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this paper, we address the question of how to quantify uncertainty in ordinal classification, where
class labels have a natural (linear) order. We reckon that commonly used uncertainty measures
such as Shannon entropy, confidence, or margin are not appropriate for the ordinal case. In our
search for better measures, we draw inspiration from the social sciences literature, which offers
various measures to assess so-called consensus or agreement in ordinal data. We argue that these
measures, or, more specifically, the dual measures of dispersion or polarization, do have properties
that qualify them as measures of uncertainty. Furthermore, inspired by binary decomposition
techniques for multi-class classification in machine learning, we propose a new method that
allows for turning any uncertainty measure into an ordinal uncertainty measure in a generic way.
We evaluate all measures in an empirical study on twenty-three ordinal benchmark datasets, as
well as in a real-world case study on automotive goodwill claim assessment. Our studies confirm
that dispersion measures and our binary decomposition method surpass conventional (nominal)
uncertainty measures.

1. Introduction

Supervised machine learning models are increasingly deployed for high-stakes automated decision making (ADM) in fields such
as medicine or finance, which comes with the demand for reliable quantification of predictive uncertainty to prevent financial or
reputational loss, or even loss of live. Information about the uncertainty related to the outcome y € Y in a context specified by a
query instance x, could, for instance, be used to perform selective classification, also called classification with abstention or reject
option [1,2], where highly uncertain queries are delegated to human experts. This in turn reduces the risk of wrong predictions and
increases the overall accuracy of the predictor [3].

So far, the primary focus of predictive uncertainty quantification in machine learning has been on standard (probabilistic) clas-
sification, where a predictor outputs a probability distribution (vector) p = (p;,...,px) on the set of class labels ¥ = {y,,...,yx},
where p, = p(y,) is the probability of y,. The arguably most popular uncertainty measure in this case is Shannon entropy [4]:
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Fig. 1. Two very different distributions sharing the same Shannon entropy H = 1.32. In contrast, variance detects the higher dispersion on the right (V' = 3.25)
compared to the left (V' = 1.62).

K
H(p) :=E[-logp(y)] == Y p(y)logp(yy).
k=1

Typically, the class labels y € Y are nominal categories, for example, different types of objects in image classification. However,
there are real-world applications where Y corresponds to an ordinal scale, i.e., a natural (linear) order relation y; <y, < --- < yg
can be defined on the class labels. Think of credit scoring with ) = {poor, fair, good, very good, excellent} or any other rating
application, such as disease severity in medicine or employee performance evaluation in human resources. Since entropy is invariant
against redistribution of probability mass, one may question the reasonableness of this measure in ordinal classification, where the
dispersion of probability mass is an indicator for uncertainty. For an illustration, consider Fig. 1, where two very different predictive
probability distributions are depicted that share the same entropy. Intuitively, the case on the right, with high probability for the two
extreme outcomes, appears to be the more uncertain one. In credit scoring, for instance, it may suggest that the creditworthiness is
either poor or excellent, but presumably nothing in-between. In this case, a wrong decision is likely to have more dramatic implications
than mixing up, say, a poor and fair rating, like in the case on the left.

Since ordinal classification somewhat lies in-between classification and regression, one may also think of using uncertainty mea-
sures for regression, notably the variance, which is defined for continuous as well as discrete random variables [5,6]:

K K
V(p) = ) )l — p? , with j=" p(y0) - k. ¢)
k=1 k=1
Variance measures how far a set of numbers is spread out from their average value. Unlike entropy, it is not invariant against
redistribution of probability mass (cf. Fig. 1). Note, however, that it assumes a numerical encoding of class labels. The common
practice is to encode ordinal labels y,, ...,y asintegers 1, ..., K [7], as we also did in (1), turning the ordinal scale Y into a cardinal
(interval) scale with equal distances between the class labels. However, this is a critical assumption that is highly disputable and hard
to justify theoretically. Practically, it may appear plausible in many cases, especially for Likert-type scales used in questionnaires and
surveys.

For Likert scales, other measures have also been proposed in the social sciences literature: So-called consensus measures for ordinal
data aim to determine the degree of consensus or agreement in survey data [8]. These measures are designed in a way to reach their
respective maximum when all probability mass is concentrated on a single category, and their respective minimum for a distinct
bimodal distribution, where the probability mass is equally allocated to the extreme ends of the ordinal scale. We believe that the
corresponding complementary measures of dispersion or polarization are promising candidates for uncertainty quantification in ordinal
classification. Similar to variance, they capture the degree of dispersion of a probability distribution or sample, while at the same time
respecting the ordinal nature of the underlying scale. We will elucidate on this class of measures and their properties in Section 4.

In Section 5, we present a new class of measures, which are inspired by binary decomposition techniques for tackling polychoto-
mous classification problems in machine learning [9]. Our approach allows for “lifting” any uncertainty measure applicable to a
Bernoulli distribution (i.e., the case of binary classification) to a distribution on an ordinal scale. This includes established (nominal)
uncertainty measures such as entropy and margin.

In general, our goal is to compare different measures for probabilistic ordinal classification according to their ability to capture
uncertainty in a proper way (see Fig. 2 for a graphical overview of our approach). To this end, each candidate measure is used to
quantify the uncertainty of predictions p(y | x) over a set of (test) instances x, and the suitability of the measure is then judged based
on the performance achieved with the uncertainties in a downstream task, e.g. selective classification. For example, the uncertainties
could be used to decide on a subset of the presumably most uncertain cases, on which the learner abstains, hoping to maximize
the accuracy on the remaining (presumably less difficult) cases. The probabilities p(y | x) themselves are obtained in a first step by
training probabilistic predictive models, e.g., using proper scoring rules such as cross-entropy as loss functions.’

Our contributions can be summarized as follows:

1 Proper scoring rules [10] are loss functions that are minimized (in expectation) by the true probabilities; broadly speaking, they incentivize the learner to predict
probabilities in an unbiased way.
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Fig. 2. Different uncertainty measures are evaluated for their ability to quantify uncertainty of predictions p(y|x) over a set of (test) instances x. The performance
of these measures is assessed in a downstream selective classification task, where the learner abstains from uncertain cases (@) to maximize accuracy (ACC) on the
remaining, less uncertain instances ().

Discussion of appropriate uncertainty measures for probabilistic ordinal classification: After having introduced uncertainty
representation through probability distributions over classes in Section 2, we revisit some uncertainty measures commonly used
in machine learning in Section 3. In Section 4, we elaborate on properties that a good uncertainty measure for probabilistic
ordinal classification should exhibit, and explain why common nominal measures such as confidence and entropy are not good
candidates.

Proposal of using ordinal consensus measures for uncertainty quantification: Also in Section 4, we introduce and advocate
the usage of so-called ordinal consensus measures for quantifying uncertainty in ordinal classification by making use of their
complementary dispersion measures. As previously stated, we consider these measures to be an ideal match for uncertainty
quantification in ordinal classification.

Ordinal binary decomposition method for uncertainty quantification: In Section 5, we show how any uncertainty measure,
e.g., entropy or margin, can be turned into an ordinal uncertainty measure through decomposing the multi-class output into an
ordered sequence of binary uncertainty quantification problems and aggregating the corresponding uncertainty degrees into an
overall uncertainty score.

Empirical evaluation of uncertainty measures on ordinal benchmark datasets: We validate our hypothesis that dispersion
measures as well as our ordinal binary decomposition method are better candidates for quantifying uncertainty in ordinal classifi-
cation than common nominal uncertainty measures through an extensive empirical evaluation on twenty-three ordinal benchmark
datasets. Concretely, we calculate prediction rejection ratios (PRRs) and visualize rejection curves for the most common ordinal
classification metrics accuracy (and its complementary misclassification rate), mean absolute error, and mean squared error.
Empirical evaluation of uncertainty measures on a real-world ADM use case: Additionally, we conduct a case study on
seven polarized automotive goodwill assessment datasets to further support our hypothesis through a real-world ADM use case.

2. Learning probabilistic predictors

We consider the setting of probabilistic supervised machine learning, in which a learner is given access to a set of training data

D={(x1,y)s....(x,,y)} CEXXY,

with x; € X C R™ a feature vector from an instance space X, and y; € J the corresponding class label or outcome from a set
of outcomes Y that can be associated with an instance. In particular, we focus on the ordinal classification scenario, where Y =
{»1.,..., ¥k} consist of a finite set of class labels equipped with a natural (linear) order relation:

VI <Yy < <yg.

Suppose a model or hypothesis space H to be given, where a hypothesis 2 € H is a predictive model in the form of a mapping
X — P(Y) from instances to probability distributions on outcomes. Assuming that training data as well as future (test) data is
independently distributed according to an underlying (unknown) joint probability P on X X Y, the goal in probabilistic supervised
learning is to induce a hypothesis A* € H with low risk (expected loss)

R(h) = IE(x,y)NP l(h(x)’ y) = / l(h(x)sy) dP(xuy)a
XY

where / : P(Y)x Y — R, is aloss (error) function.
Training probabilistic predictors is typically accomplished by minimizing the (perhaps regularized) empirical risk

Repp(h) 1= % 2 1h(x;). )
i=1
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as an estimate of the true generalization performance, using loss functions such as proper scoring rules [10]. These have the nice
theoretical property of incentivizing the learner to predict the correct conditional probabilities. Common examples of such loss
functions include the log-loss and the Brier score. The empirical risk minimizer

h :=argmin R,,,,(h)
heH
serves as an approximation of the true risk minimizing hypothesis 42*. Given a query instance x, € X as input, it produces a proba-
bilistic prediction

p=hx) =), ... oK) =15 -...pg) EPY) (2

as output, where p, is the predicted probability for the k™ class y,.
3. Uncertainty quantification for probabilistic predictors

Given a prediction (2), one might be interested in quantifying its uncertainty. In the literature, various measures have been
proposed and are commonly used for that purpose. To simplify notation, we subsequently omit information about the query instance
x,, which is supposed to be fixed. Following (2), we denote by p the probability distribution (vector) predicted for x,, and by p(y,)
or simply p, the probability assigned to class label y,.

A very simple measure of predictive uncertainty, called confidence (CONF), is the gap between full certainty (a probability of 1)
and the highest predicted probability [11]:

u =1 — max =1- ,
conr(P) ey (Vi) Py

where (-) is a permutation of {1, ..., K} such that p(y > py) > ... 2 p(x)- Note that this measure implicitly assumes that, if the learner
has to make a deterministic decision and commit to a single class label, it will indeed pick the one with highest probability. While
this appears plausible, it might be rational to deviate from this decision in the case of cost-sensitive classification, where different
mistakes may cause different costs.

Confidence only looks at the highest probability p;, but largely ignores the remaining information provided by p. Another simple
approach, which at least incorporates the second largest probability, is to measure the margin (MARG) between the largest and second
largest probability [11]:

unare(P) = 1= (Pay = Py -

A larger difference between the two highest probabilities signifies lower uncertainty, whereas a smaller difference indicates higher
uncertainty.

More information about the entire shape of p is captured by the (Shannon) entropy (ENT), a classical measure of uncertainty
already discussed in the introduction. Broadly speaking, it quantifies the non-uniformity or “peakedness” [12] of a probability distri-
bution:

K
ugnt(p) = — Z p(yi)log p(yi),
k=1
with 0log 0 = 0 by definition. Entropy is maximized by the uniform distribution p, = 1/K and minimized by a Dirac delta-distribution
that concentrates the entire probability mass on a single class — in this case, entropy is zero and indicates full certainty. Entropy is the
de-facto standard for nominal classification in machine learning, where the uniform probability distribution is commonly associated
with the least level of informedness or, equivalently, highest uncertainty.

As already outlined in the introduction, variance (VAR) is not maximized by a uniform distribution but measures the dispersion

of a distribution in relation to its mean value u:

K K
uyar(P)= D, P - e — W with =Y py) - ¥ ®
k=1 k=1
It is applicable to numeric data and a popular choice for quantifying uncertainty in regression [5,6]. Nevertheless, as already discussed,
it is also applicable in ordinal classification, using an integer encoding of the labels from 1 to K.

4. Measuring consensus, polarization and agreement in ordinal data

The measures outlined in the previous section are well-established uncertainty measures in the field of machine learning. Other
interesting measures have been proposed in the social sciences, albeit for a different purpose, namely, to assess agreement, consensus,
concentration, dispersion, and polarization in ordinal data or ordered rating scales [8]. These measures are important tools for quanti-
fying concentration or dispersion in Likert-scale surveys, ranging, for example, from “very strongly agree” to “very strongly disagree”.
First, we will examine some key properties of these ordinal measures, highlighting how they differ from the previously introduced
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nominal measures, before presenting several examples of ordinal measures and how they can be used to measure uncertainty in
ordinal classification.

4.1. Properties of ordinal measures

Despite their popularity in the social sciences, these ordinal measures have received limited attention in the machine learning
community so far [13], although they posses several advantages over entropy and variance. For instance, in contrast to the latter,
they vary between the meaningful bounds of 0 (maximum dispersion) and 1 (maximum concentration), which makes them easier to
interpret [8]. Furthermore, they are designed to be less susceptible to outliers than standard deviation or variance, which are not
only influenced by the dispersion of the distribution but also by its skewness [8,14]. This is particularly problematic when assessing
dispersion for a distribution where the mean is located near one end of the scale. Because of their large difference from the mean,
the few cases at the other end of the scale then strongly contribute to standard deviation or variance [15]. In general, these ordinal
measures all fulfill the following properties as outlined by Aeppli and Ruedin [8]:

Al: Non-negativity: The measures are non-negative, meaning they assume values greater than or equal to 0. A value of 0 signifies
the highest level of dispersion (or polarization), which occurs if and only if the probability mass is evenly split between the two
extreme categories: p=(1/2,0,...,0,1/2).

A2: Boundedness: The measures are upper-bounded by 1, meaning they assume values less than or equal to 1. A value of 1 represents
the highest level of concentration (or consensus), occurring if and only if all probability mass is concentrated within a single
category: p=1(0,...,0,1,0,...,0).

A3: A uniform distribution p = (1/K,...,1/K) yields a value that is strictly greater than 0 and strictly less than 1 (not necessarily
0.5).

We reckon that these properties of non-negativity, minimum and maximum dispersion (A1, A2) are also meaningful for uncertainty
quantification in the context of ordinal classification. In particular, the highest degree of uncertainty should not be represented by a
uniform distribution, as in standard nominal classification, but rather by a distribution that evenly splits the probability mass between
the extreme categories.

Additional axioms can be required for uncertainty measures. The well-known Shannon entropy, for example, is characterized by
continuity, symmetry, and additivity (in addition to non-negativity and maximum uncertainty). Except for additivity, these properties
can also be considered for the ordinal case, albeit symmetry only makes sense in a very restricted form.

A4: Continuity: The uncertainty measure is a continuous function of the (predictive) probability distribution. Thus, small changes in
the (predictive) probability distribution should only result in small changes in the uncertainty measure. This is crucial for the
stability and robustness of the measure, ensuring that the uncertainty measure is not overly sensitive to minor perturbations in
the (predictive) probability distribution caused by noise or slight variations in the input data.

A5: Invariance against reversal of the scale: This property ensures that the uncertainty measure, even if affected by the ordering of
probabilities, is not affected by the direction of the ordinal scale. Formally, let p = (p;, p,. ..., px) be a probability distribution
on an ordinal scale O = {1,2,...,K}, and let 6, denote the permutation defined by o, (k) = K — k + 1. Then, we require that

Uorp(P) = Uorp(Ps_, ) »

where p, = P;_ (1) Po_(2) -+ +Po_(k)) = (Pk>Pk—1,---»P1)- Note that this is a weaker form of invariance compared to common
nominal measures like entropy, confidence, or margin, which are invariant to any permutation of the probabilities, i.e., u(p) =
u(p,) for any permutation o. Since the focus of this axiom is on the exclusivity of invariance with respect to the reversal of the
ordinal scale, any measure that is invariant to more than just the reversal of the ordinal scale violates this axiom.

4.2. Ordinal measures

Given that ordinal rating measures are specifically designed to capture the above characteristics, we believe that they are particu-
larly well suited for quantifying uncertainty in ordinal classification. In the following, we introduce several such measures for ordinal
data.

4.2.1. The measure by Leik
We begin with Leik’s measure of ordinal consensus [16], which computes the dispersion D as a measure of ordinal consensus for
a probability (relative frequency) distribution p with K categories using the cumulative distribution Fi.(p) = X, < ps:

25K 4 F, if F,(p)<0.5
D(p) = 2201 £ with @, =4 TP TE(P)<05
K-1 1 - F,(p) otherwise

In its original form, Leik’s measure is a measure of dispersion. It ranges from 0 to 1, with O indicating no dispersion or maximal
concentration, and 1 representing maximum dispersion or minimal concentration. When half of the probability mass is located at
each extreme end of the ordinal scale, the measure reaches its maximum value of 1, indicating maximum dispersion or minimal
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concentration or consensus. Conversely, when all the probability mass is concentrated on a single category, the measure takes the
value 0, indicating minimal dispersion or maximal concentration or consensus. As outlined by Blair and Lacy [17], Leik’s measure
can also be transformed into a measure of concentration or consensus, in line with the above-listed properties:

K-1
S |Fp) - 05|
Cl(p>=1—D(p)=Z"—I(K_"l)/2 : @

Formally, the following proposition can be shown.
Proposition 4.1. The measure C; satisfies axioms A1, A2, A3, A4, and A5.

All proofs of the results presented in this paper can be found in Appendix A.

4.2.2. The measure by Blair and Lacy
Furthermore, Blair and Lacy also introduce a squared version of the measure [17]:

SR (F(p) - 0.5)?
(K-1)/4 ’

which uses Euclidean distance instead of L-distance to measure the distance between the cumulative probability F; and 0.5. Hence,
the following proposition also holds.

G(p)= (5)

Proposition 4.2. The measure C, satisfies axioms A1, A2, A3, A4, and A5.

Both Blair and Lacy’s and Leik’s measure can be considered as members of a family of measures that follow a similar construction
principle and operate on cumulative probabilities F:

. D
Concentration = )
Dmax
where D represents the measure of dispersion or concentration and D,,,, serves as a normalization factor. The purpose of D,,, is
to scale the measure to a range between 0 and 1, allowing for easier interpretation and comparison. The complementary measure of
dispersion is then given by

D

Measure of dispersion =1 —
max

4.2.3. The measure by Tastle and Wierman
A different approach is taken by Tastle and Wierman, who expand on the Shannon entropy to define a measure of consensus as
follows [18]:

K
|k — ul
C =1 1 1-—, 6
ns(p) +k§=10k ng< K—1 (6)

where y =), p; - k is the expected value and (like in the case of Shannon entropy) 0 - log,(0) = 0 by definition. Unlike the previous
measures it does not operate on cumulative probabilities but relies, like standard deviation or variance, on the distance to the mean
4 to measure the dispersion of the distribution. Tastle and Wierman also consider the measure Dnt(p) = 1 — Cns(p), which they call
dissention. Nonetheless, the following proposition is also valid.

Proposition 4.3. The measure Cns satisfies axioms A1, A2, A3, A4, and A5.

4.2.4. The measure by Van der Eijk
Another popular measure of agreement (or consensus) in ordered rating scales is the measure by Van der Eijk, which is introduced
and thoroughly explained in a procedural form in [14]. In terms of a single formula, it can be written as follows:

K ISl -1
A(p)=Z|Sk|'(p(k)_p(k_l)).<l_ﬁ> ’
o= 1 N e’
M S— ————
|4

. ( (K=2)-[TUSY| - (K-1) - [TDU(S,)| )
(K =2)-(ITU(S| +ITDU(SP)) |

U
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Table 1
This table illustrates the calculation of A(p) for the exemplary bimodal five-class probability
distribution p = (0.45,0.15,0.0,0.0,0.4), with A(p) = ¥ w, - V; -Up = Yh_ w, - A, = 0575

(cf. Fig. 3).
[kl Puy — P |TDU(S)| |ITU(S)| w 4 Y A
3|3 0.15 4 2 045 05 -0.55 | 027
4| 2 0.25 3 0 05 075 -13 -1.0
5 |1 0.05 0 0 0.05 1.0 1.0 1.0

0454
041

Probability

=}

—

ot
L

3
Class

Fig. 3. Illustration of how Van der Eijk’s measure of agreement reduces a probability distribution p = (0.45,0.15,0.0,0.0,0.4) horizontally into different layers based
on the difference between the k-th and (k — 1)-th smallest probabilities (p) — p—1))- The overall level of agreement is then an aggregation of the layer-wise levels of
agreement weighted by the amount of probability mass of the particular layer.

where (-) is a permutation? such that Py < .- S Pp(k)- Moreover, S; = {k|p; > p;)} is the set of ranks k whose probability p, exceeds
the j'-largest probability Py

TDU(S)={(i.j.k)|1<i<j<k<K,ikeS, j¢gS}

counts the number of rank triples in S that violate unimodality (the “in-between” probability p; is lower than both p; and p,), and

TUS)={(i,j,k)|1<i<j<k<K,(i,jES, k&S)V(,kES,i¢g S}

counts the number of rank triples in . that are unimodal (where either p; is lower than p; and p; or p; is lower than p; and p;). Note
that, U = 1 by definition if |7 DU(S)| =0 and |TU(S)| =0, which is the case for uniform or Dirac distributions.

Fig. 3 illustrates how Van der Eijk’s approach reduces the assessment of a distribution to the assessment of subsets of ordinal
ranks, namely by decomposing the distribution “horizontally” into several layers. For each layer, a measure of agreement is obtained
by counting the number of rank triplets that agree and disagree with unimodality, respectively. The layer-wise agreement values
are then aggregated into an overall agreement score, weighted by the overall probability mass of each layer. Table 1 displays the
corresponding layer-wise calculations for the probability distribution p = (0.45,0.15,0.0,0.0,0.4).

Van der Eijk’s agreement measure ranges between —1 (maximal dispersion) to +1 (maximal concentration) and also assigns a
meaningful value of 0 to the uniform distribution. To make the measure of agreement A fulfill the above properties (cf. Section 4.1),
it can be scaled to the interval [0, 1] as follows:

A(p)
4P 8
2 (€))]
with a uniform distribution then resulting in a value of 0.5.
Formally, we can also show that the measure satisfies the axioms presented in Section 4.1.

Cypp=1+

Proposition 4.4. The measure C 4 satisfies axioms Al, A2, A3, A4, and A5.

4.3. The measure by Pavlopoulos and Likas

In contrast to the previous measures, Koudenburg et al. [15] propose a data-driven approach to measuring opinion polarization (as
the opposite of consensus). They introduce an opinion polarization index derived from survey data, which offers valuable insights into
the characteristics of polarized opinion distributions. They develop their index in an empirical way, namely by training a regression
model on exemplary distributions that were previously rated by 58 international experts in terms of the degree of polarization. By

2 We set py, =0 by definition.
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(a) C1 = 0.0, (b) C1 = 0.6, (c) C1 = 1.0, (d) Cy = 0.44,
C3 = 0.0, Cns = 0.0, Cy = 0.8, Cns = 0.57, Cy = 1.0, Cns =1.0, Cs = 0.65, Cns
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(e) C1 = 0.54, (f) C1 = 0.86, (g) C1 =0.32, (h) Cy = 0.32,
C3 = 0.66, Cns Cy =0.97, Cns C2 = 0.49, Cns C2 = 0.49, Cns
=0.49, C4 = 0.42, =0.84, C4 =0.79, =0.32, C4a = 0.24, =0.32, C4 =0.24,
DFU =0.28 DFU = 0.31 DFU = 0.0 DFU = 0.0

Fig. 4. Results of the different ordinal consensus based uncertainty measures u coyeenes ad DFU on different simulated five-class probability distributions.

leveraging this expertise, Koudenburg et al. are able to create a quantitative measure that captures the level of polarization within
a given dataset. It is important to note that the opinion polarization index derived by Koudenburg et al. has a limitation in that it
is designed specifically for datasets with five categories. Consequently, its applicability is limited to situations where the response
options are constrained to this particular number of categories.

Building upon the collected survey data and findings by Koudenburg et al. [15], Pavlopoulos and Likas [19] propose another
measure to assess opinion polarization, called the distance from unimodality (DFU) measure. This measure has demonstrated a
strong correlation with expert ratings in terms of polarized distributions. The DFU measure focuses on capturing the presence of
opinion clusters, which Koudenburg et al. identified as one of the primary sources of polarization alongside extremity and distance
[15]. In contrast to the regression model developed by Koudenburg et al. [15], DFU is generally applicable and not limited to five
categories:

DFU(p) = max{d,,...,dx} with 9

P =P i 1<k<m
d, =40 if k=m >
P —Pr—y if m<k<K

where m is the mode® of the distribution p = (p;, ..., px). In case of a unimodal distribution, DFU will be 0 and indicate no polarization
at all (cf. Fig. 4). In contrast, if DFU is greater than 0, it indicates a multimodal distribution containing opinion clusters and hence
some sort of polarization. The DFU measure is also particularly interesting for the case of ordinal classification, as unimodality of
the predicted output probabilities is often mentioned as a requirement for proper probabilistic ordinal classification [20,21]. Hence,
violation of this property may be an indicator of increased uncertainty. However, DFU does not satisfy all axioms defined in Section 4.1
and is not able to quantify the “peakedness” of unimodal distributions, which questions its usefulness for uncertainty quantification
in ordinal classification.

Proposition 4.5. Under the assumption of a single mode m, the measure DFU satisfies axioms A4 and A5, but violates axioms A1, A2, and
A3.

3 In the case where p has several modes, m is taken as the smallest (left-most) one.
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4.4. Ordinal uncertainty quantification using consensus measures

The measures (8), (4) and (5) introduced, respectively, by Van der Eijk [14], Leik [16], and Blair and Lacy [17] do not assume
equal distances between categories. This is in contrast to the consensus measure (6) introduced by Tastle and Wierman [18], which
treats ordinal scales as if they were interval scales [15]. Treating ordinal scales as interval scales is a common practice when analyzing
Likert scale survey data, which is the primary application of the presented measures. In this context, the assumption of equal distances
between categories allows for a simplified quantitative interpretation and analysis of the data including calculation of standard
deviation or variance. The assumption of equal distances is also quite common in ordinal classification, which makes all quantitative
measures also applicable to the ordinal classification setting [7].

In summary, the consensus measures C € {C;,C,,Cns,C,} proposed by Leik [16], Blair and Lacy [17], Tastle and Wierman
[18], and Van der Eijk [14] give rise to a generic consensus-based uncertainty quantification framework for probabilistic ordinal
classification, suggesting a consensus-based uncertainty measure ugyg that is obtained by turning consensus into a complementary
measure of dispersion:

UCONs(xq) =1-C(p(y| xq)) .

The DFU measure (9), which represents a distinct approach, can be directly applied to quantify uncertainty in probabilistic ordinal
classification.

Fig. 4 compares the different consensus measures, plugged into the generic uncertainty measure uqyg, Over eight simulated
probability distributions, including the two distributions leading to the upper and lower bound values of 0 and 1 as well as the
uniform distribution. DFU is also shown though it conceptionally differs significantly from the other measures.

4.5. Variance
Unlike the other uncertainty measures presented in Section 3, variance (3) satisfies the axioms defined in Section 4.1.
Proposition 4.6. The measure VAR satisfies axioms A1, A2, A3, A4, and A5.

Unlike variance, entropy, confidence, and margin violate axioms Al and A3, as they are maximized or minimized by a uniform
distribution and are not constrained by the extreme bimodal distribution. Furthermore, they are not exclusively invariant under the
reversal of the ordinal scale but are invariant to any rank permutations, which violates axiom AS5. Overall, these violations make
them theoretically less suitable for uncertainty quantification in ordinal classification, similar to DFU (9).

5. Binary decomposition for uncertainty quantification in ordinal classification

In machine learning, binary reduction techniques are used to tackle multinomial classification tasks with binary classifiers. Such
techniques reduce a single multinomial problem to a set of binary classification problems. At prediction time, a query instance is
submitted to each of the binary models, and the predictions produced by the models are combined into a prediction for the original
multinomial problem. The most straightforward and arguably simplest reduction scheme is the one-vs-rest decomposition, where one
binary classifier is trained per class, with the task to separate that class from all other classes [22].

In the case of ordinal classification, the most natural reduction to the binary case is achieved through binary splits of the ordinal
scale, separating a lower part {y;,...,y,,} of the scale from an upper part {y,.,1,..., g} [23,24]. Indeed, if the ordinal structure on
the class labels is reflected in the corresponding class-conditional distributions, these binary problems are presumably easier to solve
than those produced by other splits [25].

The principle of binary reduction can also be applied to uncertainty quantification [26]. In the ordinal case, it suggests a measure
of the form

K-1 k K

uopp(P) = Z uBIN(ZPi’ Z Pj>’ 10)
k=1 i=l  j=k+1

where uypy is any uncertainty measure applicable to the binary case, i.e., an appropriate measure of uncertainty for Bernoulli distri-

butions (see Fig. 5 for an illustration). We call uppy the generator of u ogp. Examples of generators include established measures such

as entropy and margin, which are invariant to probability mass re-distribution in their original (multinomial) form.

The measure (10) is plausible in the following sense: The more bi- or multimodal the distribution p, and the greater the distance
between the modes, the more “uncertain split” can be produced, and the higher the sum on the right-hand side becomes. In this
regard, the measure is very much in line with the dispersion measures discussed in the previous section, in particular with the
principle proposed by Van der Eijk (8) [14]. Formally, the following lemma can be shown very easily.

Lemma 5.1. Let ugyy be any generator that is maximized by a uniform probability distribution pgy = (1/2,1/2). Then, the measure (10)
is maximized by the bimodal distribution p=(1/2,0,...,0,1/2). Likewise, let ugyy be any generator that is minimized by p gy = (0, 1) and
Py = (1,0). Then, the measure (10) is also minimal on the Dirac distributions.
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2 to 5. Classes 3 to 5. and 5. Class 5.

Fig. 5. Five class example of an ordinal binary decomposition.

Furthermore, the measure (10) is also invariant toward reversal of the ordinal scale, provided uppy is symmetric (which is a
property that most uncertainty measures satisfy when being applied to a Bernoulli distribution, including entropy, variance, margin,
and confidence).

Lemma 5.2. Under the assumption of symmetry for the generator u gy, consider a probability distribution p = (p;, p,, ..., px) and its reversal
Ps_ =Pk>Pk—1----p1) on an ordinal scale O={1,2,...,K}. Then, p and p,_ result in the same uncertainty: uogrp(p) = Uorp(Ps_)-

Overall, the following proposition can be deduced from the above lemmas.

Proposition 5.1. Under the assumptions of symmetry and continuity for the generator u gy, the measure u og;, satisfies axioms A1, A2, A3,
A4, and AS5.

Interestingly, several existing measures are recovered as a special case of the binary decomposition method, with a suitable choice
of the generator.

Proposition 5.2. A normalized version of the binary decomposition method with margin as generator reduces to the complementary dispersion
measure D, for the measure C in (4).

Proposition 5.3. A normalized version of the binary decomposition method with variance as generator reduces to the complementary disper-
sion measure D, for the measure C, in (5).

Although aggregating the binary uncertainty estimates using the sum (10) appears natural, other aggregation functions F :
RX — R are also conceivable and may even enable further connections to existing measures, as well as more nuanced uncertainty
quantification in the ordinal case. In principle, all functions lower-bounded by the minimum and upper-bounded by the maximum,
the so-called averaging operators [27], could be considered as candidates. The simplest extension of (10) is a weighted sum

K-1 k K
Uworp(P) = Z Wy * UBIN ZP,', Z IJBE (1)
k=1 =1 j=k+l
K-1
where Z w=1,w, >0,
k=1
with non-negative weights wy,...,wg_;. For instance, there is often an interest in ordinal classification to improve the reliability

in deciding the extreme cases, the first and last class on the ordinal scale, as deciding those wrongly may have the most severe
consequences [28]. This can be accomplished by making w; and wy_; higher than the other weights.

Another interesting class of (parametrized) aggregation functions is the ordered weighted average (OWA), which interpolates
between the minimum and maximum [29]:

K
F(ay,...,ax)= Y wy by, (12)
k=1

where b, is the k-th largest of the input values in a, and w a vector of non-negative weights summing to one. Note that the minimum
is obtained for wy = 1, the maximum for w, = 1, and the standard arithmetic mean for w; = ... =wg =1/K.

Although many different aggregations of the binary uncertainty estimates are conceivable and worth investigating in future work,
we will stick to the sum as the most generic one for the rest of this paper.

10
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Table 2
Twenty-three common ordinal benchmark datasets used for evaluating
the different uncertainty measures.

Dataset # instances # features # classes
Grub Damage 155 8 4
Obesity 2,111 16 7
CMC 1,473 9 3
New Thyroid 215 5 3
Balance Scale 625 4 3
Automobile 205 25 7
Eucalyptus 736 19 5
TAE 151 5 3
Heart (CLE) 303 13 5
SWD 1,000 10 4
ERA 1,000 4 9
ESL 488 4 9
LEV 1,000 4 5
Red Wine 1,599 11 6
White Wine 4,898 11 7
Triazines 186 60 5
Machine CPU 209 6 10
Auto MPG 392 7 10
Boston Housing 506 13 5
Pyrimidines 74 27 10
Abalone 4,177 8 10
Wisconsin Breast Cancer 194 32 5
Stocks Domain 950 9 5

6. Experiments with ordinal benchmark datasets

In this section, we evaluate the previously introduced uncertainty measures on common tabular ordinal benchmark datasets.*
The focus is on how well these measures are capable of quantifying uncertainty in the ordinal case and improving the reliability of
decision making.

6.1. Choice of base learner and datasets

For our evaluation, we rely on gradient boosted tree (GBT) models as base learners instead of neural networks, as tree-based
models represent the state of the art for tabular data, and this type of data is common in high-risk ADM environments like finance or
medicine [30,31] (refer to Appendix B for additional experiments using a multi-layer perceptron (MLP)). Concretely, we utilize the
LightGBM instantiation of GBTs [32] with the cross-entropy (CE) loss for multi-class classification:

K
lep(-p) ==Y v log(py), 13
k=1
where y is a one-hot (0/1) encoded vector with y, being 1 for the true class y and O for the rest of the classes, and p the predictive
probability distribution. This approach enables us to obtain conditional probability distributions p(y | x), which serve as the foundation
for evaluating various uncertainty measures. Moreover, CE is also a proper scoring rule, which encourages the model to output
probability distributions that reflect the true underlying probabilities of the data [10].

As will be detailed further below, common ordinal classification metrics or losses, such as accuracy, mean absolute error, or
quadratic weighted kappa (QWK) [33] will be used for evaluating predictive performance in the end. One may wonder, therefore,
why cross-entropy (13) should be used for training, instead of targeting any of these losses directly or using other popular ordinal
losses like squared earth mover’s distance (EMD?), which take the ordinal structure into account during training [34]. The reason is
that such losses, while tailored to producing good ordinal predictions, do not incentivize an unbiased prediction of true probabilities
(they are not proper scoring rules). Instead, as discussed by de la Torre et al. for the QWK loss [33] and Liu et al. [35], they
tend to bias the predictive probabilities toward unimodality. Furthermore, in ordinal classification, a common theme is to explicitly
constrain predictive output probabilities to unimodality [20,21]. However, the enforcement of unimodal output probabilities can be
too restrictive, a notion recently recognized with the introduction of quasi-unimodal distributions. These distributions only enforce
unimodality in the vicinity of the true class, offering a more nuanced approach [36]. By sidestepping these constraints, our aim is
to uncover the natural structure of ordinal predictive probability distributions through the use of an unbiased proper scoring rule,
without the imposition of strong, potentially unrealistic assumptions (refer to Appendix C for additional experiments illustrating the
superiority of the CE loss as a proper scoring rule over ordinal predictors when it comes to uncertainty quantification).

Table 2 presents the attributes of the twenty-three ordinal benchmark datasets utilized for our evaluation, which are widely
recognized within the realm of ordinal classification research [37,38]. These datasets are characterized by variability in size, number

4 The source code is available at https://github.com/stefanahaas41/uncertainty-quantification-probabilistic-ordinal-classification.

11
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Fig. 6. Example Prediction Rejection Curves [51].

of features, and class distributions, offering a robust foundation for a thorough assessment of various uncertainty quantification
measures.

In terms of preprocessing the datasets for the experimental evaluation, all categorical features were one-hot (0/1) encoded and
the ordinal labels y,, ..., y, were integer encoded from 1, ..., K.

6.2. Experimental setup

To compare the different uncertainty measures on the different datasets we compute prediction rejection ratios (PRRs) [39] for
different classifier performance evaluation metrics using 10-fold cross validation. The PRR is calculated on the basis of rejection
curves [40,41], where first the predictive uncertainties of the test dataset are determined based on an uncertainty measure and then
queries are successively rejected with descending predictive uncertainty. If the uncertainty quantification works properly this should
result in a monotone increasing or, depending on the selected performance metric, decreasing rejection curve. When calculating
PRRs, the assumption is that rejected queries are delegated to an oracle that will answer queries correctly. Concretely, the PRR of an
uncertainty measure is calculated by measuring the area between the uncertainty measure’s rejection curve and a random rejection

curve which in expectation is a straight line—AR,,corsginry (cf. Fig. 6). This value is then normalized by the area between the perfect

oracle (ORC) rejection curve and the random rejection line—AR,, ., (cf. Fig. 6b):
PRR= ARuncerminty _ AUuncerminty - AUrandom
ARaracle AUoracle - AUrandum

Consequently, a PRR of 1 indicates perfect rejection whereas a value of 0 indicates random rejection. The area between the rejection
curves AR can be calculated by making use of the area under the curve (AUC) metric with AU = 1— AU C, which essentially calculates
the area above the rejection curve [6,42]. The PRR can also become negative, which indicates worse than random uncertainty
quantification.

To calculate a PRR, one also needs to select a performance evaluation metric for the classifier. In the realm of ordinal classification,
accuracy (ACC), mean absolute error (MAE), and QWK appear to be the most popular performance metrics [7,43-46]. While the QWK
requires a complete confusion matrix, which can be problematic for small datasets and at the tail of the rejection curve, the mean
squared error (MSE) serves as a suitable alternative. MSE not only emphasizes larger errors but is also a well-established metric
for evaluating performance in ordinal classification contexts [43,47-50]. To make all rejection curves go in the same direction, we
measure the misclassification rate (MCR) (also known as mean zero-one error (MZE)) instead of ACC, as is commonly done [6,39,42]:

1% .
MCR= - 3 1(y; #3))
i=1

Similar to the approach outlined by Kotsiantis and Pintelas [52], we determine the final prediction j of the probabilistic predictor
according to Bayesian decision theory, i.e., we take a decision that minimizes the expected loss (Bayes risk). The optimal policy
that minimizes the risk is also called the Bayes estimator. Given our performance measures MCR, MAE and MSE we have three
corresponding losses (/(,/;,/,) that need to be minimized given the posterior predictive probabilities over the ordinal classes in order
to take the decision with the least associated risk:

y=argmin R(p| x) =argmin E,,,| ,[/(5, y)] =argmin Y 1(5,y) - p(y|x).
jey jey ey ey
Furthermore, we also include the Bayesian risk associated with a certain prediction y based on /| and /, losses as baseline uncer-
tainty measures in our set of evaluated uncertainty measures [52]:
R, (P1%) = ;3. 01= D 15 =¥l p(y| %),

yey

12
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Fig. 7. Overview of the experimental approach: Final predictions j are derived using various Bayes estimators, while the predictive uncertainty u is quantified using
different uncertainty measures. All these measures utilize the unbiased and realistic predictive probability distribution p = p(y | x) obtained using cross-entropy loss as
a proper scoring rule. Eventually, the PRR values are calculated based on the quantified uncertainty and the obtained performance metrics predefined by the respective
losses.

R, (31 %) = LG 0] = D (5= »)* p(y|x).
yey
The risk associated with the /,; loss is already covered by the u cqyr uncertainty measure which calculates the probability of making
an incorrect decision:

R101 @lx)= [Ep(ylx)[l()l(j}vy)] =1—argmax p(y|x).
yey
Fig. 7 graphically illustrates the experimental approach employed to calculate the PRR values for various Bayes estimators, perfor-
mance metrics, and uncertainty measures. These calculations are based on unbiased and realistic predictive probability distributions
obtained through cross-entropy loss as a proper scoring rule.

6.3. Results and analysis

Table 3 displays the overall PRR results of a 10-fold cross validation on the selected ordinal benchmark datasets. In total, we
evaluate fourteen uncertainty measures: CONF, MARG, ENT, VAR, CONS ¢, [18], CONS, [16], CONS¢, [17], ORD gyr, ORD ypgg,
ORDyg, R;,, R;,, CONS ¢, [14] and DFU [19]. The first three measures do not take into account the dispersion of the output prob-
ability distribution and are common nominal classification uncertainty measures, whereas the rest of the measures can be considered
dispersion measures, with DFU as a special case focusing on the detection of non-unimodal distributions, respectively opinion clusters.
As one can see, there is no overall clear winner at first sight, and the performance of a measure appears to depend on the data.

However, overall when considering MCR, MAE and MSE, dispersion measures have an edge over CONF, MARG and ENT, when
looking at the critical difference (CD) diagram in Fig. 8a. The groups of best performing uncertainty measures solely consists of
measures that take the dispersion of the probability distribution into account, and there is a statistically significant difference between
dispersion measures compared to nominal classification measures. Interestingly, when looking only at MCR or the exact hit rate, there
is no statistically significant difference between all measures (excluding DFU) (cf. Fig. 8b). One may have expected that nominal
classification measures have an advantage here.

When considering the distance of the errors by looking at MAE and MSE, the best performing group consists of VAR and the Bayes
risk for the /, loss (R,2 ), followed by the rest of the dispersion measures (cf. Fig. 8f). As expected, nominal classification measures
fail in taking the error distance into account and are not competitive when it comes to distance-based errors. Though VAR and R,
perform best when it comes to taking the error distance into account, they do not perform so well when it comes to the exact hit-
rate based on MCR. This behavior is also visible for CONS .., which, just like VAR, also measures the dispersion of the distribution
with regard to the mean. Other measures like CONS ., or ORDgyy seem to strike a better balance between categorical classification
accuracy (hit rate) and minimum distance-based error. As already proven in Section 5, CONS, and ORDy,g as well as CONS
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Table 3
PRRs for the different uncertainty measures and ordinal benchmark datasets using 10-fold cross-validation with LightGBM as base learner.
Dataset Metric | CONF MARG ENT VAR CONS,, CONS., CONS,, CONS, DFU ORD gy; ORD 156 ORDyy R, R,
MCR | 0.1368+0.3073 0.1235+0.2003 0.1788+0.2762 | 0.1889=0.2491  0.178+0.26 0.1863+0.2821 0.1666+0.2632  0.1933x0.2847 0.0669+0.1725 0.1824+0.271  0.1863+0.2821 0.1666+0.2632  0.1863=0.2821 0.2052=0.2561
Triazines MAE | 0.1582+0.3453 0.1411+0.3361  0.238+0.3072 | 0.3176=0.2388  0.2896=0.2725 0.2559+0.3217 0.2531+0.2891 0.2582+0.3164 0.0427+0.3001  0.276+0.2074  0.2559+0.3217 0.2531:+0.2891  0.2550+0.3217 0.3307+0.2532
MSE | 0.1146+0.3485 0.1287+0.3558  0.206+0.3239 | 0.34540.2633  0.3133+0.2826  0.2325+0.3468  0.2483+0.3128  0.229+0.3475 _ -0.0017+0.4853 0.2845+0.327  0.2325+0.3468 0.2483+0.3128  0.2325+0.3468 _ 0.3632+0.2467
MCR | 0.7118+0.1656 0.6856+0.1807  0.7361+0.1422 | 0.7976=0.1446  0.7692+0.1482 0.7626+0.1573  0.775=0.156 0.7814+0.1505 0542103997  0.7846=0.1356  0.7626+0.1573 0.775=0.156 0.7626+0.1573  0.7998+0.1371
Machine CPU | MAE | 0.6349+0.1503 0.5975+0.1694  0.6685+0.1402 | 0.7762+0.1369  0.7184+0.1313 0.7298+0.1258  0.7420+0.1263  0.5784+0.4175  0.7516=0.1143 0.7298+0.1258  0.7105+0.1255  0.7746+0.1249
MSE | 0.5662+0.1707 0.518=0.1867  0.6018+0.1658 | 0.7541=0.1427  0.6661=0.1432  0.6561£0.1402  0.6817+0.1382  0.7021+0.1357 _ 0.5902+0.4384  0.7184=0.1289  0.6561+0.1402 0.6817+0.1382  0.6561+0.1402 0.7478+0.1287
MCR | 0.345+0.1364  0.3317+0.14 0.3658+0.123 | 0.4126-0.0988 0.386+0.1138  0.3829+0.1137 0.3931+0.1053  0.3909+0.1048  0.1828+0.1159  0.4037=0.0973  0.3829+0.1137 0.39310.1053  0.3829+0.1137 0.4020+0.1083
Auto MPG MAE | 0.3485+0.116  0.3307+0.1206  0.3617+0.1116 | 0.4582x0.1076 0.4402=0.1063 0.4264+0.0963 0.4389+0.107  0.4353+0.0951  0.2575+0.2245 0.4469=0.0982  0.4264+0.0963 0.4389+0.107  0.4264+0.0963 0.4544+0.1128
MSE | 0.3474+0.2539  0.3301+0.2549  0.3438+0.2316 | 0.49730.1856  0.4795x0.2055  0.4486+0.2024 0.4683+0.2057  0.4637+0.1961 0354803224  0.4799=0.1895  0.4486+0.2024 0.4683+0.2057  0.4486+0.2024 0.4889+0.1944
MCR | 0.1434£0.5549 0.1395:0.596  0.1839+0.5618 | -0.1734£0.3926 -0.0529=0.455  0.0512+0.4001 -0.0086+0.3905 -0.0123+0.4874 0.0558+0.3954  -0.0278=0.3872 0.0512+0.4001 -0.0086+0.3905 0.0512+0.4001 -0.1734+0.3926
Pyrimidines MAE | 010603315  0.0434+0.3076  0.3371+0.2252 | 0.2449:0.3379  0.2608=0.3647 ~0.3479+0.2953  0.3486+0.2026  0.3663+0.2219 0239603515 0.2957=0.3093  0.3479+0.2953 0.3486+0.2926  0.3479+0.2053 0.2358+0.3439
MSE | 0.1688+0.5395 -0.0235+0.4597 0.2001+0.6089 | 0.58720.3016  0.5745x0.2872  0.5694+0.2538  0.5965+0.2379  0.5212+0.3031 _ 0.3067+0.3976 _ 0.5785x0.2933  0.5694+0.2538 _0.5965+0.2379 _ 0.5694+0.2538 _0.59450.2933
MCR | 0.2629+0.0303 0.2422+0.0302  0.2783=0.0392 | 0.2874+0.035  0.2889+0.0259 0.2872+0.027  0.2854+0.0334  0.282+0.0208  0.0461+0.0823 0.2857=0.038  0.2872+0.027  0.2854:+0.0334  0.28720.027  0.2922:+0.0284
Abalone MAE | 0.2447£0.0466 0.2118+0.0479  0.2025+0.0474 | 0.3215:0.0458 0.3039=0.0454 0.295+0.0474  0.3065+0.0455 0.2091+0.0426 0.1025+0.0952 0.3159=0.0456  0.295+0.0474  0.3065+0.0455 0.205+0.0474  0.318+0.0473
MSE__| 0.2132:0.0949  0.1706+0.0931  0.2833+0.0882 | 0.3221+0.0835  0.2779=0.0978 _ 0.2642+0.0972 _ 0.2032+0.0867 _ 0.286+0.0852 _ 0.1217+0.1079 _ 0.3149=0.0826 _ 0.2642+0.0972 _0.2932:0.0867 _ 0.2642+0.0972 _0.3039%0.0945
MCR | 0.3612%0.2102 0.3652=0.2086  0.3640.2154 | 0.3705-0.2144 0362302119 0.363£0.2126 _ 0.3653=0.2124  0.367=0.2143 _ -0.0357£0.2781 0368802096 0.363£02126  0.3653%0.2124  0.363=0.2126 _ 0.3667£0.212
Boston MAE | 0.355+0.2066  0.3586+0.2058  0.359+0.2116 | 0.3769+0.2074 0.3616+0.207  0.3616=0.2062 0.3641+0.2058  0.3694=0.2064  -0.0224+0.2827 0.3713x0.2028  0.3616+0.2062 0.3641£0.2058  0.3616=0.2062 0.3718:+0.2041
Housing MSE | 0.3393+0.1991 0.3425+0.1993  0.3446+0.2026 | 0.378+0.1882  0.3529=0.1897 0.3515+0.1892 0.3542+0.1881  0.3647+0.1865 0.0081+0.3165  0.3668=0.186  0.3515+0.1892 0.3542+0.1881 _ 0.3515+0.1892 0.3714%0.1842
MCR | 0.682=0.0819  0.6839=0.0811 0.68120.0812 | 0.6777=0.0767 _ 0.6835=0.0806 0.6805=0.0817 0.6803=0.0817  0.6777=0.0783 _ 0.031+0.201 0.68080.0802  0.6805-0.0817 0.6803=0.0817  0.6805=0.0817 0.6777 %0.0767
Stocks MAE | 0.682+0.0819  0.6839+0.0811 0.6812+0.0812 | 0.6777+0.0767  0.6835=0.0806 0.6805+0.0817 0.6803+0.0817  0.6777+0.0783  0.0310.201 0.6808+0.0802  0.6805+0.0817 0.6803=0.0817  0.6805+0.0817 0.6777+0.0767
Domain MSE | 0.682+0.0819  0.6839+0.0811  0.6812=0.0812 | 0.6777+0.0767 _ 0.6835:0.0806  0.6805+0.0817  0.6803+0.0817  0.6777=0.0783 _ 0.031:0.201 0.6808=0.0802  0.6805+0.0817 _ 0.6803+0.0817  0.6805+0.0817 _ 0.6777+0.0767
— MCR | 0.2093%0.3534 0.139=0.3264 _ 0.27630.3239 | 0.1976=0.3016 _ 0.1699=0.3346  0.1838+0.3426  0.2121+0.3204  0.155/£0.3397  -0.0961£0.3344 0.2493=0.29 0.18380.3426 0.2121£0.3204 0183803426 0.2008=0.324
Wisconsin MAE | 0.1418+0.2491 0.0913+0.2475  0.2018+0.2611 | 0.2263+0.2923  0.2206=0.2845 0.2228+0.2627 0.2328+0.2609  0.1713+0.2517  0.1391£0.2426  0.2394=0.2555  0.2228+0.2627 0.2328+0.2609  0.2228+0.2627 0.251+0.2897
Breast Cancer | vigg | 0.1149+0.2686  0.0691+0.2501  0.16340.2834 | 0.1357+0.3245 _ 0.1429+0.3008 _ 0.1429+0.2893 _ 0.1528=0.2964 _ 0.1027+0.2623 _ 0.1731+0.2083 _ 0.14650.3104 _ 0.1420+0.2893 _ 0.1528+0.2964 _ 0.1429+0.2893 _0.1806=0.3045
MCR | 0.8883+0.0845 0.8866+0.0855 0.8874+0.0843 | 0.894+0.0775  0.888+0.0867  0.8893+0.0829 0.8896+0.0823 0.8872+0.0834 0.5076=0.3054 0.8892=0.0819  0.8893+0.0829 0.8896+0.0823  0.8893+0.0829 0.8933+0.0775
Obesity MAE | 0.8856+0.0819 0.8841+0.083  0.8848+0.0819 | 0.8913x0.0752 0.8855+0.0844  0.8867+0.0805 0.8871+0.08 0.8846+0.081 0504703041  0.8867=0.0796  0.8867+0.0805 0.8871+0.08 0.8867+0.0805  0.8906+0.0751
MSE__ | 0.8839:0.0808 0.8826+0.0819  0.8831+0.0809 | 0.8896=0.0744  0.8838=0.0834  0.8851+0.0795 0.8855+0.0791  0.8828+0.08 0.5054+0.3047  0.8852+0.0787  0.8851%0.0795 0.8855x0.0791 _ 0.8851+0.0795 0.8889:+0.0743
MCR | 0.3143£0.0738 0.3146+0.0775 0.306+0.0665 | 0.2399+0.0435  0.2282+0.0461  0.2851+0.0585 0.2772+0.0532  0.2678+0.0486  0.009:+0.069 0.2745+0.0520  0.28510.0585 0.2772+0.0532  0.2851+0.0585 0.2226+0.0441
cMe MAE | 0.2113£0.0546 0.2218+0.063  0.1973+0.0436 | 0.2889=0.0717  0.2926=0.0705 0.2754+0.0636 0.278=0.0658  0.2778+0.0695 0.0222+0.146  0.2774=0.0659  0.2754+0.0636 0.278=0.0658  0.2754+0.0636 0.2964+0.0666
MSE__| 0.03080.0515 0.0411+0.0578  0.0303+0.0416 | 0.1405+0.0795 _ 0.1576=0.0736 _ 0.0807+0.0541 _ 0.089=0.0602 _ 0.1018+0.0801 _ -0.0426%0.1895 _0.0907=0.0601 _ 0.0807+0.0541 _0.089=0.0602 _ 0.0807+0.0541 _0.1739+0.0704
MCR | 0.2406+0.230  0.2157+0.2222  0.2767+0.2586 | 0.286+0.2756  0.2384=0.317  0.2553+0.2915 0.3038+0.3327 0.2871+0.3163 0.072+0.1933  0.3176=0.3154 0.2553+0.2915 0.3038+0.3327  0.2553+0.2915 0.2359%0.274
Grub Damage | MAE | 0.0922+0.2525 0.0739+0.2451  0.1287+0.2708 | 0.2431+0.2065 0.2121+0.3041 0.1577=0.2975 0.2169+0.3508  0.2045+0.3586  0.1267+0.2378  0.2254+0.3252 0.1577+0.2975 0.2169=0.3508 0.1577+0.2975 0.2417+0.2513
MSE | 0.159+0.3607 _ 0.1237+0.3671 _ 0.1764+0.3528 | 0.2793+0.2708 _ 0.2606=0.2436 _ 0.1871+0.320  0.2361+0.3313 _ 0.2159+0.3824 _ 0.1544+0.2695  0.2375+0.3425 _ 0.1871+0.320  0.2361:0.3313 _ 0.1871+0.329  0.2986+0.2125
MCR | 0.9822+0.0288 0.9822+0.0288  0.9822+0.0288 | 1.0=0.0 1.0+0.0 0.9875+0.02  0.9875%0.02 1.0£0.0 0.5203+0.5054  0.9875+0.02 0.9875+0.02  0.9875+0.02 0.9875+0.02  1.0+0.0
New Thyroid | MAE | 0.9742+0.0462 0.9742+0.0462  0.9742:0.0462 | 0.9969+0.0076 0.9969+0.0076 ~0.9804=0.0326 0.9804+0.0326  0.9969+0.0076  0.5421+0.4852 0.9804+0.0326 0.9804+0.0326 0.9804=0.0326  0.9804+0.0326 0.9938+0.0153
MSE | 0.969+0.0582  0.969+0.0582  0.969+0.0582 | 0.9949+0.0125 0.9949=0.0125  0.97580.0425 0.9758+0.0425  0.9949+0.0125  0.5561+0.475  0.9758=0.0425  0.9758+0.0425 0.9758+0.0425  0.9758+0.0425 0.9898+0.0251
MCR | 0.86480.0996 0.8627+0.0937  0.8551+0.1164 | 0.8642+0.0703  0.8531=0.0686 0.8602+0.0818 0.8679+0.077  0.8817+0.0669 0.0997+0.2413  0.8729=0.0743  0.8602+0.0818 0.8679+0.077  0.8602+0.0818 0.8509+0.068
Balance Scale | MAE | 0.8072+0.0953 0.8051+0.0924 ~ 0.7949+0.1074 | 0.8327+0.0746  0.8217+0.0767 0.8141=0.076  0.8247+0.0745  0.8483+0.0756 0.132+0.2571  0.8309+0.0713  0.8141+0.076  0.8247=0.0745 0.8141+0.076  0.8206+0.0706
MSE_ | 0.8032+0.1032 0.8016+0.1039  0.8010.1033 | 0.8303+0.0607  0.8264=0.0678  0.8142+0.0754  0.8221+0.0667 _ 0.8392+0.055  0.0736+0.2428  0.8278=0.0593  0.8142+0.0754 _0.8221+0.0667 _ 0.8142+0.0754 _0.8336+0.0733
MCR | 0.6564+0.3921 0.6546+0.3793  0.671+0.3805 | 0.6911+0.3496  0.6885+0.3621 0.6832+0.3676 0.6885+0.3674  0.6965+0.3608  0.4635+0.17 0.6904+0.3522  0.6832+0.3676 0.6885+0.3674  0.6832+0.3676 0.7036+0.3567
Automobile MAE | 0.6215+0.3772 0.6182+0.3645 0.6284+0.3672 | 0.6653=0.3294  0.6581=0.3442  0.6468+0.3538 0.6498+0.3541  0.6634+0.3455 0.4099+0302  0.654+0.3408  0.6468+0.3538 0.6498+0.3541  0.6468+0.3538 0.6803+0.3373
MSE | 0.6003+0.3861 0.5927+0.3738  0.5974+0.3762 | 0.6436=0.3331 _ 0.6209=0.3495  0.6185+0.3629  0.6187+0.3637  0.6366+0.3519  0.3452£0.4262  0.6231=0.3512  0.6185+0.3629 0.6187+0.3637 _ 0.6185+0.3629 0.6582+0.3392
MCR | 044700761  0.4476+0.077  0.4428+0.0876 | 0.4439=0.0876  0.4571=0.0833 0.4556+0.0773 0.4503+0.0846  0.4466+0.08 0.0345+0.136  0.442+0.0872  0.4556=0.0773 0.4503=0.0846  0.4556+0.0773 0.4523+0.0818
Eucalyptus MAE | 0428200517  0.4267+0.0577  0.4298+0.0573 | 0.4369=0.0488  0.4446=0.0545 0.4412%0.0495 0.4393+0.053  0.4365+0.0507 0.0231=0.1391  0.4341=0.0497 0.4412%0.0495 0.4393+0.053  0.4412+0.0495 0.4429+0.0489
MSE__ | 0.3957+0.0815 0.3962+0.0863  0.4022+0.0912 | 0.41820.0819  0.4203=0.0844  0.4158+0.0788  0.417=0.087 0.4164+0.0842 0012001227  0.4139=0.0829 _ 0.4158+0.0788  0.417=0.087 0.4158+0.0788 _ 0.4212+0.0816
MCR | 0.1154£0.2666 0.0897+0.2809  0.1422+0.2643 | 0.1044=0.3305  0.0589=0.3033 0.154=0.3105  0.1526+0.3076  0.1108+0.3173  0.1902£0.1997 0.1566=0.333  0.154+0.3105  0.1526+0.3076  0.154=0.3105  0.0423+0.2976
TAE MAE | 0.1=0.2511 0.0766+0.2699  0.133:0.187 | 0.1766=0.2073  0.1485=0.2889  0.2121+0.2494 0.1958+0.2452  0.1821+0.3006 0.1478+0.2066 0.1973x0.2525 0.2121+0.24904 0.1958+0.2452  0.2121+0.2494 0.1328+0.3007
MSE__| 0.02080.3281 _-0.0067+0.3443  0.0080.2383 | 0.2304=0.3097 _ 0.2082%0.2995  0.1955:0.3094 _ 0.2084+0.2665 _ 0.1936+0.3486 _ 0.3243+0.1727 _ 0.2187=0.2662 _ 0.1955+0.3094 _0.2084+0.2665 _ 0.1955+0.3094 _0.1849+0.2956
MCR | 0.5456+0.1668 0.5276+0.1618 0.5763+0.1566 | 0.5709=0.1325 0.5534=0.1482 0.5541+0.1492 0.5583+0.1375 0.5747+0.1458 0.1375£0.2534 0574401347 0.5541%0.1492 0.5583+0.1375 0.5541+0.1492 0.5703%0.142
Heart (CLE) MAE | 0.5029+0.1576 0.4786+0.1532  0.5285+0.1573 | 0.5575+0.105  0.5344=0.1225 0.5187+0.1361 0.5298+0.1238 0.5391+0.1208 0.0889+0.2527 0.5458=0.1153 0.5187+0.1361 0.5298+0.1238  0.5187+0.1361 0.5536+0.1185
MSE_ | 0.3833:+0.1841  0.3494+0.1832  0.4062+0.1854 | 0.4899+0.1379  0.4479=0.1438 _ 0.4021+0.1471  0.429+0.1592  0.4304+0.1412  0.0288+0.2581 _ 0.453+0.1497  0.4021+0.1471 0.429+0.1592  0.4021+0.1471 _0.483:0.1496
MCR | 0.1983+0.0991 0.1850+0.1042 0.1848+0.086 | 0.1949=0.0967 0.2006=0.102  0.2019+0.1052 0.1948+0.0963 0.2018+0.0977 0.043+0.1066  0.1938=x0.0905 0.2019+0.1052 0.1948+0.0963  0.2019+0.1052 0.1988+0.1088
SWD MAE | 0.1143+0.0971 0.1152+0.0931  0.1172+0.0867 | 0.1372+0.1034 ~ 0.1405+0.103  0.1252+0.1113  0.1285+0.1002  0.1275+0.1068 0.052+0.1113  0.1312+0.0953  0.1252+0.1113 0.1285+0.1002  0.1252+0.1113  0.1423+0.1089
MSE | 0.10170.0935 0.101+0.0816 _ 0.1154+0.0946 | 0.1331=0.1141 _ 0.1401=0.0978  0.1134£0.0979 _ 0.1166+0.1073 _ 0.1071+0.1135 _ 0.0498+0.1022 _ 0.1239=0.1023 _ 0.1134+0.0979 0.11660.1073 _ 0.1134+0.0979 _0.1403+0.1032
MCR | 0.1708£0.0604 0.2059+0.0941 0.1377+0.0886 | 0.0468=0.0662  0.0801=0.0635 0.131+0.0633  0.101=0.066 0.1777+0.0575  0.0901+0.1104  0.085+0.0646  0.131+0.0633  0.101=0.066 0.131+0.0633  0.0598+0.0802
ERA MAE | 0.0353+0.0965 0.0409+0.1273  0.0069+0.076 | 0.0138+0.0923  0.0477=0.0839  0.0597+0.0668 0.0358+0.0806  0.0439+0.0688  0.0756=0.1181 0.0131=0.0887  0.0597+0.0668 0.03580.0806  0.0597 +0.0668 0.0221+0.0972
MSE | 0.0586+0.0932 0.0725+0.1066  0.0088+0.1241 | -0.0023+0.1514 0.0222+0.1352 _ 0.0283+0.1189  0.0174+0.141 __ 0.0241+0.1206 _ 0.04210.1256 _ 0.0031=0.1457  0.0283+0.1189 0.0174+0.141 _ 0.0283+0.1189 0.0016+0.152
MCR | 0.2079+0.1653 0.2119+0.1854 0.2164+0.1122 | 0.2738+0.1225 0.2953+0.1443 0.2487+0.1418 0.2484+0.1228  0.2275+0.1257 0.0123+0.1516 0.2467=x0.1141  0.2487+0.1418 0.2484+0.1228  0.2487+0.1418 0.2817+0.1347
ESL MAE | 0.1738+0.1687 0.1778+0.1887  0.182%0.1401 | 0.2887+0.1285 0.2864=0.1415 0.2305+0.1371  0.2343+0.1158  0.2197+0.1146  0.0469+0.1569 ~ 0.2524=0.1218  0.2305+0.1371 0.2343+0.1158  0.2305+0.1371 0.287+0.1346
MSE__ | 0.1048£0.2408 0.1098+0.2698  0.1089+0.2014 | 0.275+0.1536  0.2374=0.1863 _ 0.1689+0.1811 _ 0.18+0.1441 0.1718+0.1428  0.1026%0.1814 _ 0.227+0.1351 __ 0.1689+0.1811 _0.18+0.1441 0.1689+0.1811 _ 0.2592+0.1613
MCR [ 0.1559£0.1345 0.1398+0.1402  0.1571+0.1182 | 0.1539=0.11 0158201268 0.1605x0.13  0.1652+0.1202 0.1619£0.1271  -0.0153+0.1251 0.1493+0.1169  0.1605x0.13 0165201202 0.1605:0.13  0.1542+0.1235
LEV MAE | 0.1302£0.1181 0.1079+0.121  0.1426+0.1144 | 0.1397£0.1001  0.1311=0.1096 0.1342%0.1134  0.1483+0.1077 0.1457+0.1143  0.0062£0.1436  0.137+0.1091  0.1342%0.1134 0.1483£0.1077 0.1342+0.1134 0.1315%0.1047
MSE | 0.1375+0.1169  0.1048+0.1145  0.1607+0.1268 | 0.1546=0.1063 _ 0.1207=0.1088  0.1394+0.1076 _ 0.161=0.1116 _ 0.1666+0.1204 0.0264+0.182  0.1572=0.1206 _ 0.1394+0.1076 0.161=0.1116 _ 0.1394+0.1076 _0.1335+0.101
MCR | 0.4037£0.0738 0.3982+0.0732  0.4169+0.0708 | 0.4228=0.0698  0.4074=0.0677 0.4109+0.0691 0.4146+0.0687  0.4155+0.0694 -0.052+0.0356  0.4237=0.0688 0.4109+0.0691 0.4146+0.0687 0.4109+0.0691 0.4171%0.0673
Red Wine MAE | 0.4021%0.0719 0.396=0.0727  0.4217+0.0682 | 0.4321=0.0659 0.4133=0.0645 0.4144+0.0667 0.4205+0.0651  0.419+0.0672  -0.062+0.0413  0.4322=0.0661 0.4144+0.0667 0.4205+0.0651  0.4144+0.0667 0.4251+0.0639
MSE | 0.39+0.0898  0.3827+0.0925  0.4162+0.0818 | 0.4206+0.0694  0.4049=0.0783 _ 0.4028:£0.082 _ 0.4126+0.076 _ 0.4078+0.0812  -0.0647+0.0781 _0.4283=0.0737 _ 0.4028+0.082 _ 0.4126+0.076 _ 0.4028+0.082 _ 0.4203+0.0729
MCR | 0.3642£0.0537 0.3583+0.0509 0.3545+0.053 | 0.3388=0.0519 0.354+0.0485  0.3673+0.0508 0.3583+0.0495 0.3672+0.0527 0.0477+0.0641 0.3472x0.053  0.3673+0.0508 0.3583+0.0495 0.3673+0.0508 0.3584+0.0487
White Wine MAE | 0.3479+0.058  0.338=0.0542  0.3495+0.0604 | 0.338+0.0566  0.3465=0.0535 £0.0555 0.3532+0.0572  0.3587+0.0575 0.058+0.0602  0.3454=0.0592  0.3564+0.0555 0.3532+0.0572  0.3564+0.0555 0.3523+0.0507
MSE | 0.339+0.0698  0.3249+0.0674 _ 0.3493+0.0716 | 0.3409+0.0662 _ 0.3423=0.0628 +£0.0641  0.3516+0.0694  0.3554+0.0687  0.0574+0.0624  0.3475+0.0691  0.3498+0.0641 _0.3516£0.0694  0.3498+0.0641 _0.3506+0.0589
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Fig. 8. Critical difference (CD) diagrams (https://github.com/mirkobunse/critdd) for the evaluated uncertainty measures over all performance metrics and datasets
based on a Friedman test followed by a post-hoc Holm-adjusted Wilcoxon test with LightGBM as base learner. Groups of uncertainty measures that are not significantly
different (at p = 0.05) are connected [53,54].

and ORD yzp are equivalent and thus lead to the same results in terms of their PRRs. Interestingly, from an empirical perspective,
CONS ¢, and ORD g appear to be equivalent to the Bayes risk with /; loss, R;,, also yielding the same results.

The DFU measure performs worst on all performance metrics and is often close or even worse than random rejection, which
indicates that the probabilistic output of the predictor is mostly unimodal. Given unimodal probability distributions, DFU is not able
to quantify any uncertainty at all, which might explain its poor performance on the considered datasets. If the predictor outputs
mostly unimodal distributions, as indicated by DFU, one could also expect that taking the distance into account when quantifying
uncertainty does not play such a role. However, the results of our experiment suggest the opposite. Even when the output is mostly
unimodal, taking the distance into account does matter.

Furthermore, this experiment shows that our hypothesis indeed seems warranted and is further underpinned with additional
experiments using a multi-layer perceptron (MLP) as the base learner in Appendix B. In ordinal probabilistic classification, uncertainty
seems to be indeed maximal if all probability mass is equally allocated to the extreme ends of the ordinal scale. This is in contrast to
the standard assumption of a uniform distribution representing maximal uncertainty.

By looking at exemplary rejection curves, we can further illustrate the superiority or at least competitiveness of dispersion measures
compared to common uncertainty measures like entropy, margin, and confidence (cf. Fig. 9).

7. Case study: automotive goodwill claim assessment

In the following, we evaluate the different uncertainty measures on seven real-world goodwill claim assessment datasets of a car
manufacturer (cf. Table 4) with the goal to predict appropriate monetary contributions for parts and labor repair costs on an interval
scale from 0 to 100% binned to 10% steps (Y = {0, 10,20, ..., 100}). Since goodwill claim assessment can be considered a high-stakes
process, needing to balance customer-satisfaction and financial interests, well functioning predictive uncertainty quantification is of
utmost importance. Furthermore, as goodwill requests are to a large extend assessed manually by human experts at the moment [55],
it is also a perfect use case for selective classification [1] in which uncertain requests are still delegated to human experts, while
trivial or clear cases are supposed to be processed automatically through automated decision making [3].
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Fig. 9. Exemplary rejection curves for five of the ordinal benchmark datasets (Balance Scale, Eucalyptus, White Wine, Abalone and CMC).
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Table 4
Goodwill claim assessment dataset sizes. All datasets have 26 features (18 categorical and
8 numeric) and a single label with 11 classes (Y = {0, 10,20, ...,100}).

Market A B C D E F G

# Instances 9,127 7,636 21,209 19,066 174,008 9,127 9,945
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642.633). 8.251, MSE: 546.169). MSE: 442.502).
Fig. 10. Confusion matrices for goodwill claim assessment using different losses.
7.1. Datasets

The different goodwill claim assessment datasets are taken from different national sales markets and reflect the different goodwill
assessment strategies of the national sales companies (NSC) of the car manufacturer. The attributes of the data instances entail
information about the vehicle and the case, for instance, vehicle age, mileage, requested costs, defect code, whether the vehicle was
regularly serviced, etc. [55]. Table 4 summarizes some characteristics of the datasets used for our evaluation. The sizes of the datasets
vary heavily depending on the size of the sales market. In general, the datasets are in most cases heavily imbalanced [55], with the
majority of instances falling into the extremes of no (0%) and full contributions (100%). This characteristic also polarizes the datasets
in terms of decision outcomes. Given the variability in human goodwill judgment, it is crucial to recognize that observed decisions
may not always be consistent. It is essential to account for this variability through unbiased predictive probability distributions and
appropriate uncertainty quantification methodologies. For model training, the data is split into training and test data with a ratio of
80/20, where the test data contains the most recent 20% of the data.

7.2. Experimental setup

The problem of goodwill claim assessment can either be treated as an (ordinal) classification problem with 11 classes or a regression
problem where predictions are rounded to the closest 10% step. Treating it as a classification problem using cross entropy loss results
in a higher accuracy compared to treating it as a regression problem with L, loss (cf. Fig. 10). This increased accuracy however
comes at the price of more substantial errors (e.g., 0 vs. 100%) manifested in a higher MSE. As already mentioned, this trade-off
between categorical classification accuracy (hit rate) and minimum distance-based errors is inherent in ordinal classification and
makes it a distinct problem [56]. There are many dedicated ordinal classification methods that try to represent this trade-off between
accuracy and error spread on the loss level during training time and hence lie somewhere in the middle between classification and
regression [33,34,45,47]. However, usually these methods have some drawbacks. For instance, the methods presented in [23] and
[57] only provide deterministic predictions without uncertainty representation. This limitation can be critical in applications where
understanding the uncertainty of predictions is essential, like in goodwill claim assessment. Additionally, as discussed in the previous
Section 6, constraining predictive probability distributions to unimodality—explicitly [20,21], or implicitly [33,34,47]—negatively
impacts uncertainty quantification as the probabilities are biased (cf. Appendix C). This is because unimodal constraints oversimplify
the underlying predictive distributions by smoothing out the probabilities of distant classes, thereby leading to an underestimation
of the true uncertainty present in the data. In the context of non-continuous ordinal rating data, such as that examined in our case
study, truthful probability reporting is essential for an accurate representation of uncertainty. Constraining predictive probabilities
to unimodality can obscure the true nature of the data, particularly when the underlying distribution is inherently polarized or multi-
modal. By allowing for polarized predictive probability distributions, we can better capture the full spectrum of uncertainty inherent
in ordinal assessments.

Considering this, we again intentionally disregard the ordinal structure during the training phase by employing cross-entropy
loss, which as a strictly proper scoring rule provides unbiased probabilistic predictions [10] and enables quantifiable uncertainty.
Given that the historic goodwill claim assessment data used for our study is observational data with human decision makers acting
as teachers, we deliberately want to account for potential biases by not constraining the model in any way that would veil those.
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Similar to our previous study on common ordinal benchmark datasets, our goal is then to find an uncertainty measure that post-hoc
takes this ordinal structure into account, with a specific focus on reducing substantial errors.

Since the data is of mid-size tabular nature, we again rely on GBTs for our evaluation implementation. Concretely, we make use
of eXtreme Gradient Boosting (XGBoost) in that case [58].

7.3. Results and analysis

Table 5 shows the PRRs of the different uncertainty measures for MCR, MAE and MSE on seven goodwill assessment datasets split
by the task of predicting labor or parts contributions.

Overall, when considering all performance metrics (MCR, MAE and MSE), we have a similar picture as in the previous benchmark
study with measures taking distance into account outperforming standard nominal classification measures (cf. Table 6). However, in
contrast to the previous study, standard nominal classification uncertainty measures outperform the other measures when focusing
on the exact hit-rate through MCR. Nonetheless, when the focus is on reducing the error spread, indicated by MAE and MSE, VAR as
well as CONS measures clearly outperform ENT, MARG and CONF.

Also, the binary decomposition method performs very competitive and even outperforms variance on MAE and MSE with entropy
as binary base measure. Again, VAR, R;, and CONS ¢, shine on MAE and MSE, but perform poorly on MCR. Similar to the previous
findings, other consensus and ordinal binary decomposition-based measures like CONS, , CONS(, or ORDy appear to strike a
better balance between categorical classification accuracy (hit rate) and minimum distance-based error.

Interestingly, DFU does not come in last when looking at particular measures (e.g., only MCR or MAE and MSE), which is an
indicator for non-unimodal predictive probability distributions output by the predictor. Compared to the previous study, there seems
to be a more pronounced difference between classification accuracy and distance-based error, supposedly triggered by the non-
unimodal predictive output probabilities of the predictor. On the goodwill claim assessment datasets it becomes even clearer that
the binary decomposition method as well as the consensus measures (maybe apart from CONS ) strike a better balance between
accuracy and minimal distance-based error (cf. Tables 7 and 8).

Fig. 11 shows some exemplary rejection curves for which the above findings are clearly visible. Variance as well as consensus and
ordinal binary decomposition-based measures have a clear advantage over ENT or CONF when looking at MSE or MAE. However,
when solely looking at ACC, ENT or CONF are competitive or even better.

Tables 9 and 10 show corresponding performance metrics for rejections from 0% up to 50% in 10% steps for the overall best
performing uncertainty measure (CONS ¢, , ORDyg). As can be seen, performance metrics ACC, MAE, MSE and QWK improve when
rejecting uncertain queries including the domain-specific relevant cost metrics — underpayment, overpayment and total costs. Under-
payment indicates how much the model would contribute less than the human experts and overpayment, the other way around. The
total costs deviation (TOTAL) is then just the sum of the two.

Tables 9 and 10 also display the respective thresholds for the particular rejection percentages which are bound between 0 and 1.
These thresholds could be used in a downstream selective classification [2] approach where a classifier i(x) rejects queries depending
on a binary selection function g(x), which will either indicate selection g(x) = 1 or abstention g(x) = 0:

. A if g =1
(8000 2= {@ if gx)=0"

Whether the function suggests to select the query for automated processing or abstention depends on the risk R, (x) associated with
the query. If the calculated risk is below a given threshold 6, like the ones shown in Tables 9 and 10, the function will suggest
selection:

0 otherwise

As already stated, selective classification in combination with a consensus or ordinal binary decomposition-based uncertainty mea-
sure is an effective strategy to increase reliability in automated goodwill claim decisions. Concretely, using a consensus or binary
decomposition-based measure will lead to an increase in hit-rate as well as a reduction in error distances, since it considers both
aspects in a balanced way. Hence, employing a consensus or binary decomposition-based measure accounts for potentially polarized
predictive probabilities that the learner may have picked up from the likely biased historic expert decisions.

8. Conclusion and future work

In this work, we have introduced and evaluated several uncertainty quantification measures with regards to their capability
of quantifying uncertainty in probabilistic ordinal classification. We argued that the highest uncertainty in probabilistic ordinal
classification should be represented by a distinct bimodal distribution, in which all probability mass is equally concentrated at the
extreme ends of the ordinal scale, and the lowest uncertainty when all probability mass is allocated to a single class label. This is in
contrast to nominal classification, where a uniform distribution typically indicates the highest degree of uncertainty. We also argued
that complementary dispersion measures of so called consensus measures, originating from the social sciences, as well as our newly
proposed ordinal binary decomposition method, in which uncertainty quantification is reduced to an ordered sequence of binary
uncertainty quantification problems, best capture these distributions.
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Table 5
PRRs for different measures over goodwill claim assessment data.
Dataset Metric | CONF MARG  ENT VAR CONS;,, CONS, CONS, CONS.  DFU ORDgpyy  ORDyppg  ORDyyy R, R,
ACC 0.7364 0.7245 0.747 0.6468 0.6541 0.6972 0.6943 0.6956 0.67 0.6916 0.6972 0.6943 0.6972  0.6484
Market A (Parts) MAE 0.6416 0.6351 0.6433 0.685 0.6827 0.6731 0.6767 0.6707 0.6188 0.6821 0.6731 0.6767 0.6731 0.6852
MSE 0.5102 0.504 0.5138 0.6331 0.6237 0.5799 0.5882 0.5778 0.5007 0.6 0.5799 0.5882 0.5799  0.6324
ACC 0.8192 0.8097 0.8284 0.7238 0.7247 0.7807 0.7783 0.7785 0.7738 0.7743 0.7807 0.7783 0.7807 0.7253
Market A (Labor) | MAE 0.6886 0.6826 0.6924 0.7136 0.7071 0.7127 0.7169 0.709 0.6737  0.72 0.7127 0.7169 0.7127  0.7141
MSE 0.5694 0.5643 0.5713 0.6553  0.6432 0.6212 0.6294 0.6169 0.5632  0.6372 0.6212 0.6294 0.6212  0.6552
ACC 0.6434 0.6432 0.6398 0.6391 0.6563 0.6567 0.6562 0.6501 0.6475  0.6531 0.6567 0.6562 0.6567  0.64
Market B (Parts) MAE 0.6163 0.6222 0.5991 0.713 0.7193 0.6899 0.6944 0.6903 0.6526  0.6988 0.6899 0.6944 0.6899  0.713
MSE 0.5136 0.5246 0.4914 0.6858 0.6877 0.6268 0.636 0.6349 0.5718 0.6468 0.6268 0.636 0.6268 0.6852
ACC 0.7791 0.7768 0.7775 0.7333 0.744 0.765 0.7617 0.759 0.7319  0.7566 0.765 0.7617 0.765 0.7348
Market B (Labor) MAE 0.7762 0.7775 0.7684 0.833 0.8336 0.8248 0.8284 0.8256 0.7854 0.8311 0.8248 0.8284 0.8248 0.8332
MSE 0.7326 0.7356 0.7241 0.845 0.8427 0.8125 0.8206 0.8161 0.7559  0.8281 0.8125 0.8206 0.8125  0.8449
ACC 0.6029 0.6007 0.5893 0.4702 0.5127 0.5494 0.5347 0.5489 0.4028 0.5158 0.5494 0.5347 0.5494 0.4761
Market C (Parts) MAE 0.5725 0.5562 0.5847 0.6038 0.6086 0.6074 0.6085 0.6083 0.5329  0.6098 0.6074 0.6085 0.6074  0.604
MSE 0.4268 0.4059 0.453 0.62 0.5883 0.5418 0.5579 0.5399 0.5032  0.5796 0.5418 0.5579 0.5418  0.618
ACC 0.7816 0.7796 0.7818 | 0.6888 0.7002 0.7348 0.7304 0.7284 0.716 0.7235 0.7348 0.7304 0.7348  0.6895
Market C (Labor) MAE 0.8013 0.802 0.7933 0.7979 0.7989 0.8076 0.8071 0.8063 0.798 0.8059 0.8076 0.8071 0.8076  0.7978
MSE 0.8225 0.8243 0.8138 0.8589 0.8568 0.8531 0.855 0.8531 0.8339 0.8568 0.8531 0.855 0.8531 0.8587
ACC 0.6803  0.6734 0.6749 0.5005 0.5175 0.6057 0.5924 0.602 0.5424  0.5805 0.6057 0.5924 0.6057  0.5028
Market D (Parts) MAE 0.5147 0.5206 0.5021 0.5206 0.5193 0.5589 0.5575 0.5662 0.5348 0.5555 0.5589 0.5575 0.5589 0.5212
MSE 0.412 0.4202 0.4025 0.494 0.4814 0.4936 0.4994 0.5079 0.4907  0.5044 0.4936 0.4994 0.4936  0.494
ACC 0.754 0.753 0.7511 0.6227 0.6409 0.6995 0.6919 0.6911 0.6588 0.6771 0.6995 0.6919 0.6995 0.6265
Market D (Labor) MAE 0.7623 0.7587 0.763 0.7557 0.7553 0.7752 0.7749 0.7731 0.7586 0.7725 0.7752 0.7749 0.7752 0.7561
MSE 0.7285 0.7229 0.7322 0.7759  0.7721 0.7689 0.772 0.766 0.7408  0.7754 0.7689 0.772 0.7689  0.7755
ACC 0.6081 0.6099  0.5927 0.5794 0.5791 0.6015 0.5989 0.6 0.6055  0.5956 0.6015 0.5989 0.6015  0.5794
Market E (Parts) MAE 0.6042 0.6067 0.5881 0.6056 0.6045 0.612 0.6124 0.6105 0.6041 0.612 0.612 0.6124 0.612 0.6056
MSE 0.5163 0.5181 0.508 0.5398 0.5388 0.532 0.5349 0.5304 0.5169 0.537 0.532 0.5349 0.532 0.5399
ACC 0.6188 0.6223  0.6014 0.5908 0.5929 0.6141 0.6102 0.6135 0.6217  0.6056 0.6141 0.6102 0.6141 0.5908
Market E (Labor) MAE 0.6183 0.6224 0.6006 0.6206 0.6211 0.6268 0.6265 0.6275 0.6231 0.6255 0.6268 0.6265 0.6268 0.6207
MSE 0.5731 0.5776 0.5618 0.5991 0.5986 0.5909 0.5936 0.5928 0.5798  0.5952 0.5909 0.5936 0.5909  0.5992
ACC 0.7364 0.7245 0.747 0.6468 0.6541 0.6972 0.6943 0.6956 0.67 0.6916 0.6972 0.6943 0.6972 0.6484
Market F (Parts) MAE 0.6416 0.6351 0.6433 0.685 0.6827 0.6731 0.6767 0.6707 0.6188  0.6821 0.6731 0.6767 0.6731 0.6852
MSE 0.5102 0.504 0.5138 0.6331 0.6237 0.5799 0.5882 0.5778 0.5007 0.6 0.5799 0.5882 0.5799  0.6324
ACC 0.8192 0.8097 0.8284 | 0.7238 0.7247 0.7807 0.7783 0.7785 0.7738  0.7743 0.7807 0.7783 0.7807  0.7253
Market F (Labor) MAE 0.6886 0.6826 0.6924 0.7136 0.7071 0.7127 0.7169 0.709 0.6737  0.72 0.7127 0.7169 0.7127  0.7141
MSE 0.5694 0.5643 0.5713 0.6553  0.6432 0.6212 0.6294 0.6169 0.5632  0.6372 0.6212 0.6294 0.6212  0.6552
ACC 0.7319  0.7194 0.7286 0.6533 0.6633 0.7113 0.7031 0.7013 0.6483  0.697 0.7113 0.7031 0.7113  0.6536
Market G (Parts) MAE 0.5769 0.5704 0.5783 0.6637 0.6688 0.6628 0.6661 0.6463 0.5446  0.6655 0.6628 0.6661 0.6628  0.6637
MSE 0.4605 0.4546 0.4644 0.6388 0.6344 0.5869 0.6032 0.5758 0.451 0.6115 0.5869 0.6032 0.5869  0.6389
ACC 0.6665 0.6642 0.6691 0.6379 0.637 0.6568 0.6535 0.6518 0.6595 0.6496 0.6568 0.6535 0.6568 0.6376
Market G (Labor) | MAE 0.6771 0.6766 0.6756 0.6745 0.6739 0.6789 0.6789 0.6772 0.6752  0.6781 0.6789 0.6789 0.6789  0.6741
MSE 0.6092 0.6094 0.606 0.6235 0.6229 0.6175 0.6202 0.6178 0.6095  0.6216 0.6175 0.6202 0.6175  0.6236
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Table 6
Ranks of measures for MCR, MAE and MSE on goodwill as-
sessment.
Rank | Measure Avg. Rank Avg. PRR
1 CONS,, 5.82+1.92  0.6678+0.0871
1 ORD ypr 5.82+1.92  0.6678+0.0871
2 ORD ;1 6.0x3.1 0.6685 = 0.0866
3 CONSC‘ 6.31+2.19 0.6665+0.0879
3 ORD yiprg 6.31+2.19 0.6665+0.0879
3 R, 6.31+2.19  0.6665+0.0879
4 R, 7.17+5.1 0.66 =0.0885
5 CONS 7.49+4.79  0.6605+0.0872
6 VAR 7.54%£5.49  0.6595+0.0888
7 CONSCA 7.68+2.37 0.6645+0.087
8 CONF 8.83+4.98 0.6455+0.1104
9 MARG 8.96+4.58  0.6426+0.1098
10 ENT 9.48+495  0.6431%0.1116
11 DFU 11.29+2.9 0.6285+0.1018
Table 7
Ranks of measures for MCR on goodwill assessment.
Rank | Measure Avg. Rank Avg. PRR
1 CONF 2.29+2.3 0.7127 +£0.0759
2 MARG 3.14+2.38 0.7079+0.0729
3 ENT 3.79+4.35 0.7112+0.0834
4 CONSCI 4.86+0.86 0.6822+0.0716
4 ORDyupg | 4.86+0.86 0.6822+0.0716
4 R, 4.86+0.86 0.6822+0.0716
5 CONS, 7.86+1.1 0.6782+0.0706
6 CONS, 8.0+0.85 0.677 £0.0739
6 ORDy 8.0+0.85 0.677 £0.0739
7 DFU 9.79+3.96 0.6516 +0.0953
8 ORD pyr 9.86+0.86 0.6704 +0.0765
9 CONS 11.64+2.41  0.643+0.0718
10 R, 12.57+£0.55  0.6342+0.0774
11 VAR 13.5+0.68 0.6327 =0.0781
Table 8
Ranks of measures for MAE and MSE on goodwill assessment.
Rank | Measure Avg. Rank Avg. PRR
1 ORDyy 4.07 =1.64 0.6675+0.0925
2 R, 4.46 +4.07 0.6729+0.0921
3 VAR 4.55+4.23 0.673+0.0921
4 CONS, 4.73+1.26 0.6632+0.0939
4 ORD 55 4.73+1.26 0.6632+0.0939
5 CONS ¢ 5.41+4.31 0.6693 +0.094
6 CONS, 7.04+2.3 0.6586 +0.0953
6 ORDyapg | 7.04%2.3 0.6586 +0.0953
6 R, 7.04+2.3 0.6586 +0.0953
7 CONS, 7.59+2.81 0.6577 +£0.0945
8 MARG 11.88+1.68  0.6099+0.1115
9 DFU 12.04+1.86 0.617 £0.1047
10 CONF 1211+1.31  0.6119%0.1105
11 ENT 12.32+1.72 0.609+0.1093
Table 9
Exemplary rejection thresholds for market B using CONS or ORDy, (parts).
Rejection ACC MAE MSE QWK UNDERPAYMENT OVERPAYMENT TOTAL THRESHOLD
0% 0.821 9.352 686.444 0.645 -163,946.17 53,778.43 -110,167.74 1.0
10% 0.86 6.249 412382  0.756  -38,432.59 113,479.52 75,046.93 0.594
20% 0.902 4166  267.86 0.826  -16,730.41 80,686.62 63,956.21 0.293
30% 0931 2797 178.16 0.869  -7,942.01 50,347.16 42,405.15 0.142
40% 0.945 2.286 150.054 0.881 -5,925.01 38,091.96 32,166.95 0.071
50% 0.958 1.582 9572 0.922  -2,450.01 12,347.42 9,897.41 0.033
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Fig. 11. Exemplary rejection curves for three of the goodwill claim assessment datasets displaying conventional uncertainty measures like entropy, margin and variance
in comparison to consensus and ordinal binary decomposition-based measures.

Table 10
Exemplary rejection thresholds for market B using CONS, or ORDy,g (labor).
Rejection ACC MAE MSE QWK UNDERPAYMENT OVERPAYMENT TOTAL THRESHOLD
0% 0.886 7.092 588.147 0.585  -32,296.75 17,068.6 -15,228.15 1.0
10% 0.925  3.44 236.713  0.77 -8,989.2 15,985.3 6,996.1 0.538
20% 0.959 1.554 101.953 0.881 -3,871.6 6,668.28 2,796.68 0.203
30% 0.978  0.753  47.119 0.939  -1,741.0 3,080.66 1,339.66 0.055
40% 0.99 0.303  16.901 0.975  -1,371.0 743.0 -628.0 0.017
50% 0.992 0.272 17.51 0.969 -1,061.0 307.0 -754.0 0.006

With regard to the investigated uncertainty measures, we can draw the following conclusions from our evaluations on twenty-three
ordinal benchmark datasets and a case study on seven automotive goodwill claim assessment datasets:

« Overall, when simultaneously looking at hit-rate and error distances (indicated by MCR, MAE and MSE), variance, the proposed
ordinal binary decomposition method, and complementary dispersion measures of consensus measures outperform standard
nominal classification uncertainty measures like entropy, margin and confidence when it comes to uncertainty quantification for
probabilistic ordinal classification. This also supports our hypothesis that maximal uncertainty is expressed by a distinct bimodal
distribution in ordinal classification.

« This is also the case when the predictive output probabilities are of unimodal nature, as indicated by low DFU measurements
in our benchmark study. One might expect that distance may not be overly relevant in this case, and nominal classification
measures should perform at least competitive to measures taking distance and the ordinal structure into account.
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When only looking at the distance of errors (indicated by MAE and MSE), the observation that dispersion measures, including
variance and the binary decomposition method, outperform nominal measures is further enforced.

Nominal classification uncertainty measures like entropy, margin, and confidence are competitive when it comes to misclassi-
fication rate and may outperform distance-based measures for multimodal outputs, as shown in our case study on automotive
goodwill claim assessment.

When it comes to preventing distance-based errors, measured by MAE and MSE, VAR and R;, perform very well. However, when
it comes to reducing the misclassification rate, they are less effective.

Complementary dispersion measures of consensus measures as well as the proposed ordinal binary decomposition method seem
to strike a better balance between categorical classification accuracy (hit rate) and distance-based errors compared to standard
nominal uncertainty measures and variance. Hence, they appear to best reflect this inherent trade-off of between accuracy and
error distance in ordinal classification.

In any case, an uncertainty measure in ordinal classification should consider error distance. If larger errors are supposed to be
minimized, as indicated by MSE, VAR and R;, are most effective. If the exact hit-rate is equally important to error distance
minimization, as indicated by MCR and MAE, the ordinal binary decomposition method, as well as complementary dispersion
measures of consensus measures, strike a good balance. The usage of nominal uncertainty measures is only warranted in cases
where the focus is solely on the exact hit-rate, as indicated by MCR, which is usually not the case in ordinal classification.
According to our experiments, this guideline applies to datasets exhibiting unimodal as well as polarized prior class distributions,
though the difference between nominal and dispersion measures is more pronounced for multimodal predictive distributions.
Moreover, we recommend the usage of cross-entropy loss as a proper scoring rule over dedicated ordinal losses in ordinal
classification to ensure unbiased uncertainty quantification.

An interesting direction for future work on the quantification of uncertainty in probabilistic ordinal classification is to separate
total uncertainty into its aleatoric and epistemic parts [59], and to investigate whether this can be accomplished with the consensus
measures presented in this paper or the ordinal binary decomposition method. This distinction is not possible on the basis of standard
first-order probabilities as used in this work, however, and calls for more expressive representations (such as second-order distribu-
tions). Moreover, it might be interesting to evaluate further probabilistic base classifiers and datasets (e.g. image datasets) and study
the effect of probability calibration [60] on the investigated uncertainty measures.
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Appendix A. Proofs

Proof of Proposition 4.1. We prove that the measure C, satisfies axioms Al, A2, A3, A4, and A5 of Section 4.1.

Al: Given the bimodal distribution p = (1/2,0,...,0,1/2) on O = {1,2,...,K}, the cumulative probabilities will be F =(1/2,...,
1/2,1). This minimizes the numerator of C; with 2,’:;1] |F(p) —0.5] = 115;11 0=0. Thus, C(p) = = 0, which is the
lower bound of the C; measure.

A2: Given a Dirac distribution of the form p = (0,...,0,1,0,...,0) on O = {1,2,...,K}, the cumulative probabilities will be F =
(,...,0,1,...,1). This maximizes the numerator of C; with Zi:l |F(p) — 0.5| = ]1:11 0.5 = %(K — 1), because |p — 0.5] is

(K=1)/2

(K-1)/2

_0
(K-D/2

upper-bounded by % for 0<p<1. Thus, C|(p) = =1, which is the upper bound of the C; measure.

A3: This directly follows from Al and A2.

A4: This is satisfied as the individual components that make up C; are all continuous functions of p.

A5: Given a probability distribution p = (p;, p,, ..., px) and its reversal Po_ =Pk Pk—1,---»P1) Onan ordinal scale O = {1,2,...,K}.

To show that C,(p) = C,(p,_) one needs to show that

K-1 K-1

> Fp)-05|= Y |F(p,_)—0.5].

=1 k=1

=~

Given the following relationship F(p,_) = Z;;l Po(y = Z;;l Pr—jy1=1— Zfz_lk p; =1~ Fx_i(p), we have:

|Fi(ps_) = 0.5] = [(1 = Fg_(p) = 0.5] = | Fg_(p) - 0.5].
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Next, given the commutative property of summation Zf;ll F.(p)= i:l Fx_(p), with Fx_,(p) being the cumulative proba-
bilities of p in reversed order, we then have

K-1 K-1

K-1
Y F(p, ) =051 =Y [Fx_(p)=0.5| = Y |Fe(p)—05].
k=1 k=1 k=1

From this we can conclude that C;(p) = Ci(ps ) O

Proof of Proposition 4.2. We prove that the measure C, satisfies axioms Al, A2, A3, A4, and A5 of Section 4.1. The proof is
analogous to the proof of Proposition 4.1. []

Proof of Proposition 4.3. We prove that the measure Cns satisfies axioms A1, A2, A3, A4, and A5 of Section 4.1.
Tastle and Wierman demonstrate that their Cns measure produces a single value ranging from 0 for complete disagreement to 1 for
complete agreement. This essentially validates axioms A1-A3 [18]. Therefore, we will focus on axioms A4 and A5 in this discussion.

A4: For the logarithm to be defined, its argument must be strictly positive, i.e.

o<1 k=Hl
K-1
Since k ranges between 1 and K, and y lies in the interval [1, K], |k — u| will always be < K — 1. The only case where the
argument could be 0 is k = K and p = 1. However, if y =1, then p; =1 and p, = ... = px =0, so that the sum in (6) reduces to

the first summand, which evaluates to 0 (by definition), so that Cns(p) = 1.
Since log,(x) is continuous for x > 0 and lim, |, x - log,(x) = 0, and the rest of the terms in (6) are all continuous functions of p,
we can conclude that Cns is a continuous function of p.

A5: Given a probability distribution p = (p;, p,, ..., px) and its reversal p; = (pg,pg_y.-.-.p;) onan ordinal scale O = {1,2,...,K}.
One needs to show that Cns(p) = Cns(p,_)- Given the relationship

K K
o, = Zk'pK—kH = Z(K—k"‘ D pe
k=1 Py

K K
=(K+1) Y p= -k
k=1 k=1

=(K+D—-u

between the expected values p,_ of p,_ and u of p respectively, as well as the commutative property of summation Z,’;l Pr =

K
2ot Pr—k+1, We have

X |k = pg_ |
Cns(p%) =1+ Zp%(k) log,( 1 — -1
k=1

K

=14 D Prosnt 1082<1

k=1

k(K + D) —pl
K-1

K

I((K—k+1)—pl
=1 log,(1-——— 2~ H
+]§Pk—k+l ng< K—1

K
_ |k — ul
_1+Z:pklog2 I_K—l

k=1

= Cns(p).
Hence, the Cns measure is invariant against reversal of the ordinal scale. []
Proof of Proposition 4.4. We prove that the measure C, satisfies axioms A1, A2, A3, A4, and A5 of Section 4.1.

Al: The extreme bimodal distribution will minimize the term U with the maximum possible number of unimodality violations for
triples |T DU (S)| = K — 2. Given this and |.S;| =2, we have

(1 (K= (K-2)
Ap=(1 K_1)< T ) A1)
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A2:

A3:

A4:

A5:

_ (K-2) —(K-1)-(K-=2)
‘((K—1)>'< (K -2 )
__(K-27
Tk -22

We omit the term w here, which is w = |.5|-0.5=2-0.5 = 1. Following this, we can conclude that A is minimized by the extreme
bimodal distribution with the lower bound —1. In turn, C4 will normalize A to have the lower bound 0.

Since a Dirac distribution will maximize each term of A (7), with w=1, V = (1 - %) = (1 - %) =1,and U =1 by

definition, we can conclude that A (7) as well as C4 (8) are maximized by a Dirac distribution with the upper bound 1.

A uniform distribution will lead to w=|S,|-1/K=K-1/K=1,V = (1 - %) = (l - %) =0, and U =1 by definition.

Hence, A will be 0 for the uniform distribution and 0.5 for the normalized version Cy.

The measure A is a finite sum of products of continuous functions. Since the sum and product of continuous functions are also

continuous, A and C, are continuous.

Given the commutative property of addition and multiplication, A is invariant against reversal of the ordinal scale when this

property holds for all its terms (w, V', and U).

— The weight term w is invariant against reversal of the ordinal scale, as it is calculated based on the difference between adjacent
sorted probabilities ( Py — p(k_l)) and the number of categories being equal to or greater than the probability p; (|.S)|). Hence,
this term is even invariant to any permutation of the probabilities.

Sil-1

— The term U depends on the counting of rank triples |7 DU (S)| and |TU(S)|. Since triples are invariant against reversal of the
ordinal scale, U is also invariant against reversal of the ordinal scale.

Since each term (w, V, and U) is invariant against reversal of the ordinal scale, we can conclude that A and C 4 are also invariant

against reversal of the ordinal scale. []

— This also applies to the term V' = (1 ) as it will not be affected by any permutation.

Proof of Proposition 4.5. Under the assumption of a single mode m, we prove that the measure DFU satisfies Axioms A4 and A5,
but violates Axioms Al, A2, and A3 of Section 4.1. Notably, the measure DFU would need to be scaled to lie within the range [0, 1],
and Axioms Al and A2 are violated in their inverted form.

Al:

A2:

A3:

A4:

AS5:

This axiom is violated as the extreme bimodal distribution is not the only distribution leading to the upper bound of 0.5 for DFU.
For example,

DFU((%,O,...,O,%)) :DFU(<%,O,%,O,...,O)) =0.5.

This axiom is violated as DFU does not distinguish between unimodal distributions and their degree of “peakedness.” For example,

DFU((0, ...,0.2,0.6,0.2, ...,0)) = DFU((0, ..., 0, 1,0, ...,0)) = 0.

Hence, Dirac distributions are not the only distributions that lead to the lower bound of 0 for DFU.
This is violated, since the uniform distribution, as a unimodal distribution, leads to the same lower bound of 0 for DFU as the
Dirac distribution:

DFU ((l . l)) = DFU((0. ...,0,1.0, ...,0) = 0.
K K

Since each d,, is continuous and the maximum of a finite set of continuous functions is also continuous, we can conclude that

DFU is continuous.

Given a probability distribution p = (p;. p;. ..., px) and its reversal p, = (pk.pk_i,...,p;) on anordinal scale O = {1,2,...,K}.

One needs to show that DFU(p) = DFU(p,_) by demonstrating that the calculated distances d;, and d,_ (k) are the same, with

Po () =ps_ (k+ D) =pg_jy1 —pgy if 1<k<m
d, (=10 if k=m . A.2)
Pge(k)—P,,H(k—l)=pK_k+l—pK_k+2 if m<k5K

Since d,;_ (k) = px_i+1 — Px—« and di = p; — p;_; are the same pairwise distances in reversed order, just like d,_(k) = pg_jq; —
Pk—k+2 and dy = p; — pi4 1, we can conclude that the measured pairwise distances of d; and d,,_ (k) are the same (in reversed
order). Due to the fact that the max operator on a set of distances is invariant to any permutations, we can further conclude
that DFU is invariant against reversal of the ordinal scale with DFU(p) = DFU(p,_)- Please note that this only holds for the
existence of a single mode m. In the case of multiple modes, where the leftmost mode is taken as the mode m, this axiom may
be violated. []

Proof of Proposition 4.6. We prove that the measure uy,y satisfies axioms A1, A2, A3, A4, and A5 of Section 4.1. Note that Axioms
A1l and A2 are satisfied in their inverted form, and u 4z wWould need to be scaled to lie within the range [0, 1].
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A1: Popoviciu’s inequality on variances provides an upper bound for the variance of any bounded probability distribution. Specifi-
cally, if an ordinal variable takes values in the interval [1, K], then the variance satisfies:

1
uyar < 7(K = 12

Equality holds if and only if the distribution is bimodal with half of the probability mass at each of the extreme values 1 and K.
Hence, the extreme bimodal distribution p = (1/2,0, ...,0,1/2) exclusively maximizes uy,g.

A2: For a Dirac distribution p=(0,...,0,1,0,...,0) with p; =1 for some j € {1,...,K} and p, =0 for all k # j. The expected value
of the distribution is y = Zszl P k=0-K)+...+0-b)+1A-j)+@O-k)+...+(0- k)= . Substituting 4 = j into the variance
formula, we get: uVAR(p)=lef=1 P k=) =0-(k—j2+...+0-(k—j+1-(G—j)*+0-(k—j)*+...+0-(k—j)> =0. Since
the variance uy,g is zero for a Dirac distribution, and variance is non-negative, this is the minimum possible value. Therefore,
uyag is exclusively minimized by a Dirac distribution.

A3: This directly follows from Al and A2.

A4: This trivially holds true.

A5: Given the relationship y, = Y5 (K—k+1)-po=Y5 K- pp+p— g pi k=(K+ DX oo~ T o k=K +1)—p
between the expected values y,;_ of p,  and u of p respectively, as well as the commutative property of summation, we have:

uyar(Ps )= D Po_ (K) - (= p, ) (A.3)
k=1

=

=3 pg—rsy - k= (K +1) = p))?
k=1

Pk—irny (K —k+1)— p)?

1]
M=

~
Il

P - (k= p)?

Il
M=

>
Il

= uyar(P).

Hence, uy,g is invariant against reversal of the ordinal scale. []

Proof of Lemma 5.1. Given the bimodal distribution p = (1/2,0,...,0,1/2) on Y = {y, ..., ¥}, each binary reduction in (10) is
of the form pg = (1/2,1/2). Likewise, given a Dirac distribution p = (0,...,0,1,0,...,0), each binary reduction is of the form
pen =(0,1) or pgy=(1,0). I

Proof of Lemma 5.2. Assuming symmetry for the generator ugpy, With ug(p1, py) = ugiy (P2, py) for p = (py. p,) and given the com-
mutative property of addition, the following holds:

K-1
Uorp (P, ) = z UBIN <2P%(l) Z PuH(J)>

Jj=k+1
k
Z ”BIN<ZPK i+1 2 Pk /+1>
=1 i=1 =k+1
K-1 K K-k (A.4)
:ZuBIN Z Pis 2, Pj
k=1 i=K—k+1  j=1
K-1 k K
= uBIN<2pi’ Z P;)
k=1 i=1 Jj=k+1
=uorp(P) [

Proof of Proposition 5.1. The fact that u opy, satisfies axioms A1, A2, and A3 directly follows from Lemma 5.1 (though A1 and A2 are
satisfied in inverted non-normalized form, which in turn makes u ggp, directly applicable to uncertainty quantification). Additionally,
axiom A5 follows from Lemma 5.2. Given that the generator uypy is continuous, we can also conclude that u ggp, is continuous, since
a finite sum of continuous functions is also continuous, which satisfies axiom A4. []

Proof of Proposition 5.2. The proof starts by defining the normalized version of the binary decomposition method with margin as
the generator and shows the equivalence to the complementary dispersion measure D; by simplifying the expression step-by-step.
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The key step is to recognize that the margin generator leads to the absolute difference between cumulative probabilities and their
complement, which directly relates to the C; measure:

— K K
DI(P)=(K—_1) ]; ”MARG< lpi’ Z Pj>

=1 jek+l

1 K-1 k K
= 1- _ .
D Zl Zp, j_%lp,

2 |211p1 21 k+1p/|
(K-1)
SEFu(p) - (1= Fi(p))]
K-1)

L 2F(p) - 11/2
(K-1)/2
L 1F((p) — 0.5
(K-1)/2
=1-C(p O

(A.5)

=1-

=1-

Proof of Proposition 5.3. The proof begins by defining the normalized version of the binary decomposition method with variance
as the generator and then demonstrates the equivalence to the complementary dispersion measure D, by simplifying the expression
step-by-step. The key step is to recognize that the variance generator leads to the product of cumulative probabilities and their
complements, which directly relates to the C, measure:

LK k K
Dz@)=m ; ”VAR<ZPI’ )y P/')

=l j=k+l
K-1 K
pi- P
(K—l)/4 2(; /%—1 />
K-1
1)/4 Z F.(p)(1 - F.(p))
(1= i1 Fp)(1 = Fi(p)
- (K-1)/a
p (A.6)
=1-(1+ k=1 F(p)(F(p)—1)
- (K-1)/4
_, TS R@®E) - D +025
- (K-1)/4
_ 1 Fi(p)? = Fi(p)+0.25
- (K-1)/4
(K —1)/4
=1-G{@E O

Appendix B. Prediction rejection ratios (PRRs) with multi-layer perceptron (MLP) as base learner

In this section, we present additional experimental results using a multi-layer perceptron (MLP) [61] with CE loss as the base
learner instead of GBTs (cf. Section 6). Refer to Table B.11 for the parameters of the feed-forward network. Additionally, in addition
to one-hot (0/1) encoding categorical features and integer encoding the labels, all features were also standardized.

The obtained ranks for the different uncertainty measures based on the measured PRR values resemble those of GBTs, with mea-
sures taking distance into account significantly surpassing common nominal measures on these tabular ordinal benchmark datasets,
as visible in the CD diagrams in Fig. B.12 and the detailed results in Table B.12.
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Table B.11
MLP parameters [61].
Parameter Value
Hidden Layer Sizes [128, 64]
Activation Function ReLU
Solver Adam
Maximum Epochs 200
Batch Size 200
L2 Regularization (alpha) le-04
Learning Rate le-03
1 3 5 7 9 11 1 3 5 7 9 11
L 1 1 L L L | L 1 1 1 1 1 |
L DFU L
Ry, CONS ¢, JORD yiarc /Ry, DFU
MARG ENT
CONS s CONS ¢,
ENT ; MARG
VAR CONS s
CONF ———— VAR
CONS¢, ORD Ry, ORD
CONS ¢, /ORD nara/R O ENT e . ENT
o/ MarG/ Ry, CONS ¢, /ORD yar CONSc,/ORD var L CONF
(a) Overall result for MCR, MAE and MSE. (b) Result only for MCR.
1 3 5 7 9 11 1 3 5 7 9 11
L L L L L L Il L L L J L L Il Il I Il |
R, MARG R, DiU Il
CONS s VAR MAR
CONF CONF
VAR ENT CONS s ENT
CONS ¢, ORD CONSo, ——— CONS ¢, JORD yixwo /R
ENT c MARG/ R
CONS ¢, /ORD R 5 _ ! !
c1/ORD anc/ Ry, CONS ., JORD O €2/ ORPvar —— ORDpxr
(c) Result for MAE. (d) Result for MSE.
1 3 5 7 9 11 1 3 5 7 9 11
L 1 1 1 1 1 | L 1 1 1 1 1 |
B EII:IJ{G By EIT}I{C
CONS cus ENT CONS cus CONE
CONS¢, VAR
) CONF ENT
CONS ¢, /ORD marG/ R, CONS ¢,
VAR ORD pr CONS ¢, /ORD ORD e
CONS ¢, /ORD yar @ VAR CONS ¢, /ORD yiara/Ri,
(e) Result for MCR and MAE. (f) Result for MAE and MSE.

Fig. B.12. Critical difference (CD) diagrams for the evaluated uncertainty measures over all performance metrics and datasets based on a Friedman test followed by a
post-hoc Holm-adjusted Wilcoxon test with an MLP as the base learner. Groups of uncertainty measures that are not significantly different (at p = 0.05) are connected
[53,54].

Appendix C. Comparison of prediction rejection ratios (PRRs) for different predictors

In this section, we want to evaluate the influence of the base learner on uncertainty quantification in ordinal classification. To
do this, we compare the PRR values obtained for various predictors on the tabular ordinal benchmark datasets over all uncertainty
measures. Keep in mind that the PRR is independent of the predictive performance of the predictor and solely assesses the quality
of the uncertainty quantification [51]. We compare the following diverse set of predictors: LightGBM with CE loss (LGBM) [32], A
Simple Approach to Ordinal Classification [24] with LGBM and CE loss as binary base learner (SLGBM), MLP with CE loss (MLP) [61],
A Simple Approach to Ordinal Classification [24] with MLP and CE loss as binary base learner (SMLP), MLP with QWK loss (QWK)
[33,62,63], MLP with ordinal soft labeling based on triangular distributions (TRI) [62-64], and MLP with ordinal soft labeling based
on the beta distribution (BETA) [62,63,65]. The listed predictors cover a broad range of ordinal methods we want to compare to the
standard CE loss as a proper scoring rule.

To allow for a fair comparison of the different neural network-based predictors, we chose the same configurations as in Appendix B
for the MLP, SMLP, QWK, BETA, and TRI predictors (cf. Table B.11). Since our primary interest is in uncertainty quantification, and
not predictive performance, we deliberately do not perform any further hyperparameter tuning.
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Table B.12
PRRs for the different uncertainty measures and ordinal benchmark datasets using 10-fold cross-validation with an MLP as the base learner.
Dataset Metric | CONF MARG ENT VAR CONS, CONS, CONS.., CONS, DFU ORD gy ORD 516 ORDyy R, R,
ACC | 0.0721%0.2426  0.041+0.2415  0.0953+0.2401 | 0.0868+0.2036 0.0877+0.2796 0.0854=0.2672 0.0959=0.2816 0.0952%0.2779 0.0736+0.278  0.0938+0.2822 0.0854+0.2672 0.0959=0.2816  0.0854=0.2672  0.0884:+0.2803
Triazines MAE | 0.1833+0.1919  0.1504+0.1925 0.2145+0.1663 | 0.2388+0.1931  0.238+0.1938  0.2184+0.1993  0.2317+0.2079  0.234=0.2007  0.2681+0.2501 0.2317+0.2066 0.2184=0.1993  0.2317+0.2079  0.2184+0.1993  0.2429+0.1916
MSE__| 0.2114+0.1935  0.1877+0.1898 _ 0.2484+0.1808 | 0.2775+0.2280  0.2757=0.2146 _ 0.2448+0.205 _ 0.2633+0.2147 _ 0.2625+0.2114 _ 0.3055+0.2256 _ 0.2668+0.218  0.2448=0.205  0.2633+0.2147  0.2448+0.205 _ 0.2761+0.2301
AcC | 0.6171+0.19 0.5714+0.1991  0.6573+0.185 | 0.7228+0.1246 0.6786=0.1568  0.6829+0.1624  0.6926+0.1732  0.6958+0.1677  0.6628+0.1603  0.6905+0.1614  0.6829=0.1624  0.6926+0.1732  0.6829+0.1624  0.7079+0.1307
Machine CPU | MAE | 0.5758=0.2401  0.5025+0.2575  0.6554+0.1853 | 0.727+0.1673  0.6945+0.1841  0.6816=0.1894  0.7023+0.1854  0.6926+0.1854 ~ 0.7058+0.1062  0.7028+0.18290  0.6816+0.1894  0.7023+0.1854 ~ 0.6816=0.1894  0.722+0.1745
MSE | 0.5313+0.3124  0.4457+0.3216 _ 0.601+0.203 0.7024+0.1965  0.6861+0.1958  0.6707+0.2066 _ 0.6818=0.2018  0.6782+0.1973  0.70410.1034 _ 0.6804+0.2025  0.6707+0.2066 _ 0.6818=0.2018  0.6707=0.2066 _0.7051 +0.2007
ACC | 0.3533£0.1097  0.3420+0.0983  0.3501+0.1542 | 0.379+0.1612  0.3779=0.1143  0.3847+0.1068  0.3695+0.1411  0.3759+0.1327  0.1373+0.2025 0.3665+0.156  0.3847=0.1068 0.3695+0.1411  0.3847+0.1068  0.3874+0.1283
Auto MPG MAE | 0.3419£0.1405 0.3004+0.120  0.3697+0.1409 | 0.4164+0.1584  0.413+0.158 0.4086+0.137  0.4081+0.1456  0.4179+0.1334 022360172  0.4028+0.1464  0.4086+0.137  0.4081+0.1456  0.4086+0.137  0.4205+0.1612
MSE | 0.3459+0.1433  0.2847+0.1365 _ 0.3703+0.1653 | 0.4122+0.2452  0.4119=0.2525  0.405£0.2056 _ 0.4079+0.2318  0.4221+0.2119  0.2215+0.2276 03971202248  0.405+0.2056  0.4079+0.2318  0.405-0.2056  0.4123+0.2541
ACC | 0.0514£0.3327  0.0549+0.2403 -0.0738+0.341 | -0.0941£0.4573 -0.0652=0.4214 -0.0254+0.3109 -0.0883+0.3331 -0.0018+0.3369 -0.0649+0.2524 -0.0741£0.3557 -0.0254=0.3109 -0.0883+0.3331 -0.0254+0.3109 -0.1133+0.437
Pyrimidines MAE | 0.2048+0.3698  0.1852+0.3425 0.1806+0.4419 | 0226605205 0.2178=0.4683  0.201£0.4205  0.1724+0.4429  0.2422+0.4212 0.2082+0.2977 0215704665 0.201+0.4205  0.1724+0.4429  0.201£0.4205  0.2063+0.5018
MSE | 0.2272+0.4368  0.2051+0.4218  0.2463+0.4471 | 0.3193+0.4848  0.3118=0.4018  0.2788+0.358 _ 0.2691:x0.3797 _ 0.32=0.3752 0.2847+0.3730  0.3093x0.4146  0.2788=0.358  0.2691x0.3797 _ 0.2788+0.358  0.2061+0.4655
ACC | 0.3465+0.0652  0.31260.0704  0.3285+0.0615 | 0.3189+0.054  0.3437+0.0625 0.3528+0.0639 0.335+0.0618  0.345x0.0612  0.0225+0.0667 0.3213+0.0564  0.3528=0.0639  0.335+0.0618  0.3528=0.0639  0.3387+0.0547
Abalone MAE | 0.3674+0.0522 0.2913+0.0572  0.3936+0.0461 | 0.3967£0.0377 0.3998=0.0441  0.398+0.0448  0.4008+0.0431  0.4034+0.0425 0.0819+0.0834 0.3963=0.0401  0.398+0.0448  0.4008+0.0431  0.398=0.0448  0.406+0.037
MSE__| 0.4004+0.072 _ 0.2756+0.06 0.4719+0.0692 | 0.4913+0.0619  0.4715=0.0652 _ 0.4561+0.0669  0.4815+0.0661  0.4772+0.0688 _ 0.1573+0.0858  0.4871=0.065  0.4561=0.0669  0.4815+0.0661  0.4561+0.0669  0.4916:+0.0581
ACC | 0.4113%0.142 _ 0.418920.1396  0.4113=0.1409 | 0.43670.13 0.4483x0.1321 04315201295 043101275  0.4315%0.1252 0.1139%0.2308 0.427=0.1203 _ 0.4315£0.1295 0431%0.1275 _ 0.4315=0.1205  0.4461 0.1289
Boston MAE | 0.3897+0.173  0.3949+0.1696  0.3986=0.1749 | 0.4435+0.1656  0.4467=0.1616  0.428+0.1621  0.4296=0.1612 0.4343+0.1584  -0.0644+0.2005 0.4282+0.1668 0.428=0.1621  0.4206+0.1612  0.428=0.1621  0.4489=0.1616
Housing MSE | 0.3188+0.2236  0.324130.2253  0.3343+0.2331 | 0.408+0.2107 _ 0.3989=0.2064  0.376+0.2099  0.3823+0.214 _ 0.3917+0.203 _ -0.0197+0.3391 0.3847=0.2187 _ 0.376+0.2099  0.3823x0.214 _ 0.376=0.2099 _ 0.4078+0.2025
ACC | 0.7104%0.053  0.712%0.0521 _ 0.7064=0.0556 | 0.7045£0.0532 _ 0.7098=0.0527 _ 0.71010.0529 _ 0.7084%0.0537 _ 0.7088=0.0532 _ 0.0667£0.1669 _ 0.7052=0.0544 _ 0.7101=0.0529 _ 0.7084%0.0537 _ 0.7101+0.0529 _ 0.7068=0.0526
Stocks MAE | 0.7053%0.0621  0.707+0.0615  0.7013+0.064 | 0.6994£0.062  0.7048=0.0618  0.705+0.062 0.7034+0.0627 0703800622  0.0772=0.1834  0.7001+0.0629  0.705=0.062 0.7034+0.0627  0.705+0.062 0.7017+0.0615
Domain MSE | 0.7091+0.0685  0.7107+0.0679  0.7051=0.0704 | 0.7034+0.0679  0.7086=0.0682  0.7088+0.0684 _ 0.7072x0.0691 _ 0.7076+0.0686 _ 0.0855x0.1749  0.704+0.0692 _ 0.7088:0.0684 _ 0.7072+0.0691 _ 0.7088:0.0684 _ 0.7056=0.0679
— ACC | 0.2284%0.2257  0.2549=0.2251 0.2476=0.2515 | 0.254%0.2291 0226702278  0.2302%0.2322 _ 0.2487%0.2331 _ 0.2511=0.229 _ 0.1021=0.3648 0254402374 0.2302=02322 0.2487=0.2331 _ 0.2302+0.2322 _ 0.2538=0.2289
Wisconsin MAE | 0.1399+0.2206  0.1505+0.246  0.172+0.2467 | 0.1946+0.2395 0.1767=0.2442  0.1674+0.2337  0.1724+0.2446  0.1721+0.2422  0.0559+0.179  0.1751+0.2368 0.1674=0.2337  0.1724+0.2446  0.1674+0.2337  0.2016+0.2371
Breast Cancer | vigg | 0.0228+0.205  0.036=0.2232  0.035+0.2139 | 0.06=0.1771 0.0353+0.1877  0.0209+0.1798  0.0328=0.1921 _ 0.0363+0.1797  -0.0146+0.1863 0.0339+0.1872  0.0209+0.1798 _ 0.0328=0.1921 _ 0.0209=0.1798 _ 0.0705+0.1775
ACC | 0.6996+0.1197  0.698=0.1203  0.7004+0.1201 | 0.7153+0.1169  0.7098=0.119  0.7074+0.1187  0.7077+0.1192  0.7086+0.1189  0.3128+0.0759  0.7091=0.1189  0.7074=0.1187  0.7077+0.1192  0.7074+0.1187  0.7159+0.1167
Obesity MAE | 0.6877+0.1207  0.6861+0.1301  0.6889+0.1301 | 0.709+0.1246  0.7009=0.1278  0.698+0.1273  0.6986+0.1281  0.7005+0.1265 0.3406+0.087  0.7003x0.1279  0.698+0.1273  0.6986+0.1281  0.698=0.1273  0.7089+0.1237
MSE | 0.6509+0.1803  0.6491+0.1798  0.6524+0.1807 | 0.681+0.1699  0.6683=0.1758  0.6644+0.1753  0.6655+0.1763  0.6689+0.1719  0.3695+0.101  0.668+0.1762  0.6644=0.1753  0.6655+0.1763  0.6644+0.1753  0.6799+0.1681
ACC | 0.3125£0.0578  0.3075+0.0594  0.3115+0.0543 | 0.262+0.0796  0.2523+0.0808 0.2958=0.0755  0.2962=0.0787  0.2786+0.0802  0.0065+0.0625 0.2935+0.0778  0.2958+0.0755 0.2962=0.0787  0.2958=0.0755  0.247%0.076
cMe MAE | 0.1692£0.0588  0.1823+0.0587  0.1524+0.0582 | 0.2856+0.0732  0.2938=0.0728 0.2546+0.0736  0.2608+0.075  0.2647+0.0743  0.0438+0.1734  0.26140.0727 0.2546=0.0736  0.2607+0.0749  0.2546+0.0736  0.2021+0.0774
MSE__| -0.05010.0514 -0.0409+0.0548 -0.0534+0.0453 | 0.1019+0.0932 _ 0.1219=0.0901 _ 0.0199+0.0719 _ 0.0328+0.0772 _ 0.0634+0.0976 _-0.0279+0.1918 _0.0378=0.0784 _ 0.0199=0.0719 _ 0.0328+0.0772 _ 0.0199+0.0719 _ 0.1215+0.095
ACC | 0.1264=0.2738 0.1306+0.2719  0.1273+0.2484 | 0.1327+0.2264 0.1339+0.2385 0.1372£0.2516 0.133+0.2534  0.1337+0.2487  0.1091+0.22 0.1482+0.2430  0.1372+02516 0.133+0.2534  0.1372=0.2516  0.1351+0.2253
Grub Damage | MAE | 0.1719=0.2461  0.1692+0.2485  0.1861+0.2196 | 0.2433+0.1971  0.2411+0.209 021570224  0.2259=0.2219  0.2269+0.2252  0.2375+0.2462  0.2466+0.2182 0.2157+0.224 0225902219 0.2157=0.224  0.2389+0.1984
MSE__ | 0.1743+0.2098  0.1619+0.2202  0.2294+0.2574 | 0.2845+0.2276 _ 0.2798=0.2236 _ 0.2446+0.2161 _ 0.263+0.2269 _ 0.26+0.2334 0.219+0.2945  0.2866+0.2238  0.2446=0.2161 _ 0.263+0.2269 _ 0.2446+0.2161 _ 0.2736+0.2305
ACC | 0.9789=0.0422 0.9789+0.0422  0.9789+0.0422 | 0.9342+0.0607 0.9448+0.0467 0.9789+0.0422  0.9543=0.0625 0.9543+0.0625 0.099=0.6567  0.9543+0.0625 0.789+0.0422 0.95430.0625 0.9789=0.0422  0.9648+0.0445
New Thyroid | MAE | 0.9621=0.0385  0.9621+0.0385  0.96210.0385 | 0.942%0.0548  0.9558+0.0393  0.9793+0.0415 0.9621=0.054  0.9621+0.054  0.2441+0.6591 0.9621+0.054  0.9793+0.0415 0.9621+0.054  0.9793=0.0415  0.9759:0.0301
MSE__| 0.9877+0.0245  0.9877+0.0245  0.9877+0.0245 | 0.9585+0.0394  0.9585+0.0394  1.0:0.0 0.9785+0.0283  0.9785+0.0283  0.2286=0.6949  0.9785+0.0283  1.0+0.0 0.9785+0.0283  1.0+0.0 0.9785+0.0283
ACC | 0.9794=0.0227  0.9732+0.0324  0.9917+0.0116 | 0.9917+0.0116  0.9753+0.0325 0.9794+0.0227  0.9865+0.0143  0.9884+0.0164 0.2731+0.2201  0.9917+0.0116  0.9794+0.0227 0.9865+0.0143  0.9794=0.0227  0.9794+0.0227
Balance Scale | MAE | 0.9794=0.0227  0.9691+0.0308  0.9917+0.0116 | 0.9917+0.0116 ~ 0.9753+0.0325  0.9794+0.0227 ~ 0.9865+0.0143  0.9884+0.0164  0.2783+0.2339  0.9917+0.0116  0.9794+0.0227  0.9865+0.0143  0.9794=0.0227  0.9794+0.0227
MSE__| 0.97+0.0301 0.9584+0.0341  0.9866+0.0173 | 0.9849+0.0204  0.9654=0.0378  0.97:+0.0301 0.9786+0.0233  0.98=0.0311 0.2127+0.2086  0.9866=0.0173  0.97+0.0301 0.9786+0.0233  0.97+0.0301 0.97+0.0301
ACC | 0.6087+0.169  0.6077+0.1778  0.6159+0.1666 | 0.6461+0.1815 0.6588=0.1802 0.6278+0.1757 0.6325+0.1764  0.6399+0.189  0.1865+0.2471 0.6442+0.1863  0.6278=0.1757 0.6325+0.1764  0.6278+0.1757  0.6411+0.1811
Automobile MAE | 0.5782+0.1452  0.5744+0.1714  0.593+0.1223 | 0.6597+0.1187 0.6561=0.1286 0.617+0.1351  0.6179+0.1331  0.6414+0.1419  0.2662+0.2664 0.6351=0.1404 0.617+0.1351  0.6179+0.1331  0.617£0.1351  0.6551+0.1172
MSE | 0.4706+0.2127  0.466=0.2488  0.4894+0.1886 | 0.5927+0.1659 0.5713+x0.1828  0.5192+0.1923  0.518x0.1916 _ 0.5562+0.199  0.3207+0.3228 0541901982 0.5192x0.1923  0.518+0.1916  0.5192+0.1923  0.5923+0.164
ACC [ 0.3781£0.1218  0.3764+0.1245 0.3764+0.1173 | 0.3867+0.1089  0.3923=0.1165 0.3863+0.1159  0.3868+0.1139  0.3844+0.1112  0.0567+0.0865 0.3859=0.1117  0.3863=0.1159  0.3868+0.1139  0.3863+0.1159  0.3894+0.1104
Eucalyptus MAE | 0.3684+0.0981  0.3666+0.1014  0.3686+0.0905 | 0.387+0.0828  0.391+0.091 0.3835+0.0887  0.3842+0.0886  0.382+0.0865  0.0736=0.0971  0.3843+0.0853  0.3835+0.0887  0.3842+0.0886  0.3835+0.0887  0.39=0.0846
MSE | 0.2739+0.1054  0.2747+0.1089  0.2716+0.0992 | 0.2076+0.1026 _ 0.2986=0.1075 _ 0.2887+0.1006 _ 0.29+0.1019 0.2887+0.104  0.0735+0.1641 _ 0.2017+0.1012 _ 0.2887=0.1006 _ 0.29+0.1019 0.2887+0.1006 _0.3006=0.1046
ACC | 0319702681  0.3155+0.27 0.3699+0.3052 | 0278502782  0.2337+0.2417  0.3422%0.2758  0.3452+0.2962  0.3234+0.3136  0.3133£0.2544 0356403155 0.3422x0.2758  0.3452+0.2962  0.3422+0.2758  0.2573+0.2612
TAE MAE | 0.2438+0.2996  0.2337+0.2839  0.2808+0.354 | 0.2726+0.3876 0.249+0.3392  0.2676+0.369  0.2920.3907  0.2032+0.4050  0.3828+0.1444 0.3023x0.4138 0.2676=0.369  0.292+0.3907  0.2676+0.369  0.2512+0.3604
MSE | 0.19010.334 _ 0.1741+0.3109  0.2691+0.3972 | 0.24440.3838 _ 0.2108=0.3279  0.2213+0.3685 _ 0.2483+0.3975 _ 0.2431+0.4024 _ 0.391+0.2021 _ 0.262+0.4331 _ 0.2213=0.3685 _ 0.2483+0.3975 _ 0.2213+0.3685 _ 0.2111+0.3477
ACC | 0.5042%0.1372  0.4765+0.1319  0.5423+0.1514 | 0.5516+0.1179 0.5317+0.1152 0520501377 0.5324=0.1272 0.5333£0.1196  0.2361+0.2612 0.5478+0.1196 0.5205+0.1377 0532401272 0.5205%0.1377 0.546%0.1148
Heart (CLE) MAE | 0.4347+0.1905 0.4092+0.1871  0.4843+0.2058 | 0.5233+0.1548 0.5016=0.1648  0.4802+0.1861 0.4981x0.174  0.4963+0.164  0.2681x0.2767 0.5125+0.1676 0.4802+0.1861 0.4981=0.174  0.4802+0.1861  0.5108=0.1607
MSE__ | 0.3049:+0.2016  0.2876+0.2024 _ 0.3412+0.2095 | 0.4115+0.1716 _ 0.38+0.1712 0.3476+0.1871  0.3711+0.1771 _ 0.373+0.1709 _ 0.2217=0.2833 _ 0.3891+0.1731 _ 0.3476+0.1871 _ 0.3711+0.1771 _ 0.3476+0.1871 _ 0.3917+0.1703
ACC | 0217401341 0.2035+0.1389  0.1873+0.1239 | 0.2008+0.1225 0.2119+0.1324 0221401411  0.2015=0.1202  0.2091+0.1325 0.0415+0.1136  0.195+0.1249  02212+0.141  0.2016=0.1292  0.2217=0.1412  0.21640.1402
SWD MAE | 0.1613+0.0897 0.1616+0.1101 ~ 0.1315+0.0816 | 0.1562+0.0793  0.1705+0.0774 ~ 0.1764+0.0918  0.1526+0.0846  0.1544+0.0916  0.0227+0.0968  0.1458+0.082  0.1763=x0.0915 0.1525+0.0848  0.1764+0.0918  0.1841+0.0968
MSE | 0.138+0.1001 _ 0.1384+0.1007 _ 0.1135+0.1014 | 0.1427+0.0936 _ 0.1584=0.0762 _ 0.153+0.089 0.1307+0.0999  0.1253+0.1041 _ 0.0126=0.1016 _ 0.12720.0969 _ 0.15280.0887  0.1306+0.1 0.1520+0.0891  0.1749+0.0957
ACC | 0.1484+0.0781  0.1821+0.1054 0.1121+0.0708 | 0.0047+0.1062  0.0403=0.1209 0.0952+0.118  0.071=0.1183  0.1488+0.0731  0.0504+0.0738  0.0481=0.1096 0.0958=0.1172  0.0735+0.1179  0.098=0.1156  0.012+0.113
ERA MAE | 0.0219+0.067  -0.0038+0.0893 -0.0113+0.0854 | -0.009+0.1556  0.0116=0.1469  0.0083+0.1243  -0.0087+0.1333 0.0104+0.0947 ~ 0.0581+0.1277 -0.0255+0.1349 0.0086=0.1243  -0.008+0.1332  0.0107+0.1228  -0.0021 +0.1593
MSE | 0.0228+0.105  -0.0043+0.0952 -0.0061+0.1183 | 0.0341£0.1995  0.033+0.1767 _ 0.0109+0.1596 _ 0.0102+0.1652 _ 0.0079+0.1307 _ 0.0503+0.147 _ 0.0059=0.1697 _ 0.0108=0.1598  0.0112+0.1659 _ 0.0135+0.1591 _ 0.0382+0.197
ACC [ 0.2265+0.2031  0.2292+0.2049 0.1954+0.201 | 0.1928+0.1872 0.2216=0.1887 0.225+0.2076  0.2092+0.2057  0.2139+0.2056 -0.0048+0.2012 0.1885+0.1915 0.225+0.2076  0.2092+0.2057  0.225+0.2076  0.2206+0.1947
ESL MAE | 0.2114%0.1969  0.2177+0.2004 0.1775+0.2006 | 0.1707+0.1858  0.2013x0.1796  0.2084+0.2015  0.1904+0.2018  0.1956+0.2042 -0.0446+0.2235 0.1648=0.1918  0.2084=0.2015  0.1904+0.2018  0.2084+0.2015  0.1981+0.1837
MSE | 0.185:0.2661  0.1878+0.2696  0.1476+0.2701 | 0.1347+0.2503  0.166+0.2407 _ 0.1767+0.2708 _ 0.1584+0.2668 _ 0.1643+0.2740  -0.081+0.2366  0.1261=0.2507 _ 0.1767=0.2708 _ 0.1584+0.2668 _ 0.1767+0.2708 _ 0.1582+0.2513
ACC | 01576=0.0858  0.1371%0.099  0.1584+0.0962 | 0.1709+0.1113  0.1746+0.0791  0.1735:0.0821  0.1724=0.0888  0.1692+0.0769 -0.0128+0.118  0.1661+0.1051  0.1735+0.0821  0.1724=0.0888  0.1734=0.0822  0.1812+0.0897
LEV MAE | 0.1523£0.0756  0.1271+0.0828  0.1669+0.1055 | 0.1795+0.1115 0.1684=0.0867 0.1716+0.081  0.1785+0.0988 0.1753+0.0792  0.0202+0.1325 0175701132  0.1716=0.0808 0.1785+0.0989  0.1716+0.0807  0.1788+0.0948
MSE_ | 0.16620.0855  0.1304+0.0807 _ 0.1946+0.132 | 0.20560.1313  0.1778=0.1046 _ 0.1914+0.0939 _ 0.2033+0.1257 _ 0.2047+0.1066 _ 0.0296+0.1797 _ 0.2051=0.136 __ 0.191+0.0936 _ 0.2033+0.1259  0.191=0.0936 __ 0.1943+0.105
ACC | 0.2949=0.0705 0.2941%0.0744  0.2807+0.0583 | 0.2831+0.053  0.3107+0.0682 0.3036=0.0657 0.296+0.0606  0.2913+0.0652 -0.025+0.0925  0.2788+0.0575 0.3036+0.0657 0.296+0.0606  0.3036=0.0657  0.3038+0.0582
Red Wine MAE | 0.2456£0.0787  0.2418+0.0808  0.2458+0.0718 | 0.26110.0745 0.2849=0.0845 0.2673+0.0815 0.2679+0.0803 0.2535+0.0818 -0.043+0.0956  0.2527=0.0751  0.2673=0.0815 0.2679+0.0803  0.2673+0.0815  0.2797+0.0782
MSE__ | 0.2058+0.106  0.1998+0.0991  0.2168+0.1211 | 0.2462+0.1319 _ 0.268+0.1345 _ 0.2398+0.12 0.2464+0.1341 _ 0.222+0.1211 __ -0.065+0.0991  0.2315+0.1322 _ 0.2398+0.12 0.2464+0.1341 _ 0.2398+0.12 0.2666 +0.1306
ACC | 0.2471=0.020  0.2377+0.0318 0.2371+0.0392 | 0.2402+0.0404 0.2479+0.0315 0.25470.0304 0.2457=0.0374  0.2502%0.0351  0.054=0.0578  0.2396+0.0409 0.2547+0.0304 0.24570.0374  0.2547=0.0304  0.2489+0.0354
White Wine MAE | 0.2233+0.0486  0.2076+0.0495 0.2295+0.0552 | 0.2443+0.0444  0.248+0.0394  0.2478+0.0427  0.2436+0.0455 0.2451+0.0449  0.0553+0.0534  0.2406=0.0472  0.2478=0.0427  0.2436+0.0455 0.2478+0.0427  0.2539+0.0421
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(e) PRRs for MCR and MAE combined.  (f) PRRs for MCR, MAE and MSE combined.

Fig. C.13. PRR values obtained over all tabular ordinal benchmark datasets and uncertainty measures grouped by underlying base learner.

Fig. C.13 shows the PRR values obtained over all datasets and uncertainty measures for the different predictors, depicted by
different performance measures (MCR, MAE, and MSE). In general, LGBM is able to obtain the highest PRR values, which is no
surprise as GBTs are known to outperform neural networks on tabular datasets and are able to better deal with this modality.
Furthermore, one can clearly see that the usage of CE loss is beneficial when it comes to uncertainty quantification over the simple
ordinal approach in terms of uncertainty quantification, as manifested in higher PRR values (LGBM vs. SLGBM and MLP vs. SMLP),
though the simple ordinal approach improves predictive performance (cf. Table C.13). Moreover, specific ordinal losses like QWK and
the unimodal soft labeling approaches (BETA and TRI) lead to substantially smaller PRR values overall, and in particular for MSE, as
they tend to bias predictive probabilities towards unimodality [33]. This loss of information appears to negatively affect uncertainty
quantification and justifies our usage of the cross-entropy loss as a proper scoring rule over dedicated ordinal losses for the purpose
of uncertainty quantification in ordinal classification.

Table C.13 displays the average results of the different predictors over all datasets in terms of predictive performance (ACC, 1-OFF,
MAE, MSE, and QWK) as well as calibration (negative log-likelihood (NLL), Brier Score (BS), and expected calibration error (ECE)). In
summary, LGBM and SLGBM generally perform well across most metrics. They exhibit the best accuracy, calibration, and reasonable
error rates. SLGBM improves on distance-based errors (MAE, MSE, and QWK) compared to LGBM but worsens calibration in terms
of NLL. MLP and SMLP show competitive accuracy and QWK, though having higher NLL and slightly worse calibration compared to
LGBM and SLGBM. SMLP improves on distance-based errors (MAE, MSE, and QWK) compared to MLP at the cost of calibration (NLL,
BS, and ECE). QWK has good QWK but lower accuracy and higher error rates compared to other models. BETA and TRI generally
perform worse across most metrics, but still show some competitive aspects in specific areas. In general, ordinal methods exhibit
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Table C.13
Average performance and calibration of the different predictors over the tabular ordinal benchmark datasets.
Predictor | ACC (1) 1-OFF (1) MAE (1) MSE (1) QWK (1) NLL (1) BS (1) ECE (1)
LGBM 0.627 +0.196 0.898 +0.114 0.526 +0.378 0.961 +1.031 0.673 +0.246 1.145 +£0.591 0.520 +0.244 0.071 +0.047
SLGBM 0.625 +0.198 0.906 +=0.108  0.506 +0.352  0.851 +0.848  0.689 +0.233  1.693 +1.145 0.517 +£0.238  0.069 *=0.044
MLP 0.620 +0.197 0.895 +0.116 0.529 +0.363 0.948 +0.942 0.664 +0.262 1.419 +1.039 0.552 +0.295 0.081 +0.072
SMLP 0.621 +0.201 0.901 +0.115 0.513 +£0.354 0.877 +0.857 0.681 +0.247 2.281 +2.009 0.564 +0.308 0.085 +0.072
QWK 0.578 +0.189 0.891 +0.115 0.584 +0.360 1.062 +0.989 0.682 +0.222 1.745 +0.849 0.647 +0.266 0.103 +£0.053
BETA 0.611 +0.192 0.892 +0.115 0.549 +0.365 1.028 +1.022 0.636 +0.252 1.892 +1.168 0.598 +0.279 0.094 +£0.047
TRI 0.596 +0.192 0.886 +0.113 0.573 £0.370 1.078 +1.041 0.613 +0.256 2.229 +1.305 0.646 +0.285 0.107 +0.053
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Fig. D.14. Critical difference (CD) diagrams for the evaluated uncertainty measures over all performance metrics and datasets based on a Friedman test followed by
a post-hoc Holm-adjusted Wilcoxon test with the base learner A Simple Approach to Ordinal Classification and LightGBM as the binary base learner [24]. Groups of
uncertainty measures that are not significantly different (at p = 0.05) are connected [53,54].

larger calibration issues in relation to cross-entropy loss, as indicated by higher NLL, BS, and ECE values. This appears to negatively
impact uncertainty quantification in ordinal classification and in turn leads to smaller PRR values.

Appendix D. Prediction rejection ratios (PRRs) with a simple approach to ordinal classification as base learner

In this section, we present additional experimental results using A Simple Approach to Ordinal Classification with LightGBM as a
binary base learner (SLGBM) [24] instead of LightGBM with CE loss (cf. Section 6). As shown in Appendix C, the simple approach
to ordinal classification leads to increased predictive performance at the cost of worsened uncertainty quantification, indicated by
smaller PRR values compared to LightGBM with CE loss. This is also visible when looking at the CD diagrams in Fig. D.14. The results
are not as significant as for GBTs and MLPs with CE loss (cf. Section 6 and Appendix B), as the ordinal approach leads to biased
predictive probabilities in which predictive probability distributions are squashed (cf. Appendix C). Nonetheless, the superiority of
certain measures depending on the performance metric is still visible, though there is more overlap than when using CE loss and
the measures become more interchangeable. When the goal is to decrease distance-based errors, the ordinal binary decomposition
method, VAR, R, , and complementary dispersion measures of consensus measures still outperform nominal measures in most cases
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Table D.14

PRRs for the different uncertainty measures and ordinal benchmark datasets using 10-fold cross-validation with the base learner A Simple Approach to Ordinal Classification and LightGBM as the binary base learner [24].

Dataset

Metric

CONF

MARG

ENT

VAR

CONS ¢,

CONS,

CONS,,

CONS,

DFU

ORDyr

ORD yarg

ORDyzg

R,

R[‘

Triazines

ACC
MAE
MSE

0.3444+0.331
0.2563+0.2416
0.1884 +0.3759

0.3432+0.2928
0.2331+0.2046
0.2177 +0.3509

0.4018+0.2813
0.338+0.2525
0.2509 +0.3581

0.3489+0.2471
0.3636+0.2006
0.3817 +0.2666

0.3972+0.2174
0.385+0.1921
0.3943+0.269

0.3413+0.3261
0.3291+£0.2917
0.2173+0.4127

0.3515+0.2948
0.3061 +£0.2722
0.2091 +0.4334

0.3794+0.226
0.3606+0.1772
0.3482+0.2922

0.0071+0.1513
0.1165+0.1875
0.25+0.2676

0.3722+0.222
0.3836+0.1768
0.3921 +0.2593

0.3827+0.2743
0.3439+0.2303
0.2622 +0.3958

0.3787 £0.2265
0.375+0.1944
0.3815+0.273

0.3927 £0.2242
0.3718+£0.1805
0.3566+0.277

0.3666 +0.2238
0.3725+0.1905
0.3893+0.2654

Machine CPU

ACC
MAE
MSE

0.639+0.1914
0.5524+0.1557
0.4621 +0.188

0.6399+0.1738
0.5478 +0.1504
0.4875+0.1616

0.7071+0.1781
0.638+0.1581
0.588+0.189

0.7668 +0.1362
0.7296 +0.1249
0.7014+0.1268

0.7043+0.2021
0.6555+0.1846
0.6304 +0.1652

0.4518+0.3364
0.3762+0.2585
0.1857 +0.3343

0.405+0.3554
0.3241+£0.2626
0.1563 £0.3141

0.7139+0.1786
0.6438+0.1872
0.578+0.1907

0.5077 +£0.1273
0.5864 +0.0946
0.6551 +0.0884

0.7572+0.1356
0.712+0.1301
0.6731 +£0.1501

0.5269+0.284
0.4369+0.2371
0.2328 +0.3625

0.7363+0.1564
0.6877 +0.1429
0.6519+0.1475

0.7215+0.1755
0.6557 +0.1574
0.6052+0.1618

0.7492+0.1563
0.7108 +0.1365
0.6743£0.1362

Auto MPG

ACC
MAE
MSE

0.2725+0.1863
0.2812+0.2049
0.2725+0.229

0.2954+0.1675
0.3234+0.1718
0.3232+0.1706

0.3395+0.1484
0.3775+0.1528
0.4008 +0.1546

0.3793+0.1211
0.4342+0.1442
0.46+0.1529

0.3474£0.1428
0.3979+0.171
0.416+0.1991

0.2528+0.1956
0.2372+0.2128
0.2423+0.2716

0.2793+0.1521
0.2323+0.1697
0.3194+0.2078

0.2882+0.1779
0.3178+0.2029
0.4141+0.1884

0.1172+0.118
0.2215+0.1111
0.2652+0.2259

0.3696 +0.1206
0.4262+0.1329
0.4523+0.1428

0.2513+0.1999
0.2432+0.2321
0.2615+0.2658

0.363+0.1335
0.4168 +0.1491
0.4343+0.1704

0.3571+0.1452
0.4054+0.1641
0.4191+0.1803

0.3779+0.1396
0.4313+0.1597
0.4566 +0.1639

Pyrimidines

ACC
MAE
MSE

0.0804 +0.6058
-0.0195+0.3923
-0.1639+0.461

0.0748+0.6133
0.0843+0.4628
-0.0718+0.5038

0.1257 +0.5547
0.113+0.4605
-0.1121+0.5742

-0.2077 £0.5077
0.2075+0.3835
0.3513+0.3546

-0.2619+0.5521
0.1812+0.4435
0.3279+0.3972

0.1448 +0.4364
0.3186+0.2779
0.2575+0.2952

0.176+£0.3584
0.3416+0.2707
0.3234+0.3886

-0.1413£0.4168
0.1706 +0.3623
0.2676 +0.3339

-0.258 +0.533
0.2656 +0.388
0.4493+0.303

-0.2053+0.5285
0.1742+0.42
0.3009+0.366

-0.0906 +0.4701
0.1407 +0.3829
0.2457 £0.3709

-0.2053£0.5285
0.1799 +0.4235
0.3086+0.3714

-0.2619+0.5521
0.1768 +0.4376
0.3375+0.3868

-0.2404£0.5333
0.1953+0.3967
0.3427 £0.3709

Abalone

ACC
MAE
MSE

0.2914+0.0384
0.2803+0.0539
0.289+0.09

0.2771+0.0403
0.2583+0.0608
0.2579+0.1074

0.3219+0.0394
0.3568+0.0487
0.3902+0.0628

0.3282+0.04
0.3784+0.0488
0.4107 £0.0615

0.3323+0.0426
0.3692+0.0588
0.3793 +0.0822

0.2845+0.0427
0.2894 +0.0557
0.2953+0.0818

0.2778+0.0386
0.2953+0.0504
0.3282+0.0668

0.3158+0.035
0.3391+0.0475
0.3714+0.0749

0.0792+0.0651
0.1111+0.0617
0.1062+0.0876

0.3315+0.0389
0.3812+0.0478
0.4148+0.0579

0.2929+0.0392
0.2976 +0.0521
0.3115+0.08

0.3346+0.0368
0.3769+0.0483
0.3991 +£0.0641

0.3349+0.0399
0.3626 +0.0551
0.3635+0.0787

0.3371+0.0436
0.382+0.0564
0.4006 +0.0721

Boston
Housing

ACC
MAE
MSE

0.4176 +0.0668
0.4034+0.0855
0.3636 +0.1957

0.4223+0.0794
0.4301+0.0788
0.4266 +0.0727

0.4316+0.0912
0.4452+0.089
0.4482+0.0926

Stocks
Domain

ACC
MAE
MSE

0.7065 +0.0664
0.7065 +0.0664
0.7065 +0.0664

0.7064 +0.0672
0.7064 +0.0672
0.7064 +0.0672

0.7059 +0.0665
0.7059 +0.0665
0.7059 +0.0665

0.4253+0.1106
0.4486+0.1249
0.4612+0.1576

0.4211£0.1179
0.4439+0.131
0.4571 +£0.1625

0.4173+0.0849
0.4129+0.0798
0.3929+0.077

0.4286+0.1013
0.4382+0.0966
0.4141+0.0794

0.4254 +0.098
0.443+0.1008
0.4489+0.1154

-0.0082+0.1467
0.0422+0.1563
0.0791+0.2128

0.432+0.1082
0.4521+0.1139
0.461+0.1354

0.411+0.0706
0.4022+0.0789
0.3959+0.0974

0.4257 +£0.1027
0.445+0.1079
0.4528 +0.128

0.4252+0.1027
0.4444+0.108
0.4523+0.1281

0.6947 +0.07
0.6947 +0.07
0.6947 +0.07

0.6747 +0.0847
0.6747 +0.0847
0.6747 +0.0847

0.7051 +0.0667
0.7051 +0.0667
0.7051 +0.0667

0.7044 £0.0679
0.7044 +0.0679
0.7044 +0.0679

0.7015+0.0702
0.7015+0.0702
0.7015+0.0702

-0.0067 £0.1894
-0.0067 +0.1894
-0.0067 +0.1894

0.7029 +0.0691
0.7029 +0.0691
0.7029 +0.0691

0.7053+0.0661
0.7053+0.0661
0.7053 +0.0661

0.7029 +0.0688
0.7029 +0.0688
0.7029 +0.0688

0.7029+0.0688
0.7029+0.0688
0.7029+0.0688

0.4242+0.1104
0.4437+0.1188
0.4523+0.1392
0.6945+0.0701
0.6945+0.0701
0.6945+0.0701

Wisconsin
Breast Cancer

ACC
MAE
MSE

0.1233+0.2423
0.1199+0.1988
0.0992 +0.2526

-0.0096 +0.247
0.0826+0.2138
0.0384+0.2588

0.1123+0.2854
0.0836 +0.2307
0.0378 +0.3074

-0.0967 +0.1389
0.0398+0.1371
-0.0685+0.1844

-0.1131£0.1432
0.0374£0.1227
-0.0662+0.1553

0.0667 +0.2359
0.1043+0.2183
0.0452+0.193

0.0545+0.1849
0.1118£0.2039
0.0546 +0.1889

-0.0055+0.1634
0.0884+0.1946
-0.053+0.2368

-0.1043+0.307
0.0659+0.1899
-0.0602+0.1715

-0.0063£0.112
0.0937 +£0.1531
-0.0362+0.1929

0.0443£0.2065
0.1254+0.2048
-0.0123+0.229

-0.092+0.1617
0.0232+0.1601
-0.086 +0.204

-0.0863+0.1794
0.0314+0.1713
-0.0988 +0.2159

-0.0887 £0.1608
0.0572+0.1152
-0.0458 £0.1529

Obesity

ACC
MAE
MSE

0.7982+0.1539
0.7982+0.1539
0.7605+0.1608

0.8303+0.0756
0.8303+0.0756
0.8296 +0.0791

0.8343+0.0721
0.8343+0.0721
0.8337 +£0.0756

0.82+0.1074
0.82+0.1074
0.8198+0.109

0.7907 +0.0945
0.7907 +0.0945
0.7903 +0.0957

0.8015+0.1463
0.8015+0.1463
0.7502+0.1756

0.8324+0.081
0.8324+0.081
0.7882+0.1211

0.8331+0.0786
0.8331+0.0786
0.8308+0.0796

0.1358 +0.4281
0.1358 +0.4281
0.1835+0.3726

0.8393+0.0777
0.8393+0.0777
0.8388+0.0806

0.8021£0.146
0.8021+0.146
0.7507 +0.1755

0.838+0.0781
0.838+0.0781
0.8375+0.0811

0.8382+0.0779
0.8382+0.0779
0.8376+0.0809

0.82+0.1074
0.82+0.1074
0.8198+0.109

CMC

ACC
MAE
MSE

0.3399+0.0651
0.2239+0.0704
0.0634 +0.0722

0.3357 +0.0678
0.2391+0.0771
0.0697 +0.0795

0.3382+0.0669
0.2119+0.0637
0.0719+0.0673

0.2419+0.042
0.2891 +£0.0656
0.17£0.0948

0.2201 +0.0423
0.2865+0.0626
0.1869 +0.0907

0.3138+0.0644
0.2948 +0.0667
0.1107 +£0.094

0.3069 +0.0628
0.2989+0.0617
0.1245+0.0998

0.2786 +0.0606
0.2808+0.0724
0.1192+0.0972

-0.0362+0.1
-0.0293+0.1628
-0.0952+0.1877

0.2988 +0.0556
0.2961 +0.068
0.1265+0.0931

0.3074+0.059
0.3003+0.0702
0.1168 +0.0896

0.289+0.0555
0.2942+0.0691
0.1316+0.0879

0.2986 +0.0584
0.2976 +0.0725
0.1194+0.0885

0.2099+0.0415
0.2893+0.0585
0.2043+0.093

Grub Damage

ACC
MAE
MSE

0.2809+0.2247
0.1638+0.264
0.1094 +0.2826

0.2976+0.227
0.2086+0.2671
0.2109+0.3376

0.2448+0.2082
0.1447 £0.3095
0.0582+0.2972

0.1141+0.3624
0.1212+0.3109
0.227 £0.2776

0.0947 +0.3833
0.1079+0.3171
0.2187 +£0.2946

0.2639+0.2414
0.1827 £0.2542
0.2002+0.2799

0.2638 +0.2727
0.2281£0.2998
0.2615+0.2899

0.2111+0.3474
0.1781+0.3121
0.2705+0.2812

-0.0055+0.2739
0.0497 +£0.2587
0.0437 +£0.2798

0.2033+0.3505
0.1748+0.3169
0.2588 +0.2653

0.2488+0.279
0.1748+0.2955
0.2308+0.319

0.1963+0.3222
0.1826+0.3023
0.2719+0.2805

0.235+0.2864
0.1911£0.2567
0.2801 +0.302

0.0953+0.3424
0.108+0.2746
0.2315+0.2703

New Thyroid

ACC
MAE
MSE

0.896+0.157
0.87+0.2191
0.8619+0.2193

0.9476+0.0892
0.9359+0.1171
0.935:+0.0946

0.9408 +0.0908
0.9291+0.1177
0.9282+0.0952

0.9408+0.0711
0.9364 +0.0807
0.9385+0.0596

0.9182+0.1224
0.9216+0.1145
0.9229 +0.0867

0.789+0.339
0.7794+0.3368
0.8262+0.177

0.9487 £0.0472
0.9441 £0.0536
0.9425 +0.057

0.9408 +0.0711
0.9364 +0.0807
0.9385+0.0596

0.2949+0.5865
0.3318+0.578
0.2709 +0.6553

0.9484+0.0741
0.944+0.0838
0.9461 +0.0634

0.9333+0.0877
0.9265+0.1031
0.9296 +0.0738

0.9408 +0.0711
0.9364 +0.0807
0.9385 +0.0596

0.9408+£0.0711
0.9364 +0.0807
0.9385+0.0596

0.9408 +0.0711
0.9364 +0.0807
0.9385 +0.0596

Balance Scale

ACC
MAE
MSE

0.9095+0.0488
0.8796 +0.0455
0.8745 +0.043

0.9175+0.0463
0.8979+0.043
0.8604 +0.0491

0.9173+0.0452
0.8862+0.0369
0.8888+0.0435

0.8951 +£0.0526
0.8856+0.0514
0.8191 +0.0448

0.8727 £0.0496
0.8644 +0.0567
0.7966 +0.0617

0.89+0.07
0.8636+0.0573
0.8155+0.0406

0.9091 +£0.0496
0.8861 +0.0437
0.8248 +0.0418

0.9113+0.0455
0.902+0.0467
0.8333+0.0407

0.0937 +£0.2037
0.1053+0.2077
0.0083+0.2812

0.9169+0.0448
0.9005+0.04
0.826+0.0375

0.9099+0.0471
0.8957 +0.042
0.825+0.0395

0.9061 +£0.0508
0.895+0.0494
0.8324 +0.0464

0.9042+0.05
0.896 +0.0475
0.8342+0.0445

0.8852+0.054
0.8788 +0.0554
0.8106 +0.0539

Automobile

ACC
MAE
MSE

0.5938+0.3061
0.5551+0.3184
0.5523+0.3519

0.626 +0.3008
0.5937+0.3108
0.58+0.3334

0.645+0.3108
0.6239 +0.305
0.6289 +0.2979

0.6149+0.2664
0.6357 +£0.2241
0.6665+0.1373

0.5155+0.2572
0.5477 £0.2091
0.5832+0.1447

0.5211+0.3616
0.5189+0.3384
0.5471+0.2608

0.5578+0.3288
0.5576 +0.3016
0.5536+0.2412

0.6476 +0.3092
0.6395+0.2912
0.6401 +0.2701

0.1302+0.3885
0.061+0.3653
0.0442+0.3769

0.6231 +0.2946
0.6216+0.2614
0.6275+0.206

0.5489+0.3375
0.5193+0.3382
0.5305+0.3263

0.6069 +0.2876
0.6069 +0.2636
0.6209 +0.226

0.6167 +0.2973
0.6167 +£0.274
0.6271+0.238

0.5812+0.2733
0.5999 +0.231
0.6323+0.1515

Eucalyptus

ACC
MAE
MSE

0.4037 £0.0762
0.4095+0.0928
0.3851+0.125

0.3994+0.0785
0.4057 +0.0945
0.3954+0.1179

0.4017 +0.0856
0.411+0.0967
0.4022+0.1178

0.4028+0.1062
0.4161+0.1051
0.4195+0.0962

0.4008 +0.0941
0.4106 +0.1001
0.4094 +0.1041

0.4067 +0.0758
0.4159+0.084
0.3783+0.126

0.4178+0.0845
0.4265+0.0947
0.3894+0.1217

0.4088 +0.0988
0.4186+0.1016
0.4159+0.1021

-0.0087 £0.2287
-0.0228+0.213
-0.0641 +0.2024

0.4013+0.097
0.4127 +0.0987
0.4142+0.1006

0.4037 +0.0865
0.4125+0.0934
0.4042+0.1122

0.4039 +0.0996
0.4129+0.1046
0.4104+0.108

0.4041+0.0936
0.4126+0.099
0.4092+0.1034

0.4054 +0.0996
0.4174+0.0992
0.4192+0.0951

ACC
MAE
MSE

0.1154+0.2124
0.0652+0.1604
-0.0277 £0.3016

0.1027 +0.193
0.0206+0.2036
0.0228 +0.3622

0.1715+0.2559
0.1432+0.1816
-0.0445+0.2275

-0.0107£0.3177
0.1597 £0.3708
0.2649+0.3391

-0.0461+0.332
0.1396 +0.3833
0.2688 +0.3864

0.0628+0.2931
0.173+0.2686
0.1822+0.3476

0.0391 +0.3437
0.1686 +0.3629
0.1871 +0.3506

0.0272+0.29
0.1347 +£0.3226
0.1977 £0.3925

0.0511+0.2645
0.2179+0.2802
0.4212+0.2296

0.0425+0.3377
0.1696 +0.3575
0.1915+0.344

0.0493+0.256
0.1675+0.2477
0.216 +0.3755

0.0223+0.3198
0.1479+0.3521
0.2015+0.3613

0.0342+0.2571
0.1528+0.2616
0.2197 £0.3815

-0.0234+0.3243
0.1271+0.3892
0.2362+0.3878

Heart (CLE)

ACC
MAE
MSE

0.4938+0.107
0.4686+0.1179
0.407+£0.1142

0.4901 +0.0857
0.4428£0.115
0.3509 £0.1251

0.5439+0.097
0.5333+0.0712
0.4795 +0.0647

0.5259+0.1571
0.5278 £0.1402
0.4637 £0.1573

0.5029+0.1545
0.5061+0.133
0.4323+0.1513

0.4476+0.1332
0.4266+0.1631
0.3643+0.2137

0.4964+0.1376
0.4774+0.1243
0.4081 +£0.1541

0.5374+0.11
0.5287 +0.1041
0.4506+0.123

0.0689+0.2364
0.0969+0.2217
0.0306 +0.2634

0.5471+0.1273
0.5521+0.1081
0.4814+0.1383

0.516+0.1126
0.5252+0.1182
0.4413+0.1053

0.5306+0.1216
0.5274+0.1138
0.4563 +£0.1362

0.5281+0.1059
0.5284+0.1051
0.4533+0.1338

0.5081+0.158
0.5185+0.1512
0.4487 £0.1661

SWD

ACC
MAE
MSE

0.2027 £0.1023
0.1218+0.067
0.1003 +0.0865

0.1854+0.1123
0.1243+0.0689
0.0942+0.0803

0.1957 £0.0955
0.1211+0.0847
0.1263 +0.0937

0.2092+0.1024
0.1451+0.094
0.1604+0.1054

0.2072+0.1082
0.1408+0.0912
0.1547 £0.0914

0.2072+0.1068
0.1302+0.0767
0.1248+0.0919

0.2049+0.1001
0.1323+0.0911
0.1322+0.1031

0.213+0.096
0.1358+0.0855
0.1155+0.1138

0.0443+0.1095
0.0571+0.109
0.0475+0.1079

0.206+0.0985
0.1364 +0.0895
0.1411+£0.1035

0.2072+0.1068
0.1302+0.0767
0.1248£0.0919

0.2049+0.1001
0.1323+0.0911
0.1322+0.1031

0.2072+0.1068
0.1302+0.0767
0.1248+0.0919

0.2007 £0.1128
0.1417 +0.0876
0.1571 £0.1045

ERA

ACC
MAE
MSE

0.145+0.0764
0.0313£0.1002
0.0642+0.1

0.1631+0.1352
0.0428+0.1289
0.0759+0.1138

0.139+0.088
0.0051 +0.0707
0.0143+0.1226

0.0273+0.0782
0.0084 +0.0952
-0.0027 £0.148

0.0608 +0.0721
0.0426 +0.0855
0.0207 +£0.1353

0.1085+0.084
0.059+0.0672
0.0295+0.1167

0.0753+0.0743
0.0338£0.0818
0.0129+0.1351

0.1566 +0.0729
0.0404 +0.0722
0.0251+0.1188

0.0469+0.1274
0.0533+0.0973
0.0288 +0.1204

0.0722+0.0718
0.01+0.0894
0.0049 +0.1455

0.1074+0.0838
0.0586 +0.0671
0.0286 +0.1166

0.0746 +0.0731
0.0322+0.0831
0.0132+0.1338

0.1072+0.0851
0.0564 +0.0671
0.0262+0.1168

0.0449+0.0899
0.0157 £0.1
0.0036 +0.1469

ESL

ACC
MAE
MSE

0.1369+0.1794
0.138+0.2302
0.0993 +0.2802

0.1782+0.1608
0.2111+0.1742
0.1637 +0.2088

0.1845+0.1283
0.2394+0.1422
0.1902+0.1843

0.239£0.1247
0.2935+0.1249
0.2312+0.1625

0.2586+0.1314
0.3062+0.1319
0.2358+0.1721

0.1533+0.1808
0.1449+0.2442
0.0944 +0.2985

0.1507 £0.178
0.1446 +0.2371
0.1118+0.2891

0.1627 +0.1369
0.128+0.2315
0.0929+0.2663

0.0555 +0.2048
0.1212+0.2284
0.1276+0.1967

0.2179+0.1327
0.2754+0.1381
0.2148+0.1801

0.1492+0.1847
0.1418+0.2484
0.0938+0.3007

0.2301+0.1308
0.2837+0.1319
0.218+0.1735

0.2228+0.1369
0.2762+0.1416
0.2071+0.1863

0.25+0.137
0.3014+0.1357
0.2325+0.1796

LEV

ACC
MAE
MSE

0.1518+0.1201
0.1279+0.1166
0.1396+0.1115

0.1344+0.1197
0.1056+0.1166
0.1078+0.1165

0.155+0.1079
0.1493+0.1074
0.1808+0.1198

0.1535+0.1016
0.1466 +0.0982
0.1736+0.1026

0.1613+0.1041
0.1412+0.0981
0.1499+0.1047

0.1589+0.1157
0.1348+0.1092
0.1478+0.1099

0.1693+0.111
0.1608 +0.106
0.1861+0.1094

0.1628+0.114
0.1541+0.1072
0.1832+0.1144

0.0157+0.1443
0.0437+0.1439
0.0734+0.1849

0.148+0.1048
0.1434+0.1012
0.1763+0.1118

0.159+0.1158
0.1348+0.1092
0.1479+0.1099

0.1704+0.1093
0.1622+0.1046
0.1879+0.1089

0.1615+0.1113
0.1374+0.105
0.1501 +0.1057

0.159+0.1026
0.1383+0.095
0.1469+0.1041

Red Wine

ACC
MAE
MSE

0.3548+0.0749
0.3434+0.0819
0.3262+0.113

0.3469+0.0739
0.3359+0.0819
0.3199+0.114

0.3606 +0.0729
0.3545+0.0766
0.3441 +£0.1096

0.3459+0.0829
0.3456+0.0765
0.3443+0.1043

0.3402+0.0825
0.3331+0.0881
0.3197 £0.1252

0.351+0.0847
0.341£0.0886
0.3271+0.1069

0.3492+0.0839
0.3426 +0.085
0.3331+0.1053

0.3612+0.0797
0.3562+0.0835
0.3463+0.1105

-0.0378+0.0327
-0.048+0.0394
-0.0448+0.0715

0.3601+0.0776
0.3582+0.0765
0.3529+0.1065

0.3612+0.0778
0.3525+0.0838
0.3353+0.1117

0.3524+0.0764
0.3481+0.0795
0.3388+0.1124

0.3539+0.0772
0.347 £0.0832
0.3342+0.1141

0.3496 +0.0828
0.3462+0.0836
0.3399+0.1113

White Wine

ACC
MAE
MSE

0.3459+0.073
0.3316+0.0714
0.3034+0.0728

0.3339+0.0746
0.3192+0.0671
0.2981 +0.0723

0.3201 +£0.061
0.3155+0.0682
0.3221 +0.0885

0.2759+0.052
0.2742+0.0581
0.2956 +0.0839

0.3+0.0557
0.2941 +£0.0527
0.3074+0.0715

0.3435+0.0632
0.3324+0.0639
0.3152+0.0659

0.3289+0.0612
0.3222+0.0685
0.3105 +0.0695

0.3461 +£0.0596
0.3382+0.0681
0.3276 +0.0794

0.0563 +0.0606
0.0534+0.0555
0.05+0.0725

0.2948+0.0514
0.2937 £0.0584
0.3158 +0.0862

0.3483+0.0644
0.3365+0.0655
0.3089+0.0662

0.3084+0.0536
0.3048 +£0.0594
0.3229+0.0854

0.3271+0.0598
0.3192+0.0586
0.3283+0.0787

0.302+0.0487
0.2962+0.0494
0.3099 +0.0695
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(a) Overall result for MCR, MAE and MSE. (b) Result only for MCR.
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Fig. E.15. Critical difference (CD) diagrams for the evaluated uncertainty measures over all performance metrics and datasets based on a Friedman test followed by
a post-hoc Holm-adjusted Wilcoxon test with an MLP and QWK loss. Groups of uncertainty measures that are not significantly different (at p = 0.05) are connected
[53,54].

(cf. Fig. D.14c, Fig. D.14d, and Fig. D.14f). Moreover, the ordinal binary decomposition method again seems to strike a better balance
than VAR and R;, when it comes to the trade-off between exact hit-rate and minimization of distance-based errors, even more so
since the error distances are less due to the squashed predictive probability distributions (cf. Fig. D.14a and Fig. D.14e). Table D.14
displays the detailed PRR results for all uncertainty measures and datasets using SLGBM.

Appendix E. Prediction rejection ratios (PRRs) with quadratic weighted kappa (QWK) as the loss function

In this section, we present additional experimental results using an MLP with QWK [33] as the loss function instead of CE (cf.
Sections 6 and Appendix B). Again, refer to Table B.11 for the parameters of the MLP. As shown in Appendix C, QWK leads to
increased predictive performance in terms of QWK over CE loss at the cost of worsened uncertainty quantification, indicated by
smaller PRR values. Overall, nominal measures are still significantly outperformed by measures taking distance into account (cf.
Fig. E.15a), though results are, similar to the simple ordinal approach (cf. Appendix D), not as significant as with CE loss anymore.
The superiority of measures taking distance into account is still particularly visible for MAE and MSE (cf. Fig. E.15f) and also overall
(cf. Fig. E.15a). However, in general, just like in Appendix D, the different uncertainty measures have become more interchangeable
due to the biased squashed predictive probability distributions. This again demonstrates the advantage of CE loss for uncertainty
quantification in ordinal classification. Table E.15 displays the detailed PRR results for all uncertainty measures and datasets using
QWK loss.

Data availability
Some datasets used are publicly available. Some datasets are confidential.
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Table E.15
PRRs for the different uncertainty measures and ordinal benchmark datasets using 10-fold cross-validation with an MLP and QWK loss [33].
Dataset Metric | CONF MARG ENT VAR CONS., CONS, CONS,, CONS, DFU ORD ORD yyu56 ORDy R, R,
ACC | 0.2064+0.3448  0.2067+0.3594  0.2138+0.2875 | 0.07+0.4394 0.095+0.4334  0.0979+0.4061  0.1188=0.4056 0.214+0.3077  -0.0423=0.3118 0.1157+0.3964  0.0979+0.4061  0.1188+0.4056  0.0979+0.4061  0.0989+0.4238
Triazines MAE | 0.2958+0.3199  0.247+0.3199  0.3137=0.2742 | 0.27=0.2947 0.258+0.3152  0.3132+0.335  0.3068=0.3174  0.2787+0.2986  0.16+0.1645 0.3061£0.3072  0.3132+0.335  0.3068+0.3174 0.3132+0.335  0.2178+0.3358
MSE | 0.2251+0.2632  0.1913+0.2675  0.2279+0.2376 | 0.2554+0.3023  0.2571:0.2861  0.2416+0.2851 _ 0.2408:0.2853  0.1877+0.2737  0.0944:+0.3228  0.2417+0.2842 _ 0.2416+0.2851 _ 0.2408=0.2853 _ 0.2416+0.2851 _ 0.212+0.2814
ACC | 0.3461+0.3784  0.3499+0.3806 0.3397+0.369 | 0.3932+0.3681  0.3779+0.3895 0.3692+0.3824  0.3731=0.3783 0.3866+0.3848  0.4284+0.4006 0.3874+0.378  0.3692+0.3824 0.3731+0.3783  0.3692+0.3824  0.3952+0.3673
Machine CPU | MAE | 0.2744=0.4141  0.283+0.4246  0.2693+0.4063 | 0.4364+0.399  0.3984:+0.4515 0.3683+0.4256  0.3755+0.4233  0.3793+0.4227 0.4712+0.3978 0.3858+0.4175 0.3683+0.4256  0.3755+0.4233  0.3683+0.4256
MSE | 0.1971:+0.5017  0.2076+0.5189  0.2077:0.4949 | 0.393+0.5023  0.3325:0.5526  0.2908+0.5059  0.302+0.5101 _ 0.2965+0.5098  0.4114+0.4518 0.3139+0.495  0.2008:0.5059  0.302+0.5101 _ 0.2008+0.5059  0.38110.5103
ACC | 0.2142+0.0869  0.2102+0.0985 0.2133:0.0786 | 0.2709+0.0984  0.2591:0.0925  0.2445+0.0863  0.2497=0.0963  0.2552+0.0945 0.304=0.1506  0.255+0.0769  0.2445:+0.0863  0.2497+0.0963  0.2445+0.0863  0.2719=0.1006
Auto MPG MAE | 0.2152+0.0912  0.2136+0.0889  0.2053=0.1024 | 0.2672+0.1198  0.267+0.1135  0.2546+0.1035  0.2533=0.1133  0.2521+0.1117  0.2985x0.1773 0.2516+0.1034  0.2546+0.1035  0.2533=0.1133  0.2546+0.1035  0.2667=0.1248
MSE | 0.071+0.1635  0.0788+0.1682  0.0735+0.1698 | 0.1084+0.1659  0.1128=0.1773  0.0978+0.1618  0.0953+0.1635 _ 0.0865+0.16 0.1788=0.2043  0.089+0.1604  0.0978+0.1618  0.0953+0.1635 _ 0.09780.1618  0.1085+0.1719
ACC [ -0.0073+0.4975 -0.1132£0.6203 0.1058=0.4352 | 0.0813+0.5463  0.0681=0.4439  0.0399+0.48 0.06020.5042  0.0288+0.4958  0.1838=0.4793  0.096+0.4534  0.0399+0.48 0.06020.5042  0.0399+0.48 0.12:£0.5264
Pyrimidines MAE | 0.0766=0.3678 0.0113+0.3587  0.1021=0.3763 | 0.1421+0.4204  0.0351=0.4102  0.0005+0.4567  0.0587=0.4062  0.0816+0.3881  0.0123+0.3409  0.0446+0.3888  0.0005:£0.4567  0.0587=0.4062  0.0005:+0.4567  0.15020.3569
MSE | -0.0537+0.4374  0.0454+0.4705  -0.0608=0.4675 | 0.0444+0.5467  -0.0369=0.549  -0.0982+0.5931 -0.0565=0.5747 -0.079+0.4904  -0.0349+0.4706 -0.0667+0.4583 -0.0982+0.5931 -0.0565+0.5747 -0.0982:+0.5931 _0.0655=0.5233
ACC | 0.167+0.0855  0.1668+0.0843  0.1648+0.0847 | 0.1774+0.0953  0.1739+0.0902  0.1736+0.0905  0.1727=0.0906  0.176+0.094 0.0672+0.1249  0.1733+0.0929  0.1736=0.0905 0.1727+0.0906  0.1736+0.0904  0.1783+0.0964
Abalone MAE | 0.1533+0.1251  0.1531+0.125  0.1515+0.1227 | 0.1624+0.1299  0.1611=0.1291  0.1597+0.1289  0.159+0.1281  0.1605+0.1206  0.0483+0.1313  0.1591+0.1286  0.1597+0.1289  0.159+0.128 0.1597+0.1289  0.1637+0.1324
MSE | 0.1213+0.1743  0.1202+0.1755  0.123+0.1706 | 0.1272+0.1667 _ 0.127+0.1727 __ 0.1248+0.1721 _ 0.1244+0.1695 _ 0.1241+0.1686 _ 0.0066+0.1428  0.125+0.1673  0.1248+0.1721 _ 0.124420.1694 _ 0.1248+0.1721 _ 0.1285=0.1716
ACC | 0.3587=0.2232  0.3592+0.2235  0.3508=0.2276 | 0.3876+0.2397 _ 0.4095=0.2474  0.39610.2371 _ 0.3905+0.2399 _ 0.39250.2366 _ -0.1767£0.211 _ 0.3817=0.2364 _ 0.3961+0.2371 _ 0.3905=0.2399 _ 0.39610.2371 _ 0.405%0.2434
Boston MAE | 0.3153+0.1943  0.3218+0.1958  0.3149=0.2118 | 0.3544+0.2373  0.3782+0.2384 0.3592+0.2233  0.3583+0.2345  0.3579+0.2288 -0.1223+0.1858 0.35+0.2354 0.3592+0.2233  0.3583+0.2345  0.3592+0.2233  0.378+0.2371
Housing MSE | 0.2328+0.2327  0.2406+0.2368  0.2342+0.2424 | 0.2766+0.2461 _ 0.2986=0.2511  0.2668+0.2415  0.274+0.2557 _ 0.2732+0.2497  -0.0354+0.2498 0.2703+0.2497 _ 0.2668+0.2415  0.274+0.2557  0.2668+0.2415 _ 0.295+0.2492
ACC | -0.0551%0.2565 -0.0574%0.2644 -0.0631=0.2404 | -0.053=0.2428 _ -0.047+0.2598 _ -0.0496+0.2543 -0.0558=0.245 _ -0.04960.2459 0.1443%0.4103 -0.0566+0.2387 _-0.0496£0.2543 -0.0558%0.245  -0.0496£0.2543 _-0.0433%0.2529
Stocks MAE | -0.0607+0.2625 -0.063=0.2705  -0.0687=0.2464 | -0.0586+0.2489 -0.0526=0.266  -0.0552+0.2602 -0.0614=0.251  -0.0552+0.2517 0.1491x0.4081 -0.0622+0.2449 -0.0552:0.2602 -0.0614£0.251  -0.0552:0.2602 -0.0489+0.2587
Domain MSE | -0.0684+0.2664 -0.0711%0.2735 -0.0727=0.2564 | -0.0626+0.2584 -0.0587+0.2723 -0.0625+0.2644 -0.0668+=0.2585 -0.062+0.2563  0.1453=0.3992  -0.0659+0.2547 -0.0625+0.2644 -0.0668+0.2585 -0.0625+0.2644 _-0.0559=0.2632
‘, ACC | 0.3744=0.2153  0.3546%0.1934  0.4269=0.2601 | 0.3228+0.274 _ 0.30320.2687  0.376+0.2436 _ 0.3822%0.2527  0.4052£0.261 __ -0.1898+0.4986 0.3649+0.2516 _ 0.376+0.2436 _ 0.38220.2527  0.376+0.2436 _ 0.3069=0.276
Wisconsin MAE | 0.191+0.1801  0.1966+0.1695 0.1942:0.1926 | 0.0741+0.1887  0.075+0.1805  0.1458+0.1712  0.1345+0.1853  0.1689+0.1899  -0.1297+0.1813 0.1142+0.1763  0.1458+0.1712  0.1345+0.1853  0.1458+0.1712  0.0764=0.1738
Breast Cancer | ygg | 0.1998=0.2633  0.2206+0.2588  0.1721+0.2311 | 0.0225+0.1430  0.0185+0.1416 _ 0.0824%0.1765 _ 0.0811=0.1635 _ 0.1384+0.1951 _ -0.11490.2102 0.0659+0.1546  0.0824+0.1765 _ 0.0811=0.1635 _ 0.0824=0.1765 _ 0.044%0.1345
ACC [ 0.1729+0.5138  0.1941+0.5197  0.1362=0.5001 | 0.2807+0.565  0.2802=0.5589  0.2408+0.5429  0.2411+0.5438  0.258+0.5524  0.39+0.4871 0.2208+0.5408  0.2408+0.5420  0.2411=0.5438  0.2408+0.5429  0.2855=0.5659
Obesity MAE | 0.1709+0.5167  0.1921+0.5222  0.1353=0.5031 | 0.2771+0.5663  0.2771=0.5606  0.2385+0.5453  0.2389+0.5461  0.2556+0.5541  0.3865:+0.4887 0.2281=0.5429  0.2385+0.5453  0.2389=0.5461  0.2385+0.5453  0.282%0.5673
MSE | 0.1159+0.4862  0.1388+0.4905  0.0826=0.4744 | 0.2341+0.5209  0.2315+0.5256  0.1898+0.5108  0.1908=0.5113  0.2104+0.518  0.3379+0.4419 0.1812+0.5072  0.1898+0.5108  0.1908+0.5113  0.1898+0.5108  0.2383+0.5316
ACC | 0.2667+0.0778  0.263£0.0759  0.2707+0.0855 | 0.2492+0.0853  0.2431£0.0843  0.2596+0.0859  0.26+0.0836 0.2579+0.0829  0.1854:+0.0799  0.2597=0.0848  0.2596+0.0859  0.2601+0.0836  0.2597+0.0859  0.2455:0.0873
cMC MAE | 0.1852+0.1029  0.1816+0.1021  0.1908=0.1074 | 0.2039+0.1056  0.2028=0.1047  0.1973+0.1068  0.1995+0.1044  0.197+0.1035  0.0643+0.0686  0.2003+0.1049  0.1973+0.1068  0.1996=0.1044  0.1974+0.1068  0.2048=0.1095
MSE | 0.04340.0994  0.0431+0.0993  0.0489=0.0961 | 0.0898+0.1005  0.0915+0.1005  0.0636+0.099  0.0709+0.0977 _ 0.0711+0.0983  -0.0183+0.0753 0.0736+0.0983  0.0636£0.099 _ 0.0709+0.0977 _ 0.0637+0.099 _ 0.0904+0.1039
ACC | 0.2412+0.2663  0.2611£0.2005 0.2268+0.2241 | 0.1932+0.2722  0.2001+0.2989  0.2141+0.2712  0.1897+0.2733  0.1887+0.276  0.22+0.1992 0.1908+0.2722  0.2141+0.2712  0.1897+0.2733  0.2141+0.2712  0.2213%0.2655
GrubDamage | MAE | 0.2202+0.2824  0.214+0.2849  0.2246+0.2639 | 0.3042+0.2489 0.2049+0.2512  0.2411£0.2645 0.2644+0.2558  0.2401£0.2607 0.1989+0.2189  0.2656=0.2472  0.2411+0.2645 0.2644+0.2558  0.2411+0.2645  0.2855+0.2482
MSE | 0.1439+0.269  0.1316+0.2577  0.1671:0.279 | 0.2846+0.315 _ 0.2774=0.2835 _ 0.1826+0.2849 _ 0.2204+0.2058 _ 0.1653+0.2883 _ 0.1511:x0.3198  0.2282+0.3022 _ 0.1826+0.2849  0.2204+0.2058 _ 0.1826+0.2849  0.2192+0.2714
ACC | 0.9571+0.0413  0.9646=0.0301  0.9471+0.0475 | 0.9451+0.0782 0.925+0.0743  0.9646+0.0301  0.9545+0.04 0.9651+0.0435 0.2008+0.2841  0.9651=0.0435  0.9646+0.0301  0.9545=0.04 0.9646=0.0301  0.9625+0.0582
New Thyroid | MAE | 0.9535+0.0336  0.949+0.0347  0.9501+0.0457 | 0.9646+0.0512 0.9445+0.053  0.9636+0.0381  0.957+0.0398  0.9708+0.0258  0.4562+0.2503  0.9708=0.0258  0.9636+0.0381  0.957+0.0398  0.9636+0.0381  0.9622:+0.0487
MSE | 0.9375+0.0642  0.9216+0.0802  0.9405:0.0867 | 0.9727+0.041  0.956+0.0465  0.9664+0.0535  0.9605:0.0513  0.9742+0.0271 _ 0.5876+0.3271 _ 0.9742+0.0271 _ 0.9664:+0.0535  0.9605+0.0513  0.9664:+0.0535  0.9742+0.0271
ACC | 0.9392+0.0679  0.9299+0.0656  0.9387+0.0487 | 0.9363+£0.0516 0.7979+0.1368 0.9392+0.0679  0.9411£0.047  0.9437+0.04490 0.1831£0.2245 0.9387+0.0487 0.9392+0.0679 0.9411+0.047  0.9392=0.0679  0.9369+0.0666
Balance Scale | MAE | 0.9468=0.0666 0.9386+0.0656  0.934+0.0472 | 0.932+0.0496  0.815+0.1357  0.9468+0.0666 0.9403+0.044  0.9425+0.0421  0.0392+0.4347  0.934+0.0472  0.9468+0.0666 0.9403+0.044  0.9468+0.0666  0.9448:+0.0657
MSE | 0.9427+0.0642  0.9345+0.0626  0.934+0.0472 | 0.932+0.0496  0.8115:0.1389  0.9427+0.0642 _ 0.9403=0.044  0.9425+0.0421 _ 0.0444+0.44 0.934+0.0472  0.9427:+0.0642  0.9403+0.044  0.9427:+0.0642 _ 0.9407+0.0631
ACC | 0.4039+0.2083 0.3575+0.208  0.3944=0.2328 | 0.3871+0.2428  0.4057=0.2179  0.4281+0.2125 0.4231+0.2194 0.4127+0.2217 0.0335+0.3054  0.3808+0.2369  0.4281+0.2125 0.4231£0.2194  0.4281+0.2125  0.4003=0.2364
Automobile MAE | 0.37910.2187 0.3395+0.225  0.372+0.2478 | 0.3745+0.2551  0.3852+0.2347  0.4015+0.2241 0.3989+0.2347  0.394+0.2299  0.097+0.3128  0.3641£0.2539  0.4015+0.2241  0.3989+0.2347  0.4015+0.2241  0.38720.2443
MSE | 0.3813+0.2548  0.3604+0.2789  0.3551+0.2827 | 0.3715+0.298  0.3683=x0.2773  0.3826+0.2643  0.3766=0.2004 _ 0.3725+0.2869 _ 0.1954+0.2853  0.354:+0.307 0.3826:0.2643  0.3766+0.2904  0.3826=0.2643  0.3773+0.2784
ACC | 0.3706=0.1 0.3641£0.0943  0.3607:£0.0943 | 0.3735£0.1111  0.3752+0.1054  0.3767=0.1003 0.3694+0.1033  0.3723+0.1057  0.0896+0.1217  0.3661=0.1113  0.3767+0.1003  0.3694+0.1033  0.3767+0.1003  0.3766+0.1052
Eucalyptus MAE | 0.3778+0.0866  0.3629+0.0738  0.3819=0.0776 | 0.4029+0.0927 0.3974=0.0946  0.3945+0.0873  0.3924=0.0872 0.3917+0.095  0.1264+0.1097  0.3924=0.0949  0.3945:+0.0873  0.3924=0.0872  0.3945:+0.0873  0.4002=0.0925
MSE | 0.3194+0.0993  0.3053+0.0959  0.3345+0.0896 | 0.3644+0.0946  0.3479=0.1054  0.3384+0.1037  0.3444=0.0972  0.3395+0.1054  0.1595+0.0999  0.3507+0.0928  0.3384+0.1037 _ 0.3444+0.0972  0.3384+0.1037 _ 0.3534=0.1009
ACC | 0.1403+0.3363 0.1152x0.3569  0.1364+0.3115 | 0.0605+0.3617  0.0442£0.401  0.0644+0.42 0.097+0.3412  0.1167+0.3487  -0.0477=0.3118 0.097£0.3412  0.06440.42 0.097+0.3412  0.0644+0.42 0.0897 +0.3479
TAE MAE | 0.0243+0.2865 0.0335+0.3057  0.0089=0.2685 | 0.014+0.2789  0.0152=0.3019  0.0397+0.3007  0.0267+0.2648  0.0185+0.3052  -0.0786+0.3735 0.0303+0.2685 0.0397+0.3007  0.0267+0.2648  0.0397+0.3007  0.0877=0.2685
MSE | -0.0714%0.3229 -0.0577+0.3411 _-0.0884=0.3012 | -0.0719+0.307  -0.043%0.31 -0.0322+0.3198  -0.0697:£0.2965 -0.068+0.3337  -0.1015+0.4367 _-0.0661=0.3009 -0.0322+0.3198 -0.0697+0.2065 _-0.0322+0.3198 _ 0.0429+0.3208
ACC | 0.3971+0.2242  0.3758=0.2277 0.4059+0.2198 | 0.3473£0.2027 0.3149+0.2126  0.3762+0.2097  0.3763+0.2036  0.4244+0.1774 0.2186+0.1934  0.3847+0.2019  0.3762£0.2097  0.3763+0.2036  0.3762=0.2097  0.3389+0.2074
Heart (CLE) MAE | 0.3405£0.238  0.317£0.2501  0.3509=0.239 | 0.3213+0.2522 0.2859+0.2681  0.3332+0.2451  0.3315+0.2426  0.3703=0.2013 0.1925+0.2498  0.3411+0.2326  0.3332+0.2451  0.3315+0.2426  0.3332%0.2451  0.3088=0.2491
MSE | 0.3101+0.2305  0.2789+0.2503  0.326+0.2351 | 0.3161+0.2696  0.272+0.2845  0.3063+0.2504  0.3089=0.2511  0.3437+0.2111 _ 0.2026+0.335 _ 0.3205+0.2384 _ 0.3063+0.2504  0.3089=0.2511  0.3063+0.2504  0.29660.2636
ACC | 0.1853+0.0955 0.1928=0.0975 0.1722+0.0739 | 0.1864+0.0816 0.1954+0.0952 0.1877+0.0964 0.1825+0.0829 0.1772+0.0831  0.0163+0.0923 0.174=0.0749  0.1877+0.0964  0.1825+0.0829  0.1877=0.0964  0.1934+0.0952
SWD MAE | 0.1879+0.0969  0.1963+0.0975  0.1741=0.0787 | 0.1905+0.0856  0.2024=0.1009 0.192+0.0984  0.1858=0.0854  0.1792+0.0865 0.0065+0.0943  0.1762+0.0803  0.192+0.0984  0.1858=0.0854  0.192+0.0984  0.1979+0.0985
MSE | 0.1876+0.1183  0.1969+0.118  0.1732+0.106 | 0.1928+0.1096  0.2075:0.1266 _ 0.1940.1201 _ 0.1863=0.1086 _ 0.1785+0.1101 _ -0.0019:0.1167 0.1759+0.1067 _ 0.194=0.1201 __ 0.18630.1086 _ 0.194=0.1201 __ 0.2005:0.1199
ACC | 0.1439+0.1203 0.1255+0.1142  0.1652+0.1106 | 0.181+0.111 0.1387+0.1281  0.1545+0.1149  0.1672+0.1127  0.1735+0.0989  0.1034+0.1044  0.1795+0.1103  0.1545+0.1149  0.1672+0.1127  0.1545+0.1149  0.1654=0.1269
ERA MAE | 0.042620.148  0.0423+0.1443  0.0398=0.1399 | 0.1478+0.1265 0.1388=0.1559  0.1036+0.1505 0.1063+0.1452  0.1105+0.1401  0.167=0.0988  0.1046+0.1339  0.1036+0.1505  0.10630.1452  0.1036+0.1505  0.1438=0.1379
MSE | -0.039+0.1963  -0.0261+0.2045 -0.0584=0.1814 | 0.0828+0.14 0.0793:0.1813  0.0264+0.1908  0.0184=0.1749  0.0263+0.181 _ 0.1836+0.1313  0.013+0.1649  0.0264:0.1908  0.0184=0.1749 _ 0.0264:0.1908  0.0844+0.1492
ACC | 0.0922+0.1431  0.0879+0.1542  0.0755x0.1455 | 0.097+0.1717  0.0977=0.1914  0.1017+0.1664  0.1024+0.1743  0.1084+0.1705 -0.0491+0.1696 0.0842+0.1722  0.1017£0.1664  0.102+0.1746  0.1013+0.1668  0.1137=0.1794
ESL MAE | 0.07440.178  0.0707+0.187  0.0574=0.183 | 0.0717+0.2019  0.0802=0.2176  0.0818+0.1963  0.0806+0.2044  0.0837+0.1997  -0.0963+0.1582 0.0615+0.2035  0.0818:0.1963  0.0803=0.2047  0.0814:0.1967  0.0906=0.2084
MSE | 0.0146+0.2086  0.0123+0.2136  -0.0044=0.2241 | 0.0094+0.232  0.0276=0.2318 _ 0.023+0.2204 _ 0.0221+0.23 0.02:+0.2223 -0.1868=0.1086  0.0027+0.2366  0.023+0.2204 _ 0.0218+0.2303 _ 0.0227+0.2208  0.029+0.2298
ACC | 0.0772+0.1122  0.0904=0.1233  0.0619+0.1076 | 0.0669+0.0991  0.0993+0.1215 0.0809+0.1056  0.077+0.1038  0.06+0.1008 -0.036+0.0888  0.0591+0.101  0.0809+0.1056 0.077+0.1038  0.0809:0.1056  0.0771=0.1016
LEV MAE | 0.0489+0.1018 0.062*0.1128  0.0362£0.0973 | 0.0457+0.0837  0.076%0.1055  0.0557+0.0914  0.052+0.0907  0.0379+0.0838  -0.0023+0.0945 0.0358+0.0883  0.0557+0.0914  0.052+0.0907  0.0557+0.0914  0.05420.0862
MSE | 0.0118+0.1021  0.0242+0.1114 _ 0.0029=0.0967 | 0.0199+0.0879  0.0469=0.0996  0.0233+0.0901 _ 0.0203+0.091 _ 0.0096+0.0818  0.0443+0.1486 _ 0.0067+0.0911  0.0233+0.0901 _ 0.0203+0.091 _ 0.0233+0.0901 _ 0.0257+0.0871
ACC | 0.1695+0.0622 0.1698=0.0614 0.1679+0.0622 | 0.1643£0.0597  0.1679+0.0623  0.1673+0.0614  0.1681£0.0615 0.1661+0.0622 -0.0272+0.1224 0.1668+0.0614  0.1679=0.0615 0.1676+0.0613  0.1675+0.0613  0.1646+0.06
Red Wine MAE | 0.1529+0.0615 0.1527+0.0607  0.1501=0.0633 | 0.1459+0.0593  0.1505+0.0622  0.1507+0.0605 0.1507+0.0622  0.1495+0.0609  -0.0433+0.1172 0.1488+0.062  0.1513+0.0608  0.1502+0.0617  0.1508+0.0604  0.1477=0.0582
MSE | 0.1281+0.0717  0.1271+0.0701 _ 0.124+0.076 0.1192+0.0708  0.1248+0.0716 _ 0.1259=0.07 0.1251:0.0738  0.1249+0.072  -0.0696=0.1164 0.1225+0.0744 _ 0.1265+0.0706  0.124620.073  0.126=0.0698  0.1224+0.0676
ACC | 0.0931+0.0476  0.0922+0.0474  0.0932+0.0465 | 0.0927+0.0455 0.0928+0.047  0.0933+0.0472  0.0936+0.047  0.0942+0.0473 0.0219+0.0575 0.0929+0.0459  0.0934=0.0473  0.0934+0.0469  0.0933=0.0472  0.0926+0.0465
White Wine MAE | 0.0977+0.0545 0.0965+0.0543  0.0981+0.0543 | 0.0993+0.0545  0.0985+0.0548  0.0988+0.0547  0.0992+0.0548  0.1+0.0552 0.027+0.0587  0.0989+0.0545  0.0988=0.0548  0.099+0.0549  0.0988+0.0548  0.099+0.0548
MSE | 0.1065+0.0756  0.1049+0.0753  0.1076=0.0765 | 0.1118+0.0798  0.1092:0.078 _ 0.1092+0.0775 _ 0.1099+0.078 _ 0.111:0.0788 _ 0.0405+0.0631 _ 0.1104£0.079  0.1092:0.0774 _ 0.1097+0.0781 _ 0.1092:0.0774 _ 0.11090.0789
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