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Abstract
Purpose To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on 
lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural 
network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), 
sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which 
were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the 
reference standard. Intraclass correlation coefficient (ICC), mean absolute error (MAE), and standard deviation (SD) were 
used for statistical analysis; while, ANOVA was used to search for significant differences between the AI and human readers.
Results Automatic measurements (AI) showed excellent correlation with the reference standard, with all ICCs within the 
range of the readers (TK: 0.92 [AI] vs. 0.85–0.96 [readers]; LL: 0.95 vs. 0.87–0.98; SS: 0.93 vs. 0.89–0.98; SVA: 1.00 vs. 
0.99–1.00; all p < 0.001). Analysis of the MAE (± SD) revealed comparable results to the six readers (TK: 3.71° (± 4.24) 
[AI] v.s 1.86–5.88° (± 3.48–6.17) [readers]; LL: 4.53° ± 4.68 vs. 2.21–5.34° (± 2.60–7.38); SS: 4.56° (± 6.10) vs. 2.20–4.76° 
(± 3.15–7.37); SVA: 2.44 mm (± 3.93) vs. 1.22–2.79 mm (± 2.42–7.11)); while, ANOVA confirmed no significant differ-
ence between the errors of the AI and any human reader (all p > 0.05). Human reading time was on average 139 s per case 
(range: 86–231 s).
Conclusion Our AI algorithm provides spinopelvic measurements accurate within the variability of experienced readers, 
but with the potential to save time and increase reproducibility.
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Abbreviations
AI  Artificial intelligence
ANOVA  Analysis of variance
AUC   Area under the curve
ICC  Intraclass correlation coefficient
LL  Lumbar lordosis
MAE  Mean absolute error

SVA  Sagittal vertical axis
SD  Standard deviation
SS  Sacral slope
TK  Thoracic kyphosis

Introduction

Spinopelvic parameters describe the balance of the spinal 
column and the pelvis, which is essential for human upright 
gait [1]. Their imbalance due to deformities, degeneration, 
or trauma can lead to severe instabilities, ranging from low 
back pain to complete immobility, causing enormous strain 
for individuals, families, and whole economies [2, 3].

Correct and reliable measurements of spinopelvic 
parameters on radiographs are fundamental for diagnosis 
and prognosis, and to guide and monitor conservative or 
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surgical therapies [4–6]. However, manual measurements 
are time-consuming, error-prone, and show high inter-reader 
variability [7, 8].

Recent advances in artificial intelligence (AI) have seen 
algorithms to improve and fasten image acquisition [9, 10], 
and with diagnostic accuracies at par with, or even superior 
to medical specialists at a variety of tasks [11–16]. This has 
also raised interest in automating spinopelvic measurements 
with growing success [17–23]. Nevertheless, as a recent 
review pointed out [24], previous studies are still lacking 
multi-reader assessment of AI to better account for clinical 
reality, which has already been established successfully in 
different use cases, such as fracture detection [11, 12], or 
interpretation of chest X-rays [13, 14].

For the following study, our goal was to i) develop and 
train an AI model for automatic measurements of clinically 
relevant spinopelvic parameters on lateral radiographs of 
the spine, ii) include various cases from clinical reality with 
fractures and instrumentation, iii) validate the AI model 
in an interdisciplinary multi-reader setting, including 
both radiologists and surgeons experienced with these 
measurements.

Materials and methods

Study design

This study was approved by the institutional review board 
(approval number 18–399). Informed consent was waived 
due to the retrospective and non-interventional nature of the 
study. All procedures were conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Imaging data

All imaging data were queried retrospectively from our 
institutional Picture and Archiving System (PACS) for 
patients receiving lateral radiographs of the whole spine 
between September 2012 and May 2019. At our institution, 
these are acquired with the EOS System (EOS Imaging, 
Paris, France), where a vertically moving X-ray source 
allows for distortion-free images in a standing position 
under weight-bearing conditions [25], without the need for 
stitching conventional images and with very low radiation 
dose [26].

Inclusion criteria were: i) lateral images of the full spine 
in a standing position, and ii) acquisition ranging cranial 
from the external auditory canal and caudal to the femoral 
heads. Exclusion criteria were: ii) incomplete capturing 
of the spine, ii) motion artifacts during image acquisition, 
and iii) severe spinal deformities, defined by the presence 
of hemivertebrae or moderate to severe scoliosis (Cobb 

angle ≥ 25°), [27] which would cause superimposition 
artifacts on lateral images. Otherwise, cases with 
foreign material, e.g., from spinal instrumentation or hip 
replacement, and vertebral fractures were all included to 
represent clinical reality.

This resulted in a set of 295 images for algorithm 
development, randomly split into 80% training data and 20% 
for internal validation and optimization. Another randomly 
selected test set of 65 images was completely withheld from 
training and used for subsequent performance evaluation of 
the algorithm.

Definition of spinopelvic measurements

Five frequently used clinically relevant spinopelvic 
measurements on lateral radiographs were used for the 
current study, as defined in the following. The thoracic 
kyphosis (TK) of the thoracic spine is theoretically 
considered the angle between T1 and T12, which is 
in practice often impossible to delineate due to the 
superposition of the humeral heads [1], and therefore in 
clinical routine and most previous studies alternatively 
measured from the superior endplate of T4 to the inferior 
endplate of T12 (normal: 30–50°) [28], which we adopted 
for our study. More agreement exists on the lumbar lordosis 
(LL), measured from the superior endplate of L1 to the 
superior endplate of S1 and denoted as negative values 
(normal: –60 to –50°) [28], the sacral slope (SS), measured 
between the superior endplate of S1 and a horizontal line 
(normal: 35–45°) [28], and the sagittal vertical axis (SVA), 
measured as the horizontal distance from the plumb line 
of the center of C7 to the superior endpoint of S1, with 
positive values in front of S1, and negative values behind 
(normal: ± 20 mm) [28].

Algorithm development

Collected training data were annotated for anatomical 
landmarks by two extensively trained annotators on a 
dedicated internal platform. Annotations included the 
four corners of each vertebra (C2-S1, 94 labels per case, 
total of ~ 27.730 labels), and all labels were reviewed 
by a radiologist with strong experience in orthopedic 
radiographs. The annotated images were augmented 
manifold (including rotation, translation, cropping, 
resizing, blurring, and distortion) and used to train a two-
staged neural network. First, a region-based convolutional 
neural network (R-CNN) was used to automatically detect 
the whole spine centers from the images in a single shot. 
Then, the original image was sliced into small areas 
containing the vertebrae based on the detected spinal 
centers, and a second R-CNN was used to automatically 
detect the four vertebral corners. Finally, the predicted 
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landmarks were post-processed with geometric formulae to 
automatically calculate the above-mentioned spinopelvic 
angles and measurements and displayed over the input 
images to allow visual inspection of the results.

Reference standard definition

Six readers independently measured the validation data set 
manually, after receiving a verbal and written introduction 
with all the specifications for the measurements. Readers 
included three radiologists (B.F.H, B.O.S., and J.Rue., with 
3, 6, and 3 years of experience; referred to as “Readers 
R1-R3”) and three orthopedic surgeons (A.C.-K., S.W., 
and W.H., with 3, 8 and 5 years of experience; referred 
to as “Readers S1-S3”). As we found that even the 
most experienced reader would occasionally over- or 
underestimate a single reading (Supplemental Fig. S2), the 
median of the readers was used as the consensual reference 
standard. For an even number of values (from six readers), 
the median is defined as the arithmetic mean of the two 
middle values, when ordered from lowest to highest. This 
further implies that no single reader alone could establish 
the reference standard for any given case.

Statistical analysis

Quantitative measurements were expressed as mean and 
standard deviation (± SD); while, categorical variables were 
expressed as counts and percentages. Normal distribution 
of the measurements was confirmed with histogram plots 
(Supplemental Fig. S1). Performance of the AI algorithm 
and the readers was evaluated using the mean absolute error 
(MAE) with standard deviation (SD), Pearson’s correlation 
(r) with the reference standard, Bland–Altman plots for 
mean difference visualization, and cumulative distribution 
function (CDF) to evaluate performance up to clinically 
relevant thresholds and calculate a normalized area under 
the curve (AUC) for further quantification. Intraclass 
correlation coefficient (ICC) was calculated based on a two-
way random-effects model with absolute agreement [29]. 
Agreement was defined as previously described: ICC ≥ 0.90 
as excellent, 0.90–0.75 as good, 0.75–0.50 as moderate, 
and ≤ 0.50 as poor [30].

To test for any significant differences between AI and 
human readers, analysis of variance (ANOVA) of the errors 
was performed with Tukey’s post hoc test, if needed. All 
analysis and visualizations were performed in Python (Ver-
sion 3.12, Python Software Foundation), with recent SciPy, 
statsmodels, and seaborn libraries. Two-sided significance 
testing was conducted with an α of 5% (p < 0.05) (Fig. 1).

Fig. 1  Examples of spinopelvic parameters and required landmarks. 
(TK): Thoracic kyphosis, angle measured from the superior end-
plate of T4 to the inferior endplate of T12 (normal: 30–50°). (LL): 
Lumbar lordosis, angle measured from the superior endplate of L1 to 
the superior endplate of S1 (normal: –50 to 60°). (SS): Sacral slope, 
angle measured between the superior endplate of S1 and a horizontal 
line (normal: 35–45°). (SVA): Sagittal balance, measured as the hori-
zontal distance from the plumb line of the center of C7 to the supe-
rior endpoint of S1, with positive values in front of S1, and negative 
values behind (normal: ± 20 mm)
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Results

Study population

The evaluation cohort consisted of 65 patients (39 female; 
60.0%), from all different age groups (mean age: 47.8 
[± 24.1] years, range: 7–85 years), with a wide range of 
(pathologic) spinopelvic measurements. Over a third of 
patients had vertebral fractures (23; 35.4%), and about 
a quarter of patients had previously undergone spinal 

instrumentation (16; 24.6%), reflecting the broad spectrum 
of clinical reality (Table 1).

Algorithm performance

All 65 cases were successfully processed by the AI 
(100.0% success rate), including special cases with ver-
tebral fractures, deformities, or spinal instrumentation 
(examples in Fig. 2). AI analysis took a maximum of 1 s 
per case; while, human readers took an average of 139 s 
per case (range: 86–231 s). Bland–Altman plots showed a 
low mean difference for all automatic measurements (TK: 
−0.57; LL: 0.51; SS: 0.59; SVA: 0.39), with no propor-
tional bias (Fig. 3A).

All AI-based results had an excellent correlation with 
the reference standard (ICC: 0.92–1.00; all p < 0.001), 
with the highest result for sagittal vertical axis (SVA), 
and the lowest result for thoracic kyphosis (TK), but for 
every measurement, the ICC was within the range of the 
six human readers (Table 2, Fig. 3B). Further, the mean 
absolute error (MAE) was also within the range of the 
readers for all four measurements, with the smallest errors 
for sagittal vertical axis (AI: 2.44 mm [± 3.93]; readers: 
1.22–2.79 mm), followed by thoracic kyphosis (AI: 3.14° 
[± 4.24]; readers: 1.97–3.87°), lumbar lordosis (AI: 3.71° 
[± 4.68]; readers: 1.86–5.88°), and sacral slope (AI: 4.56° 
[± 6.10]; readers: 2.20–4.76°) (Table 2).

Table 1  Characteristics of the cohort used for evaluation

– SD; standard deviation

Variable (unit) N or mean % or ± SD Range

Patients 65 (100.0%) –
Age (years) 47.8 (± 24.1) (7; 85)
Sex (female) 39 (60.0%) –
Vertebral fractures (cases) 23 (35.4%) –
Spinal instrumentation 

(cases)
16 (24.6%) –

Measurements
Thoracic kyphosis (°) 43.4 (± 14.8) (14.6; 87.5)
Lumbar lordosis (°) –51.9 (± 14.9) (–89.1; –5.7)
Sacral slope (°) 36.0 (± 10.5) (5.3; 55.3)
Sagittal vertical axis (mm) 30.8 (± 45.8) (–63.4; 145.2)

Fig. 2  Examples of AI and human spinopelvic measurements. A-D 
Perfect agreement between all human readers and AI. The algorithm 
performed well even in cases with B vertebral fractures (wedge frac-
ture L3), or with C, D dorsal instrumentation. E, F Landmarks were 

detected incorrectly, especially in cases with anatomical variation E 
or severe overlay, which also resulted in disagreement between the 
multiple readers (F)
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All these errors were below the threshold of < 5°, which 
has been shown previously as the normal inter-reader vari-
ability and is generally regarded as acceptable [8, 31].

Cumulative distribution function (CDF) enabled more 
detailed analysis, by incrementally plotting the percentage 
of cases (y-axis) below a certain absolute error (x-axis), 
thereby allowing clinically relevant thresholds to be read 
and calculating a normalized area under the curve (AUC) 
for quantitative comparison (Fig. 4A). This revealed on a 
per case analysis, that an error < 5° was achieved in 84.6% of 

cases for SS, in 70.8% for LL, and in 68.8% for TK; while, a 
higher threshold of < 10° (as also utilized in previous studies 
[18]) was reached in well over 90% of cases for all measure-
ments (SS: 96.9%; LL: 90.8%; TK: 98.4%).

Analysis of variance (ANOVA) showed no significant 
difference between the errors of the AI and the human 
readers for SS (p = 0.054) and SVA (p = 0.064), but for TK 
(p < 0.001) and LL (p < 0.005). However, post hoc Tukey’s 
test revealed no significant differences between AI and any 
of the human readers, only for some readers between each 

Fig. 3  Performance analysis of AI and readers. Measurements, in 
columns from left to right: thoracic kyphosis (TK), lumbar lordosis 
(LL), sacral slope (SS), and sagittal vertical axis (SVA). A Bland–
Altman plots, showing a low mean difference for AI with no propor-
tional bias. Horizontal line (blue) marks mean, horizontal corridor 
(light blue) marks ± 1.96 standard deviations (SD). B Regression 
analysis of AI and readers vs. reference standard, showing excellent 

correlation of measurements with the reference standard. Diagonal 
dashed line (green) shows theoretical perfect fit, diagonal straight 
line (blue) shows the fit for AI measurements, diagonal corridor 
(light blue) shows 95% confidence interval of prediction limits for 
AI; labels show Pearson’s correlation coefficient (“r”) for AI and each 
reader

Table 2  Performance evaluation 
of the AI and the readers

– MAE; mean absolute error, SD; standard deviation, ICC; intraclass correlation coefficient

Thoracic kyphosis 
(TK)

Lumbar lordosis (LL) Sacral slope (SS) Sagittal vertical axis 
(SVA)

MAE SD ICC MAE SD ICC MAE SD ICC MAE SD ICC

Algorithm 3.14 [± 4.24] 0.92 3.71 [± 4.68] 0.95 4.56 [± 6.10] 0.93 2.44 [± 3.93] 1.00
Reader R1 2.07 [± 3.48] 0.94 2.19 [± 2.83] 0.98 2.21 [± 3.60] 0.97 2.41 [± 4.74] 0.99
Reader R2 3.87 [± 6.17] 0.85 5.88 [± 7.38] 0.87 4.76 [± 7.03] 0.90 2.79 [± 5.24] 0.99
Reader R3 1.98 [± 3.07] 0.96 3.17 [± 3.73] 0.96 2.25 [± 3.15] 0.98 1.22 [± 2.42] 1.00
Reader S1 2.26 [± 3.74] 0.94 2.94 [± 4.15] 0.96 2.86 [± 4.81] 0.95 1.70 [± 3.49] 1.00
Reader S2 1.97 [± 4.36] 0.92 1.86 [± 2.60] 0.98 2.20 [± 4.52] 0.96 2.23 [± 7.11] 0.99
Reader S3 3.31 [± 5.79] 0.87 3.31 [± 4.25] 0.96 4.49 [± 7.37] 0.89 2.09 [± 4.05] 1.00
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other (TK: R3 vs. R2, S2, and S3; LL: S3 vs. S1, R2, and R3; 
all p < 0.05; full results in Supplemental Table S1) (Fig. 4B).

Discussion

In this study, we developed an AI algorithm to measure 
clinically relevant spinopelvic parameters on radiographs 
and validated it in an interdisciplinary multi-reader setting 
with six experienced physicians, equally consisting of 
radiologists and surgeons.

All automatic measurements (TK, LL, SS, and SVA) 
showed excellent correlations with the reference standard, 
and deviations were all within the range of the readers. 
Further, no significant differences were found between the 
errors of the AI to those of the multiple human readers, 
thereby placing the AI within the field of the naturally 
occurring differences of multiple clinicians.

Specifically, the mean absolute error was < 5° for all 
AI-based angles, which has been shown previously as the 
normal inter-reader variability and is generally regarded 
acceptable [8, 31]. In-depth analysis showed, that this 
threshold was undercut in 70–80% of cases, underlining 
clinical usability. Further, we used a comprehensive 

validation pipeline including various statistical tests, which 
offers a high transparency of the results.

Our model was able to analyze all test cases (success rate 
100%), including those with deformities, fractures, or spinal 
instrumentation, due to the diverse data used for training, 
increasing clinical value even for challenging cases. In 
contrast, a previous study reported a success rate of 84% 
[20], and even in a recent publication [22], some cases failed 
automatic analysis. Further, even most recent studies only 
focused on normal cases and excluded spinal pathologies or 
foreign materials [20–22]; while, their strict case selection 
may have led to better performance in a laboratory setting, 
their inability to process pathologic cases minimizes clinical 
value.

Unsurprisingly, automatic measurements only took a 
fraction of the reading time (< 1 s); while, humans spend 
on average over 2 min per case. Given the possibility for 
a human reader to visually counter check a render of the 
AI-detected landmarks within seconds, this is an excellent 
use case of “explainable AI” [32] and holds great potential 
to shorten reading times. Also, automatic analysis over 
time could identify any abnormal changes and thus help 
to flag cases suspicious for, e.g., new fractures or failing 
therapies [5, 6]. For example, a recent meta-analysis proved 

Fig. 4  Error analysis of AI and readers. Measurements, in columns 
from left to right: thoracic kyphosis (TK), lumbar lordosis (LL), 
sacral slope (SS) and sagittal vertical axis (SVA). A Cumulative dis-
tribution function (CDF), plotting incremental percentage of cases 
(y-axis) below a certain absolute error (x-axis). Intersections (dashed 
gray lines) show percentage of cases for AI with errors below clini-
cally relevant thresholds (5  mm/10  mm; 5°/10°). Labels show area 

under the curve (AUC) of the normalized maximum for quantita-
tive comparison. B Stripplots of error for AI and readers, showing 
no significant difference between AI and any human reader, only 
among some human readers for TK and LL. Horizontal bars show 
mean ± SD. Horizontal corridors (blue) mark error of ± 5°/mm 
and ± 10°/mm (light blue). (* p < 0.05; ** p < 0.01; *** p < 0.001) 
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a significant increase for TK and SVA with the occurrence 
of osteoporotic vertebral fractures [33]; while, LL and SVA 
have been shown to be predictive of distal junctional failure 
after corrective surgery of osteoporotic vertebral fractures 
[34], and a higher increase in lordosis after lumbar fusion 
was related to post-operative L5 radiculopathy [35].

In today’s world, where the gap between the steadily 
increasing number of medical procedures and the stagnating 
number of medical professionals is widening, resulting in 
alarming stress levels and burn-out rates [36], AI-based 
support systems are becoming more a necessity than an 
option. As multiple recent studies showed, physicians 
can clearly benefit from AI-systems [11–14, 37, 38], and 
through continuous use they can build trust toward an AI, 
by understanding its’ capabilities and weaknesses, and use 
the systems effectively [39].

Also, we saw reduced AI performance in a few cases, e.g., 
with lumbar variations or severe deformities and resulting 
artifacts—however, these cases also remained challenging 
for human readers and are known to result in a higher inter-
reader-variability in clinical practice. Yet our approach to set 
the median of the readers as the reference standard (which 
for an even number of values, such as our six readers, is 
defined as the mean of the two middle values), also showed 
a robust reference standard in demanding cases, as every 
single reader had a relevant number of outliers, which would 
have led to a false reference standard, but was mitigated by 
our method.

As one of our study’s biggest strengths, we see our 
extended interdisciplinary multi-reader comparison, which 
allowed us to prove the algorithm comparable to multiple 
clinically experienced experts.

So far, nearly all previous studies only chose a single 
radiologist or surgeon for the reference standard and 
comparison [17, 18, 40]. In notable exceptions, a single 
resident was reviewed by a single senior radiologist [22], or 
a second reader measured at least half of the cases [23], and 
only one group so far included three surgeons in comparison 
[19, 20]. To the best of our knowledge, no study yet has 
made the effort to include more than three readers; while, 
we analyzed a total of six readers, consisting equally of 
experienced radiologists and surgeons.

Our study had limitations, including the retrospective and 
single-center character. Nevertheless, the proposed model 
could be used as a starting point for further investigation, 
e.g., utilizing a federated learning approach with prospective 
or multi-center data, for re-training and further optimization. 
Further, we only included data from the EOS System, which 
has been shown superior to conventional radiographs for 
higher image quality and lower radiation exposure [25, 26], 
but may limit the generalizability of our model—however, 
the deep learning techniques used (CNN) enable transfer 
learning and the applicability to unseen conventional 

radiographs should be investigated in future studies. Another 
limitation could be seen in our relatively small dataset of 
295 training cases. However, modern pre-trained models and 
effective augmentation techniques enable generalizability 
even with little training data, especially if this represents 
a broad spectrum of variation (as in our case), and notable 
performance was previously achieved with comparable [41], 
or even smaller datasets [18].

In conclusion, we showed that our AI algorithm provides 
spinopelvic measurements accurate within the variability 
of multiple experienced readers, but with the potential to 
save time and increase reproducibility. Future studies should 
extend these works and further evaluate the clinical impact 
of AI-assisted reading.
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