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ABSTRACT

Personalized nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products, or services to support
both prevention and treatment of nutrition-related conditions and to improve individual health using genetic, phenotypic, medical,
nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in
mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread
impact on diet and health at a population level. Addressing these challenges requires integrating traditional biomedical and dietary
assessment methods with psycho-behavioral, and novel digital and diagnostic methods for comprehensive data collection, which holds
considerable promise in alleviating present PN shortcomings. This comprehensive approach not only allows for deriving personalized goals
(“what should be achieved”) but also customizing behavioral change processes (“how to bring about change”). We herein outline and
discuss the concept of “Adaptive Personalized Nutrition Advice Systems,” which blends data from 3 assessment domains: 1) biomedical/
health phenotyping; 2) stable and dynamic behavioral signatures; and 3) food environment data. Personalized goals and behavior change
processes are envisaged to no longer be based solely on static data but will adapt dynamically in-time and in-situ based on individual-
specific data. To successfully integrate biomedical, behavioral, and environmental data for personalized dietary guidance, advanced digi-
tal tools (e.g., sensors) and artificial intelligence-based methods will be essential. In conclusion, the integration of both established and novel
static and dynamic assessment paradigms holds great potential for transitioning PN from its current focus on elite nutrition to a widely
accessible tool that delivers meaningful health benefits to the general population.
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Statements of significance

cations to population-wide health benefits.

This perspective proposes a comprehensive framework for personalized nutrition (PN) that integrates biomedical, psycho-behavioral, and
environmental data using advanced digital and artificial intelligence-based tools, with the potential to expand PN’s impact from niche appli-

Introduction

Personalized nutrition (PN), now more frequently referred to
as precision nutrition (PrN), aims to tailor dietary advice or
products to individuals’ specific needs, goals, and expectations.
Thus far, PN concepts have primarily focused on genetic variants
and/or the gut microbiome, often including only a limited range
of additional information, such as anthropometric measures or
dietary intake [1]. PrN has taken a step further in this direction
by incorporating more comprehensive phenotype data and
integrating findings from omics technologies, such as epige-
netics, proteomics, and metabolomics [2].

Although the allure of tailoring a diet to an individual’s
unique genetic and metabolic profile holds promise for
improving current health status, the scientific validation sup-
porting these claims is often lacking, and available studies are
inconclusive [3]. Few scientific projects have tested the feasi-
bility and efficacy of PN programs. The largest investigation of
PN to date is the Food4Me study, a pan-European endeavor
carried out under the auspices of an EU framework. The principal
finding of this study was that PN, in itself, led to improved diet
and health indicators. However, the inclusion of sophisticated
parameters such as blood parameters or gene variants did not
significantly improve dietary behavior [4]. This conclusion is in
line with findings from recent systematic reviews of human
intervention studies, which reported disappointing results
regarding the efficacy of PN protocols [5,6]. These setbacks
warrant the exploration of novel avenues in PN, particularly
when one goal is to enhance public health.

Although the effectiveness of PN in promoting a sustained
change in dietary behavior or lifestyle has not yet been proven
through well-designed intervention studies, there is great public
interest in a more personalized diet [7]. The reasons why people
are interested in or seek PN advice or products vary. Personal
motivation for PN can result from specific disease and health
issues, excess body weight, or physical and cognitive perfor-
mance limitations [8]. Moreover, the desire to improve one’s
own lifestyle, overall health, and wellbeing is also an important
factor [9]. This indicates a general need for more specific in-
formation about the healthiness of one's diet and a belief that
dietary changes are necessary to achieve better or optimal health
benefits. Despite these varied reasons for interest in PN advice
and products, PN clients often belong to higher education and
income groups [10]. Most commercial offerings in the PN sector
are expensive for clients and are rarely reimbursed by health
insurance companies. Consequently, PN currently caters to a
specific subgroup of the population rather than having a broader
impact on diet and health at the population level.

In view of the limited success and reach of current PN ap-
proaches, a novel framework called Adaptive Personalized
Nutrition Advice Systems (APNASs) has been proposed (Figure 1)
[11]. Extending beyond current approaches to PN, which focus on

refining individual biomedical-based diet goals through
multi-omics profiling, APNASs also aim at personalizing how
consumers and patients apply the given advice in their daily lives.
APNASs suggest that the personalization of nutrition advice
should relate not only to deriving personalized goals (“what to
achieve™) but also to personalizing the process of behavioral
change (“how to change”) (see also [9]). Accordingly, this
approach places people at the center, considering their abilities,
capacities, goals, and constraints within their daily lives and so-
cial contexts. Specifically, APNASs’ focus on setting personalized
goals and tailoring adaptive processes of behavior change.
Notably, depending on the individual goals and preferences,
APNASs may even utilize minimal genotype and omics-based
data, making a shift from a predominantly biomedical to a more
intensive behavioral framework for PN. Therefore, in addition to
collecting individual data for in-depth genetic and metabolic
phenotyping, as suggested by current PN approaches, APNASs
emphasize in-depth profiling of individual behavioral signatures
and food environments [11]. This approach raises the question of
what types of data could be most effectively utilized for PN.

Using APNASs as a framework, this work aims to 1) outline
the different types of data entailed in PN, ranging from
biomedical and behavioral to food environment data, across
various spatial and temporal scales, and 2) explore the current
and future possibilities offered by digital and analytical tools for
a more widespread impact of PN on the population level.

Types of data

APNAS:s identify 3 distinct assessment domains, each encom-
passing different types of data (Figure 1): 1) biomedical/ health
phenotyping, 2) stable and dynamic behavioral signatures,
including functions of eating, and 3) the food environment.

As an initial step, biomedical and health phenotyping is
conducted, along with profiling of individual behavioral signa-
tures and the food environment. This begins with relatively
stable personal characteristics and food environment factors to
derive individual goal preferences and identify initial leverage
points for behavioral change processes (see also approaches to
solve the “cold start” problem in computer-based information
systems, such as digital recommender systems [Computer-based
information systems, involving a degree of automated data
modelling, can only make inferences for applications or users
based on the information available. The ‘cold start’ problem re-
fers to the challenge these systems face in making personalized
inferences for users when they have not yet accumulated suffi-
cient data.]). This step is dynamically enhanced by the collection
of real-time, context-specific individual data, which personalizes
goals and refines just-in-time adaptive interventions (JITAIs; see
[12]) to better support behavioral change. Thus, data collection
for personalizing goals and behavior change processes is envis-
aged to be dynamic and adaptive, not just stable or static. This
involves collecting data in real-time (in-time) and in the relevant
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FIGURE 1. Framework of the “Adaptive Personalized Nutrition Advice Systems” (APNAS) (© 2023 Renner et al., 2023. Published by Elsevier Inc.

on behalf of American Society for Nutrition).

context (in-situ), with the frequency and timing tailored to in-
dividual needs and preferences, enabling goals to be updated
dynamically based on real-time inputs. Recent technological
advancements have made it possible to gather an unprecedented
amount of both static and dynamic behavioral and health data in
this manner (Figure 2). Although there is interest in PN ap-
proaches and a willingness to provide personal data, the extent
to which individuals are prepared to share their data for tailored
PN advice or products is not entirely clear. Factors such as the
perceived benefits of PN, trust in the organization collecting the
data, and assurances about data security and ethical use are
critical in influencing this decision-making process. Privacy
protection concerns, including the potential misuse of data, un-
authorized access, and lack of transparency about data handling,
also play a significant role [13].

Assessment domain “biomedical/health
characteristics”

Similar to diagnostic processes in various biomedical and
health domains (e.g., Dietetic Care Process [14,15]), the initial
stage of the APNASs entails the assessment of data, including 1)
sociodemographic and basic data, 2) the current medical/health
status, as well as 3) current biological and molecular data.

In the following, we describe these types of data and their sig-
nificance in the context of PN (see also Table 1). Although certain
parameters are static and remain (relatively) constant, requiring
measurement only once (e.g., sex, genotypic information, chro-
notype), others are more dynamic and necessitate repeated or
continuous assessments, such as metabolites or biomarkers.

Moreover, depending on the health situation of participants,
certain exclusion criteria may need to be applied to prevent legal
or ethical complications arising from PN advice, products, or
services [16]. These include but are not limited to eating disor-
ders, medication interactions, and severe mental health condi-
tions. Clearly outlining these criteria upfront is advisable.
Additionally, involving medical experts is recommended for
addressing these and other aspects of the proposed concept.
Notably, mental health issues such as depression, social anxiety,
and attention-deficit/hyperactivity disorders are often more
prevalent among individuals with eating disorders, complicating
the safe implementation of PN strategies in these cases [17].

Sociodemographic data

A primary goal of a healthy diet is to fulfill essential nutrient
requirements to prevent deficiencies and reduce the risk of dis-
eases. Dietary reference values for energy and nutrient intake are
provided separately for men and women, different age groups,
and individuals in specific situations (e.g., pregnant or breast-
feeding women) [18,19]. Thus, information on (stable) individual
characteristics, such as sex and age, is essential for PN consider-
ations. These reference values are designed for healthy individuals
in the population. The associated recommended dietary allow-
ances include a safety margin (e.g., ideally average requirement
plus 2SDs) to ensure that nearly all individuals within different
population subgroups meet their specific needs [20].

Education, language and communication skills, and literacy
play a critical role in processing, understanding, and utilizing the
information, products, or services offered as part of PN.
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TABLE 1
Assessment domain “biomedical/health characteristics”.
Type of data
Sociodemographic Medical/health Biomedical and molecular
gadibase Anthropometry Clinical laboratory Omics analyses (Continuous)
analyses monitoring of
nutritional status
Gender Individual and family history Body weight and height Biomarkers of Genome Bodily metabolites
of diseases nutrient status
Age Food allergies/intolerances Body fat mass (total, Clinical biochemistry Gut microbiome Bodily functions
regional)
Education Rare diet-related diseases Waist circumference Epigenome

(e.g., PKU)

Language and Metabolic diseases Muscle mass

communication
skills
Other major diseases
(Household) Current medication
Income
Employment Physical disability,
immobility
Occupation Pregnancy, lactation

Transcrip-tome (Physical activity)

Proteome
Metabolome

Communication skills are crucial for effectively expressing and
exchanging information, which is important for a positive and
effective advisor-advisee or patient-doctor relationship. Literacy,
however, is predominantly about understanding and using
(health) information. Currently, different scopes of literacy, such
as health, food, nutrition, and media literacy, are being discussed.
These emphasize distinct types of knowledge essential for pro-
moting health-related outcomes [21]. Especially noteworthy is
that food literacy [22] can significantly influence the effective-
ness of PN.

In addition, cultural norms and traditions shape food choices,
meal patterns, and attitudes toward dietary changes. Traditional
foods, religious practices, and communal habits influence what is
acceptable within specific contexts [23]. Understanding these
factors is crucial for practical and respectful PN strategies. Addi-
tionally, agency—the ability to make independent choices—mo-
derates behavior change, with resources, autonomy, and social
support playing key roles in implementing dietary changes [24].

Individual income and wealth can significantly influence an
individual’s access to PN services. Financial stress, indicative of
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the balance between income and necessary expenses, is a key
factor. This is often reflected by the available budget at the end of
each month. These variables are frequently assessed under the
umbrella term “socioeconomic status,” which is defined by
household income, education, and occupation [25]. However,
amalgamating these variables may confound the distinct ways in
which education and income-related individual characteristics
affect an individual’s access to PN services.

Medical/health status data

The assessment of health status, encompassing medical con-
ditions, family history of diseases, allergies, and any medical
support received, is crucial owing to its potential impact on di-
etary and lifestyle guidance. Constructing dietary advice also
requires basic information, such as details about physical dis-
abilities and the current physiological status (e.g., pregnancy).

Diseases influenced by dietary factors are particularly rele-
vant for PN. Key details include allergies and intolerances to
specific foods or food components, information essential for di-
eticians, and PN professionals (Table 1) [26]. Among the most
common noncommunicable diseases linked to diet are metabolic
conditions including obesity, type 2 diabetes mellitus, hyper-
uricemia and gout, dyslipidemia, and hypertension. In addition,
knowledge about rare metabolic disorders requiring strict di-
etary adherence, such as phenylketonuria, is indispensable.

Biological and molecular data

Obesity, especially the accumulation of excess visceral body
fat, demands particular attention in PN guidance, as it is a major
factor impairing health [27]. Although obesity prevalence and
severity vary across population groups, surrogates for central
adiposity, such as waist circumference, waist-to-hip ratio, and
height-to-waist ratio, are valuable tools that provide critical in-
sights into abdominal fat distribution not captured by BMI. To
gather precise data, employing technician-assessed anthropom-
etry measurements is preferred over relying on self-reported
estimates and simple calculations the of BMI.

Furthermore, clinical biochemistry data add valuable infor-
mation, including circulating levels of lipids and lipid fractions,
fasting or random plasma glucose, Glycated haemoglobin, uric
acid, and markers of liver and kidney function. Mobile sensors
and wearable devices with high temporal-resolution tracking of
multiple health parameters, including readings like pulse rate,
blood oxygen levels, glucose concentrations, and electrocardio-
grams, offer dynamic and continuous insights into an individual's
health status [28-30].

A new foundation of PN is advanced genetic and metabolic
phenotyping, often encompassed under the terms “omics data”
or “multi-omics data.” Although these terms lack a precise sci-
entific definition, they refer to high-throughput and high-density
analyses of entities that represent the genome in its expression at
the levels of proteins and metabolites. This includes factors like
epigenetic marks, parts or the entirety of the transcriptome, the
proteome, and the pool of metabolites. Modern applications also
incorporate the microbiome at the genetic and predicted func-
tional levels [31]. Studies have successfully demonstrated the
capability of phenotyping an individual using such detailed
read-outs [32]. However, despite these advancements, achieving
a rapid and thorough understanding of how these genetic and
metabolic signatures correlate with health or disease trajectories

Advances in Nutrition 16 (2025) 100377

remains challenging. The field of “multi-omics” still represents a
costly endeavor, fraught with numerous complexities and limi-
tations, including challenges related to reproducibility [33]. The
unique attributes and constraints of each multi-omics technique
necessitate the use of artificial intelligence (AI) tools for data
aggregation, analysis, and interpretation [34]. Of note, inte-
grating expansive omics-based datasets into the context of PN is
yet to be realized.

Well-established markers that reflect nutrient status are not
covered by omics platforms; this is a critical shortcoming and
applies to the majority of vitamins, minerals, and trace elements.
Moreover, current metabolite profiling lacks precise determina-
tion of actual concentrations, crucial for clinical diagnostics.
Similarly, microbiome signatures derived from stool samples
typically provide information on relative abundance, rather than
absolute densities of bacteria [35]. Nevertheless, the prospect of
more sophisticated phenotyping methods and more valid bio-
markers offers a novel source of higher-quality data, enabling
more accurate classification of individuals for personalized
strategies [33,34].

Metabolite profiling augments conventional food intake as-
sessments by analyzing food-specific exposure markers found in
plasma and/or urine. These biomarkers reveal recent food or
beverage consumption and offer a valuable perspective on di-
etary behavior [36-38].

In addition, the concept of metabotypes, which integrates
blood and urine metabolite profiling with clinical parameters
such as blood glucose and cholesterol, enables the identification
of metabolically similar groups of people [39,40]. Such infor-
mation can feed risk scores to classify people according to their
risk of developing noncommunicable diseases such as type 2
diabetes mellitus or cardiovascular disease. Moreover, this
approach can identify specific subgroups that stand to benefit the
most from targeted dietary interventions [41,42].

Incorporating biomarkers of essential nutrients, such as vi-
tamins, minerals, and trace elements, is often overlooked in
current phenotyping applications. For these nutrients, distinct
technologies, such as inductively coupled plasma mass spec-
trometry, are required to obtain data on multiple elements from
a single sample [43]. Although only a few providers of PN ser-
vices presently integrate such data, their inclusion could provide
valuable insights. However, collecting and analyzing bio-
materials, especially blood, entail challenges despite available
innovative techniques like dried blood spots or sponges for
minimally invasive blood collection.

In addition, these laboratory analyses often limit PN accessi-
bility to consumers because of their cost. Expanding the reach of
PN may demand more affordable technologies, like sensors
based on molecular electronics ([44], see also [34]). These sen-
sors hold potential, albeit still in an early developmental stage.

Assessment domain “sable and dynamic behavioral
signatures”

Under the APNASs framework [11], the initial stage involves
profiling of 1) individual behavioral habits and signatures, along
with determinants of behavior such as 2) goals and preferences,
and 3) capacities and constraints. These serve as leverage points
for initiating processes of behavioral change (Table 2). Although
some aspects of these 3 factors remain relatively stable over time
and across various circumstances (e.g., food restrictions,
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TABLE 2
Assessment domain “stable and dynamic dietary behavioral signatures”.
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Short- and long-term individual behaviors and signatures

Food consumption Meal characteristics

Goals and preferences Capacities and constraints

Habitual food consumption, nutrient
intake, dietary patterns

Current food consumption, nutrient
intake

Biomarkers of food or nutrient intake
(e.g., glucose monitoring)

Habitual meal timing, meal
sequence, meal composition
Actual meal timing, meal situation,
meal composition

Type and frequency of snacking

Specific type of diet (vegetarian,
vegan, religion, ethnicity)
Food acceptance and preferences

Food literacy, cooking skills

Use of delivery services, out-
of-home consumption
Financial situation, circadian
rhythm, sleep

Long-term goals (macro-goals):
health-related (e.g., body weight
change, fitness, wellbeing);
sustainability and lifestyle related
(e.g., reducing carbon foot print,
better animal welfare)

Short-term goals (micro-goals):
eating motives in-the-moment (e.g.,
liking, convenience, affect
regulation, price, sociability)

predisposition for stress-eating), providing critical initial
entrance points for initiating processes of behavioral change,
other factors are dynamic and necessitate repeated or continuous
assessments, allowing JITAIs to increasingly adapt the behav-
ioral change processes to the individual (see also [45,46]).

Individual behavioral signatures and habits

Collecting information on dietary habits is fundamental for
effective professional dietary counseling. In PN, baseline infor-
mation gathering includes identifying food items or food groups
that are restricted because of cultural factors, social norms,
personal values, and beliefs (e.g., kosher diets, veganism).

Evaluating meal and snack composition might involve listing
consumed food items without specifying precise quantities [47].
This can also include information on food preferences, as well as
meal timing and sequence throughout the day [48]. In addition,
information about the frequency and location of eating
out-of-home or using food delivery services has become an
important aspect of daily food consumption. Such data may be
self-reported or may be obtained from service providers
(Table 2). Service providers, such as restaurants, food delivery
platforms, or catering companies, may provide information on
order details and consumption patterns from their databases
upon authorized request.

For assessing habitual food consumption and estimating
nutrient intake, standard methods involve food-frequency
questionnaires. Current eating patterns are typically captured
using repeated 24-h dietary recalls and records of estimated or
weighed food consumption over several days (selected randomly
over a defined period) [49]. Precise recording of actual food
consumption is also possible. Traditional paper-based question-
naires are increasingly being replaced by digital solutions, such
as smartphone apps or web-based tools [50-53]. These digital
methods offer enhanced convenience and functionality but still
come with certain limitations, including recall bias, under-
reporting, and portion size inaccuracies, which require a scien-
tific evaluation of their relative validity and reproducibility.

Among these digital advancements, data generated through
the use of digital food images has gained significant attention for
its potential to improve the precision and accuracy of dietary
assessments. This method can assist, either actively or passively
(with or without user input), in estimating intake and portion

sizes, thereby enhancing the precision of dietary reporting.
Image-based food recognition, volume estimations, and subse-
quent nutrient and energy intake assessments are increasingly
automated through computer vision-based applications [52,54].
These applications leverage AI, utilizing machine learning
techniques, including deep learning (DL), to recognize food
items and estimate volume to predict the nutritional value of a
depicted meal or food item [54]. However, Al systems, although
promising, depend on user input and face challenges like food
recognition errors, lack of standardization, and “black box”
decision-making, as the underlying factors driving the algo-
rithm’s decision-making process remain unclear. Amugongo
et al. [55] argue that Al-powered systems should provide ex-
planations for their classifications or estimations to enhance
transparency for users. The pursuit of increased transparency
and interpretability lies at the core of explainable AlI, which is
crucial for improving the trustworthiness of Al systems. Despite
their inherent limitations, these techniques provide a vast
amount of different types of data, thereby offering new and
valuable insights into food choices, dietary patterns, and po-
tential health risks. Al-based solutions will increasingly facilitate
rapid aggregation and evaluation of such data [56]. Over time,
self-learning Al systems can construct an exhaustive profile of an
individual’s dietary habits and variability of daily eating
behavior, adapting based on the evolving information provided.

People’s decisions about eating extend beyond just what and
how much they eat; they also encompass where, when, how, and
with whom they eat or do not eat, constituting idiosyncratic
behavioral signatures [11]. High-resolution behavior assess-
ments conducted in-situ and in-time in natural settings, utilizing
mobile sensors, can capture these individual behavioral signa-
tures. For example, employing ecological momentary assessment
(EMA) contingent on eating events has revealed considerable
inter- and intraindividual differences in eating behavior over
time [57,58]. Hence, eating behavior is highly dynamic because
it varies not only between but also within individuals. For
effective long-term behavior change, it is important to enable
individuals to act in-the-moment and in-situ (“behavioral act™)
and to cumulate behavioral acts into habitual, long-term
behavioral patterns. This “small-changes” approach has gained
considerable traction in numerous government and nongovern-
ment initiatives [59]. Addressing elements of individual
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behavioral signatures (e.g., timing or duration of meals; skipping
of meals) opens new avenues for personalized interventions
aimed at behavior change. Although EMA captures valuable
data, it may introduce reactivity bias and face technical issues
like sensor malfunctions or inconsistent engagement, and its
long-term success warrants confirmation.

Related behaviors

The most important determinant of differences in total energy
requirements within specific sex and age groups is physical ac-
tivity level. A lack of physical activity and prevalent sedentary
behavior are recognized as risk factors for obesity and numerous
chronic diseases. Thus, gathering information on an individual’s
level of physical activity or inactivity, encompassing both long-
term habits and current behaviors, is imperative. Validated
questionnaires serve as a viable tool to assess habitual physical
activity during work and leisure time across extended periods
[60]. Numerous wearable devices are now available, furnished
with features that enable continuous monitoring of various di-
mensions of physical activity [61]. However, physical activity
questionnaires are prone to measurement errors, whereas wear-
able devices face challenges such as improper usage, calibration
issues, and limited battery life, which can impact data quality.
Beyond physical activity, other lifestyle factors also play a crucial
role in health and nutrition. For instance, smoking is a significant
health risk factor that affects nutrient levels, such as vitamin C
status, information on smoking and smoking intensity is perti-
nent. Additional individual characteristics that could influence
dietary behavior and metabolic health include circadian rhythm,
and sleep duration and quality [62]. Consumer sleep-tracking
devices are evolving rapidly, with some already demonstrating
high accuracy in detecting sleep and wake phases [63,64].

Integrating dietary assessment and digital food images with
other health data enables the identification of dietary compo-
nents relevant to conditions such as diabetes or allergies,
ensuring that dietary advice aligns with medical needs through
integration with patient health records. These tools can also link
nutrient intake with biomarkers like blood glucose or lipid
levels, whereas combining microbiome data with meal compo-
sition provides insights into the diet’s impact on gut health.
Additionally, digital food tracking can be combined with
behavioral data, such as EMA, to identify patterns like stress-
eating or irregular meal timing. Dietary data can also be
merged with physical activity, sleep, and smoking data to
generate a comprehensive view of health behaviors, enabling PN
strategies to address multiple lifestyle factors simultaneously.

Goals and preferences

For PN to be effective, it must align with an individual’s needs,
goals, and expectations. Eating behavior is determined by a
multitude of factors [65,66]. Hence, in addition to primary mo-
tives such as hunger and taste, there are various other compelling
reasons that determine what, how much, and how individuals
eat. Studies have consistently identified 15 different eating mo-
tives or functions of normal eating (see also micro-goals in
Figure 1) [66-68]. These eating motives include social reasons
such as commensality, as well as environmental and sustainabil-
ity concerns, which shape individual food choices. To develop
effective PN solutions, it is crucial from an APNASs perspective to
incorporate individual goal preferences, including pleasure,
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commensality, and, most importantly, making sustainable dietary
choices, alongside typical biomedical targets.

Moreover, individual goal preferences encompass long-term
goals (macro-goals) like mental health, wellbeing, fitness, or
enjoyment, as well as eating motives in-the-moment (micro-
goals). These goals can vary significantly because of individual
states and environments, necessitating dynamic adjustments to
align macro- and micro-goals, reduce conflicts, and create syn-
ergies. Thus, the selection and prioritization of macro- and
micro-goals should be tailored to an individual’s preference
structure and capacities (see also Figure 1).

In a similar vein, some individuals may seek general advice
focused on personal health or fitness, whereas others may pri-
oritize hedonic or sustainability aspects. Next, some may require
specific guidance, like selecting items in a supermarket or
choosing meals at a restaurant. Therefore, PN must be designed
to cater specifically to an individual’s goals, needs, and capac-
ities. If not appropriately tailored, PN efforts risk causing
confusion because of information overload or frustration stem-
ming from insufficient information [69].

Capacities and constraints

Achieving sustainable behavioral change is inherently chal-
lenging, because it involves overcoming deeply ingrained habits
and external barriers. For the personalization of behavioral
change processes, it is essential to provide in-situ and just-in-
time information in real-life food environments, addressing the
“how” and “when” to change. This requires consideration of
individual capacities and constraints, often referred to as “bar-
riers and enablers” in the literature, across various contexts, such
as self-regulation capacities, available behavioral options, and
economic resources. Unlike generic approaches, behavior
change strategies should be personalized by aligning them with
these individual factors. For example, enhancing self-regulation
capacity in stress-hyperphagic individuals in diverse contexts is
crucial. In the realm of PN, Dijksterhuis et al. [8] have identified
4 psychosocial types of consumers, namely “intrinsic interest and
capabilities for healthy eating,” “perceived difficulty to eat
healthily,” “self-worth insecurity,” and “seeking positive chal-
lenges.” These types differ substantially in their preferences and
needs of advice.

Assessment domain “food environment”

The food environment, forming the backdrop of nutritional
behavior (e.g., [70]), exerts a powerful influence on food choices
and eating behaviors. In general, the food environment entails all
environmental factors that impact nutritional behavior (Table 3).
Consequently, eating results not only from decisions made at the
moment of concrete consumption, but also from a behavioral
process spanning 4 core phases: 1) exposure (i.e., what people
see and perceive in their daily environment shapes social norms);
2) access (i.e., which foods are physically accessible and socially
acceptable); 3) choice (i.e., which products are selected or pur-
chased); and 4) consumption (i.e., which foods, meals, or snacks
are actually eaten). For example, frequent exposure to fast-food
outlets is associated with unhealthy diets and high rates of
obesity (for a review, see [71]). Similarly, the social environment
exerts a pervasive and powerful influence on what and how
much people eat (for an overview, see [72]). For example,
mealtimes, established as social norms, shape collective eating
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TABLE 3
Assessment domain “food environment”.
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Exposure Access

Choice Consumption environment

Nearby shops (reachable by foot) Costs of products

Supermarkets, retailers, etc.
(reachable by public
transportation, car, bike)

Eligibility to visit canteens

Transportation costs

Available household budget

Out-of-home consumption (fast-
food restaurants, to-go stores,
etc.)

Use of delivery services

Usage of digital devices and
payment options

Sources of information Ambience (e.g., noise level, smell.
lighting)

Social network, social acceptance Time allocation

Companionship (family, friends,
colleagues, etc.)

Cooking knowledge and
preparedness

Plate size, portion size

Social setting, e.g., dining
companions

Preferences and requests within the
household

(Digital) data are provided by the individual itself but also via market partners (shops, restaurants, etc.), and by analysis of the food environment

landscape.

behaviors and social lives [73]. Therefore, integrating the envi-
ronmental context into PN advice (i.e., where and when to eat) is
a promising approach. Initial evidence for this concept comes
from a recent study showing higher acceptance of PN advice at
lunch compared to breakfast or dinner [74].

The concept of guiding and supporting individuals throughout
the entire behavioral process and consumption journey, from
exposure and access to purchasing food, to meal preparation and
consumption, aligns with and extends traditional dietary coun-
seling practices. Hence, gathering information on the food
environment is crucial, particularly in light of the increasing
prevalence of home delivery services, ready-to-eat meals, and
out-of-home consumption, which not only shape an individuals’
dietary patterns but also leaves data traces useful for PN [75].

Importantly, the information required for effective PN advice
varies across different domains of the food environment. For
example, in retail settings, factors such as price, location, avail-
ability, and the specific food choices made by consumers are
highly relevant. Seasonal variations and cultural traditions (e.g.,
Thanksgiving, Christmas, Diwali) also play a significant role in
influencing food availability and consumer behavior. Individual
ordering data, often retained for financial records (e.g., delivery
services, company or school cafeterias), can potentially be har-
nessed to feed future PN algorithms. Also, Global Positioning
System (GPS) tracking can pinpoint food consumption locations
and provide relevant data (as described above) to estimate meal
quality and quantity [76]. These examples highlight the extensive
data requirements and the need for ongoing utilization of tech-
nological devices to gather information and offer tailored guid-
ance. The application of Al-based methods is essential to aggregate
and integrate behavioral data, identify primary targets, and deliver
suitable advice or products. Incorporating positive feedback that
reflects progress toward established goals is advisable.

Transitioning from static to a more dynamic PN: a
future perspective

A starting point and minimum gold standard assessment for
PN involves assessing static or relatively stable individual char-
acteristics such as sex, age, BMI, waist circumference, physical
activity, dietary preferences, and health limitations, including
food allergies and intolerances. Incorporating information about
habitual food preferences and goals is important to enhance
acceptance and adherence to PN advice. Of note, disregarding

these essential static data in recommendations could lead not
just to limited effectiveness but also to potential legal re-
percussions for the advisor, such as liability if harm occurs
because of ignored allergies or health limitations.

Implementing PN effectively, however, requires aligning
shared goals between the advisor and the individual seeking
counseling, a challenging task [77,78]. The process of defining
goals requires the definition of an overarching macro-goal (e.g.,
body weight reduction), followed by realistic short- and
medium-term aims (micro-goals). This process likely requires
discussion between both counseling partners; it is the basis for
evaluating the effectiveness of the PN for both the client and the
PN provider.

A key feature of the APNAS approach is its focus on delivering
advice and services “just-in-time” at the moment of decision-
making [11]. This approach aligns with evidence from other
domains of behavioral change, demonstrating that timely,
context-specific interventions can significantly improve out-
comes. For example, JITAIs have been shown to enhance
smoking cessation efforts by providing personalized prompts or
coping strategies precisely when cravings are most likely to
occur [79]. This just-in-time PN approach contrasts with the
traditional PN model, which represents a more static concept
that delivers dietary advice on a medium- to long-term basis
(Figure 3). Both the APNAS and conventional PN models can be
applied independently or integrated, depending on the context.

As PN evolves from relying on basic, static data to adopting
APNASs, it necessitates specific descriptors to capture individual
behavioral signatures, preferences, goals, constraints, capacities,
and the surrounding food environment. Consumer smartphones,
sensors, and smart-home devices, leveraging Al technologies and
comprehensive databases, play a pivotal role in the success of
this method. Specially, the refinement and emergence of
noninvasive wearable sensors (e.g., wristwatches, tattoo-like
devices, textiles, glasses, jewelry; see [80]) are increasingly
enabling the multimodal, high-resolution, and even continuous
real-time assessment of physical, behavioral, and biochemical
parameters. The use of conservational chatbots, powered by
large language models (LLMs) to deliver personalized advice, is
also anticipated as part of this evolving framework.

The requirement for extended biological phenotype infor-
mation in PN may be less critical depending on its focus, whether
it be weight loss or choosing sustainable foods. It seems wise to
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FIGURE 3. Systematic description of each person by stable and dynamic information to derive personalized nutrition (PN) advice, ideally
combining general (static) advice with guidance at the moment of decision-making (APNASs). APNAS, Adaptive Personalized Nutrition

Advice Systems.

leverage emerging PN systems in the digital world where con-
sumers are actively engaged. Integrating services throughout the
entire behavioral process allows for just-in-time and in-situ
assistance during decision-making in real-life environments
[11]. The complexity and density of input variables in digital
ecosystems are set to increase significantly, driven by the delivery
of real-time data on food consumption and overall lifestyle.
Fitness trackers have already become seamlessly integrated into
smartwatches and other devices, having demonstrated their reli-
ability in monitoring health-related metrics. A notable advance-
ment is the development of glucose sensors that continually
report interstitial glucose profiles, offering a more comprehensive
view of metabolic health [81]. It is important to note that
continuous glucose monitoring is not intended as a universal
recommendation but is better suited for specific contexts where
detailed metabolic feedback is necessary. Recognized for their
robustness and dependability, these sensors provide valuable
feedback on the impact of food and drink intake on blood glucose
concentrations. The visualization of metabolic responses not only
delivers insightful feedback but also has the potential to signifi-
cantly influence behavior and alter food choices.

Moreover, digital environments offer a multitude of innova-
tive means for assessing behavioral signatures and dietary
behavior in-situ and in time (Figure 4). For example, GPS-tracked
locations of canteens, restaurants, or pick-up sites, alongside
deposited menu plans (and known recipes), offer detailed insights
into individuals’ meal choices and time spent at these sites [82].
In addition, it enables gathering data on social contexts (e.g.,
dining companions), time allocation, and financial investment.
Other sources of input include shopping records for food items or
foods delivered, complete with background recipes and nutrient
composition. Moreover, methods such as computer vision for
extracting details about food items, quantity, and composition

(the latter based on a database) from images contribute to a
thorough evaluation of consumed quantity and possibly an esti-
mation of nutrient intake [50,52,53]. A more futuristic notion
involves the potential integration of kitchen robots, which could
take on meal preparation with pre-established recipes, facilitating
in-house recording of consumption patterns [83]. Identifying the
most crucial leverage points for changeable behavioral acts is
essential in the implementation of PN.

These newly evolving digital ecosystems facilitate the seam-
less collection of an abundance of data, including dietary infor-
mation and individual health parameters. Such data, captured at
varying frequencies or continuously, are integrated with tem-
poral and spatial information. The digital environment also
opens novel avenues for communication and intervention, of-
fering timely and immediate support whenever individuals need
to make decisions concerning their diet, food choices, and health
practices. Importantly, although data collection is crucial,
seamless integration and effective use pose distinct challenges.
This includes processing diverse data streams into unified sys-
tems using advanced analytics, as well as addressing ethical and
legal aspects like permission, ownership, and consent. Over-
coming these challenges is vital for transforming raw data into
actionable insights for personalized support.

Behavioral science underscores the dynamic nature of dietary
behaviors [11,46]. Dietary decisions often stem from a complex
interplay of automatic and goal-directed processes. Notably,
nudges and behavioral interventions drawn from the realm of
psychology and economics offer promising tools for future PN
strategies [84,85]. Interventions during grocery shopping,
restaurant visits, or even home-deliveries, such as offering
smaller portion sizes or healthier menu options, could poten-
tially yield greater effectiveness than the application of advanced
technology for omics-based phenotyping.
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FIGURE 4. Major data sources of for PN guidance just-in-time (APNAS) from the digital environment: Data from the person’s sensors, smart-home
devices, and out-of-home services and activities. APNAS, Adaptive Personalized Nutrition Advice Systems; PN, personalized nutrition.

To effectively integrate this increasingly vast and complex
array of data and provide dynamic, in-situ and just-in-time
advice and services, it is essential to balance individual goals,
preferences, constraints, and capabilities. Consequently, intelli-
gent systems capable of recommending and selecting the optimal
food or service based on multiple criteria are needed. Various
models for DL-based recommender systems have been proposed.
For example, FoodRecNet, a food recommender system, utilizes a
deep artificial neural network leveraging a comprehensive set of
user and food characteristics [86]. This includes basic data such
as demographic information, cultural and religious background,
health conditions, allergies, dietary preferences, and detailed
information about food ingredients, cooking methods, and food
images. Integrating this with conversational Al could lead to the
development of chatbots for delivering tailored recommenda-
tions. For example, the potential of ChatGPT in providing PN
recommendations has recently been discussed [87,88], high-
lighting its applicability in this evolving field. Recently, a chat-
bot was introduced that is powered by LLMs and specifically
designed for PN advice [89].

To further enhance data integration in PN, prioritizing
interoperability across devices and platforms is essential.
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Standardized communication protocols can facilitate seamless
data exchange between wearables, mobile applications, and da-
tabases. Ensuring user-centric design in these systems—
emphasizing intuitive interfaces and personalized insights—will
promote engagement and adherence.

Given the sensitive nature of health and behavioral data,
implementing specific, secure procedures is essential [90]. The
entities hosting and providing data for PN services need to be
trustworthy and operate according to legal standards [91].
However, ensuring data safety poses a significant challenge,
particularly with regard to subject-identifying data. A
client-centered dietary information system needs to be devel-
oped, designed to facilitate data import from digital systems and
to promote active engagement among PN users.

Conclusion

From a public health perspective, current PN approaches face
limitations in effectively influencing dietary or lifestyle habits
across a broad population. Addressing these challenges necessi-
tates the development of novel strategies that expand beyond the
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traditional biomedical focus, incorporating individual prefer-
ences, capabilities, and goals to facilitate behavioral change
within both physical and digital food environments. This also
involves devising innovative methods to engage consumers who
may not inherently express interest in or have the means to ac-
cess such services or products, including populations with
limited language proficiency or understanding [92]. Such
personalized guidance should be accessible to all without being
prohibitively expensive. Successfully implementing such an in-
clusive approach could significantly enhance the dietary quality
of a substantial segment of the population and potentially yield
substantial public health impact.
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