
International Journal on Software Tools for Technology Transfer (2025) 26:633–646
https://doi.org/10.1007/s10009-024-00769-8

COMPETITIONS AND CHALLENGES

Regular

Six years later: testing vs. model checking

Dirk Beyer1 · Thomas Lemberger1

Accepted: 7 November 2024 / Published online: 16 January 2025
© The Author(s) 2025

Abstract
Six years ago, we performed the first large-scale comparison of automated test generators and software model checkers with
respect to bug-finding capabilities on a benchmark set with 5693 C programs. Since then, the International Competition
on Software Testing (Test-Comp) has established standardized formats and community-agreed rules for the experimental
comparison of test generators. With this new context, it is time to revisit our initial question: Model checkers or test generators—
which tools are more effective in finding bugs in software? To answer this, we perform a comparative analysis on the tools and
existing data published by two competitions, the International Competition on Software Verification (SV-COMP) and Test-
Comp. The results provide two insights: (1) Almost all test generators that participate in Test-Comp use hybrid approaches
that include formal methods, and (2) although the considered model checkers are still highly competitive, they are now
outperformed by the bug-finding capabilities of the considered test generators.

Keywords Software verification · Model checking · Program analysis · Test generation · Testing · Fuzzing

1 Introduction

In previous research [32], we compared the bug-finding
capabilities of automated test generators and software
model checkers on C programs. At the time of that work, no
standardized formats existed for the experimental compari-
son of test generators. So we selected formats for the expected
inputs and outputs of test generation, implemented matching
adapters for existing test generators, and our own coverage
measurement. Nowadays, this is unnecessary. The Interna-
tional Competition on Software Testing (Test-Comp) [19]
provides a community-set framework for the evaluation of
test generators for the C language, including an exchange for-
mat for test suites, a large and well-defined benchmark task
set, and agreed-upon resource limitations for benchmarking.
So far, the benchmark test tasks of Test-Comp target two
goals of test generation: “creating a test suite that covers a
known bug in a given program” and “creating a test suite
that covers all branches of a given program”.

Thanks to the improvements Test-Comp brought, and six
years after our original research [32], it is time to revisit
the comparison: Model checkers vs. test generators—which
tools are better at finding bugs in software?

We improve on the original comparison in multiple ways:
(1) For the original work, we selected an array of test gen-
erators manually and configured them to the best of our
knowledge. In this work, we base our comparison only on
participants of the International Competition on Software
Verification (SV-COMP) [16] and Test-Comp. All tool con-
figuration is provided by the participating tool developers,
and during the competition, developers got early access to
prerun results to fix any shortcomings of their tools evident
through the benchmark set.

(2) Originally, we executed our own, novel experiments.
We do have high confidence in these results, but in our new
work, we reuse the freely available competition data of SV-
COMP 2023 and Test-Comp 2023. Using these results has
the advantage that the data were peer-reviewed by the tool
developers before publication.

Through these two adjustments we ensure that the used
experimental data represent expert tool usage. They also
guarantee that we configured everything correctly and that
we select tools that support all of the major required lan-
guage features.

(3) Originally, we counted that a model checker found a
bug when the reported bug was confirmed by at least one wit-
ness validator [37]—which may solely rely on static analysis.
In this work, we pay higher tribute to the actual execution
of an error and separately consider whether a model checker
bug report can be confirmed through program execution [39].

� D. Beyer

1 LMU Munich, Munich, Germany

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00769-8&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0003-0291-815X

634 D. Beyer, T. Lemberger

(4) Originally, we considered the bug-finding capabilities
of model checkers and test generators but did not explicitly
tune test generators toward finding a bug in the program.
Our expectation is that many test generators are originally
designed for traditional coverage measures like branch cov-
erage or condition coverage and are not optimized to create
a single test for an error location of interest. But since Test-
Comp asks participants to create a test suite that covers a
known bug, the Test-Comp test generators may be tuned to-
ward bug finding. To check the effect of this, we compare
the test suites generated by Test-Comp test generators for er-
ror coverage and the test suites generated for branch coverage
with regards to their bug-finding capabilities.

(5) Furthermore, in the original work, we compared tools
that market themselves as software model checkers with tools
that market themselves as test generators and gave only a
coarse overview on the techniques they used. Nowadays,
many tools employ hybrid approaches with multiple dif-
ferent techniques. Many formal methods that are used in
model checking can also be used for test generation [36, 112],
and techniques originally designed for testing can be used as
a part of model checking (for example, input fuzzing [56]).
This means that a model checker and a test generator may
use the same underlying analysis techniques. To account for
that, we give more detail about the techniques the tools use.

We evaluate the following research questions:

RQ 1 Are test generators more effective in finding bugs than
software model checkers?

RQ 2 Can the bug reports of software model checkers be
validated through execution?

RQ 3 Are test generators that target errors more effec-
tive in finding bugs than test generators that target
branch coverage?

To answer these questions, we use Test-Comp test gen-
erators and SV-COMP model checkers as representatives
of their respective domains, with the original competition
data. To the best of our knowledge, this is the first meta-
analysis of the two international competitions SV-COMP and
Test-Comp and the largest evaluation that compares the bug-
finding capabilities of software model checkers with those
of test generators.

Related work. The only large-scale comparisons of the
tools considered in this work are the annual competitions
SV-COMP [16] and Test-Comp [19], which we combine and
inspect in detail in this work.

Next to these experimental evaluations, there are litera-
ture surveys on test generation for JavaScript [7], search-
based testing [98], fuzzing [97], and symbolic execu-
tion [10, 48, 104]. There are also surveys on software-
model-checking techniques [68, 86] and formal methods in

Fig. 1 Workflow of a Test-Comp test generator; a test generator pro-
duces a test suite for a program under test and a coverage criterion

Fig. 2 Workflow of a test executor; a test executor computes whether
(or to what percentage) a test suite fulfills a coverage criterion for a
program

a more general sense [13, 73], as well as the handbook on
model checking [58].

This work focuses on reachability bugs in a sequential,
self-contained program, similar to a failing assert state-
ment, and on tools and techniques aimed at finding such
errors. Other applications of model checking and automated
testing are, among many others, mutation testing [103] and
the verification of concurrent programs [78], security prop-
erties [12], and hyperproperties [59].

2 Background

2.1 Testing

An input function in a program is any function that retrieves
a value from the program environment; for example a system
call. In our work, we use special functions __VERIFIER_nondet_X,
which can return any input value of type X. For example,
function __VERIFIER_nondet_int() returns an integer input value.
A test vector 〈𝑣0, . . . , 𝑣𝑛〉 is a sequence of 𝑛 values. When
〈𝑣0, . . . , 𝑣𝑛〉 is executed, the 𝑖th call to an input function
is defined to return value 𝑣𝑖 . A test suite is a set of test
vectors. A test vector 𝑡 covers a program operation 𝑜𝑝 if the
execution of 𝑡 goes through 𝑜𝑝. A test suite covers a program
operation 𝑜𝑝 if any of its contained test vectors covers 𝑜𝑝.

A Test-Comp test generator (Fig. 1) [19] takes as input the
program under test and a coverage criterion (e.g., cover a call
to function reach_error()) and generates as output a test suite.
The test executor (Fig. 2) then takes as input the program
under test, the coverage criterion, and the generated test suite.

Springer

Six years later: testing vs. model checking 635

Fig. 3 Workflow of a model checker; a model checker produces a
correctness witness if it claims that the program under verification
fulfills the specification, or a violation witness if it claims that the
program violates the specification

Fig. 4 Workflow of a witness validator (for result validation of a vio-
lation witness); a witness validator confirms the model checker verifi-
cation result if it can reproduce the result with the help of the witness

Fig. 5 Example program and violation-witness automaton (adapted
from prior work [39])

It produces as output either that the coverage criterion is
fulfilled or a percentage of how many coverage goals defined
by the criterion are covered by the tests in the test suite.

2.2 Model checking

An SV-COMP model checker (Fig. 3) [16] takes as input a
program and a specification and produces one of two out-
puts: If the program fulfills the specification, then a correct-
ness witness [37, 41] is generated. If the program violates the
specification, then a violation witness [38, 41] is generated.

2.3 Witness validation

Witness validation [41] aims to increase the trust in
results of model checking. The idea is the following:

A model checker (Fig. 3) analyzes a program with regards
to a specification. As output, it not only produces a verifica-
tion verdict “property fulfilled” or “property not fulfilled”
but also a correctness witness or violation witness that helps
to recreate the verification result. This witness is then given
to a witness validator (Fig. 4). A witness validator takes the
program under verification, the original specification, and
the previously produced witness as input. It tries to repro-
duce the verification result with the help of the witness. If the
witness validator is successful, then the result is confirmed,
and confidence in the verification result increases.

In this work, we focus on bug-finding capabilities, so we
only consider violation witnesses.

We describe violation witnesses as violation-witness
automata (in version 1.0 [37], not yet version 2.0 [9]).
A violation-witness automaton is a finite-state automaton.
It contains at its transitions source-code guards 𝑒 and state-
space guards 𝜓 to describe a subset of the program paths
that contain the reported property violation. A source-code
guard 𝑒 is a program statement identified by its source-code
line number. A source-code guard can also restrict the direc-
tion of program branchings; for example at if statements. It
only allows the transition from one witness-automaton state
to another if the currently considered program expression
matches 𝑒 and the specified program branch is entered (if
specified). A state-space guard 𝜓 is a predicate on the
program state. It restricts the possible program states to
those that fulfill 𝜓. Figure 5 shows an example program
and a violation-witness automaton for the violated property
unreach-call. Automaton label o/w describes a transition
that is taken in all cases not covered by other transitions.
This violation-witness automaton describes only the pro-
gram state space that assigns a = 62 and b = 224, which leads
to an unsigned integer overflow and makes the program en-
ter the if branch: The automaton stays in state 𝑞0 until the
assignment in line 5 is considered. It then transitions to 𝑞1
and restricts the considered program states to those that ful-
fill 𝑎 == 62 (after transitioning). When line 7 is reached,
it restricts the considered program states to those that ful-
fill 𝑏 == 224. When the if statement in line 11 is reached and
the if branch is entered, the violation location is reached.

SV-COMP requires participants to output violation wit-
nesses since SV-COMP 2015 [15]. It uses the XML-based
GraphML exchange format [60]. Figure 6 shows an excerpt
that represents the automaton displayed in Fig. 5.

Witness to test. Execution-based witness validation [39]
takes a violation witness and tries to transform it into an
executable test. If it succeeds, then the test is executed. If
this test execution triggers the property violation, then the
verification result is confirmed.

To generate the executable test, execution-based wit-
ness validation uses the source-code guards of the violation-
witness automaton to map the corresponding state-space

Springer

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp23/c/properties/unreach-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses

636 D. Beyer, T. Lemberger

Fig. 6 Excerpt of the GraphML representation of the violation-witness
automaton of Fig. 5

guards to the program code. If every call to an input function
(__VERIFIER_nondet_X) is constrained to a unique assignment
through a state-space guard (e.g., 𝑎 == 62), then these unique
assignments represent the test inputs; for example 〈62,224〉.
These inputs are then written to a test harness that allows for
the execution of the test.

Because the result is confirmed by actual program execu-
tion, execution-based witness validation provides the same
degree of confidence in the verification result as testing.

2.4 The benchmark collection SV-benchmarks

SV-Benchmarks [61] is the largest available collection of
benchmark tasks for the evaluation of automated verifica-
tion techniques for the language C. SV-Benchmarks contains
verification tasks and test-generation tasks.

Verification task. A verification task of SV-Benchmarks
consists of a program (C code) to verify and a program prop-
erty to check. Program specifications are expressed in linear
temporal logic and different properties exist: safety proper-
ties (e.g., error never reachable) and liveness properties (e.g.,
program always terminates). In this work, we only consider
the safety property unreach-call, which specifies that no
program execution may ever call the function reach_error.

Test-generation task. A test-generation task of SV-
Benchmarks consists of a program (C code) to generate

a test suite for and the coverage criterion which the test suite
should fulfill. Coverage criteria are expressed as FQL [82],
and, to date, two criteria exist: coverage-error-call asks
for a test suite that covers at least one call to the function
reach_error (signals a bug), and coverage-branches asks
for a test suite that covers all branches of the program.

Categories. SV-Benchmarks groups benchmark tasks
into categories. A detailed description of the categories is
available online [110]. Table 1 gives an overview of the
benchmark tasks with coverage criterion coverage-error-
call, grouped by their categories. The table shows the cat-
egory name, a description of the category, the number of
benchmark tasks in that category, and a plot that illustrates
the lines of program code per task in that category. Each
plot shows on the 𝑥-axis the number of lines of code and
on the 𝑦-axis the number of tasks in that category with the
respective lines of code. In this work, we only consider these
benchmark tasks.

3 Evaluation

3.1 Experiment setup

For all comparisons, we use the results obtained in SV-
COMP and Test-Comp using the following setup: Experi-
ments ran on machines with Intel Xeon E3-1230 v5 CPUs
with 3.40 GHz, 8 cores, turbo boost disabled, and 33 GB
of memory. For both competitions, each run of a verifica-
tion task or test-generation task was limited to 900 s of
CPU time, 15 GB of memory (RAM), and 8 CPU cores. Each
violation-witness validation was limited to 90 s of CPU time,
7 GB of memory, and 2 CPU cores. Each test-suite valida-
tion was limited to 300 s of CPU time, 7 GB of memory, and
2 CPU cores. Resource limitation and measurement were
performed by BenchExec [14, 40].

Note. On its web page [23], SV-COMP reports not only
the score but also the run times of its participants. We refrain
from reporting run time in this work because in Test-Comp,
there is nothing wrong with fully using the available run time;
the tools may continue generating tests until the time limit is
hit, and they do.

3.2 Benchmark tasks

We consider all benchmark tasks from the SV-Benchmarks
repository with coverage criterion coverage-error-call.

3.3 Considered tools

We consider all 13 test generators that participated in Test-
Comp 2023 and 31 software model checkers that partici-
pated in a subcategory of SV-COMP 2023 with checked

Springer

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/testcomp23/c/properties/coverage-branches.prp
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://github.com/sosy-lab/benchexec
https://sv-comp.sosy-lab.org/2023/results/results-verified/

Six years later: testing vs. model checking 637

Table 1 Subcategories (14) of Test-Comp with coverage criterion co-
verage-error-call; each plot in the column “Lines of Code” illus-
trates the lines of program code per task in that category; each plot

shows on the 𝑥-axis the number of lines of code, and on the 𝑦-axis the
number of tasks in that category with the respective lines of code

Subcategory Description #Tasks Lines of code

Arrays Require treatment of arrays 90

BitVectors Require treatment of bit-operations 9

ControlFlow Program correctness depends mostly on the
control-flow structure and integer variables

5

ECA Derived from event-condition-action systems 18

Floats Require treatment of floating-point arithmetics 32

Hardware Created from word-level hardware-model-checking
benchmarks

494

Heap Require treatment of data structures on the heap,
pointer aliases, and function pointers

47

Loops Require treatment of (potentially indeterminate)
loops

130

ProductLines Represent “products” and “product simulators” that
are derived using different configurations of product
lines

169

Recursive Require treatment of recursive functions 20

Sequentialized Sequentialized concurrent programs that were
derived from SystemC programs; the programs were
transformed to pure C programs by incorporating the
scheduler into the C code

98

XCSP Derived from constraint-programming
benchmark tasks of combinatorial constrained
problems

54

BusyBox Tasks from the software system BusyBox 5

DeviceDriversLinux64 Tasks from the Linux Driver Verification project 2

property unreach-call (excluding category Concurren-
cySafety). Table 2 gives an overview on a selection of verifi-
cation techniques used by each tool, based on data provided
by the SV-COMP [16] and Test-Comp [19] competition re-

ports. The reports do not list the identical set of techniques:
if a report does not provide information on a technique, then
this column is marked with � for the respective tools. The
table groups the features on the 𝑥-axis in static techniques,

Springer

http://linuxtesting.org/project/ldv

638 D. Beyer, T. Lemberger

Table 2 Features used by Test-Comp and SV-COMP participants and their overall results in bug finding; if a competition report does not provide
information on a technique, then this column is marked with � for the respective tools

Participant Static Dyn. Strategies #Bugs
found

B
ou

nd
ed

m
od

el
ch

ec
ki

ng

C
EG

A
R

Ex
pl

ic
it-

va
lu

e
an

al
ys

is

k-
in

du
ct

io
n

N
um

er
ic

in
te

rv
al

an
al

ys
is

Pr
ed

ic
at

e
ab

str
ac

tio
n

Sh
ap

e
an

al
ys

is

Sy
m

bo
lic

ex
ec

ut
io

n

R
an

do
m

ex
ec

ut
io

n

Ev
ol

ut
io

na
ry

al
go

rit
hm

s

A
RG

-b
as

ed
an

al
ys

is

B
it-

pr
ec

is
e

an
al

ys
is

Fl
oa

tin
g-

po
in

ta
rit

hm
et

ic
s

La
zy

ab
str

ac
tio

n

In
te

rp
ol

at
io

n

A
ut

om
at

a-
ba

se
d

an
al

ys
is

G
ui

da
nc

e
by

pr
op

er
ty

Ta
rg

et
ed

in
pu

tg
en

er
at

io
n

A
lg

or
ith

m
se

le
ct

io
n

Po
rtf

ol
io

VeriFuzz [99, 100] ✓ ✓ � � � ✓ ✓ � � ✓ � � � ✓ 964
FuSeBMC [5, 6] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ ✓ 939

FuSeBMC_IA [4] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ ✓ 931
CoVeriTest [29, 85] ✓ ✓ � � ✓ � � � ✓ � � � ✓ 564

Klee [47, 49] � � � ✓ � � ✓ � � � ✓ 541
Symbiotic [52, 53] � � � ✓ � � ✓ � � � ✓ ✓ ✓ 510

TracerX [83, 84] ✓ � � � ✓ � � ✓ � � � ✓ 420
HybridTiger [46, 107] ✓ ✓ � � ✓ � � � ✓ � � � 397

WASP-C [115] � � � ✓ ✓ � � ✓ � � � 393
Esbmc-kind [71, 72] ✓ � � � � � � � � ✓ 352

PRTest [32, 93] � � � ✓ � � ✓ � � � 293
Legion/SymCC [92] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ 281

Te
st-

C
om

p

Legion [94, 95] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ 108
PeSCo [105, 106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 667
CPAchecker [31, 63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 665

Esbmc-kind [71, 72] ✓ ✓ ✓ � ✓ � ✓ � 660
VeriAbsL [65] ✓ ✓ ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ ✓ 645

Graves-CPA [91] � � � 643
VeriAbs [3, 64] ✓ ✓ ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ ✓ 639

Bubaak [51] ✓ � ✓ � ✓ � 635
Cbmc [57, 89] ✓ � ✓ � ✓ � 626

VeriFuzz [56, 99] ✓ ✓ � ✓ � ✓ � 615
CVT-ParPort [30, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 591

Symbiotic [52, 54] ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ 559
CVT-AlgoSel [30, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 468

UAutomizer [80, 81] ✓ ✓ � ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 311
Divine [11, 90] ✓ ✓ � ✓ � ✓ � ✓ ✓ 299

UTaipan [66, 77] ✓ ✓ ✓ ✓ � ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 294
Pinaka [55] ✓ ✓ � ✓ � ✓ � 272

gazer-theta [1, 79] ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ 255
2ls [44, 96] ✓ ✓ ✓ ✓ � ✓ � ✓ � 213

UKojak [69, 102] ✓ ✓ � ✓ � ✓ ✓ ✓ � 189

SV
-C

O
M

P

Crux [67, 109] ✓ � � ✓ � 176

Springer

Six years later: testing vs. model checking 639

Table 2 (Continued)

Participant Static Dyn. Strategies #Bugs
found

B
ou

nd
ed

m
od

el
ch

ec
ki

ng

C
EG

A
R

Ex
pl

ic
it-

va
lu

e
an

al
ys

is

k-
in

du
ct

io
n

N
um

er
ic

in
te

rv
al

an
al

ys
is

Pr
ed

ic
at

e
ab

str
ac

tio
n

Sh
ap

e
an

al
ys

is

Sy
m

bo
lic

ex
ec

ut
io

n

R
an

do
m

ex
ec

ut
io

n

Ev
ol

ut
io

na
ry

al
go

rit
hm

s

A
RG

-b
as

ed
an

al
ys

is

B
it-

pr
ec

is
e

an
al

ys
is

Fl
oa

tin
g-

po
in

ta
rit

hm
et

ic
s

La
zy

ab
str

ac
tio

n

In
te

rp
ol

at
io

n

A
ut

om
at

a-
ba

se
d

an
al

ys
is

G
ui

da
nc

e
by

pr
op

er
ty

Ta
rg

et
ed

in
pu

tg
en

er
at

io
n

A
lg

or
ith

m
se

le
ct

io
n

Po
rtf

ol
io

Korn [70] ✓ ✓ ✓ � � ✓ � ✓ 121
Theta [2, 111] ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ � ✓ ✓ 116

Brick [45] ✓ ✓ ✓ ✓ � � ✓ � 99
Graves-Par [76] � � � 93
GDart-LLVM [74] ✓ � ✓ � � 1

Table 3 Data that we use from the competitions

Artifact DOI

Benchmark collection 10.5281/zenodo.7627783
SV-COMP results 10.5281/zenodo.7627787
Test-Comp results 10.5281/zenodo.7701122
Test-Comp test suites 10.5281/zenodo.7701126
Test-suite validator 10.5281/zenodo.7701118

dynamic techniques, and strategies in verification that can be
used with both static and dynamic techniques. The tools are
grouped on the 𝑦-axis by SV-COMP and Test-Comp partici-
pation. Within each group, the entries are sorted by the num-
ber of found bugs over all benchmark tasks. We omit tools
that did not find a single confirmed bug in the considered ver-
ification tasks: CPA-BAM-BnB [8, 114], CPA-BAM-SMG,
Frama-C-SV [35, 62], Goblint [108, 113], Infer-SV [50,
88], and Mopsa [87, 101].

The table shows that most test generators that participated
in Test-Comp 2023 use hybrid approaches: they employ both
static and dynamic analysis techniques.

Table 3 shows the external data from the competitions we
used for our study.

3.4 Expanding the study

To add new tools to the tool comparison, developers can sub-
mit their tool to the next iterations of SV-COMP [28] and
Test-Comp [27]. For private experiments, the benchmarking
configuration is available online and described on the com-
petition websites of SV-COMP [24] and Test-Comp [26].
Competition results can be analyzed with scripts from our
reproduction artifact [34].

3.5 Experimental results

RQ 1. Are test generators more effective in finding
bugs than software model checkers? We use the
original results data of SV-COMP 2023 [17] and Test-
Comp 2023 [18]. To make the two data sets comparable,
we map all results for test-generation tasks in the Test-Comp
data to results for a verification task with property unreach-
call: Each successful test generation for coverage criterion
coverage-error-call also produces a valid counterexam-
ple for unreach-call. This means that if a test generator
successfully generates a test suite that fulfills criterion co-

verage-error-call, then it also shows that unreach-

call is violated. For both SV-COMP and Test-Comp data,
we only consider a bug “found” if it is confirmed by the
competition through successful violation-witness validation
or test execution.

We report the highest bug-finding capability each tool
exhibits in its respective competition. The tool TracerX
only produces test suites for coverage-branches, and for
Legion/SymCC, the test suites generated for coverage-
branches cover more bugs than the test suites generated
for coverage-error-call (cf. RQ 3). For these tools, we
always consider the test suites they generated for coverage-
branches.

Table 2 (right column) shows the overall number of tasks
for which a bug was found by the resp. tool. In contrast to
our original study [32], two test generators VeriFuzz [100]
(964/1173 bugs found) and FuSeBMC [5] (939/1173 bugs
found) perform significantly better than the best model
checker PeSCo [105, 106] (667/1173 bugs found). Both
VeriFuzz and FuSeBMC use a combination of bounded
model checking [43] (a static technique) and fuzzing [75] (a
dynamic technique).

Springer

https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7701126
https://doi.org/10.5281/zenodo.7701118
https://sv-comp.sosy-lab.org/
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php

640 D. Beyer, T. Lemberger

Two notes. (1) Some of the model checkers listed in Ta-
ble 2 are specialized tools that (a) participate only in selected
categories of SV-COMP or (b) focus on program proofs, not
bug hunting. For these reasons, a low number of found bugs
gives no indication about the tool’s quality. For example,
GDart-LLVM has the lowest overall number of found bugs,
but it only participates in category BitVectors. The best three
model checkers, PeSCo, CPAchecker, and Esbmc-kind,
participate in all relevant categories. (2) The reported num-
bers do not match the Test-Comp overall scores reported on
the official results page [25] because Test-Comp performs
normalization over each category number of tasks. We do
not perform normalization but report the sum of all found
bugs over all categories.

The tools Esbmc-kind, Symbiotic, and VeriFuzz par-
ticipated in both SV-COMP and Test-Comp. If not clear
from the context, we superscript their names with the com-
petition in which the result was received (for example,
VeriFuzzSV-COMP or SymbioticTest-Comp). If the results are
equal for both configurations, then we write VeriFuzzBoth.

Table 4 displays the results of the selected tools per cat-
egory. For each category, the table lists data for the three
best test generators and three best model checkers that found
at least one bug in that category (four tools each for cate-
gory Overall). If there is a draw, then all tools with the same
number of found bugs and with the same number of bugs
confirmed through execution (cf. RQ 2) are displayed. To
ease the differentiation between the two groups, we prefix
each test generator with and each model checker with .
The table lists the total tasks in the respective category, the
number of confirmed bugs that the respective tool found, as
well as the number of bugs that the respective tool found
and that were confirmed by actual program execution. We
omit the category DeviceDriversLinux64 because no tool
was able to find a bug in it.

The table shows that for bug finding, individual test gen-
erators perform either better or as good as individual
model checkers in all categories but Heap and XCSP. A clear
divide between test generators and model checkers exists
in four categories: In Arrays, the best test generator of that
category, FuSeBMC, finds a bug in 90 tasks, whereas the
best model checker of that category, VeriAbsL, finds a
bug in only 81 tasks. In Hardware, VeriFuzz finds a bug
in 319 tasks, whereas Graves-CPA finds a bug in only
147 tasks. In Loops, FuSeBMC finds a bug in 128 tasks,
whereas VeriAbs finds a bug in only 112 tasks. In Sequen-
tialized, VeriFuzz finds a bug in 95 tasks, whereas PeSCo
finds a bugs in only 86 tasks.

The presented data answers our first research question
with “yes”: At the current state-of-the-art for C, test gen-
erators perform significantly better in bug hunting than
model checkers.

Table 4 Results of the tools listed in Table 2 for each category; only
the best test generators () and model checkers () of each category
are listed

Total tasks #Bugs
found

#Bugs
confirmed

by execution

Arrays
FuSeBMC 90 90 90
FuSeBMC_IA 90 88 88
VeriFuzzTest-Comp 90 88 88
VeriAbsL 90 81 76
VeriAbs 90 80 66
Bubaak 90 74 74

BitVectors
FuSeBMC 9 9 9
FuSeBMC_IA 9 9 9
VeriFuzzBoth 9 9 9
SymbioticSV-COMP 9 8 8
Esbmc-kindSV-COMP 9 8 6
Graves-CPA 9 8 6

ControlFlow
FuSeBMC 5 5 5
FuSeBMC_IA 5 5 5

SymbioticBoth 5 5 5
Bubaak 5 4 4

(VeriFuzz)Both 5 4 4
Klee 5 4 4

ECA
VeriFuzzSV-COMP 18 15 13
Klee 18 14 14
Bubaak 18 14 12
SymbioticTest-Comp 18 13 13
PeSCo 18 13 12
FuSeBMC 18 12 12

Floats
FuSeBMC 32 32 32
FuSeBMC_IA 32 31 31
VeriFuzzTest-Comp 32 31 31
Brick 32 30 29
CVT-ParPort 32 30 24
CPAchecker 32 30 21

Hardware
VeriFuzzTest-Comp 494 319 319
FuSeBMC 494 288 288
FuSeBMC_IA 494 288 288
Graves-CPA 494 147 102
CPAchecker 494 127 70
PeSCo 494 109 61

Springer

https://test-comp.sosy-lab.org/2023/results/results-verified/

Six years later: testing vs. model checking 641

Table 4 (Continued)

Total tasks #Bugs
found

#Bugs
confirmed

by execution

Heap
Cbmc 47 47 43
VeriAbs 47 47 33
Bubaak 47 46 44
FuSeBMC 47 45 45
FuSeBMC_IA 47 45 45
Klee 47 45 45

VeriFuzzBoth 47 45 45
Loops

FuSeBMC 130 128 128
FuSeBMC_IA 130 127 127
VeriFuzzTest-Comp 130 123 123
VeriAbs 130 112 103
VeriAbsL 130 100 86
Korn 130 98 97

ProductLines
FuSeBMC 169 169 169
FuSeBMC_IA 169 169 169
Klee 169 169 169

VeriFuzzBoth 169 169 169
Bubaak 169 169 169
VeriAbsL 169 169 169

Recursive
FuSeBMC 20 19 19
FuSeBMC_IA 20 19 19
Cbmc 20 19 19
CVT-ParPort 20 19 19
Graves-CPA 20 19 17
VeriFuzzTest-Comp 20 18 18

Sequentialized
VeriFuzzTest-Comp 98 95 95
FuSeBMC 98 94 94
FuSeBMC_IA 98 92 92
PeSCo 98 86 86
CVT-ParPort 98 86 32
Cbmc 98 85 29

XCSP
Cbmc 54 50 50
CVT-AlgoSel 54 49 49
VeriFuzzBoth 54 49 49
WASP-C 54 49 49
Esbmc-kindBoth 54 48 48
FuSeBMC 54 47 47

Table 4 (Continued)

Total tasks #Bugs
found

#Bugs
confirmed

by execution

BusyBox
FuSeBMC 5 1 1
Klee 5 1 1
PeSCo 5 1 0

Overall
VeriFuzzTest-Comp 1173 964 964
FuSeBMC 1173 939 939
FuSeBMC_IA 1173 931 931
PeSCo 1173 667 475
CPAchecker 1173 665 458
Esbmc-kindSV-COMP 1173 660 529
VeriAbsL 1173 645 543
CoVeriTest 1173 564 564

Table 5 Number of bugs found by the best tool of each category, the
union of all test generators (), the union of all model checkers (),
and all tools

Category Best tool All All All tools

Arrays 90 87 90 90
BitVectors 9 9 9 9
ControlFlow 5 5 5 5
ECA 15 15 14 17
Floats 32 32 32 32
Hardware 319 340 175 342
Heap 47 45 47 47
Loops 128 128 127 128
ProductLines 169 169 169 169
Recursive 19 19 20 20
Sequentialized 95 95 90 95
XCSP 50 51 50 51
BusyBox 1 1 1 2

In our previous research study [32], the different tools
complemented each other well, so that the combination of
multiple tools yielded significant improvements in the num-
ber of bugs found. This is not true for the current results:
Table 5 shows for each benchmark category the number of
bugs found by the best tool in that category, the union of dis-
tinct bugs found by all test generators together (All), the
union of distinct bugs found by all model checkers together
(All), and the union of all considered tools (All Tools).
The table shows that the unions only yield an improvement
in 5 of the 13 categories and that these improvements are
also small. We explain this with the fact that, in contrast to
the previous study, almost all currently considered tools al-

Springer

642 D. Beyer, T. Lemberger

ready combine multiple approaches internally (cf. Table 2),
rendering further external combinations effectless.

RQ 2. Can the bug reports of software model checkers
be validated through execution? Since a failing pro-
gram execution provides the highest level of confidence in
a verification result, we separately check how many of the
confirmed verification results were confirmed not only by
a third-party tool, but also by actual program execution.

For this, we use the SV-COMP validation results of the two
execution-based witness validators CPA-witness2test and
FShell -witness2test. Table 4 shows in its last columns
the number of found bugs that are confirmed through pro-
gram execution. It is visible that the confirmation rate can
be very high; for example, for Brick in category Floats
(29 of 30), for Cbmc in categories Heap (43 of 47), Re-
cursive (19 of 19) and XCSP (50 of 50), or for PeSCo
in category Sequentialized (86 of 86). On the other hand,
the confirmation rate can also be very low, even for model
checkers that perform well otherwise and in categories that
other model checkers perform well in: Cbmc gets only 29 of
85 results confirmed through execution in category Sequen-
tialized, and PeSCo gets only 61 of 109 results confirmed in
category Hardware. This hints to bug reports (in the form of
violation witnesses) that miss input values.

Thus our answer to the second research question: The data
show that the execution-based validation of verification re-
sults is feasible and works well to provide a similar level of
confidence in the result of model checkers as in test genera-
tors. But at the current state-of-the-art, model checkers have
to produce more precise violation witnesses to offer the same
level of confidence as test generators.

RQ 3. Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage? To answer our last research question,
we consider the test suites [22] that each test generator gen-
erated for coverage criterion coverage-branches in Test-
Comp 2023. We check how well these test suites perform for
finding bugs, compared to the test suites that testers specifi-
cally generated for bug-finding: We give each test suite gen-
erated for coverage-branches to the test executor of Test-
Comp 2023, TestCov [33], but with target measure cover-
age-error-call. The results over all common categories
are presented in Table 6.1

It is visible that 6 testers produce significantly better test
suites for criterion coverage-error-call when told to
do so: FuSeBMC, VeriFuzz, FuSeBMC_IA, Symbiotic,
and, with the most notable difference, Klee. This shows that
they adjust their behavior based on the coverage criterion
provided to them. The other tools only show very little differ-

1 This excludes category Hardware, which only exists in the track for
coverage-error-call.

Table 6 Bug-finding capabilities of generated test suites that are tar-
geted at either coverage-error-call or coverage-branches; the
results exclude category Hardware because it is not part of the Test-
Comp 2023 track on branch coverage

Tools Total tasks #Bugs found #Bugs found
error-call branches

FuSeBMC 679 651 594
VeriFuzz 679 645 611
FuSeBMC_IA 679 643 594
Klee 679 541 285
CoVeriTest 679 479 476
Symbiotic 679 476 456
TracerX 679 - 420
HybridTiger 679 362 281
WASP-C 679 354 355
Legion/SymCC 679 279 281
Esbmc-kind 679 352 -
PRTest 679 236 236
Legion 679 108 107

ence between the two generated test suites or did not provide
test suites for both coverage criteria. It is notable that the five
best-performing testers all adjust their behavior based on the
coverage criterion.

This answers our third research question with “yes”:
Testers that actively target errors are more effective in creat-
ing test suites for error coverage.

3.6 Threats to validity

Internal validity. We are confident in the internal valid-
ity of our analysis. We use the official SV-COMP 2023 and
Test-Comp 2023 data. Both competitions pay highest pri-
ority to precise measurements and reproducibility. For vali-
dating test suites with coverage-error-call which were
generated for coverage-branches, we had to perform own
experiments. For these, we used the official competitions’ in-
frastructure to ensure correctness of results. Both our setup
and the produced data are publicly available [34] for inspec-
tion.

External validity. We use the largest available bench-
mark set with well-defined C programs for testing. Still,
this benchmark set may not represent the full diversity of
real-world C programs. Similarly, because tools know the
SV-COMP and Test-Comp benchmark tasks before the com-
petition runs, tools that participate in SV-COMP and Test-
Comp may be tuned to the competitions’ benchmark set and
perform worse on real-world projects.

The application domain we can consider is limited: We
consider testing of sequential, self-sufficient C programs with
a simple reachability specification, similar to assert state-

Springer

Six years later: testing vs. model checking 643

ments (cf. Table 1). This means that the presented results may
ignore program features and some applications of testing, like
string handling, object-oriented programming, concurrency,
or database queries.

Similarly, specific applications of verification, for example
the verification of network protocols or static application-
security testing, are not considered.

We only consider programs with at least one existing bug.
We do not measure how good the generated test suites are
for detecting bugs that are newly introduced in the future.

We also do not differentiate between a single found bug
and multiple found bugs. But a test suite that detects multiple
bugs in a program may be considered better than a test suite
that only detects a single bug. We consider both options
orthogonal research questions.

We only consider tools that participate in either SV-
COMP 2023 or Test-Comp 2023. This covers the latest state-
of-the-art for verification of C programs. There may still be
model checkers or test generators that did not participate
in the last iterations of SV-COMP or Test-Comp and that
perform significantly better. In addition, the comparison of
test generators and model checkers may differ in areas of
application other than those considered.

Construct validity. We designed our experiments to as-
sess whether test generators or model checkers find more
bugs in given programs. To quantify the quality of the tools,
we use the number of bugs found, which is the main ingredi-
ent of the community-agreed scoring schemas that the com-
petitions use (considering the category FalsificationOverall
in SV-COMP and category Cover-Error in Test-Comp). In-
stead of normalization as used in the competitions, we ex-
plicitly report the results per category in Table 4.

4 Conclusions

We performed a thorough comparison of the bug-finding
capabilities for C programs of all SV-COMP 2023 and Test-
Comp 2023 participants. This comparison shows that, al-
though state-of-the-art test generators and model checkers
are highly competitive, the best considered test generators
outperform the best considered model checkers in bug find-
ing. Notably, the best test generators do not limit themselves
to dynamic techniques but also use static-analysis techniques
and formal methods. FuSeBMC [5] and VeriFuzz [100]
use a combination of bounded model checking [43] and
fuzzing [75].

Funding Statement Open Access funding enabled and organized
by Projekt DEAL. This work was funded by the Deutsche For-
schungsgesellschaft (DFG) — 418257054 (Coop), the LMU PostDoc
support fund, and the Free State of Bavaria.

Data-Availability Statement The analysis and all experimental data
are archived and available at Zenodo [34]. We used the following ex-

isting data for our study: the benchmark collection that was used by
both competitions [20], the SV-COMP results [17], the Test-Comp re-
sults [18] and test suites [22], and the test-suite validator TestCov [21]
from Test-Comp. See Table 3.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ádám, Z., Sallai, G., Hajdu, Á.: Gazer-Theta: LLVM-based veri-
fier portfolio with BMC/CEGAR (competition contribution). In:
Proc. TACAS (2). LNCS, vol. 12652, pp. 433–437. Springer,
Berlin (2021). https://doi.org/10.1007/978-3-030-72013-1_27

2. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, A., Molnár, V.:
Theta: portfolio of cegar-based analyses with dynamic algorithm
selection (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 13244, pp. 474–478. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99527-0_34

3. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P.,
Datar, A., Kumar, S., Venkatesh, R.: VeriAbs: verification by
abstraction and test generation. In: Proc. ASE, pp. 1138–1141.
IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

4. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Freitas, R.,
Cordeiro, L.C.: FuSeBMC_IA: interval analysis and methods for
test-case generation (competition contribution). In: Proc. FASE.
LNCS, vol. 13991, pp. 324–329. Springer, Berlin (2023). https://
doi.org/10.1007/978-3-031-30826-0_18

5. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro,
L.C.: FuSeBMC: an energy-efficient test generator for find-
ing security vulnerabilities in C programs. In: Proc. TAP,
pp. 85–105. Springer, Berlin (2021). https://doi.org/10.1007/978-
3-030-79379-1_6

6. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat, A.:
FuSeBMC v. 4: smart seed generation for hybrid fuzzing (com-
petition contribution). In: Proc. FASE. LNCS, vol. 13241,
pp. 336–340. Springer, Berlin (2022). https://doi.org/10.1007/
978-3-030-99429-7_19

7. Andreasen, E., Gong, L., Møller, A., Pradel, M., Selakovic, M.,
Sen, K., Staicu, C.: A survey of dynamic analysis and test gen-
eration for JavaScript. ACM Comput. Surv. 50(5), 66:1–66:36
(2017). https://doi.org/10.1145/3106739

8. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S.,
Volkov, A.: CPA-BAM-BnB: block-abstraction memoization and
region-based memory models for predicate abstractions (com-
petition contribution). In: Proc. TACAS. LNCS, vol. 10206,
pp. 355–359. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-662-54580-5_22

9. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M.,
Strejček, J.: Software verification witnesses 2.0. In: Proc. SPIN.
LNCS, vol. 14624. Springer, Berlin (2024). https://doi.org/10.
1007/978-3-031-66149-5_11

10. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.:
A survey of symbolic-execution techniques. ACM Comput. Surv.
51(3), 50:1–50:39 (2018). https://doi.org/10.1145/3182657

Springer

http://gepris.dfg.de/gepris/projekt/418257054
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-031-30826-0_18
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1145/3106739
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1145/3182657

644 D. Beyer, T. Lemberger

11. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H.,
Mrázek, J., Ročkai, P., Štill, V.: Model checking of C and
C++ with Divine 4. In: Proc. ATVA. LNCS, vol. 10482,
pp. 201–207. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-319-68167-2_14

12. Basin, D.A., Cremers, C., Meadows, C.A.: Model check-
ing security protocols. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking,
pp. 727–762. Springer, Berlin (2018). https://doi.org/10.1007/
978-3-319-10575-8_22

13. Beckert, B., Hähnle, R.: Reasoning and verification: state of the
art and current trends. IEEE Intell. Syst. 29(1), 20–29 (2014).
https://doi.org/10.1109/MIS.2014.3

14. BenchExec: A framework for reliable benchmarking and resource
measurement. https://github.com/sosy-lab/benchexec. Accessed:
2024–10–31

15. Beyer, D.: Software verification and verifiable witnesses (re-
port on SV-COMP 2015). In: Proc. TACAS. LNCS, vol. 9035,
pp. 401–416. Springer, Berlin (2015). https://doi.org/10.1007/
978-3-662-46681-0_31

16. Beyer, D.: Competition on software verification and witness vali-
dation: SV-COMP 2023. In: Proc. TACAS (2). LNCS, vol. 13994,
pp. 495–522. Springer, Berlin (2023). https://doi.org/10.1007/
978-3-031-30820-8_29

17. Beyer, D.: Results of the 12th Intl. Competition on Software
Verification (SV-COMP 2023). Zenodo (2023). https://doi.org/
10.5281/zenodo.7627787

18. Beyer, D.: Results of the 5th Intl. Competition on Software Test-
ing (Test-Comp 2023). Zenodo (2023). https://doi.org/10.5281/
zenodo.7701122

19. Beyer, D.: Software testing: 5th comparative evaluation: Test-
Comp 2023. In: Proc. FASE. LNCS, vol. 13991, pp. 309–323.
Springer, Berlin (2023). https://doi.org/10.1007/978-3-031-
30826-0_17

20. Beyer, D.: SV-Benchmarks: Benchmark set for software verifica-
tion and testing (SV-COMP 2023 and Test-Comp 2023). Zenodo
(2023). https://doi.org/10.5281/zenodo.7627783

21. Beyer, D.: Test-suite generators and validator of the 5th Intl. Com-
petition on Software Testing (Test-Comp 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7701118

22. Beyer, D.: Test suites from test-generation tools (Test-Comp
2023). Zenodo (2023). https://doi.org/10.5281/zenodo.7701126

23. Beyer, D.: 12th Intl. Competition on Software Verification (SV-
COMP 2023): Results of the Competition. https://sv-comp.sosy-
lab.org/2023/results/results-verified/. Accessed: 2024–10–31

24. Beyer, D.: 12th Intl. Competition on Software Verification (SV-
COMP 2023): Submission. https://sv-comp.sosy-lab.org/2023/
submission.php. Accessed: 2024–10–31

25. Beyer, D.: 5th Intl. Competition on Software Testing (Test-Comp
2023): Results of the Competition. https://test-comp.sosy-lab.org/
2023/results/results-verified/. Accessed: 2024–10–31

26. Beyer, D.: 5th Intl. Competition on Software Testing (Test-
Comp 2023): Submission. https://test-comp.sosy-lab.org/2023/
submission.php. Accessed: 2024–10–31

27. Beyer, D.: Intl. Competition on Software Testing (Test-Comp).
https://test-comp.sosy-lab.org/. Accessed: 2024–10–31

28. Beyer, D.: Intl. Competition on Software Verification (SV-
COMP). https://sv-comp.sosy-lab.org/. Accessed: 2024–10—31

29. Beyer, D., Jakobs, M.C.: Cooperative verifier-based testing with
CoVeriTest. Int. J. Softw. Tools Technol. Transf. 23(3), 313–333
(2021). https://doi.org/10.1007/s10009-020-00587-8

30. Beyer, D., Kanav, S.: CoVeriTeam: on-demand composition
of cooperative verification systems. In: Proc. TACAS. LNCS,
vol. 13243, pp. 561–579. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99524-9_31

31. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for config-
urable software verification. In: Proc. CAV. LNCS, vol. 6806,
pp. 184–190. Springer, Berlin (2011). https://doi.org/10.1007/
978-3-642-22110-1_16

32. Beyer, D., Lemberger, T.: Software verification: testing
vs. model checking. In: Proc. HVC. LNCS, vol. 10629,
pp. 99–114. Springer, Berlin (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

33. Beyer, D., Lemberger, T.: TestCov: robust test-suite execution
and coverage measurement. In: Proc. ASE, pp. 1074–1077. IEEE
(2019). https://doi.org/10.1109/ASE.2019.00105

34. Beyer, D., Lemberger, T.: Reproduction Package for STTT Article
“Six Years Later: Testing vs. Model Checking”. Zenodo (2023).
https://doi.org/10.5281/zenodo.10232648

35. Beyer, D., Spiessl, M.: The static analyzer Frama-C in SV-
COMP (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 13244, pp. 429–434. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99527-0_26

36. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majum-
dar, R.: Generating tests from counterexamples. In: Proc. ICSE,
pp. 326–335. IEEE (2004). https://doi.org/10.1109/ICSE.2004.
1317455

37. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer,
A.: Witness validation and stepwise testification across software
verifiers. In: Proc. FSE, pp. 721–733. ACM, New York (2015).
https://doi.org/10.1145/2786805.2786867

38. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness
witnesses: exchanging verification results between verifiers. In:
Proc. FSE, pp. 326–337. ACM, New York (2016). https://doi.org/
10.1145/2950290.2950351

39. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from
witnesses: execution-based validation of verification results. In:
Proc. TAP. LNCS, vol. 10889, pp. 3–23. Springer, Berlin (2018).
https://doi.org/10.1007/978-3-319-92994-1_1

40. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transf. 21(1),
1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

41. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger,
T., Tautschnig, M.: Verification witnesses. ACM Trans. Softw.
Eng. Methodol. 31(4), 57:1–57:69 (2022). https://doi.org/10.
1145/3477579

42. Beyer, D., Kanav, S., Richter, C.: Construction of verifier
combinations based on off-the-shelf verifiers. In: Proc. FASE,
pp. 49–70. Springer, Berlin (2022). https://doi.org/10.1007/978-
3-030-99429-7_3

43. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model
checking without BDDs. In: Proc. TACAS. LNCS, vol. 1579,
pp. 193–207. Springer, Berlin (1999). https://doi.org/10.1007/3-
540-49059-0_14

44. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verifica-
tion and refutation by k-invariants and k-induction. In: Proc. SAS.
LNCS, vol. 9291, pp. 145–161. Springer, Berlin (2015). https://
doi.org/10.1007/978-3-662-48288-9_9

45. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao, J., Li, X.: Brick:
path enumeration-based bounded reachability checking of C pro-
grams (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 13244, pp. 408–412. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99527-0_22

46. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein,
A., Apel, S., Beyer, D.: Facilitating reuse in multi-goal test-suite
generation for software product lines. In: Proc. FASE. LNCS,
vol. 9033, pp. 84–99. Springer, Berlin (2015). https://doi.org/10.
1007/978-3-662-46675-9_6

47. Cadar, C., Nowack, M.: Klee symbolic execution engine in
2019 (competition contribution). Int. J. Softw. Tools Technol.
Transf. 23(6), 867–870 (2021). https://doi.org/10.1007/s10009-
020-00570-3

Springer

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1007/978-3-319-10575-8_22
https://doi.org/10.1109/MIS.2014.3
https://github.com/sosy-lab/benchexec
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.1007/978-3-031-30826-0_17
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7701118
https://doi.org/10.5281/zenodo.7701126
https://sv-comp.sosy-lab.org/2023/results/results-verified/
https://sv-comp.sosy-lab.org/2023/results/results-verified/
https://sv-comp.sosy-lab.org/2023/submission.php
https://sv-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/results/results-verified/
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/2023/submission.php
https://test-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.5281/zenodo.10232648
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1007/978-3-030-99527-0_26
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1007/978-3-030-99527-0_22
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/s10009-020-00570-3

Six years later: testing vs. model checking 645

48. Cadar, C., Sen, K.: Symbolic execution for software testing: three
decades later. Commun. ACM 56(2), 82–90 (2013). https://doi.
org/10.1145/2408776.2408795

49. Cadar, C., Dunbar, D., Engler, D.R.: Klee: unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs. In: Proc. OSDI, pp. 209–224. USENIX Association
(2008)

50. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer,
P., Luca, M., O’Hearn, P.W., Papakonstantinou, I., Purbrick, J.,
Rodriguez, D.: Moving fast with software verification. In: Proc.
NFM. LNCS, vol. 9058, pp. 3–11. Springer, Berlin (2015). https://
doi.org/10.1007/978-3-319-17524-9_1

51. Chalupa, M., Henzinger, T.: Bubaak: runtime monitoring of pro-
gram verifiers (competition contribution). In: Proc. TACAS (2).
LNCS, vol. 13994, pp. 535–540. Springer, Berlin (2023). https://
doi.org/10.1007/978-3-031-30820-8_32

52. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory
safety checking. In: Proc. SPIN, pp. 115–132. Springer, Berlin
(2018). https://doi.org/10.1007/978-3-319-94111-0_7

53. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: parallel and tar-
geted test generation (competition contribution). In: Proc. FASE.
LNCS, vol. 12649, pp. 368–372. Springer, Berlin (2021). https://
doi.org/10.1007/978-3-030-71500-7_20

54. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zaoral, L.,
Strejček, J.: Symbiotic 9: string analysis and backward symbolic
execution with loop folding (competition contribution). In: Proc.
TACAS (2). LNCS, vol. 13244, pp. 462–467. Springer, Berlin
(2022). https://doi.org/10.1007/978-3-030-99527-0_32

55. Chaudhary, E., Joshi, S.: Pinaka: symbolic execution meets incre-
mental solving (competition contribution). In: Proc. TACAS (3).
LNCS, vol. 11429, pp. 234–238. Springer, Berlin (2019). https://
doi.org/10.1007/978-3-030-17502-3_20

56. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz:
program-aware fuzzing (competition contribution). In: Proc.
TACAS (3). LNCS, vol. 11429, pp. 244–249. Springer, Berlin
(2019). https://doi.org/10.1007/978-3-030-17502-3_22

57. Clarke, E.M., Kröning, D., Lerda, F.: A tool for check-
ing ANSI-C programs. In: Proc. TACAS. LNCS, vol. 2988,
pp. 168–176. Springer, Berlin (2004). https://doi.org/10.1007/
978-3-540-24730-2_15

58. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook
of Model Checking. Springer, Berlin (2018). https://doi.org/10.
1007/978-3-319-10575-8

59. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Se-
cur. 18(6), 1157–1210 (2010). https://doi.org/10.3233/JCS-2009-
0393

60. Collection of verification tasks. https://gitlab.com/sosy-lab/
benchmarking/sv-witnesses. Accessed: 2024–10–31

61. Collection of verification tasks. https://gitlab.com/sosy-lab/
benchmarking/sv-benchmarks. Accessed: 2024–10–31

62. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Sig-
noles, J., Yakobowski, B.: Frama-C. In: Proc. SEFM,
pp. 233–247. Springer, Berlin (2012). https://doi.org/10.1007/
978-3-642-33826-7_16

63. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support
for recursive programs and floating-point arithmetic (com-
petition contribution). In: Proc. TACAS. LNCS, vol. 9035,
pp. 423–425. Springer, Berlin (2015). https://doi.org/10.1007/
978-3-662-46681-0_34

64. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: a tool for scalable
verification by abstraction (competition contribution). In: Proc.
TACAS (2). LNCS, vol. 12652, pp. 458–462. Springer, Berlin
(2021). https://doi.org/10.1007/978-3-030-72013-1_32

65. Darke, P., Chimdyalwar, B., Agrawal, S., Venkatesh, R.,
Chakraborty, S., Kumar, S.: VeriAbsL: scalable verification by
abstraction and strategy prediction (competition contribution).

In: Proc. TACAS (2). LNCS, vol. 13994, pp. 588–593. Springer,
Berlin (2023). https://doi.org/10.1007/978-3-031-30820-8_41

66. Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.:
Ultimate Taipan with symbolic interpretation and fluid abstrac-
tions (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 12079, pp. 418–422. Springer, Berlin (2020). https://doi.org/
10.1007/978-3-030-45237-7_32

67. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D.,
Tomb, A.: Constructing semantic models of programs with the
software analysis workbench. In: Proc. VSTTE. LNCS, vol. 9971,
pp. 56–72. Springer, Berlin (2016). https://doi.org/10.1007/978-
3-319-48869-1_5

68. D’Silva, V., Kröning, D., Weissenbacher, G.: A survey of auto-
mated techniques for formal software verification. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 27(7), 1165–1178
(2008). https://doi.org/10.1109/TCAD.2008.923410

69. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In:
Proc. VMCAI. LNCS, vol. 7148, pp. 186–201. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-27940-9_13

70. Ernst, G.: A complete approach to loop verification with invari-
ants and summaries. Tech. Rep. (2020) https://doi.org/10.48550/
arXiv.2010.05812. arXiv:2010.05812v2

71. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in
bounded model checking of C programs via k-induction. Int. J.
Softw. Tools Technol. Transf. 19(1), 97–114 (2017). https://doi.
org/10.1007/s10009-015-0407-9

72. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.:
Esbmc v6.0: verifying C programs using k-induction and invari-
ant inference (competition contribution). In: Proc. TACAS (3).
LNCS, vol. 11429, pp. 209–213. Springer, Berlin (2019). https://
doi.org/10.1007/978-3-030-17502-3_15

73. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert
survey on formal methods. In: Proc. FMICS. LNCS, vol. 12327,
pp. 3–69. Springer, Berlin (2020). https://doi.org/10.1007/978-3-
030-58298-2_1

74. GDart-LLVM. https://github.com/tudo-aqua/gdart-llvm. Ac-
cessed: 2024–10–31

75. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated white-
box fuzz testing. In: Proc. NDSS (2008). The Internet
Society. https://www.ndss-symposium.org/ndss2008/automated-
whitebox-fuzz-testing/

76. Graves-Parallel. https://github.com/mgerrard/graves-par. Ac-
cessed: 2024–10–31

77. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants
from counterexamples. In: Proc. SAS. LNCS, vol. 10422,
pp. 128–147. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-319-66706-5_7

78. Gupta, A., Kahlon, V., Qadeer, S., Touili, T.: Model check-
ing concurrent programs. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking,
pp. 573–611. Springer, Berlin (2018). https://doi.org/10.1007/
978-3-319-10575-8_18

79. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based
model checking. J. Autom. Reason. 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

80. Heizmann, M., Hoenicke, J., Podelski, A.: Software model
checking for people who love automata. In: Proc. CAV. LNCS,
vol. 8044, pp. 36–52. Springer, Berlin (2013). https://doi.org/10.
1007/978-3-642-39799-8_2

81. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke,
J., Li, Y., Nutz, A., Musa, B., Schilling, C., Schindler, T., Podel-
ski, A.: Ultimate automizer and the search for perfect inter-
polants (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 10806, pp. 447–451. Springer, Berlin (2018). https://doi.org/
10.1007/978-3-319-89963-3_30

Springer

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-031-30820-8_41
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-642-27940-9_13
https://doi.org/10.48550/arXiv.2010.05812
https://doi.org/10.48550/arXiv.2010.05812
https://arxiv.org/abs/2010.05812v2
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://github.com/tudo-aqua/gdart-llvm
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://github.com/mgerrard/graves-par
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30

646 D. Beyer, T. Lemberger

82. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-
driven program testing. In: Proc. VMCAI. LNCS, vol. 5403,
pp. 151–166. Springer, Berlin (2009). https://doi.org/10.1007/
978-3-540-93900-9_15

83. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a
symbolic execution tool for verification. In: Proc. CAV. LNCS,
vol. 7358, pp. 758–766. Springer, Berlin (2012). https://doi.org/
10.1007/978-3-642-31424-7_61

84. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: Trac-
erX: dynamic symbolic execution with interpolation (com-
petition contribution). In: Proc. FASE. LNCS, vol. 12076,
pp. 530–534. Springer, Berlin (2020). https://doi.org/10.1007/
978-3-030-45234-6_28

85. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time
scheduling (competition contribution). In: Proc. FASE. LNCS,
vol. 12649, pp. 358–362. Springer, Berlin (2021). https://doi.org/
10.1007/978-3-030-71500-7_18

86. Jhala, R., Majumdar, R.: Software model checking. ACM Com-
put. Surv. 41(4), 21 (2009). https://doi.org/10.1145/1592434.
1592438

87. Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations
of reusable abstract domains for a multilingual static analyzer.
In: Proc. VSTTE. LNCS, vol. 12031, pp. 1–18. Springer, Berlin
(2019)

88. Kettl, M., Lemberger, T.: The static analyzer Infer in SV-
COMP (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 13244, pp. 451–456. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99527-0_30

89. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker
(competition contribution). In: Proc. TACAS. LNCS, vol. 8413,
pp. 389–391. Springer, Berlin (2014). https://doi.org/10.1007/
978-3-642-54862-8_26

90. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via
program transformation. In: Proc. ICTAC. LNCS, vol. 11187,
pp. 313–332. Springer, Berlin (2018). https://doi.org/10.1007/
978-3-030-02508-3_17

91. Leeson, W., Dwyer, M.: Graves-CPA: a graph-attention verifier
selector (competition contribution). In: Proc. TACAS (2). LNCS,
vol. 13244, pp. 440–445. Springer, Berlin (2022). https://doi.org/
10.1007/978-3-030-99527-0_28

92. Legion/SymCC. https://github.com/gernst/legion-symcc. Ac-
cessed: 2024–10–31

93. Lemberger, T.: Plain random test generation with PRTest (com-
petition contribution). Int. J. Softw. Tools Technol. Transf. 23(6),
871–873 (2021). https://doi.org/10.1007/s10009-020-00568-x

94. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: best-
first concolic testing (competition contribution). In: Proc. FASE.
LNCS, vol. 12076, pp. 545–549. Springer, Berlin (2020). https://
doi.org/10.1007/978-3-030-45234-6_31

95. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: best-first
concolic testing. In: Proc. ASE, pp. 54–65. IEEE (2020). https://
doi.org/10.1145/3324884.3416629

96. Malík, V., Schrammel, P., Vojnar, T.: 2ls: heap analysis and
memory safety (competition contribution). In: Proc. TACAS (2).
LNCS, vol. 12079, pp. 368–372. Springer, Berlin (2020). https://
doi.org/10.1007/978-3-030-45237-7_22

97. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz,
E.J., Woo, M.: The art, science, and engineering of fuzzing: a sur-
vey. IEEE Trans. Softw. Eng. 47(11), 2312–2331 (2021). https://
doi.org/10.1109/TSE.2019.2946563

98. McMinn, P.: Search-based software test-data generation: a survey.
Softw. Test. Verif. Reliab. 14(2), 105–156 (2004). https://doi.org/
10.1002/stvr.294

99. Metta, R., Medicherla, R.K., Chakraborty, S.: BMC+Fuzz:
efficient and effective test generation. In: Proc. DATE,

pp. 1419–1424. IEEE (2022). https://doi.org/10.23919/
DATE54114.2022.9774672

100. Metta, R., Medicherla, R.K., Karmarkar, H.: VeriFuzz: fuzz cen-
tric test generation tool (competition contribution). In: Proc.
FASE. LNCS, vol. 13241, pp. 341–346. Springer, Berlin (2022).
https://doi.org/10.1007/978-3-030-99429-7_20

101. Monat, R., Ouadjaout, A., Miné, A.: Mopsa-C: modular domains
and relational abstract interpretation for C programs (compe-
tition contribution). In: Proc. TACAS (2). LNCS, vol. 13994,
pp. 565–570. Springer, Berlin (2023). https://doi.org/10.1007/
978-3-031-30820-8_37

102. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate
Kojak with memory safety checks (competition contribution). In:
Proc. TACAS. LNCS, vol. 9035, pp. 458–460. Springer, Berlin
(2015). https://doi.org/10.1007/978-3-662-46681-0_44

103. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman,
M.: Chapter six - mutation testing advances: an analysis and
survey. Adv. Comput. 112, 275–378 (2019). https://doi.org/10.
1016/bs.adcom.2018.03.015

104. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic
execution for software testing and analysis. Int. J. Softw. Tools
Technol. Transf. 11(4), 339–353 (2009). https://doi.org/10.1007/
s10009-009-0118-1

105. Richter, C., Wehrheim, H.: PeSCo: predicting sequential combi-
nations of verifiers (competition contribution). In: Proc. TACAS
(3). LNCS, vol. 11429, pp. 229–233. Springer, Berlin (2019).
https://doi.org/10.1007/978-3-030-17502-3_19

106. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algo-
rithm selection for software validation based on graph kernels.
Autom. Softw. Eng. 27(1), 153–186 (2020). https://doi.org/10.
1007/s10515-020-00270-x

107. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: hybrid model
checking and domination-based partitioning for efficient multi-
goal test-suite generation (competition contribution). In: Proc.
FASE. LNCS, vol. 12076, pp. 520–524. Springer, Berlin (2020).
https://doi.org/10.1007/978-3-030-45234-6_26

108. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler,
R., Vojdani, V.: Goblint: thread-modular abstract interpretation
using side-effecting constraints (competition contribution). In:
Proc. TACAS (2). LNCS, vol. 12652, pp. 438–442. Springer,
Berlin (2021). https://doi.org/10.1007/978-3-030-72013-1_28

109. Scott, R., Dockins, R., Ravitch, T., Tomb, A.: Crux: Symbolic exe-
cution meets SMT-based verification (competition contribution).
Zenodo (2022). https://doi.org/10.5281/zenodo.6147218

110. Test-comp 2023 benchmarks test tasks. https://test-comp.sosy-
lab.org/2023/benchmarks.php. Accessed: 2024–10–31

111. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta:
a framework for abstraction refinement-based model checking.
In: Proc. FMCAD, pp. 176–179 (2017). https://doi.org/10.23919/
FMCAD.2017.8102257

112. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA, pp. 97–107. ACM, New
York (2004). https://doi.org/10.1145/1007512.1007526

113. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler,
R.: Static race detection for device drivers: the Goblint approach.
In: Proc. ASE, pp. 391–402. ACM, New York (2016). https://doi.
org/10.1145/2970276.2970337

114. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory
modeling method with separation into disjoint regions. Proc. Inst.
Syst. Program. 29, 203–216 (2017). https://doi.org/10.15514/
ISPRAS-2017-29(4)-13

115. wasp. https://github.com/wasp-platform/wasp. Accessed:
2024–10–31

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-99527-0_28
https://github.com/gernst/legion-symcc
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.23919/DATE54114.2022.9774672
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.5281/zenodo.6147218
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://test-comp.sosy-lab.org/2023/benchmarks.php
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://github.com/wasp-platform/wasp

	Six years later: testing vs. model checking
	Abstract
	Introduction
	Related work.

	Background
	Testing
	Model checking
	Witness validation
	Witness to test.

	The benchmark collection SV-benchmarks
	Verification task.
	Test-generation task.
	Categories.

	Evaluation
	Experiment setup
	Benchmark tasks
	Considered tools
	Expanding the study
	Experimental results
	RQ 1. Are test generators more effective in finding bugs than software model checkers?
	Two notes.
	RQ 2. Can the bug reports of software model checkers be validated through execution?
	RQ 3. Are test generators that target errors more effective in finding bugs than test generators that target branch coverage?

	Threats to validity
	Internal validity.
	External validity.
	Construct validity.

	Conclusions
	References

