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ARTICLE

Single-cell transcriptome-wide Mendelian randomization
and colocalization analyses uncover cell-specific
mechanisms in atherosclerotic cardiovascular disease

Anushree Ray,! Paulo Alabarse,! Rainer Malik,! Muralidharan Sargurupremraj,? Jiirgen Bernhagen,!.3.4
Martin Dichgans,!34> Sebastian-Edgar Baumeister,® and Marios K. Georgakis!+7.*

Summary

Genome-wide association studies (GWASs) have identified numerous genetic loci influencing human disease risk; however, linking
these to causal genes remains challenging, limiting opportunities for drug target discovery. Transcriptome-wide association studies
(TWASs) address this by linking variants to gene expression but typically rely on bulk RNA sequencing, limiting cell-specific resolu-
tion. Here, we present a single-cell TWAS pipeline combining cis-Mendelian randomization (MR) with colocalization analyses at the
single-cell level. As a case study, we examined how genetically proxied gene expression in immune cells influences atherosclerotic
cardiovascular disease (ASCVD) risk. We integrated single-cell expression quantitative trait loci (sc-eQTLs) for 14 immune cell types
with GWASs for coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. sc-cis-MR revealed 440
gene-outcome associations across cell types, 88% of which were missed by bulk TWASs, despite the considerably smaller sample
size of the sc-eQTL dataset. Of these associations, 21 were replicated with external cis-eQTLs and colocalized with ASCVD GWAS sig-
nals. Expanding on previous evidence linking genetically proxied LIPA expression in whole blood to coronary artery disease, we
found genetic variants influencing LIPA expression, particularly in monocytes, to drive associations with coronary artery disease,
large artery atherosclerotic stroke, and subclinical atherosclerosis traits. A phenome-wide association study confirmed these findings
without evidence of associations with unexpected clinical outcomes. scRNA sequencing and immunohistochemistry of human ca-
rotid plaques revealed high LIPA expression in plaque macrophages. Our pipeline enables the discovery of cell-specific expression
patterns that drive genetic predisposition to human disease, potentially impacting target selection for cell-tailored therapeutics.

scriptome-wide association studies (TWASs) use gene
expression levels instrumented by cis-expression quantita-
tive trait loci (cis-eQTLs) to identify tissue-specific and

Introduction

Analyses of human genetic data can provide invaluable in-

sights into causal disease mechanisms and inform the
development of new drugs.! Indeed, drug targets with ge-
netic support are more than twice as likely to deliver drugs
that will be approved.*” In the field of atherosclerotic car-
diovascular disease (ASCVD), signals from genetic studies
have informed or contributed to the emergence of several
drug development programs, including PCSK9 inhibi-
tors,* Lp(a)-lowering molecules,” ApoC3- and ANGPTL3-
targeting agents,® factor XI inhibitors,” and interleukin
(IL)-6 signaling inhibitors.” Genome-wide association
studies (GWASs) have identified thousands of genomic
loci associated with human disease.” However, the transla-
tion of GWAS findings into actionable drug targets re-
quires the determination of both causal genes regulated
by the disease-associated variants and the specific cell
types in which these causal genes exhibit their function.

Integrating GWAS data for clinical endpoints with data
from other omics layers can provide valuable insights into
causal genes for human disease at scale. For example, tran-

functionally relevant genes associated with disease out-
comes from GWAS loci.'” However, gene expression is
regulated at the cellular level and not the tissue level. As
such, eQTLs could be specific to distinct cell types that
are relatively rare in a given tissue and obscured in bulk
analyses that average gene expression from diverse cell
types. A higher-resolution characterization of the biolog-
ical complexity and cellular heterogeneity of ASCVD
could be obtained from single-cell omics technologies.
Integration of single-cell transcriptome profiles from sin-
gle-cell RNA sequencing (scRNA-seq) and GWAS data
could enhance our current understanding of disease
mechanisms, aid the identification of cell-specific drug-
gable targets, and facilitate the development of tailored in-
terventions, such as cell-targeted RNA therapeutics.

Here, we present a single-cell TWAS pipeline that com-
bines cis-Mendelian randomization (MR) using cell-spe-
cific cis-eQTL variants alongside colocalization analyses
to identify potential causal cell-specific expression
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changes underlying GWAS signals. As a case study, we in-
tegrated immune cell-specific eQTL data with GWAS sum-
mary statistics for the most common manifestations of
ASCVD—coronary artery disease (CAD), large artery
atherosclerotic stroke (LAS), and peripheral artery disease
(PAD)—to explore potential cell-specific immune mecha-
nisms involved in atherosclerosis. Our analysis revealed
cell specificity for established causal genes as well as previ-
ously underrecognized causal signals that could not be
captured using bulk TWAS analyses, uncovering both
the specific cell types in which these genes might exhibit
their effects, as well as the direction of their effects on
ASCVD outcomes. Using cell-specific cis-eQTL data from
external cohorts, we replicated significant findings. We
further performed downstream experimental and compu-
tational analyses to investigate an association between
higher genetically proxied LIPA expression in monocytes
and atherosclerosis.

Methods

Study design

Our proposed pipeline for a single-cell TWAS is summarized in
Figure 1. Briefly, similar to previous TWAS approaches at the bulk
level,''""* we used single-cell cis-eQTLs (sc-cis-eQTLs) derived
from scRNA-seq studies as instruments for downstream MR analyses
in GWAS summary data for outcomes of interest (discovery MR). As
opposed to bulk RNA-seq, sCRNA-seq datasets are usually smaller in
scale. Therefore, to minimize false positive rates, we use an external
dataset for the selection of sc-cis-eQTLs for the replication of the MR
results (replication MR). Finally, to assess whether gene expression
and cardiovascular outcomes shared the same causal variant rather
than independent causal variants in high linkage disequilibrium
(LD), we use colocalization analyses.

In our case study, we focused on exploring immune cell-specific
mechanisms driving the risk of ASCVD, given the accumulating in-
terest in the role of immune mechanisms in atherosclerosis.'* We
started by leveraging cell-specific cis-eQTL data from peripheral
blood mononuclear cells (PBMCs) in the OneK1K cohort (N =
982). In MR analyses, we then explored the effects of genetically
proxied immune cell-specific gene expression on CAD (113,937
affected individuals and 339,115 control subjects), LAS (9,219
affected individuals and 1,503,898 control subjects), and PAD
(31,307 affected individuals and 211,753 control subjects) using
the largest available publicly available GWAS summary datasets.
We replicated significant findings in sc-cis-eQTL data from the
1M-scBloodNL study (N = 120) and then applied colocalization an-
alyses between cis-eQTL data from the OneK1K study and GWAS
statistics for ASCVD phenotypes.

Selection of genetic instruments
We obtained sc-eQTL mapping data, which integrate genotyping
and scRNA-seq data, from the OneK1K cohort for the discovery
analyses and from the 1M-scBloodNL for the replication
analyses.'>'¢

The OneK1K cohort generated data from 1,267,758 PBMCs
from 982 healthy individuals of Northern European ancestry.'®
Based on transcriptional profile, 14 cell types were defined: B
cell lineage was classified as plasma cells, immature and naive B

cells, or memory B cells. CD4*" T cells were classified as naive
and central memory T (CD4nc), effector memory and central
memory T (CD4gr), and SOX4-expressing T (CD4sox4) cells. Simi-
larly, CD8* T cells were classified as CD8y¢, CD8gr, and CD8sox4
cells. Innate immune lymphocytes were distinguished into natu-
ral killer (NK) and NK-recruiting cells, classical (Monoc) and non-
classical (Mononc) monocytes, and dendritic cells (DCs). For each
gene/cell-type combination, cis-eQTLs were identified within a
1,000-kb region of either end of the gene. Summary statistics
were available for all five SNPs for each gene/cell-type combina-
tion. For each gene/cell-type combination, we only used eQTLs
reaching a p value threshold of <1 x 1073, corresponding to a false
discovery rate (FDR)-corrected p < 0.05 in a previous TWAS
analysis.'”

The 1M-scBloodNL study generated data from 928,275 PBMCs
from 120 individuals from the Northern Netherlands population
cohort Lifelines. sc-eQTL mapping data were available for six cell
types based on marker gene expression: B cells, CD4" T cells,
CD8* T cells, monocytes, NK cells, and DCs. For each gene/cell-
type combination, summary statistics for associations of all
SNPs within a 100-kb distance from the gene midpoint encoding
the respective transcript were available for our analyses. We
selected cis-eQTLs on the basis of an association at p <1 x 10°°
and clumped them for LD using the clump_data function at a
threshold of r* < 0.1. As an alternative replication dataset, in
sensitivity analyses, we leveraged summary statistics of bulk cis-
eQTLs from fluorescence-activated cell-sorted (FACS) immune
cells from 106 leukapheresis samples from Schmiedel et al.'”
We used cis-eQTLs within a 1,000-kb region of each gene for six
cell types—naive B cells, naive CD4™" T cells, naive CD8" T cells,
CD14" CD16~ Monoc, CD14” CD16" Monoyc, and CD56~
CD16" NK cells—based on associations at p < 1 x 107> and
clumped at 1> < 0.1.

To compare our approach to a conventional TWAS, bulk eQTL
summary statistics from 31,684 whole-blood samples of mostly
European ancestry were obtained from the eQTLGen Con-
sortium.'® We selected as genetic instruments cis-eQTLs within
a 100-kb distance from the gene midpoint encoding the respec-
tive transcript that was associated with the levels of the respective
transcript at p < 1 x 107>, Thereafter, we clumped the genetic var-
iants for LD at a threshold of r* < 0.1.

Clinical endpoints and intermediate phenotypes

We obtained trans-ancestry and European GWAS summary statis-
tics for ischemic stroke and its subtypes from the GIGASTROKE
GWAS meta-analysis of 86,668 affected individuals and
1,503,898 control subjects (67% European, East Asian, African,
Hispanic, and South Asian ancestries).'” Of the individuals
affected by ischemic stroke, 9,219 were subclassified as LAS. Sum-
mary statistics for CAD were obtained from a GWAS meta-anal-
ysis of 113,937 affected individuals and 339,115 control subjects
of mostly (>95%) European ancestry conducted by Nelson et al.*
Summary statistics for PAD were obtained from a GWAS conduct-
ed in the Million Veteran Program (31,307 affected individuals
and 211,753 control subjects) of European, African, and Hispanic
ancestries (dbGAP under accession code dbGAP: phs001672.v2.
p1).”! For follow-up analyses, we also used data for atherosclerosis
endophenotypes—carotid plaque and coronary calcification. We
obtained summary statistics from GWAS meta-analyses of co-
horts of the CHARGE Consortium, including 48,434 individuals
of European ancestry for carotid plaque (21,540 affected
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individuals and 26,894 control subjects) and 35,776 individuals
of primarily (75%) European ancestry for coronary artery calcifi-
cation score.””?*> GWAS meta-analysis summary statistics for
CVD risk factors, including smoking status (1,232,091 European
participants from GWAS and Sequencing Consortium of Alcohol
and Nicotine Use), low- (LDL-C) and high- (HDL-C) density lipo-
protein cholesterol (1,654,960 participants with 80% European,
East Asian, African, Hispanic, and South Asian ancestries from
Global Lipids Genetics Consortium), systolic (SBP) and diastolic
(DBP) blood pressure (1,028,980 European participants),
body mass index (BMI) (457,756 European participants from
UK Biobank [UKB]), waist-hip ratio (WHR) (458,349 European
participants from UKB), and glycated hemoglobin (HbAlc)
levels (437,749 European participants from UKB) were also
obtained.** %’

MR

We undertook a two-stage (discovery and replication) MR
approach to systematically evaluate evidence for the putative
causal effects of immune cell-specific gene expression on the six
cardiovascular outcomes.'’ The discovery MR analyses were con-
ducted between cis-eQTLs in 14 immune cell types from the

the exposure and outcome datasets using

the harmonise_data() function. Subse-

quently, if only a single eQTL was avail-

able for a gene, the Wald ratio estimate

was obtained. If more than one SNP was

available, the inverse-variance weighted
(IVW) method was used to obtain an effect estimate. All p values
were adjusted using the Benjamini-Hochberg method to control
the FDR in multiple comparisons.” For each outcome, the pair-
wise weighted Pearson correlation of the discovery MR analyses
results between different cell types, as well as bulk-eQTL MR ana-
lyses results, were determined and visualized as a correlation
matrix.

We brought forward significant target genes in the discovery
MR analyses (FDR-corrected p < 0.05) to the replication MR anal-
ysis. We reclassified the 14 cell types from the OneK1K cohort to
the less dimensional six cell types in the 1M-scBloodNL study—B
cells, CD4™ T cells, CD8" T cells, NK cells, monocytes, and DCs.

Colocalization

For significant cell-type/gene/outcome MR associations (FDR-cor-
rected p < 0.05) in the replication MR analyses, we additionally
performed colocalization analysis to determine whether gene
expression and cardiovascular outcomes shared the same causal
variant rather than the variant being shared due to LD. Colocali-
zation analysis provides the posterior probabilities (PPs) of five
hypotheses: neither gene expression nor the outcome is associ-
ated with genetic variants in the region (HO), only gene
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expression is associated with a genetic variant in the region (H1),
only the outcome is associated with a genetic variant in the re-
gion (H2), gene expression and outcome are both associated
with the region but with different causal variants (H3), and
gene expression and outcome are associated with the same causal
variant (H4). If a single instrumental variable (IV) was used to
perform MR, the coloc.abf function from the coloc R package
(v.5.2.3) was used with default prior probabilities of pl = p2 =
1 x 107* and p12 = 1 x 107°. Significant colocalization was
defined as PPH4 > 0.8.°" If more than one IV was used to perform
MR, the coloc.susie function was used to account for the potential
of >1 shared causal variants, and the maximum PPH4 value across
multiple credible sets was considered.*"

Phenome-wide association study

To test the association between genetically proxied LIPA expres-
sion in monocytes with the full range of clinical phenotypes
and detect possible unexpected associations with unexplored
phenotypes, we used DeepPheWAS and assigned 487,314 partic-
ipants from the population-based UKB with standardized Pheco-
des representing disease entities.*” We used all ICD10 codes
(main position, secondary position, and death records) from
the UKB. We excluded Phecodes with <100 cases and Phecodes
that are male or female specific, leading to a total of 1,312 pheno-
types. Individuals were assigned a case status if >1 ICD10 code
mapped to the respective Phecode. Individuals meeting the pre-
specified exclusion criteria were removed from the analysis;
otherwise, the individual was assigned a control status. We used
logistic regression with age, sex, and 10 principal components
as covariates to test variant carrier status (0/1) against the pheno-
type of interest. Wald ratio MR analyses were performed for
genetically proxied monocyte LIPA expression (1 variant). Results
reaching an FDR-corrected p < 0.05 were considered statistically
significant.

scRNA-seq analysis in human atherosclerotic plaques
To explore the expression of LIPA beyond whole blood in human
atherosclerotic lesions, we downloaded individual-level scRNA-
seq data from 15 carotid atherosclerotic plaques from Mocci
et al. (Gene Expression Omnibus [GEO] accession number GEO:
GSE260657).** We analyzed the raw count matrices using the
Seurat pipeline (v.5.1.0).”* In the initial preprocessing, we filtered
out cells with fewer than 300 detected genes, those with total
gene counts outside the range of 50,000 to 750,000, and cells
with mitochondrial gene content exceeding 10% of total gene
expression. Thereafter, we performed data normalization, vari-
able feature identification, and scaling. To integrate data across
samples, we selected common features and applied principal-
component analysis (PCA) to each dataset. We combined datasets
using integration anchors, followed by additional PCA and uni-
form manifold approximation and projection (UMAP) for dimen-
sionality reduction and clustering. We annotated clusters by
comparing cluster-specific marker genes with known cell-type
markers and renamed cluster identities to accurately reflect cell
types. A UMAP plot was generated to visualize the integrated
data.

Immunohistochemistry for LIPA in human
atherosclerosis plaques

Carotid plaque samples were obtained from patients undergo-
ing carotid endarterectomy at the Department of Vascular

Surgery of the LMU University Hospital in Munich. The
AtherOMICS Biobank has been approved by the ethics commis-
sion at LMU Munich (approval no. 22-0135), and the experi-
ments were conducted according to the Declaration of Helsinki.
Written informed consent was obtained from each individual.
Following removal of the plaque, the carotid samples were
fixed in 4% paraformaldehyde + 0.1 M phosphate buffered sa-
line (pH 7.4) for 24 h, decalcified in EDTA (200 mM EDTA
and 50 mM Trizma base [pH 8.0]), dehydrated, embedded in
paraffin, and sectioned into 3.5-pym sections with a microtome.
Plaque sections from three symptomatic individuals were used
for staining. Slides were deparaffinized with Roti-Histol, then
rehydrated progressively from 100% ethanol to distilled water,
with a 5-min incubation in each step. Then, after antigen
retrieval with trypsin for 10 min at 37°C, permeabilization in
Tris-buffered saline (20 mM Trizma base and 200 mM
sodium chloride [pH 7.6]) + 0.025% Triton X-100, pure
cold methanol fixation for 10 min, and blocking with 2.5%
normal horse serum for 20 min, the sections were incubated
with primary antibodies against LIPA (1:50; PAS5-97928,
Thermo Scientific) and CD68 (1:100; 14-0681-82, Thermo Sci-
entific) overnight at 4°C and fluorescent secondary antibodies
(VectaFluor Duet Immunofluorescence Double Labeling
Kit, DyLight 488 Anti-Rabbit, DyLight 594 Anti-Mouse, Vector-
labs) for 1 h at room temperature. Sections were mounted
with DAPI (Abcam) mounting media with an antifade agent
(Vectashield, Vectorlabs). Image acquisition was performed
using a confocal microscope (LSM 980, Carl Zeiss), and
images were recorded and processed with ZEN software (Carl
Zeiss, v.3.3).

Results

Single-cell TWAS-MR uncovers cell-specific gene
expression effects on ASCVD not captured by bulk
TWAS-MR

Of the 6,468 genes analyzed in the OneK1K cohort, 5,162
(79.8%) had significant cis-eQTLs. The number of genes
with significant cis-eQTLs varied widely across cell types,
ranging from 4,411 for CD4y cells to 244 for plasma cells.
For the majority of gene/cell-type combinations (81.7%),
only a single cis-eQTL was retained as the instrument
(Figure S1; Tables S1-S3). Between 7% and 61% of cis-
eQTLs detected in individual cell types were not detected
as cis-eQTL in bulk RNA-seq of whole blood in the much
larger dataset of the eQTLGen consortium (N = 31,686
for bulk cis-eQTLs vs. N = 982 for sc-cis-eQTLs;
Figures S2A and S2B).

Detailed results of the discovery MR analysis (Wald ra-
tio MR when the instrument consisted of a single cis-
eQTL or IVW MR when the instrument consisted of >1
cis-eQTL) examining the relationship between geneti-
cally proxied cell-specific gene expression and ASCVD
outcomes are shown in Tables S4-S6. Of 34,347
gene/cell-type/outcome combinations analyzed, 440
showed significant MR effect estimates (FDR-corrected
p < 0.05), representing 318 unique gene-outcome pairs
across different cell types. Notably, only 52 (16.4%;
32% for CAD, 3.9% for LAS, and 11.2% for PAD) of these
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Figure 2. Comparison between results of single-cell and bulk Mendelian randomization analyses

Stacked bar plot and correlation matrix of Mendelian randomization estimates for different immune cell types vs. whole blood for
(A) coronary artery disease, (B) large artery atherosclerotic stroke, and (C) peripheral artery disease.

B, immature and naive B cell; BM, memory B cell; CD4yc, CD47 naive and central memory T cell; CD4gr, CD4™ effector memory and
central memory T cell; CD4s, CD4" SOX4 T cell; CD8xc, CD8™ naive and central memory T cell; CD8gr, CD8™ effector memory T cell;
CD8s, CD8" S100B T cell; NK, natural killer cell; NKg, natural Killer cell recruiting; Monog, classical monocyte; Monoyg, non-classical

monocyte; DC, dendritic cell.

significant associations were captured in MR analyses us-
ing bulk cis-eQTLs for whole blood, despite the
much larger sample size used for cis-eQTL detection in
bulk RNA-seq (N = 31,686 vs. N = 982; Figure 2).
Furthermore, across all MR results, there were low to
moderate correlations between bulk and single-cell
effect estimates for all outcomes (median Pearson’s

r for CAD: 0.49 [range: 0.02-0.75], for LAS: 0.43
[range: —0.11-0.7], and for PAD: 0.34 [range: 0.33-0.7])
(Figure 2). Collectively, these results indicate a signifi-
cant gain in identified signals from the single-cell
TWAS MR approach compared to bulk TWAS MR despite
the considerably smaller sample sizes for sc-cis-eQTL dis-
covery datasets.
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Figure 3. Associations between immune cell-type-specific gene expression and atherosclerotic cardiovascular disease out-
comes

(A) Stacked bar graphs of the number of genes whose cell-specific expressions were found to be significantly associated with coronary
artery disease, large artery atherosclerotic stroke, and peripheral artery disease in each step of the statistical analysis.

(B) Bubble heatmaps for cross-cell-type comparison of discovery Mendelian randomization (MR) estimates of cell-type/gene/outcome
combinations, which had robust MR and colocalization evidence. Filled bubbles indicate associations that were significant in each of
the three steps of the analysis pipeline. The color of the bubble corresponds to the beta coefficient of the association between the genet-
ically predicted expression of genes (y axis) across different cell types (x axis) and the disease outcome. The size of each bubble corre-
sponds to the negative logarithm of the discovery MR association false discovery rate-corrected p value. * corresponds to cell-type/
gene/outcome combinations that were also significant (FDR-corrected p < 0.05) in analyses using sorted cell-type-specific bulk eQTLs.
B, immature and naive B cell; BM, memory B cell; CD4yc, CD4" naive and central memory T cell; CD4gr, CD4" effector memory and
central memory T cell; CD4s, CD4" SOX4 T cell; CD8xc, CD8* naive and central memory T cell; CD8gr, CD8™ effector memory T cell;
CD8s, CD8" S100B T cell; NK, natural killer cell; NKg, natural killer cell recruiting; Monoc, classical monocyte; Monong, non-classical
monocyte; DC, dendritic cell; ZADH2, zinc-binding alcohol dehydrogenase domain-containing protein 2; RP11-950C14.3, IncRNA,
antisense to EIF2B2; MYH11, myosin heavy chain 11; LIPA, lipase A, lysosomal acid type; HLA, human leukocyte antigen; DDTL,
D-dopachrome tautomerase like; COGS, component of oligomeric Golgi complex 5; NDUFA12, NADH:ubiquinone oxidoreductase
subunit A12; LRRFIP2, leucine-rich repeat flightless-interacting protein 2; FADS1, fatty acid desaturase 1; LAS, large artery stroke;
CAD, coronary artery disease; PAD, peripheral artery disease.

Replication of single-cell TWAS-MR and
colocalization analyses

Of the 440 significant gene/cell-type/outcome combina-
tions identified in the discovery MR, 38 achieved an
FDR-corrected p < 0.0S in the replication MR analysis us-
ing genetic instruments from the 1M-scBloodNL study
(Figure 3A; Tables S7 and S8). The two-stage MR analyses
provided cell-specific causal effect estimates and direc-
tions of effect, which could help in further gene target pri-
oritization and inform whether decreasing or increasing

gene expression would be the desired effect in a transla-
tional context. Additionally, the stringency of colocaliza-
tion analyses (PPH4 > 0.8) led to enhanced prioritization
of 21 gene/cell-type/outcome combinations—16 genes—
with a high PP for a shared causal genetic variant
(Figure 3A; Table S9). The effects of the 16 genes on
the outcomes across different cell types are shown
in Figure 3B. Sensitivity analyses using the analysis pipe-
line on GWASs for LAS in the European subpopulation
prioritized the same gene/cell-type combinations as the
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trans-ancestry analysis (Table S10). Sensitivity analyses us-
ing bulk eQTL data of sorted cell types revealed that of 148
significant gene/cell-type/outcome combinations identi-
fied from discovery MR, 30 achieved an FDR-corrected
p <0.05 in the replication MR, with 19 also showing signif-
icant colocalization (Table S11). Of them, 7 signals over-
lapped with those significant in the sc-eQTL data analyses
using the 1M-scBloodNL dataset (Figure 3B).

Although the genetically proxied expression of several
genes, including ZADH2, FKRP, COGS, and NDUFA12,
had directionally consistent effects, many genes had
cell-specific effects. Specifically, higher LIPA expression
in monocytes was associated with an increased risk of
CAD and LAS, whereas higher LIPA expression in CD4yc
cells was associated with a lower risk of CAD and LAS.
The results of MR analyses between the prioritized cell-
type-specific gene expression and CVD risk factors are
shown in Table S12. Notably, LIPA in Monoc and
Mononc cells was significantly associated with decreased
LDL-C levels. Additionally, LIPA in Monoxc cells was
significantly associated with decreased HDL-C levels and
increased SBP, DBP, and WHR.

Monocyte-specific association between genetically
proxied LIPA expression and atherosclerosis

While the association between LIPA eQTLs and CAD has
been previously described in whole blood,***® our study
adds evidence of colocalization between LIPA eQTLs and
CAD and LAS GWAS association signals specifically in
monocytes (Figure 4A). To further investigate this signal
and explore associations with outcomes other than
ASCVD, we performed a phenome-wide association study
(PheWAS) analysis on 487,314 participants of the UKB. Af-
ter correcting for multiple comparisons (FDR-corrected
p < 0.05), the only phenotypes significantly associated
with higher genetically proxied monocyte-specific LIPA
expression in the PheWAS analyses were myocardial
infarction, coronary atherosclerosis, and ischemic heart
disease, thereby validating the relevance of LIPA in mono-
cytes for ASCVD in an external dataset (Figure 4B;
Table S13). There was no evidence of associations with
other phenotypes in the opposite direction, supporting a
favorable safety signal when genetically perturbing this
drug target. Beyond clinical endpoints, we also found a
significant association between genetically proxied mono-
cyte LIPA expression and carotid plaque as captured by ul-
trasound, as well as myocardial infarction, ischemic heart
disease, and coronary atherosclerosis (Figure 4C).

mRNA expression and protein levels of LIPA in human
atherosclerotic plaque macrophages

Given the evidence for an effect of monocyte-specific
expression of LIPA on ASCVD, we, in a last step, examined
whether LIPA is expressed in human atherosclerotic pla-
ques and, more specifically, in plaque macrophages,
which are primarily derived from circulating monocytes.
Using published scRNA-seq data from 15 advanced hu-

man carotid artery plaques (Figure S3),** we found LIPA
to be expressed throughout all detected cell types, but its
expression was highest in macrophages (Figure 5A).
Accordingly, immunohistochemical staining of human
carotid plaques from 3 individuals undergoing endarterec-
tomy from the AtherOMICS cohort demonstrated LIPA in
CD68-stained macrophages, along with abundant choles-
terol clefts (Figures 5B and S4).

Discussion

In the present study, we proposed and implemented an
analytical pipeline for TWASs at the single-cell level. We
demonstrated the applicability and potential of the
approach by integrating sc-cis-eQTL data for 14 immune
cell types in peripheral blood with GWAS data for three
ASCVD outcomes—CAD, LAS, and PAD. Despite consider-
ably smaller sample sizes of the sc-cis-eQTL discovery data-
sets, our single-cell MR analyses revealed significant infor-
mation gains compared to bulk TWAS MR. Through our
stringent screening criteria—including replication using
an independent scRNA-seq dataset and genetic colocaliza-
tion evidence—we identified 21 associations between cell-
type-specific gene expression and ASCVD outcomes. Of
these, the effects of MYH11, LIPA, and FADS1 have been
established previously in whole-tissue studies.*’ > Addi-
tionally, we identified previously underrecognized
ASCVD risk associations of several genes, such as the
CD4nc cell-specific effect of the poorly characterized
gene DDTL. While the expression of genes such as COG5
and ZFP57 was found to affect disease risk in multiple im-
mune cell types, higher genetically proxied expression of
LIPA was associated with a higher risk of two ASCVD out-
comes—CAD and LAS—specifically in monocytes. Mono-
cyte-specific LIPA also showed a strong association with
lipid levels, blood pressure, and glycemic traits, suggesting
broad metabolic regulatory roles. We validated the associ-
ations of monocytic expression of LIPA with atheroscle-
rotic endophenotypes and clinical endpoints in PheWAS
analyses in an external dataset, which also broadly sup-
ported a favorable safety profile with no significant signals
for a higher risk of unexpected clinical outcomes. Finally,
follow-up analyses of scRNA-seq data from human carotid
plaques revealed high expression of LIPA in plaque macro-
phages, which was also confirmed at the protein level
through immunohistochemistry.

Our approach enhances the conventional bulk TWAS-
MR paradigm, enabling the detection of cell-specific
expression patterns driving genetic predisposition to hu-
man disease. Since most genetic polymorphisms associ-
ated with human diseases are located in non-coding re-
gions, it is believed that genetic variation influences
predisposition to disease primarily by influencing gene
expression patterns.*” In this context, TWAS approaches
integrating GWAS findings with tissue-specific eQTL
data have become crucial in post-GWAS explorations.*'**
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Figure 4. Association between genetically proxied monocyte expression of LIPA and atherosclerotic cardiovascular disease

outcomes

(A) LocusZoom plots illustrating evidence of genetic colocalization between LIPA expression in monocytes and coronary artery disease

and large artery atherosclerotic stroke in the LIPA locus.

(B) Forest plots of Mendelian randomization (MR) results for the effects of genetically proxied LIPA expression in monocytes and

atherosclerotic cardiovascular outcomes.

(C) Manhattan plot of an MR-phenome-wide association study for genetically proxied LIPA expression in monocytes. The dashed hor-
izontal gray line represents a false discovery rate-corrected p value of 0.05.

As gene expression is regulated at the cellular level, using
sc-eQTL data has significant benefits. Although scRNA-seq
studies are still limited by sample size, we found that using
cell-specific eQTL instruments enables the detection of
signals that would not be detected with bulk eQTL instru-
ments derived from much larger studies. This is reflected
in the relatively weak correlation between cell-specific
MR and bulk MR estimates for all coded genes across
ASCVD outcomes. By integrating scRNA-seq eQTL data

with GWAS risk loci using MR and colocalization analyses,
we obtained evidence of potentially causal genes at risk
loci for ASCVD and resolved specific cell types through
which these genes exert their pathogenetic effects. For
example, increased CD4n( cell-specific DDTL expression
was found to be associated with higher CAD risk, whereas
increased Monoc-specific LRRFIP2 expression was found
to be associated with higher PAD risk. Our approach is
generalizable to other outcomes, as well as single-cell
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Figure 5.

LIPA expression in human carotid atherosclerotic plaques

(A) Violin plot of LIPA expression across different cell types in 15 human atherosclerotic plaque samples from Mocci et al.** p values of
the Wilcoxon rank-sum test of expression between cell types are indicated as ***p < 0.001, **p < 0.01, and *p < 0.0S.
(B) LIPA in macrophages (CD68) (scale bar, 100 pm) and cholesterol clefts (black arrowheads) (scale bar, 1 mm) in a human carotid

plaque section from a symptomatic individual (n = 3).

SMC, smooth muscle cells; PC, pericytes; EC, endothelial cells; MP, macrophages.

and single-nuclei RNA-seq data from tissues beyond pe-
ripheral blood, as such data become increasingly
available.

Higher genetically proxied monocyte expression of
LIPA was associated with a higher risk of both CAD and
LAS, highlighting its role in the development of athero-
sclerosis. Further, monocyte-specific LIPA expression
was also significantly associated with LDL-C, HDL-C,
SBP, DBP, and WHR, reinforcing its broader role in lipid
metabolism and cardiometabolic risk. In a recent large
genome-wide meta-analysis, the CAD and LAS lead
variant at the LIPA locus, rs1412445, was associated
with glycoprotein acetyl level—an established biomarker
of chronic inflammation that has also been associated
with the risk of ASCVD.***” Expanding multiomics inte-
gration to metabolomics could provide additional in-
sights into how cell-specific gene expression contributes
to ASCVD. The LIPA locus has been consistently identi-
fied as a risk locus for CAD in previous GWASs, with co-
localization analyses suggesting LIPA as the causal gene
at this locus.”®*? In multiple bulk eQTL datasets, the
CAD lead variant at the LIPA locus, rs1412445, has been
strongly associated with LIPA expression.'®°° CAD risk-
enhancing alleles are also eQTLs for LIPA expression in
whole blood.”" Our findings provide robust evidence
that the effect of these genetic variants on LIPA expres-
sion in monocytes, rather than other PBMCs, drives the
risk of CAD, LAS, and other atherosclerotic phenotypes.
Consistently, rs1412445 and linked SNPs, rs1412444
and rs1320496, show strong enhancer activity in mono-
cytes but not in CD4yc cells, with PU.1 binding to the
risk allele of rs1320496 enhancing LIPA expression specif-
ically in monocytes, indicating differential SNP regula-
tion across cell types.”® This aligns with a previous
in vitro study in isolated human monocytes, which

showed that risk-enhancing alleles increase not only
LIPA expression but also the activity of the LIPA
enzyme.’” In line with this, a study in Ldlr knockout
mice has demonstrated that myeloid-specific Lipa overex-
pression leads to larger atherosclerotic lesions with
higher macrophage content.’® These results suggest that
the previously identified whole-blood association be-
tween LIPA expression and ASCVD could be primarily
driven by monocyte-specific expression.

LIPA encodes lysosomal acid lipase, a key enzyme in
lipid metabolism that hydrolyzes cholesteryl esters and
triglycerides in lysosomes.>* Given that most atheroscle-
rotic plaque macrophages originate from circulating
monocytes, it is plausible that LIPA exerts its risk-
enhancing effect by promoting excessive cholesterol crys-
tal formation within these lesion macrophages. Support-
ing this hypothesis, our analysis revealed high LIPA
mRNA and protein levels in macrophages within human
atherosclerotic plaque samples with abundant cholesterol
crystals. On the other hand, rare loss-of-function muta-
tions leading to complete loss of LIPA activity and
partial residual activity cause infant-onset Wolman dis-
ease and cholesteryl ester storage disease, respectively,
with the latter also being associated with premature
atherosclerosis, probably due to severe hyperlipid-
emia.’*>> This dual role—where reduced LIPA activity
leads to hyperlipidemia-driven atherosclerosis and
elevated LIPA expression may drive pro-inflammatory ac-
tions in macrophages—highlights the importance of LIPA
homeostasis in preventing atherosclerosis. Reciprocally,
the ability of our analysis pipeline to identify LIPA as an
ASCVD risk driver, further supported by our PheWAS-
MR and atherosclerotic plaque RNA-seq analysis, rein-
forces the robustness of our approach in detecting cell-
specific genetic drivers of ASCVD risk.
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The findings from our study could have implications for
the development of RNA-based therapeutics, particularly
those targeting gene expression in specific cell types.
The identification of cell-specific gene expression
patterns, such as the association of LIPA expression in
monocytes and macrophages with ASCVD, underscores
the potential for designing cell-tailored RNA therapies.
RNA-based drugs are gaining pace in the cardiovascular
field and becoming increasingly common, demonstrating
the feasibility and effectiveness of these modalities. RNA-
based drugs have been successfully introduced to clinical
practice, such as inclisiran, a silencing RNA (siRNA) agent
that targets the synthesis of PCSK9 to lower LDL-C,° or
are in advanced stages of clinical development, such as
siRNA therapeutics against APOC3, ANGPTL3, Lp(a), and
angiotensinogen.>’°° By focusing on modulating gene
expression within specific cell types, it may be possible
to mitigate disease risk while minimizing off-target effects.
As RNA-based drugs continue to advance, our sc-TWAS
MR pipeline provides a robust framework for in silico iden-
tification and validation of cell-specific targets, paving the
way for more effective and safer therapies for complex dis-
eases like ASCVD.

Our study has limitations. First, MR analysis at the sin-
gle-cell level may miss risk genes with lower expression
levels because the sparse expression in individual cells
can limit statistical power, whereas bulk analysis averages
gene expression across many cells, improving the detec-
tion of lowly expressed genes. Second, the relatively small
sample size of scRNA-seq studies limited the number of
genes tested and the number of eQTLs detected. The num-
ber of eQTLs obtained for each cell type from publicly
available datasets varied according to the sample sizes
for eQTL analyses of each cell type. Third, some eQTLs
for very large genes in the 1M-scBloodNL study might
not have been captured due to the cis-eQTL definition
used of a 100-kb window centered around the gene
midpoint. This might have led to the exclusion of eQTL-
enriched promoter regions, thus explaining the low repli-
cation rate in this dataset. However, the median length of
genes in the 1M-scBloodNL dataset is 27.4 kb, and over
80% of the genes are shorter than 100 kb. Considering
promoter regions within 6 kb, a 100-kb window would
capture the gene body and promoter region for most
genes. Fourth, since most genes were associated with
only one eQTL as a valid IV, sensitivity analyses to correct
for horizontal pleiotropy could not be performed. The
follow-up colocalization analyses provided evidence of a
shared genetic basis between the exposure; however,
they do not rule out the possibility that a single causal
variant exerts pleiotropic effects on multiple neighboring
genes.’! While alternative approaches, such as heteroge-
neity in dependent instruments (HEIDI), commonly
used together with summary-data-based Mendelian
randomization (SMR),”” could be applied instead of coloc-
alization, we considered the more stringent nature of
Bayesian colocalization to be better suited for our

62

hypothesis-free transcriptome-wide pipeline.®® IVW was
preferred over SMR, as it allows for the consideration of
the effects of >1 variants, in cases where multiple indepen-
dent variants influence cell-specific gene expression in a
locus. Fifth, differences in scRNA-seq protocols could
cause substantial variability in results. However, the con-
sistency of the main findings across two independently
collected scRNA-seq datasets raises confidence in their val-
idity, although the finer resolution of cell types in the dis-
covery dataset compared to the replication dataset may
limit their direct comparability. Sixth, the GWAS and
eQTL analyses in this study were primarily conducted on
individuals of European ancestry, which may limit the
generalizability of the findings to other ethnicities. Sev-
enth, due to the lack of sc-eQTL data from human vascu-
lature, we could not apply our transcriptome-wide
approach to potentially more relevant tissues, where
many of the ASCVD-associated variants might exert their
effects.

In conclusion, we propose an integrative single-cell
TWAS pipeline that could enhance our understanding of
cell-specific gene expression patterns driving genetic pre-
disposition to human disease. Using results from this
approach as a foundation, we provided support for the
key role of monocyte-specific LIPA in atherosclerosis
with potential therapeutic relevance. Findings from sin-
gle-cell TWASs could inform target selection for therapeu-
tic modalities tailored to specific cell types, such as RNA
therapeutics.
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The published article includes all datasets generated during this
study.

The complete single-cell transcriptome-wide Mendelian
randomization and colocalization analysis pipeline is open
source on GitHub (https://github.com/DeepVasc-Lab/3-step_
sceQTLMR.git) under the Apache License 2.0.
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