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A B S T R A C T

Objectives: This randomized controlled trial aimed to evaluate the impact of artificial intelligence (AI) assistance 
on dentists’ diagnostic accuracy, confidence, and treatment decisions when detecting periapical radiolucencies 
(PRs) on panoramic radiographs. We specifically investigated whether AI support influenced diagnostic per-
formance across different levels of clinical experience.
Methods: Thirty dentists with varying levels of experience evaluated 50 panoramic radiographs for the presence 
or absence of PRs, with and without the aid of AI, using a cross-over design. Diagnostic performance metrics, 
confidence scores, and clinical decision choices were analyzed. CBCT scans served as the reference standard. 
Outcomes included sensitivity, specificity, positive and negative predictive values, overall diagnostic accuracy, 
and area under the ROC and AFROC curves. Statistical analyses were conducted using mixed-effects regression 
models.
Results: AI assistance significantly improved overall diagnostic accuracy (91.6 % unaided vs. 93.3 % AI-aided; p <
0.001), mainly by reducing false positive diagnoses (false positive rate: 4.3 % unaided vs. 2.0 % AI-aided). 
Sensitivity remained stable (46.0 % unaided vs. 45.8 % AI-aided). Junior dentists showed the greatest im-
provements in performance and confidence. AI support shifted treatment decisions toward more conservative 
approaches.
Conclusions: AI assistance modestly enhanced dentists’ diagnostic accuracy for detecting periapical radiolu-
cencies, primarily by decreasing false positive diagnoses. Junior dentists benefited most from AI support. Inte-
gration of AI in diagnostic workflows may reduce overtreatment and enhance diagnostic consistency, especially 
among less experienced clinicians.
Clinical Significance: The integration of AI support in dental diagnostics reduced false positive diagnoses and 
supported more conservative treatment decisions, particularly benefiting less experienced clinicians. These 
findings suggest that AI assistance can enhance diagnostic consistency and reduce overtreatment in clinical 
dental practice.

1. Introduction

Periapical radiolucencies (PRs) are key indicators in dental di-
agnostics that may signify apical periodontitis and, potentially, end-
odontic treatment needs. While accurate diagnosis of PRs is essential for 
proper treatment planning, it remains challenging even for experienced 
dentists [1,2]. The prevalence of PRs has been estimated to be 5 % at the 
tooth level [3], which makes it a relatively common finding in oral 
radiology. While 2D radiographs, such as panoramic or periapical 

radiographs, are the most commonly used modality in routine dental 
screening and attentive apical diagnostics (e.g., in symptomatic cases or 
prior to further interventions), cone beam computed tomography 
(CBCT) provides markedly improved visualization of PRs, resulting in 
significantly higher sensitivity compared with 2D radiography. Notably, 
the routine use of CBCT is constrained by factors including higher 
exposure to ionizing radiation, higher cost, and limited accessibility [4].

Despite their thorough training, dentists often face challenges in 
accurately detecting PRs on 2D radiographs due to overlapping 
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anatomical structures, image quality limitations, and the subtle nature 
of incipient lesions [5,6]. These diagnostic challenges may lead to both 
false positive and false negative assessments, potentially resulting in 
unnecessary treatments and missed pathology, respectively [7]. Closing 
this gap, artificial intelligence (AI) has shown promise in enhancing 
diagnostic capabilities in medical imaging, including dental radiography 
[8]. A recent systematic review and meta-analysis [9] demonstrated AI 
to have high accuracy for detecting PRs, with a pooled sensitivity of 0.94 
(95 % confidence interval (CI): 0.90–0.96) and specificity of 0.96 (95 % 
CI: 0.91–0.98). Another recent systematic review and meta-analysis also 
reported high accuracy in PR detection [10]. However, nearly all 
included studies evaluated the AI performance against a reference 
standard, usually set by a group of experts who annotated potentially 
present PRs in each image, rather than assessing its impact on dentists’ 
diagnostic abilities in real-world clinical contexts [11]. The limited 
number of studies in dentistry and related fields that truly assessed the 
diagnostic benefit or harm of AI indicates an “AI chasm.” This refers to 
the difference in diagnostic performance between AI-aided and unaided 
examiners, which tends to be much smaller than anticipated when 
compared to the standalone diagnostic performance of the AI system 
against a reference standard [12,13]. Moreover, there is scarce data on 
how AI impacts examiners’ diagnostic confidence and decision-making, 
as well as whether any of the observed effects differ across examiners 
with variable levels of experience [14].

In the present randomized controlled trial, we aimed to explore the 
diagnostic benefit or harm of using a commercial AI application to detect 
PRs on panoramic radiographs, with corresponding CBCT scans serving 
as the reference standard. Despite their known limitations in sensitivity 
and specificity for detecting PRs, we chose to evaluate AI assistance on 
panoramic radiographs because they are more commonly used in 
routine dental practice [1,6]. Furthermore, PR detection on panoramic 
radiographs represents a more challenging diagnostic task where AI 
assistance might provide greater benefit. We further evaluated potential 
differences in diagnostic confidence and decision-making in aided 
versus unaided examiners with varying clinical experience. We hy-
pothesized that utilizing AI would significantly increase examiners’ 
diagnostic accuracy across various experience levels. A confirmation of 
the hypothesis could potentially reduce the need for additional imaging 
in some cases.

2. Methods

2.1. Study design

We conducted a randomized, controlled, non-blinded, cross-over 
superiority trial with a 1:1 allocation ratio. The cross-over approach 
enabled each participating dentist to act as their own control by 
randomly assessing half of the radiographs AI-aided and the other 
unaided.

2.2. Trial registration

The study was prospectively registered in the German Clinical Trials 
Register (DRKS) under the registration number DRKS00034916 on 
September 5th, 2024.

2.3. Ethical considerations

This study was conducted in accordance with the Declaration of 
Helsinki and received ethical approval from the ethics committee of 
LMU München (protocol number 24-0580). All participating dentists 
provided written informed consent before enrollment, and patient data 
in the radiographic materials were anonymized. This was an unblinded 
study with respect to the intervention, as dentists were necessarily 
aware of whether they were using AI for each evaluation block. How-
ever, partial blinding was maintained as dentists were blinded to the 

reference standard results, the radiograph selection, and the allocation 
process. Confidentiality was maintained throughout the study.

2.4. Participant selection

Thirty dentists with varying levels of clinical experience were 
recruited, ranging from 3 to 23 years (mean, 12.0 years). Experience was 
categorized as junior (≤10 years, n = 17), intermediate (11–15 years, n 
= 6), and senior (>15 years, n = 7) to enable subgroup analysis. Par-
ticipants included 19 males and 11 females, practicing in Germany (n =
15) and Turkey (n = 15). More than half of the participants were gen-
eralists (n = 19), while the remainder were specialists (n = 11). The 
specialists comprised endodontists (n = 5), periodontists (n = 3), oral 
radiologists (n = 1), and conservative dentistry specialists (n = 2).

2.5. Data and reference test

Fifty panoramic radiographs were selected from a database of pa-
tients who had been examined with both panoramic radiography 
(exposure: 73 kV, 8 mA, 11.9 s; dose: 91 mGy cm2) and CBCT (exposure: 
90 kV, 2.5 mA, 15 s; dose: 1178.74 mGy cm2; acquisition mode: High 
contrast 8 × 9). Both modalities were acquired using CS 8200 3D 
(Carestream Dental, Atlanta, GA, USA). For each patient, both imaging 
modalities were acquired within a maximum interval of 7 days.

The CBCT scans were used as the reference standard; they were not 
submitted to AI analysis or evaluated for AI assistance. Two experts in 
CBCT diagnostics independently evaluated each CBCT to determine the 
presence or absence of PRs. In cases of disagreement, consensus was 
reached through joint re-evaluation. Raw interrater agreement was 90.2 
%, with a Cohen’s Kappa of 0.74 (95 % CI: 0.68–0.80), indicating sub-
stantial agreement. The reference test was established before and 
independently of the index test (see below).

According to the reference standard, 106 teeth (8.5 %) exhibited PRs, 
whereas 1145 (91.5 %) did not. PRs were distributed across the 50 ra-
diographs with an average of 2.1 PRs (0–9) per radiograph. The majority 
of radiographs (72 %) contained 1–3 PRs, while 14 % had no PR and 14 
% had four or more PRs. Approximately 60 % of the PRs were located in 
the maxilla and 40 % in the mandible. Molars, premolars, and anterior 
teeth accounted for 45 %, 30 %, and 25 % of the PRs, respectively, with 
first molars and first premolars being more commonly affected than 
other teeth.

2.6. AI

An AI application designed for 2D radiographic analysis used in 
previous evaluations [15–17], dentalXrai Pro (version 3.0.9, dentalXrai, 
Berlin, Germany), was used in this study. The software utilizes a con-
volutional neural network architecture based on a modified ResNet-50 
backbone with a feature pyramid network for multi-scale feature 
extraction. The system was trained on over 100,000 annotated dental 
radiographs and was locked (not fine-tuned) for this study. The interface 
presents detected findings through color-coded overlays (Fig. 1) and 
allows toggling between standard and high-sensitivity modes, which 
dentists could adjust according to their preferences. The system operates 
as a supportive diagnostic tool that highlights suspected areas. Previous 
data generated on an independent dataset demonstrated a sensitivity of 
0.65 and a specificity of 0.87, respectively, for detecting PRs using this 
application [18].

2.7. Randomization and study procedure

The study employed a block-randomized cross-over design. The 50 
panoramic radiographs were divided into 10 blocks, each containing 
five radiographs. During the study, dentists stepwise randomly selected 
one block of radiographs and one decision slip concealed in an opaque 
envelope to determine whether to diagnose AI-aided or unaided. This 
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process was repeated until each dentist had evaluated all blocks, as 
shown in Fig. 2.

The randomization process ensured that the radiographic blocks and 
the conditions (AI-aided vs. unaided) were assigned randomly. Each 
radiograph contained an average of 22.5 [13-28] assessable teeth, with 
the remainder being missing. To avoid selection bias, the radiographs 
were randomly assigned to blocks without any stratification by PR 
prevalence or diagnostic challenge, maintaining the integrity of the 
randomization process. No washout period was implemented between 
evaluations of different blocks since this design allows for immediate 
alternation between conditions, reflecting realistic clinical usage 
patterns.

For each evaluation, dentists recorded: 

1. Diagnosis: determine if a PR was present or absent for each tooth.
2. Confidence: rate confidence in diagnosis on a scale from 1 to 5 (1 =

very low, 5 = very high)
3. Decision: 0 = no further intervention, 1 = further diagnostics (e.g. 

CBCT), 2 = root-canal treatment or other endodontic (invasive) 
therapy

2.8. Outcomes

The primary outcome was diagnostic accuracy and additional per-
formance metrics, including: 

• Sensitivity and specificity
• Positive and negative predictive values and false positive rates
• Area under the receiver operating characteristic (ROC) curve (AUC)

Secondary outcomes included the following: 

• Confidence scores (mean and distribution)
• Alternative free-response ROC (AFROC) analysis
• Decisions (distribution across categories)
• Impact of dentist experience on the above measures
• Impact of specialization (generalist vs. specialists) on diagnostic 

performance
• Impact of country of practice (Germany vs. Turkey) on diagnostic 

performance

2.9. Sample size calculation

The sample size was calculated using Hillis et al.’s Multiple Readers 
and Multiple Cases (MRMC) approaches [19] with correlation values 

[20] as described in Obuchowski [21] when using large estimates of 
intra-observer and inter-observer variability. Estimated effect sizes were 
drawn from Nardi et al. [22]. Sample size needs to consider clustering 
effects, determined via intra-class correlations found in Meinhold et al. 
[23]. Power was set at 95 % with a two-sided alpha of 0.05. This 
calculation demonstrated that 30 dentists, each evaluating 50 radio-
graphs (25 AI-aided and 25 unaided), would provide 95 % power to 
detect the expected effect size. Our sample size calculation was intended 
to detect the overall effect of AI assistance on diagnostic accuracy. While 
we conducted subgroup analyses by experience level, we acknowledge 
that the smaller sample sizes in the intermediate (n = 6) and senior (n =
7) groups limit statistical power for detecting interaction effects.

2.10. Statistical analysis

Diagnostic accuracy metrics, including sensitivity, specificity, posi-
tive predictive value, negative predictive value, and overall accuracy, 
were calculated with 95 % CIs. AUC values were derived from the ROC 
curve analysis. Additionally, we conducted the AFROC analysis to 
comprehensively assess diagnostic performance based on confidence 
scores.

For comparing AI-aided vs. unaided conditions, we used: 

• Independent samples t-tests for performance metrics at the dentist 
level (AUC, AFROC parameters),

• McNemar’s test for paired binary outcomes (correct/incorrect 
diagnosis),

• Chi-square tests for categorical variables (treatment decisions),
• Mixed-effects linear regression for confidence scores.

To account for the hierarchical nature of the data, we employed 
mixed-effects regression models with a three-level nested structure: 
teeth (level 1) within radiographs (level 2) within dentists (level 3). For 
diagnostic accuracy, we used mixed-effects logistic regression; for con-
fidence scores, we utilized mixed-effects linear regression; and for 
treatment choices, we applied mixed-effects ordinal logistic regression 
[24,25]. For the mixed-effects regression models, we used generalized 
linear mixed models for binary outcomes (diagnostic accuracy) using the 
glmer function from the lme4 package in R with a binomial distribution 
and logit link function. For confidence scores, we used linear mixed 
models with the lmer function, and for treatment decisions, we 
employed cumulative link mixed models with the clmm function from 
the ordinal package. In all models, we specified AI assistance, experience 
level, and country as fixed effects. Random effects included dentist, 
radiograph, and tooth to account for the three-level nested structure of 

Fig. 1. Screenshot of dentalXrai Pro software interface showing a panoramic radiograph with AI-assisted findings. Color-coded highlights indicate crowns (blue), 
obturated root canals (purple), caries (red), and suspected periapical radiolucencies (orange).
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our data: teeth (level 1) within radiographs (level 2) within dentists 
(level 3). This structure appropriately models the hierarchical nature of 
our dataset and controls for clustering effects that could otherwise 
inflate Type I error rates [26]. We also ran models without interaction 
terms, which showed similar or slightly better fit according to AIC values 
and R-squared metrics. Subgroup analyses by dentist experience, 
specialization, and country were incorporated using interaction terms in 
the respective models.

Shapiro-Wilk tests were performed to assess the normality of 
continuous variables, including confidence scores and AUC values [27]. 
When normality assumptions were violated (p < 0.05), non-parametric 
alternatives (Wilcoxon rank-sum tests) were employed [28]. For the 
mixed-effects models, we examined residual diagnostics to confirm 
appropriate model fit, including QQ plots and residual versus fitted 
value plots [25]. All analyses were performed using R (version 4.4.3). 
Statistical significance was set at a two-sided alpha level of 0.05.

3. Results

3.1. Descriptive statistics

The study involved 30 dentists who evaluated 50 panoramic radio-
graphs (in total, 1251 teeth) each, resulting in 37,530 tooth assessments. 

Fig. 2. Study design flow diagram. The flowchart illustrates the methodology for evaluating AI-assisted detection of periapical radiolucency using panoramic ra-
diographs. Thirty eligible dentists evaluated 10 blocks of 5 panoramic radiographs each, with randomized AI assistance. The reference standard was established 
through expert annotation of corresponding CBCT scans.

Table 1 
Absolute numbers of true positives, false positives, true negatives, and false 
negatives for both AI-aided and unaided conditions across all experience levels. 
AI = Artificial intelligence.

Assessment True 
Positive

False 
Positive

True 
Negative

False 
Negative

Total

Unaided 704 746 16,561 785 18,877
AI-aided 750 345 16,608 851 18,623
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Of these assessments, 18,636 (49.66 %) were AI-aided, while 18,894 
(50.34 %) were unaided. Table 1 presents the absolute numbers of true 
positives, false positives, true negatives, and false negatives for both AI- 
aided and unaided conditions across all experience levels.

3.2. Overall diagnostic performance

AI assistance significantly improved overall diagnostic accuracy 
from 91.6 % (95 % CI: 91.1–92.1 %) to 93.3 % (95 % CI: 92.9–93.7 %) (p 
< 0.001). The most significant change was in specificity, which 
increased from 95.7 % (95 % CI: 95.4–96.0 %) unaided to 98.0 % (95 % 
CI: 97.8–98.2 %) AI-aided, while sensitivity remained relatively stable at 
46.0 % (95 % CI: 42.7–49.3 %) unaided compared to 45.8 % (95 % CI: 
42.6–49.0 %) AI-aided.

AI-aided ROC AUC showed a modest yet statistically significant 
improvement (AUC: 0.719 ± 0.018 vs. 0.708 ± 0.017; p = 0.042) 
(Fig. 3). AFROC AUC increased across nearly all experience levels with 
the aid of AI. Overall, it rose from 0.701 ± 0.027 unaided to 0.710 ±
0.026 AI-aided, although this difference was not statistically significant 
(p > 0.05). The most notable effect was the reduction of false positive 
diagnoses, with the false positive rate decreasing from 4.3 % unaided to 
2.0 % AI-aided. This translated to 401 fewer false positive diagnoses 
across all evaluations.

The positive predictive value (PPV) showed significant improvement 
with AI-aided, rising to 68.6 % (95 % CI: 65.1–72.1 %) compared to 48.7 
% (95 % CI: 45.1–52.3 %). Meanwhile, the negative predictive value 

(NPV) remained stable at 94.9 % (95 % CI: 94.6–95.2 %) compared to 
95.2 % (95 % CI: 94.9–95.5 %) unaided.

3.3. Impact of experience

The benefits of AI assistance varied significantly depending on the 
level of experience of dentists. Junior dentists (≤10 years of experience) 
exhibited the most remarkable improvement with the aid of AI, with the 
AUC increasing from 0.70 to 0.74. Intermediate dentists (11–15 years of 
experience) demonstrated a modest improvement, while senior dentists 
(>15 years of experience) did not benefit from AI (Table 2). A similar 
pattern was evident in diagnostic accuracy and false positive rates 
(Fig. 4).

3.4. Impact of country of practice and specialty

In additional subgroup analyses, diagnostic accuracy did not differ 
significantly between German and Turkish dentists, or between general 
dentists and specialists, regardless of AI use. Among dentists using AI, 
the average accuracy was 93.7 % (93.0–94.4 %) for German dentists and 
93.6 % (93.2–94.0 %) for Turkish dentists. Without AI, German dentists 
achieved 91.8 % (91.2–92.4 %), while Turkish dentists reached 92.0 % 
(91.6–92.5 %). Similarly, specialists achieved an average accuracy of 
93.9 % (93.3–94.6 %) with AI and 92.2 % (91.6–92.9 %) without AI. 
General dentists performed comparably, with 93.5 % (93.0–94.0 %) AI- 
aided and 91.7 % (91.2–92.2 %) unaided. No statistically significant 

Fig. 3. Receiver Operating Characteristic (ROC) curves plot true positive rate against false positive rate to evaluate diagnostic performance, with the diagonal line 
representing random chance (AUC = 0.5). AI assistance provided the greatest improvement for junior dentists, while senior and intermediate dentists showed more 
modest benefits. (a) Overall performance across all dentists, (b) Junior dentists (≤10 years of experience), (c) Intermediate dentists (11–15 years of experience), (d) 
Senior dentists (>15 years of experience). Table 2 shows the corresponding Area Under the Curve (AUC) values and differences.
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differences were found across these groups (p > 0.05 in all cases), 
indicating that the benefit of AI was consistent regardless of country or 
specialization.

3.5. Diagnostic confidence

Dentists reported slightly higher confidence when being assisted by 
AI (mean score 3.59 ± 1.06) compared to when not being assisted (3.53 
± 1.10), though this finding was not statistically significant (p > 0.05). 
When AI assistance was utilized, confidence scores were more 

consistent, with a lower standard deviation.
Mixed-effects linear regression indicated a positive effect of AI on 

confidence scores (+0.055 points, 95 % CI: − 0.023 to 0.134) after ac-
counting for dentist-specific variation; however, this result neither 
reached statistical significance (p > 0.05). Among all dentists, 19 (63.3 
%) showed higher mean confidence scores when using AI, while 11 
(36.7 %) reported lower scores.

3.6. Decision-making

AI assistance was linked to a shift toward less interventionist ap-
proaches. With AI, dentists recommended a "wait and see" approach in 
23.0 % of cases compared to 20.7 % without AI. Further invasive 
treatments were recommended in 26.8 % of cases with AI, compared to 
29.0 % without AI. The percentage of recommendations for further di-
agnostics remained virtually unchanged at 50.2 % with AI versus 50.3 % 
without AI. While consistent, AI’s effect on treatment decisions did not 
achieve statistical significance (p = 0.265); this was confirmed by 
mixed-effects ordinal logistic regression (OR: 0.91, 95 % CI: 0.82–1.01, p 
= 0.062) (Table 3).

4. Discussion

AI is entering healthcare fast, with dentistry being no exception. In 
clinical practice, AI-assisted detection of PRs on panoramic radiographs 
may serve as an effective initial screening tool [29]. When the AI system 
flags a potential PR, clinicians review the findings and may consider 
follow-up imaging, such as periapical radiographs or CBCT, to confirm 
the diagnosis before proceeding with treatment planning [4]. In this 
role, AI is expected to enhance sensitivity, particularly supporting junior 
practitioners [30]. While there is a large and growing body of evidence 
demonstrating the theoretical diagnostic performance of AI in dentistry, 
mainly in image analysis, there is a significant gap in assessing the true 
benefits of AI assistance for practitioners’ diagnostic accuracy, confi-
dence, and decision-making.

The present study, for the first time, evaluated these aspects in a 
randomized controlled design, with dentists detecting PRs on panoramic 
radiographs with and without AI assistance. We found AI to modestly 
but consistently improve dentists’ diagnostic accuracy, primarily by 
reducing false positive diagnoses, with effects varying significantly 
based on the dentist’s experience. Similarly, AI increased the diagnostic 
confidence of less experienced dentists, but not necessarily that of 
experienced dentists. AI also tended to drive dentists towards less 
invasive decisions made based on the assessment of the radiograph, 
potentially reducing both overtreatment and unnecessary radiation 
exposure from additional imaging [31].

The overall diagnostic accuracy for detecting PR (AI-aided AUC: 
0.719 [95 % CI: 0.701–0.737] vs. unaided AUC: 0.708 [95 % CI: 
0.691–0.725]) was lower than previously reported [32], likely routed in 
different radiograph modalities being analyzed. In periapical radio-
graphs, for example, the resolution will be higher, and tooth overlap will 
be lower than in panoramic radiographs, affecting dentists’ accuracy in 
detecting PRs. Moreover, previous studies – summarized in a recent 
meta-analysis [10] – reported higher sensitivity (0.93) and specificity 
(0.85) for deep learning models detecting PRs than our evaluation. 
Notably, these studies primarily evaluated AI performance in isolation 
rather than in real-world usage by dentists. Furthermore, most previous 
studies [33] relied on the same type of radiograph for generating the 
reference test. In contrast, we used CBCT scans to establish the reference 
standard, which is noteworthy because dentists detect approximately 
25–30 % more PRs on CBCT scans than on 2D radiographs [1]. On the 
one hand, this increases the validity of our reference standard; on the 
other hand, it challenges examiners, as both humans and AI may have 
faced PRs that were not detectable on 2D radiographs, lowering their 
sensitivity. We presume that this also contributed to the observation that 
sensitivity remained virtually unchanged even with AI assistance.

Table 2 
Diagnostic performance with and without AI assistance, presented overall and 
by dentist experience level. 95 % confidence intervals are shown in parentheses 
for AI-aided and Unaided columns; ranges are shown for the Difference column. 
AI = Artificial Intelligence; AUC = area under the receiver operating charac-
teristic curve; FPR = false positive rate; NPV = negative predictive value; PPV =
positive predictive value. * Statistically significant difference (p < 0.05).

Experience Metric AI-aided Unaided Difference

Overall (n =
30)

Sensitivity 
(%)

45.8 
(41.7–49.9)

46.0 
(41.9–50.1)

− 0.2 (− 5.5; 
5.1)

Specificity 
(%)

98.0 
(97.4–98.6)

95.7 
(94.9–96.5)

2.3 (1.4; 3.2)*

PPV (%) 68.6 
(62.8–74.4)

48.7 
(42.1–55.3)

19.9 (11.7; 
28.1)*

NPV (%) 94.9 
(94.3–95.5)

95.2 
(94.6–95.8)

− 0.3 (− 1.1; 
0.5)

Accuracy 
(%)

93.3 
(92.6–94.0)

91.6 
(90.8–92.4)

1.7 (1.0; 2.4)*

FPR (%) 2.0 (1.8–2.2) 4.3 (4.0–4.6) − 2.3 (− 2.6; 
− 2.0)*

AUC 0.7 (0.7–0.7) 0.7 (0.7–0.7) 0.011 (0.001; 
0.02)*

Junior (n = 17) Sensitivity 
(%)

49.1 
(44.2–54.0)

44.0 
(39.1–48.9)

5.1 (0.9; 9.3)*

Specificity 
(%)

98.1 
(97.5–98.7)

95.6 
(94.6–96.6)

2.5 (1.5; 3.5)*

PPV (%) 70.0 
(63.5–76.5)

48.8 
(41.2–56.4)

21.2 (12.0; 
30.4)*

NPV (%) 95.5 
(94.8–96.2)

94.7 
(93.9–95.5)

0.8 (− 0.1; 
1.7)

Accuracy 
(%)

94.0 
(93.2–94.8)

91.2 
(90.2–92.2)

2.8 (1.7; 3.9)*

FPR (%) 1.9 (1.6–2.2) 4.4 (4.0–4.8) − 2.5 % (− 2.9; 
− 2.1)*

AUC 0.7 (0.7–0.8) 0.7 (0.7–0.7) 0.04 (0.02; 
0.06)

Intermediate (n 
= 6)

Sensitivity 
(%)

42.6 
(36.5–48.7)

46.9 
(40.8–53.0)

− 4.3 (− 11.0; 
2.4)

Specificity 
(%)

98.1 
(97.3–98.9)

95.1 
(93.8–96.4)

3.0 (1.7; 4.3)*

PPV (%) 68.6 
(60.2–77.0)

46.1 
(37.1–55.1)

22.5 (10.9; 
34.1)*

NPV (%) 94.6 
(93.6–95.6)

95.3 
(94.4–96.2)

− 0.7 (− 1.9; 
0.5)

Accuracy 
(%)

93.2 
(92.0–94.4)

91.0 
(89.6–92.4)

2.0 (− 0.5; 
3.5)

FPR (%) 1.9 (1.5–2.3) 4.9 (4.3–5.5) − 3.0 (− 3.6; 
− 2.4)*

AUC 0.7 (0.7–0.8) 0.7 (0.7–0.7) 0.01 (− 0.01; 
0.03)

Senior (n = 7) Sensitivity 
(%)

41.4 
(35.5–47.3)

50.8 
(44.9–56.7)

− 9.4 (− 16.0; 
− 2.8)*

Specificity 
(%)

97.5 
(96.5–98.5)

95.2 
(95.0–97.4)

2.3 (1.0; 3.6)*

PPV (%) 65.1 
(56.3–73.9)

50.8 
(42.0–59.6)

14.3 (3.0; 
25.6)*

NPV (%) 93.7 
(92.6–94.8)

96.2 
(95.2–97.1)

− 2.5 (− 3.8; 
− 1.2)*

Accuracy 
(%)

91.9 
(90.5–93.3)

93.0 
(91.8–94.2)

− 1.1 (− 2.7; 
0.5)

FPR (%) 2.5 (2.0–3.0) 3.8 (3.2–4.4) − 1.3 (− 1.9; 
− 0.7)*

AUC 0.7 (0.7–0.7) 0.7 (0.7–0.8) − 0.03 (− 0.05; 
− 0.01)
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In terms of accuracy, the absolute improvement yielded by AI 
assistance was modest. This was not surprising, as the discrepancy be-
tween AI performance in diagnostic accuracy studies (where AI is 
compared to a reference standard not established in clinical settings) 
and clinical application, is well documented in dentistry [15,34], radi-
ology [35], and other medical fields [36,37]. While AI tools frequently 

demonstrate high performance on curated datasets and retrospective 
analyses, their benefit tends to diminish in real-world settings due to 
factors such as workflow misalignment, trust issues, and variability in 
clinical decision-making [37,38].

Although AI aid did not markedly improve accuracy, its clinical 
significance should be considered in context. Table 1 shows that AI 

Fig. 4. Arrows indicate a change in performance metrics for individual dentists when using AI, with each arrow connecting the same dentist’s performance under 
both conditions. Diamond markers represent the average sensitivity and 1-specificity values across all dentists within each diagnostic mode (with/without AI). Line 
colors reflect dentists’ experience levels: green for junior (≤10 years), blue for intermediate (11–15 years), and red for senior (>15 years) practitioners. The figure 
demonstrates that AI assistance generally improved specificity with minimal impact on sensitivity, though individual responses varied considerably across experience 
levels. Most arrows point upward and slightly rightward, indicating that AI typically decreased false positive rates while maintaining acceptable true posi-
tive detection.

Table 3 
Summary of mixed-effects regression models assessing the impact of AI assistance on diagnostic accuracy, confidence, and treatment decisions.

Variable Category Model 1 Model 2 Model 3*

aOR (95 % C.I.) p-value β (95 % C.I.) p-value aOR (95 % C.I.) p-value

Dependent variable: 
AI Assistance

No Ref. – Ref. – Ref. –
Yes 1.36 (1.25; 1.48) <0.001 0.04 (− 0.03; 0.11) 0.249 0.86 (0.74; 1.00) <0.05

Dependent variable: 
Treatment decision

0 n/a n/a n/a n/a Ref. –
1 n/a n/a n/a n/a 0.22 (0.16; 0.30) <0.001
2 n/a n/a n/a n/a 2.52 (1.83; 3.46) <0.001

Experience level Junior Ref. – Ref. – Ref. –
Intermediate 0.94 (0.84; 1.04) 0.208 − 0.05 (− 0.14; 0.04) 0.235 0.84 (0.69; 1.02) 0.081
Senior 0.96 (0.87; 1.06) 0.468 0.04 (− 0.05; 0.12) 0.412 0.92 (0.77; 1.11) 0.404

Country Germany Ref. – Ref. – Ref. –
Turkey 1.00 (0.92; 1.09) 0.951 − 0.03 (− 0.10; 0.04) 0.363 0.89 (0.77; 1.03) 0.128

Model 1: Mixed-effects logistic regression assessing the effect of AI assistance on diagnostic accuracy.
Model 2: Mixed-effects linear regression assessing the effect of AI assistance on confidence.
Model 3: Mixed-effects ordinal regression assessing the effect of AI assistance on treatment decisions.
* AI Assistance was considered as a covariate in Model 3.
aOR: Adjusted odds ratios; β: Coefficient estimate.
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helped dentists avoid misdiagnosing normal findings as pathological; of 
the 37,500 tooth assessments, the number of false positives decreased 
from 746 to 345 with AI assistance. The 53.5 % decrease in false positive 
rate presents one of the main clinical implications of this study, as 
overdiagnosis is a well-known problem in dental practice, often result-
ing in unnecessary treatments that incur costs and possible complica-
tions. While overtreatment in our context may involve relatively minor 
interventions such as additional radiographic imaging, reducing false 
positives still represents meaningful clinical value by minimizing patient 
exposure to unnecessary procedures and associated healthcare costs [39,
40].

Our discovery that AI cut false positive diagnoses by over half 
directly tackles this issue. This reduction in false positives may be 
explained by mechanisms such as attention anchoring [41], where AI 
highlights suspect regions and prevents overinterpretation of ambiguous 
areas. Additionally, cognitive off-loading [42] allows dentists to dele-
gate part of the visual pattern recognition to AI, reducing mental burden 
and enhancing evaluation of critical areas. Moreover, AI’s consistent 
application of diagnostic thresholds may reduce interobserver vari-
ability and promote more standardized diagnostic decisions.

The impact of AI assistance varied notably depending on the dentists’ 
level of experience. Junior dentists showed significant improvements in 
diagnostic performance when supported by AI, while those with inter-
mediate experience exhibited more modest gains, and senior dentists did 
not at all perform better with AI support. These findings may reflect how 
clinical experience shapes interaction with AI. Less experienced dentists, 
who may lack diagnostic confidence, tend to rely more on AI sugges-
tions, enhancing their accuracy and realizing the theoretical benefits of 
AI (measured in the discussed diagnostic accuracy studies). In contrast, 
experienced practitioners might be less influenced by AI or even expe-
rience conflict when AI contradicts their internalized patterns. In some 
cases, AI cues may disrupt intuitive reasoning or reinforce errors 
through confirmation bias, especially when initial impressions are un-
consciously validated by matching AI outputs [43]. This inverse rela-
tionship between clinical experience and the benefit of AI suggests that 
while AI can be a valuable aid, it may, in some cases, interfere with the 
well-developed pattern recognition skills of more experienced clini-
cians. Supporting this, in everyday practice, junior clinicians seem to 
embrace AI as a safety net, routinely consulting AI recommendations 
and frequently following them [44] while more experienced practi-
tioners tend to develop more pragmatic approaches, using AI selectively 
for complex or uncertain cases [45] or as a confirmatory tool after 
forming their own conclusions [46]. Generally, experience has been 
found to modulate the benefit-harm ratio of AI in medical diagnostics. 
Majkowska et al. [30]. demonstrated in their study that AI assistance 
provided greater benefits to less experienced radiologists when detect-
ing lung nodules on chest radiographs. Similarly, Bejnordi et al. [47]. 
found that AI algorithms could improve diagnostic consistency among 
pathologists with varying levels of experience.

Previous studies in medicine have also shown that decision support 
systems can influence clinical decision-making, often leading to more 
evidence-based and standardized care [48,49]. In this study, the slight 
increase in diagnostic confidence observed with AI support and a shift 
toward more conservative treatment recommendations suggests that AI 
may also contribute to greater consistency in clinical decision-making. 
The finding contrasts with the study by Mertens et al. [15]. on caries 
detection, where the use of AI led to more invasive treatment planning. 
This discrepancy likely reflects differences in the use case. First, while 
models for caries detection tend to increase sensitivity [50] (and hence 
the number of positive cases), in our study, the number of PRs detected 
with AI decreased from 1450 to 1095 (Table 1), indicating an increase in 
specificity and precision. As a consequence of the perceived absence of 
PRs, dentists seemed more inclined to choose a wait-and-see approach 
rather than immediately recommending any interventions. This ten-
dency was particularly evident in cases where dentists initially reported 
low confidence, indicating that the influence of AI is most significant in 

situations characterized by diagnostic uncertainty or hesitation.
The shift toward more conservative treatment decisions with AI 

support warrants further investigation. Unlike caries, which prompts 
intervention due to its progressive nature, the decision-making process 
related to PRs is more complicated, as they may or may not gradually 
diminish after treatment. Moreover, the observed association of AI- 
assisted diagnoses with more conservative treatment approaches may 
reflect the inherent limitations of detecting PRs on panoramic radio-
graphs. It is possible that increased specificity helped dentists better 
distinguish between clear pathology requiring intervention and equiv-
ocal findings better suited for monitoring [51]. However, we cannot 
exclude that this conservative trend also reflects dentists’ awareness of 
the diagnostic limitations of panoramic radiographs for confirming PRs 
[22]. Future studies comparing treatment decisions across different 
imaging modalities, with and without AI assistance [52,53], are needed 
to disentangle these contributing factors. Furthermore, in the future, the 
human-AI interaction should be better personalized, and interface de-
signs should be prioritized to align with dentists’ natural visual work-
flows, as dentists have been shown to use AI selectively [16] and 
frequently toggle between views, creating workflow interruptions. 
Optimizing interfaces to minimize attention shifts between images and 
AI findings could reduce this issue and enhance human-AI interaction. 
Additionally, adopting educational approaches where AI explanations 
supplement detections [11] can help dentists develop improved pattern 
recognition rather than creating dependence on AI assistance.

This study has several strengths. It was conducted in real-world 
clinical settings, achieving high ecological validity by evaluating den-
tists using their everyday diagnostic equipment and workflows. While 
dentists did not use the tool in their daily workflow on real patients, this 
caveat had to be accepted as part of our study design. Besides that, the 
randomized cross-over design enabled us to control individual dentist 
factors and directly compare their performance with and without AI 
support. We demonstrated that AI assistance may influence clinical 
decision-making, encouraging more conservative approaches, an aspect 
rarely examined in dental AI studies [15,54]. Additionally, our multi-
level modeling approach rigorously accounts for the hierarchical 
structure of dental radiographic data, addressing a crucial methodo-
logical gap in earlier studies that typically use simpler analytical ap-
proaches [55,56]. By utilizing CBCT as the reference standard, this study 
also established a strong benchmark for evaluating diagnostic accuracy. 
Finally, with 30 dentists and more than 37,000 assessment points, our 
study had adequate statistical power to identify significant differences. 
However, there were some limitations as well, including a risk of se-
lection bias which could limit the generalizability of our results. The 
radiographs used in this study were sourced from patients who had 
undergone both panoramic radiography and CBCT imaging, which may 
represent a specific subgroup with a higher likelihood of underlying 
pathology. Moreover, dentists were aware that they participated in a 
clinical trial, which may have increased their diagnostic diligence, but 
also how they framed their decisions. As outlined, assessing AI in routine 
use would address this, but a randomized design is likely unfeasible in 
this case. Lastly, the generalizability of our results may be further 
limited by the radiographs that were sourced from a single clinical 
center using one imaging system and using a single AI application. The 
presented outcomes may not extend to other AI technologies with 
different algorithms, training datasets, or performance characteristics.

Based on our findings and the identified limitations, we propose 
several further directions for future research: Studies examining the 
impact of AI-assisted diagnosis on treatment success rates, complica-
tions, and patient satisfaction seem relevant to gauge the true, long-term 
impact of diagnostic AI in dentistry. Similarly, evaluating the economic 
implications of AI implementation, including potential savings from 
reduced overtreatment, should be considered. Future studies should also 
include a more detailed characterization of lesion size and an analysis of 
how anatomical location affects diagnostic performance. Additionally 
larger and more balanced experience subgroups would be suitable be 
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confirm our findings regarding the impact of AI across experience levels. 
Such efforts could provide valuable insights for optimizing AI systems 
and refining clinical protocols tailored to different tooth regions. Lastly, 
studies investigating how AI systems can be adapted to provide optimal 
support for dentists with different levels of experience and in different 
environments or contexts seem warranted as well, as research examining 
whether ongoing use of AI applications leads to improved diagnostic 
capabilities even when AI is not available.

5. Conclusion

AI assistance modestly enhanced dentists’ diagnostic accuracy for 
detecting PRs on panoramic radiographs, mainly by reducing false 
positive diagnoses by over 50 %. Benefits varied by experience level, 
with junior dentists showing the most significant improvements. While 
our findings suggest AI can improve dental care by minimizing over-
diagnosis and standardizing diagnostic quality, several limitations must 
be considered in clinical translation, including the inherent limitations 
of panoramic radiography for PR diagnosis, the single-center design, and 
the use of one specific AI system. It is essential to recognize that AI 
assistance will not always be beneficial, and clinicians must maintain 
critical judgement in determining when and how to incorporate AI 
recommendations into their diagnostic workflow. Future multi-center 
studies with diverse imaging modalities and AI systems are needed to 
validate these findings across broader clinical contexts.
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