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Abstract: By the Aharonov–Casher theorem, the Pauli operator P has no zero eigen-
value when the normalized magnetic flux α satisfies |α| < 1, but it does have a zero
energy resonance. We prove that in this case a Lieb–Thirring inequality for the γ -th
moment of the eigenvalues of P + V is valid under the optimal restrictions γ ≥ |α| and
γ > 0. Besides the usual semiclassical integral, the right side of our inequality involves
an integral where the zero energy resonance state appears explicitly. Our inequality
improves earlier works that were restricted to moments of order γ ≥ 1.

1. Introduction and Main Result

1.1. Background. We are interested in quantitative information on the negative eigen-
values of the operator

P + V in L2(R2,C2),

where P is the Pauli operator,

P =
(
H + 0
0 H−

)
, H± = (−i∇ + A)2 ± B. (1.1)

Here A : R2 → R
2 is a vector field and the function B : R2 → R is defined by

B = curl A = ∂1A2 − ∂2A1.
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For simplicity we restrict ourselves to the case where V : R2 → R is scalar, that is,
acts trivially on the C2 part of L2(R2,C2). Both B and V are assumed to be sufficiently
regular and to decay in a suitable sense at infinity, as will be made precise later on.

Physically, the operator P + V describes a quantum particle moving in a plane in the
presence of a magnetic field of strength B pointing orthogonal to this plane and in the
presence of an electric field with potential V . The matrix structure of P and the ±B term
in P come from the interaction of the spin of the particle with the magnetic field. This
spin-orbit coupling is neglected when considering the magnetic Schrödinger operator.
This simplifies the model, but has the effect of destroying some of the structure of the
Pauli operator. In particular, zero modes are removed and the bottom of the spectrum
is stabilized. In our study we will not neglect the spin-orbit coupling and we will pay
special attention to effects coming from the low energy part of the operator P .

When B and V are sufficiently regular and sufficiently fast decaying (we will be
more precise later on), the differential expression P +V can be realized as a self-adjoint,
lower bounded operator in the Hilbert spaceL2(R2,C2) and the negative spectrum of this
operator consists only of eigenvalues with finite multiplicities and with zero as their only
possible accumulation point. Labelling these eigenvalues as E j , where multiplicities are
taken into account, we are interested in bounding sums

∑
j

|E j |γ = Tr(P + V )
γ
−

from above for different choices of the parameter γ > 0. These upper bounds shall
involve integrals over R2 of powers of V and quantities defined in terms of the magnetic
field B. The prototype of such bounds are the Lieb–Thirring inequalities, which in the
nonmagnetic case state that for any γ > 0 there is a universal constant Lγ such that for
all real V ∈ L1

loc(R
2) one has

Tr(−� + V )
γ
− ≤ Lγ

∫
R2

V (x)γ +1
− dx . (1.2)

Here a± := max{±a, 0}, so that a = a+ − a−. The bound (1.2) goes back to the work
of Lieb and Thirring [35] and has created a huge literature. For further reading on this
topic we refer to the monograph [22], the review [20] and references therein.

One feature about (1.2) that will be relevant for our discussion is that the inequality
gets stronger as γ gets smaller. This is formalized by the Aizenman–Lieb argument [3]
(see also [22, Lemma 5.2]), which says that the validity of inequality (1.2) for some
γ = γ0 implies its validity for all γ ≥ γ0.

Turning our attention back to magnetic fields, it is not difficult to see that (1.2) remains
valid when −� is replaced by (−i∇ + A)2; see [22, Theorem 4.61], [18] and references
therein. More precisely, for any γ > 0 there is a constant L̃γ such that for any real
V ∈ L1

loc(R
2) and any A ∈ L2

loc(R
2,R2) the analogue of (1.2) holds with constant L̃γ .

Note that the right side in the resulting inequality is independent of A.
The situation is quite a bit more complicated for the Pauli operator, that is, when

the spin-orbit coupling is taken into account. There have been many works addressing
this question and we will review them in some detail later in this introduction. For the
present discussion the following two facts are important. First, there can be no bound
of the form (1.2) with a right side that is independent of A. Second, previous works are
restricted to the range γ ≥ 1. Both phenomena are related to the existence of zero modes
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of the Pauli operator. The existence of the latter and their structure is described by the
Aharonov–Casher theorem [2].

What we shall show in the present paper is that if the normalized magnetic flux

α := 1

2π

∫
R2

B(x) dx < ∞ (1.3)

satisfies

|α| < 1, (1.4)

then a Lieb–Thirring inequality holds for P+V whenever γ ≥ |α| and γ > 0. Moreover,
we shall show that this restriction on γ is optimal.

According to the Aharonov–Casher theorem [2] (see also [8]), assumption (1.4)
implies that the Pauli operator P does not have a zero eigenvalue. Heuristically, this
eliminates the reason for the restriction γ ≥ 1 in earlier works. The Pauli operator
P does, however, have a zero energy resonance, that is, there is a function ψ0 with
Pψ0 = 0 that decays at infinity, but not fast enough to be square integrable. (We recall
that the operator P has a zero resonance for any α.) The decay of this resonance function
ψ0 will be what dictates the optimal condition γ ≥ |α| on the exponent in the Lieb–
Thirring inequality. Our Lieb–Thirring inequality will have two terms on the right side,
the first one being the standard term from (1.2) and the second one involving explicitly
the resonance function ψ0.

1.2. Definitions and main result. We now turn to a precise formulation of our result,
beginning with a careful definition of the Pauli operator P . The standard definition of
P assumes that A ∈ L2

loc(R
2,R2) and proceeds from the quadratic forms∫

R2
|(�1 + i�2)ψ

+|2 dx +
∫
R2

|(�1 − i�2)ψ
−|2 dx

where � j := −i∂ j + A j and where the form is defined for all (ψ+, ψ−) ∈ L2(R2,C2)

for which the distributions (�1 + i�2)ψ
+ and (�1 − i�2)ψ

− belong to L2(R2). We
will not adapt this definition, although the one we choose is equivalent to this standard
definition in situations with enough regularity. The reason is that our assumptions are
more naturally formulated in terms of the scalar potential h (defined momentarily) rather
than in terms of the vector potential A, on which the standard definition is based.

The approach that we follow was promoted by Erdős and Vougalter and investigated
in detail in their paper [16]. To motivate it, we assume that there is a real function
h ∈ L2

loc(R
2) such that A1 = −∂2h and A2 = ∂1h. Then a computation shows that∫

R2
|(�1 + i�2)ψ

+|2 dx =
∫
R2

e2h |(∂1 + i∂2)e
−hψ+|2 dx ,

∫
R2

|(�1 − i�2)ψ
−|2 dx =

∫
R2

e−2h |(∂1 − i∂2)e
hψ−|2 dx .

The basic idea is to use the right sides to define the Pauli operator. Note that if such a
function h exists, then �h = ∂1A2 − ∂2A1 = B.

We now proceed to the actual definition of P , following [16]. We assume that μ is a
signed real regular Borel measure on R

2 with μ({x}) = 0 for all x ∈ R
2 (which plays
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the role of the magnetic field). Then, by [16, Theorem 2.7 and Corollary 2.3] there is a
real-valued h ∈ ⋂

p<2 W
1,p
loc (R2) such that

�h = μ in R
2

and e2h, e−2h ∈ L1
loc(R

2). Fixing any such h, the quadratic form

∫
R2

e2h |(∂1 + i∂2)e
−hψ+|2 dx +

∫
R2

e−2h |(∂1 − i∂2)e
hψ−|2 dx, (1.5)

defined for all (ψ+, ψ−) ∈ L2(R2,C2) for which the integrals are finite, is nonnegative
and closed in L2(R2,C2) [16, Theorem 2.5] and therefore generates a selfadjoint, non-
negative operator P inL2(R2,C2). This operator depends on the choice of the function h,
but one can show that for two different choices of functions h corresponding to the same
μ the resulting operators are unitarily equivalent by a gauge transformation [16, Theo-
rem 2.5]. Clearly, for two functions h differing by an additive constant the corresponding
operators coincide. Moreover, if there is an A ∈ L2

loc(R
2,R2) with ∂1A2 − ∂2A1 = μ

(in the sense of distributions), then the operator P is unitarily equivalent to the Pauli
operator defined via the standard approach outlined above [16, Proposition 2.10].

We can now formulate our assumptions on the magnetic field. It is formulated in
terms of the auxiliary function h that appears in the definition of the Pauli operator.

Assumption 1.1. There is an α ∈ (−1, 1) and an R > 0 such that the two numbers

m± := ess sup
x∈R2

e±h(x)

(1 + |x |/R)±α
(1.6)

are both finite.

We emphasize that, if μ is absolutely continuous with B = dμ
dx ∈ L1(R2), then

the validity of Assumption 1.1 implies that the number α is necessarily given by the
expression (1.3). We provide a proof of this claim in Lemma A.1.

The number α plays an important role in what follows. In contrast, the number R
will only play a minor role and is only introduced for dimensional consistency.

A simple case where Assumption 1.1 is satisfied is μ = (α/R)H1
∂B(0,R), with

H1
∂B(0,R) denoting surface measure on the circle ∂B(0, R) of radius R centered at the

origin. In this case we can choose h = α ln+(|x |/R) and we see that Assumption 1.1 is
satisfied with the given α and R.

We emphasize that, while we can treat μ that are not absolutely continuous, our main
interest is in the absolutely continuous case with B = dμ

dx ∈ L1(R2). For instance it is
easy to see that if B satisfies

|B(x)| ≤ CR−2(1 + |x |/R)−ρ with some C > 0 and ρ > 2, (1.7)

then (Assumption 1.1) holds with α given by (1.3) and the given R. The numbers m± are
bounded in terms of C and ρ. In Lemma A.2 we show that Assumption 1.1 is satisfied
under rather weak integrability assumptions on B.

We are now ready to formulate our main result.
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Theorem 1.2. Let Assumption 1.1 be satisfied. Then for any γ ≥ |α| with γ > 0 there
are constants L1(γ, μ) and L2(γ, μ) such that for every real V ∈ L1

loc(R
2) one has

Tr(P + V )
γ
− ≤ L1(γ, μ)

∫
R2

V (x)γ +1
− dx

+L2(γ, μ)

∫
R2

e−2(sgn α)(h(x)−h0) V (x)γ +1−|α|
− dx . (1.8)

Here

h0 :=
{

limε→0 ess infB(0,ε) h if α > 0,

limε→0 ess supB(0,ε) h if α < 0.

The constants L1(γ, μ) and L2(γ, μ) can be chosen such that

L1(γ, μ) ≤ C(|α|, γ ) (m+m−)2(γ +1) ,

L2(γ, μ) ≤ C(|α|, γ ) R−2|α| (m+m−)2(γ−|α|+2) ,

where C(|α|, γ ) depends only on |α| and γ .

Remark 1.3. Some comments on the above theorem are in order.

(a) When α �= 0 there are two different terms on the right side. These two terms capture
the correct order in the strong and weak coupling limit where V is replaced by λV
and either λ → ∞ or λ → 0. Indeed, the first term on the right side grows like λγ +1

as λ → ∞, which is optimal in view of the Weyl asymptotics

lim
λ→∞ λ−1−γ Tr(P + λV )

γ
− = 1

2π (γ + 1)

∫
R2

V (x)γ +1
− dx . (1.9)

Relation (1.9) follows e.g. from [38, Theorem 1.1, Remark 1.2].
In the weak coupling limit with γ = |α| > 0 the second term on the right side
vanishes linearly as λ → 0, which is optimal since according to [25,30] one has

lim
λ→0+

λ
− γ

|α| Tr(P + λV )
γ
− =

(
−4|α|−1 �(|α|)

π �(1 − |α|)
∫
R2

V (x) e−2(sgn α)h(x)dx

) γ
|α|

,

(1.10)

provided the integral on the right side is nonpositive and h is chosen in a certain canon-
ical way. We emphasize that this argument also shows that the function e−2(sgn α)h in
our bound captures quantitatively the relevant quantity in the weak coupling limit.

(b) The assumption γ ≥ |α| for α �= 0 is optimal. Indeed, by the weak coupling asymp-

totics (1.10), Tr(P + λV )
γ
− behaves like λ

γ
|α| , while the second term on the right side

behaves like λ1+γ−|α|. This shows that for 0 < |α| < 1 the assumption γ ≥ |α|
is necessary. Similarly, in [25,30] there are weak coupling asymptotics for α = 0,
which show that in this case the assumption γ > 0 is necessary.
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(c) Concerning the condition |α| < 1 in Assumption 1.1 we remark that our bound
cannot hold for |α| > 1. This follows again from weak coupling asymptotics in
[25,30], which state that Tr(P + λV )

γ
− behaves like λγ when |α| ≥ 1. Meanwhile,

the second term on the right side of our bound behaves like λ1+γ−|α|, showing that
the bound can only hold when |α| ≤ 1. This leaves open the case |α| = 1 for which
one might expect a bound for γ ≥ 1. As discussed in the next subsection, under
somewhat different assumptions on the magnetic field such a bound was indeed
shown in [42], which is why we did not investigate it further.

(d) The function e−(sgn α)(h−h0) coincides, up to a phase factor, with the zero energy
resonance function ψ0 mentioned in Sect. 1.1. Also, since the operator P does not
change if a constant is added to h, the difference h − h0 that appears in our bound
is indeed a natural quantity. When h is continuous at the origin, we clearly have
h0 = h(0). The particular way of how to define h0 in the discontinuous case is
dictated mostly by technical convenience. We emphasize that h0 is finite in view
of Assumption 1.1. The fact that the point 0 is singled out in the definition of h0
reflects that this point is singled out in (1.6). Clearly, in applications one is free to
choose this singled-out point.

(e) Our bound depends on the ‘magnetic field’ μ only via the function h and this
dependence is only via the quantitiesα, R andm± from Assumption 1.1. In particular,
note that

m+m− = ess sup
x∈R2

eh(x)

(1 + |x |/R)α
ess sup
x∈R2

e−h(x)

(1 + |x |/R)−α
≥ 1.

In the weak field limit where B is replaced by λB and λ → 0, the function h is
replaced by λh and α by λα, while R remains unchanged. The product m+m− is
replaced by (m+m−)λ, which tends to 1. Our proof will show that for fixed γ > 0,
the constant C(|λα|, γ ) remains bounded as λ → 0; see Remark 3.2. Thus, our
bound is stable in the limit λ → 0 and reproduces the nonmagnetic Lieb–Thirring
inequality (1.2). This property is not shared, for instance, by the bound from [42]
discussed in the next subsection.

(f) We have been somewhat cavalier about our assumptions on V . Here is a more
precise statement: If V ∈ L1

loc(R
2) is real and if the right side in the bound in the

theorem is finite, then V− is infinitesimally form bounded with respect to P and
for the operator P + V , defined via quadratic forms, the stated bound holds. This
follows by standard arguments from our proof. The same statement holds for all
Lieb–Thirring-type inequalities in this paper and will not be repeated each time.

(g) Assume that V is a locally integrable function on R
2 taking values in the Hermitian

2×2-matrices. Then the Lieb–Thirring inequality (1.8) holds for the operator P +V ,
provided on the right side we replace V (x)p− by TrC2(V(x)p−) for p ∈ {1 + γ, 1 +
γ − |α|}. This simply follows from the inequality V(x) ≥ −‖V(x)−‖ (with ‖ · ‖
the operator norm on C

2), our bound in the scalar case and the bound ‖V(x)−‖p ≤
TrC2(V(x)p−). For this reason we restrict ourselves to the case of a scalar electric
potential.

(h) Our inequality comes with explicit values for the constants C(|α|, γ ), but since they
are far from optimal we do not state them explicitly.

1.3. Previous results. Let us review some previous works on Lieb–Thirring inequalities
for Pauli operators and compare them with our new results. Throughout we focus on the
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two-dimensional case and leave out many important advances in the three dimensional
case, starting with Erdős’s foundational work [13] and reviewed in [6,14].

Lieb, Solovej and Yngvason [34] showed that when B is constant, then

Tr(P + V )− ≤ C
( ∫

R2
V (x)2

− dx + |B|
∫
R2

V (x)− dx
)
.

This was generalized by Erdős and Solovej [15, Thm. 3.2] (based on the strategy in
[13]), who showed that for any γ ≥ 1 there is a constant Cγ such that

Tr(P + V )
γ
− ≤ Cγ

( ∫
R2

V (x)γ +1
− dx + ‖B‖∞

∫
R2

V (x)γ− dx
)
. (1.11)

More relevant for us is an earlier work of Sobolev [42], where it was shown under
fairly general conditions on B that for any γ ≥ 1 there is a constant Cγ such that

Tr(P + V )
γ
− ≤ Cγ

( ∫
R2

V (x)γ +1
− dx +

∫
R2

b(x) V (x)γ− dx
)

. (1.12)

Here b ≥ 0 denotes a “smeared” modification of |B|, see [42, Sec. 2] for details. It
should be noted that b is not uniquely defined. The relevance of a smeared magnetic
field was pointed out in [13]. A Lieb–Thirring inequality similar to (1.12), but with a
different “smeared” modification of B can probably be obtained by adapting the proof of
[41, Theorem 1.2] to the two-dimensional setting. This will again require the assumption
γ ≥ 1.

Returning our attention to (1.12), we note that the assumptions on B in [42] are
somewhat implicit. In order to compare the results with ours, we assume that B satisfies
the pointwise decay condition (1.7). Then it is easily verified that an effective magnetic
field b in the sense of [42] can be constructed in such a way that

b(x) ≤ CB (1 + |x |)−2 ∀ x ∈ R
2,

see [42, Eqs. (2.7)-(2.11)]. Inequality (1.12) then implies that for any γ ≥ 1,

Tr(P + V )
γ
− ≤ C1,γ

∫
R2

V (x)γ +1
− dx + C2,γ (B)

∫
R2

(1 + |x |)−2 V (x)γ− dx .

(1.13)

Let us compare (1.11) and (1.13) with our bound in Theorem 1.2. Importantly, (1.11)
and (1.13) do not have a restriction on the normalized flux α of B. Meanwhile, they are
restricted to values γ ≥ 1. When |α| < 1, Hölder’s inequality yields that

∫
R2

(1 + |x |)−2αV (x)γ +1−|α|
− dx ≤

(∫
R2

(1 + |x |)−2V (x)γ− dx

)|α| (∫
R2

V (x)γ +1
− dx

)1−|α|
.

Since e−2h ≤ (m−)2(1 + |x |)−2α , we see that our bound in Theorem 1.2 implies (1.13)
for |α| < 1.

In the strong coupling regime, where V is replaced by λV with λ → ∞, the bounds
(1.11), (1.13) and our bound all reproduce the optimal λγ +1 growth.

In the weak coupling regime, where V is replaced by λV with λ → 0+, Tr(P +λV )
γ
−

vanishes like λγ when |α| ≥ 1, so both (1.11) and (1.13) are order-sharp in this case.
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However, Tr(P + λV )
γ
− vanishes like λ

γ
α when 0 < |α| < 1, and in this regime (1.11)

and (1.13) are no longer order-sharp, while the bound from Theorem 1.2 is.
Concerning the regime of a weak magnetic field, where B is replaced by λB with

λ → 0, we see that (1.11) turns into the ordinary Lieb–Thirring inequality (for γ ≥ 1),
as does the bound in Theorem 1.2 (for γ > 0). Meanwhile, as pointed out in [42, p. 614],
inequalities (1.12) and (1.13) are not applicable in the regime of a weak magnetic field.

These observations indicate that Theorem 1.2 improves over both (1.11) and (1.13)
in the small flux regime |α| < 1. It displays not only the optimal behavior in the strong
coupling limit, but also in the weak coupling limit. (The optimality in the latter limit
occurs for the critical value γ = |α|; see also Remark 1.3(b) above.) Moreover, Theorem
1.2 allows for a smooth passage to inequality (1.2) in the limit of a vanishing magnetic
field. This is made possible by replacing the integrand (1 + |x |)−2V (x)γ− in (1.13) by
(1 + |x |)−2|α|V (x)γ +1−|α|

− .
It is also interesting to view our results from the point of view of Lieb–Thirring

inequalities in the presence of zero energy resonances (aka virtual levels). Lieb–Thirring
inequalities when a critical Hardy weight is subtracted from the Laplacian were shown in
[10,11,19,24]. In these cases, like in the present one, there is an algebraically decaying
zero energy resonance function. The resulting inequality, however, only has a single
term in contrast to our bound for P when α �= 0, which has two terms. This is connected
with the fact that eigenvalues for the Hardy operator are exponentially small in the limit
of a vanishing coupling constant. Hardy–Lieb–Thirring inequalities for fractional Pauli
operators in three dimensions were studied in [6].

Lieb–Thirring inequalities in the presence of a resonance function that is bounded
from above and away from zero were studied in [26]. The resulting inequality has only
a single term. This is relevant in the present case in the simplest case α = 0.

In [12,21] we investigated Lieb–Thirring inequalities in the context of Schrödinger
operators on continuous graphs that are sparse in some sense. The Lieb–Thirring in-
equalities in this case have two terms, reflecting the different behavior in the strong and
the weak coupling limit; for the latter see [29]. Compared with [21] the results in the
present paper are substantially more precise, as we are able to prove the Lieb–Thirring
inequality in the critical case γ = |α| > 0, while the corresponding question is left
open in [21]. Nevertheless some techniques from [21] will play a role in our analysis of
subcritical cases; see Sect. 3.

Our result also shows similarities to the logarithmic Lieb–Thirring inequality for the
two-dimensional Schrödinger operator [31], where again two terms appear on the right
side. Our proof in the critical case uses some ideas from [31] (and [10]); see Sect. 4. An
important conceptual difference, however, is that in the relevant bound on the lowest
eigenvalue in Proposition 4.5 still two terms appear while there is only one term in the
corresponding bound in [31, Lemma 1]. This leads to substantial technical difficulties
that need to be overcome; see Appendix B for a proof of the fact that both terms are
necessary.

We also mention the recent (non-magnetic) Lieb–Thirring-type inequalities in [4,5],
which, like our bound, involve the solution of a Schrödinger-type equation. The important
difference, however, is that the equation in [4,5] depends on V , whereas in our case the
equation for the zero energy resonance function only depends on P and not on V .
Therefore the bounds are of a rather different nature.

Finally, we mention the works [7,17,25,30,44] that quantify different aspects of the
instability of the bottom of the spectrum of the Pauli operator. Some of the techniques
developed there will be relevant for us here.
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1.4. Strategy of the proof. Since the Pauli operator is block diagonal, Theorem 1.2 is an
immediate consequence of two theorems concerning the individual blocks. These two
operators are defined by the first and the second quadratic form on the right side of (1.5)
and are denoted by H+ and H−, respectively. They are operators acting in the space
L2(R2) of complex-valued functions. When μ is absolutely continuous with sufficiently
regular density B = dμ

dx , these operators coincide with those given by (1.1).
The block-diagonality of P and the spin-independence of V imply

Tr L2(R2,C2)
(P + V )

γ
− = Tr L2(R2)

(H + + V )
γ
− + Tr L2(R2)

(H− + V )
γ
− . (1.14)

In what follows we solely discuss the operators H + and H−, rather than P .
It will turn out that for α �= 0 only one of the two operators H+ and H− is ‘critical’

while the other one is ‘subcritical’. (One could give a mathematical definition of what
we mean by ‘critical’ and ‘subcritical’, but since we do not need anything from the
corresponding theory, we will use these terms only in a colloquial sense and refer to
[37,44] for some background.) In order to discuss the distinction between H+ and H−,
we shall assume that

α ≥ 0.

This is no loss of generality, since replacing μ by −μ can be compensated by replacing
h by −h and then replacing α by −α in (1.6). Of course this is also consistent with the
expression (1.3) for α in the regular case. The product m+m− that appears in our bounds
is invariant under this replacement.

With this convention in place, the operator H− is ‘critical’, while H+ is ‘subcritical’
for α > 0. The following result says that for the subcritical operator a Lieb–Thirring
inequality holds for arbitrarily small γ > 0.

Theorem 1.4. Let Assumption 1.1 be satisfied with α ≥ 0. Then for any γ > 0 there is
a constant L(γ, μ) such that for every real V ∈ L1

loc(R
2) one has

Tr(H+ + V )
γ
− ≤ L(γ, μ)

∫
R2

V (x)γ +1
− dx .

The constant L(γ, μ) can be chosen such that

L(γ, μ) ≤ C(α, γ ) (m+m−)2(γ +1) ,

where C(α, γ ) depends only on α and γ . The same assertion holds for the operator H−
if α = 0.

Theorem 1.5. Let Assumption 1.1 be satisfied with α > 0. Then for any γ ≥ α there
are constants L1(γ, μ) and L2(γ, μ) such that for every real V ∈ L1

loc(R
2) one has

Tr(H− + V )
γ
− ≤ L1(γ, μ)

∫
R2

V (x)γ +1
− dx + L2(γ, μ)

∫
R2

e−2(h(x)−h0) V (x)γ +1−α
− dx .

The constants L1(γ, μ) and L2(γ, μ) can be chosen such that

L1(γ, μ) ≤ C(α, γ ) (m+m−)2(γ +1) ,

L2(γ, μ) ≤ C(α, γ ) R−2α (m+m−)2(γ−α+2) ,

where C(α, γ ) depends only on α and γ .
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As we already mentioned, in view of (1.14), Theorem 1.2 is an immediate conse-
quence of Theorems 1.4 and 1.5. Most of the remarks following Theorem 1.2 have
analogues for Theorems 1.4 and 1.5, showing in particular their optimality. We omit the
details.

We will prove Theorems 1.4 and 1.5 only in the case

R = 1.

This is no loss of generality, according to the following simple scaling argument. If μ

satisfies Assumption 1.1 for some R and α, then we can define a measure μ̃ on R
2 that

satisfies Assumption 1.1 with the same α, but with R = 1. For absolutely continuous μ

the corresponding densities B and B̃ are related by B̃(y) := R2B(Ry), and this relation
is extended in the natural sense to measures. When passing from μ to μ̃, the function h
is replaced by the function h̃(y) := h(Ry), which proves our claim about Assumption
1.1. Denoting by H̃± the operators corresponding to μ̃, we see that the operators H± +V
are unitarily equivalent to the operators R−2(H̃± + Ṽ ) with Ṽ (y) := R2V (Ry). As a
consequence, Theorems 1.4 and 1.5 for H̃± + Ṽ (with R = 1) imply the corresponding
theorems for the original operator H± + V (with arbitrary R > 0).

2. Passage to Weighted Spaces

In this section we will show that Lieb–Thirring inequalities for H± follow from cor-
responding Lieb–Thirring inequalities for certain operators H± that act in a weighted
L2 space and are defined through a weighted Dirichlet integral. For this argument it is
crucial that α < 1.

2.1. Lower bound on Q±. Let

Q±[ψ] :=
∫
R2

e±2h |(∂1 ± i∂2)e
∓hψ |2 dx

denote the quadratic form of the operator H±.
The simple pointwise bound |(∂x1 ± i∂x2)ϕ|2 ≤ 2 |∇ϕ|2, together with (1.6) (recall

our convention R = 1), shows that

Q±[e±hϕ] ≤ 2 (m±)2
∫
R2

(1 + |x |)±2α|∇ϕ|2 dx . (2.1)

This holds irrespectively of the value of α, as long as Assumption 1.1 is valid. The
following proposition shows that, under the assumption |α| < 1, the reverse bound
holds, up to changing the value of the constant. This will be one of the main technical
tools in the proof of our results.

Proposition 2.1. Let Assumption 1.1 be satisfied with α ≥ 0 and R = 1. Then for all
ϕ ∈ C1

c (R
2),

Q±[e±hϕ] ≥ qα(m∓)−2
∫
R2

(1 + |x |)±2α|∇ϕ|2 dx, (2.2)

where

qα = 2−2α−1(1 − α)2

2α + 2−2α−1(1 − α)2 . (2.3)
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To prove Proposition 2.1 we will need some classical results on doubly weighted
one-dimensional Hardy inequalities. For the proof we refer to [36,43], see also [23] and
references therein.

Lemma 2.2. Let U,W be nonnegative, measurable functions on (0,∞) and let f be a
locally absolutely continuous function on (0,∞). Then the inequality

∫ ∞

0
W (t) | f (t)|2 dt ≤ C(U,W )

∫ ∞

0
U (t) | f ′(t)|2 dt (2.4)

holds

(a) if lim inf t→∞ | f (t)| = 0 with

C(U,W ) = 4 sup
s>0

( ∫ ∞

s
U (t)−1 dt

)( ∫ s

0
W (t) dt

)
. (2.5)

(b) if lim inf t→0 | f (t)| = 0 with

C(U,W ) = 4 sup
s>0

( ∫ s

0
U (t)−1 dt

)( ∫ ∞

s
W (t) dt

)
. (2.6)

We now turn to the proof of the main result of this section. The argument has some
similarities with one used in [17], but our focus is different.

Proof of Proposition 2.1. By the bounds (1.6), we have

Q±[e±hϕ] ≥ (m∓)−2
∫
R2

(1 + |x |)±2α|(∂1 ± i∂2)ϕ|2 dx .

For α = 0, the assertion follows immediately from the fact that
∫
R2

|(∂1 ± i∂2)ϕ|2 dx =
∫
R2

|∇ϕ|2 dx .

For α > 0 we introduce polar coordinates x = (r cos θ, r sin θ) and expand ϕ(r ·)
into a Fourier series,

ϕ(x) =
∑
m∈Z

eimθ ϕm(r), ϕm(r) = 1

2π

∫ 2π

0
e−imθ ϕ(r, θ) dθ.

A computation (see also [44, Section 10]) shows that

∫ 2π

0
|(∂1 ± i∂2)ϕ|2 dθ =

∑
m∈Z

∣∣∣ϕ′
m(r) ∓ m ϕm(r)

r

∣∣∣2
(2.7)

and
∫ 2π

0
|∇ϕ|2 dθ =

∑
m∈Z

(
|ϕ′

m(r)|2 +
m2

r2 |ϕm(r)|2
)

. (2.8)
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Thus, the assertion will follow if we can prove that for each m ∈ Z,∫ ∞

0
(1 + r)±2α

∣∣∣ϕ′
m(r) ∓ m ϕm(r)

r

∣∣∣2
r dr

≥ qα

∫ ∞

0
(1 + r)±2α

(
|ϕ′

m(r)|2 +
m2

r2 |ϕm(r)|2
)
r dr. (2.9)

Integrating by parts we find∫ ∞

0
(1 + r)±2α

∣∣∣ϕ′
m(r) ∓ m ϕm(r)

r

∣∣∣2
r dr

=
∫ ∞

0
(1 + r)±2α

(
|ϕ′

m |2 +
m2 |ϕm |2

r2 + 2αm
|ϕm |2

(1 + r)r

)
r dr. (2.10)

When m ≥ 0 the last term on the right side is nonnegative and we arrive at (2.9), even
with constant 1 instead of qα . (Note that qα ≤ 1.)

From now on we assume that m ≤ −1. The basic idea is to prove a Hardy inequality
that allows us to absorb the last term on the right side of (2.10) into the left side. We will
apply Lemma 2.2 with

f (r) = r∓mϕm(r), U (r) = r±2m+1(1 + r)±2α, W (r) = r±2m−1(1 + r)±2α.

Note that the left side of (2.10) is equal to
∫ ∞

0 U (r)| f ′(r)|2 dr . In order to bound the
constant in Lemma 2.2, we distinguish two cases according to the sign.

Case of the upper sign. In this case we have lim inf t→0 | f (t)| = 0, so we aim at
applying part (b) of Lemma 2.2. We have
∫ s

0
U (t)−1 dt =

∫ s

0
t−2m−1(1 + t)−2α dt ≤ s−2m

2|m| 1(0,1](s) +
s−2m−2α

2(|m| − α)
1(1,∞)(s)

(2.11)

and ∫ ∞

s
W (t) dt =

∫ ∞

s
t−1+2m(1 + t)2α dt ≤ 22α

[ s2m

2|m| +
1

2(|m| − α)

]

1(0,1](s) + 22α s2m+2α

2(|m| − α)
1(1,∞)(s).

Hence

sup
0<s≤1

( ∫ s

0
U (t)−1 dt

)( ∫ ∞

s
W (t) dt

)
≤ 22α

4m2 +
22α

4|m|(|m| − α)
≤ 22α+1

4m2(1 − α)
,

where we have used the elementary bound

(k − α)2 ≥ k2 (1 − α)2 0 < α < 1, k ∈ Z.

Similarly,

sup
1<s<∞

( ∫ s

0
U (t)−1 dt

)( ∫ ∞

s
W (t) dt

)
≤ 22α

4(|m| − α)2 ≤ 22α

4m2(1 − α)2 .



Lieb–Thirring Inequality… Page 13 of 38 23

Altogether we deduce from Lemma 2.2 that

∫ ∞

0
(1 + r)2α

∣∣∣ϕ′
m − m ϕm

r

∣∣∣2
r dr ≥ 2−2α−1 (1 − α)2 m2

∫ ∞

0

(1 + r)2α

r2 |ϕm |2 rdr.
(2.12)

Case of the lower sign. In this case we have lim inf t→∞ | f (t)| = 0, so we aim at
applying part (a) of Lemma 2.2. Note that

∫ ∞
s U (t)−1 dt in the present case coincides

with
∫ ∞
s W (t) dt in the case of the upper sign and similarly

∫ s
0 W (t) dt in the present

case coincides with
∫ s

0 U (t)−1 dt in the case of the upper sign. Therefore we obtain from
the previous bounds

sup
0<s≤1

( ∫ ∞

s
U (t)−1 dt

)( ∫ s

0
W (t) dt

)
≤ 22α+1

4m2(1 − α)
,

and

sup
1<s<∞

( ∫ ∞

s
U (t)−1 dt

)( ∫ s

0
W (t) dt

)
≤ 22α

4m2(1 − α)
.

Altogether we deduce from Lemma 2.2 that

∫ ∞

0
(1 + r)−2α

∣∣∣ϕ′
m +

m ϕm

r

∣∣∣2
r dr ≥ 2−2α−1 (1 − α)2 m2

∫ ∞

0

(1 + r)−2α

r2 |ϕm |2 rdr.
(2.13)

Conclusion of the proof. We combine the integration by parts identity (2.10) with the
Hardy inequalities (2.12) and (2.13) and obtain, for any ϑ ∈ [0, 1],

∫ ∞

0
(1 + r)±2α

∣∣∣ϕ′
m(r) ∓ m ϕm(r)

r

∣∣∣2
r dr

≥ (1 − ϑ)

∫ ∞

0
(1 + r)±2α

(
|ϕ′

m |2 +
m2 |ϕm |2

r2

)
r dr

+
(
(1 − ϑ)2αm + ϑ2−2α−1 (1 − α)2 m2

) ∫ ∞

0
(1 + r)±2α |ϕm |2

(1 + r)r
r dr .

Here in the Hardy inequalities, we estimated r−2 ≥ (r(1 + r))−1. We now choose

ϑ = 2α|m|
2α|m| + 2−2α−1(1 − α)2m2 ,

so that the last term vanishes. The constant in front of the first term is equal to

1 − ϑ = 2−2α−1(1 − α)2m2

2α|m| + 2−2α−1(1 − α)2m2 .

Since this is monotone increasing in |m|, a lower bound is obtained by setting m = −1,
which gives the constant qα . This proves (2.9). 
�
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Remark 2.3. The assumption α < 1 in Proposition 2.1 is optimal. Indeed, the inequality∫
R2

(1 + |x |)−2α |(∂1 − i∂2)ϕ|2 dx ≥ c
∫
R2

(1 + |x |)−2α |∇ϕ|2 dx ∀ϕ ∈ C1
c (R

2)

(2.14)

fails to hold, for any c > 0, as soon as α ≥ 1. Indeed, by density it would then also hold
for the functions ϕ(R), R > 0, given by

ϕ(R)(r cos θ, r sin θ) :=
{
re−iθ if r ≤ R,
R2

r e−iθ if R < r .

A short calculation using (2.7) and (2.8), however, shows that

lim
R→∞

∫
R2(1 + |x |)−2α |(∂1 − i∂2)ϕ

(R)|2 dx∫
R2(1 + |x |)−2α |∇ϕ(R)|2 dx = 0,

which obviously contradicts (2.14).
Meanwhile, inequality (2.2) with the upper sign can be extended to all α such that

1 < α �∈ Z. Since we will not use this bound, we omit its proof.

2.2. Equivalence of quadratic forms. So far we have worked with the operators H±

in the space L2(R2). Now we pass to certain operators H± in the weighted spaces
L2(R2, (1 + |x |)±2α dx) and show that Lieb–Thirring inequalities for the new operators
imply Lieb–Thirring inequalities for the original operators.

We consider the quadratic form∫
R2

(1 + |x |)±2α |∇ϕ|2 dx

in the Hilbert space L2(R2, (1 + |x |)±2α dx). The form domain consists of functions
ϕ ∈ H1

loc(R
2) ∩ L2(R2, (1 + |x |)±2α dx) for which the form is finite. It is easy to see

that this form is closed in L2(R2, (1 + |x |)±2α dx). We denote the resulting selfadjoint,
nonnegative operator in L2(R2, (1 + |x |)±2α dx) by H±.

From Proposition 2.1 we deduce the following upper bound on the Riesz means that
we are interested in.

Corollary 2.4. Let Assumption 1.1 be satisfied with α ≥ 0 and R = 1. Then for any
γ > 0,

Tr L2(R2,dx)

(
H± + V

)γ

− ≤ qγ
α Tr L2(R2,(1+|x |)±2α dx)

(
H± − q−1

α (m+m−)2V−
)γ

−

with the constants qα from Proposition 2.1 and m± from (1.6).

Proof. According to Proposition 2.1 we have for all ϕ ∈ C1
c (R

2)

Q±[e±hϕ] +
∫
R2

Ve±2h |ϕ|2 dx

≥ qα(m∓)−2
(∫

R2
(1 + |x |)±2α |∇ϕ|2 dx − q−1

α (m±m∓)2
∫
R2

(1 + |x |)±2αV−|ϕ|2 dx
)
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and ∫
R2

e±2h |ϕ|2 dx ≥ (m∓)−2
∫
R2

(1 + |x |)±2α|ϕ|2 dx .

We know from [16, Theorem 2.5] that the set e±hC1
c (R

2) is a form core for the operator
H±. It is also easy to see that C1

c (R
2) is a form core for H±. Therefore these inequalities

imply, by the variational principle

N (H± + V + τ) ≤ N (H± − q−1
α (m±m∓)2V− + q−1

α τ) for all τ ≥ 0.

Here, N (T ) denotes the number of negative eigenvalues, counting multiplicities, of a
selfadjoint operator T . Using the identity

Tr T γ
− = γ

∫ ∞

0
N (T + τ) τγ−1 dτ,

we obtain the claimed inequality. 
�
Remark 2.5. If instead of Proposition 2.1 one uses inequality (2.1), one can argue simi-
larly to prove the ‘reverse’ inequality

Tr L2(R2,(1+|x |)±2α dx)

(H± + V
)γ

− ≤ 2γ Tr L2(R2,dx)

(
H± − 2−1(m−m+)2V−

)γ

−

In this sense the problem of proving Lieb–Thirring inequalities for H± +V is equivalent,
up to constants, to proving such inequalities for H± +V . From now on we will deal with
the latter problem.

3. Proof of Theorem 1.4

In this section we prove the first one of our main results, Theorem 1.4. This is substantially
simpler than the second one, Theorem 1.5, since either the operators are subcritical (H+

with α > 0), or they are critical, but the endpoint value of γ is excluded (H± with
α = 0).

3.1. Proof of Theorem 1.4 for α = 0. While the approach in the following subsection
works for α = 0 as well, one can already at this point finish easily the proof in this case
by adapting the argument in [26].

Proof of Theorem 1.4 for α = 0. By the argument at the end of Sect. 1.4 we may assume
R = 1. For α = 0, the operators H± coincide with the Laplacian −� in L2(R2).
Therefore, Corollary 2.4, together with the usual Lieb–Thirring inequality in R

2, see
(1.2), implies that for any γ > 0

Tr L2(R2,dx)

(
H± + V

)γ

− ≤ Tr L2(R2,dx)

(
−� − (m+m−)2V−

)γ

−

≤ Lγ (m+m−)2(γ +1)

∫
R2

V (x)γ +1
− dx .

This is the claimed inequality. 
�
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3.2. Proof of Theorem 1.4 for general α. We will use a method of Lieb [32] of proving
Lieb–Thirring inequalities, which is based on a pointwise upper bound on the heat kernel.
Such pointwise bounds have been studied in great generality by Grigor’yan, Saloff-Coste
and others; see [27,28,39,40] and references therein. The usefulness of Grigor’yan–
Saloff-Coste theory in the context of Lieb–Thirring inequalities was observed in [21].

In order to apply the results of Grigor’yan and Saloff-Coste it is convenient to ex-
change the weight (1+|x |)±2α with the smooth weight (1+|x |2)±α . Strictly speaking, this
replacement is not necessary, as one can verify that the relevant results of Grigor’yan–
Saloff-Coste theory remain valid for our weight that this smooth away from a point
and Lipschitz near that point. However, to shorten the presentation we will make this
replacement at the expense of a further, controlled deterioration of the constant.

We consider the quadratic form∫
R2

(1 + |x |2)±α |∇ϕ|2 dx

in the Hilbert space L2(R2, (1 + |x |2)±α dx). This form, with form domain consisting
of functions ϕ ∈ H1

loc(R
2) ∩ L2(R2, (1 + |x |2)±α dx) for which the form is finite, is

nonnegative and closed. We denote the resulting selfadjoint, nonnegative operator in
L2(R2, (1 + |x |2)±α dx) by K±.

Using the bounds

2− 1
2 (1 + |x |) ≤ (1 + |x |2) 1

2 ≤ 1 + |x |
and proceeding as in the proof of Corollary 2.4, we find that

Tr L2(R2,(1+|x |)±2αdx)

(H± + V
)γ

− ≤ Tr L2(R2,(1+|x |2)±αdx)

(K± − 2α V−
)γ

− ,

Tr L2(R2,(1+|x |2)±αdx)

(K± + V
)γ

− ≤ Tr L2(R2,(1+|x |)±2αdx)

(H± − 2α V−
)γ

− .
(3.1)

In view of these inequalities we will now prove Lieb–Thirring inequalities for the
operator K±. Let

p±(t; x, y) := e−tK±
(x, y)

denote the heat kernel generated by K±. According to [28, Equation (4.10)], for any
0 ≤ α < 1 there is a constant C such that

p±(t; x, x) ≤ C t−1 (1 + |x | +
√
t)∓2α ∀ t > 0, ∀ x ∈ R

2. (3.2)

Let us comment on the bound (3.2). The result in [28] is much more general. It gives
matching upper and lower bounds for p±(t; x, y) for general x, y ∈ R

2. Also in the case
of the upper sign the restriction α < 1 is not necessary. When comparing (3.2) with [28,
Equation (4.10)], note that our ±2α plays the role of their α. We also note that there is a
typographical error in [28, Equation (4.10)], which we have corrected in (3.2). (Indeed,
inserting the formula for μα(B(x, r)) before [28, Equation (4.10)] into [28, Theorem
2.7], we see that α there needs to be replaced by α/2.)

Lieb’s method [32] yields the upper bound

Tr
(K± + V

)γ

− ≤ Ka,γ

∫
R2

∫ ∞

0
p±(t; x, x) t−1−γ (t V (x) + a)− dt (1 + |x |2)±α dx,

(3.3)
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valid for any parameter a > 0, with constant

Ka,γ = �(γ + 1)

(
e−a − a

∫ ∞

a
s−1 e−s ds

)−1

. (3.4)

The proof of (3.3) given (3.2) is well-known, but for the sake of completeness we provide
some details. Similarly as before, for τ > 0 let N (K±+V+τ)denote the number, counting
multiplicies, of negative eigenvalues of K± +V +τ . By the Birman–Schwinger principle,
we have

N (K± + V + τ) ≤ N (K± − V− + τ) = Tr 1(V
1
2− (K± + τ)−1V

1
2− > 1)

≤ F(1)−1 Tr F(V
1
2− (K± + τ)−1V

1
2− )

for any nondecreasing function F on [0,∞). Given a nonnegative, convex function f
on [0,∞) with f (0) = 0, we see that

F(κ) :=
∫ ∞

0
e−y f (κy)

dy

y

is a nondecreasing function of κ and by Lieb’s trace formula and Jensen’s inequality we
find as in [24]

Tr F(V
1
2− (K± + τ)−1V

1
2− ) ≤

∫ ∞

0

∫
R2

e−tτ p±(t; x, x) f (tV (x)−)(1 + |x |2)±α dx
dt

t
.

Inserting this bound into the formula

Tr
(K± + V

)γ

− = γ

∫ ∞

0
N (K± + V + τ)τγ−1 dτ,

carrying out the τ integration and choosing f (x) = (x − a)+ we arrive at (3.3).
We now turn to the proof of our first main result.

Proof of Theorem 1.4. Inequality (3.2) implies

p+(t; x, x) ≤ Cα

t
(1 + |x |)−2α ∀ t > 0, ∀ x ∈ R

2 . (3.5)

Inserting this into (3.3) we obtain, for any γ > 0,

Tr(K+ + V )
γ
− ≤ Cα Ka,γ

∫
R2

∫ ∞

0
t−2−γ (t V (x) + a)− dt dx

= Cα Ka,γ

aγ γ (γ + 1)

∫
R2

V (x)γ +1
− dx .

Combining this with the bounds from Corollary 2.4 and from (3.1) we obtain (for R = 1,
as we may assume)

Tr L2(R2,dx) (H + + V )γ− ≤ qγ
α Tr L2(R2,(1+|x |)2α dx)

(
H+ − q−1

α (m+m−)2V−
)γ

−

≤ qγ
α Tr L2(R2,(1+|x |2)α dx)

(
K+ − q−1

α 2α (m+m−)2V−
)γ

−

= q−1
α 2α(γ +1) Cα Ka,γ

aγ γ (γ + 1)
(m+m−)2(γ +1)

∫
R2

V (x)γ +1
− dx ,

which is the claimed Lieb–Thirring inequality for H + + V . The proof for H− + V when
α = 0 is similar. 
�
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Remark 3.1. It is interesting to note that the inequality in Theorem 1.5 can be obtained
by the same method for γ > α. Indeed, inequality (3.2) implies

p−(t; x, x) ≤ Cα

(
t−1 (1 + |x |)2α + tα−1) ∀ t > 0, ∀ x ∈ R

2. (3.6)

Inserting this into (3.3) we obtain, for any γ > α,

Tr(H− + V )
γ
− ≤ Cα Ka,γ

aγ γ (γ + 1)

∫
R2

V (x)γ +1
− dx

+
Cα Ka,γ

aγ−α (γ − α)(γ − α + 1)

∫
R2

(1 + |x |)−2α V (x)1+γ−α
− dx .

Combining this with the bound from Corollary 2.4, we obtain Theorem 1.5 for γ > α.
Note that in the second term on the right side, we estimate

(1 + |x |)−2α ≤ (m+m−)2 e−2(h(x)−h0).

(Indeed, e−h(x) ≤ m−(1 + |x |)−α , so e‖h‖L∞(B(0,ε)) ≤ m+(1 + ε)α , which according to our
convention means that eh0 ≤ m+.)

Remark 3.2. We claim that for any fixed γ > 0 the limsup of the constants in the Lieb–
Thirring inequalities in Theorems 1.4 and 1.5 remains finite as α → 0. This follows from
the proofs that we have just given, together with the fact that the constants Cα in (3.5)
and (3.6) remain bounded as α → 0. The latter claim follows from the explicit nature
of the bounds in the Grigor’yan–Saloff-Coste theory. The basic ingredients, namely the
volume doubling property and the Poincaré inequality (see [28, Theorem 2.7]), hold
with constants that remain bounded as α → 0.

4. Proof of Theorem 1.5

In this section we prove the second of our main results, Theorem 1.5. We will assume
throughout that 0 < α < 1 and will prove this theorem only in the critical case γ = α.
This implies the result in the full regime γ ≥ α, either by the Aizenman–Lieb argument
[3] or by Remark 3.1. Moreover, according to Corollary 2.4 it suffices to prove the
corresponding inequality for H− rather than H−.

4.1. Reduction to radial functions. For a function f on R
2 let

P{(x) := (2π)−1
∫ 2π

0
f (|x | cos θ, |x | sin θ) dθ

and P⊥ := 1 − P . For any radial weight w on R
2, P is the orthogonal projection onto

radial functions in L2(R2, w(x)dx). The operator P commutes with H−. Moreover, by
the Schwarz inequality we have

V− ≤ 2PV−P + 2P⊥V−P⊥.

From this, we conclude that

Tr(H− + V )
γ
− ≤ Tr(P(H− − 2V−)P)

γ
− + Tr(P⊥(H− − 2V−)P⊥)

γ
− . (4.1)

We will treat the two terms on the right side separately. In this subsection we will treat
the second term. We note that the first term, which will be treated in the remaining
subsections, corresponds essentially to an operator in one dimension.
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Proposition 4.1. For any γ > 0,

Tr(P⊥(H− + V )P⊥)
γ
− ≤ 9

8 Lγ

∫
R2

V (x)γ +1
− dx ,

where Lγ is the constant in (1.2).

Proof. We shall show that

Tr L2(R2,(1+|x |)−2αdx)(P⊥(H− − V )P⊥)
γ
− ≤ Tr L2(R2,dx)

(
P⊥( − 8

9� − V
)P⊥)γ

−
,

where we make explicit the fact that the traces on the two sides are in different Hilbert
spaces. Once we have shown this inequality, we can appeal to the standard Lieb–Thirring
inequality (1.2) to deduce the bound in the proposition.

We consider the unitary operator U : L2(R2, dx) → L2(R2, (1 + |x |)−2αdx), ψ �→
(1 + |x |)αψ . Since U commutes with P and V , it suffices to show that

U∗P⊥H−P⊥U ≥ 8
9 P⊥(−�)P⊥.

That is, we need to show that, if Pψ = 0, then∫
R2

(1 + |x |)−2α|∇((1 + |x |)αψ)|2 dx ≥ 8
9

∫
R2

|∇ψ |2 dx .

We compute

(1 + |x |)−2α |∇((1 + |x |)αψ)|2 = (1 + |x |)−2α |(1 + |x |)α∇ψ + α(1 + |x |)α−1 x
|x |ψ |2

= |∇ψ |2 + α2(1 + |x |)−2|ψ |2 + α(1 + |x |)−1 x
|x | · ∇(|ψ |2) .

Integrating by parts, we obtain∫
R2

(1 + |x |)−2α|∇((1 + |x |)αψ)|2 dx =
∫
R2

(|∇ψ |2 − (α∇ · ((1 + |x |)−1 x
|x | )

− α2(1 + |x |)−2)|ψ |2) dx
=

∫
R2

(|∇ψ |2 − α(1 + |x |)−2(|x |−1 − α)|ψ |2) dx .

We introduce polar coordinates x = (r cos θ, r sin θ). Since P⊥(−∂2
θ )P⊥ ≥ P⊥, we

have, if Pψ = 0,∫
R2

(1 + |x |)−2α |∇((1 + |x |)αψ)|2 dx =
∫
R2

(
(1 + |x |)−2α |∂r (1 + |x |)αψ |2 + |x |−2|∂θψ |2

)
dx

≥
∫
R2

|x |−2|ψ |2 dx .

Combining the previous two equations we find, for any ϑ ∈ [0, 1],∫
R2

(1 + |x |)−2α|∇((1 + |x |)αψ)|2 dx ≥ ϑ

∫
R2

|∇ψ |2 dx

+
∫
R2

((1 − ϑ)|x |−2

− ϑα(1 + |x |)−2(|x |−1 − α))|ψ |2 dx .
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We can choose ϑ ∈ [0, 1] (depending on α) such that

(1 − ϑ)|x |−2 − ϑα(1 + |x |)−2(|x |−1 − α) ≥ 0 for all x ∈ R
2.

More precisely, we choose

ϑ :=
(

sup
r>0

(
1 + α(1 + r)−2r(1 − αr)

))−1

.

The supremum is attained at r = 1/(2α + 1), which leads to

ϑ = 4(α + 1)

5α + 4
≥ 8

9
.

This proves the claimed inequality. 
�
We note that the inequality α < 1 that we assume throughout this section was only

used at the very end of the previous proof when we bounded ϑ from below. Thus, an
analogue of Proposition 4.1 is valid even for α ≥ 1, but with a constant that depends on
α.

4.2. Reduction to the lowest eigenvalue. In the previous subsection we have treated the
second term on the right side of (4.1). In this subsection we treat the first term, that is,
we deal with the operator P(H− + V )P .

We let h− denote the operator in L2(R+, (1 + r)−2αr dr) generated by the quadratic
form ∫ ∞

0
(1 + r)−2α|ϕ′(r)|2r dr,

defined on locally absolutely continuous functions ϕ on R+ belonging to L2(R+, (1 +
r)−2αr dr) for which the integral is finite. If for a given function V on R

2 we let

v(r) := 1

2π

∫ 2π

0
V (r cos θ, r sin θ) dθ, (4.2)

then the nontrivial part of the operator P(H− +V )P is equal to h− +v and, in particular,

Tr L2(R2,(1+|x |)−2αdx)

(P(H− + V )P)γ

− = Tr L2(R+,(1+r)−2αr dr)

(
h− + v

)γ

− . (4.3)

In the remainder of this section we will treat v as a given function on R+, ignoring
that there is an underlying function V on R

2.
Our strategy to bound the right side of (4.3) will be to impose a Dirichlet boundary

condition at r = 1. This will result in two operators h−
0 and h−∞ in L2((0, 1), (1 +

r)−2αr dr) and L2((1,∞), (1 + r)−2αr dr), respectively. These operators act in the
same way as h−, but functions in their form domain vanish at the point r = 1. Since
imposing a Dirichlet boundary condition is a rank one perturbation of the resolvent, it
follows that

Tr L2(R+,(1+r)−2αr dr)

(
h− + v

)γ

− ≤ Tr L2((0,1),(1+r)−2αr dr)

(
h−

0 + v
)γ

−
+ Tr L2((1,∞),(1+r)−2αr dr)

(
h−∞ + v

)γ

−
+

(
inf spec

(
h− + v

))γ

− . (4.4)

In the following two propositions we will treat the first two terms on the right side,
respectively. The third term will be treated in the next subsection.
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Proposition 4.2. For any γ > 0,

Tr L2((0,1),(1+r)−2αr dr)

(
h−

0 + v
)γ

− ≤ 22α(γ +1) Lγ 2π

∫ 1

0
v(r)γ +1

− r dr ,

where Lγ is the constant in (1.2).

Proof. For functions ϕ in the form domain of h−
0 we bound

∫ 1

0
(1 + r)−2α|ϕ′(r)|2r dr +

∫ 1

0
v(r)|ϕ(r)|2(1 + r)−2αr dr

≥ 2−2α

∫ 1

0
|ϕ′(r)|2r dr −

∫ 1

0
v(r)−|ϕ(r)|2r dr

and ∫ 1

0
(1 + r)−2α|ϕ(r)|2r dr ≥ 2−2α

∫ 1

0
|ϕ(r)|2r dr.

By a similar argument as in the proof of Corollary 2.4, this implies

Tr L2((0,1),(1+r)−2αr dr)

(
h−

0 + v
)γ

− ≤ Tr L2((0,1),r dr)

(
−r−1∂r r∂r − 22αv−

)γ

−
,

where the operator −r−1∂r r∂r−22αv− is considered with a Dirichlet boundary condition
at r = 1. This operator coincides with the nontrivial part of P(−� − 22αv(| · |)−)P
acting in L2(B(0, 1), dx) with a Dirichlet boundary condition. Extending the operator to
all ofR2 and removing the projection P does not decrease the Riesz means and therefore
we have, by the standard Lieb–Thirring inequality (1.2),

Tr L2((0,1),r dr)

(
−r−1∂r r∂r − 22αv−

)γ

−
≤ Tr L2(R2,dx)

(
−� − 22α1B(0,1)v(| · |)−

)γ

−

≤ 22α(γ +1) Lγ

∫
B(0,1)

v(|x |)γ +1
− dx

= 22α(γ +1) Lγ 2π

∫ 1

0
v(r)γ +1

− r dr .

Combining this with the previous inequality yields the assertion. 
�
Proposition 4.3. For any γ > 0,

Tr L2((1,∞),(1+r)−2αr dr)

(
h−∞ + v

)γ

− ≤ Cα,γ

∫ ∞

1
v(r)γ +1

− r dr.

Proof. Arguing similarly as at the beginning of the previous proof we find that

Tr L2((1,∞),(1+r)−2αr dr)

(
h−

0 + v
)γ

− ≤ Tr L2((1,∞),r−2α+1 dr)

(
−r2α−1∂r r

−2α+1∂r − 22αv−
)γ

−
,

where the operator −r2α−1∂r r−2α+1∂r − 22αv− is considered with a Dirichlet boundary
condition at r = 1. Extending the operator to all of R+ we will consider

Tr L2(R+,r−2α+1 dr)

(
−r2α−1∂r r

−2α+1∂r + ṽ
)γ

−
,
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where ṽ = −22αv− on (1,∞) and ṽ = 0 on (0, 1). The operator −r2α−1∂r r−2α+1∂r
acts with a Dirichlet boundary condition at the origin. More precisely, it is defined as
the closure of the quadratic form

∫ ∞
0 r−2α+1|ϕ′(r)|2 dr defined for ϕ ∈ C1

c (R+). (We
emphasize that R+ = (0,∞), so functions in C1

c (R+) vanish in a neighborhood of the
origin.)

We consider the unitary operatorU : L2(R+, dr) → L2(R+, r−2α+1dr), η �→ rα− 1
2 η.

Let us set ϕ(r) = Uη(r) = rα− 1
2 η(r) and compute

|ϕ′(r)|2 =
∣∣∣rα− 1

2 η′(r) + (α − 1
2 )rα− 3

2 η(r)
∣∣∣2

= r2α−1|η′(r)|2 + 2(α − 1
2 )r2α−2 Re η′(r)η(r) + (α − 1

2 )2r2α−3|η(r)|2

= r2α−1|η′(r)|2 + (α − 1
2 )r2α−2

(
|η(r)|2

)′
+ (α − 1

2 )2r2α−3|η(r)|2 ,

leading to

∫ ∞

0
|ϕ′(r)|2r−2α+1 dr =

∫ ∞

0

(
|η′(r)|2 + (α2 − 1

4 )r−2|η(r)|2
)
dr .

Thus, we have shown that the operator −r2α−1∂r r−2α+1∂r in L2(R+, r−2α+1dr) is uni-
tarily equivalent to the operator −∂2

r + (α2 − 1
4 )r−2 in L2(R+, dr). It follows that

Tr L2(R+,r−2α+1 dr)

(
−r2α−1∂r r

−2α+1∂r + ṽ
)γ

−
= Tr L2(R+ dr)

(
−∂2

r + (α2 − 1
4 )r−2 + ṽ

)γ

−
,

For a lower bound we drop the term α2r−2 and recognize the operator −∂2
r − 1

4r
−2

as being unitarily equivalent to the radial part of the Laplace operator in R
2. It follows

that

Tr L2(R+ dr)

(
−∂2

r + (α2 − 1
4 )r−2 + ṽ

)γ

−
≤ Tr L2(R+ dr)

(
−∂2

r − 1
4r

−2 + ṽ
)γ

−
= Tr L2(R2,dx) (P(−� + ṽ(| · |))P)γ−

≤ Tr L2(R2,dx) (−� + ṽ(| · |))γ−
≤ Lγ

∫
R2

ṽ(|x |)γ +1
− dx

= Lγ 2π

∫ ∞

0
ṽ(r)γ +1

− r dr .

Here we used the standard Lieb–Thirring inequality (1.2) onR2. Combining the previous
inequalities yields the assertion. 
�
Remark 4.4. There is an alternative way of finishing the proof without appealing to the
Lieb–Thirring inequality (1.2). Namely, when α ≥ 1

2 one can drop the term (α2 − 1
4 )r−2

for a lower bound and for 0 < α < 1
2 one can drop this term at the expense of reducing

the constant 1 in front of −∂2
r by Hardy’s inequality. One arrives at having to bound

Tr L2(R+,dr)(−θα∂2
r + ṽ)

γ
− with θα := min{1, 4α2}. This is possible in view of bounds by

Egorov and Kondratiev [9, Sec. 8.8].
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A drawback of the proof that we just sketched is that the constant diverges as α →
0 because of the presence of θα . This can be remedied by using more refined one-
dimensional inequalities that take the Hardy term into account [11].

In this connection it is interesting to note that for 0 < α ≤ 1
2 and γ ≥ α, the above

proof also gives the bound

Tr L2((1,∞),(1+r)−2αr dr)

(
h−∞ + v

)γ

− ≤ C̃α,γ

∫ ∞

1
v(r)1+γ−α

− r−2α+1 dr.

This follows from the fact, proved in [11], that the inequality

Tr L2(R+,dr)(−∂2
r − 1

4r
−2 + w)

γ
− ≤ Lγ,a

∫ ∞

0
w(r)

γ + 1+a
2− ra dr

is valid for γ = 1−a
2 when 0 ≤ a < 1. We apply this inequality with a = 1 − 2α.

4.3. Bound on the lowest eigenvalue. In the previous subsection we have bounded the
first and second term on the right side of (4.4). In this subsection we discuss the third
term, that is, we discuss a lower bound on the lowest eigenvalue for h− + v. We shall
prove the following bound

Proposition 4.5. For any 0 < α < 1 there is a constant Cα such that

(
inf spec

(
h− + v

))α

− ≤ Cα

(∫ ∞

0
v(r)1+α

− r dr +
∫ ∞

0
v(r)− (1 + r)−2α r dr

)
.

It is natural to wonder whether in the bound in the proposition a single term on the
right side suffices. This is not the case, as will be discussed in Appendix B.

Proposition 4.5 is in some sense the main step in the proof of our main result. It is
certainly the most technical step and, indeed, in this subsection we only show how to
reduce the proof to a technical lemma that will be verified in the following section. This
lemma is stated in terms of the operator Tα in L2(R+, dr) that is defined through the
closure of the quadratic form

∫ ∞

0
|η′(r)|2 dr − α|η(1)|2 − 1

4

∫ 1

0

|η(r)|2
r2 dr +

(
α2 − 1

4

) ∫ ∞

1

|η(r)|2
r2 dr (4.5)

defined for η ∈ C1
c (R+). We denote by (Tα + κ2)−1(r, r ′), r, r ′ ∈ R+, the integral kernel

of the operator (Tα + κ2)−1. In the following lemma we bound the difference between
these kernels at α and at 0.

Lemma 4.6. For any α ∈ (0, 1) there is a constant Cα such that for all κ > 0 and all
r, r ′ ∈ R+ one has

∣∣∣(Tα + κ2)−1(r, r ′) − (T0 + κ2)−1(r, r ′)
∣∣∣ ≤ Cα κ−2α

√
rr ′ (1 + r)−α (1 + r ′)−α.

Accepting this lemma for the moment, let us prove the main result of this subsection.
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Proof of Proposition 4.5. The proof will consist of two steps. In the first step we will
prove the bound

(inf spec (Tα + v))α− ≤ C ′
α

(∫ ∞

0
v(r)1+α

− r dr +
∫ ∞

0
v(r)− (1 + r)−2α r dr

)
. (4.6)

and in a second step we will show that this inequality implies that in Proposition 4.5.
Step 1. Let us denote

G0(κ) := (T0 + κ2)−1 and �α(κ) := (Tα + κ2)−1 − (T0 + κ2)−1. (4.7)

By the variational principle, for the proof of (4.6) we may assume that v ≤ 0. We denote

κ∗ := (inf spec (Tα + v))
1
2− .

We may assume that κ∗ > 0, for otherwise (4.6) is trivially true.
From the Birman–Schwinger principle we deduce that

1 =
∥∥∥∥v

1
2− (Tα + κ2∗ )−1 v

1
2−

∥∥∥∥ ≤
∥∥∥∥v

1
2− G0(κ∗) v

1
2−

∥∥∥∥ +

∥∥∥∥v
1
2− �α(κ∗) v

1
2−

∥∥∥∥ , (4.8)

where ‖ · ‖ denotes the operator norm in L2(R+). We distinguish two cases depending
on the size of the first term on the right side of (4.8).

Assume first that

∥∥∥∥v
1
2− G0(κ∗)v

1
2−

∥∥∥∥ ≤ 1
2 . Then, by (4.8),

∥∥∥∥v
1
2− �α(κ∗) v

1
2−

∥∥∥∥ ≥ 1

2
. (4.9)

Meanwhile, it follows from Lemma 4.6 that∥∥∥∥v
1
2− �α(κ) v

1
2−

∥∥∥∥
HS

≤ Cακ−2α

∫ ∞

0
v(r)−(1 + r)−2α r dr,

for all κ > 0, where ‖ ·‖HS denotes the Hilbert–Schmidt norm in L2(R+). Estimating the
Hilbert–Schmidt norm from below by the operator norm and setting κ = κ∗, we obtain

∥∥∥∥v
1
2− �α(κ∗) v

1
2−

∥∥∥∥ ≤ Cακ−2α∗
∫ ∞

0
v(r)−(1 + r)−2α r dr.

Combining this with (4.9), we obtain

κ2α∗ ≤ 2Cα

∫ ∞

0
v(r)−(1 + r)−2α r dr,

which implies (4.6).

If, on the contrary,

∥∥∥∥v
1
2− G0(κ∗)v

1
2−

∥∥∥∥ > 1
2 , then the Birman-Schwinger principle im-

plies that

inf spec
(
T0 − 2v−

)
< −κ2∗ .
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Since T0 is unitarily equivalent to the radial part of the Laplace operator in R
2, cf. (4.5),

so we infer that

inf spec
( − � − 2v(| · |)−

)
< −κ2∗ .

Combining this with the usual Lieb–Thirring inequality (1.2), we obtain

κ2α∗ ≤ Tr
( − � − 2v(| · |)−

)α

− ≤ 2α+1 Lα2π

∫ ∞

0
v(r)α+1

− r dr,

which implies (4.6). (Note that instead of the Lieb–Thirring inequality (1.2) the so-
called one-particle Lieb–Thirring inequality, that is, a Sobolev interpolation inequality
[22, Subsection 5.1.2], would suffice.) This completes the proof of (4.6).

Step 2. We now deduce the bound in the proposition from the bound (4.6). This is
achieved by bringing the weight (1 + r)−2αr appearing for the operator h− into a more
canonical form and then applying a unitary transformation to remove this more canonical
weight. We define

w(r) :=
{
r if 0 < r ≤ 1,

r1−2α if 1 < r < ∞.
(4.10)

We denote by hα the operator in L2(R+, w(r)dr) associated with the quadratic form∫ ∞

0
|ϕ′(r)|2 w(r) dr, (4.11)

defined on functions ϕ ∈ L2(R+, w(r)dr) that are locally absolutely continuous on R+

and for which the quadratic form is finite. Using the bounds

2−2α w(r) ≤ (1 + r)−2αr ≤ w(r),

we find, similarly as in the proof of Corollary 2.4,(
inf specL2(R+,(1+r)−2αrdr)

(
h− + v

))
−

≤
(

inf specL2(R+,w(r)dr)

(
hα − 22αv−

))
−

.

This reduces the proof of the bound in the proposition to the proof of the bound for
hα − 22αv−.

The unitary mappingU : L2(R+, dr) → L2(R+, w(r)dr)given byUη(r) := w(r)− 1
2 η(r)

satisfies∫ ∞

0
|(Uη)′|2w(r) dr =

∫ ∞

0
|η′(r)|2 dr − α|η(1)|2 − 1

4

∫ 1

0

|η(r)|2
r2 dr

+
(
α2 − 1

4

) ∫ ∞

1

|η(r)|2
r2 dr.

Clearly, the form core C1
c (R+) of Tα is mapped into the form domain of hα . Conversely,

arguing as in [22, Lemma 2.33] one can show that C1
c (R+) is a form core of hα , and the

image of it under U−1 is in the form domain of Tα . These facts imply that

U−1 hα U = Tα.

As a consequence, for any ṽ (in particular, for ṽ = −22αv−)

inf specL2(R+,w(r)dr) (hα + ṽ) = inf specL2(R+,dr) (Tα + ṽ) .

This concludes the proof of the proposition. 
�
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4.4. Proof of Theorem 1.5. We finally put all the ingredients from this section together
and prove our second main result.

Proof of Theorem 1.5. Given a sufficiently regular real function V on R
2 we define the

function v on R+ by (4.2). Combining (4.3), (4.4) and Propositions 4.2, 4.3 and 4.5, we
see that for each 0 < α < 1 there is a constant Cα such that

Tr L2(R2,(1+|x |)−2αdx)

(P(H− + V )P)α

−

≤ Cα

(∫ ∞

0
v(r)1+α

− r dr +
∫ ∞

0
v(r)− (1 + r)−2α r dr

)

≤ Cα

2π

(∫
R2

V (x)1+α
− dx +

∫
R2

V (x)− (1 + |x |)−2α dx

)
.

The last inequality comes from Hölder’s inequality for the angular integration. Combin-
ing this inequality with (4.1) and Proposition 4.1, we see that for each 0 < α < 1 there
is a constant C ′

α such that

Tr L2(R2,(1+|x |)−2αdx)

(H− + V
)α

− ≤ C ′
α

(∫
R2

V (x)1+α
− dx +

∫
R2

V (x)− (1 + |x |)−2α dx

)
.

Under Assumption 1.1 with R = 1 (and, as everywhere in this section, α > 0), we can
use the same argument as in Remark 3.1 to replace the weight (1 + |x |)−2α in the second
term by (m+m−)2 e−2(h(x)−h0). The claimed inequality in Theorem 1.5 for γ = α then
follows from Corollary 2.4. Note that this yields, in particular, the claimed dependence
of the constants on the product m+m−. As we have already mentioned at the beginning
of this section, the claimed inequality for γ > α follows either from the inequality for
γ = α by the Aizenman–Lieb argument [3] or by Remark 3.1. Finally, the case R �= 1
can be reduced to the case R = 1 by scaling as we already observed. 
�

5. Proof of Lemma 4.6

In this section we will give the proof of Lemma 4.6. We use the notation �α(κ) from
(4.7) for the resolvent difference. Thus, we are looking for a pointwise bound on the
integral kernel of the operator �α(κ).

Our first goal is to find an explicit formula for this integral kernel. Let

Aα(κ) := κ I0(κ)Kα+1(κ) + κ I1(κ)Kα(κ) − 2α I0(κ)Kα(κ),

Bα(κ) := κ I0(κ)Iα+1(κ) − κ I1(κ)Iα(κ) + 2α I0(κ)Iα(κ),

Dα(κ) := κK1(κ)Kα(κ) − κK0(κ)Kα+1(κ) + 2αK0(κ)Kα(κ),

(5.1)

and put

fα(κ) := Dα(κ)

Aα(κ)
and gα(κ) := Bα(κ)

Aα(κ)
.

It will turn out that Aα(κ) �= 0, so fα(κ) and gα(κ) are well defined.
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Lemma 5.1. One has Aα(κ) �= 0 for all κ > 0. Moreover, for all κ > 0, α ∈ (0, 1] and
0 < r ≤ r ′ < ∞,

�α(r, r ′; κ)

=
√
rr ′ ×

⎧⎪⎨
⎪⎩

fα(κ)I0(κr)I0(κr ′) if 0 < r ≤ r ′ ≤ 1 ,

Kα(κr ′)Iα(κr) − I0(κr)K0(κr ′) + gα(κ)Kα(κr)Kα(κr ′) if 1 < r ≤ r ′ ,
I0(κr)

(
A−1

α (κ) Kα(κr ′) − K0(κr ′)
)

if 0 < r ≤ 1 ≤ r ′ .
(5.2)

The same formula is valid when r > r ′, provided the variables r and r ′ are interchanged.

Proof. We begin by deriving a formula for the integral kernel of (Tα + κ2)−1 for α ∈
[0, 1]. By Sturm–Liouville theory it can be written in terms of two solutions v1 and v2
of the system

−v′′ − 1
4 r

−2v = −κ2v in (0, 1) ,

−v′′ + (α2 − 1
4 ) r−2v = −κ2v in (1,∞) ,

v(1−) = v(1+)

v′(1−) = v′(1+) + αv(1+) .

(The jump condition at r = 1 comes from the term α|η(1)|2 in the quadratic form (4.5)
of the operator Tα .) The solution v1 is supposed to lie in the form domain of Tα near the
origin and the solution v2 is supposed to be square-integrable at infinity.

Using standard facts about Bessel’s equation [1, Sec. 9], we find that these two
solutions are given by

v1(r) = √
r ×

{
I0(κr) if 0 < r ≤ 1 ,

Ãα(κ)Iα(κr) + B̃α(κ)Kα(κr) if 1 < r < ∞ ,
(5.3)

and

v2(r) = √
r ×

{
D̃α(κ)I0(κr) + C̃α(κ)K0(κr) if 0 < r ≤ 1 ,

Kα(κr) if 1 < r < ∞ ,
(5.4)

with coefficients Ãα(κ), B̃α(κ), C̃α(κ) and D̃α(κ) that are determined by the continuity
and jump conditions at r = 1. (We will give explicit expressions later in this proof.)
Using the Wronski relation [1, Eq. 9.6.15] for the Bessel functions, viz.

W
{
Kν(z), Iν(z)

} = Iν(z)Kν+1(z) + Kν(z)Iν+1(z) = 1

z
, (5.5)

we obtain

W
{
v1, v2

} = C̃α(κ) = Ãα(κ) .

Let us show that Ãα(κ) �= 0 for all κ > 0. Indeed, if we had Ãα(κ0) = 0 for
some κ0 > 0, then v1 would be an eigenfunction of Tα with eigenvalue −κ2

0 , but this
contradicts the fact that Tα is a nonnegative operator. The latter fact follows from Step
2 in the proof of Proposition 4.5, where we showed that Tα is unitarily equivalent to the
manifestly nonnegative operator hα .
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By Sturm–Liouville theory, it follows from the above facts that for any κ > 0, the
integral kernel of (Tα + κ2)−1 is given by

(Tα + κ2)−1(r, r ′)

= √
rr ′ ×

⎧⎪⎨
⎪⎩
K0(κr ′)I0(κr) + f̃α(κ)I0(κr)I0(κr ′) if 0 < r ≤ r ′ ≤ 1,

Kα(κr ′)Iα(κr) + g̃α(κ)Kα(κr)Kα(κr ′) if 1 < r ≤ r ′,
Ã−1

α (κ) I0(κr)Kα(κr ′) if 0 < r ≤ 1 ≤ r ′,
(5.6)

where we have denoted

f̃α(κ) := D̃α(κ)

Ãα(κ)
and g̃α(κ) := B̃α(κ)

Ãα(κ)
.

As usual, the formula for r > r ′ follows by interchanging the variables.
Note also that Ã0(κ) = C̃0(κ) = 1 and D̃0(κ) = B̃0(κ) = 0, so, in particular,

f̃0(κ) = g̃0(κ) = 0.

Thus, recalling the definition (4.7), we see that (5.6) implies the formula in the lemma,
except that the untilded quantities appear there rather than the tilded ones. Thus, to com-
plete the proof we need to show that the former coincide with the latter. To do so, we
replace the derivatives of Bessel functions appearing in the jump condition at r = 1 using
[1, Eq. 9.6.26] in terms of Bessel functions without derivatives. Solving the correspond-
ing system of four linear equations with four unknown, we see that Ãα(κ), B̃α(κ), D̃α(κ)

are given by the expressions on the right side of (5.1), as claimed. (Note that we have
already shown that C̃α(κ) = Ãα(κ), which is confirmed by the solution of the system
of linear equations.) 
�

Next, we bound the quantities appearing in Lemma 5.1.

Lemma 5.2. Let α ∈ (0, 1]. The following bounds hold for all κ > 0 with an implicit
constant depending possibly on α:

|Aα(κ)−1 − 1| � κ−2α1(0,1)(κ) + κ−11[1,∞)(κ) ,

| fα(κ)| � κ−2α1(0,1)(κ) + κ−1e−2κ1[1,∞)(κ) ,

|gα(κ)| � 1(0,1)(κ) + κ−1e2κ1[1,∞)(κ) .

In fact, in the following proof we will establish the asymptotic behavior of the three
quantities in the lemma for κ → 0 and κ → ∞. The above bounds, however, are all
that we need.

For the proof we make use of the following asymptotic facts about Bessel functions:

Kν(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ln z + C + O(z2| ln z|) if ν = 0,( z
2

)−ν 1
2 �(ν) − ( z

2

)ν 1
2ν

�(1 − ν) + O(z2−ν) if 0 < ν < 1,

z−1 + O(z| ln z|) if ν = 1,( z
2

)−ν 1
2 �(ν) + O(z2−ν) if ν > 1,

as z → 0,

Iν(z) =
( z

2

)ν
�(ν + 1)−1 + O(z2+ν) as z → 0,

(5.7)
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see [1, (9.6.10) and (9.6.2)], and

Kν(z) =
√

π

2z
e−z

(
1 +

4ν2 − 1

8z
+ O(z−2)

)
as z → ∞,

Iν(z) =
√

1

2π z
ez

(
1 − 4ν2 − 1

8z
+ O(z−2)

)
as z → ∞.

(5.8)

see [1, (9.7.1) and (9.7.2)]. The constant in (5.7) for ν = 0 is known, but its value is
irrelevant for our purposes.

In addition, we use the following global properties of Bessel functions: Kν and Iν
are positive. Moreover, I0 is decreasing. (In fact, Iν is decreasing and Kν is increasing
for any ν ≥ 0, but we will not need this.)

Proof. Step 1. Asymptotics at the origin. From (5.7) we deduce that, as κ → 0,

Aα(κ) = 2−α�(1 − α) κα + O(κ2−α) ,

Bα(κ) = 21−α�(α)−1 κα + O(κ2+α) ,

Dα(κ) = 2−1−α�(α) κ−α + O(κα ln κ) .

We note in this computation there is a cancellation at order κ−α for Aα(κ) and at order
κ−α ln κ for Dα(κ).

These asymptotics imply that, as κ → 0,

fα(κ) = �(α)

2 �(1 − α)
κ−2α + O(| ln κ| + κ2−4α),

gα(κ) = 2

�(α) �(1 − α)
+ O(κ2−2α).

Step 2. Asymptotics at infinity. From (5.8) we deduce that, as κ → ∞,

Aα(κ) = 1 + O(κ−1),

Bα(κ) = α

2πκ
e2κ

(
1 + O(κ−1)

)
,

Dα(κ) = απ

2κ
e−2κ

(
1 + O(κ−1)

)
.

These asymptotics imply that, as κ → ∞,

fα(κ) = απ

2κ
e−2κ

(
1 + O(κ−1)

)
,

gα(κ) = α

2πκ
e2κ

(
1 + O(κ−1)

)
.

Step 3. Uniform bounds. The asymptotics in Steps 1 and 2 imply that the claimed
bounds in the lemma hold for all sufficiently small and all sufficiently large κ . Since
Aα(κ), Bα(κ) and Dα(κ) are continuous functions of κ and since Aα(κ) does not vanish
according to Lemma 5.1, we obtain the claimed bounds for all κ > 0. 
�

After these preparations we are ready to prove the claimed pointwise bound on the
the integral kernel of �α(κ).
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Proof of Lemma 4.6. By selfadjointness, it suffices to prove the bound for r ≤ r ′, which
we will assume throughout the proof. We split the integral kernel �α(r, r ′; κ) of �α(κ)

as

�α(r, r ′; κ) = √
rr ′ (S(r, r ′; κ) + R(r, r ′; κ)

)
(5.9)

with

S(r, r ′; κ) =

⎧⎪⎨
⎪⎩

fα(κ)I0(κr)I0(κr ′) if 0 < r ≤ r ′ ≤ 1 ,

gα(κ)Kα(κr)Kα(κr ′) if 1 < r ≤ r ′ ,
I0(κr)

(
A−1

α (κ)Kα(κr ′) − K0(κr ′)
)

if 0 < r ≤ 1 ≤ r ′ ,
(5.10)

and

R(r, r ′; κ) =
{
Kα(κr ′)Iα(κr) − I0(κr)K0(κr ′) if 1 < r ≤ r ′ ,
0 elsewhere ,

(5.11)

and show that both pieces satisfy the bound claimed in the lemma. This is the content
of the following two respective steps.

To simplify the notation, we shall use the symbol � to indicate the existence of a
constant such that the inequality holds when the right side is multiplied by this constant.
The constant may depend on α ∈ (0, 1], but is independent of 0 < r ≤ r ′ < ∞ and
κ > 0.

Step 1. In this step we show that |S(r, r ′; κ)| � κ−2α (1 + r)−α(1 + r ′)−α for all
0 < r ≤ r ′ < ∞.

We distinguish three cases.
First, let 0 < r ≤ r ′ ≤ 1. We claim that

sup
κ>0, ρ≤1

κ2α| fα(κ)|I 2
0 (κρ) < ∞. (5.12)

Once we have shown this, we deduce that

|S(r, r ′; κ)| = | fα(κ)|I0(κr)I0(κr ′) � κ−2α � κ−2α(1 + r)−α(1 + r ′)−α,

which is the claimed bound.
To prove (5.12), we first assume κ ≤ 1. Then, by (5.7), I0(κρ)2 � 1 for all ρ ≤ 1

and, by Lemma 5.2, | fα(κ)| � κ−2α . This proves (5.12) for κ ≤ 1. Now let κ ≥ 1.
Then, by (5.8) and the monotonicity of I0, I0(κρ)2 ≤ I0(κ)2 � κ−1e2κ � κ−2α+1e2κ

for all ρ ≤ 1. Moreover, by Lemma 5.2, | fα(κ)| � κ−1e−2κ . This proves (5.12) for
κ ≥ 1.

Next, let 1 ≤ r ≤ r ′. We claim that

sup
κ>0, ρ≥1

(κρ)2α|gα(κ)|K 2
α(κρ) < ∞. (5.13)

Once we have shown this, we deduce that

|S(r, r ′; κ)| = |gα(κ)|Kα(κr)Kα(κr ′) � (κr)−2α(κr ′)−2α � κ−2α(1 + r)−α(1 + r ′)−α,

which is the claimed bound.
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To prove (5.13), we first assume κ ≤ 1. Then, by Lemma 5.2, |gα(κ)| � 1. Mean-
while, it follows from (5.7) and (5.8) that

sup
z>0

zαKα(z) < ∞.

(We emphasize that α > 0.) This proves (5.13) for κ ≤ 1. Now let κ ≥ 1. Then, by
Lemma 5.2, |gα(κ)| � κ−1e2κ . Moreover, by (5.8), Kα(κρ)2 � (κρ)−1e−2κρ for all
ρ ≥ 1. Thus,

(κρ)2α|gα(κ)|K 2
α(κρ) � (κρ)2α−1κ−1e2κe−2κρ.

The function z �→ z2α−1e−z is decreasing on ((2α−1)+,∞). Since κρ ≥ 1 > (2α−1)+,
we deduce that

(κρ)2α−1κ−1e2κe−2κρ ≤ κ2α−2 ≤ 1.

This proves (5.13) for κ ≥ 1.
Finally, let r ≤ 1 ≤ r ′. It follows from (5.7) and (5.8) that

sup
z>0

max{zα, z2}I0(z)
∣∣Kα(z) − K0(z)

∣∣ < ∞ (5.14)

and

sup
z>0

max{zα, z}I0(z)Kα(z) < ∞. (5.15)

We use the monotonicity of I0, together with (5.14) and (5.15), to bound

|S(r, r ′; κ)| = I0(κr)
∣∣A−1

α (κ)Kα(κr ′) − K0(κr
′)
∣∣

≤ I0(κr
′)
∣∣A−1

α (κ)Kα(κr ′) − K0(κr
′)
∣∣

≤ I0(κr
′)|Kα(κr ′) − K0(κr

′)| + |1 − A−1
α (κ)| I0(κr ′)Kα(κr ′)

� min{(κr ′)−α, (κr ′)−2}
+ min{(κr ′)−α, (κr ′)−1}[κ−α1(0,1)(κ) + κ−11[1,∞)(κ)

]
.

We claim that the right side is bounded by κ−2α(r ′)−α . Since (r ′)−α � (1+r ′)−α(1+r)−α

for r ≤ 1 ≤ r ′, this implies the claimed bound.
For the first term on the right side, we bound min{(κr ′)−α, (κr ′)−2} ≤ (κr ′)−2α ≤

κ−2α(r ′)−α , as desired. For the second term we distinguish according to the size of κ .
For κ < 1 we bound

min{(κr ′)−α, (κr ′)−1} κ−α ≤ κ−2α(r ′)−α,

and for κ ≥ 1 we bound, using κr ′ ≥ 1,

min{(κr ′)−α, (κr ′)−1} κ−1 ≤ (κr ′)−1κ−1 ≤ (κr ′)−ακ−α = κ−2α(r ′)−α.

This completes the proof of the bound that we claimed at the beginning of this step.
Step 2. In this step we show that |R(r, r ′; κ)| � (κr ′)−2α for all 1 ≤ r ≤ r ′. Since

(r ′)−2α ≤ (1 + r)−α (1 + r ′)−α for all such r, r ′, we obtain the claimed bound for
R(r, r ′; κ).
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To prove this claim, we decompose R(r, r ′; κ) with 1 ≤ r ≤ r ′ further as

R(r, r ′; κ) = Ra(r, r
′; κ) − Rb(r, r

′; κ)

with

Ra(r, r
′; κ) := I0(κr)

(
Kα(κr ′) − K0(κr

′)
)

and

Rb(r, r
′; κ) := Kα(κr ′)

(
I0(κr) − Iα(κr)

)
.

By (5.14) (together with max{zα, z2} ≥ z2α) and monotonicity of I0 it follows that, if
1 ≤ r ≤ r ′, then

|Ra(r, r
′; κ)| = I0(κr)

∣∣Kα(κr ′) − K0(κr
′)
∣∣ ≤ I0(κr

′)
∣∣Kα(κr ′) − K0(κr

′)
∣∣ � (κr ′)−2α ,

which is the claimed bound.
To estimate Rb(r, r ′; κ) we will distinguish two cases.
If κr ≥ 1, then we use the upper bound (see (5.8))

Kα(z′)
∣∣I0(z) − Iα(z)

∣∣ � ez−z′
√
z′ z3/2

∀ z, z′ ≥ 1, (5.16)

which implies that for z′ ≥ 1 we have

sup
1≤z≤z′

Kα(z′)
∣∣I0(z) − Iα(z)

∣∣ � (z′)−2 ≤ (z′)−2α,

which is the claimed bound.
If κr ≤ 1, then we use the bound

sup
z′>0

(z′)2αKα(z′) < ∞,

which follows from (5.7) and (5.8), as well as the bound

sup
0<z≤1

∣∣I0(z) − Iα(z)
∣∣ < ∞, (5.17)

which follows from (5.7). Combining these two inequalities yields the claimed bound.

�

The previous proof relies heavily on the fact that the leading terms in the asymptotic
expansion of Kν(z) for z → ∞ coincide for different ν; see (5.8). This is used in
(5.14) and (5.16). This shows that subtracting the integral kernel of (T0 + κ2)−1 from
(Tα + κ2)−1 leads to certain cancelations in the integral kernel of �α(κ) in terms of
κ−2α

√
rr ′ (1 + r)−α(1 + r ′)−α . Notice in particular that the bound

(Tα + κ2)−1(r, r ′) � κ−2α
√
rr ′ (1 + r)−α(1 + r ′)−α

cannot hold. Indeed, if this bound held, we could follow the reasoning in the proof of
Proposition 4.5 and prove the inequality

(
inf spec

(
h− + v

))α

− �
∫ ∞

0
v(r)− (1 + r)−2α r dr.

This, however, would contradict the results of Appendix B.
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Appendix A. On Assumption 1.1

Let us show that the parameter α defined in (1.3) and the parameter α appearing in
Assumption 1.1 coincide when μ is absolutely continuous with integrable density B =
dμ
dx . This follows from the following more general result.

Lemma A.1. Let μ be a signed real Borel measure on R
2 of finite total variation and

assume that there is an h ∈ W 1,1
loc (R2) such that �h = μ in the sense of distributions.

Assume that there is an α ∈ R such that both numbers m± in (1.6) are finite. Then
α = (2π)−1μ(R2).

Proof. For two parameters ρ > 0 and σ > 1 to be specified later, we introduce the
function χ on R

2 by

χ(x) :=

⎧⎪⎨
⎪⎩

1 if |x | ≤ ρ,

1 − (ln σ)−1 ln(|x |/ρ) if ρ < |x | ≤ σρ,

0 if |x | > σρ.

This function is Lipschitz and has compact support. Since h ∈ W 1,1
loc (R2), we can test

the equation �h = μ against χ and obtain∫
R2

χ(x)dμ(x) = −
∫
R2

∇χ(x) · ∇h(x) dx .

(Strictly speaking, we test the equation against the convolution of χ with a C∞
c mollifier

and pass to the limit in the mollification parameter.) Since μ has finite total variation,
dominated convergence implies that the left side tends to μ(R2) as ρ → ∞ for any fixed
σ . Since χ is harmonic in {ρ < |x | < σρ}, we see that the right side is equal to

−
∫
R2

∇χ · ∇h dx = −
∫

ρ<|x |<σρ

∇χ · ∇h dx = −
∫

|x |=σρ

x

|x | · (∇χ)h ds(x)

+
∫

|x |=ρ

x

|x | · (∇χ)h ds(x)

= (ln σ)−1(ρσ)−1
∫

|x |=σρ

h ds(x) − (ln σ)−1ρ−1
∫

|x |=ρ

h ds(x) .

http://creativecommons.org/licenses/by/4.0/


23 Page 34 of 38 R. L. Frank, H. Kovařík

Here ds denotes integration with respect to the surface measure. Assumption 1.1 means
that for all x ∈ R

2,

− lnm− ≤ h(x) − α ln(1 + |x |/R) ≤ lnm+.

This implies that for r ∈ {ρ, σρ}, we have

−2πr lnm− ≤
∫

|x |=r
h ds(x) − 2παr ln(1 + r/R) ≤ 2πr lnm+

and therefore∣∣∣∣−
∫
R2

∇χ · ∇h dx − (ln σ)−12πα ln
1 + σρ/R

1 + ρ/R

∣∣∣∣ ≤ (ln σ)−12π ln(m+m−).

Letting first ρ → ∞ and then σ → ∞ we easily find that

−
∫
R2

∇χ · ∇h dx → 2πα.

This proves the claimed identity μ(R2) = 2πα. 
�
Next, we show that Assumption 1.1 is satisfied for a large class of absolutely continuous
measures.

Lemma A.2. Let B ∈ L1(R2, (1 + ln+ |x |)dx) such that, for some p > 1,

sup
x∈R2

∫
|y−x |<1

|B(y)|p dy < ∞.

Then

h(x) := 1

2π

∫
R2

B(y) ln |x − y| dy

belongs to W 1,r
loc (R2) for r = 2p

2−p if p < 2, any r < ∞ if p = 2 and r = ∞ if p > 2.
It solves �h = B and satisfies Assumption 1.1 with α given by (1.3).

Proof. The facts that h ∈ W 1,1
loc (R2) with

∇h(x) = 1

2π

∫
R2

B(y)
x − y

|x − y|2 dy

and that �h = B in the sense of distributions are in [33, Theorem 6.21]. For a given
a ∈ R

2 we decompose the integral giving ∇h into the outside of B(a, 1) and its inside.
The part from the outside is bounded in B(a, 1

2 ) since B ∈ L1(R2). The part from the

inside defines a function in Lr (R2) with r = 2p
2−p if p < 2 by the weak Young inequality

[33, Theorem 4.3] and the fact that B ∈ Lp(B(a, 1)). This also implies the assertion for
p = 2. The fact that the part from the inside is bounded for p > 2 follows from Hölder’s
inequality.
It remains to show that x �→ h(x) − α ln(1 + |x |) is bounded. We begin by noting that,
with 1

p + 1
p′ = 1,

∣∣∣∣
∫

|y−x |<1
B(y) ln |x − y| dy

∣∣∣∣ ≤
(∫

|y−x |<1
|B(y)|p dy

) 1
p
(∫

|z|<1
| ln |z||p′

dz

) 1
p′

.
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By assumption the right side is bounded with respect to x . Next, we bound∣∣∣∣∣
∫

|y|< 1
2 |x |

B(y) ln |x − y| dy − ln |x |
∫

|y|< 1
2 |x |

B(y) dy

∣∣∣∣∣ ≤
∫

|y|< 1
2 |x |

|B(y)| ln
|x − y|

|x | dy.

For |y| < 1
2 |x | we have 1

2 <
|x−y|

|x | < 3
2 , so the integral on the right side is bounded with

respect to x . We also note that if |x | > 2, then∣∣∣∣∣
∫

|y|< 1
2 |x |

B(y) dy − 2πα

∣∣∣∣∣ ≤
∫

|y|≥ 1
2 |x |

|B(y)| dy ≤ 1

ln(|x |/2)

∫
R2

|B(y)| ln+ |y| dy.

This, when multiplied by ln |x | is bounded for |x | ≥ e, say. Finally, we note that when
|x−y| ≥ 1 and |y| ≥ 1

2 |x |, then 0 ≤ ln |x−y| ≤ ln(|x |+|y|) ≤ ln( 3
2 |y|) = ln 3

2 +ln+ |y|.
Therefore∣∣∣∣∣

∫
|y−x |≥1, |y|≥ 1

2 |x |
B(y) ln |x − y| dy

∣∣∣∣∣ ≤
∫
R2

(ln 3
2 + ln+ |y|)|B(y)| dy.

To summarize, we have shown that h(x)−α ln |x | is bounded for |x | ≥ e. Since α ln |x |−
α ln(1 + |x |) is bounded for |x | ≥ e as well, we have proved the assertion for |x | ≥ e.
The boundedness for |x | < e proceeds along the same lines and we omit the details.


�

Appendix B. Failure of a One-Term Bound on inf spec(h− + v)

In this section we discuss the optimality of the bound in Proposition 4.5. More precisely,
we shall show that for any given 0 < α < 1, neither

(
inf spec

(
h− + v

))α

− ≤ Cα

∫ ∞

0
v(r)1+α

− r dr (B.1)

nor

(
inf spec

(
h− + v

))α

− ≤ Cα

∫ ∞

0
v(r)− (1 + r)−2α r dr (B.2)

can hold with some constant Cα for all real v ∈ L1
loc(R+). We recall that the operator h−

is defined in Sect. 4.2.
This failure of (B.1) and (B.2) is in contrast to what happens in other related situations,
for instance in [31, Lemma 1], where the ‘weak coupling term’ is able to control the
lowest eigenvalue uniformly. In view of this failure it is perhaps less surprising that the
proof of Theorem 1.5 in the case γ = α is rather involved.
To show the claimed failure we apply the duality argument of Lieb and Thirring [35]
(see also [22, Proposition 5.3]). This shows that (B.1) and (B.2) are equivalent to the
Sobolev interpolation inequalities

(∫ ∞

0
(1 + r)−2α|ϕ′(r)|2 r dr

) 1
1+α

(∫ ∞

0
(1 + r)−2α|ϕ(r)|2 r dr

) α
1+α

≥ Sα

(∫ ∞

0
(1 + r)−2(1+α)|ϕ(r)| 2(1+α)

α r dr

) α
1+α

(B.3)
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and(∫ ∞

0
(1 + r)−2α|ϕ′(r)|2 r dr

)1−α (∫ ∞

0
(1 + r)−2α|ϕ(r)|2 r dr

)α

≥ Sα ess sup
R+

|ϕ|2,
(B.4)

respectively, with some Sα > 0 and for all locally absolutely continuous functions ϕ

on R+ for which the two integrals on the left sides are finite. We shall show that neither
(B.3) nor (B.4) holds.
To see that (B.3) fails, consider ϕ(r) = v(εr) with a fixed nice function v and a parameter
ε � 1. As ε → 0, we compute

∫ ∞
0

|ϕ′(r)|2 r dr

(1 + r)2α
= ε2α

∫ ∞
0

|v′(s)|2 s ds

(ε + s)2α
∼ ε2α

∫ ∞
0

|v′(s)|2s1−2α ds ,

∫ ∞
0

|ϕ(r)|2 r dr

(1 + r)2α
= ε−2(1−α)

∫ ∞
0

|v(s)|2 s ds

(ε + s)2α
∼ ε−2(1−α)

∫ ∞
0

|v(s)|2s1−2α ds ,

∫ ∞
0

|ϕ(r)| 2(1+α)
α

r dr

(1 + r)2(1+α)
= ε2α

∫ ∞
0

|v(s)| 2(1+α)
α

s ds

(ε + s)2(1+α)
→ const |v(0)| 2(1+α)

α ,

where the constant on the right side of the final relation is positive. (In fact, it is equal
to

∫ ∞
0 (1 + t)−2(1+α) t dt .) Thus, the left side of (B.3) behaves like ε2α2/(1+α), while the

right side remains positive (if v(0) �= 0). Since α > 0, we arrive at a contradiction.
To see that (B.4) fails, consider ϕ(r) = v(Mr) with a fixed nice function v and a
parameter M � 1. As M → ∞, we compute∫ ∞

0
|ϕ′(r)|2 r dr

(1 + r)2α
=

∫ ∞

0
|v′(s)|2 s ds

(1 + s/M)2α
→

∫ ∞

0
|v′(s)|2s ds ,

∫ ∞

0
|ϕ(r)|2 r dr

(1 + r)2α
= M−2

∫ ∞

0
|v(s)|2 s ds

(1 + s/M)2α
∼ M−2

∫ ∞

0
|v(s)|2s ds ,

ess sup
R+

|ϕ|2 = ess sup
R+

|v|2 .

Thus, the left side of (B.4) behaves like M−2α , while the right side is independent of M .
Since α > 0, we arrive at a contradiction.
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17. Fanelli, L., Kovařík, H.: Quantitative Hardy inequality for magnetic Hamiltonians. Commun. PDE (2024).

https://doi.org/10.1080/03605302.2024.2403010
18. Frank, R.L.: Remarks on eigenvalue estimates and semigroup domination. Contemp. Math., 500, Amer.

Math. Soc., Providence, RI, 63–86 (2009)
19. Frank, R.L.: A simple proof of Hardy-Lieb-Thirring inequalities. Commun. Math. Phys. 290(2), 789–800

(2009)
20. Frank, R.L.: The Lieb–Thirring inequalities: recent results and open problems. Proc. Sympos. Pure Math.,

104. Amer. Math. Soc., Providence, RI, 45–86 (2021)
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