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Abstract
Six years ago, we performed the first large-scale comparison of automated test generators and software model checkers with
respect to bug-finding capabilities on a benchmark set with 5693 C programs. Since then, the International Competition
on Software Testing (Test-Comp) has established standardized formats and community-agreed rules for the experimental
comparison of test generators. With this new context, it is time to revisit our initial question: Model checkers or test generators—
which tools are more effective in finding bugs in software? To answer this, we perform a comparative analysis on the tools and
existing data published by two competitions, the International Competition on Software Verification (SV-COMP) and Test-
Comp. The results provide two insights: (1) Almost all test generators that participate in Test-Comp use hybrid approaches
that include formal methods, and (2) although the considered model checkers are still highly competitive, they are now
outperformed by the bug-finding capabilities of the considered test generators.

Keywords Software verification · Model checking · Program analysis · Test generation · Testing · Fuzzing

1 Introduction

In previous research [32], we compared the bug-finding
capabilities of automated test generators and software
model checkers on C programs. At the time of that work, no
standardized formats existed for the experimental compari-
son of test generators. So we selected formats for the expected
inputs and outputs of test generation, implemented matching
adapters for existing test generators, and our own coverage
measurement. Nowadays, this is unnecessary. The Interna-
tional Competition on Software Testing (Test-Comp) [19]
provides a community-set framework for the evaluation of
test generators for the C language, including an exchange for-
mat for test suites, a large and well-defined benchmark task
set, and agreed-upon resource limitations for benchmarking.
So far, the benchmark test tasks of Test-Comp target two
goals of test generation: “creating a test suite that covers a
known bug in a given program” and “creating a test suite
that covers all branches of a given program”.

Thanks to the improvements Test-Comp brought, and six
years after our original research [32], it is time to revisit
the comparison: Model checkers vs. test generators—which
tools are better at finding bugs in software?

We improve on the original comparison in multiple ways:
(1) For the original work, we selected an array of test gen-
erators manually and configured them to the best of our
knowledge. In this work, we base our comparison only on
participants of the International Competition on Software
Verification (SV-COMP) [16] and Test-Comp. All tool con-
figuration is provided by the participating tool developers,
and during the competition, developers got early access to
prerun results to fix any shortcomings of their tools evident
through the benchmark set.

(2) Originally, we executed our own, novel experiments.
We do have high confidence in these results, but in our new
work, we reuse the freely available competition data of SV-
COMP 2023 and Test-Comp 2023. Using these results has
the advantage that the data were peer-reviewed by the tool
developers before publication.

Through these two adjustments we ensure that the used
experimental data represent expert tool usage. They also
guarantee that we configured everything correctly and that
we select tools that support all of the major required lan-
guage features.

(3) Originally, we counted that a model checker found a
bug when the reported bug was confirmed by at least one wit-
ness validator [37]—which may solely rely on static analysis.
In this work, we pay higher tribute to the actual execution
of an error and separately consider whether a model checker
bug report can be confirmed through program execution [39].
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(4) Originally, we considered the bug-finding capabilities
of model checkers and test generators but did not explicitly
tune test generators toward finding a bug in the program.
Our expectation is that many test generators are originally
designed for traditional coverage measures like branch cov-
erage or condition coverage and are not optimized to create
a single test for an error location of interest. But since Test-
Comp asks participants to create a test suite that covers a
known bug, the Test-Comp test generators may be tuned to-
ward bug finding. To check the effect of this, we compare
the test suites generated by Test-Comp test generators for er-
ror coverage and the test suites generated for branch coverage
with regards to their bug-finding capabilities.

(5) Furthermore, in the original work, we compared tools
that market themselves as software model checkers with tools
that market themselves as test generators and gave only a
coarse overview on the techniques they used. Nowadays,
many tools employ hybrid approaches with multiple dif-
ferent techniques. Many formal methods that are used in
model checking can also be used for test generation [36, 112],
and techniques originally designed for testing can be used as
a part of model checking (for example, input fuzzing [56]).
This means that a model checker and a test generator may
use the same underlying analysis techniques. To account for
that, we give more detail about the techniques the tools use.

We evaluate the following research questions:

RQ 1 Are test generators more effective in finding bugs than
software model checkers?

RQ 2 Can the bug reports of software model checkers be
validated through execution?

RQ 3 Are test generators that target errors more effec-
tive in finding bugs than test generators that target
branch coverage?

To answer these questions, we use Test-Comp test gen-
erators and SV-COMP model checkers as representatives
of their respective domains, with the original competition
data. To the best of our knowledge, this is the first meta-
analysis of the two international competitions SV-COMP and
Test-Comp and the largest evaluation that compares the bug-
finding capabilities of software model checkers with those
of test generators.

Related work. The only large-scale comparisons of the
tools considered in this work are the annual competitions
SV-COMP [16] and Test-Comp [19], which we combine and
inspect in detail in this work.

Next to these experimental evaluations, there are litera-
ture surveys on test generation for JavaScript [7], search-
based testing [98], fuzzing [97], and symbolic execu-
tion [10, 48, 104]. There are also surveys on software-
model-checking techniques [68, 86] and formal methods in

Fig. 1 Workflow of a Test-Comp test generator; a test generator pro-
duces a test suite for a program under test and a coverage criterion

Fig. 2 Workflow of a test executor; a test executor computes whether
(or to what percentage) a test suite fulfills a coverage criterion for a
program

a more general sense [13, 73], as well as the handbook on
model checking [58].

This work focuses on reachability bugs in a sequential,
self-contained program, similar to a failing assert state-
ment, and on tools and techniques aimed at finding such
errors. Other applications of model checking and automated
testing are, among many others, mutation testing [103] and
the verification of concurrent programs [78], security prop-
erties [12], and hyperproperties [59].

2 Background

2.1 Testing

An input function in a program is any function that retrieves
a value from the program environment; for example a system
call. In our work, we use special functions __VERIFIER_nondet_X,
which can return any input value of type X. For example,
function __VERIFIER_nondet_int() returns an integer input value.
A test vector 〈𝑣0, . . . , 𝑣𝑛〉 is a sequence of 𝑛 values. When
〈𝑣0, . . . , 𝑣𝑛〉 is executed, the 𝑖th call to an input function
is defined to return value 𝑣𝑖 . A test suite is a set of test
vectors. A test vector 𝑡 covers a program operation 𝑜𝑝 if the
execution of 𝑡 goes through 𝑜𝑝. A test suite covers a program
operation 𝑜𝑝 if any of its contained test vectors covers 𝑜𝑝.

A Test-Comp test generator (Fig. 1) [19] takes as input the
program under test and a coverage criterion (e.g., cover a call
to function reach_error()) and generates as output a test suite.
The test executor (Fig. 2) then takes as input the program
under test, the coverage criterion, and the generated test suite.
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Fig. 3 Workflow of a model checker; a model checker produces a
correctness witness if it claims that the program under verification
fulfills the specification, or a violation witness if it claims that the
program violates the specification

Fig. 4 Workflow of a witness validator (for result validation of a vio-
lation witness); a witness validator confirms the model checker verifi-
cation result if it can reproduce the result with the help of the witness

Fig. 5 Example program and violation-witness automaton (adapted
from prior work [39])

It produces as output either that the coverage criterion is
fulfilled or a percentage of how many coverage goals defined
by the criterion are covered by the tests in the test suite.

2.2 Model checking

An SV-COMP model checker (Fig. 3) [16] takes as input a
program and a specification and produces one of two out-
puts: If the program fulfills the specification, then a correct-
ness witness [37, 41] is generated. If the program violates the
specification, then a violation witness [38, 41] is generated.

2.3 Witness validation

Witness validation [41] aims to increase the trust in
results of model checking. The idea is the following:

A model checker (Fig. 3) analyzes a program with regards
to a specification. As output, it not only produces a verifica-
tion verdict “property fulfilled” or “property not fulfilled”
but also a correctness witness or violation witness that helps
to recreate the verification result. This witness is then given
to a witness validator (Fig. 4). A witness validator takes the
program under verification, the original specification, and
the previously produced witness as input. It tries to repro-
duce the verification result with the help of the witness. If the
witness validator is successful, then the result is confirmed,
and confidence in the verification result increases.

In this work, we focus on bug-finding capabilities, so we
only consider violation witnesses.

We describe violation witnesses as violation-witness
automata (in version 1.0 [37], not yet version 2.0 [9]).
A violation-witness automaton is a finite-state automaton.
It contains at its transitions source-code guards 𝑒 and state-
space guards 𝜓 to describe a subset of the program paths
that contain the reported property violation. A source-code
guard 𝑒 is a program statement identified by its source-code
line number. A source-code guard can also restrict the direc-
tion of program branchings; for example at if statements. It
only allows the transition from one witness-automaton state
to another if the currently considered program expression
matches 𝑒 and the specified program branch is entered (if
specified). A state-space guard 𝜓 is a predicate on the
program state. It restricts the possible program states to
those that fulfill 𝜓. Figure 5 shows an example program
and a violation-witness automaton for the violated property
unreach-call. Automaton label o/w describes a transition
that is taken in all cases not covered by other transitions.
This violation-witness automaton describes only the pro-
gram state space that assigns a = 62 and b = 224, which leads
to an unsigned integer overflow and makes the program en-
ter the if branch: The automaton stays in state 𝑞0 until the
assignment in line 5 is considered. It then transitions to 𝑞1
and restricts the considered program states to those that ful-
fill 𝑎 == 62 (after transitioning). When line 7 is reached,
it restricts the considered program states to those that ful-
fill 𝑏 == 224. When the if statement in line 11 is reached and
the if branch is entered, the violation location is reached.

SV-COMP requires participants to output violation wit-
nesses since SV-COMP 2015 [15]. It uses the XML-based
GraphML exchange format [60]. Figure 6 shows an excerpt
that represents the automaton displayed in Fig. 5.

Witness to test. Execution-based witness validation [39]
takes a violation witness and tries to transform it into an
executable test. If it succeeds, then the test is executed. If
this test execution triggers the property violation, then the
verification result is confirmed.

To generate the executable test, execution-based wit-
ness validation uses the source-code guards of the violation-
witness automaton to map the corresponding state-space
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Fig. 6 Excerpt of the GraphML representation of the violation-witness
automaton of Fig. 5

guards to the program code. If every call to an input function
(__VERIFIER_nondet_X) is constrained to a unique assignment
through a state-space guard (e.g., 𝑎 == 62), then these unique
assignments represent the test inputs; for example 〈62,224〉.
These inputs are then written to a test harness that allows for
the execution of the test.

Because the result is confirmed by actual program execu-
tion, execution-based witness validation provides the same
degree of confidence in the verification result as testing.

2.4 The benchmark collection SV-benchmarks

SV-Benchmarks [61] is the largest available collection of
benchmark tasks for the evaluation of automated verifica-
tion techniques for the language C. SV-Benchmarks contains
verification tasks and test-generation tasks.

Verification task. A verification task of SV-Benchmarks
consists of a program (C code) to verify and a program prop-
erty to check. Program specifications are expressed in linear
temporal logic and different properties exist: safety proper-
ties (e.g., error never reachable) and liveness properties (e.g.,
program always terminates). In this work, we only consider
the safety property unreach-call, which specifies that no
program execution may ever call the function reach_error.

Test-generation task. A test-generation task of SV-
Benchmarks consists of a program (C code) to generate

a test suite for and the coverage criterion which the test suite
should fulfill. Coverage criteria are expressed as FQL [82],
and, to date, two criteria exist: coverage-error-call asks
for a test suite that covers at least one call to the function
reach_error (signals a bug), and coverage-branches asks
for a test suite that covers all branches of the program.

Categories. SV-Benchmarks groups benchmark tasks
into categories. A detailed description of the categories is
available online [110]. Table 1 gives an overview of the
benchmark tasks with coverage criterion coverage-error-
call, grouped by their categories. The table shows the cat-
egory name, a description of the category, the number of
benchmark tasks in that category, and a plot that illustrates
the lines of program code per task in that category. Each
plot shows on the 𝑥-axis the number of lines of code and
on the 𝑦-axis the number of tasks in that category with the
respective lines of code. In this work, we only consider these
benchmark tasks.

3 Evaluation

3.1 Experiment setup

For all comparisons, we use the results obtained in SV-
COMP and Test-Comp using the following setup: Experi-
ments ran on machines with Intel Xeon E3-1230 v5 CPUs
with 3.40 GHz, 8 cores, turbo boost disabled, and 33 GB
of memory. For both competitions, each run of a verifica-
tion task or test-generation task was limited to 900 s of
CPU time, 15 GB of memory (RAM), and 8 CPU cores. Each
violation-witness validation was limited to 90 s of CPU time,
7 GB of memory, and 2 CPU cores. Each test-suite valida-
tion was limited to 300 s of CPU time, 7 GB of memory, and
2 CPU cores. Resource limitation and measurement were
performed by BenchExec [14, 40].

Note. On its web page [23], SV-COMP reports not only
the score but also the run times of its participants. We refrain
from reporting run time in this work because in Test-Comp,
there is nothing wrong with fully using the available run time;
the tools may continue generating tests until the time limit is
hit, and they do.

3.2 Benchmark tasks

We consider all benchmark tasks from the SV-Benchmarks
repository with coverage criterion coverage-error-call.

3.3 Considered tools

We consider all 13 test generators that participated in Test-
Comp 2023 and 31 software model checkers that partici-
pated in a subcategory of SV-COMP 2023 with checked
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Table 1 Subcategories (14) of Test-Comp with coverage criterion co-
verage-error-call; each plot in the column “Lines of Code” illus-
trates the lines of program code per task in that category; each plot

shows on the 𝑥-axis the number of lines of code, and on the 𝑦-axis the
number of tasks in that category with the respective lines of code

Subcategory Description #Tasks Lines of code

Arrays Require treatment of arrays 90

BitVectors Require treatment of bit-operations 9

ControlFlow Program correctness depends mostly on the
control-flow structure and integer variables

5

ECA Derived from event-condition-action systems 18

Floats Require treatment of floating-point arithmetics 32

Hardware Created from word-level hardware-model-checking
benchmarks

494

Heap Require treatment of data structures on the heap,
pointer aliases, and function pointers

47

Loops Require treatment of (potentially indeterminate)
loops

130

ProductLines Represent “products” and “product simulators” that
are derived using different configurations of product
lines

169

Recursive Require treatment of recursive functions 20

Sequentialized Sequentialized concurrent programs that were
derived from SystemC programs; the programs were
transformed to pure C programs by incorporating the
scheduler into the C code

98

XCSP Derived from constraint-programming
benchmark tasks of combinatorial constrained
problems

54

BusyBox Tasks from the software system BusyBox 5

DeviceDriversLinux64 Tasks from the Linux Driver Verification project 2

property unreach-call (excluding category Concurren-
cySafety). Table 2 gives an overview on a selection of verifi-
cation techniques used by each tool, based on data provided
by the SV-COMP [16] and Test-Comp [19] competition re-

ports. The reports do not list the identical set of techniques:
if a report does not provide information on a technique, then
this column is marked with � for the respective tools. The
table groups the features on the 𝑥-axis in static techniques,
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Table 2 Features used by Test-Comp and SV-COMP participants and their overall results in bug finding; if a competition report does not provide
information on a technique, then this column is marked with � for the respective tools
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VeriFuzz [99, 100] ✓ ✓ � � � ✓ ✓ � � ✓ � � � ✓ 964
FuSeBMC [5, 6] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ ✓ 939

FuSeBMC_IA [4] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ ✓ 931
CoVeriTest [29, 85] ✓ ✓ � � ✓ � � � ✓ � � � ✓ 564

Klee [47, 49] � � � ✓ � � ✓ � � � ✓ 541
Symbiotic [52, 53] � � � ✓ � � ✓ � � � ✓ ✓ ✓ 510

TracerX [83, 84] ✓ � � � ✓ � � ✓ � � � ✓ 420
HybridTiger [46, 107] ✓ ✓ � � ✓ � � � ✓ � � � 397

WASP-C [115] � � � ✓ ✓ � � ✓ � � � 393
Esbmc-kind [71, 72] ✓ � � � � � � � � ✓ 352

PRTest [32, 93] � � � ✓ � � ✓ � � � 293
Legion/SymCC [92] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ 281

Te
st-

C
om

p

Legion [94, 95] ✓ � � � ✓ ✓ � � ✓ � � � ✓ ✓ 108
PeSCo [105, 106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 667
CPAchecker [31, 63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 665

Esbmc-kind [71, 72] ✓ ✓ ✓ � ✓ � ✓ � 660
VeriAbsL [65] ✓ ✓ ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ ✓ 645

Graves-CPA [91] � � � 643
VeriAbs [3, 64] ✓ ✓ ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ ✓ 639

Bubaak [51] ✓ � ✓ � ✓ � 635
Cbmc [57, 89] ✓ � ✓ � ✓ � 626

VeriFuzz [56, 99] ✓ ✓ � ✓ � ✓ � 615
CVT-ParPort [30, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ ✓ 591

Symbiotic [52, 54] ✓ ✓ ✓ ✓ � ✓ � ✓ � ✓ 559
CVT-AlgoSel [30, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 468

UAutomizer [80, 81] ✓ ✓ � ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 311
Divine [11, 90] ✓ ✓ � ✓ � ✓ � ✓ ✓ 299

UTaipan [66, 77] ✓ ✓ ✓ ✓ � ✓ � ✓ ✓ ✓ ✓ � ✓ ✓ 294
Pinaka [55] ✓ ✓ � ✓ � ✓ � 272

gazer-theta [1, 79] ✓ ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ ✓ � ✓ 255
2ls [44, 96] ✓ ✓ ✓ ✓ � ✓ � ✓ � 213

UKojak [69, 102] ✓ ✓ � ✓ � ✓ ✓ ✓ � 189

SV
-C

O
M

P

Crux [67, 109] ✓ � � ✓ � 176
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Table 2 (Continued)

Participant Static Dyn. Strategies #Bugs
found
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Korn [70] ✓ ✓ ✓ � � ✓ � ✓ 121
Theta [2, 111] ✓ ✓ ✓ � ✓ ✓ � ✓ ✓ � ✓ ✓ 116

Brick [45] ✓ ✓ ✓ ✓ � � ✓ � 99
Graves-Par [76] � � � 93
GDart-LLVM [74] ✓ � ✓ � � 1

Table 3 Data that we use from the competitions

Artifact DOI

Benchmark collection 10.5281/zenodo.7627783
SV-COMP results 10.5281/zenodo.7627787
Test-Comp results 10.5281/zenodo.7701122
Test-Comp test suites 10.5281/zenodo.7701126
Test-suite validator 10.5281/zenodo.7701118

dynamic techniques, and strategies in verification that can be
used with both static and dynamic techniques. The tools are
grouped on the 𝑦-axis by SV-COMP and Test-Comp partici-
pation. Within each group, the entries are sorted by the num-
ber of found bugs over all benchmark tasks. We omit tools
that did not find a single confirmed bug in the considered ver-
ification tasks: CPA-BAM-BnB [8, 114], CPA-BAM-SMG,
Frama-C-SV [35, 62], Goblint [108, 113], Infer-SV [50,
88], and Mopsa [87, 101].

The table shows that most test generators that participated
in Test-Comp 2023 use hybrid approaches: they employ both
static and dynamic analysis techniques.

Table 3 shows the external data from the competitions we
used for our study.

3.4 Expanding the study

To add new tools to the tool comparison, developers can sub-
mit their tool to the next iterations of SV-COMP [28] and
Test-Comp [27]. For private experiments, the benchmarking
configuration is available online and described on the com-
petition websites of SV-COMP [24] and Test-Comp [26].
Competition results can be analyzed with scripts from our
reproduction artifact [34].

3.5 Experimental results

RQ 1. Are test generators more effective in finding
bugs than software model checkers? We use the
original results data of SV-COMP 2023 [17] and Test-
Comp 2023 [18]. To make the two data sets comparable,
we map all results for test-generation tasks in the Test-Comp
data to results for a verification task with property unreach-
call: Each successful test generation for coverage criterion
coverage-error-call also produces a valid counterexam-
ple for unreach-call. This means that if a test generator
successfully generates a test suite that fulfills criterion co-

verage-error-call, then it also shows that unreach-

call is violated. For both SV-COMP and Test-Comp data,
we only consider a bug “found” if it is confirmed by the
competition through successful violation-witness validation
or test execution.

We report the highest bug-finding capability each tool
exhibits in its respective competition. The tool TracerX
only produces test suites for coverage-branches, and for
Legion/SymCC, the test suites generated for coverage-
branches cover more bugs than the test suites generated
for coverage-error-call (cf. RQ 3). For these tools, we
always consider the test suites they generated for coverage-
branches.

Table 2 (right column) shows the overall number of tasks
for which a bug was found by the resp. tool. In contrast to
our original study [32], two test generators VeriFuzz [100]
(964/1173 bugs found) and FuSeBMC [5] (939/1173 bugs
found) perform significantly better than the best model
checker PeSCo [105, 106] (667/1173 bugs found). Both
VeriFuzz and FuSeBMC use a combination of bounded
model checking [43] (a static technique) and fuzzing [75] (a
dynamic technique).
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Two notes. (1) Some of the model checkers listed in Ta-
ble 2 are specialized tools that (a) participate only in selected
categories of SV-COMP or (b) focus on program proofs, not
bug hunting. For these reasons, a low number of found bugs
gives no indication about the tool’s quality. For example,
GDart-LLVM has the lowest overall number of found bugs,
but it only participates in category BitVectors. The best three
model checkers, PeSCo, CPAchecker, and Esbmc-kind,
participate in all relevant categories. (2) The reported num-
bers do not match the Test-Comp overall scores reported on
the official results page [25] because Test-Comp performs
normalization over each category number of tasks. We do
not perform normalization but report the sum of all found
bugs over all categories.

The tools Esbmc-kind, Symbiotic, and VeriFuzz par-
ticipated in both SV-COMP and Test-Comp. If not clear
from the context, we superscript their names with the com-
petition in which the result was received (for example,
VeriFuzzSV-COMP or SymbioticTest-Comp). If the results are
equal for both configurations, then we write VeriFuzzBoth.

Table 4 displays the results of the selected tools per cat-
egory. For each category, the table lists data for the three
best test generators and three best model checkers that found
at least one bug in that category (four tools each for cate-
gory Overall). If there is a draw, then all tools with the same
number of found bugs and with the same number of bugs
confirmed through execution (cf. RQ 2) are displayed. To
ease the differentiation between the two groups, we prefix
each test generator with and each model checker with .
The table lists the total tasks in the respective category, the
number of confirmed bugs that the respective tool found, as
well as the number of bugs that the respective tool found
and that were confirmed by actual program execution. We
omit the category DeviceDriversLinux64 because no tool
was able to find a bug in it.

The table shows that for bug finding, individual test gen-
erators perform either better or as good as individual
model checkers in all categories but Heap and XCSP. A clear
divide between test generators and model checkers exists
in four categories: In Arrays, the best test generator of that
category, FuSeBMC, finds a bug in 90 tasks, whereas the
best model checker of that category, VeriAbsL, finds a
bug in only 81 tasks. In Hardware, VeriFuzz finds a bug
in 319 tasks, whereas Graves-CPA finds a bug in only
147 tasks. In Loops, FuSeBMC finds a bug in 128 tasks,
whereas VeriAbs finds a bug in only 112 tasks. In Sequen-
tialized, VeriFuzz finds a bug in 95 tasks, whereas PeSCo
finds a bugs in only 86 tasks.

The presented data answers our first research question
with “yes”: At the current state-of-the-art for C, test gen-
erators perform significantly better in bug hunting than
model checkers.

Table 4 Results of the tools listed in Table 2 for each category; only
the best test generators ( ) and model checkers ( ) of each category
are listed

Total tasks #Bugs
found

#Bugs
confirmed

by execution

Arrays
FuSeBMC 90 90 90
FuSeBMC_IA 90 88 88
VeriFuzzTest-Comp 90 88 88
VeriAbsL 90 81 76
VeriAbs 90 80 66
Bubaak 90 74 74

BitVectors
FuSeBMC 9 9 9
FuSeBMC_IA 9 9 9
VeriFuzzBoth 9 9 9
SymbioticSV-COMP 9 8 8
Esbmc-kindSV-COMP 9 8 6
Graves-CPA 9 8 6

ControlFlow
FuSeBMC 5 5 5
FuSeBMC_IA 5 5 5

SymbioticBoth 5 5 5
Bubaak 5 4 4

(VeriFuzz)Both 5 4 4
Klee 5 4 4

ECA
VeriFuzzSV-COMP 18 15 13
Klee 18 14 14
Bubaak 18 14 12
SymbioticTest-Comp 18 13 13
PeSCo 18 13 12
FuSeBMC 18 12 12

Floats
FuSeBMC 32 32 32
FuSeBMC_IA 32 31 31
VeriFuzzTest-Comp 32 31 31
Brick 32 30 29
CVT-ParPort 32 30 24
CPAchecker 32 30 21

Hardware
VeriFuzzTest-Comp 494 319 319
FuSeBMC 494 288 288
FuSeBMC_IA 494 288 288
Graves-CPA 494 147 102
CPAchecker 494 127 70
PeSCo 494 109 61
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Table 4 (Continued)

Total tasks #Bugs
found

#Bugs
confirmed

by execution

Heap
Cbmc 47 47 43
VeriAbs 47 47 33
Bubaak 47 46 44
FuSeBMC 47 45 45
FuSeBMC_IA 47 45 45
Klee 47 45 45

VeriFuzzBoth 47 45 45
Loops

FuSeBMC 130 128 128
FuSeBMC_IA 130 127 127
VeriFuzzTest-Comp 130 123 123
VeriAbs 130 112 103
VeriAbsL 130 100 86
Korn 130 98 97

ProductLines
FuSeBMC 169 169 169
FuSeBMC_IA 169 169 169
Klee 169 169 169

VeriFuzzBoth 169 169 169
Bubaak 169 169 169
VeriAbsL 169 169 169

Recursive
FuSeBMC 20 19 19
FuSeBMC_IA 20 19 19
Cbmc 20 19 19
CVT-ParPort 20 19 19
Graves-CPA 20 19 17
VeriFuzzTest-Comp 20 18 18

Sequentialized
VeriFuzzTest-Comp 98 95 95
FuSeBMC 98 94 94
FuSeBMC_IA 98 92 92
PeSCo 98 86 86
CVT-ParPort 98 86 32
Cbmc 98 85 29

XCSP
Cbmc 54 50 50
CVT-AlgoSel 54 49 49
VeriFuzzBoth 54 49 49
WASP-C 54 49 49
Esbmc-kindBoth 54 48 48
FuSeBMC 54 47 47

Table 4 (Continued)

Total tasks #Bugs
found

#Bugs
confirmed

by execution

BusyBox
FuSeBMC 5 1 1
Klee 5 1 1
PeSCo 5 1 0

Overall
VeriFuzzTest-Comp 1173 964 964
FuSeBMC 1173 939 939
FuSeBMC_IA 1173 931 931
PeSCo 1173 667 475
CPAchecker 1173 665 458
Esbmc-kindSV-COMP 1173 660 529
VeriAbsL 1173 645 543
CoVeriTest 1173 564 564

Table 5 Number of bugs found by the best tool of each category, the
union of all test generators ( ), the union of all model checkers ( ),
and all tools

Category Best tool All All All tools

Arrays 90 87 90 90
BitVectors 9 9 9 9
ControlFlow 5 5 5 5
ECA 15 15 14 17
Floats 32 32 32 32
Hardware 319 340 175 342
Heap 47 45 47 47
Loops 128 128 127 128
ProductLines 169 169 169 169
Recursive 19 19 20 20
Sequentialized 95 95 90 95
XCSP 50 51 50 51
BusyBox 1 1 1 2

In our previous research study [32], the different tools
complemented each other well, so that the combination of
multiple tools yielded significant improvements in the num-
ber of bugs found. This is not true for the current results:
Table 5 shows for each benchmark category the number of
bugs found by the best tool in that category, the union of dis-
tinct bugs found by all test generators together (All ), the
union of distinct bugs found by all model checkers together
(All ), and the union of all considered tools (All Tools).
The table shows that the unions only yield an improvement
in 5 of the 13 categories and that these improvements are
also small. We explain this with the fact that, in contrast to
the previous study, almost all currently considered tools al-
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ready combine multiple approaches internally (cf. Table 2),
rendering further external combinations effectless.

RQ 2. Can the bug reports of software model checkers
be validated through execution? Since a failing pro-
gram execution provides the highest level of confidence in
a verification result, we separately check how many of the
confirmed verification results were confirmed not only by
a third-party tool, but also by actual program execution.

For this, we use the SV-COMP validation results of the two
execution-based witness validators CPA-witness2test and
FShell -witness2test. Table 4 shows in its last columns
the number of found bugs that are confirmed through pro-
gram execution. It is visible that the confirmation rate can
be very high; for example, for Brick in category Floats
(29 of 30), for Cbmc in categories Heap (43 of 47), Re-
cursive (19 of 19) and XCSP (50 of 50), or for PeSCo
in category Sequentialized (86 of 86). On the other hand,
the confirmation rate can also be very low, even for model
checkers that perform well otherwise and in categories that
other model checkers perform well in: Cbmc gets only 29 of
85 results confirmed through execution in category Sequen-
tialized, and PeSCo gets only 61 of 109 results confirmed in
category Hardware. This hints to bug reports (in the form of
violation witnesses) that miss input values.

Thus our answer to the second research question: The data
show that the execution-based validation of verification re-
sults is feasible and works well to provide a similar level of
confidence in the result of model checkers as in test genera-
tors. But at the current state-of-the-art, model checkers have
to produce more precise violation witnesses to offer the same
level of confidence as test generators.

RQ 3. Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage? To answer our last research question,
we consider the test suites [22] that each test generator gen-
erated for coverage criterion coverage-branches in Test-
Comp 2023. We check how well these test suites perform for
finding bugs, compared to the test suites that testers specifi-
cally generated for bug-finding: We give each test suite gen-
erated for coverage-branches to the test executor of Test-
Comp 2023, TestCov [33], but with target measure cover-
age-error-call. The results over all common categories
are presented in Table 6.1

It is visible that 6 testers produce significantly better test
suites for criterion coverage-error-call when told to
do so: FuSeBMC, VeriFuzz, FuSeBMC_IA, Symbiotic,
and, with the most notable difference, Klee. This shows that
they adjust their behavior based on the coverage criterion
provided to them. The other tools only show very little differ-

1 This excludes category Hardware, which only exists in the track for
coverage-error-call.

Table 6 Bug-finding capabilities of generated test suites that are tar-
geted at either coverage-error-call or coverage-branches; the
results exclude category Hardware because it is not part of the Test-
Comp 2023 track on branch coverage

Tools Total tasks #Bugs found #Bugs found
error-call branches

FuSeBMC 679 651 594
VeriFuzz 679 645 611
FuSeBMC_IA 679 643 594
Klee 679 541 285
CoVeriTest 679 479 476
Symbiotic 679 476 456
TracerX 679 - 420
HybridTiger 679 362 281
WASP-C 679 354 355
Legion/SymCC 679 279 281
Esbmc-kind 679 352 -
PRTest 679 236 236
Legion 679 108 107

ence between the two generated test suites or did not provide
test suites for both coverage criteria. It is notable that the five
best-performing testers all adjust their behavior based on the
coverage criterion.

This answers our third research question with “yes”:
Testers that actively target errors are more effective in creat-
ing test suites for error coverage.

3.6 Threats to validity

Internal validity. We are confident in the internal valid-
ity of our analysis. We use the official SV-COMP 2023 and
Test-Comp 2023 data. Both competitions pay highest pri-
ority to precise measurements and reproducibility. For vali-
dating test suites with coverage-error-call which were
generated for coverage-branches, we had to perform own
experiments. For these, we used the official competitions’ in-
frastructure to ensure correctness of results. Both our setup
and the produced data are publicly available [34] for inspec-
tion.

External validity. We use the largest available bench-
mark set with well-defined C programs for testing. Still,
this benchmark set may not represent the full diversity of
real-world C programs. Similarly, because tools know the
SV-COMP and Test-Comp benchmark tasks before the com-
petition runs, tools that participate in SV-COMP and Test-
Comp may be tuned to the competitions’ benchmark set and
perform worse on real-world projects.

The application domain we can consider is limited: We
consider testing of sequential, self-sufficient C programs with
a simple reachability specification, similar to assert state-
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ments (cf. Table 1). This means that the presented results may
ignore program features and some applications of testing, like
string handling, object-oriented programming, concurrency,
or database queries.

Similarly, specific applications of verification, for example
the verification of network protocols or static application-
security testing, are not considered.

We only consider programs with at least one existing bug.
We do not measure how good the generated test suites are
for detecting bugs that are newly introduced in the future.

We also do not differentiate between a single found bug
and multiple found bugs. But a test suite that detects multiple
bugs in a program may be considered better than a test suite
that only detects a single bug. We consider both options
orthogonal research questions.

We only consider tools that participate in either SV-
COMP 2023 or Test-Comp 2023. This covers the latest state-
of-the-art for verification of C programs. There may still be
model checkers or test generators that did not participate
in the last iterations of SV-COMP or Test-Comp and that
perform significantly better. In addition, the comparison of
test generators and model checkers may differ in areas of
application other than those considered.

Construct validity. We designed our experiments to as-
sess whether test generators or model checkers find more
bugs in given programs. To quantify the quality of the tools,
we use the number of bugs found, which is the main ingredi-
ent of the community-agreed scoring schemas that the com-
petitions use (considering the category FalsificationOverall
in SV-COMP and category Cover-Error in Test-Comp). In-
stead of normalization as used in the competitions, we ex-
plicitly report the results per category in Table 4.

4 Conclusions

We performed a thorough comparison of the bug-finding
capabilities for C programs of all SV-COMP 2023 and Test-
Comp 2023 participants. This comparison shows that, al-
though state-of-the-art test generators and model checkers
are highly competitive, the best considered test generators
outperform the best considered model checkers in bug find-
ing. Notably, the best test generators do not limit themselves
to dynamic techniques but also use static-analysis techniques
and formal methods. FuSeBMC [5] and VeriFuzz [100]
use a combination of bounded model checking [43] and
fuzzing [75].
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