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 A B S T R A C T

Ecosystem services provided by central European forests, often dominated by Norway spruce or Scots pine, 
are increasingly threatened by climate change. Monitoring, while labour intensive, is key to ensure continuing 
forest health. Consequently, UAV-based LiDAR remote sensing has become a valuable tool. However, the 
impact of drone flight parameters on LiDAR data quality has not yet been extensively studied. To address 
this, we first present a methodology for delineating tree stems, estimating their diameter at breast height 
(DBH), and separating understory vegetation from stems and old-grown trees to subsequently compare the 
approach to other existing methods. Second, we analyse how drone flight parameters influence the accuracy 
of forest parameter detection. Our methodology outperformed existing approaches in stem detection and DBH 
estimation. Understory detection enabled the identification of forest paths, roads, and areas without understory 
vegetation. Differences in flight parameters had a large effect on the accuracy of the approach. Optimal data 
usability was achieved by flying the drone at low flight height above the trees, at relatively high speeds, and 
with high LiDAR stripe overlap, balancing detailed data collection with efficient area coverage. We conclude 
that the new approach can provide foresters with detailed insights into forest structure and dynamics, reducing 
the need for extensive fieldwork.
1. Introduction

Forests worldwide provide crucial ecosystem services, such as car-
bon storage (Fahey et al., 2009), recreational and cultural services 
(Brockerhoff et al., 2017), or the provision of timber (Zhang et al., 
2020). Mostly for the latter reason, commercially used forests in Central 
Europe are often dominated by Norway spruce (Picea abies) and Scots 
pine (Pinus sylvestris) (Brandl et al., 2020), as they grow relatively fast 
and can therefore provide timber on a large scale (Caudullo et al., 2016; 
Pyhäjärvi et al., 2019). The economic yield of spruce and pine trees 
is increasingly threatened because climate change negatively impacts 
tree health (Brandl et al., 2020). Consequently, the frequency and 
magnitudes of forest disturbances are increasing in Central Europe 
(Caudullo et al., 2016, Dyderski et al., 2018). The drought in the years 
2018 to 2020 demonstrated the high susceptibility to disturbances of 
spruce-dominated forests, causing forest losses of nearly 5000 km2 in 
the regions of the Harz, Thuringian Forest, and the Erz mountains in 
central Germany (Thonfeld et al., 2022). Future projections show that 
the frequency and intensity of drought events will increase, accelerating 
the pressure on the remaining spruce-dominated forests and most likely 
increasing disturbances in previously less affected areas such as forests 
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in southern Germany (Huang et al., 2015; Spinoni et al., 2018; Kloos 
et al., 2021; Poschlod et al., 2020).

With increasing economic and ecological demands and intensifying 
threats from disturbances, foresters are forced to apply measurements 
to foster resistance and resilience in their forests. To analyse the effect 
of pre-calamity measures, a dense monitoring network is required, 
which is time-consuming if performed in situ. An alternative method 
to obtain the necessary information about forest health and change in 
forest structure is the use of high resolution airborne LiDAR scanners 
(ALS, Campbell and Wynne, 2011). This method, often powered by 
unmanned aerial vehicles (UAV), has been proven to be capable of 
detecting individual trees and obtaining important tree parameters such 
as tree height and crown area (Ferraz et al., 2016). Regarding economic 
and ecological values of trees, stem diameter is a crucial variable, 
which, however, remains difficult to derive from ALS data alone. In 
contrast, several approaches of estimating tree parameters such as stem 
diameter, volume, etc. (Singh et al., 2022) have been developed for 
terrestrial LiDAR data (TLS, Corte et al., 2020). Among the available 
approaches for ALS, Chisholm et al. (2013) were among the first to 
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Nomenclature

ALS Airborne Laser Scanning
CHM Canopy Height Model
DBH Diameter at Breast Height
DBSCAN Density-Based Spatial Clustering of Appli-

cations with Noise
DTM Digital Terrain Model
FP Flight Parameter
H Flight Height (Flight Parameter)
HDBSCAN Hierarchical Density-Based Spatial Cluster-

ing of Applications with Noise
LiDAR Light Detection and Ranging
LMU Ludwig Maximilian University
NRMSE Normalised Root Mean Square Error
O Overlap of LiDAR Stripes (Flight Parame-

ter)
PCA Principal Component Analysis
PLS Portable Laser Scanning
S Flight Speed (Flight Parameter)
TLS Terrestrial Laser Scanning
UAV Unmanned Aerial Vehicle

develop basic methods for estimating stem diameter. However, their 
algorithm failed to detect most of the trees, especially if they stood 
far from the central flight line. Brede et al. (2017) compared stem 
diameters from manually segmenting the stem points from ALS data 
to that of TLS data and found a similar precision. They concluded that 
ALS data recording for stem detection is more time efficient compared 
to TLS data retrieval. Building upon the method of Chisholm et al., 
2013, Neuville et al., 2021 described an algorithm for ALS data to 
segment the bole area of trees in the segment relevant to the vital 
parameter of stem diameter at breast height (DBH, Ter-Mikaelian and 
Korzukhin, 1997) and automatically estimate stem diameter. Their 
approach first performs individual tree segmentation and then tries 
to delineate the stem of each tree. Consequently, if individual tree 
detection fails to separate the canopy into trees, the stem detection 
algorithm will miss the corresponding stems.

A critical issue regarding the detection of stems using ALS under 
close canopies is that stems can only be detected if enough LiDAR 
beams are reflected off the stems, resulting in a high 3D point cloud 
density in the stem segment. This depends mainly on the choice of flight 
parameters, such as flight speed and flight height. Since so far research 
on stem detection and stem diameter estimation did not investigate 
these effects (Neuville et al., 2021; Brede et al., 2017; Liao et al., 2022; 
Chisholm et al., 2013), we initially performed a systematic comparison 
of stem detection accuracy and stem diameter calculation for different 
forest stands. Beside applying these two existing approaches (Neuville 
et al., 2021, de Conto et al., 2021), we present an enhanced version 
of the approach developed by Neuville et al. (2021), which directly 
detects the stems without the need to identify individual trees first. 
Based on this new approach, we hypothesise that we can increase the 
accuracy of stem detection.

In particular, this paper will initially aim to find an ideal set of 
flight parameters for low-cost UAV based LiDAR remote sensing, with 
a focus on the stem segment of trees. Secondly, an adapted algorithm 
to delineate stem points from a dense 3D point cloud will be described 
to enable faster tree segmentation over larger areas. Lastly, a method 
for the estimation of DBH based on these segmented stems will be pre-
sented, and the capabilities of both methods are compared to previous 
work in the field.
2 
2. Materials and methods

2.1. Study area

The study has been conducted in a managed forest located near 
the city of Landshut in southern Germany. This region shows an-
nual average precipitation of 859 mm and a yearly average temper-
ature of 9.1 ◦C (Deutscher Wetterdienst (DWD), 2024). The exper-
imental sites for this study cover 9 ha of the forest owned by the 
Ludwig-Maximilians-University of Munich (LMU) (Fig.  1).

The mixed forest in the study area consists of approximately 65 % 
coniferous and 35 % broadleaf trees, with the main tree species being 
Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and Beech 
(Fagus sylvatica). The site is dominated by a small stream that stretches 
in a north-easterly direction, with slopes towards the creek. The max-
imum tree height is around 42 m with some younger and lower tree 
stands with heights around 15 to 20 m. The tree stand density shows 
a large variability for some areas, as does the forest stand age, ranging 
from some old spruce and pine trees with an age of around 80 years, 
while around 30 years younger stands of broadleaf trees can be found to 
the north. Similarly, the presence and density of understory vegetation 
varies largely, with height ranges from around 0.5 m to 12 m, consisting 
mainly of planted beech and spruce trees.

The study area was specifically chosen for its heterogeneous forest 
structure, with four subplots of varying characteristics were selected 
to assess the performance methods’ performance over a wide range 
of forest structural parameters. The four subplots mainly consist of 
old-growth conifers (spruce and pine) both with little to no advanced 
regeneration (1), very dense advanced regeneration of beech up to 10 m 
in height (2), old-growth broadleaf trees (oak, beech, and maple) with 
a decent amount of advanced regeneration up to 4 m (3), and younger 
coniferous trees (4) and are around 0.1 ha in size (compare Fig.  2 for a 
canopy height model (CHM) with subplot locations and a digital terrain 
model (DTM), both derived from UAV-LiDAR data).

2.2. Field work

To analyse the impact of flight parameters (FPs) on data accuracy 
and usability of LiDAR remote sensing, eight flights with different 
combinations of flight height (abbreviated as H in the names of the 
flights in the following), speed (S), and side overlap of LiDAR stripes 
(O) have been conducted in May and July 2024 (Table  1) during days 
with low wind speeds and no precipitation (a schematic overview of 
different FPs is shown in Fig.  3). To check for differences between day- 
and nighttime data, an additional flight was conducted in July at night. 
All flights were performed in a double grid manner to increase point 
density and to allow observations from multiple directions (Swayze 
et al., 2021).

A total of 148 trees were selected within the study area to validate 
the LiDAR-derived tree parameters. The trees were chosen to represent 
the differing forest stands and tree species found within the forest. Of 
the total selected trees, 72 are used for training and 76 for validation. 
Of the latter, 30 are spread over the entire study area, and 46 within 
the four subplots. For each tree, the location has been determined with 
a differential GPS (StoneX S850 A) and diameter at breast height (DBH) 
values were recorded for each tree using a standard tree calliper. The 
tree heights range from 5 to 40 m and show a DBH between 6 to 74 cm 
(compare Appendix Fig.  A.1 for the measured DBH-values for the entire 
study area as well as the subplots).

2.3. LiDAR algorithms

2.3.1. Data collection and preparation
LiDAR data was recorded using a Geosun GS-100C+ LiDAR Scanner 

(Wuhan Geosun Navigation Technology Co., Ltd) on a DJI Matrice 
M300 Drone (SZ DJI Technology Co., Ltd.). Using Geosun’s software 
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Fig. 1. Overview of the study area, with (a) the position of the study area in Germany, and (b) an orthophoto of the forest in the study area.
Fig. 2. Canopy height model (CHM; a) and digital terrain model (DTM; b) of the study area based on LiDAR data. CHM shows recent felling of trees (mainly within the dark blue 
areas) as well as subplots of differing forest structure for later analysis, while DTM gives overview of the terrain. The subplots consist of two old-growth conifer stands without (1) 
and with dense understory vegetation of beech (2), a close-canopied stand of old-growth broadleaf trees (3), and a stand of dense, but younger conifers (4).  (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Table of flight parameter (FP) sets and basic point cloud metrics thereof.
 Height Speed Overlap Time Date Name of Point Ground 
 FP set density points  
 50 m 6.0 m/s 30% Day 2024–05–15 H50 S60 O30 2160.1 Pts/m2 13.8%  
 50 m 6.0 m/s 45% Day 2024–05–21 H50 S60 O45 2705.5 Pts/m2 14.4%  
 50 m 6.0 m/s 60% Day 2024–05–16 H50 S60 O60 3826.3 Pts/m2 14.6%  
 70 m 6.0 m/s 30% Day 2024–05–15 H70 S60 O30 1514.6 Pts/m2 15.1%  
 90 m 6.0 m/s 30% Day 2024–05–15 H90 S60 O30 1022.0 Pts/m2 17.4%  
 50 m 4.0 m/s 30% Day 2024–05–15 H50 S40 O30 3119.2 Pts/m2 13.7%  
 50 m 5.0 m/s 30% Day 2024–05–15 H50 S50 O30 2617.6 Pts/m2 13.9%  
 50 m 6.0 m/s 30% Night 2024–07–02 H50 S60 O30 N 2133.9 Pts/m2 14.6%  
shipped with the device (version 6.2 for the trajectory calculation and 
5.0 for the point cloud generation), flight-data were processed, and 
LiDAR stripes were stitched together. The resulting point cloud was 
then checked for offsets using ground targets, and height-normalised 
by transforming the height values of all points to above ground, instead 
of above sea level. Ground segmentation was performed with the lidR-
package (Roussel et al., 2020) using the cloth simulation function (CSF) 
(Zhang et al., 2016) in CRAN R. Finally, each of the eight datasets 
3 
retrieved under the respective FP set were clipped using the same area 
outline as seen from the study area overview, to ensure comparability 
between the datasets.

2.3.2. Stem delineation algorithm
Three different algorithms for stem detection and/or DBH estima-

tion have been compared. The first one was developed by de Conto 
et al. (2017) for TLS data, but can be also applied to ALS data (de Conto, 
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Fig. 3. Conceptual visualisation of effects of flight parameters flight height (a), speed (b), and overlap (c) on Lidar point clouds of UAV flight parameters and their influence on 
point density for the canopy, and stem segment, as well as for total point density. Examples for high values in the first row, low values in the second row.
2020). The second one has been developed for a deciduous forest in 
Western Germany utilising ALS data acquired with a similar system 
to that used in this study (Neuville et al., 2021). Using the concept 
of Neuville et al. (2021), we developed a third approach, which uses a 
sliding window instead of a tree-wise approach. In the following, each 
algorithm will be briefly explained:

TreeLS’s method of segmenting the stems functions via Hough-
transformation (Fig.  4a). After an initial segmentation of individual 
trees by clustering points based on spatial proximity, the point cloud 
of each tree is sliced vertically every 0.5 m. For each slice, a Hough-
transformation is used to detect circles. If multiple circles were found 
vertically stacked above each other starting from a defined base height, 
the method detects these points as part of a stem, labelling the points 
accordingly (de Conto et al., 2017).

The DBH estimation algorithm by Neuville et al. (2021) technically 
does not provide a segmentation of entire stems as an intermediate 
product, but rather uses the detected parts of stems at breast height for 
DBH estimation directly (Fig.  4b). This method functions on individu-
ally segmented trees, clustering the bottom third of the tree points per 
height using HDBSCAN (Campello et al., 2013), while disregarding the 
Z-variable. The algorithm then iteratively reduces the minimum point 
number for a cluster to be labelled as such until the cluster satisfies 
the conditions of realistic diameter (below 1.5 m), minimum vertical 
length, and vertical continuity. This is then defined as the cluster of 
points that represent the stem segment. The cluster is then cut to the 
extraction interval between 1.2 and 1.4 m and the DBH is estimated 
via a circle fit checking for different growth directions via a principal 
component analysis (PCA). The original parameter set used by Neuville 
4 
et al. (2021) provided only a small number of stems and corresponding 
DBH values for the present study site. Therefore, the height segment 
of the stem at which points are used to estimate the DBH (originally 
between 1.2 & 1.4 m) has been set between 1 and 3 m. Additionally, 
the starting minimum number of cluster points for the HDBSCAN was 
reduced to speed up computation.

The newly developed stem delineation algorithm did not rely on the 
detection of individual trees like the precursor algorithm by Neuville 
et al. (2021) (Fig.  4c), as the segmentation of individual trees in ALS 
data can be error-prone, often leading to over- or under-segmentation 
of individual trees (Jeronimo et al., 2018). Therefore, we split the 
point cloud into quadratic cells of a chosen size (e.g., 20 by 20 m), 
iterating over every cell individually. We have found that higher cell 
sizes increase the amount of physical memory necessary for calculation, 
while shortening computing time. To exclude ground below 0.5 m and 
canopy points above 15 m, the delineation only regards the relevant 
height segment for the stems (e.g., between 0.5 and 15 m). This 
segment is then initially clustered using HDBSCAN, only regarding X- 
and Y-variable of the points, similar to the original method. This is done 
as stems are assumed to be more or less straight and should be repre-
sented by dense clusters of vertically stacked points. To differentiate 
between stems and other objects, a PCA is performed for each cluster. 
Subsequently, it is checked if the following four conditions, which are 
adapted compared to the original method, are met (note that all these 
parameters can be adapted to work for other LiDAR systems and study 
areas, but were found to produce the most accurate segmentation of 
stems for our data):
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Fig. 4. Flow-chart of applied methods by de Conto et al. (2017) (a) and Neuville et al. (2021) (b), as well as the newly developed algorithm (c).
1. The principal component associated with the Z-direction ex-
plains at least 92.5% of the variance.

2. The principal components for the X- and Y-variables explain less 
than 30 % of the variance in total.

3. The vertical histogram of points with 1 m bins has less than 
five empty bins, similar to the original method, and the standard 
deviation of densities is less than 0.8 m (indicating that points 
are vertically homogeneously distributed).

4. The length of the entire cluster between lowest and highest point 
of height is more than 5 m.

If a cluster meets all conditions, it is assumed to be a stem and is 
collected into a new point cloud containing only points of detected 
stems labelled with tree IDs. Finally, a second round of clustering 
using DBSCAN (Ester et al., 1996) is performed on the entirety of 
the detected stems to filter out any remaining noise caused by points 
from branches or understory vegetation. Compared to HDBSCAN, this 
clustering method requires additional information on the approximate 
size of clusters. Due to the previous steps, this is relatively easy, as the 
remaining clusters of stems are more or less of similar size, compared to 
remaining points of other sources, like shrubs or other lower vegetation. 
Additionally, DBSCAN is significantly less computationally demanding, 
as it does not calculate a point hierarchy like HDBSCAN (Campello 
et al., 2013), and can therefore be used on all stems at once. Addi-
tionally, it combines any falsely segmented stems, if they are located 
on edges of two cells, while also generating a unique ID for every 
stem. Finally, the detected stem points are reintegrated into the original 
point cloud, which contains the points of the detected stems labelled 
with their stem ID. This is different to the method from Neuville 
et al. (2021), which is not capable of identifying points of individual 
tree stems. Note that for very large areas, the first clustering of our 
method can also be performed using DBSCAN. This requires setting the 
parameter of cluster size to fit the present stems, but speeds up the 
calculation substantially. Even more importantly, the usage of DBSCAN 
significantly reduces memory consumption, as HDBSCAN requires the 
calculation of the core distance between every point in the point cloud, 
which non-linearly increases the memory consumption with increasing 
point clouds (Campello et al., 2013).

2.3.3. Understory detection
Using the stem delineation algorithm, it is further possible to detect 

the understory vegetation of the forest. Histograms of point heights 
for this study area revealed a large number of points on the forest 
floor. From a height of around 2 m upwards, the density of points 
5 
decreased rapidly and only increased at around 18 to 20 m with the 
canopy. Removing the detected stem points from the point cloud, 
a break point separating understory vegetation and canopy can be 
detected automatically. Hence, a cell-wise calculation (20 m per cell) is 
performed to detect this break point, by getting the first local minimum 
of the density of point heights above ground. This ensures that heights 
of understory vegetation are adapted to the local forest conditions and 
can differ across the area of investigation. The algorithm creates a raster 
of this break point for each cell. To counteract the problem caused by 
very small vegetation not covered by canopy or at the edge of canopies, 
cells in the raster with a breakpoint below 3 m were increased to 
5 m. Finally, to return a point cloud that contains only the understory 
vegetation, each cell of the point cloud is clipped, removing ground 
points and points above the calculated break point from the raster.

2.3.4. DBH-estimation
The estimation of DBH iterates over every delineated stem, first 

clipping the chosen height segment (e.g., between 1 and 2 m). This 
set of points is then flattened into a 2D-space, ignoring the Z-variable. 
The DBH is then estimated with an iteratively adopted quantile of the 
total amount of distances between every point within the 2D-space. 
The iterative selection of the quantile is performed together with the 
selection of other parameters described below. Finally, the centre X- 
and Y- coordinates, the estimated DBH in cm, and ID of every stem 
are stored. As the DBH estimation requires the setting of the three 
additional parameters (1) the quantile of estimation, (2) the upper, 
and (3) the lower height segment of extraction, an iterative method for 
maximising the accuracy was developed. Using the training dataset, this 
method cycles through the three parameters and compares the results 
of the algorithm to the measured stems by local join, recording recall of 
stems compared to the measured ones, the adjusted R2, and normalised 
RMSE of the diameter estimation, using the min–max method for 
calculation. The validation set is then used to validate the optimisation, 
as are the measured DBH-values within the four subplots.

3. Results

3.1. Flight parameters

The selection of flight parameters influenced point densities and the 
number of return points at the ground (Table  1). Lower flight speeds 
and higher overlaps resulted in higher point densities and a higher 
number of total points over the entire study area. Percentage of points 
returned from the ground increased with flight height, but was only 



P.M. Eisenschink et al. Ecological Informatics 88 (2025) 103127 
Fig. 5. Point density distributions for the most relevant flight parameter (FP) sets with stem and canopy segment denoted. For the absolute number of points see Table  1.
marginally affected by altered speeds and overlaps. Intermediate values 
of FP parameters, meaning for example an overlap of 45% or flight 
height of 70 m, led to intermediate point densities and percentages 
of reflected ground points. Consequently, we focus on the flights con-
ducted with extreme values of FP in the following and describe their 
effects on stem detection and diameter calculation.

The general pattern of point density distributions acquired with 
different FPs were similar, with large point densities at the ground, 
lowering in the area of stems (between 2 & 12 m), and increasing 
again with the canopy (Fig.  5). The first small spike in data at around 
1.5 m height was likely caused by the LiDAR’s inability to penetrate 
lower shrubs and grasses, decreasing the number of points underneath. 
A notable exception was the density of the data retrieved from the 
highest flight (H90 S60 O30). This data contained fewer points in the 
stem segment, while those in the canopy increased, with a point of 
intersection to the other FP sets’ data at around 23 m. It can also 
be seen that the difference between the data with high overlap (H50 
S60 O60) and the data acquired at slow speed (H50 S40 O30) was 
particularly small. Lastly, the FP set using the LiDAR’s default settings 
(H50 S60 O30), shows a slight drop in point density at higher stem 
heights at around 15 m, while otherwise being quite similar. To analyse 
the effect of varying forest structure and FP set on the data, the point 
densities and their distribution in the four subplots were used. Total 
point densities followed the order of the entire area’s dataset, with 
the densely overlapped and slowest flown data providing the highest 
point numbers (Table  A.2). The point density distributions showed a 
relatively low impact of the FP sets in the subplots. A comparably 
strong response in the nightly flown data (H50 S60 O30 N) for the 
subplots 3 & 4 might be caused by the advanced phenological stage 
in July. Only subplot 4 showed a higher relative point density at the 
canopy segment for the densely overlapped data, compared to the other 
subplots (compare Fig.  A.2).

3.2. Stem delineation algorithms

The stem delineation was applied to the five most extreme FP sets 
as done for the whole study area above and over the four subplots of 
differing forest structure. Recall, that is, the fraction of stems visible in 
the LiDAR data versus stems correctly segmented by the algorithm, was 
highest for densely overlapped data (H50 S60 O60) at around 87 % fol-
lowed by the slowly flown data (H50 S40 O30), the standard parameter 
data (H50 S60 O30), the nightly flown data (H50 S60 O30 N), and lastly 
the high flight height data (H90 S60 O30). Recall in the individual 
subplots revealed similar trends, giving the densely overlapped data 
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the highest recall in three of the four subplots and second highest in 
the fourth (For the entire table of recalls per subplots and FP sets see 
Table  A.2.)

As the densely overlapped flight stripes data (H50 S60 O60) proved 
to be the best FP set for stem remote sensing in terms of recall, the stem 
delineation algorithms were applied to the data recorded at an overlap 
of 60% for the next comparison, consisting of a stand of old-growth 
coniferous trees of up to 43 m (Fig.  6a). Results of stem delineation 
using TreeLS and the new algorithm differed not only in terms of 
number of detected stems, but also in terms of the precision of the 
algorithm to distinguish between stems and branches (Fig.  6b & c). 
Using TreeLS, only about 70% of stems were detected, while our new 
algorithm only failed at detecting three out of 30 stems (10%). In 
addition, while the stem parts close to the tree crowns contained larger 
horizontal branches if classified with TreeLS, only the vertical parts 
of the stems were labelled as such with the new algorithm. Over the 
four subplots, this difference is even larger, giving the new algorithm 
an average recall of 86.7% and TreeLS a recall of 56.2% (Table  A.2.). 
Since the method from Neuville et al. (2021) does not return segmented 
stems, no direct comparison is possible to the other methods.

The performance of the algorithm by de Conto et al. (2017) and the 
new approach have been compared in the four subplots. The average 
recall in these subplots was 87 % for the newly developed algorithm, 
while TreeLS’ method achieved only 56 %. Especially in the second 
subplot with dense and relatively high understory vegetation, the new 
algorithm substantially outperformed TreeLS’ method. In areas mainly 
covered by broadleaf trees, where number of Lidar points at the stems 
was generally low, both algorithms performed insufficiently, with our 
method at least delineating some larger broadleaf trees.

Since the new algorithm outperformed TreeLS’ method both regard-
ing the recall and delineation accuracy, only the results of the new 
algorithm are shown for the entire study area (Fig.  6d). Here, the newly 
designed algorithm detects 4951 stems, resulting in a stem density of 
around 549 trees per hectare. Using DBSCAN instead of HDBSCAN to 
initially cluster tree stems also showed good results, with only slight 
errors of falsely disregarded stem points, while decreasing calculation 
time for spatially larger point clouds.

The point clusters classified as stems were not always circular. 
Instead, some stems had elliptic shapes (Fig.  7 c) or were even straight 
or curved lines (Fig.  7a & f), while some trees are sensed as circles (Fig. 
7d & e). The main factor for the ‘roundness’ of the stem areas seems to 
be the LiDAR’s penetration of canopy or lower vegetation to the stem, 
giving best results for stems in areas with low advanced regeneration 
and non-closed canopies. This implies that a circle fit might not be 
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Fig. 6. Subset of study area with original point cloud (a), delineated stems by the new algorithm (b), and TreeLS algorithm for comparison (c) both with missing stems marked 
by triangles, and stems from the entire study area delineated with the new algorithm (d) all based on the best performing flight parameter (H50 S60 O60). Coordinates are given 
in UTM zone 33N.
a suitable method for the diameter extraction of every tree. In the 
cases of curved lines, a circle fit will over-estimate the diameter. One 
disadvantage of the newly developed as well as TreeLS’ method can be 
seen for trees with very unusual growing direction. This means that the 
algorithm struggles to segment half-fallen trees or stems that diverge 
quite low from the ground and at a shallow angle.

3.3. Understory detection

The spatial pattern of understory vegetation reflected the network 
of forest roads and paths in the area of investigation (Fig.  8a), which 
is less visible in the RGB data and in the canopy height maps (Fig. 
8b). The dense understory vegetation in the centre is mainly composed 
of broadleaved trees planted approximately 20 years ago, which are 
considerably higher compared to the rest of the understory vegetation 
in the area. Some areas not covered by trees near the centre of the 
study area are also present in the understory data, even though they 
are not located below any higher trees, therefore they are technically 
no understory vegetation. Some areas with little understory vegetation 
are in the south-western part of the study area (Fig.  8a). These areas 
are comprised of some older conifers and broadleaf trees, underneath 
which no natural or planted lower vegetation could establish. Similarly, 
no vegetation was able to grow below a stand of spruce trees of around 
20 m height.

Since penetration of the canopy might be higher in spring than in 
summer, due to less foliage blocking the LiDAR’s beam, we further 
tested whether this affects the accuracy of the detection of under-
story vegetation in our datasets. Therefore, we compared the canopy 
maps of understory vegetation for datasets with standard parameters 
(H50 S60 O30) acquired in May and July. We found very similar 
patterns, except for some small artefacts at the edge of the study area. 
Distributions of pixel heights differed marginally between May and 
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July, with more pixels of lower height present in spring, while there 
were fewer pixels in heights above 8 m (Fig.  8c). Maximum values 
of both density curves were at 5 m. This is caused by the additional 
breakpoint setting, putting for every cell with breakpoint below 3 m to 
5 m, as described in the methodology.

3.4. DBH-estimation

The iterative tuning method results in values for the heights of 
extraction, the adjusted R2s of measured versus estimated DBH, and 
their normalised RMSE (NRMSE) for every FP set (Fig.  9).

Two flight parameter combinations resulted in substantially higher 
R2 values compared to the others: The highest flown data
(H90 S60 O30) at an extraction height for the DBH at 1 m and the 
densely overlapped H50 S60 O60 at 2.5 m, with the latter showing a 
considerably lower NRMSE than the other FP combinations (compare 
Fig.  9b). Noteworthy, the high adj. R2 for H90 S60 O30 stems might be 
a consequence of the low number of stems in this dataset. We therefore 
conclude that an estimation of DBHs with data from H50 S60 O60 at a 
stem height of 2.5 ± 0.5 m is most accurate, while also providing the 
highest recall of individual stems compared to those measured at 36%, 
representing the percentage of detected stems with enough points to 
robustly calculate a diameter compared to the total number of detected 
stems. The scatter plot between measured and estimated DBH values of 
this FP set is shown in Fig.  9c, scatter plots for the other FP sets can be 
found in Fig.  A.3.)

To further analyse the dependence in the DBH estimation’s perfor-
mance on different forest structure, we tested DBH estimation in the 
four subplots, and for the five most extreme FP sets. Note, that the trees 
were selected for measuring, if they were successfully estimated by the 
DBH algorithm for at least one FP set and are therefore not randomly 
chosen, like the training data. The best performance in both recall and 
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Fig. 7. Examples of cross sections of stems between 0.5 and 2 m above ground. The stems have been detected using the new algorithm showing differences in shapes of stems 
in the data.
Fig. 8. Height of detected understory vegetation for flight parameter set H50 S60 O30 in spring (a), the corresponding canopy height map (b), and density function of pixel 
heights of the spring and summer data (c).
RMSE was found with the densely overlapped data (H50 S60 O60) 
with a recall rate of 86.7% and RMSE of 0.107 m over the for subsets, 
followed by the standard parameter set (H50 S60 O30) and the slowly 
flown data (H50 S40 O30) (compare table in Table  A.2).

The results of the new algorithm have been compared with those 
achieved by the precursor algorithm of Neuville et al. (2021). We 
found an extremely low number of DBH estimates compared to our 
algorithm for the default parameters. If the estimation height segment 
was increased to 1 to 3 m and the starting minimum cluster size was 
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reduced, the results improved, but were still worse than those obtained 
by our method. Beside its higher accuracy, the new algorithm was 
also more computationally efficient, with a computation time for the 
same dataset approx. one quarter lower as compared to the algorithm 
of Neuville et al. (2021). Note that it was not possible to compare 
how the same tree’s DBH was estimated by both algorithms, as the 
number of remaining stems hit by both algorithms was too low. For 
our algorithm, no large differences in accuracy were observed between 
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Fig. 9. Accuracy of DBH (diameter at breast height) estimation in relation to height of stem segments. For accuracy assessment, the adjusted R2 (a) and normalised RMSE (b) 
values of the best estimation (highest adj. R2, lowest NRMSE) between measured and estimated DBHs are presented. In the legend, n denotes the number of trees available for 
accuracy assessment. Additionally, the scatter plot for the best FP set (H50 S60 O60) of measured vs. estimated DBH values is shown (c). For the scatter plots based on the best 
estimate of the other FP sets, see Fig.  A.3.
Fig. 10. Scatter plot of estimated vs. measured DBH (diameter at breast height) values from the validation set of stems for this algorithm (a) and Neuville et al. (2021) (b).
broadleaf and conifer trees. In contrast to the original method, only one 
single outlier was present (Fig.  10).

For the entire study area the DBH algorithm returned a total of 2723 
DBH estimates (Fig.  11). On average, stems with a diameter of 28 cm 
were detected (Fig.  11b), with extremes up to 1.2 m and a recall of 
stems of 55%. Most of the detected stems belong to large trees in the 
upper canopy. However, stems of some smaller trees have also been 
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detected with our algorithm. This is an advantage of the new algo-
rithm, as the conditional selection of a single stem in each individual 
segmented tree in Neuville et al. (2021) inhibits the detection of stems 
in the lower canopy. Also noticeable is the lack of detected stems in the 
eastern and northern parts of the study area, which are dominated by 
broadleaf trees, highlighting the problem of lack of penetration below 
these canopies.
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Fig. 11. Canopy height model (CHM) with positions and DBH (diameter at breast height) estimations overlaid, showing positions of detected stems and lack thereof in some 
regions of the forest (a). The corresponding histogram of DBH values is shown in (b).
4. Discussion

4.1. Flight parameters

The prerequisite for successfully estimating forest structural pa-
rameters from LiDAR is a sufficiently high density of LiDAR points 
from all relevant parts of the forest. Besides the choice of the LiDAR 
instrument, this is influenced by flight parameters such as flight height 
and speed. In this study, we provide the first systematic comparison 
of flight parameters and their effect on the usability of LiDAR data for 
stem detection in forests of varying structural complexity in tree stand 
density, species and presence of lower vegetation. As the LiDAR system 
used in this study is incapable of tilting, the investigation of these FP 
sets for stem point density is even more crucial, as the tilting is reliable 
method of increasing penetration to the stem of the tree (Neuville et al.
2021, Swayze et al. 2021).

Flight parameters influenced the usability of the data for stem 
detection, mainly by affecting point densities of LiDAR data in the 
understory vegetation and the lower stem segments of large trees, 
which also transferred to accuracy of DBH estimates. Irrespective of 
flight speed and overlap, a high flight height resulted in an insufficient 
number of return points at the tree stems for reliable detection (Fig.  3), 
while also exaggerating unwanted movement of the LiDAR in flight, 
due to the greater distance to the target. At 50 m flight height, a 
higher overlap of LiDAR stripes led to higher point densities in the 
stem segment compared to reduced flight speed, if all other parameters 
are kept the same. Consequently, the best data was collected with a 
FP set of low height, high overlap and a relatively high flight speed 
(Fig.  3). The stronger influence of overlap on the point densities of the 
stems compared to a reduced flight speed can be explained by a higher 
overlap, which increases the observing positions of the LiDAR device 
over the forest. This boosts the chance for gaps in the canopy where 
the LiDAR beam can penetrate, thus increasing the number of return 
points at the lower stem segments (Fig.  3).
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Another advantage for the higher overlap is the drone’s position in 
flight. Neuville et al. (2021), and Feng et al. (2022), among others, have 
shown that a tilted LiDAR will outperform a straight nadir-looking one 
for stem remote sensing, as it allows one to somewhat look underneath 
the tree’s canopy. A reduced effect of this ‘tilting’ can be seen by the 
impact of flight speed, as the measurement setup used here features 
no gimbal: The higher the drone’s speed, the further it has to pitch in 
the flight direction, which tilts the LiDAR with it. This might further 
explain the slightly improved performance under higher flight speeds, 
giving better results for the DBH estimation under the standard FP set 
(H50 S60 O30), compared to the slower flown FP set (H50 S40 O30).

LiDAR as an active system can be flown at night, which should 
theoretically reduce random back-scatter caused by sunlight. However, 
in our data, lower point densities and an only slightly increased accu-
racy were observed for nighttime data compared to daytime data, when 
sharing the same FP set. Here, it should be noted that the differences 
in accuracy might also be influenced by the phenological difference in 
data acquisition between day- and nighttime data. Therefore, nighttime 
data appears to be advantageous only due to the presence of less 
turbulent air, which disturbs the drone less in flight, caused by a 
more stratified atmosphere (Stull, 1988). Lastly, a denser point cloud 
at canopy level has been found for higher flight heights, while lower 
flight heights led to higher numbers of points in the stem segment. Con-
sequently, the optimal FP set must be chosen considering the specific 
research questions and no general advice for LiDAR data acquisition in 
temperate forests can be given.

4.2. Stem delineation algorithms

The new approach is capable of robustly detecting stem points 
within the point cloud, with a good stem recall in most areas. The 
delineation fails for smaller trees, especially if the number of stem 
points is low beneath a closed canopy of major broadleaf trees.
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The algorithm struggles with trees presenting unusual growing di-
rections (i.e. growing extremely askew, branching out at low height and 
at a shallow angle, or being very gnarled), caused by the definition of 
stems as upwards spread clusters. However, compared to the original 
method by Neuville et al., our algorithm segmented branching stems, if 
they grow mainly upwards, which is not possible in the original method 
per definition of a single stem per tree. If trees with unusual growing 
direction dominate a study area such as in non-managed forests, the 
algorithm’s parameters (PCA threshold, maximum height of stem) can 
be changed to improve results.

Compared to the TreeLS algorithm, the new method achieves an 
overall higher recall and more accurate stem segmentation, even when 
TreeLS’s parameters were adapted to the study site. However, it should 
be noted that TreeLS is primarily designed for TLS and not ALS data. 
As ALS data’s geolocation is typically less accurate than that of TLS 
data (Brede et al., 2017), the noise in geolocation might cause the 
method to be less applicable for searching horizontal circles in the data 
to detect stems, at least for this study area and the ALS used. On the 
other hand, we expect the newly designed algorithm to be adaptable 
for other study sites and LiDAR-systems, not just ALS, but also TLS or 
portable LiDAR systems (PLS, Parker et al., 2004).

Another reason for the comparably bad performance of TreeLS’s 
algorithm is likely the LiDAR’s lack of penetration through the canopy 
to the stem. This causes many tree stems to be detected only from 
one side. We assume that this is the reason that some stems do not 
appear as cylinders but as ellipses or curved lines, when observed from 
above (Fig.  7). As a result, a substantial number of stems is simply 
disregarded, as the Hough-transformation does not find circles there.

4.3. Understory detection

The understory vegetation detection worked well independent of 
forest structure and led to clear patches of different understory veg-
etation heights and densities. In addition, areas without understory 
vegetation can be detected, unable to be seen from canopy maps or 
RGB-imagery. However, due to cell-wise calculation of breakpoints, 
some artefacts occurred, especially at the border of adjacent cells. A 
smaller cell-size might reduce this issue, but reduces points for the 
density calculation and requires significantly more computation time. 
The noticeable spike in the data at low vegetation heights (Fig.  8) is 
likely caused by more returns from grasses and lower shrubs, which 
the LiDAR cannot reach in summer, due to the denser foliage above 
these plants. Previous studies from Wing et al. (2012) and Venier 
et al. (2019) showed the possibilities of ALS data for the detection 
and analysis of understory vegetation. However, both methods did not 
solely rely on LiDAR data but instead required intensive field work to 
accurately observe the validity of their methods or developed models 
for the estimation of low vegetation. It should be noted that our method 
relies on a definite break point in vertical point densities between 
understory and canopy vegetation, which is only present if the forest 
consists of vertical layers. For such forests, which are a common sight 
under current forest management, this method makes it possible to 
quickly approximate the height and state of the understory vegetation. 
However, using only ALS data, a classification of detected understory 
vegetation into small trees, shrubs, and grasses is hardly possible.

4.4. DBH-estimation

The DBH estimation using our approach was similarly accurate com-
pared to previous studies with more costly LiDAR equipment (Neuville 
et al., 2021, Brede et al., 2017, Feng et al., 2022). We applied the 
approaches of the previous studies to our data and found that our 
algorithm outperformed the previous ones regarding the number of 
stems detected in the forest and the accuracy of stem diameter esti-
mation. The newly developed method outperformed the existing one 
in our study area, especially regarding the lower number of outliers. 
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Such outliers are likely caused by the failure of the circle fit for the 
diameter estimation, which the method of Neuville et al. (2021) relies 
on, potentially leading to an overestimation of DBH values. Especially 
broadleaf trees are not accurately estimated by the original method, 
likely due to fewer points in the stem segment, making a reliable circle 
fit hardly possible. A similar tendency of producing outliers of over-
estimation could also be seen in the results of Neuville et al. (2021). 
Furthermore, their set maximum value of plausible DBH of 1.5 m did 
remove numerous values altogether (Neuville et al., 2021). On the 
other hand, the new algorithm revealed good performance irrespective 
of tree species, as seen from the results of the broadleaf-dominated 
subplot (Table  A.2) or the validation of DBH accuracy by tree species 
(Fig.  10), which showed similar performance in recall and accuracy 
when comparing broadleaf and conifer dominated subplots or broadleaf 
and conifer trees.

For the newly developed algorithm, we found the highest accuracy 
of DBH estimation from an extraction height of 2.5 m above ground 
± 0.5 m, which is caused by less understory vegetation and little 
change of stem diameter compared to 1.3 m above ground (Pukkala 
et al., 2019), while also including enough points. Using these algorithm 
parameters and FP set did also show the best results over the four 
subplots, highlighting the usability irregardless of forest characteristics 
in terms of tree species, presence of understory vegetation and stand 
density. The relatively low quantile of distances for the estimation 
(80 %) further hints at the lack of accuracy of the LiDAR used, as 
the stem’s diameter should reduce at 2.5 m height compared to 1.3 m. 
As this inaccuracy of the LiDAR could be seen with the example stem 
shapes (Fig.  7), this is likely not due to an inaccurate segmentation of 
stems, but the LiDAR scanner itself.

The differences in accuracy between the densely overlapped and the 
other FP sets cannot be fully explained. At higher flight height, small 
movements of the drone can be amplified, yet these differences also 
occur within the flights’ data conducted at the same flight height. This 
leaves the conclusion that the presented algorithm does allow for the 
best results in terms of accuracy and recall, when there are more points 
in the stem segment.

Since this approach has the advantage of being much faster than 
previous methods, especially those using TLS data, the algorithm can 
be applied to large forest areas. Compared to the method by Neuville 
et al. (2021), substantially faster calculation times could be observed 
(especially when using DBSCAN for the initial and secondary step of 
clustering).

5. Conclusion and suggestions

In this study, we tested for the first time how FP sets for drone-based 
LiDAR acquisitions affect the detection of understory vegetation and 
stems of major trees below dense canopy. We found that the selection 
of FPs, especially flight height, must be adapted to the research focus, 
with higher flight heights performing better if the canopy or ground 
are of interest and lower flight heights if stems are the main focus 
(Fig.  3). Even though the accuracy of DBH estimates were found to 
depend on the FP set, we could not determine the exact cause, albeit 
a positive correlation between point density at stem segment and DBH 
estimation accuracy and recall was detected. Taken together with the 
limited flight time of UAVs, we, therefore, suggest using a denser 
overlap of flight stripes to achieve this point density. We also tested 
two existing approaches for the detection of stems and estimation 
of stem diameters against a newly developed algorithm in different 
forest stands. Compared to the other approaches, our newly developed 
approach improved computational efficiency and accuracy in estimates, 
with lowered differences in accuracy depending on tree species. We 
therefore conclude that the new algorithm used with suitable LiDAR 
data should be considered in future studies if stem properties or clas-
sification of understory vegetation in structurally complex forests are 
targeted, using the DBSCAN algorithm for both clustering steps, if the 
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study area is large. Depending on the site to be analysed, this new 
algorithm can easily be adapted to local conditions.

With the limitations and possibilities mentioned above, we advocate 
for airborne LiDAR scanning as the only feasible method to generate 
3D point clouds in large forest areas. Both terrestrial and portable laser 
scanning could lead to denser point clouds in the stem segment, with 
the latter also increasing accuracy (Torralba et al., 2022). However, 
especially the recording of TLS data can be very time-consuming, 
even taking multiple days depending on forest structure for a single 
hectare (Wilkes et al., 2017) and is considerably harder to perform 
depending on the presence of understory vegetation (Åkerblom and 
Kaitaniemi, 2021). Consequently, slightly higher data accuracy and 
higher point density in the stem segment do not merit time-intensive 
and more complex data recording and leave ALS as the only feasible 
method. Further work could investigate whether LiDAR data acquired 
in winter could minimise the effect of understory vegetation for stem 
segmentation and DBH-estimation, especially in broadleaf-dominated 
forests. Furthermore, the effects of a tilted LiDAR using a 3D printed 
mounting system to increase the recall of stems and diameter estimates 
by increasing points in the stem segment could be investigated. Lastly, 
the accuracy of stem segmentation could be increased by choosing dif-
ferent algorithm parameters depending on tree stand age, approximated 
by tree height. 

For forester practice, we expect that the delineation of stems to-
gether with estimation of DBH will be helpful, as it provides important 
information about current forest value and value changes over time. 
Combined with information about tree species, this could be used to 
approximate the economical value of the entire forest area on an indi-
vidual tree scale. In addition, information about understory vegetation 
and terrain could be used to predict the expenses of harvesting itself. 
This proposed methodology provides a relatively inexpensive, fast and 
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easy-to-implement tool for foresters to make timely decisions solely 
based on UAV LiDAR and RGB remote sensing.
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Appendix

See Figs.  A.1–A.3.
Fig. A.1. Box plot of measured DBH (diameter at breast height) values for training/validation with extremes and median (a) and box plots of measured DBH-values per subplot 
(b). The four subplots consist of old-growth conifers (spruce and pine) both with little to no advanced regeneration (1), very dense advanced regeneration of beech up to 10 m 
in height (2), old-growth broadleaf trees (oak, beech, and maple) with decent advanced regeneration (3), and younger coniferous trees (4).
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Table A.2
Table of metrics for point cloud metrics, stem delineation, diameter at breast height (DBH) estimation for the five main flight parameter (FP) sets and the four 
chosen subplots.
 FP Set H50 S60 060 H50 S60 O30 H50 S60 O30 N H90 S60 O30 H50 S40 O30  
 Avg. Point Density [Pts/m] 4177 2429 2423 1011 2609  
 Stems Visible 34/34/8/29 29/26/7/26 28/31/6/26 26/18/2/9 28/22/4/25  
 Sum Stems Visible 105 88 91 55 79  
 Recall Stems per SP 31/26/6/28 20/17/4/21 18/23/3/23 19/10/0/3 21/17/2/20  
 Sum Stems 91 62 59 32 60  
 Recall Stems [%] 86.7 70.5 64.8 58.2 75.9  
 RMSE DBH per SP [m] 0.078/0.134/0.103/0.049 0.122/0.100/0.199/0.123 0.150/0.104/0.287/0.164 0.110/0.155/NA/NA 0.141/0.139/0.001/0.099 
 RMSE DBH Total [m] 0.107 0.129 0.16 0.147 0.136  
 Recall DBH per SP 10/12/5/2 9/10/4/3 12/9/3/1 2/8/0/0 11/11/1/1  
 Recall Total 29 26 25 10 24  
 Recall Stems TreeLS 24/17/0/18  
 Sum Stems TreeLS 59  
 Recall TreeLS [%] 56.2  

Fig. A.2. Point density distribution over the four subplots and five flight parameter (FP) sets.
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Fig. A.3. Scatter plots of estimated vs. measured diameter at breast height (DBH) for the best algorithm parameter settings for the remaining four flight parameter sets. Differences 
in number estimated stems is caused by recall of the DBH algorithm.
14 
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Data availability

The five mainly used LiDAR-datasets as well as the code used for 
the methods can be found under https://data.mendeley.com/datasets/
5fjwb9hfpm/1. Due to file-size constrains the remaining three LiDAR 
datasets will be made available on request.
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