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A B S T R A C T

To understand how AR effects on STEM learning depend on individual differences, it is essential to follow the ATI 
(Aptitude-Treatment Interaction) perspective and investigate interactions between individual differences and 
AR- vs. non-AR conditions. This systematic review explored the extent to which individual characteristics are 
examined in AR research as predictors to further review if and how AR research in STEM education follows an 
ATI approach. Our findings reveal that from 2013 to 2022, k = 38 studies investigated the role of individual 
variables as predictors with only k = 5 studies considering how individual differences interact with AR vs. non- 
AR conditions. Spatial ability emerged as the most frequently studied learner characteristic in ATI-AR research, 
yet its impact on learning outcomes remains inconclusive. We discuss possible reasons for this gap and propose 
solutions, offering a study design framework to conduct AR studies considering the ATI perspective.

The integration of cutting-edge technologies like artificial intelli-
gence (AI), Virtual Reality (VR), and Augmented Reality (AR) into 
education provides considerable potential for personalized learning. 
Through interactive guidance and real-time adaptation to students 
responses and behaviors (Bhutoria, 2022; Marougkas et al., 2023), 
these technological advancements allow for prioritizing the learner 
and addressing their individual interests and needs, thus realizing the 
fundamental aspect of personalized learning (Bernacki et al., 2021).

In other words, in personalized learning, learners characteristics 
shape the constituents of the learning path and the ways the path is 
paved, namely, instruction, such as formats and methods used in 
teaching. This reflects the key postulate of the aptitude-treatment 
interaction (ATI), formulated back in the 1970s. According to Snow 
(1977), an individual's abilities or characteristics (aptitudes) respond 
differently to specific educational interventions (treatment).

In a traditional classroom, any instructional intervention is a mere 
element of the educational environment the learner is already familiar 
with. The use of collaborative learning in a classroom is an instance of 
such an intervention. Collaborative learning is an instructional format 
that presupposes the students to work together. Even though this sort of 
group cooperation might be novel to students, the other learning con-
stituents remain familiar, for example, the classroom settings, group/ 
interpersonal interaction, per se. Watching a video is another instance of 

a format variation in learning and instruction. Bringing some novelty to 
the instructional format, interaction with the video screening still takes 
place in the learning environment (the classroom) the learners have 
experience dealing with.

In the case of immersive technology, such as VR and AR, the learner 
gets exposed to a novel surrounding (or environment), for example, 
being inside the human body in a VR learning environment or seeing the 
solar system in AR glasses in the classroom. In the case of VR, the new 
environment is fully immersive, i.e., the learner is meant to completely 
surrender themselves to the environment to start feeling physically 
present in a different place or setting. For AR, which this study is focused 
on, the immersion is usually manifested through some non-regular 
features displayed in the still familiar surroundings (e.g., seeing the 
planets of the Solar system in the familiar classroom).

Beyond novelty effects, such environmental experiences in AR also 
have a variety of characteristics of their own that may affect, and, 
crucially, put new demands on the learner. For example, they present 
information in three dimensions instead of two dimensions such as in 
written information, and they provide potential for immersion.

These environmental characteristics, which we label here AR affor-
dances, should not be seen to automatically provide additional learning 
potential. Whether and to which extent AR supports - or even hinders - 
learning might depend on the instructional design used and the 
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characteristics that learners require to realize the full potential of these 
AR affordances. For some learners, AR might be supportive because they 
possess the spatial abilities required to process augmented information 
(Krüger et al., 2022). For other learners, AR affordances might be un-
necessary, or overwhelming because they might induce additional 
cognitive load that prevents learners from integrating the new infor-
mation with their prior knowledge (Ling et al., 2021).

Yet, to the best of our knowledge, there is no review of research on the 
technological affordances of AR and their interaction with learner char-
acteristics available. Without such an overview, it is difficult to gauge 
which questions in this regard have been worked on and to draw con-
clusions regarding the specific AR affordances × learner characteristics 
interaction. Given that AR affordances, such as visualizing the invisible 
and showing the object in a 3D perspective, are particularly fitting for 
learning activities in STEM subjects, we conducted a systematic literature 
review to investigate the extent to which individual characteristics and 
their interaction with the AR environment have been investigated in 
STEM fields. Examining this question, we aim to provide a comprehensive 
overview of the current landscape within individual differences research 
related to learning with AR. We first identify studies that treat individual 
differences as predictors for the learning outcome. In a second step, we 
examine which of these studies followed the ATI perspective. That means 
that our systematic review encompasses all studies that examine the in-
dividual variables as predictors of learning outcomes in AR learning set-
tings, and then we focus on studies that look at the interaction of the effect 
that an AR condition has in comparison to another condition with 
learners' individual characteristics. Only the latter study design allows for 
determining which demands on learners' individual characteristics are 
specific to AR and not more generally required in STEM learning. Based 
on this perspective, we illuminate exemplary methodologies and map out 
a prospective research agenda.

1. Theoretical background

1.1. Personalized learning

In the past years, there have been multiple attempts to coin (or 
recycle) the universal definition of personalized learning. One of the 
most common definitions, developed by Spector (2018) characterizes 
personalized learning as the learning environment adapted to the 
learners individual knowledge and interest. Technological affordances 
come crucial in the implementation of such an environment in order to 
adjust the pace and content of instruction based on individual learner 
performance (OECD, 2006; Shemshack et al., 2021; Spector, 2014).

This implies the necessity to integrate the learners' needs and 
specificities into the learning environment afforded by technology. For 
instance, Benhamdi et al. (2017) integrated personalization in the 
learning environment by accounting for students' preferences, 
interests, background knowledge, and working memory capacity. 
Narciss et al. (2014) considered the learners' motivation, prior 
knowledge, and gender differences in adapting the learning material to 
the learners' needs.

The realization of such adaptivity presupposes a clear-cut idea of 
how exactly different learners employ or/and react to different learning 
environments enabled by technology. The idea of tailoring instruction to 
accommodate students' individual differences is not new. Locating the 
most effective instructional strategies to meet the varying needs of stu-
dents was articulated back in the 70s at the dawn of ATI and is currently 
undergoing a revival. However, today, there is still little evidence on 
how individual differences align with different instructional approaches 
(Tetzlaff et al., 2023). In the next section, we are going to delve into 
what exactly ATI means and explore the state-of-the-art research in 
learning with technology, particularly in STEM education.

1.2. Aptitude-treatment interaction research in STEM

The key premise of the ATI concept is that the same instructional 
setting may affect different learners differently and that this difference is 
conditioned by inherent learner characteristics (Snow, 1980). Learner 
characteristics - unique traits of the learners - have been classified in 
various ways (Murphy, 2012; Sackett et al., 2017). In this review, we 
utilize the individual differences classification developed by Vande-
waetere et al. (2011) in relation to the technology use in personalized 
learning. According to this classification, individual differences expand 
across the three main domains cognition, affect, and behavior. The first 
domain encompasses cognition-related traits such as intelligence, prior 
knowledge, working memory capacity, and reasoning ability. The affect 
domain includes a vast variety of affective traits (note that these are also 
based on cognition, but in contrast to the cognition-related traits, they 
exclude for example skills and abilities; Kell, 2018), such as motivation, 
self-efficacy, interest, engagement, or creativity. The behavior domain 
contains the so-called interaction parameters (not to be confused with 
statistical interaction), that is, the individual characteristics occurring 
when interacting with the learning environment (e.g., self-regulation 
and help-seeking). These characteristics are also closely connected to 
cognitive and/or affective domains.

Normally, aptitude is treated as a moderator, a variable influencing 
the strength or direction of the relationship between the outcome vari-
able (e.g., knowledge of electromagnetism) and the treatment (e.g., 
learning with a traditional experimental set-up or with AR; Preacher & 
Sterba, 2019). It is also necessary to check the presence or absence of the 
interaction between a specific learner characteristic (e.g., prior knowl-
edge) and the treatment (e.g., introduction to electromagnetism through 
magnetic field demonstrations with iron filings) and its magnitude - i.e., 
how differently learners with various levels of aptitude will react to 
different treatments. For this reason, a control group is required to 
provide a baseline for comparison for these different treatments. A 
control group allows to isolate and examine the specific effects of 
moderator variables on the relationships between predictor and 
outcome variables, namely the individual characteristic and the treat-
ment, to properly assess the moderator effects across various contexts.

Since the present research is concerned with individual character-
istics that are required for learning successfully from the affordances of 
AR and the affordances-informed instructional design, a control condi-
tion in our case is any comparison condition that does not use AR or any 
other technology (e.g., a traditional STEM learning condition using pen 
& paper or ball & stick models).

Current research findings have identified specific individual vari-
ables that have an impact on knowledge acquisition in STEM 
(Alexander, 2017 - for relational reasoning; Berkowitz et al., 2022 - for 
working memory capacity; Sorby et al., 2018 - for spatial ability; 
Edelsbrunner et al., 2023 - for representational competence). Simulta-
neously, other challenges in learning STEM are associated with the 
instructional approaches and methods utilized. For instance, Quinn et al. 
(2020) emphasizes the lack of integration of scientific inquiry practices 
into real-world learning, stating that the scientific phenomena lose its 
meaning to many students, as the way science is presented seems to be 
disconnected from their real-world experiences. Another challenge 
related to STEM learning is that some students experience great diffi-
culty with theoretical representations of scientific concepts (Sahin & 
Yilmaz, 2020).

However, STEM education has emerged as a growing priority in 
global policy agendas (Tytler, 2020). The importance of STEM education 
has been explicitly highlighted by recent research findings, emphasizing 
that the number of STEM graduates is positively associated with GDP, 
employment, and labor productivity (Bacovic et al., 2022; Ray, 2015). 
Given the importance of boosting STEM education, it is crucial to tackle 
the challenges it poses, i.e., integrating the scientific concepts into real- 
life settings and supporting learners with the visual representation of the 
scientific phenomena. One way to do this is by using AR technology. In 
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the next section, we will map out possible ways to approach it.

1.3. Affordances of augmented reality for STEM learning

One widely adopted definition of AR, developed by Azuma (1997), 
describes AR as the technology which simultaneously represents real 
and virtual objects in a 3D perspective within an authentic environment 
in real-time. Another characteristic is a proper alignment of real and 
virtual objects that achieves a seamless integration of virtual objects into 
the real world (Buchner et al., 2022).

Aligned with these defining characteristics, AR offers various affor-
dances. Particularly in STEM education, AR enables multiple affordan-
ces that may support learning. Wu et al. (2013) mapped out AR 
affordances in their literature review. According to their research, AR 
environments present the following properties: depicting learning con-
tent in 3D perspectives, offering ubiquitous, collaborative and situated 
learning, providing learners with senses of presence, immediacy, and 
immersion, visualizing the invisible, and connecting formal and 
informal learning. Even though these affordances are not specific to AR 
environments alone (Krüger et al., 2019) and can also be applied to 
other immersive (e.g., VR) and traditional environments (e.g., classroom 
settings), we selected this classification of affordances because it cap-
tures the overall complexity and variability of what AR environments 
can offer.

The first affordance AR provides is a 3D perspective of the study 
object. In other words, the three-dimensional virtual object gets dis-
played in the user's real-world environment, granting the learner the 
opportunity to examine it from various angles. This affordance is 
particularly important when it comes to learning three-dimensional 
geometric shapes (Bhagat et al., 2021). The study revealed that the 3D 
depiction of these concepts leads to an increased learner's satisfaction 
and engagement.

The second affordance is the provision of situated, collaborative 
learning. Namely, the use of AR incentivizes the learners to work 
together (collaboratively and ubiquitously) and acquire knowledge in 
authentic and contextually relevant settings (situated learning). For 
instance, Tarng et al. (2015) developed a virtual butterfly ecological 
system by combining the campus host plants with the butterfly breeding 
activities displayed virtually by means of AR. Students could use 
smartphones or tablet PCs to “breed” virtual butterflies on the plants to 
further gain a deeper understanding of their life cycles and stages of 
growth.

The third affordance, according to Wu et al. (2013), is granting 
learners a sense of presence, immediacy, and immersion. Sense of 
presence experienced in AR stands for the capacity to interact effort-
lessly and naturally with all the genuine and mediated elements of the 
environment (Benyon, 2012). Immediacy refers to the quality of 
providing real-time and direct interaction or feedback between the 
virtual/augmented and real elements within the user's environment, 
thus affording instant and responsive interactions to contribute to a 
more immersive and engaging AR experience. Immersion is defined as 
vividness provided by a system, representing the system's capacity to 
exclude external factors (Cummings & Bailenson, 2016). All three as-
pects (the sense of presence, immediacy, and immersion) can positively 
affect the motivation and engagement students experience while 
learning (Cai et al., 2021).

The fourth affordance, which might be particularly relevant for 
STEM learning, is making the invisible visible. Revealing the unseen, AR 
enables learners to develop a deeper understanding of abstract concepts 
by effectively creating visual representations, such as diagrams or 
graphs, that can accurately shape the learner's understanding of elabo-
rate science concepts. Yoon and Wang (2014) allowed the students to 
manipulate bar magnets in real-time and observe the visualized mag-
netic fields dynamically depicted on a computer screen. This visualiza-
tion of the fields increased the students' interaction with the magnets 
and improved learners' engagement as well as collaboration.

Finally, connecting formal and informal learning, that is, extending 
traditional boundaries of learning from the school settings to everyday 
learning contexts, AR enables learning in various environments and 
shapes. An example of such a use of AR is the study of the effect of 
visualizing multiple representations to help convey basic concepts of 
current and resistance in a Science museum (Beheshti et al., 2017). In 
this study, parents and the kids who took part were offered to see the 
circuit visualized by means of AR. Not only did this intervention lead to 
the kids' improved performance in the post-test, but also stimulated an 
increased parental engagement in helping the kids understand the 
essence of current when examining the topic with AR. This change 
occurred due to the different nature of exploratory questions kids posed 
when “seeing” the current flow.

All the above-described affordances, that is 3D perspective, sense of 
presence, immediacy and immersion, collaborative and situated 
learning, making the invisible visible and bridging the formal and 
informal learning, emphasize the potential impact that AR can have on 
STEM learning. Previous research highlighted the advantages AR brings 
about in terms of the learning outcome in the following fields: physics 
(Akçayır et al., 2016; Tarng et al., 2022), chemistry (Chao et al., 2016), 
anatomy (Ferrer-Torregrosa et al., 2015), and medicine (Aebersold 
et al., 2018). Another encouraging finding of AR in STEM educational 
contexts is that most studies report positive effects on affective student 
characteristics, such as motivation and attitudes towards STEM subjects 
(Cao & Yu, 2023; Khan et al., 2019).

At the same time, studies more generally investigating differential 
effects of technology use also highlight the effect of certain learner 
characteristics on the learning outcome (Hofer & Reinhold, submitted). 
For instance, students with higher working memory capacity benefited 
more from computer-assisted instruction compared to those with lower 
working memory capacity (Chevalère et al., 2021). This might be 
attributed to the complexity of the computer-assisted environment, 
which can overload the learners with lower working memory capacity. 
When it comes to the use of VR, compared to high spatial ability stu-
dents, low spatial ability students seem to profit more from learning with 
VR (Lee & Wong, 2014). Another recent study also revealed that stu-
dents with lower prior knowledge gained a better learning outcome 
when being instructed with the help of VR in comparison to students 
with higher prior knowledge. However, this was true when a signaling 
principle (making the important information more prominent by means 
of highlighting the text, for instance) was used in the VR learning 
environment (Han et al., 2023). In other words, for learners with higher 
levels of prior knowledge, VR technology had no impact.

Given the affordances AR offers and thus, the novel learning envi-
ronment this entails, it is crucial to systematically examine learner 
characteristics × AR affordances interactions explored in STEM educa-
tion research.

1.4. Treatment in AR studies

In the classical ATI research, treatment is traditionally defined as an 
instructional method or environment applied to explore its interaction 
with learners' characteristics and its effects on the learning outcomes 
(Snow, 1977). In technology-enhanced learning, however, defining 
treatment becomes more complex. On the one hand, the use of tech-
nology, when compared to a control group (typically a traditional 
classroom setting), predefines the essence of intervention group treat-
ment. On the other hand, technology alone, despite its unique affor-
dances, cannot substitute for the absence or inadequacy of learning 
strategies in place. In other words, we cannot look at the treatment in the 
technology-supported condition as a mere use of technological affor-
dances in the instruction.

Media comparison studies, i.e., studies that compare the effective-
ness of one medium (e.g., AR, VR, videos) with another (e.g., traditional 
classroom methods, print materials) to determine which is better for 
learning outcomes, have faced criticism for comparing fundamentally 
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different treatments, often overlooking the broader instructional design 
and pedagogical ground underlying the use of technology (Buchner & 
Kerres, 2023; Feldon et al., 2021). In their systematic review, Buchner 
and Kerres (2023) argue that 80 % of the existing AR research focuses on 
media comparison neglecting that solely technology does not drive 
learning. It is the alignment of the instructional methods with the 
learning objectives, learning environment and learning tools (e.g., 
traditional paper-based or technology-supported ones) that impact the 
“how” and the “why” of learning.

For this reason, our definition of treatment in AR research encom-
passes the multiple facets of learning with technology. We define 
treatment as an instructional intervention in a learning environment 
where specific instructional design that accounts for the environmental 
affordances and learning outcomes is used.

1.5. Learning outcomes

One of the most widely-used learning outcomes taxonomies devel-
oped by Bloom looks into the learning processes which best manifest the 
cognitive process the learner is involved in while studying for a specific 
learning outcome (Bloom, 1956; Forehand, 2010). Considering the 
complexity of the aims pursued in STEM education, we looked for the 
means to also integrate the type of knowledge aimed at, as well as the 
extent of knowledge complexity expected from the learner to master a 
new topic in our exploration of the learning outcomes.

To this end, we relied on the pragmatic instructional alignment 
taxonomy (PIAT) as a taxonomy to categorize learning outcomes in AR 
research (Hofer & Schalk, in preparation). The PIAT is a taxonomy that 
encompasses three characteristics of the learning outcome: The cogni-
tive process, type of knowledge, and knowledge complexity. The first 
characteristic, the cognitive process learners are undertaking, describes 
whether to achieve a learning goal, learners have to reproduce what 
they have learned, whether and to which extent they have to transfer the 
learning content to apply it in new contexts or over time (Barnett & Ceci, 
2002), and whether they have to produce something new based on what 
they have learned. In the context of the STEM disciplines, knowledge 
reproduction can be exemplified by memorization and reproduction of 
scientific facts, formulas, or equations. For knowledge transfer – appli-
cation of the law of physics to explain the motion, and for knowledge 
production students apply theoretical concepts of Newton's laws to the 
practical experience in a pendulum experiment.

In terms of the type of knowledge, the PIAT taxonomy differentiates 
between declarative (factual and conceptual knowledge, i.e., facts and 
their relationship) and procedural knowledge (practical understanding 
of how to perform tasks and activities, involving the sequential steps or 
actions required for their execution). Knowledge complexity is repre-
sented by a high or low number of knowledge elements learners need to 
possess to achieve the learning outcome (e.g., clear indication of the 
necessity to have a certain extent of prior knowledge before the 
intervention).

Different cognitive processes, types of knowledge and complexity of 
knowledge manifested in different learning outcomes require different 
abilities of individuals to achieve these learning outcomes (Hofer & 
Schalk, in preparation). We therefore considered it crucial to embed the 
diversity of learning outcomes in the scope of our research considering 
individual differences in the use of AR in STEM.

1.6. Learning in technology-afforded environments triad: a study design 
framework

Given the multitude of affordances inherent in technology, along 
with the complexity of learning outcomes and individual characteristics, 
the interaction among these three elements - technological affordances, 
individual variables, and learning outcomes - is crucial for under-
standing intervention effectiveness in technology-afforded environ-
ments. This interaction emphasizes the specific affordances inherent to 

each technology, rather than the variation of specific instructional 
properties within the technology itself (e.g., using worked examples 
versus problem-solving approaches in virtual reality learning environ-
ments). We developed a study design framework called Learning in 
Technology-Afforded Environments Triad (L-Tech Triad) to underline 
the necessity of incorporating all the aspects in designing studies 
embracing technological affordances (Fig. 1).

It also pinpoints the need to consider how individual variables may 
vary depending on the learning content/outcome and technology under 
study. Therefore, careful consideration of which individual variables to 
analyze and specifying the corresponding learning outcomes addressed 
in each instance is crucial. The framework highlights the complexity of 
the “treatment” notion, i.e., the combination of instructional strategies, 
principles and the technological affordances, when it comes to learning 
in the technology-supported environments. In other words, it elaborates 
on the key facets of the treatment that should be considered in the study 
design.

1.7. Present study

In the recent years, there have been multiple systematic reviews and 
meta-analyses in the field of AR and STEM (see Chang et al., 2022 for a 
meta-analysis, Hidayat & Wardat, 2023 for AR in STEM; Ibáñez & 
Delgado-Kloss, 2018 on AR in Science Education; Xu et al., 2022 for 
meta-analysis on moderators of AR in science learning), which exten-
sively cover the state of the art in research in AR. However, an exami-
nation of existing ATI studies in AR research, thus identification of 
interactions between learner characteristics and the treatment in the AR 
environment, has yet to be performed. At the same time, when it comes 
to learning success in STEM, there is strong evidence to suggest that 
learning strongly depends on individual differences of the learners (e.g., 
Alexander, 2017 – for relational reasoning; Berkowitz et al., 2022 – for 
working memory capacity; Sorby et al., 2018 - for spatial ability). 
However, these findings were derived from studies carried out in 
traditional classroom settings without AR usage.

In this systematic review, we attempt to build on and extend existing 
research syntheses to determine the extent to which individual differ-
ences have been explored in AR research and to clarify what is currently 
known (and not) about the role of learner characteristics in AR- 
supported learning in STEM education. Concentrating on the STEM 
fields allows for a more targeted synthesis of how individual learner 
differences affect learning outcomes in domains where AR affordances 
are particularly relevant.

We do this we first investigate the current state of the art regarding 
individual differences as predictors in AR research, and then narrow the 
list to those studies that examine the learner characteristics from an ATI 
perspective. We look into the following research questions: 

RQ1: To what extent are individual characteristics investigated as 
predictors in AR research within STEM education?
RQ2: What is the state of the art in AR research in terms of consid-
ering AR affordances, learning outcomes, and individual differences 
from an ATI perspective?

Importantly, we focused on studies that included the control group 
(non-AR settings) as a baseline for a moderation analysis. 

RQ3: What are the key design characteristics of these studies?

We synthesize our findings and the results of the selected studies on 
the role of individual differences in the learning effectiveness of AR in 
STEM subjects and the statistical tests used to further highlight the 
challenges associated with examining learner characteristics in AR- 
supported environments. From this synthesis, we derive theoretical 
implications and propose a research agenda for the future, anchored in 
the Learning in Technology-Afforded Environments Triad. This 
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framework is designed to guide researchers in developing AR-based 
studies, addressing the individual characteristics, instructional design 
guided by AR affordances and learning outcomes.

2. Methods

2.1. Search method

To obtain an in-depth overview of the current research, considering 
the latest technological advances, we focused on the last decade, 
including studies dating 2013–2022 in the sample. We considered this 
particular decade, as this review, in many ways, is an extension to the 
existing literature reviews and meta-analyses, which also focus on this 
time span, as the advances in the AR research had yet to be synthesized 
(Chang et al., 2022).

For our study selection, we utilized the search parameters and the 
findings of a meta-analysis by Chang et al. (2022) as in January 2023, 
when the first phase of the literature search was performed, it was the 
most recent and broad-ranged work reviewing AR research. In addition, 
Chang et al. (2022) also investigated various learning outcomes 
addressed with the affordances of AR alongside examining its applica-
tion in a wide range of subject areas, including STEM. From this meta- 
analysis, we retrieved the studies published from 01.01.2013 to 
31.12.2021 (k = 134). For the studies from 01.01.2022 to 31.12.2022, in 
line with the search string used by Chang et al. (2022), we utilized the 
same basic selection criteria and the study exclusion criteria in the initial 
phase. That is, we searched for the following terms “augmented reality”, 
“augmenting reality”, and “mixed reality”, combined with “learning”, 

“education”, “training”, “teaching”, and “instruction” in the two data-
bases Web of Science and Scopus, which were the two databases utilized 
by Chang et al. (2022). The search was performed in January 2023 and 
yielded k = 756 results for the Web of Science and k = 318 for Scopus. 
After removing duplicates and conference proceedings, the remaining 
498 titles were examined. These studies, together with the 134 studies 
derived from Chang et al. (2022) sample and three more studies found in 
other sources by means of snowballing, went through the two-phased 
selection procedure.

In the literature search and selection, we were guided by the pro-
cedure of the Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA; Page et al., 2021). Fig. 2 provides more detail 
on how the selection procedure was implemented.

2.2. Selection procedure

In Phase 1, we imported the search results from the database search 
and other sources into Citavi v.6 (Swiss Academic Software GmbH, 
2018), where the studies went through title and abstract screening. We 
then excluded 409 records based on the following exclusion criteria: 
written not in English; conference proceeding; a non-empirical study; 
pre-school students or teachers as a sample (while we focused on STEM 
education at schools); non-learning outcome addressed, i.e., motivation, 
enjoyment, self-efficacy etc. (since we aimed at inspecting, the effect AR 
has on the learning achievement in STEM); studies done in special ed-
ucation; vocational education; non-STEM subjects (e.g., art or English as 
a foreign language); conceptual paper (e.g., AR environment design is 
described or a possible use of AR in teaching, in general).

Fig. 1. Learning in Technology-Afforded Environments Triad (L-Tech Triad). 
Note. This figure shows the three components of study design with the use of technology for STEM education.
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Coder 1 initially established the coding criteria. Subsequently, coder 
2 conducted pilot testing with a subset of studies (k = 25) using this 
coding scheme. Then an assessment of interrater reliability followed. 
After performing consistency check, discussing the inconsistencies and 
reviewing discrepancies in the coding, this procedure was iterated three 
additional times with randomly-selected subsets of studies. After four 
rounds of pilot testing, an interrater reliability coefficient of Cohen's 
kappa 0.8 was achieved. Any inconsistencies were discussed until 100 % 
agreement was reached. At this point, coder 1 proceeded with the coding 
process. The same procedure was repeated for phases two and three of 
the studies' coding process.

In Phase 2, the remaining k = 217 documents were imported into the 
open-source CADIMA software for the full-text inspection (Kohl et al., 
2018). We particularly looked into the research questions, hypotheses, 
and the statistical analysis used for the hypotheses testing.

In our sample at this phase, we included studies that examined in-
dividual characteristics as predictors. If the individual variable was used 
as a moderator, mediator, or as a covariate in the statistical methods 
used for the data analysis, the study was included in the sample. We also 
checked if the measurements used in the experiments indicated reli-
ability and validity. The presence of a control group was another crite-
rion for the study to be included. The total number of the studies at this 
phase (RQ1) amounted to k = 38 studies.

In the final selection phase (RQ2), we extracted only the studies 
which examined learners' individual characteristics as moderators ac-
cording to the traditional ATI approach. The final sample for RQ2 and 
RQ 3 amounted to k = 5 studies.

2.3. Coding strategy

We coded the sample of k = 38 studies (RQ 1) based on the STEM 
subject in which the AR intervention was used, the specific individual 
characteristic analyzed, the test used to measure these characteristics, 

and the statistical analysis applied. For the coding of the sample for RQ 2 
and 3 (k = 5), we additionally focused on the sample size, learning 
outcomes, and AR affordances. Table 1 provides a thorough overview of 
the key variables we coded based on existing frameworks.

2.3.1. Learner characteristics
Learner characteristics encompass a wide range of unique traits and 

individual characteristics, such as cognitive (e.g., working memory ca-
pacity, spatial ability, relational reasoning), affective (motivation, 
achievement emotions) and behavioral (self-regulation, meta- 
cognition). Initially, we aimed at narrowing down our examination to 
solely cognitive traits. However, given a scarce number of studies 
identified, we widened the scope to include all the three groups.

2.3.2. Statistical approach
It has been pointed out that in order to test the differential effec-

tiveness of an educational approach such as AR-supported learning 
across individual characteristics, an appropriate statistical approach has 
to be used. Such analyses have to include an interaction term between 
the aptitude and the condition (e.g., 2 × 2 ANOVA or an interaction term 
between condition and aptitude in a regression analysis). If only one 
group of learners with AR is used and learning gains within this group 
are predicted by an individual characteristic of the learners, then this 
analysis does not allow examining whether the effect of the individual 
characteristic is caused by specific requirements of the AR setting, or 
whether it is just a more general predictor of learning (Tetzlaff et al., 
2023). Therefore, a control condition has to be used in which AR or a 
specific implementation of it are not realized. The statistical analysis has 
to implement a moderation effect that shows whether, under the AR 
condition, the effect of the individual characteristic differs in compari-
son to its effect under the control condition. Such a moderation effect 
would indicate that an individual characteristic clearly depends on the 
AR condition and is not just a mere general learning prerequisite that is 

Fig. 2. Diagrammatic representation of the PRISMA review process. 
Note. The PRISMA chart describes the process for the studies selection.
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not specific to AR (Tetzlaff et al., 2023). Consequently, we systemati-
cally coded the statistical analyses employed across the studies to 
ascertain whether aptitude was treated as a moderator (Preacher & 
Sterba, 2019). We also noted whether and in how many cases individual 
characteristics have been assessed but not been used in this manner (e. 
g., because they were treated as covariates but not as moderators).

2.3.3. AR affordances
For AR affordances in line with Wu et al. (2013), we identified the 

following subcategories: three-dimensional perspective, immediacy, 
making the invisible visible, situated learning, and connection formal 
and informal learning. Originally, Wu et al. (2013) proposed treating 
immersion and sense of presence alongside immediacy. However, after 
examining our sample, we employed only the “immediacy” affordance, 
as the immersion and sense of presence did not particularly apply to the 
context of the studies examined.

2.3.4. Instructional design
To avoid the “media comparison trap”, in this review, we did not 

contrast technology- supported conditions with traditional settings per 
se, but rather highlighted how AR affordances are embedded in the 
instructional design. That is, we first examined which AR affordances 
were used in the technology-supported group, and how these affor-
dances informed the instructional design, and the other way around. We 
deliberately avoided employing any particular framework for the 
instructional principles or methods, as we sought to explore the full 
capacity of how design is currently reflected, without restricting our 

investigation to any formal parameters.

2.3.5. Instructional function of AR
We also looked at the role of AR in instructional design. We wanted 

to find out whether AR was used as a supplement or as a replacement for 
the traditional learning material (e.g., a printed handout). In other 
words, we investigated whether AR complemented the learning material 
and was used alongside the book (e.g., AR provided the visualization of 
normally invisible magnetic fields in the horseshoe magnet in addition 
to the visualizations provided by the book) or replaced the traditional 
learning material and became the central medium of content delivery.

2.3.6. Learning outcomes
The PIAT taxonomy was selected as it properly corresponds to the 

real-life demands of instruction Hofer & Schalk, in preparation). Offer-
ing three dimensions to the goal-setting, this taxonomy examines the 
learning outcomes considering (1) cognitive processes (reproduce, 
transfer, and produce), (2) types of knowledge (procedural and declar-
ative), and (3) complexity (number of knowledge elements, including 
the prior knowledge students need to engage with to achieve the 
learning outcome). This holistic approach to the learning outcome 
considers the practice-based nature of the studies. In other words, 
running a study, these are the exact three dimensions the learning 
outcome is centered around. Proximity to the real-world classroom 
makes the taxonomy practical for distinguishing the learning outcomes 
from the research, which is also practice-based. To code the cognitive 
processes, type of knowledge, and knowledge complexity, we looked 
into the intervention and the post-test used to check which type of 
knowledge and cognitive process were in focus of the experiment.

3. Results

3.1. Research question 1

Our first research question was to identify studies that addressed 
individual differences in AR research in STEM education. The key 
requirement for selecting the study was that the individual characteristic 
was considered as a predictor in the data analysis. Table 2 provides an 
insight into the studies identified at this stage.

Out of 38 studies identified, 29 studies were published in the last five 
years (from 2019 to 2024). The studies were performed in the following 
subject areas: physics, including astronomy (k = 10), biology, including 
anatomy (k = 7), chemistry (k = 5), mathematics, including geometry (k 
= 3), general science, including natural science (k = 6), geography (k =
2), programming (k = 2), archeology (k = 1), geology (k = 1) and 
medical science (k = 1).

In terms of the statistics employed, prior knowledge as a covariate in 
the statistical analysis (ANCOVA and MANOVA) was included in k = 28 
studies. Three further studies also included individual characteristics as 
covariates, denoting them explicitly as predictors (which statistically is 
the same procedure as including covariates; Bhagat et al., 2021; Hu 
et al., 2021; Jackson et al., 2019). Other analyses used included fuzzy set 
qualitative comparative analysis (Ling et al., 2021) and a cluster analysis 
followed by a two-way ANCOVA (Yu et al., 2022).

3.1.1. Prior knowledge as the most examined individual variable
The prevailing individual characteristic tackled was prior knowledge 

(k = 29) measured by means of a self-designed pre-test (k = 20). Prior 
knowledge was used as a covariate in the statistical analyses (k = 28). 
Although the overall findings suggest that prior knowledge has an 
impact on learning outcomes, the direction of the effect of prior 
knowledge, the magnitude of this relationship and the effect of condi-
tion (control group vs. AR group) cannot be determined due to the lack 
of interaction analysis in the studies. With regard to the types of prior 
knowledge studied, Zumbach et al. (2022) differentiated between two 
types of prior knowledge examined - factual knowledge and 

Table 1 
Coding scheme.

Code Represented meaning Research focus

Learner characteristics (
Vandewaetere et al., 
2011)

Learner characteristics are 
unique abilities and differences 
in cognitive, affective and 
behavioral domains that 
influence how the individual 
interacts with the learning 
environment

Research question 1 
Research question 2 
Research question 3

Statistical analyses (
Preacher & Sterba, 
2019)

Aptitude (learner 
characteristic) is treated as a 
predictor of the intervention 
effect

Research question 1 
Research question 2 
(Aptitude is treated as 
a moderator) 
Research question 3 
(Aptitude is treated as 
a moderator)

Instructional function of 
AR

AR is used as a supplement or a 
substitute to the traditional 
learning material

Research question 2 
Research question 3

Instructional design Instructional methods, 
strategies and principles used 
to achieve the learning goals 
set

Research question 2 
Research question 3

AR affordances (Wu et al., 2013) Research question 2
Three-dimensional (3D) 

perspective
Enabling the learner to see the 
object from various angles

Immediacy Direct interaction with the 
environment with a feedback 
potential

Situated learning Authentic contexts or 
environments relevant to the 
content taught

Making invisible visible Visualizing normally invisible 
objects

Connecting formal and 
informal learning

Integrating educational 
activities in everyday settings

Learning outcomes (
Hofer and Schalk, in 
preparation)

Research question 2

Cognitive processes 
Type of knowledge 
Knowledge 
complexity

Reproduce, transfer, produce 
Declarative or procedural
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Table 2 
General characteristics of the selected studies.

Study Year Subject Individual variable Tests Statistics

Barmaki et al. 
(2019)

2019 Anatomy Prior knowledge Pre-test ANCOVA 2 × 2 with pre-test score as 
covariate

Bhagat et al. 
(2019)

2019 Biology Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Bhagat et al. 
(2021)

2021 Geometry Motivation, visual attention Instructional Materials Motivation 
Survey (Keller, 2010); eye-tracking for 
visual attention including fixation count, 
total fixation duration, and total viewing 
duration

Regression analysis was used to explore 
the learning achievement predictors

Bogomolova 
et al. (2020)

2020 Anatomy Visual-spatial ability MRT (Peters et al., 1995), Paper Folding 
Test (PFT) (Ekstrom, 1976)

Linear regression analysis

Chao and Chang 
(2018)

2018 Mathematics Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Chao et al. 
(2016)

2016 Chemistry Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Chen (2020) 2020 Natural science Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Chen et al. 
(2022)

2022 Physics Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Chu et al. 
(2019)

2019 Architecture Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Elford et al. 
(2022)

2022 Chemistry Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Fidan and 
Tuncel (2019)

2019 Physics Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Furió Ferri et al. 
(2015)

2015 Science Grade and gender Self-report ANCOVA with grade and gender as 
factors

Habig (2020) 2020 Chemistry Gender, spatial ability Self-report, Purdue Visualization of 
Rotation Test (Guay, 1976)

ANOVA with gender as a single factor 
and ANOVA with spatial ability as a 
covariate

Hsiao et al. 
(2013)

2013 Natural and Life 
Science and 
Technology

Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Hu et al. (2021) 2021 Physics Physics background, AR experience Self-report Multiple linear regression with AR 
experience and physics background as 
predictors

Huang et al. 
(2022)

2022 Natural 
science course

Gender Self-report Two-way ANOVA to examine the effects 
of learning method and gender, as well 
as their interaction, on posttest scores

Jackson et al. 
(2019)

2019 Geology Gender, engagement, major, confidence, 
ethnicity, challenge

Self-designed questionnaire Multiple regression analysis

Jones et al. 
(2022)

2022 Anatomy Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Kao and Ruan 
(2022)

2022 Programming Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Ke and Hsu 
(2015)

2015 Science-related 
TPACK 
knowledge

Survey of Pre-service Teachers' 
Knowledge of Teaching and Technology (
Schmidt et al., 2009)

Pre-test ANCOVA with pre-test score used as 
covariate

Lai et al. (2019) 2019 Geography Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Ling et al. 
(2021)

2021 Chemistry Prior knowledge, attitude, SA ROT (Purdue Spatial Visualisation 
revised); Unified Chemistry Final Exam 
(UCFE)

Fuzzy set qualitative comparative 
analysis

McNeal et al. 
(2020)

2020 Geography Spatial ability (mental rotation) PSVT:R-Revised Purdue Spatial 
Visualization Test (Guay, 1976; Maeda 
et al., 2013)

Linear regression analysis

Nagayo et al. 
Nagayo et al. 
(2022)

2022 Medical science 
(surgery)

Prior knowledge Perform the suture twice in four minutes 
without referring to the AR system or 
video

ANCOVA with pre-test score used as 
covariate

Sun and Chen 
(2019)

2019 Mathematics Prior knowledge Midterm exam scores were used as the 
pre-test to be individuals' initial 
capability

ANCOVA with pre-test score used as 
covariate

Tarng et al. 
(2016)

2016 Physics Prior knowledge Lunar phase achievement test ANCOVA with pre-test score used as 
covariate

Tarng et al. 
(2018)

2018 Physics Prior knowledge Sun pass achievement test ANCOVA with pre-test score used as 
covariate

Tarng et al. 
(2022)

2022 Chemistry Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Thees et al. 
(2020)

2020 Physics Prior knowledge A selection of 13 single-choice items 
from the Heat and Temperature Concept 
Evaluation (HTCE) (Thornton & 
Sokoloff, 1998)

ANCOVA with pre-test score used as 
covariate

Thees et al. 
(2022)

2022 Physics Prior knowledge Ten items from a power test used by 
Altmeyer et al. (2020)

ANCOVA with pre-test score used as 
covariate

(continued on next page)
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representational competence - using two different instruments to mea-
sure those. Nagayo et al. (2022), who conducted the only study in 
medical science, assessed learners' prior knowledge by asking them to 
perform a suture (a stitch or row of stitches holding together the edges of 
a wound or surgical incision) twice in four minutes without reference to 
any supporting material. Ke and Hsu (2015) investigated the science- 
related technological pedagogical content knowledge (TPACK) of pre- 
service teachers to see whether it affected the learning outcome, i.e., 
improved the TPACK of teacher education students. With regard to the 
other studies, the type of prior knowledge was not specifically explored.

As for the other individual characteristics identified, spatial ability 
and gender were the second most commonly addressed (k = 4 for each 
characteristic). In terms of the facets of spatial ability, spatial visuali-
zation was predominantly investigated using the Mental Rotation Test 
(Peters et al., 1995) and the Purdue Visualization of Rotation Test 
(Guay, 1976). Other examined individual variables were cognitive load 
(k = 1) and motivation (k = 2).

3.1.2. Excluded studies
Having analyzed the final set and identified only a few studies that 

address the effects of the learners' characteristics on the learning out-
comes in AR environments, we decided to gain a deeper understanding if 
the individual differences have been handled in any way in the 
remaining studies. After reexamining the 217 studies, we found out that 
57 studies used t-tests to check the group differences in the learning 
outcome of the control and the intervention groups. An interesting 
example is the study by Habig (2020), where moderation analysis was 
conducted (gender as a moderator), but it did not encompass the crucial 
interaction term. In other words, although moderation was examined, 
the study did not investigate whether the effect of the independent 
variable on the dependent variable varied significantly at different levels 
of the moderator. Instead, the authors subjectively compared the effect 
of the learner characteristic on the learning outcome in the AR-condition 
to that in a control condition. Based on a significant effect in the AR 
condition but not in the control condition, the authors concluded that 
the role of the learner characteristic differed between the two condi-
tions. However, this is a case of the “difference in significances”- fallacy 
(Edelsbrunner & Thurn, 2023): If an effect is significant in one group but 
not in the other, this does not yet indicate whether the effect reliably 
differed between the groups or conditions. To find this out, an interac-
tion term in the sense of an ATI-analysis has to added and if this term is 
significant, it would support the assumption that the effect indeed differs 
between conditions. Among other analyses used were error pattern 

analysis (Cen et al., 2019), single factor covariate analysis (Chang et al., 
2019) and principal component analysis (Mendez-Lopez et al., 2022). 
This look into statistical approaches in the excluded studies indicates 
that individual characteristics have been included in quite a few further 
studies but they are frequently not examined as moderator variables, 
which would be the appropriate approach to gauge their AR-specific 
effects.

3.2. Research questions 2 and 3

With regard to the second research question, out of 38 studies we 
sought to identify those that addressed individual characteristics from 
an ATI perspective, only five studies (k = 5) (<1 % of the initial hits) 
could be included. These were the studies that examined the effect of 
individual differences on learning outcomes in an AR environment. 
Although Huang et al. (2022) also examined the interaction between the 
individual variable (gender) and the learning condition, we deliberately 
excluded the study, since gender is a proxy for many individual char-
acteristics that commonly vary across genders (e.g., cognitive abilities, 
interests and motivation, self-efficacy) and as such it may not be clearly 
categorized within our three kinds of variables.

The five studies from the final sample were published in the last five 
years, and they deal with physics (k = 2), anatomy (k = 1), geography (k 
= 1) and chemistry (k = 1) subjects. In terms of the intervention, AR was 
predominantly used to highlight the important features of the scientific 
concept or the object depicted in the AR environment, by making some 
parts visible or more prominent (e.g., Bogomolova et al., 2020; Yu et al., 
2022) and allowing the students to inspect the object from various an-
gles (e.g., McNeal et al., 2020; Weng et al., 2019). The key character-
istics of the studies are summarized in Table 3.

As visible from Table 4, spatial ability is the most examined indi-
vidual difference in AR research, being investigated in four studies 
(Bogomolova et al., 2020; Ling et al., 2021; McNeal et al., 2020; Weng 
et al., 2019). As learners' individual characteristics can be either 
compensated for or hyperbolized for a better learning outcome, for 
instance, when the level of learning material difficulty or the format is 
adapted to the learner's aptitude (Kühl et al., 2022), we found it crucial 
to examine the effect the spatial ability has on the learning outcome in 
AR. Interestingly, results from the reviewed studies indicate that spatial 
ability has a controversial impact on the learning outcome in STEM in 
AR. On the one hand, there is evidence that the negative effect of lacking 
spatial ability on the learning outcome in STEM is less pronounced in AR 
conditions in comparison to the traditional classroom (Weng et al., 

Table 2 (continued )

Study Year Subject Individual variable Tests Statistics

Tsai and Lai 
(2022)

2022 Programming Prior knowledge Learning Effectiveness Questionnaire ANCOVA with pre-test score used as 
covariate

Weng et al. 
(2019)

2019 Physics 
(astronomy)

Spatial ability (SA) Visualization of Rotations (Revised 
PSVT: R) (Guay, 1980)

Two-way ANOVA followed by simple 
main effect tests.

Weng et al. 
(2020)

2020 Biology Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Wu et al. (2018) 2018 Natural science 
course

Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Yoon et al. 
(2017)

2017 Physics (science 
museum visit)

Prior knowledge Pre-test ANCOVA with pre-test score used as 
covariate

Yu et al. (2022) 2022 Physics Learning physics (PA) anxiety, prior 
knowledge

Physics Anxiety Rating Scale (PARS) (
Sahin et al., 2015), pre-test

Cluster analysis to dichotomize students 
into high PA and low PA followed by 
two- way ANCOVA with prior 
knowledge as a covariate

Zhang et al. 
(2020)

2020 Biology Prior knowledge
Pre-test

ANCOVA with pre-test score used as 
covariate

Zumbach et al. 
(2022)

2022 Biology Factual knowledge and mental 
representations knowledge pre-tests 
(self-designed), intrinsic and extrinsic 
motivation, metacognitive learning 
strategies as well as general and biology- 
related ability self-concept.

Pre-test, cognitive load (Klepsch et al., 
2017), ability self-concept (Schöne et al., 
2012), Motivated Strategies for Learning 
Questionnaire (MSLQ; Pintrich et al., 
1991), learning strategies (L IST 
questionnaire) (Wild & Schiefele, 1994)

MANCOVA with both knowledge pre- 
tests, intrinsic and extrinsic motivation, 
metacognitive learning strategies as well 
as general and biology-related ability 
self-concept used as covariates
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2019). However, the findings by McNeal et al. (2020) revealed that 
compared to the control group, low spatial performers did not do as well 
on the post-test after using the AR Sandbox. The study by Bogomolova 
et al. (2020) also revealed only a marginal effect of the intervention ×
spatial ability interaction. In other words, it is yet to be examined 
whether students with lower spatial ability really benefit from the use of 
AR in instruction more strongly than those with higher spatial ability.

In terms of the learning outcomes pursued, all five of the studies 
aimed at developing declarative knowledge, considering the high 
complexity of the knowledge chunks under discussion (Ling et al., 2021; 
Yu et al., 2022). As for the cognitive processes, the five studies sought to 
get the students to reproduce and transfer the knowledge gained, for 
instance, by enabling them to demonstrate comprehension in a post- 
knowledge test. Weng et al. (2019) also used knowledge transfer by 
inviting the students to create an AR book on solar and lunar eclipse 
after examining which, the students could answer a more analytical 
question of how solar and lunar eclipses happen. None of the studies 
sought to achieve the “produce” learning goal though. Three studies 
explicitly described the learning outcomes pursued in the experiment 
(Bogomolova et al., 2020; Weng et al., 2019; Yu et al., 2022).

3.2.1. Instructional design
In terms of instructional design, most of the studies provide a 

detailed overview of how exactly and why the AR technology was used 
in the instructional design to deliver the specific learning content. 
Namely, the authors explained the rationale for using AR for the specific 
content, the learning methods used, and the difference between the 
control and experimental groups in terms of instructional design was 
clearly stated. In all five studies, the learning methods used for the 
control group were identical to those used for the AR group. For 
instance, Yu et al. (2022) used active experimentation in both the con-
trol and experimental groups. However, in the latter, objects generated 
by AR were used for experimentation. In three studies (Ling et al., 2021; 
McNeal et al., 2020; Weng et al., 2019), AR was used as a supplement to 
the learning materials used. That is, AR served as an additional medium 
of instruction due to its unique affordances. For example, in Ling et al. 
(2021) when learning about the molecule structure, in the AR group 
students the physical model of a molecule, used in the control group an 
additional more sophisticated AR model. Two studies (Bogomolova 
et al., 2020; Yu et al., 2022) used AR as a substitute for the traditional 
learning tool. For instance, Bogomolova et al. (2020) used AR to help 
students memorize the names of bones and muscles, the location and 
organization of their structures, and the function of muscles based on 
their origin. A traditional 2D atlas and a 3D desktop environment were 
replaced by AR, which allowed students to move around the 3D model of 
a lower leg to explore it from different angles and perspectives.

3.2.2. Individual differences
Spatial ability is the most extensively researched learner character-

istic in ATI - AR studies (Bogomolova et al., 2020; Ling et al., 2021; 
McNeal et al., 2020; Weng et al., 2019). For instance, Bogomolova et al. 
(2020) found that learners with high mental rotation ability (one of the 
facets of spatial ability) performed equally well across all conditions, 
suggesting that AR does not provide a significant advantage for in-
dividuals with strong visual-spatial skills. In contrast, learners with 
lower mental rotation ability benefited significantly from AR, out-
performing their counterparts in the monoscopic 3D desktop condition 
and achieving similar scores to those in the 2D anatomical atlas group. 
Similarly, Weng et al. (2019) reported that students with higher spatial 
ability generally demonstrated strong learning outcomes regardless of 
instructional medium, whereas those with lower spatial ability benefited 
more from AR. The AR tool might have helped bridge the performance 
gap by compensating for weaker spatial visualization skills, ultimately 
reducing disparities between the students with high and low spatial 
ability. However, McNeal et al. (2020) found that students with high 
mental rotation ability consistently outperformed their peers across all 
conditions, with structured AR activities yielding the highest scores. In 
contrast, students with low mental rotation ability struggled in AR 
Sandbox activities, particularly in the semi-structured condition, where 
their performance was even lower than in the control group. Although 
structured AR activities offered the best results among AR treatments for 
these students, the AR group as a whole did not significantly outperform 
the control group.

Ling et al. (2021) identified distinct learner profiles in relation to 
various learning outcomes - immediate and knowledge retention in AR- 
supported environments. The learner profiles emerged from the quali-
tative comparative analysis rather than being predefined. The study 
categorized learners and applied necessity and sufficiency analyses to 
identify the individual variables combinations that lead to good or poor 
learning outcomes. The study suggests that there is no single trait uni-
versally essential for learning with AR. The necessity and sufficiency 
analyses revealed four distinct profiles associated with both positive and 
negative learning outcomes for immediate and lasting learning out-
comes. Ling et al. (2021) identified four distinct learner profiles based 
on their characteristics and how they interacted with AR: 

- Strong foundational learning and high spatial ability: These learners 
generally achieved good immediate learning outcomes and required 
AR support to maintain long-term retention.

- Weak foundational learning and high spatial ability: Without AR, 
these learners had poor learning outcomes. However, when AR was 
used, they could achieve good immediate learning outcomes, but 
only if they had a passionate attitude towards AR could they sustain 
good long-lasting outcome.

Table 3 
General characteristics of the selected studies in ATI paradigm.

Study Year Country Subject Topic Intervention

Bogomolova 
et al.

2020 Netherlands Anatomy Lower limb anatomy 3D virtual model of a lower leg with an object-centered view 
to enable exploration, visual and audio feedback on the 
structures, size adjustment.

Ling et al. 2021 Taiwan Chemistry Molecular structure and properties of organic compounds, 
mainly including alkanes (e.g., methane), alkenes (e.g., 
ethylene), alkynes (e.g., acetylene), and aromatic 
hydrocarbons (e.g., benzene).

To a two-dimensional picture the corresponding 3D 
structure would be displayed on the tablet, and the 3D model 
could rotate freely with the movement of the two- 
dimensional picture. Then compare different molecule 
models with each other.

McNeal et al. 2020 USA Geography Topographic Maps Assessment Manipulation of sand within a physical sandbox, while 
seeing real-time visual projections, such as contour lines and 
color-coded elevation representations, augmented to 
generate a dynamic 3D topographic map.

Weng et al. 2019 Indonesia Astronomy Solar and lunar eclipse A book with 3D pictures of the eclipse.
Yu et al. 2022 China Physics Magnetism Students scan real magnets with a mobile device, 

superimposing virtual magnet models and explore magnetic 
attraction and magnetic field patterns.
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Table 4 
AR affordances, learning outcomes and individual differences from an ATI perspective.

Study Learning goal AR 
affordance

Instructional design Instructional 
function of AR

Individual 
difference

Tests Role of 
individual 
differenceCognitive 

process
Type of 
knowledge

Complexity

Bogomolova 
et al., 2020

Reproduce Declarative Low Making 
invisible 
visible, 3D 
perspective, 
immediacy

Constructive 
alignment theory 
was applied to 
ensure alignment 
between learning 
goals, activities, and 
assessments in all 
the three groups: 
AR group, 
Monoscopic 3D 
Desktop Group and 
2D Anatomical 
Atlas Group. In AR 
group, participants 
interacted with 
DynamicAnatomy, 
an AR application 
for HoloLens, 
featuring a fully 
interactive 3D 
model of the lower 
leg. Monoscopic 3D 
Desktop Group: A 
Windows desktop 
application with the 
same anatomical 
model as 
DynamicAnatomy 
but displayed on a 
2D screen was used. 
Interaction was 
limited to rotating 
the model along the 
Y-axis using a 
mouse. Other 
features, such as 
auditory feedback 
and scaling, were 
included. 2D 
Anatomical Atlas 
Group: Used 
selected handouts 
from anatomy 
atlases and 
textbooks with 2D 
images of bones, 
muscles, and ankle 
movements. 
Handouts included 
an index for 
navigation but only 
listed anatomical 
names, with no 
additional 
descriptive content.

Walking around the 
3D model to 
explore the 
structure of the 
limb from various 
perspectives with 
AR used as a 
substitute for the 
traditional learning 
material.

Visual- 
spatial 
ability

MRT (Peters 
et al., 1995), 
Paper Folding 
Test (PFT) (
Ekstrom, 
1976)

MRT-High 
Group: 
Performed 
equally well 
across all three 
groups, 
indicating no 
significant 
advantage of AR 
for participants 
with high visual- 
spatial ability. 
MRT-Low Group: 
AR Group 
significantly 
outperformed 
the monoscopic 
3D desktop 
group and 
achieved similar 
scores to the 2D 
anatomical atlas 
group. 
Monoscopic 3D 
Desktop Group 
scored 
significantly 
lower compared 
to other 
groups.2D 
Anatomical Atlas 
Group achieved 
better results 
than the desktop 
group, with a 
moderate effect 
size.

Ling et al., 
2021

Reproduce, 
transfer

Declarative High 3D 
perspective, 
making 
invisible 
visible, 
immediacy

Active learning 
principles, e.g., 
comparing several 
molecule models 
and collaborative 
activities were used 
in both groups. 
Students observed 
either only a 
physical model of a 
molecule (control 
group) or the 
physical model 
supplemented by an 
additional more 
sophisticated AR 
model (in AR 

Depicting the 
molecule in 3D 
from various 
angles. AR is used 
as a supplement to 
the traditional 
learning material 
(ball-and-stick 
model of a 
molecule).

Prior 
knowledge, 
attitude, 
spatial 
ability

ROT (Purdue 
Spatial 
Visualisation 
revised); 
Unified 
Chemistry 
Final Exam 
(UCFE)

Learning 
success: Solid 
foundation for 
learning (prior 
knowledge): 
Students with a 
solid 
foundational 
knowledge (SFL) 
benefited from 
AR because it 
enhanced their 
ability to 
visualize and 
understand 
molecular 
structures, 

(continued on next page)
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Table 4 (continued )

Study Learning goal AR 
affordance 

Instructional design Instructional 
function of AR 

Individual 
difference 

Tests Role of 
individual 
differenceCognitive 

process 
Type of 
knowledge 

Complexity

group). The 
observation was 
followed by a group 
discussion and 
independent 
examination of the 
molecule models to 
examine their 
structure.

improving both 
immediate 
(GILO) and long- 
term learning 
outcomes 
(GLLO).AR 
provided 
complementary 
advantages by 
linking abstract 
concepts to 
concrete 
visualizations, 
especially for 
those with 
higher prior 
knowledge. High 
spatial ability 
(HSA) enabled 
students to 
effectively 
perceive and 
understand 3D 
spatial structures 
using AR. AR 
further amplified 
their natural 
abilities by 
providing 
manipulable 
models, resulting 
in improved 
immediate and 
lasting 
outcomes. Even 
students with 
low foundational 
knowledge (SFL) 
but high HSA 
could achieve 
GILO and GLLO 
when supported 
by AR. 
Learning failure: 
Poor 
Foundational 
Knowledge 
(Prior 
Knowledge): 
Students with 
weak 
foundational 
knowledge 
(~SFL) struggled 
with AR, as they 
lacked the prior 
knowledge 
necessary to 
understand and 
connect the 
visualizations to 
concepts. AR 
alone could not 
compensate for 
the lack of basic 
understanding, 
leading to poor 
immediate 
(GILO) and 
lasting outcomes 
(GLLO).

McNeal 
et al., 2020

Reproduce, 
transfer

Declarative Low 3D 
perspective, 

In the AR group the 
integration of 

AR-based models of 
common molecules 

Spatial 
ability 

PSVT: R- 
Revised 

Students with 
high mental 

(continued on next page)
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Table 4 (continued )

Study Learning goal AR 
affordance 

Instructional design Instructional 
function of AR 

Individual 
difference 

Tests Role of 
individual 
differenceCognitive 

process 
Type of 
knowledge 

Complexity

making 
invisible 
visible, 
immediacy

structured, semi- 
structured, and 
unstructured 
learning activities 
was used. In the 
unstructured 
activities students 
independently 
explored the AR 
Sandbox with 
minimal guidance. 
In semi-structured, 
students received 
moderate guidance, 
such as prompts for 
contour-line rules 
and relationships 
between water flow 
and elevation. In 
the structured AR 
group, detailed 
activities included 
topographic 
mapping, slope 
analysis, and 
creating landscape 
profiles under the 
instructor's 
direction. In the 
control group 
students followed a 
more linear 
instructional 
approach using 
traditional tools and 
lab materials. 
Activities were 
guided primarily by 
worksheets without 
the interactive and 
visual aids provided 
by the AR Sandbox. 
Assignments 
without AR 
integration.

were used, which 
allowed for 
simultaneous 
comparison for 
several molecules 
at the same time. 
AR used as a 
supplement to the 
traditional learning 
material 
(traditional 
topographic map).

(mental 
rotation)

Purdue 
Spatial 
Visualization 
Test (Guay, 
1976; Maeda 
et al., 2013)

rotation (MR) 
ability showed 
better 
topographic map 
assessment score 
across all 
conditions, with 
structured AR 
activities 
yielding the 
highest results. 
Students with 
low MR ability 
struggled in AR 
Sandbox 
activities, 
particularly in 
the semi- 
structured 
condition, which 
resulted in lower 
scores than the 
control group. 
Structured AR 
activities 
provided the 
highest scores 
among AR 
treatments for 
these students 
but the AR group 
did not 
significantly 
outperform the 
control group.

Weng et al., 
2019

Reproduce, 
transfer

Declarative Low Situated 
learning, 3D 
perspective, 
making 
invisible 
visible

In the AR/MR group 
active learning 
principles, e.g., 
manipulating 3D 
models and 
visualizations of 
celestial movements 
in the MR group 
were used. In the 
control group the 
students learnt 
more passively from 
the book only.

Depicting the 
eclipse from a 3D 
perspective. MR is 
used as a 
supplement 
integrated in the 
traditional learning 
materials (a printed 
book).

Spatial 
ability (SA)

Visualization 
of Rotations 
(Revised 
PSVT: R) (
Guay, 1980)

Higher spatial 
ability (HSA) 
students showed 
strong learning 
outcomes, but 
the impact of AR 
was less 
pronounced 
compared to 
lower spatial 
ability (LSA). 
LSA students 
benefited more 
from the AR tool, 
as the 3D 
visualizations 
and MR features 
compensated for 
their lower 
spatial 
visualization 
skills. The gap in 
learning 
outcomes 
between HSA 
and LSA students 
was smaller in 
the AR group 

(continued on next page)
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- Strong foundational learning and low spatial ability: Learners in this 
profile could achieve good immediate leaning outcomes but strug-
gled to maintain good knowledge retention unless they had 
passionate attitude for AR. If they had a negative attitude towards 
AR, their learning outcomes also deteriorated.

- Weak foundational learning and low spatial ability: These learners 
consistently struggled to achieve poor immediate and long-term 
outcomes unless they had a passionate attitude towards AR. How-
ever, their engagement was often driven by novelty rather than 
meaningful learning, that made AR less effective for them.

As for the final study, Yu et al. (2022) found that both high and low 
physics anxiety students benefited from AR-supported learning, with 
significantly better performance in the AR group compared to the non- 
AR group. However, the positive impact of AR was particularly 
notable for students with higher physics anxiety. This reveals the po-
tential of AR to support the learners with higher physics anxiety who 
may otherwise struggle with anxiety-related issues in learning.

3.2.3. AR affordances
As for the AR affordances, all five studies stipulated making the 

Table 4 (continued )

Study Learning goal AR 
affordance 

Instructional design Instructional 
function of AR 

Individual 
difference 

Tests Role of 
individual 
differenceCognitive 

process 
Type of 
knowledge 

Complexity

compared to the 
control group, 
demonstrating 
AR's role in 
reducing 
disparities.

Yu et al., 
2022

Reproduce, 
transfer

Declarative High Making 
invisible 
visible

Active 
experimentation 
with either the real 
physical objects or 
the augmented 
models. 
In the AR group, 
hands-on 
experiments were 
guided through the 
MagAR modules 
during the three 
lessons: 
Introduction to the 
Magnetic World: 
Interaction with 
virtual objects to 
explore magnetic 
attraction and 
repulsion. Magnetic 
field inquiry: 
visualization of iron 
filings' distribution 
and magnetic 
induction lines 
using AR. 
Knowledge 
extension & recall: 
interaction sub- 
modules with AR 
markers were used 
to explore 
geomagnetic fields, 
conclude 
knowledge, and 
practice magnetic 
field drawing. In the 
control group, 
students learned 
using traditional 
experimental 
materials during the 
three lessons. The 
experiments 
included observing 
magnetic field lines 
by spreading iron 
filings on paper 
over magnets, 
interacting with 
physical magnets, 
small magnetic 
needles, and 
objects.

Visualizing 
magnetic fields 
with AR used a 
substitute for the 
traditional 
experimentational 
materials.

Learning 
physics 
anxiety

Physics 
Anxiety 
Rating Scale 
(PARS) (
Sahin et al., 
2015)

Students with 
higher physics 
anxiety 
performed 
significantly 
better in the AR 
group compared 
to the non-AR 
group. Students 
with lower 
physics anxiety 
also performed 
better in the AR 
group compared 
to the non-AR 
group.
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invisible visible as the key property of the AR technology for their 
research purposes. In addition, 3D perspective was also extracted as 
another environmental feature suitable for the selected studies 
(Bogomolova et al., 2020; Ling et al., 2021; Weng et al., 2019). In their 
study, Ling et al. (2021) also utilized the immediate feedback the AR 
affords (we coded it as “immediacy”). That is, the students could get the 
3D structured model of the molecule and its components by pointing the 
tablet camera to the two-dimensional picture. By timely seeing the 
molecule components, the students could analyze the structure more 
thoroughly and connect their new knowledge chunks to the existing 
ones.

3.2.4. Key design characteristics of the reviewed studies
The third research question focused on the key design characteristics 

of these studies. The key findings are condensed in Table 5.

3.2.5. Study designs, groups and samples
In accordance with the ATI-approach, all the five studies used be-

tween subject designs, where control group performance was compared 
to the experimental group (AR vs. non-AR condition). In the reviewed 
studies, three employed a traditional two-group experimental design, 
comparing learning outcomes between a technology-supported group 
and a control group using paper-and-pencil learning material (Ling 
et al., 2021; Weng et al., 2019; Yu et al., 2022). Bogomolova et al. (2020)
utilized a three-group experimental design, where the AR group was 
compared to both a 3D monoscopic version of the AR application 
implemented on a desktop and a 2D atlas condition, allowing for an 
assessment of added value of AR beyond other technological and 
traditional learning materials. McNeal et al. (2020) implemented a four- 
group experimental design, in which three AR groups with varying 
instructional designs - structured, semi-structured, and unstructured - 
were compared against a control group to examine the impact of 
different instructional approaches within AR environments on learning 
outcomes.

In terms of the sample size, the studies were conducted with rather 
small sample sizes, from 58 to 97 students, apart from McNeal et al. 
(2020), where 545 participants took part in the study, distributed be-
tween four conditions.

3.2.6. Statistical analyses
As to the statistical analyses employed for the learner differences and 

AR environment interaction, one study used ANOVA, one - ANCOVA and 
two studies used regression analysis. Ling et al. (2021) employed fuzzy 
set qualitative comparative analysis, aimed at handling situations where 
variables are not strictly dichotomous (either present or absent) but can 
exist in degrees of membership. This can provide a more in-depth 
understanding of the relationship between the independent and 
dependent variables beyond strict dichotomies that, for example, result 
from median splits (Kumar et al., 2022).

4. Discussion

The aim of the present systematic literature review was to examine 
the state of the art of AR research in terms of considering the individual 
differences in general as predictors and specifically from an ATI 
perspective together with the learning outcomes, AR affordances and 
instructional design. This paper adds to the existing body of research 
(meta-analyses and literature syntheses) that deals with the effect of AR 
on learning effectiveness (Chang et al., 2022; Hidayat & Wardat, 2023; 
Ibáñez & Delgado-Kloos, 2018). Out of the 217 studies selected <20 % 
look into individual characteristics (38 studies). Prior knowledge is 
examined in 29 studies. Even though over 70 % of the identified studies 
consider the effect of the prior knowledge when learning with AR, their 
findings are rather uninformative. The statistical analyses implemented 
treat prior knowledge as a covariate. That means that the direction of the 
relationship (e.g., whether higher prior knowledge enhances learning 
outcomes) or the magnitude of prior knowledge impact (e.g., how 
strongly prior knowledge influences learning outcomes) in the AR set-
tings are not examined. As for the types of prior knowledge, only three 
studies describe the exact types of prior knowledge addressed in the test. 
This scarcity of findings makes it impossible to draw any definite 
conclusion on the role of the prior knowledge type in learning with AR.

Our findings also revealed that limited attention is currently given to 
individual differences from an ATI perspective in AR research. This was 
evidenced by only five included studies out of 217. Four of the five 
studies looked into the effect of spatial ability on the learning outcome in 
an AR environment (Bogomolova et al., 2020; Ling et al., 2021; McNeal 
et al., 2020; Weng et al., 2019). The other individual variables examined 
were prior knowledge and physics anxiety (Ling et al., 2021; Yu et al., 
2022). Declarative knowledge reproduction and transfer were the most 
common learning outcomes addressed. Making the invisible visible (e.g., 
Bogomolova et al., 2020; McNeal et al., 2020: Yu et al., 2022) and 3D 

Table 5 
Key study design characteristics.

Study Groups Experimental 
design

Sample 
size

Statistics

Bogomolova 
et al., 2020

AR group, 
Monoscopic 3D 
Desktop Group, 
2D Anatomical 
Atlas Group

Double-center 
randomized 
controlled trial

N = 58 Linear 
regression 
analysis, with 
anatomy 
knowledge test 
score as 
dependent 
variable, 
intervention 
group as a fixed 
factor, visual- 
spatial abilities 
test score as a 
covariate, and 
“visual-spatial 
abilities test 
score” ×
“intervention 
group” as in 
interaction 
term

Ling et al., 
2021

AR group vs. 
control group

Quasi- 
experimental 
study, 
between- 
subject design

N = 97 Fuzzy set 
qualitative 
comparative 
analysis

McNeal 
et al., 2020

AR group 
(structured 
learning 
activities) vs. 
AR group 
(unstructured 
learning 
activities) vs. 
AR group (semi- 
structured 
learning 
activities) vs. 
control group

Quasi- 
experimental 
study, 
between- 
subject design

N =
545

Linear 
regression 
analysis

Weng et al., 
2019

AR group vs. 
control group

True between- 
subjects 
experimental 
research 
design

N = 80 Two-way 
ANOVA 
followed by 
simple main 
effect tests

Yu et al., 
2022

AR group vs. 
control group

A 2 × 2 
factorial quasi- 
experimental 
design

N = 96 Cluster analysis 
to dichotomize 
students into 
high PA and 
low PA 
followed by 
two- way 
ANCOVA
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perspective (Bogomolova et al., 2020; Ling et al., 2021; McNeal et al., 
2020; Weng et al., 2019) were the most utilized AR affordances, which 
goes in line with our expectations. Overall, the number of studies 
examining learner characteristics is small, and among those studies 
spatial ability has been the most frequently examined characteristic. On 
the one hand, the findings align in suggesting that AR is particularly 
valuable for learners with lower spatial ability (Bogomolova et al., 2020; 
Weng et al., 2019). However, sharp differences in study design make it 
difficult to draw final conclusions. For instance, Weng et al. (2019)
conducted a study with fifth-grade students in astronomy, while Bogo-
molova et al. (2020) performed their study with first- and second-year 
undergraduate students. Moreover, Bogomolova et al. (2020), even 
though examining the same facet of spatial ability, i.e., mental rotation, 
employed a different instrument to measure it. At the same time, McNeal 
et al. (2020), who examined the effect of AR on understanding topo-
graphic maps in the population of college students, revealed that in their 
settings the students with low mental rotation ability struggled in AR 
Sandbox activities. To sum up, the differences in learning content, 
participant demographics (e.g., educational level) and different facets of 
spatial ability impede generalization and a deeper understanding of the 
role of spatial ability when learning with AR. The complexity of the 
results reported by Ling et al. (2021) further highlights the necessity of a 
more nuanced approach to investigating the role of individual differ-
ences in learning with AR. Namely, the study underscores the impor-
tance of considering multiple cognitive characteristics simultaneously 
rather than focusing on isolated variables. According to Ling et al. 
(2021) learning outcomes the treatment aims to achieve should also be 
considered.

In the next section we will attempt to map out the possible impli-
cations of the findings and how those could be properly exploited in AR 
research in the future. As we believe that the inclusion of learner char-
acteristics in AR research from an ATI perspective is the most robust way 
to examine the impact of AR on individual learners, in the next section 
we will focus on the ways in which the ATI perspective can be integrated 
into AR studies.

4.1. Embracing individual differences in AR research: possible solutions

We believe there are several reasons that could account for a rela-
tively low number of studies considering individual differences in AR 
studies. Firstly, this might be attributed to the methodological chal-
lenges that the traditional ATI analyses pose. The inclusion of inter-
action parameters in the analysis is a key characteristic of the 
traditional ATI approach. This necessitates larger sample sizes 
compared to the analysis of the main effect (Blake & Gangestad, 2020; 
Perugini et al., 2018; Tetzlaff et al., 2023). Relatively small sample 
sizes (N < 100) used in AR studies impede the utilization of such an-
alyses. At the same time, the use of AR, being a novel technology, is 
associated with technological limitations. These limitations include the 
absence of required infrastructure such as high-speed internet at 
school, connectivity issues affecting the integration of AR technology 
into real-world experimental setups used in STEM studies, and the high 
costs of AR technology along with the technical skills needed for its 
proper implementation. Consequently, AR technology has yet to ach-
ieve mass adoption to be utilized at a grander scale in educational 
research. For this reason, the limited sample sizes will likely persist as 
an enduring issue for individual differences research in AR studies. We 
will attempt to examine potential ways to overcome these methodo-
logical challenges further in the paper.

Another factor that could explain a relatively small number of AR 
studies looking into the individual characteristics might be aligned 
with the keen focus on the effectiveness of AR technology in teaching 
STEM per se. That means scrutinizing whether AR interventions have 
an impact on learning effectiveness in STEM disciplines at a broader 
level. Such keen interest in the role of AR technology in learning can be 
explained by the novelty of this technology. However, as the learning 

intervention can exercise heterogeneous impact on different learners 
(Tetzlaff et al., 2021), we believe that considering individual differ-
ences at the phase of the foundational exploration of AR effectiveness 
in learning could have a big influence on promoting a more individu-
alized approach to instructional effectiveness research. This gap could 
be addressed by increasing awareness of the necessity for ATI research 
within the AR community. This, for instance, could entail providing 
ideas for the types of individual differences to examine, suggesting 
appropriate tests for assessing these differences, and outlining 
methodological approaches for incorporating ATI perspectives into AR 
studies as well as a study design framework that will encompass the 
individual variables. In the next section, we attempt to ideate the 
prospective research agenda for further elaboration of individual dif-
ferences in AR research.

4.1.1. Statistically modeling the affordances of AR in terms of individual 
differences

The first gap suggested was related to methodological challenges 
associated with the analysis of individual differences in the effects of AR 
in STEM. We see this gap as consisting of two issues. First, most of the 
reviewed studies used small sample sizes. Based on the recommendation 
of Cronbach and Snow (1981) to have at least N = 100 learners in each 
condition in ATI research, all but one studies in our review have to be 
considered small-sample studies (i.e., with sample sizes below this 
number). The reason for ATI being so sample size-intensive is that the 
critical analytical step in such analyses is the estimation of the moder-
ation effect that represents the interaction between the individual 
characteristic × AR condition in focus in comparison to another learning 
condition. It is well-known that moderation effects typically require 
between four to eight times as large samples as analyses of simple main 
effects (e.g., condition comparisons; Blake & Gangestad, 2020). If 
sample sizes are smaller, statistical power is low, which undermines 
finding effects reliably but also being able to confirm null effects (Blake 
& Gangestad, 2020).

In the case of a limited sample size, various statistical options are 
available to improve statistical power. For example, Bayesian estimation 
of moderation effects can increase statistical power through introducing 
theoretical knowledge of reasonable effect sizes into specifications of 
parameter prior distributions (McCarthy & Masters, 2005; Van de 
Schoot et al., 2014). Another option is to use analytic approaches that 
bridge the gap between qualitative and quantitative approaches in small 
samples, such as fuzzy set qualitative comparative analysis (fsQCA; 
Ragin et al., 2006). Qualitative comparative analysis, in general, unites 
the qualitative and quantitative paradigm divide (Marx et al., 2014). 
fsQCA, being the most advanced of the comparative qualitative analyses, 
which can be utilized for smaller sample sizes (down to N < 50), is also 
notable for recognizing non-linear relationships between variables and 
accommodating asymmetry in the data (Geremew et al., 2024). This 
means that fsQCA can be used when the data exhibit asymmetry or 
skewness. Another characteristic, particularly useful for individual dif-
ferences research is that fsQCA assigns each case the individual mem-
bership scores that can be partial (any score from 0 to 1), signifying that 
the individual characteristics are more nuanced and can be “moderately 
present” or “scarcely present”. These characteristics coupled with the 
fsQCA robustness for smaller sample sizes could make this analysis a 
perfect solution to tackle the methodological challenge related to the 
smaller sample sizes. Another prominent characteristic of fsQCA is that 
it treats the multitude of individual differences alongside the various 
learning outcomes that occur, which helps to manifest the complexity of 
the educational context learner characteristics interaction (Ling et al., 
2021; Reinhold et al., 2020).

Another similar approach that has been introduced by Tetzlaff et al. 
(2023) is based on latent profile analysis. In this approach, learners' 
profiles across multiple individual characteristics are modelled and then 
their interactions with different conditions are examined. By reducing 
the information from multiple variables into one profile variable, this 
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approach can also increase statistical power and help find interactions 
between multiple learner characteristics and instructional conditions.

4.1.2. Broadening the variety of individual differences considered in AR 
research

Another gap was the limited exploration of the variety of individual 
differences that could be considered in AR studies. To support the in-
clusion of a larger variety of individual differences variables relevant to 
STEM learning in future research, we assembled Table 6. This table 
provides an overview of variables that have been shown to affect STEM 
learning. In addition, the table provides suggestions for measures that 
might be used to assess the respective variables. The present table could 
be used for reference in AR study design to make an informed decision 

on which exact individual variable to include, the rationale for its in-
clusion and the possible measurement instruments to use.

4.2. Learning in technology-afforded environments triad for AR

By studying individual differences as predictors, we can gain insight 
into how learners' characteristics, such as spatial ability and working 
memory capacity, influence learning within specific learning environ-
ments or with certain teaching methods. However, focusing on learner 
characteristics from an ATI perspective grants a deeper understanding of 
how the effectiveness of learning environments and teaching methods 
(as compared to control conditions) varies between different learners. 
Adding the learner characteristics in the AR learning effectiveness 
research would also allow to identify the learners for whom AR might be 
less effective - or even detrimental.

Since our analysis revealed that even the few available findings offer 
limited opportunities to derive consistent evidence regarding the role of 
the individual characteristics due to the difference in the study design 
and measurements used, we believe a more unified approach to incor-
porating individual differences in the AR research should be adopted. 
This way researchers can accumulate stronger evidence, helping to un-
cover existing “blind spots” and new opportunities for optimizing AR- 
based instruction.

Therefore, drawing insights from this systematic review, we adapted 
the Learning in Technology-Afforded Environments Triad to the AR 
context (L-Tech Triad for AR), emphasizing the importance of inte-
grating an ATI perspective in study design. That means, that alongside 
including the four parameters, we expanded on earlier in this work - AR 
affordances, instructional design that considers the environmental 
affordances, learning outcomes, and individual variables - in the study 
design, it is also essential to consider the ATI methodological re-
quirements. That is, the presence of the control group in the study 
design, a sufficiently large sample size within the study for an adequate 
statistical power or statistical models that can improve statistical power 
(Ling et al., 2021; McCarthy & Masters, 2005; Reinhold et al., 2020) are 
required to further conduct interaction analysis.

This framework (Fig. 3) is intended to serve as a guide for future 
research endeavors aimed at examining the learning effects of AR 
technology incorporating an ATI perspective, thus enabling a more 
robust examination of the educational potential of AR.

4.3. Limitations

There are some limitations to note. The literature review does not 
include studies focusing on comparing AR with other media (e.g., VR). 
This is partly attributed to the focus of the review, i.e., taking a classical 
ATI perspective on the AR studies, that presupposes the presence of a 
control group and the intervention group (in our case, AR). The indi-
vidual differences examined in the between-media comparison studies 
might provide interesting questions for future research. The second 
limitation is strict compliance to the traditional ATI analysis approach, 
where individual differences are regarded as moderators. This focus 
brought us to overlook the potential roles of individual differences as 
mediators or covariates. Gaining an understanding of the role of indi-
vidual differences as mediators or covariates could help develop other 
insights of the impact learner characteristics have on learning with AR, 
but as discussed in detail, without moderation analysis in experimental- 
control group comparisons, these approaches do not allow extracting 
effects of learner characteristics that are specific to AR. In addition, we 
focused on the role of individual differences in AR research specifically 
within STEM fields. Consequently, the studies done in the other fields 
such as foreign language learning, art and special education, were 
excluded which may have led to the omission of some relevant contri-
butions in ATI-AR research.

Table 6 
List of individual differences to measure in AR research.

Individual difference Possible measurement Why include in a study

Inductive reasoning (IR) Raven's Progressive 
Matrices (Raven, 2003)

IR plays a crucial role in 
predicting STEM 
performance in schools (
Stender et al., 2018; 
Venville & Oliver, 2015).

Relational reasoning Test of relational 
reasoning (TORR) (
Alexander et al., 2016)

Relational reasoning is a 
fundamental cognitive 
skill that underlies STEM 
performance (Alexander, 
2017).

Prior knowledge n/a due to its domain- 
specificity

Prior knowledge is key to 
predicting learning 
outcomes (Simonsmeier 
et al., 2022). However, to 
advance the 
understanding of how 
prior knowledge 
influences learning 
outcomes, it is essential to 
differentiate between and 
describe knowledge types 
in prior knowledge 
assessment. This involves 
distinguishing between 
and describing 
declarative and 
procedural knowledge, 
for instance, as well as 
specifying the content of 
different knowledge 
elements (Hofer & Schalk 
(in preparation)

Representational 
competence

STEM topic-specific (
Küchemann et al., 2021
RCFI – for vector fields; 
Klein et al., 2017 – KiRC 
for kinematics)

The ability to use and 
interpret various 
representations in science 
has an impact on 
conceptual knowledge 
development (Rau, 
2017).

Working memory capacity Complex-span tasks, 
updating tasks, and 
binding tasks (Wilhelm 
et al., 2013)

Working memory 
capacity is strongly 
associated with math 
performance, which in 
turn is key to STEM 
achievement (Berkowitz 
et al., 2022).

Spatial ability Mental rotations test (
Peters et al., 1995) 
Visualization of 
Rotations (Revised 
PSVT: R) (Guay, 1980)

Substantial evidence 
highlighting the 
importance of spatial 
ability within STEM (
Buckley et al., 2018 – for 
systematic literature 
review).

Motivational-affective 
variables (e.g., self- 
concept, interest, 
engagement, self- 
regulation etc.)

Motivated Strategies for 
Learning Questionnaire 
(MSLQ) (Garcia & 
Pintrich, 1996)

Math and science 
motivational beliefs are 
positively associated with 
STEM achievement (
Jiang et al., 2020).
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5. Conclusion

In light of the ever-growing interest in STEM disciplines, the 
demonstrated efficacy of AR in cultivating positive attitudes towards its 
integration may serve as a potent catalyst for fostering more enjoyment 
of STEM learning among students (Wang et al., 2023; Yu et al., 2017). 
We have synthesized a decade of research on consideration of individual 
differences, AR affordances and learning outcomes in AR research car-
ried out in STEM. Our findings suggest that at present, there is little 
attention to the role of the learners' characteristics from an ATI 
perspective. However, our systematic review also maps out possible 
solutions to promote a wider inclusion of the learners' characteristics in 
AR research. The insights gained may support the emergence of more 
interest and expansion of the research focus from the overall effective-
ness of AR for learning to the individual learner, their aptitudes, whether 
these can be reinforced or compensated for by means of employing AR 
technology in the learning process or whether the use of AR can have a 
detrimental effect on learning on the individual level. As a result, the 
findings of this review may inform future research agendas and guide 
the design of studies in the STEM field from an ATI perspective, utilizing 
the L-Tech Triad for technology-afforded environments.

Educational relevance

The current systematic review, to the best of our knowledge, is the 
first attempt to look into the extent to which differential effectiveness 
depending on learners' characteristics is considered in research into the 
use of Augmented Reality (AR) in STEM studies. The study maps out the 
exemplary methodological practices and proposes the Learning in 
Technology-Afforded Environments Triad (L-Tech Triad) to further 
guide the study design in STEM with the use of AR.
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