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Abstract

We consider varying-coefficient models with categorial effect modifiers in the frame-
work of generalized linear models. We distinguish between nominal and ordinal
effect modifiers, and propose adequate Lasso-type regularization techniques that
allow for (1) selection of relevant covariates, and (2) identification of coefficient
functions that are actually varying with the level of a potentially effect modifying
factor. We investigate the estimators’ large sample properties, and show in simula-
tion studies that the proposed approaches perform very well for finite samples, too.
Furthermore, the presented methods are compared with alternative procedures, and
applied to real-world medical data.
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1 Introduction
In regression modeling categorial predictors, also called factors, are a standard case. Never-
theless variable selection for categorial predictors and the connected problem which categories
are to be distinguished has been somewhat neglected. We want to address these problems in
a slightly extended version of generalized linear models (GLMs), namely GLMs with varying
coefficients.
Varying coefficients (Hastie and Tibshirani, 1993) are a quite flexible tool to capture complex
model structures and interactions. In the setting of GLMs, regression coefficients βj are allowed
to vary smoothly with the value of other variables uj – the so called effect modifiers. The linear
predictor has the form

η = β0(u0) + x1β1(u1) + . . .+ xpβp(up), (1)
∗Corresponding author: margret.oelker@stat.uni-muenchen.de
†Department of Statistics, Ludwig-Maximilians-Universität Munich, Germany
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where x1, x2, ..., xp are continuous covariates, u1, ..., up are effect modifiers and the functions βj
are unknown. As in GLMs the predictor is linear in the regressors, but scalar coefficients βj
turn into functions depending on the effect modifiers uj, j = 0, . . . , p. The effect modifiers
can but do not have to represent the same variable. However, in order to keep notation at the
same time as general and as intuitive as possible, we will always write xjβ(uj). As in GLMs we
assume that the predictor η is linked to the conditional mean of response vector y by a knwon
response function h, that is, µ = E(y|x1, . . . , xp) = h(η) and y follows a simple exponential
family.
For continuous effect modifiers, unknown functions βj(·) are smooth and have been modeled
by splines (Hastie and Tibshirani, 1993; Hoover et al., 1998; Lu et al., 2008), local techniques
(Wu et al., 1998; Fan and Zhang, 1999; Kauermann and Tutz, 2000) or boosting (Hofner
et al., 2008). Inference requires to distinguish between varying and non-varying coefficients
and between relevant and non-relevant terms. Hastie and Tibshirani (1993) proposed to adopt
techniques for additive models. Leng (2009) distinguishes between varying and non-varying
coefficients by applying the Cosso (Lin and Zhang, 2006) penalty. Wang et al. (2008) obtain
selection of whole splines by SCAD-penalization, while Wang and Xia (2009) select covariates
by local polynomial regression with the grouped Lasso (Yuan and Lin, 2006). However, apart
from Hofner et al. (2008) selection of predictors and specification of smooth/constant functions
is not reached simultaneously.
For categorial effect modifiers uj ∈ {1, ..., kj}, which are considered here, “function” βj(uj)
has the form

∑kj
r=1 βjrI(uj = r), where I(.) denotes the indicator function and βj1, . . . , βjkj

represent parameters. Therefore the linear predictor is given by

η =

k0∑

r=1

β0rI(u0 = r) +

p∑

j=1

xj

kj∑

r=1

βjrI(uj = r).

The total coefficient vector is given by βT = (βT0 , . . . , β
T
p ), where βTj = (βj1, . . . , βjkj) contains

the parameters for the jth predictor. With categorial predictors the number of parameters
q =

∑p
j=0 kj can become very large, even for a moderate number of predictors. Consequently

maximum likelihood (ML-)estimates may not exist and regularization techniques are needed.
Even if estimates exist, one wants to reduce the model to the relevant terms. That means, one
wants to determine which predictors are influential, and if they are influential, which categories
have to be distinguished.
Regularization methods that enforce selection of predictors and fusion of categories have been
considered by Gertheiss and Tutz (2012). However, they treat the case of Gaussian responses
only; computational methods and derived asymptotics are limited to Gaussian responses. In
this paper, two approaches are presented that allow to fit categorial effect modifiers within
the GLM framework. In Section 2 we propose a penalized ML criterion for estimation. For
computation a penalized iteratively reweighted least squares algorithm is employed. Moreover,
large sample properties are derived. As an alternative a forward selection procedure with
information criteria is shortly sketched (Section 3). In Section 4, the proposed methods are
shown to be highly competitive in numerical experiments - whereby the penalized approach
performs definitely better. Finally, the approaches are applied to real-world data (Section 5).
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2 Penalized Estimation
Our main tool for regularization and model selection is the use of penalties. In GLMs, penalized
estimation means to minimize

Mpen
n (β) = −ln(β) + Pλ(β) = −ln(β) + λ · Jn(β), (2)

where ln(β) denotes the log-likelihood for sample size n, and Pλ(β) stands for a general penalty
that depends on tuning parameter λ. The expression λ · Jn(β) breaks the penalty down to a
product, underlining the dependency on one scalar tuning parameter only. Without penalty
Pλ(β), that is with λ = 0, the ordinary ML-estimate is obtained.
The main issue is to chose an adequate penalty Jn(β): The Ridge penalty (Hoerl and Kennard,
1970) shrinks coefficients, the Lasso (Tibshirani, 1996) combines shrinkage and selection of
coefficients. The fused Lasso (Tibshirani et al., 2005) applies the Lasso to differences. Adjacent
parameters are shrunk towards each other and are fused in order to gain a local consistent
profile of ordered coefficients. In contrast, the grouped Lasso (Yuan and Lin, 2006) selects
whole blocks of coefficients simultaneously. Although variable selection is implied, both the
Lasso and its grouped version are off target since it does not enforce βjr = βjs for some r 6= s
in coefficient vector βj = (βj1, . . . , βjkj)

T , which is required for potentially (piecewise) constant
functions βj(uj). The pure fused Lasso indeed leads to (piecewise) constant functions βj(uj)
but disregards the selection of whole predictors. A combination of both allows not only for
shrinkage and selection but also for gradual fusion of related coefficients – such that effects of
the grouped Lasso are embedded.
In predictor (1) it is not distinguished between nominal and ordinal effect modifiers. To use
the information in the variable adequately, these cases should be distinguished. Therefore, we
consider the general penalty

Jn(β) =

p∑

j=0

Jj(βj), (3)

where Jj(βj) = 0 if covariate j is not modified, Jj(βj) is a nominal penalty term Jnomj (βj), if
effect modifier j is nominal, and an ordinal penalty term Jordj (βj), if effect modifier j is ordinal.
For a nominal effect modifier uj we propose

Jnomj (βj) =
∑

r>s

|βjr − βjs|+ bj

kj∑

r=1

|βjr|, (4)

where bj is an indicator that (de-)activates the second sum if wanted. Penalty (4) is equivalent
to a fused Lasso penalty applied on all pairwise differences of coefficients belonging to βj(uj).
Thus, not only adjacent coefficients but each subset of nominal categories can be collapsed. In
the case of strong penalization, effects βj1, . . . , βjkj of covariate j are reduced to one constant
coefficient and do not depend on the categories of uj anymore; one obtains β̂j1 = . . . = β̂jkj = β̂j.
The second sum in (4) conforms to a Lasso penalty shrinking all coefficients belonging to
βj(uj) individually towards zero. The effect is selection and exclusion of covariates. For strong
penalization β̂j1 = . . . = β̂jkj = 0 is obtained, and covariate j is excluded. For the intercept
we will use only the first penalty term because in most cases shrinking towards zero is not
requested; hence, we typically have b0 = 0.
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If uj is ordinal, one wants to use this information in the predictor. Our option is to allow for
the fusion of adjacent categories βjr and βj,r−1. Hence, for ordinal predictors we use

Jordj (βj) =

kj∑

r=2

|βjr − βj,r−1|+ bj

kj∑

r=1

|βjr|, (5)

where bj denotes the same indicator as above. Instead of all pairwise differences now only
neighbored differences of coefficients belonging to covariate j are penalized, which corresponds
exactly to a fused Lasso-type penalty (Tibshirani et al., 2005). Again, with setting b0 to zero,
the intercept can be treated separately.
Apart from the different information contained in the categories, Jnomj and Jordj work in a
similar way: one term leads to fusion within the predictor, while a Lasso-type penalty selects
coefficients. Thus, overall variable selection as well as distinction of varying and non-varying
coefficients is obtained.
It may be advantageous to use weights for the two components of the penalty (compare Tib-
shirani et al., 2005). With parameter ψ ∈ (0, 1) let the weighted penalty for effect modifier j
be given by

Jnomj (β, ψ) = ψ
∑

r>s

|βjr − βjs|+ (1− ψ)bj

kj∑

r=1

|βjr|, (6)

for ordinal effect modifiers by

Jordj (β, ψ) = ψ

kj∑

r=2

|βjr − βj,r−1|+ (1− ψ)bj

kj∑

r=1

|βjr|. (7)

Parameter ψ is restricted to (0, 1) in order to separate it strictly from tuning parameter λ.
It allows to place emphasis on the fusion or on the selection part of the penalty, but even so
it is another tuning parameter that has to be chosen. In simulation studies in Section 4, we
will compare the performance of a penalty with flexible parameter ψ to a “fixed” version with
ψ = 0.5.

2.1 Computational Issues

Since penalty (3) contains absolute values, a convex but not continuously differentiable op-
timization problem has to be solved. Convenient optimization methods like Newton-type al-
gorithms (for example Fisher scoring) or Nelder-Mead methods using derivatives cannot be
applied. However, non-differentiability can be evaded by approximating the penalty at the
critical points, i.e. in a neighborhood of |ξ|, ξ = 0: We will use the augmented local quadratic
approximation (LQA)-algorithm (Fan and Li, 2001, Ulbricht, 2010), which employs a quadratic
function for approximating the absolute value. Hence, the approximate optimization problem is
differentiable again and a modified version of an iteratively reweighted least squares algorithm
can be derived. An alternative are convenient optimization algorithms like function nlm (R De-
velopment Core Team, 2009), which could be applied directly to the approximated optimization
problem. Since results are more stable we focus on the LQA-algorithm.
The LQA-algorithm is an iteratively reweighted least squares algorithm. It assumes penalties
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that can be written in the form

Pλ(β) =
L∑

l=1

pλ,l(|aTl β|), (8)

where al are known constants. Penalty terms pλ,l(|aTl β|) are supposed to map |aTl β| onto the
positive real numbers, to be continuous and monotone in |aTl β|. In addition, penalty terms
pλ,l(|aTl β|) are assumed to be continuously differentiable ∀ aTl β 6= 0 such that dpλ,l(|aTl β|)

d|aTl β|
≥

0 ∀ aTl β > 0 holds. Approximating absolute values in penalty (8) by |ξ| ≈
√
ξ2 + c, where c is

a small positive real integer, allows for derivatives of the objective function. Thus, the Fisher
scoring algorithm, which is typically used for ordinary GLMs, can be modified to a version that
handles the approximated penalty.
Penalty Jn(β) from equation (3) can be rewritten such that it fulfills the demands of the
LQA-algorithm. Let the vectors al denote the columns of a block-diagonal matrix A =
diag(A0, . . . , Ap) ⊂ Rq×L and functions pλ,l(ν) be defined as λ · ν. Let the block Aj refer
to the effect modifier uj. If uj is nominal, expressions aTl β contain the absolute values of all
coefficients βj1, . . . , βjkj and all possible differences. The former is reached when employing the
columns of a (kj × kj) identity matrix, the latter by columns containing these combinations of
one and minus one building the needed differences. Hence, e.g. for kj = 4, we have

Anomj =




1 0 0 0 −1 −1 −1 0 0 0
0 1 0 0 1 0 0 −1 −1 0
0 0 1 0 0 1 0 1 0 −1
0 0 0 1 0 0 1 0 1 1


 ,

which is a kj × (1
2
kj(1 + kj)) dimensional matrix. If uj is ordinal, only pairwise differences of

coefficients βj1, . . . , βjkj are penalized. Thus matrix Anomj is reduced to the (kj × (2kj − 1))
matrix

Aordj =




1 0 0 0 −1 0 0
0 1 0 0 1 −1 0
0 0 1 0 0 1 −1
0 0 0 1 0 0 1


 .

If the intercept is modified by any effect modifier, matrix A0 depends on the concrete form of
the penalty. In general, if bj = 0 the “diagonal part” part of Anomj , Aordj respectively is omitted.
For a covariate j, whose influence on y is not modified by any uj, matrix Anonej is an empty
matrix with zero columns and as many rows as coefficients belonging to covariate j.
The generalized hat matrix of the algorithm’s final iteration allows to estimate the model’s
degrees of freedom. But the LQA-algorithm is only locally convergent. Only if objective
function is strictly convex, a local optimum will be also the global optimum. Strict convexity
implies that the penalized Fisher information matrix is positive definite. Nevertheless the
penalty applied here leads to a positive semi-definite information matrix. Therefore the quasi-
Newton approach will find descent directions in each iteration but it can happen that the
solution is not unique (Ulbricht, 2010).

2.2 Large Sample Properties

In this section, a modified version of the proposed estimate is investigated. It is shown to be
consistent in terms of variable selection and identification of relevant differences βjr − βjs. For
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asymptotics, general assumptions have to hold and the number of observations has to grow in
accordance with the requirements of categorial covariates: If sample size n tends to infinity it
is assumed that the number of observations njr on level r of uj tends to infinity for all j, r.
This is necessary to ensure that the ML-estimate is consistent – which we assume, too. Then,
estimate β̂ solving equation (2) with penalty (3) and fixed tuning parameter λ is consistent in
terms of limn→∞P(||β̂ − β∗||2 > ε) = 0 for all ε > 0, where β∗ stands for the vector of true
coefficients. This behavior is formally described by

Proposition 1 Suppose 0 ≤ λ < ∞ has been fixed, and all class-wise sample sizes nr satisfy
njr/n→ cjr, where 0 < cjr < 1. Then the estimate β̂ that minimizes (2) with Jn(β) defined by
(3), (4) and (5) is consistent, i.e. limn→∞P(||β̂ − β∗||2 > ε) = 0 for all ε > 0.

The proof is given in the Appendix. Employing the generalized versions (6) and (7) does not
affect the consistency results.
As pointed out in Zou (2006), regularization as used so far does not ensure consistency in terms
of variable selection. In order to gain selection consistency of the original Lasso, Zou (2006)
proposed an adaptive version that has the so-called oracle properties. A corresponding modifi-
cation for penalty (3) is available: Given effect modifiers uj, j = 1, . . . , p, penalty Jn(β) (3) is
modified to the adaptive penalty Jadn (β) by employing

Jad,nomj (β) =
∑

r>s

wrs(j)|βjr − βjs|+ bj

kj∑

r=1

wr(j)|βjr| (9)

and

Jad,ordj (β) =

kj∑

r=2

wrs(j)|βjr − βj,r−1|+ bj

kj∑

r=1

wr(j)|βjr|, (10)

which replace (4) and (5), and by using adaptive weights

wrs(j) = φrs(j)(n)|β̂ML
jr − β̂ML

js |−1 (11)

and
wr(j) = φr(j)(n)|β̂ML

jr |−1. (12)

Let β̂ML
jr denote the ML-estimate of βjr. For the functions φrs(j)(n) and φr(j)(n) only conver-

gence to fixed values is assumed, that is, φrs(j)(n) → qrs(j), φr(j)(n) → qr(j), respectively, with
0 < qrs(j), qr(j) <∞. With φrs(j)(n) and φr(j)(n) being positive constants that sum up to one,
we obtain a generalization as given in equations (6) and (7); tuning parameter λ and functions
φrs(j)(n), φr(j)(n) are clearly separated.
In contrast to Proposition 1, the penalty parameter λ is not fixed, but increases with sample
size n, that is, one assumes that λ = λn with λn/

√
n → 0 and λn → ∞, and all class-wise

sample sizes nr satisfy nr/n→ cr, where 0 < cr < 1.
In addition, we define vector θ = ATβ. Hence, θ is a vector that contains all terms that penalty
Jn(β) (3) considers. That is, the absolute values of all penalized coefficients βij and – according
to the level of measurement – the absolute values of their differences. θ̂n denotes the estimate
of θ based on sample size n.
Furthermore, there are some sets to be defined: C denotes the set of indexes corresponding to
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those entries of θT which are truly non-zero. Cn is the set corresponding to those entries of θ̂n
which are estimated to be non-zero with sample size n, and based on estimate β̂n. θ∗C denotes
the true vector of θ-entries included in C, θ̂nC is the corresponding estimate based on β̂n. Bn
defines the (nonempty) set of indices J , which are in Cn but not in C.
Previous assumptions concerning ML-estimation are extended: the model holds and the neg-
ative log-likelihood −ln(β) is convex. For the sake of asymptotic normality and consistency
ln(β) has to be at least three times continuously differentiable, the third moments of y have
to be finite. The information matrix Fn/n must have a positive definite limit, and for score
function s(β) we suppose E(s(β)) = 0. Then one obtains:

Proposition 2 Suppose λ = λn with λn/
√
n→ 0 and λn →∞, and all class-wise sample sizes

njr satisfy njr/n→ cjr, where 0 < cjr < 1. Then penalty Jadn (β) employing terms (9) and (10)
with weights (11) and (12), where β̂ML

jr , φrs(j)(n) and φr(j)(n) are defined as above, ensures that

(a)
√
n(θ̂nC − θ∗C)

d→ N(0,Cov(θ∗C))

(b) limn→∞P(Cn = C) = 1

The proof is given in the Appendix and uses ideas of Zou (2006) and Bondell and Reich (2009).
Its argumentation follows closely Gertheiss and Tutz (2012). The concrete form of Cov(θ∗C)
results from the asymptotic marginal distribution of a set of non-redundant truly non-zero
regression parameters or differences of parameters. Since all estimated differences are (deter-
ministic) linear functions of estimated parameters, the covariance-matrix Cov(θ∗C) is singular.
The assumptions Fn/n

n→∞→ F with positive definite F , is typically assumed in observational
studies but it raises problems in experiments. In this case the given proof can be extended to
matrix normalization as, for example, in Fahrmeir and Kaufmann (1985).
For λ = 0 the unpenalized likelihood is maximized and therefore for n → ∞ asymptotic
normality and consistency hold as shown by McCullagh (1983). Distributional properties for
n→∞ given a fixed λ are not discussed since the penalty λJn(β) shall not vanish in proportion
to −ln(β) for n → ∞. Therefore λ = λn with λn → ∞ is requested. λn/

√
n → 0 ensures an

appropriate proportion of likelihood and penalty.
The speed of convergence of the normality part of Proposition 2 is determined by λn/

√
n→ 0.

Since n−1/2sn(β) ∼ N(0, F (β)) + O(n−1/2) and P(
√
n|β̂ML

lq | ≤ λ
1/2
n ) → 1 like c/

√
n → 0,

part (b) of Proposition 2 behaves the same. Thus the overall speed of convergence is O(n−1/2).
Since the penalized model employed in Proposition 2 converges to an ordinary GLM for n→∞,
and since the scale parameter of the exponential family ϕ and β are orthogonal (see the mixed
second derivatives ∂l

∂ϕ∂β
given in Claeskens and Hjort, 2008a) it is possible to replace ϕ by ϕ̂.

This leads to quasi likelihood functions:
The used arguments remain valid when expanding the considered model-class to quasi likeli-
hood models. Only the estimates’ covariance matrix can not be reduced to F (β)−1 anymore
but remains F (β)−1V (β)F (β)−1, where V (β) = cov(s(β)) and F (β) = E

(
−∂2ln(β)

∂β∂βT

)
, see Mc-

Cullagh (1983) for details.
Even for misspecified models estimate β̂n remains asymptotic normal and consistent but con-
verges towards “the last false parameter value” that minimizes the Kullback-Leibler distance

KL(g, f(·, β)) =

∫
g(y)log

g(y)

f(y, β)
dy,
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where g(y) denotes the “true”, data-generating process and f(y, β) presents the assumed model.
Corresponding arguments can be found in Claeskens and Hjort (2008b, p. 26/27). In this case
the estimate’s covariance matrix is J−1KJ−1, with J = −Eg ∂

2logf(y,β)
∂β∂βT

and K = covg
∂logf(y,β)

∂β
.

If adaptive weights are used and refitting is applied after the identification of clusters and
relevant variables, asymptotic behavior is obtained which is comparable to Proposition 2.
Since clustering and variable selection are directly based on the penalty with adaptive weights,
part (b) of this proposition is still valid. Asymptotic normality results from asymptotic nor-
mality of the ML-refit.

3 Alternative Selection Strategies
A more traditional way of model choice is based on information criteria like the AIC or the
BIC. Several forward/backward selection strategies for a wide range of models have been
proposed. The basic idea is to select that model that performs the best with respect to a
specified criterion. However, by construction these strategies result in variable selection only –
a coefficient is either selected or excluded. If coefficients are to be fused, strategies need to be
modified.
Fusion of categories is enabled when the set of coefficients regarded is enlarged: Assuming a
nominal effect modifier uj with three categories having impact on covariate j, varying coef-
ficient βj(uj) corresponds to (βj1, βj2, βj3)

T in coefficient vector β. All possible combinations
of coefficients belonging to j would be: {(), (βj1), (βj2), (βj3), (βj1, βj2), (βj1, βj3), (βj2, βj3),
(βj1, βj2, βj3)}. Allowing for fusion increases the number of possibilities by {(βj1, βj2 = βj3),
(βj2, βj1 = βj3), (βj3, βj2 = βj1), (βj1 = βj2 = βj3)}. When selecting a model, all possibilities
to fuse coefficients must be considered. In settings like this, one can use a forward selection
strategy employing information criteria AIC and BIC.
Starting with a model containing an intercept only, in each step the degrees of freedom of the
model are enlarged by one until the chosen criteria (AIC or BIC) is not improved anymore.
Thereby one degree of freedom is defined as the number of non-zero coefficient blocks in β̂
(Tibshirani et al., 2005). In other words, clusters of one or more non-zero and equal coeffi-
cients belonging to the same covariate j are counted as one degree of freedom. In each step a
former zero coefficient can be set to non-zero, a former zero group of coefficients can become
non-zero. Alternatively a group of equal coefficients can be split into two groups of non-zero,
identical coefficients. Picking up βj(uj) = (βj1, βj2, βj3)

T from above and assuming βj(uj) to
be βj1 = βj2 = βj3 in the actual iteration, in the next iteration βj(uj) is either split into one of
{(βj1, βj2 = βj3), (βj2, βj1 = βj3), (βj3, βj2 = βj1)} or one of the further covariates is changed.
Concretely, the selection strategy is:

1. Start with a null model containing only a non-varying intercept, and all non-selectable
covariates respectively.

2. In the following steps: Increase the degrees of freedom by one and check all possible models
which are based on the model from the previous step. That means, for j = 1, . . . , p, a
group of former zero coefficients from βj1, ..., βjk may become nonzero, alternatively a
former cluster of nonzero coefficients may be split. Select the model with minimum
AIC/BIC.

3. Stop if the (minimum) AIC/BIC does not decrease anymore.
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Figure 1: Coefficient paths for binary model (13) assuming predictor (14) – with adaptive weights (left) and
the standard penalty (right).

4 Numerical Experiments
The proposed methods are compared in simulation studies in terms of prediction accuracy,
selection and clustering performance. For illustration we start with a simple example.

4.1 An illustrative example

We assume a model with two covariates x1, x2 and one effect modifier u, which is a nomi-
nal variable with categories 1, 2 and 3. It possibly impacts all covariates plus the intercept.
Concretely we have predictor

ηtrue = β0 + x1β1(u) + x2β2
= β0 + x1 ( β11I(u = 1) + β12I(u = 2) + β13I(u = 3) ) + x2β2
= 0.2 + x1 ( 0.3I(u = 1) + 0.7I(u = 2) + 0.7I(u = 3) ) + x2 · −0.5

(13)

That means, while the intercept and x2 do not depend on u, covariate x1 varies with categories 1
and 2/3 of u. We generate n = 400 observations. Covariates x1 and x2 are independently drawn
from an uniform distribution U(0, 2), the effect modifier u from a multinomial distribution with
probabilities 0.3, 0.4, 0.3 for categories 1, 2 and 3. The response is binary and we assume a
logistic regression model with natural link function. When modeling, all coefficients are allowed
to vary with effect modifier u, i.e., we have

ηmodel = β0(u) + x1 · β1(u) + x2 · β2(u). (14)

Figure 1 shows the resulting coefficient paths for penalized estimation and subject to penalty
parameter λ. In the left panel, the penalty is adaptive, weights are fixed (see equation (9)
with b0 = 0, φrs(j) = φr(j) = 0.5). λ is scaled as 1− λ/λmax, where λmax refers to the smallest
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Response Number of Number of Noise Number of Observations
Covariates Variables n = 200 n = 600

Binomial 2 2 b22.200 b22.600
6 b26.200 b26.600

6 2 b62.200 b62.600
6 b66.200 b66.600

10 2 b102.200 b102.600
6 b106.200 b106.600

Poisson 2 2 p22.200 p22.600
6 p26.200 p26.600

6 2 p62.200 p62.600
6 p66.200 p66.600

10 2 p102.200 p102.600
6 p106.200 p106.600

Table 1: Overview on simulation settings: without prior knowledge on the coefficients’ structure the type of
response and the number of covariates/added noise variables/observations is systematically varied.

value of penalty parameter λ that already gives maximal penalization, i.e., the smallest λ that
sets all penalized coefficients to zero (up to a certain accuracy – here, to two digits). Hence,
in Figure 1 the ML-estimate is seen at the right end. The left end relates to maximal penal-
ization, here only the intercept remains non-zero. Black curves correspond to the intercept’s
coefficients, red ones to truly varying covariate x1, green ones to covariate x2. The paths show
how clustering/selection of coefficients is done subject to penalty parameter λ: Even slight pe-
nalization discovers the intercept to be non-varying, coefficients of covariate x1 are fused such
that only category 1 makes a difference. Concerning covariate x2 coefficients should be fused to
one non-varying scalar. But stronger penalties are necessary to make this happen. The doted
line marks the optimal model in terms of 5-fold-cross-validation with the predictive deviance
Dev(y, µ̂) as loss function (λCV = 0.76). It shrinks coefficients slightly – in return all but one
relevant structures are identified. Absolute deviation to the true coefficients is small.
When the standard penalty (4) is used instead, results change: while coefficients paths remain
basically the same in structure, the standard penalty slows down fusion and selection of coef-
ficients (see Figure 1, right panel). To reach the same effects stronger penalization is needed
– the value of λ yielding maximal penalization is roughly doubled: λmax = 17.3 (was 8.93 be-
fore). Consequently cross-validated λCV is 2.25 now. More importantly, however, performance
is worse than with adaptive weights: in the model chosen by cross-validation (see dotted line),
coefficients of covariate x1 are not fused; coefficients for categories 1, 2 and 3 of effect modifier
u remain autonomous.

4.2 Simulation Settings

For further investigations we extend the illustrative example. Various model features are sys-
tematically varied – such that the proposed penalty with all possible weights can be compared
to the ML-estimate and model selection via AIC/BIC in different situations. Concretely we
consider binomial and Poisson response, the number of influential covariates is either 2, 6 or
10, we add either 2 or 6 non-influential noise variables. Training data sets contain n = 200 and
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Method Two Noise Variables
n = 200 n = 600
(b26.200) (b26.600)

MSE MSEP MSE MSEP
ML 0.76 (2.23) 742.5 (195.4) 0.09 (0.06) 1567 (72.4)
standard, ψ fixed 0.11 (0.03) 541.4 (33.8) 0.04 (0.01) 1502.4 (49.9)
standard, ψ flexible 0.12 (0.04) 541.5 (33.6) 0.05 (0.02) 1507.3 (49.3)
adaptive, φ fixed 0.49 (2.31) 601.6 (160.1) 0.03 (0.02) 1485.2 (56.4)
adaptive, φ flexible 0.59 (4.35) 596.4 (167.1) 0.03 (0.01) 1472.6 (53.2)
AIC 0.57 (21201.08) 720.6 (573.6) 0.06 (0.04) 1539.8 (64.3)
BIC 0.16 (1848.4) 554.2 (229.5) 0.04 (0.04) 1485.8 (55.3)

Table 2: Observed errors of parameter estimates (MSE) and predictions accuracy in terms of the deviance
(MSEP) for settings b26.200 and b26.600. Estimated standard deviations of MSE and MSEP are given in
parentheses.

n = 600 observations, test data sets n = 600, respectively n = 1800 observations (see Table 1).
All covariates are continuous and independently drawn from an uniform distribution U [−2, 2].
All scenarios are characterized by a quite realistic assumption – namely that there is a known
effect modifier. It is nominal, has four categories 1, . . . , 4 and is independently drawn from a
multinomial distribution with probability 0.25 per category. However, we do not know which
coefficients are varying. As in the illustrative, example we assume to have no prior knowledge
about the coefficients’ structure. In settings b26.200 and b26.600, for example, the true linear
predictor is

ηtrue = β0(u) + x1β1(u) + x2β2(u)
= ( 0.7 I(u = 1) + 0.7 I(u = 2) + 0 I(u = 3) + 0 I(u = 4) ) +

x1 ( 1 I(u = 1) − 1.5 I(u = 2) − 1.5 I(u = 3) + 0.5 I(u = 4) ) +
x2 ( 0 I(u = 1) + 1 I(u = 2) + 2 I(u = 3) − 3 I(u = 4) )

Some coefficients are varying across all levels of u, some only partly, some are partly zero –
that is, true coefficients are diversified. When fitting the model, however, all coefficients are
allowed to vary with effect modifier u. Furthermore, we add six, non-influential noise variables
that shall be detected, such that the assumed predictor is

ηmodel = β0(u) + x1 · β1(u) + x2 · β2(u) + n3 · β3(u) + n4 · β4(u) +

n5 · β5(u) + n6 · β6(u) + n7 · β7(u) + n7 · β7(u).

This model is estimated with the different strategies for model selection that we discussed.
That means, we consider various penalized estimates: with weight ψ fixed at 0.5, with flexible
weight ψ, with adaptive weights and fixed φrs(j), φr(j) (φrs(j) = φr(j) = φ = 0.5), with adaptive
weights and flexible φrs(j), φr(j) (φrs(j) = φ, φr(j) = 1 − φ). In addition, we consider forward
selection strategies with criteria AIC andBIC, and the ML-estimate. For ML-estimates neither
regularization nor model selection is required. They are the benchmark for all other estimates’
performance. Penalty parameter λ is chosen by 5-fold cross-validation. If weights ψ and φ are
flexible, they are cross-validated, too. For computation, the LQA-algorithm is employed. For
each setting, all models are computed 50 times in order to make result reliable.
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Figure 2: Boxplots of scaled squared errors and deviances for setting b26.600 (binomial response, 2 covariates,
6 noise variables, n = 600); medians mark estimates of MSE and MSEP.

4.3 Results

To evaluate the results we analyze estimation and prediction accuracies, and check whether
the right coefficients are fused and/or selected, that is, the clustering and selection perfor-
mance. To assess parameter estimation, we compute the coefficients’ mean squared error for
each simulation run:

ˆMSE(β, β̂) = Ê

(
1

q

q∑

j=1

(
βj − β̂j

)2
)
,

where q =
∑p

j=0 kj, β denotes the vector of true coefficients, β = (βT0 , . . . , β
T
p )T , and β̂ its

estimate. In order to obtain stable estimates of the MSE we compute median values over all 50
simulations. To judge the prediction accuracy, the mean predictive deviance Dev(y, µ̂) is con-
sidered, referred to as MSEP. Again quantities of models 1, . . . , 50 are averaged by the median.
To keep things simple, here, results are represented for settings b26.200 and b26.600 only. Ta-
ble 2 lists MSE, MSEP and their standard deviations for all estimates of these two settings. It is
seen that penalized approaches perform better than the ML-estimates. Considering their stan-
dard deviations points out how penalties stabilize estimation, while forward selection strategies
suffer from immense variability. In addition, Table 2 shows how the standard and the adaptive
penalty differ: for settings b26.200 and setting b26.600, standard deviations of the MSE of
the standard approaches (standard, ψ fixed and flexible) are relatively small; while standard
deviations of the MSE of the adaptive approaches (adaptive, φ fixed and flexible) are large
when the number of observations is small (n = 200, left side in Table 2); in contrast, standard
deviations are small for n = 600. This is due to the construction of the adaptive weights, which
are the inverse of the ML-estimates. For few observations the ML-estimate is relatively bad
and so are the adaptive weights. AIC/BIC based forward selection strategies without shrink-
age effect perform also better than the ML-estimate, but for n = 200 they are very unstable
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Figure 3: False positive rates (light gray, FPR) and false negative rates (dark gray, FNR) for setting b26.600
(binomial response, 2 covariates, 6 noise variables, n = 600); the left figure relates to clustering, the right side
to selection performance.

(impressively documented by the observed standard deviations of the MSE, method “AIC”).
Settings with more/less variables give approximately equivalent results: Adaptive penalization
fails when ML-estimates are bad. On average, forward selection strategies produce similar re-
sults as penalized approaches but their variation is big, especially in prediction. If so, flexible
weights (methods “standard, ψ flexible” and “adaptive, φ flexible”) seem to increase performance
only little and require two-dimensional cross-validation. Hence, for binary response, adaptive
penalization with fixed weights is recommended when the sample size is large.
For count data results are very similar. The MSE and the MSEP of penalized models are
smaller than those of the ML-estimate. Forward selection strategies suffer from a higher vari-
ability but the effect seems to be smaller. In contrast to binary response, adaptive approaches
perform already better than standard penalties when n = 200. Hence, for Poisson-distributed
response, adaptive weights can be recommended for smaller sample sizes. We advise against
flexible weights.
In addition, we evaluate the clustering and selection performance. A model selection strategy
should exclude non-influential covariates, especially pure noise variables. That is, truly zero
coefficients should not be selected. Truly non-varying coefficients should be fused. That is their
differences should be set to zero.
To judge clustering and selection performance we consider false negative (FNR) and false pos-
itive rates (FPR). False positive means that a truly zero difference of coefficients belonging
to the same predictor is fitted as non-zero, or that a truly zero coefficient is set to non-zero,
respectively. False negative means that truly non-zero values are estimated to be zero. With #
denoting “the number of” we have

FPRselection =
#(truly zero coefficients set to non-zero)

#(truly zero coefficients)
and
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FNRselection =
#(truly non-zero coefficients set to zero)

#(truly non-zero coefficients)
.

FPRclustering and FNRclustering are defined analogously. If the denominator of one of these frac-
tions equals zero the value is understood as missing. For ML-estimates false positive rates will
always be one, false negative rates always zero.
Previous results favored penalized estimation with adaptive weights for exemplary setting
b26.600. For less observations the standard penalty performed better. Figure 3 shows false
positive and negative rates for setting b26.600. On the left rates for clustering, on the right
rates for selection are shown. FNR are naturally quite low. Overall it stands out that forward
selection strategies perform well. Apart from AIC and BIC, the approach with the adaptive
penalty and fixed weights scores the best when considering clustering performance. Having the
high variability of forward selection strategies in mind and looking at both clustering and se-
lection, the previous recommendation (adaptive penalty, fixed weights) still holds. In this case
stable estimation and a good clustering/selection performance are balanced. For count data
former results are strongly supported, too: Employing an adaptive penalty with fixed weights
decreases FPR by nearly 50%, for both n = 200 and n = 600. Rates are in the range of forward
selection strategies while being stable. Overall for count data truly zero/non-zero coefficients
and their differences are fairly well detected.

5 Application to Real-World Data

5.1 Reducing Mortality after Myocardial Infarction

In this first example we consider a 22-center clinical trial of beta-blockers for reducing mor-
tality after myocardial infarction. The dataset is for example described in Aitkin (1999) and
available in R add-on package flexmix (Grün and Leisch, 2008). For each center the number of
deceased/successfully treated patients in control/test groups is known. We are going to model
the mortality rate depending on the centers and the treatment groups; that means the response
y is binomial. The data has been analyzed by different authors: Aitkin (1999) modeled the
effect of the study centers by random intercepts. That is, the predictor is defined as

ηij = β0 + b0i + βT · Treatmentij, i = 1, . . . , 22 Centers, j ∈ {control, test},

where b0i is normally distributed, b0i N(0, σ2). The corresponding marginal likelihood is nu-
merically approximated by a Gauss-Hermite quadrature with four mass points. One obtains
the treatment effect βT and estimates b̂0i. However, centers are not clustered.
Grün and Leisch (2008) try to find similar centers with discrete mixture models. They use the
predictor

ηi = β0m + βT · Treatmenti, i = 1, . . . , 44 Cases,

where m ∈ {1, . . . , K} refer to the partition of the 22 centers into K groups. The predictor
contributes to the mixture likelihood

L(β0, βT , π; y) =
44∏

i=1

(
K∑

m=1

πmfm(ηi,Ψm)

)
,

with β0 = (β01, . . . , β0k)
T and with π = (π1, . . . , πK)T denoting the priori probabilities of the

components (
∑K

m=1 πm = 1, πm > 0 ∀m). Functions fm(·) denote the components’ densities;
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Figure 4: Coefficient paths beta-blocker data.

for each component a simple exponential family with parameters Ψm is assumed. For estimation
an iterative EM-algorithm (Dempster et al., 1977, Leisch, 2004) withK = 3, respectivelyK = 5,
components is employed. Hence, the centers are clustered, but the number of clusters has to
be specified in advance.
To overcome these problems, we assume a varying intercept model with predictor:

ηi = β0(Centeri) + βT · Treatmenti, i = 1, . . . , 44 Cases. (15)

The nominal information about the center is the effect modifier. In analogy to Aitkin (1999)
and Grün and Leisch (2008), the explanatory covariate “Treatment” is not modified and effect
coded. For estimation the penalized likelihood (2) with adaptive weights (11) and (12) is
employed. As suggested in Section 4, weighting parameter ψ is fixed at 0.5. Hence, the centers’
possible diversity is considered. Due to penalized estimation the intercept-coefficients of several
centers can be merged – clusters of similar centers are detected. As penalty parameter λ is
cross-validated, quantity and quality of clusters are determined by the data.
Figure 4 gives the resulting coefficient paths for model (15). There seem to be three, respectively
five different types of basically different study centers. Cross-validation yields λCV = 0.7 and
is marked by the dotted line in Figure 4. At this point the main clusters are detected, while
subtle distinctions between the centers are still apparent. Table 3 gives the resulting coefficients.
Results are compared to the random intercept model of Aitkin (1999) and the finite mixture
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Random Varying Discrete Mixture
Coefficients ML Intercept Intercept Model

Model Model 5 Cluster 3 Cluster
Center- β0,15 -1.4782 -1.5519
specific β0,12 -1.5644 -1.6052
Intercept β0,16 -1.5999 -1.6493

-1.71 -1.5687
-1.7388

β0,20 -1.6038 -1.6523
β0,7 -1.8832 -1.8917 -1.92 -1.9024
β0,17 -2.0801 -2.1065
β0,9 -2.0910 -2.1079

-2.36

β0,8 -2.2083 -2.2132
β0,3 -2.2370 -2.2574
β0,21 -2.2832 -2.2859
β0,2 -2.3059 -2.3097

-2.3224

β0,6 -2.3113 -2.3162
-2.37 -2.3793

β0,10 -2.3840 -2.3832
β0,11 -2.4278 -2.4239
β0,1 -2.4798 -2.4145
β0,5 -2.5015 -2.4881
β0,4 -2.5189 -2.5151

-2.38 -2.4589

β0,14 -2.7862 -2.7670 -2.71
β0,18 -3.0433 -2.8805
β0,22 -3.0610 -3.0123 -2.86 -2.9632 -2.9628
β0,13 -3.1155 -3.0022
β0,19 -3.4942 -3.1541 -2.87

Treatment βT -0.1305 -0.1305 -0.13 -0.1295 -0.1291

Table 3: Resulting estimates of all considered methods for the beta-blocker data. Intercept-coefficients are
ordered such that their structure becomes obvious. “ML” stands for the ML-estimate of a GLM containing an
intercept and effect coded covariates Center, Treatment; to keep things comparable, that linear combination
of the coefficients that corresponds to the other models is shown. Presented intercept-coefficients of the mixed
model are the sum of the fixed and the random effects. Horizontal lines denote clusters of coefficients.

model of Grün and Leisch (2008) with adjusted coding. It is seen that the obtained clusters
of the varying intercept model show the same structure as finite mixture models. The random
intercepts show the same profile as our results, but no clusters. All estimates have the same
scale. The treatment effect is detected in all models and – this is remarkable – of approximately
the same size. But only the varying coefficient model combines data driven clustering with stable
results. When weighting parameter φ and penalty parameter λ are cross-validated, we obtain
nearly the same results; order and clusters of coefficients are the same. Note that predictor (15)
in the varying intercept model corresponds to a GLM with penalized nominal covariates Center
and Treatment. However, the representation as varying coefficient model makes interpretation
easier. It offers an attractive alternative to finite mixture models.
One may also wonder whether the treatment effect does depend on the according study center,
too. For this reason we consider a second model with predictor

ηi = β0(Centeri) + βT (Centeri) · Treatmenti, i = 1, . . . , 44 Cases (16)

and the same assumptions as above. As there is only one covariate and one effect modifier, which
are both categorial, predictor (16) corresponds to a GLM with covariates Center, Treatment
and their interaction. This is a saturated model. There are as many free parameters as
observed Center-Treatment constellations. Hence, observed mortality is perfectly replicated by
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Variable Description
cesarean Type of delivery(0: vaginal, 1: Cesarean), response
term Term of pregnancy in weeks form the last menstruation
c.height Height of child at birth in centimeter
c.weight Weight of child at birth in gram
m.age Age of mother before pregnancy in years
m.height Height of mother in centimeter
m.bmi BMI of mother before pregnancy (mass (kg)/(height (m))2)
m.gain.w Gain in weight of mother during pregnancy in kg
m.prev Number of previous pregnancies
ind Was the labor induced? (0: no, 1: yes)
memb Did the membranes burst before the beginning of the throes?

(0: no, 1: yes)
rest Was a strict bed rest ordered to the mother for at least one

month during the pregnancy? (0: no, 1: yes)
cephalic Was the child in cephalic presentation before birth? (0: no, 1: yes)
t Year of birth, effect modifier

Table 4: Short description of response, considered covariates and the effect modifier for birth data.

the model. In this case, only regularization results in a model that can be interpreted. Cross-
validation of λ (and φ) fuses βT (Centeri) to one constant coefficient. The varying intercept
β0(Centeri) shows the same clusters as for predictor (15); such that the “fixed” treatment effect
assumed in Aitkin (1999) and Grün and Leisch (2008) is supported.

5.2 Cesareans among Francophone Mothers

In a second example we analyze a data set presented by Boulesteix (2006). It contains various
variables related to the pregnancy and delivery of 775 women recruited on French-speaking
websites and is available in R add-on package catdata (Tutz and Schauberger, 2010). We
are interested in the type of delivery, in whether birth was given vaginally or by means of
a Cesarean. Cases were observed between 1983 and 2004, i.e., in a period of more than 20
years. In this period medical standards changed. Modeling the type of delivery requires to
consider time, and even more important, it requires to consider how various aspects eventually
developed over time. Due to the number of observations per year, we focus on the period from
2001 on and investigate a total of 603 deliveries by a varying coefficient model with ordinal
effect modifier time t. The response is binary indicating the type of delivery; 0 stands for a
vaginal birth, 1 for a Cesarean. The model considers in principal all covariates which were
available and meaningful for all women. Covariates which are postnatal (e.g. “Days that the
child spent in intensive care”), that refer to a subset of women only (e.g. “Was the realized
Cesarean planned?”) or that are observed barely (e.g. “Head circumference of child at birth”),
are omitted. As their terms and delivery circumstances differ immensely, multiple births are
excluded, too. For better interpretation we consider the womens’ height and their body mass
index (BMI) instead of their height and their weight. Details on all employed covariates are
found in Table 4.
So far, we assumed continuous covariates x1, . . . , xp. Here some covariates are binary and effect
coded. However, as effect coded binary covariates result in one-dimensional covariates, the
proposed penalty can be applied. As we have no prior knowledge about the model’s structure,
effect modifier t potentially impacts all coefficients. Compared to the first example, there are
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Figure 5: Coefficient path for the birth data when weights are adaptive and parameter ψ is fixed. All covariates
listed in Table 4 are taken into account. All coefficients including the intercept are assumed to vary over time
t. The dotted line marks the cross-validated choice of penalty parameter λ.

much more covariates. We are not only interested in the fusion of some parameters belonging to
one varying coefficients βj(t), but as well in the selection of coefficients βj(t). Hence, we do not
compare penalized estimation and cluster methods. Instead we consider the forward selection
strategies presented in Section 3 as alternative options. Figure 5 shows the resulting coefficient
path when weights are adaptive and parameter ψ is fixed. In the left panel we see the whole
path, while the right panel focuses on that part where coefficients are fused and selected. The
paths’ very right end stands for λ = 0. In this case the range of coefficients is pretty large. Pure
ML-estimation seems to be unstable. For instance, in 2001 we observe an intercept larger than
80. To obtain a stable model, regularization is required. Penalty parameter λ is cross-validated
and set to 1.79. That is small compared to the minimal value of λ giving maximal penalization.
But it stabilizes estimation and shrinks the unstable coefficients enormously. Table 5 gives
the exact results for all considered methods. To keep things simple, excluded coefficients are
omitted. Coefficients, that are found to be non-varying, that is to be only one constant, are
represented by that constant coefficient only. We see that forward selection strategies give very
sparse estimates. Only three (AIC), respectively one (BIC) coefficient are partly varying.
ML-estimates argue for a strong dependency on time, see for example the intercept for the year
2001, but forward selection strategies ignore it. In contrast, penalized estimation selects more
coefficients. All selected coefficients vary over time. For most coefficients we see a clear trend
(for example βcephalic). The time-varying intercept reflects the effect in year 2001 and how it
shrinks over time. At the same time estimation is stable and trends of the other coefficients are
clearly separated from this effect in 2001. Penalized estimation stabilizes estimation and takes
the data’s structure into account.
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Coefficients Penalized estimation Forward Selection AIC Forward Selection BIC
t t t

2001 2002 2003 2004 2001 2002 2003 2004 2001 2002 2003 2004
β0(t) 21.94 10.45 10.45 5.79 14.78 11.53
βterm(t) 0.58 0.58 -0.15 -0.15 -0.16
βc.height(t)
βc.weight(t)
βm.age(t) -0.21 0.06 0.06 0.06 0.08
βm.height(t) -0.33 -0.23 -0.02 -0.02 -0.07 -0.07
βm.bmi(t) 0.04 0.01
βm.gain.w(t)

βm.prev(t) -4.06 -4.06 -0.94 -0.94 -1.31 -1.15
βind(t) 2.01 -0.09 0.62 0.10 0.65 0.65 0.65 0.25 0.48
βmemb(t) -0.32 -0.33 -0.51 -0.51 -0.45 -0.45
βrest(t) -0.71 -0.71 -0.39 -0.39 -0.39
βcephalic(t) -4.40 -3.18 -0.67 -1.51 -1.52

Table 5: Estimates for all methods fitted to the birth data. Coefficients that are excluded are omitted. Co-
efficients, that are found to be non-varying, that is to be only one constant, are represented by that constant
coefficient only.

6 Special Case: Categorial Effects
So far we considered categorial effect modifiers in general. We did not touch categorial effects,
which are a special case of categorial effect modifiers. One obtains a coded categorial effect,
when the effect modifier uj is categorial and the modified covariate xj is a constant vector. We
have for example 1 ·βj(uj) = 1 ·∑kj

r=1 βjrI(uj = r). Penalization remains the same. Statements
made for penalized varying coefficients hold for penalized categorial effects, too. Especially
large sample properties can be transferred. However, the devil is in the details: unlike usual
coding, the obtained coding does not contain a reference category. This implies at least two
things: the design matrix is not of full rank and interpretation changes. As estimation is
penalized and the tuning parameter λ will be cross-validated in most cases, the first aspect
can be neglected. Concerning interpretation, penalized estimates can be transformed, such
that they correspond directly to usual coding of categorial effects. Note, however, the penalty
we use here is not designed for a reference category. All categories of a categorial effect are
penalized in the same way. For sufficiently strong penalization, all coefficients are set to zero.
Hence, transformed coefficients are shrunken. In contrasts to Gertheiss et al. (2012), parts of
the transformed intercept are based upon penalized coefficients. Apart from these details, there
are no restrictions. Thus, large sample theory for penalized categorial effects is generalized to
GLMs.

7 Summary and Discussion
We considered categorial effect modifiers in GLMs. By nature, categorial effect modifiers re-
sult in much more coefficients than in usual models. When selecting a model, one wants to
know which covariates impact the response, and if so, how. To answer these questions, we
propose two different approaches: One the one hand we extended the ideas of Tibshirani et al.
(2005) to varying-coefficient models with categorical effect modifiers. Thus, we are able to
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simultaneously identify varying coefficients and select covariates. The penalty adjusts for the
different amount of information in nominal and ordinal effect modifiers. In accordance with
Zou (2006), an adaptive version of the proposed penalty was shown to be asymptotically nor-
mal and consistent, with the speed of convergence being O(n−1/2). These results remain valid
when scale parameter φ of the exponential family is estimated and plugged-in, which allows
for quasi-likelihood approaches. Similar results can be derived for refitting procedures. On
the other hand, we investigate a modified forward selection strategy: start with a null-model
and add one degree of freedom in each iteration until a chosen criterion is not improved any-
more. The degrees of freedom are defined as in Tibshirani et al. (2005). As in many other best
subset selection strategies, we considered AIC and BIC as criteria. Numerical experiments
suggested both proposed methods to be highly competitive. In systematically altered settings,
we compared penalized approaches, forward selections strategies and the ordinary ML-estimate.
Penalized estimates performed distinctly better than unpenalized ML-estimates. Forward se-
lection strategies employing information criteria AIC or BIC challenge the proposed penalty.
With the former approaches, estimation accuracy is partly better, and mostly more truly zero
(differences) of coefficients were detected. However, forward selection strategies suffer from
immense variability; such that they do not seem to be a real alternative.
Lasso-type penalties as employed here require to solve not continuously differentiable optimiza-
tion problems. Fan and Li (2001) proposed a local quadratic approximation for such problems.
Ulbricht (2010) specified a more concrete form for quite general penalties, the so called LQA-
algorithm. We adopt this algorithm for the proposed penalty effectively. All functions will be
available in R add-on package gvcm.cat.
In practice, varying coefficient models are highly relevant. We applied the proposed methods
to a clinical trial on reducing mortality after myocardial infarction. We were interested in how
diverse study centers are. Penalized estimation turned out to be a stable alternative to finite
mixture models. Quantity and quality of clusters was detected data-driven. We observed the
same coefficient profile as for a random intercept model. In addition Cesareans among fran-
cophone mothers were analyzed. We were interested in how the influence of various medical
indicators changed over time. The data is quite challenging, standard approaches fail. However,
penalized estimates give a coherent trend.
Especially in medicine time plays an important role as effect modifier – typically in longitudinal
studies, where each case is monitored repeatedly. Hence, observations are no longer indepen-
dent. To consider individual dependencies, the method’s scope can be enlarged to marginal
models (Liang and Zeger, 1986). Moreover, concepts to combine the proposed penalty with
working correlation matrices can be developed. The proposed penalty can be further gener-
alized, too: Varying coefficients can depend on more than one effect modifier. Already with
two effect modifiers, the scope of functions βj(·) widens enormously. Penalties and selection
strategies have to be modified. In this paper we assumed continuous covariates x1, . . . , xp. But
of course covariates can be categorial, too. Then there are even more coefficients, there is an
even stronger demand for regularization. In addition, this case corresponds to two categorial
covariates and their interaction in a usual GLM. Hence, it is even more important to find
strategies to fuse and/or select coefficients.
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Appendix

Proof of Proposition 1

If β̂ minimizes Mpen
n (β) (2) with Jn(β) as defined by (3), (4) and (5), then it also minimizes

Mpen
n (β)/n. The ML-estimate β̂ML minimizesMn(β) = −ln(β), respectivelyMn(β)/n. Since

λ is fixed,Mpen
n (β̂)/n

P→Mn(β̂ML)/n andMpen
n (β̂)/n

P→Mn(β̂)/n,Mn(β̂)/n
P→Mn(β̂ML)/n

holds as well. Since β̂ML is the unique minimizer of Mn(β)/n, and Mn(β)/n is convex, we
have β̂ P→ β̂ML; and consistency follows from consistency of the ML-estimate β̂ML, under
assumptions given for example by Fahrmeir and Kaufmann (1985).

Proof of Proposition 2

Due to the additivity of arguments a predictor of the following form can be assumed without
loss of generality:

ηi = β0(u) + x1β1(u) + . . .+ xpβp(u),

i.e., only one effect modifier u is assumed.
In addition, let Z denote the design matrix given by Z = (Z0, . . . , Zp), where

Zj =




x1jI(u1j = 1) · · · x1jI(u1j = kj)
... . . . ...

xnjI(unj = 1) · · · xnjI(unj = kj)


 .

(a) Normality

(i)
Redefine optimization problem (2) as

argminβ Ψn(β),

where Ψn(β) = −ln(β) + λn√
n
Jn(β). Jn(β) denotes the penalty term. Unlike before tuning

parameter λ is divided by factor
√
n, in turn the penalty Jn(β) is multiplied by the same

factor:

Jn(β) =
√
n

(
p∑

j=0

∑

r>s

wrs(j)|βjr − βjs|+
p∑

j=1

k∑

r=1

wr(j)|βjr|
)
.

The log-likelihood is defined as

ln(b) =
n∑

i=1

yiϑi(µi)− b(ϑi(µi))
ϕi

=
n∑

i=1

yiϑi(h(zTi β))− b(ϑi(h(zTi β)))

ϕi
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(that is ln(b) is determined by a simple exponential family where ϑi ∈ Θ ⊂ R is the natural
parameter of the family depending on expectation µi; ϕi is a scale or dispersion parameter,
b(·) and c(·) are specific functions corresponding to the type of the family. For given ϕi, one
assumes Θ to be the natural parameter space, i.e., the set of all ϑi satisfying 0 <

∫
exp(yiϑi/ϕi+

c(yi, ϕi))dyi < ∞. Then Θ is convex, and in the nonempty interior Θ0 all derivatives of b(ϑi)
and all moments of yi exist, see Fahrmeir and Tutz, 2001). Hence it is equivalent to solve

argminβ Vn(β) = argminβ 2 (Ψn(β)−Ψn(β∗))

with

Vn(β) = −2 (ln(β)− ln(β∗)) + 2
λn√
n

(Jn(β)− Jn(β∗)) = −2 (ln(β)− ln(β∗)) + 2
λn√
n
J̃n(β).

(ii)
Following Bondell and Reich (2009) closely, J̃n(β) with respect to b is considered;
with b =

√
n(β − β∗) and β = β∗ + b/

√
n, where β∗ denotes the true coefficient vector:

J̃n(β) = Jn(β)− Jn(β∗)

⇒ J̃n(b) = Jn(b)− Jn(0) =

=

p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣ +

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣

−
(

p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |
∣∣β∗jr − β∗js

∣∣ +

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

∣∣β∗jr
∣∣
)

=

p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

+

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

Distinction of cases (1) β∗jr 6= β∗js and β∗jr 6= 0, i.e., if θ∗i 6= 0.
As given in Zou (2006), we will consider the limit behavior of (λn/

√
n)J̃n(b). If β∗jr 6= β∗js, then

|β̂ML
jr − β̂ML

js |
P→ |β∗jr − β∗js|

and √
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

= (bjr − bjs)sgn(β∗jr − β∗js)

(if n large enough); and similarly, if β∗jr 6= 0, then

|β̂ML
jr |

P→ |β∗jr|
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and √
n

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

= bjrsgn(β∗jr)

(if n large enough). Since by assumption φrs(j)(n)→ qrs(j) and φr(j)(n)→ qr(j) (0 < qrs(j), qr(j) <
∞) and λn/

√
n→ 0, by Slutsky’s theorem, we have

λn√
n

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

P→ 0

and
λn√
n

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

P→ 0

respectively. That means, if θ∗i 6= 0, we have λn√
n
J̃(b)

P→ 0.

Distinction of cases (2) β∗jr = β∗js or β∗jr = 0, i.e., if θ∗i = 0
Here it holds that

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

= |bjr − bjs|

and √
n

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

= |bjr|

Moreover, due to the consistency of the ML-estimates we have

β̂ML − β∗ = F−1n (β∗)sn(β∗) +O(n−1),

where O denotes the Landau notation, Fn(β∗) = O(n) and sn(β∗) = O(n1/2). Therefore
sn(β∗)/Fn(β∗) < c · n−1/2 (c is some constant), sn(β∗)/Fn(β∗) = O(n−1/2) and β̂ML − β∗ =
O(n−1/2) (McCullagh, 1983). As a conclusion, it holds that

limn→∞P
(√

n|β̂ML
jr − β̂ML

js | ≤ λ1/2n

)
= 1

or
limn→∞P

(√
n|β̂ML

jr | ≤ λ1/2n

)
= 1

respectively, since λn →∞ by assumption. Hence,

λn√
n

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

P→∞

or
λn√
n

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

P→∞

if b∗jr 6= 0, respectively b∗jr 6= b∗js. That means, if for any r, s, j with β∗jr = 0 (j > 0) or β∗jr = β∗js

(j ≥ 0), bjr 6= 0 or bjr 6= bjs, respectively, then we have λn√
n
J̃(b)

P→∞.
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(iii)
Before we have a look at −2 (ln(β)− ln(β∗)) remember that an expansion of usual ML-equations
s(β) = 0 about β∗ gives

sn(β∗) =
∂2ln(β)

∂β∂βT
|β=β∗(β − β∗)

Hence in usual GLMs it holds that

β − β∗ =
∂2ln(β)

∂β∂βT
|β=β∗sn(β∗) = F−1n (β∗)sn(β∗) +Op(n−1)

Multiplying both sides by n1/2, using Fn(β∗)/n
n→∞→ F (β∗) and n−1/2sn(β∗)

d→ N(0, F (β∗)),
one obtains

n1/2(β̂n − β∗) d→ N(0, F (β∗)−1)

in usual GLMs (McCullagh, 1983).
Back to the given varying-coefficient model, consider now −2 (ln(β)− ln(β∗)) instead of Vn(β) =
−2 (ln(β)− ln(β∗)) + 2 λn√

n
J̃n(β). An expansion of ln(β) about β∗ gives

−2 (ln(β)− ln(β∗)) = (β − β∗)T ∂
2ln(β)

∂β∂βT
|β=β∗(β − β∗)

Applying ∂2ln(β)
∂β∂βT

|β=β∗(β − β∗) = sn(β∗) for −2 (ln(β)− ln(β∗)) as well one obtains

−2 (ln(β)− ln(β∗)) = (β − β∗)T ∂
2ln(β)

∂β∂βT
|β=β∗(β − β∗) = sTn (β∗)F−1n (β∗)sn(β∗).

Following Bondell and Reich (2009), let θC denote the vector of θ-entries which are truly non
zero, i.e., from C, and let βC be the subset of entries of θC which are part of β. By contrast
θCc denotes the vector of θ-entries which are truly zero and therefore not from C but from Cc;
analogously to βC, βCc is defined as the subset of entries of θCc which are part of β.
Since n → ∞ and applying Fn(β∗)/n

n→∞→ F (β∗) one more time we have Vn(β) → V (β) for
every β, where

V (β) =

{
1
n
sTn (βC)F−1(βC)sn(βC) if θCc = 0

∞ otherwise

and where sn(βC) are regular ML-equations. Therefore it holds that n−1/2sn(β∗C)
d→ N(0, F (β∗C))

and n−1/2(βC − β∗C)
d→ N(0, F (β∗C)

−1) like mentioned above.
Since the considered minimization problem is convex, the unique minimum of V (β) is (βML

C , 0)T

and we have
β̂nC → βML

C

and
β̂nCc → 0.

Hence, we have as well
n−1/2(β̂nC − β∗C)

d→ N(0, F (β∗C)
−1)
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Via a reparametrization of β as, for example, β̌ = (β̌T0 , ..., β̌
T
p )T , with β̌j = (βjr−βj1, ..., βjr, ..., βjr−

βjk)
T , i.e., changing the subset of entries of θ which are part of β, asymptotic normality can be

proved for all entries of θC.

(b) limn→∞P(Cn = C) = 1
To show consistency it has to be proved that limn→∞P(J ∈ Cn) = 1 if J ∈ C and that
limn→∞P(J ∈ Cn) = 0 if J /∈ C, where J denotes a triple of indices (j, s, r) or pair (j, r).

(i)
limn→∞P(J ∈ Cn) = 1 if J ∈ C follows from part (a).

(ii)
A similar proof is found in Bondell and Reich (2009). Let Bn denote the (nonempty) set of
indices J which are in Cn but not in C. Without loss of generality we assume that the largest
θ̂-entry corresponding to indices from Bn is β̂lq > 0, l ≥ 0. If a certain difference β̂lr − β̂ls is
the largest θ̂-entry included in Bn we just need to reparameterize βl in an adequate way by β̃l
as given above. Since all coefficients and differences thereof are penalized in the same way this
can be done without any problems.
Moreover, we may order categories such that β̂l1 ≤ . . . ≤ β̂lz ≤ 0 ≤ β̂l,z+1 ≤ . . . ≤ β̂lk. That
means, estimate β̂ = argminβ Ψ(β) = argminβ − l(β) + λn√

n
J(β) like defined in (a) is equivalent

to
argminB − ln(β) + λn

∑

j

Jj(β)

with

B = {β : β0,1, . . . , βl−1,k, βl,1 ≤ . . . ≤ βl,z ≤ 0 ≤ βl,z+1 ≤ . . . ≤ βl,k, βl+1,1, . . . , βp,k}

Jj(β) =
∑

r>s

φrs(j)(n)

|β̂ML
jr − β̂ML

js |
|βjr − βjs| + I(j 6= 0)

k∑

r=1

φr(j)(n)

|β̂ML
jr |

|βjr| , j 6= l

and

Jl(β) =
∑

r>s

φrs(l)(n)

|β̂ML
jr − β̂ML

js |
(βjr − βjs) +

∑

r≥z+1

φr(l)(n)

|β̂ML
lr |

(βlr) −
∑

r≤z

φr(l)(n)

|β̂ML
lr |

(βlr) .

Since β̂nlq 6= 0 is assumed, at the solution β̂n this optimization criterion is differentiable with
respect to βlq. We may consider this derivative in a neighborhood of the solution where
coefficients which are set equal/to zero remain equal/zero. That means, terms correspond-
ing to pairs/triples of indices which are not in Cn can be omitted, since they will vanish in
J(β̂n) =

∑
j Jj(β̂

n). If x(l)q denotes the column of design matrix Z which belongs to βlq, due
to differentiability, estimate β̂n must satisfy

sn(β)√
n

=
xT(l)qDn(β)Σ−1n (β)(y − µ)

√
n

= An +Dn,
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with

An =
λn√
n


 ∑

s<q;(l,q,s)∈C

φqs(l)(n)

|β̂ML
lq − β̂ML

ls |
−

∑

r>q,(l,r,q)∈C

φrq(l)(n)

|β̂ML
lr − β̂ML

lq |




and

Dn =
λn√
n


 ∑

s<q;(l,q,s)∈Bn

φqs(l)(n)

|β̂ML
lq − β̂ML

ls |
+

φq(l)(n)

|β̂ML
lq |


 .

From part (a) we know that n−1/2sn(β)
d→ N(0, F (β)). Hence for any ε > 0, we have

limn→∞P(
sn(β)√

n
≤ λ1/4n − ε) = 1

Since λn/
√
n → 0, we also know ∃ε > 0 such that limn→∞P(|An| < ε) = 1. By assumption

λn →∞; due to consistency of the ordinary ML-estimate (O(n−1/2)), we know that

limn→∞P(
√
n|β̂ML

lq | ≤ λ1/2n ) = 1,

if (l, q) ∈ Bn. Hence
limn→∞P(Dn ≥ λ1/4n ) = 1.

As a consequence

limn→∞P(
sn(β)√

n
= An +Dn) = 0.

That means if J /∈ C, also
limn→∞P(J ∈ C) = 0.
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