of the generated data. Afterwards, the
k-means cluster algorithm is running on the data for a three cluster solution, either
the function kmeans or such as in this thesis with kcca from the package flexclust.
Then, the data points are assigned to a particular cluster given by the cluster centers
of the data.

> ¢l <- kcca(x$x, 3)
> pred <- predict(cl, x$x)

Thereafter, the external validation indices can be computed and these indices have

to be evaluated as described in section 2.3.1. The predicted cluster assignments are
compared to the true cluster assignment.
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> round(extVal(pred, x$class), 4)

Hamann Czekanowski  Kulczynski McConnaughey Peirce
0.6998 0.7749 0.7749 0.6512 0.6627
Wallacel Wallace2 Gamma Sokall Fager
0.7742 0.7757 0.7130 0.8312 0.7725
Sokal2 Sokal3 Gower Roger Kruskal
0.4626 0.6877 0.9189 0.7390 0.9289
Pearson Rand Jaccard Folkes Russel
0.0000 0.8499 0.6326 0.7749 0.2584

5.2.2 Function Call intVal

Secondly, the internal validation indices were implemented as well in the package.
Through the function call intVal, the validation indices of this benchmark study
can be reproduced. The internal validation indices, which bases on the description
of Weingessel et al. (2002), are taken from the package cclust with some small
changes, e.g. changing for-loops with the command apply. Furthermore, the sum-
of-squares within are recalculated to the passed data points of the test data set.
Then, better results of the internal validation indices can be reproduced by the new
function intVal. The problem of the empty or rather engaged cluster are not solved
by the function in the package. Not all of the implemented indices were taken to
the new package validator. Only the announced internal validation indices are
implemented in the package. Sixteen validation indices can be called by the func-
tion, such as the indices by its own. Weaker validation indices are observed as well
to reproduce the gained results of this thesis. On this reason, the user can decide
between the strengths and weaknesses of the internal validation indices by its own.

For improvements in understanding, the reproducing of the internal validation is
shown as follows. Here again, the previous generated data set can be used as well
for this example (for details see section 5.2.1). For these validation indices, the
assignment of the data points to a particular group is not required. However, the
function intVal is only implemented for kcca objects, e.g. the function does not
work for kmeans objects. In this example, the k-means cluster algorithm of a three-
cluster solution is performed by the function kmeans. Afterwards, the result is
converted to an object of the class kcca by the conversion function as.kcca, shown
as follows:

> ¢l <- kmeans(x$x, 3)
> ¢l <- as.kcca(cl, x$x)

Hence, after the converting the class assignment, the internal validation indices can

be computed. The validation indices only need the performed clusters and the data
set. Here, the test data set does not have to be the same as the training data set,
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on which the cluster algorithm is running through. Then, the values can be used to
determine the number of clusters in the test or training data set.

> round(intVal(cl, x$x), 4)

calinski db hartigan ratkowsky scott
480.5859 1.1033 0.6596 0.4686 1075.8589
marriot ball trcovw tracew friedman
1556832.5781 277.4970 186552.6716 832.4910 3.8824
rubin xuindex dunn connectivity  silhouette
8.5996 -5.2993 0.0064 64.4147 0.4347
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Chapter 6

Conclusions

This thesis discussed a benchmark experiment on comparing and ranking cluster
validation indices, either external indices or internal indices. The empirical study
showed the strengths and weaknesses in the validation indices on different data sets.
Notable was the weaknesses of three external validation indices, on which bad results
in the study were recognized. Even the logit model showed their weaknesses in the
probabilities for finding the correct number of clusters. All the other external vali-
dation indices were reacting similar to each cluster problem. The internal validation
indices were fluctuating in their results for finding the correct cluster solution. In-
deed, notable for the internal indices three of them resulted their proposed number
of clusters very well, even in higher dimensions.

The investigated model in this thesis is non-optimal for fitting the results. How-
ever, it reflects through the prefix of the coefficients their behaviour in changing
the dimensions with the corresponding standard deviations and even the sample
method. The probabilities of the success for finding the correct cluster solution was
not been bad as well. On this advantages the framework of the benchmark study
can be diversified. The cluster scenarios can be extend in changing the true number
of clusters within each dimension. Then, the empirical study can be run through
the proposed number of clusters in each true cluster solution. Thus, even the model
can be extend in finding the correct number of clusters with their incorrect detec-
tion for the proposed number from the validation indices. Indeed, such extensions
in simulation studies can be confronted with memory and runtime problems, when
changing the data sets into higher dimensions.

Furthermore, the relative criteria of the internal validation indices, which has been
ignored in this thesis, could be an extension for a benchmark study. The behaviour
of changing their parameters can be simulated and, maybe, it can be derive any
rules for such indices in the simulation study. This could be interesting for next
benchmark studies on cluster validation.
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Next, the electronic appendix has to be added to the R package validator. Then,
anyone can reproduce the results of this thesis by its own. That means, the package
has to be updated with the investigated data sets and the functions, which were
needed for evaluation the indices, has to be added. Furthermore, the package has
to be upgraded with improvement suggestions by each user of the package.
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Appendix A

List of Functions

A.1 Function extVal

> extVal

function (x, y, index = "all")
{
X <- as.integer(x)
y <- as.integer(y)
sim <- std.ext(x, y)
Hamann <- function(sim) {
ham <- ((sim$SS + sim$DD) - (sim$SD + sim$DS))/(sim$SS +
sim$SD + sim$DS + sim$DD)
return(ham)
+
Czekanowski <- function(sim) {
cze <- 2 * sim$SS/(2 * sim$SS + sim$SD + sim$DS)
return(cze)
+
Kulczynski <- function(sim) {
kul <- 0.5 * ((sim$SS/(sim$SS + sim$SD)) + (sim$SS/(sim$SS +
sim$DS)))
return(kul)
+
McConnaughey <- function(sim) {
mcconn <- ((sim$SS) "2 + sim$SD * sim$DS)/((sim$SS + sim$SD) *
(sim$SS + sim$DS))
return(mcconn)
+
Peirce <- function(sim) {
pei <- (sim$SS * sim$DD - sim$SD * sim$DS)/((sim$SS +
sim$DS) * (sim$SD + sim$DD))
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return(pei)
+
Wallacel <- function(sim) {
walll <- (sim$SS)/(sim$SS + sim$SD)
return(walll)
}
Wallace2 <- function(sim) {
wall2 <- (sim$SS)/(sim$SS + sim$DS)
return(wall2)
+
Gamma <- function(sim) {
gam <- (sim$SS * sim$DD + sim$SD * sim$DS)/sqrt((sim$sSS +
sim$SD) * (sim$SS + sim$DS) * (sim$DS + sim$DD) *
(sim$SD + sim$DD))
return(gam)
}
Sokall <- function(sim) {
sokl <- 0.25 * ((sim$SS/(sim$SS + sim$SD)) + (sim$SS/(sim$SS +
sim$DS)) + (sim$DD/(sim$DD + sim$SD)) + (sim$DD/(sim$DD +
sim$DS)))
return(soki1)
}
Fager <- function(sim) {
fag <- (sim$SS/sqrt((sim$SS + sim$SD) * (sim$SS + sim$DS))) -
(0.5/sqrt (sim$SS + sim$SD))
return(fag)
}
Sokal2 <- function(sim) {
sok2 <- (sim$SS/(sim$SS + 2 * (sim$SD + sim$DS)))
return(sok2)
+
Sokal3 <- function(sim) {
sok3 <- ((sim$SS * sim$DD)/sqrt((sim$SS + sim$SD) * (sim$SS +
sim$DS) * (sim$DS + sim$DD) * (sim$SD + sim$DD)))
return(sok3)
+
Gower <- function(sim) {
gow <- ((sim$SS + sim$DD)/(sim$SS + 0.5 * (sim$SD + sim$DS) +
sim$DD))
return(gow)
+
Roger <- function(sim) {
rog <- ((sim$SS + sim$DD)/(sim$SS + 2 * (sim$SD + sim$DS) +
sim$DD))
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by

return(rog)

Kruskal <- function(sim) {

by

goo <- ((sim$SS * sim$DD - sim$SD * sim$DS)/(sim$SS *
sim$DD + sim$SD * sim$DS))
return(goo)

Pearson <- function(sim) {

phi <- (sim$SS * sim$DD + sim$SD * sim$DS)/((sim$SS +
sim$SD) * (sim$SS + sim$DS) * (sim$DS + sim$DD) =*
(sim$SD + sim$DD))

return(phi)

}

index <- pmatch(index, c("Hamann", "Czekanowski", "Kulczynski",
"McConnaughey", "Peirce", "Wallacel", "Wallace2", "Gamma",
"Sokall", "Fager", "Sokal2", "Sokal3", "Gower", "Roger",
"Kruskal", "Pearson", "Rand", "Jaccard", "Folkes", "Russel",
"all"))

if (is.na(index))
stop("invalid clustering index")

if (index == -1)

stop("ambiguous index")

vecallindex <- numeric(20)

if

if

if

if

if

if

if

if

if

if

if

(any(index == 1) || (index == 21))
vecallindex[1] <- Hamann(sim)
(any(index == 2) || (index == 21))
vecallindex[2] <- Czekanowski(sim)
(any(index == 3) || (index == 21))
vecallindex[3] <- Kulczynski(sim)
(any(index == 4) || (index == 21))
vecallindex[4] <- McConnaughey(sim)
(any(index == 5) || (index == 21))
vecallindex[5] <- Peirce(sim)
(any(index == 6) || (index == 21))
vecallindex[6] <- Wallacel(sim)
(any(index == 7) || (index == 21))
vecallindex[7] <- Wallace2(sim)
(any(index == 8) || (index == 21))
vecallindex[8] <- Gamma(sim)
(any(index == 9) || (index == 21))
vecallindex[9] <- Sokall(sim)
(any(index == 10) || (index == 21))
vecallindex[10] <- Fager(sim)
(any(index == 11) || (index == 21))
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vecallindex[11] <- Sokal2(sim)
(any(index 12) || (index
vecallindex[12] <- Sokal3(sim)
(any(index == 13) || (index == 21))
vecallindex[13] <- Gower(sim)

if == 21))

if

if (any(index == 14) || (index == 21))
vecallindex[14] <- Roger(sim)
if (any(index == 15) || (index == 21))

vecallindex[15] <- Kruskal(sim)

if (any(index == 16) || (index == 21))
vecallindex[16] <- Pearson(sim)
if (any(index == 17) || (index == 21))
vecallindex[17] <- clv.Rand(sim)
if (any(index == 18) || (index == 21))
vecallindex[18] <- clv.Jaccard(sim)
if (any(index == 19) || (index == 21))
vecallindex[19] <- clv.Folkes.Mallows(sim)
if (any(index == 20) || (index == 21))
vecallindex[20] <- clv.Russel.Rao(sim)
names (vecallindex) <- c("Hamann", "Czekanowski", "Kulczynski",
"McConnaughey", "Peirce", "Wallacel", "Wallace2", "Gamma",

"Sokall", "Fager", "Sokal2", "Sokal3", "Gower", "Roger",

"Kruskal", "Pearson", "Rand",

"Jaccard", "Folkes", "Russel")

if (index < 21)
vecallindex <- vecallindex[index]
return(vecallindex)

A.2 Function intVal

> intVal

function (y, x, index = "all")
{
clres <- y
cluster <- predict(clres, x)
x <- as.matrix(x)
clsize <- table(cluster)
centers <- clres@centers
varwithinss <- function(x, centers, cluster) {
x <- (x - centers[cluster, ])°2
varwith <- aggregate(x, by = list(cluster), FUN = sum)
varwithins <- as.matrix(varwith([, -1])
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return(varwithins)

+

withinss <- function(varwithins) {
withins <- apply(varwithins, 1, sum)
return(withins)

}

gss <- function(x, clsize, withins) {
n <- sum(clsize)
k <- length(clsize)
allmean <- apply(x, 2, mean)
dmean <- sweep(x, 2, allmean, "-")
allmeandist <- sum(dmean~2)
wgss <- sum(withins)
bgss <- allmeandist - wgss
zgss <- list(wgss = wgss, bgss = bgss)
return(zgss)

}

vargss <- function(x, clsize, varwithins) {
nvar <- dim(x) [2]
varallmean <- apply(x, 2, mean)
vardmean <- (sweep(x, 2, varallmean, "-"))"2
varallmeandist <- apply(vardmean, 2, sum)
varwgss <- apply(varwithins, 2, sum)
vartss <- varallmeandist
varbgss <- vartss - varwgss
zvargss <- list(vartss = vartss, varbgss = varbgss)
return(zvargss)

+

ttww <- function(x, clsize, cluster) {
n <- sum(clsize)
k <- length(clsize)

w <=0

tt <- cov(x) * (n - 1)

for (1 in 1:k) w <- w + cov(x[cluster == 1, ]) * (clsize[l] -
1)

zttw <- list(tt = tt, w = w)

return(zttw)

+
calinski <- function(zgss, clsize) {
n <- sum(clsize)
k <- length(clsize)
vrc <- (zgss$bgss/(k - 1))/(zgss$wgss/(n - k))
return(vrc = vrc)
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cindex <- function(withins, minmaxd, clsize) {
dw <- sum(withins * clsize)
cindex <- (dw - minmaxd$mindw)/(minmaxd$maxdw - minmaxd$mindw)
return(cindex)

+

db <- function(withins, centers, cluster) {
mse <- withins/table(cluster)
r <- outer(mse, mse, "+")/as.matrix(dist(centers, diag = TRUE))
diag(r) <- 0
db <- mean(apply(r, 1, max))
return(db)

}

hartigan <- function(zgss) {
hart <- log(zgss$bgss/zgssPwgss)
return(hart)

}

ratkowsky <- function(zvargss, clsize) {
k <- length(clsize)
rat <- mean(sqrt(zvargss$varbgss/zvargss$vartss))
rat <- rat/sqrt(k)
return(rat)

}

scott <- function(zttw, clsize) {
n <- sum(clsize)
dettt <- prod(eigen(zttw$tt)$values)
detw <- prod(eigen(zttw$w)$values)
scott <- n * log(dettt/detw)
return(scott)

+

marriot <- function(zttw, clsize) {
k <- length(clsize)
detw <- prod(eigen(zttw$w)$values)
mar <- (k~2) * detw
return(mar)

+

ball <- function(withins, clsize) {
ball <- sum(withins)/length(clsize)

+

tracecovw <- function(zttw) {
trcovw <- sum(diag(cov(zttw$w)))
return(trcovw)

}

tracew <- function(zttw) {
tracew <- sum(diag(zttw$w))
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return(tracew)
+
friedman <- function(zttw) {
b <- zttw$tt - zttwlw
fried <- sum(diag(solve(zttw$w) %*% b))
return(fried)
t
rubin <- function(zttw) {
dettt <- prod(eigen(zttw$tt)$values)
detw <- prod(eigen(zttw$w)$values)
friedm <- dettt/detw
return(friedm)
}
xu <- function(x, clsize, zgss) {
n <- sum(clsize)
k <- length(clsize)
d <- dim(x) [2]
xuindex <- d * log(sqrt(zgss$wgss/(d * (n"2)))) + log(k)
return(xuindex)
+
varwithins <- varwithinss(x, centers, cluster)
withins <- withinss(varwithins)
zgss <- gss(x, clsize, withins)
zttw <- ttww(x, clsize, cluster)

index <- pmatch(index, c("calinski", "db", "hartigan", "ratkowsky",
"scott", "marriot", "ball", "trcovw", "tracew", "friedman",
"rubin", "xuindex", "dunn", "connectivity", "silhouette",
"all"))

if (is.na(index))
stop("invalid clustering index")

if (index == -1)
stop("ambiguous index")

vecallindex <- numeric(15)

if (any(index == 1) || (index == 16))
vecallindex[1] <- calinski(zgss, clsize)

if (any(index == 2) || (index == 16))
vecallindex[2] <- db(withins, centers, cluster)

if (any(index == 3) || (index == 16))
vecallindex[3] <- hartigan(zgss)

if (any(index == 4) || (index == 16)) {
zvargss <- vargss(x, clsize, varwithins)
vecallindex[4] <- ratkowsky(zvargss, clsize)

}

if (any(index == 5) || (index == 16))
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vecallindex[5] <- scott(zttw, clsize)

if (any(index == 6) || (index == 16))
vecallindex[6] <- marriot(zttw, clsize)

if (any(index == 7) || (index == 16))
vecallindex[7] <- ball(withins, clsize)

if (any(index == 8) || (index == 16))
vecallindex[8] <- tracecovw(zttw)

if (any(index == 9) || (index == 16))
vecallindex[9] <- tracew(zttw)

if (any(index == 10) || (index == 16))
vecallindex[10] <- friedman(zttw)

if (any(index == 11) || (index == 16))
vecallindex[11] <- rubin(zttw)

if (any(index == 12) || (index == 16))
vecallindex[12] <- xu(x, clsize, zgss)

if (any(index == 13) || (index == 16)) {
vecallindex[13] <- dunn(clusters = cluster, Data = x)

if (any(index == 14) || (index == 16)) {
vecallindex[14] <- connectivity(clusters = cluster, Data = x)

if (any(index == 15) || (index == 16)) {
dist <- dist(x)
vecallindex[15] <- summary(silhouette(cluster, dist))$si.summary[4]

+

names (vecallindex) <- c("calinski", "db", "hartigan", "ratkowsky",
"scott", "marriot", "ball", "trcovw", "tracew", "friedman",
"rubin", "xuindex", "dunn", "connectivity", "silhouette")

if (index < 16)
vecallindex <- vecallindex[index]
return(vecallindex)
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Amount of the values, which should indicate the 32 cluster solution
as the true number of clusters with the respect to their minimiza-
tion or maximization criteria. Shown are the results of the predicted
generated data with standard deviation 0.2. . . . . . . .. .. .. ..
Amount of the values, which should indicate the 32 cluster solution as
the true number of clusters with the respect to their first differences.
Shown are the results of the predicted generated data with standard
deviation 0.2. . . . . . . .
Amount of the values, which should indicate the 32 cluster solution
as the true number of clusters with the respect to second differences.
Shown are the results of the predicted generated data with standard
deviation 0.2 . . . . . . . ..
Sum of NA returning values over all results . . . . .. ... ... ...
Sum of NA returning values for the several standard deviation in the
two-dimensional cubed scenario . . . .. .. ..o

Structure of the data for analysing . . . . .. .. .. ... ... ...
Logit-Estimations . . . . . . . . . .. ... ...
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