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Abstract

We study the regularity properties of the unique solution of a generalized mean-field G-
SDE. More precisely, we consider a generalized mean-field G-SDE with a square-integrable
random initial condition, establish its first- and second-order Fréchet differentiability in the
stochastic initial condition, and specify the G-SDEs of the respective Fréchet derivatives.
The first- and second-order Fréchet derivatives are obtained for locally Lipschitz coefficients
admitting locally Lipschitz first- and second-order Fréchet derivatives respectively. Our
approach heavily relies on the Gronwall inequality, which leverages the Lipschitz continuity
of the coefficients.

Keywords: mean-field; McKean—Vlasov; uncertainty; sublinear expectation; SDEs; derivative;
variation

MSC: 60H10

1. Introduction

Mean-field stochastic differential equations have emerged as a powerful mathematical
framework for modeling the dynamics of large populations of interacting agents subject to
random perturbations. Their significance lies in their ability to capture both the individual
stochastic behavior of agents and the macroscopic effects of collective interactions, making
them essential tools in fields such as physics, biology, economics, and quantitative finance.
In particular, a mean-field SDE serves as the representation of a system whose stochastic
evolution depends not only on the individual state but also on the distribution of the popu-
lation. The pioneering work of Kac [1] introduced the mean-field approach in the context
of kinetic theory, while McKean [2] first formalized nonlinear Markov processes whose
dynamics depend on their own law. Since then, mean-field SDEs have been extensively
studied and generalized, with foundational contributions by Sznitman [3] on propagation
of chaos and Lasry and Lions [4,5] and Carmona and Delarue [6,7] on mean-field games
and controls. These equations also underpin numerous modern applications, from systemic
risk modeling in finance to synchronization phenomena in neuroscience, underscoring
their broad relevance and mathematical richness.

In the 2000s, Shige Peng introduced the theory of sublinear expectations and, as a
special case, the G-setting as a framework to study Knightian uncertainty; see [8-11]. A
sublinear expectation can be expressed as the supremum of linear expectations over a set of
probability measures; see Theorem 1.2.1 in [12]. That is, if [t is a sublinear expectation, then
there exists a set of probability measures P such that & = sup pep Ep, where Ep denotes the
linear expectation with respect to P, and conversely, for every set of probability measures
P, the functional supp_p Ep defines a sublinear expectation. In that sense, a sublinear
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expectation can be thought of as the “worst” outcome within a class of models. The G-
setting is used to quantify volatility uncertainty and consists of the so-called G-Brownian
motion and the G-expectation; see Chapter 3 in [12] for more details. There have been
significant advancements in the theory of sublinear expectations and the G-setting in recent
years. For instance, refs. [13-16] study the construction of sublinear expectations and their
properties, and refs. [17-20] study different classes of stochastic processes in a sublinear
expectation framework.

Besides the probabilistic interpretation of quantifying Knightian uncertainty, there is a
strong connection between sublinear expectations and fully nonlinear partial differential
equations. This has been extensively studied in, e.g., [21-24] for different types of backward
G-SDEs or [19,20,25,26] for forward G-SDEs. For classical mean-field SDEs, the depen-
dence of the coefficients on the distribution of the solution results in fully nonlocal PDEs;
see [27,28]. In that regard, the extension of mean-field theory to the G-expectation frame-
work is of particular interest, as it could establish a connection between a class of fully
nonlinear and nonlocal PDEs with a class of stochastic processes, which would allow the
PDE to be solved numerically by simulating the associated stochastic process.

First attempts to extend mean-field theory to the G-framework can be found in [29,30].
In [29], the author considers an SDE of the form

dX; = Bb(t,x, X)]|  dt + B[kt x, X;)] d(B), + Blg(t,x, X¢)]| dB, 0<t<T,

x=Xy x=X; x=X;

XO =X (1)

where b,h,¢: [0,T] x R x R — R, B denotes a one-dimensional G-Brownian motion and
[t denotes the corresponding G-expectation. More details on the G-setting are provided
in Section 2 or can be found in [12]. Let L2 denote the space of all R%-valued random
vectors ¢ with finite sublinear second moment [ [HC ||2} < co. For & € 124, the functional
Fz defined by

F; :Lip(RY) - R, ¢ = Fz(9) := Elg(2)] 2)

can be interpreted as the “sublinear distribution” of ¢.

In [30], the approach from [29] is extended to higher dimensions and to coefficients
that depend on the sublinear distribution Fx, of the d-dimensional solution process X;.
That is, the authors consider an SDE of the form

dX; = b(trXtrFX,) dt + h(f,Xt,FXt) d<B>t +g(t,Xt,FXf) dBy, 0<t<T,
XO = X. (3)

In [30], the authors define a space containing all sublinear distributions and endow it
with a metric allowing them to define continuity conditions on the coefficients. However,
the space of sublinear distributions is not a vector space and, thus, it does not have a natural
notion of differentiability, which limits the study of regularity properties of the solution;
see Section 6 for a detailed discussion.

In [31], a novel formulation of a generalized mean-field G-SDE is introduced in
which the coefficients depend on the solution process as random variable. More precisely,
the authors consider a G-SDE of the form
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d}(é’é = b(s, w,x, Xst’g) ’x:X%‘ ds + h(s, w, X, Xst’g) ’x:Xt’g d(B),
—l—g(s,w, X, Xé’g) e dBs, F<s<T,
X/t =¢ @)

with coefficients defined on [0, T] x Q x R? x L2 and initial data & € L2“. This formulation
generalizes the formulations introduced in [29,30] where the coefficients depend on the
sublinear distribution. A significant advantage of the formulation in (4) is that L2 is a
Banach space and, thus, it comes with standard notions of differentiability which are crucial
for the results in our paper.

In this paper, we are interested in regularity properties of the solution of a mean-field
SDE driven by G-Brownian motion. While the formulation (3) from [30] is closer to the
classical formulation, as it depends on the (sublinear) distribution of the solution process,
we work with the formulation (4) introduced in [31] since it allows us to consider Fréchet
differentiable coefficients and study the Fréchet differentiability of the solution XH6 of (4)
with respect to the random initial condition ¢. The Fréchet derivatives of X*¢ capture how
perturbations of the initial data propagate through the stochastic system and, thus, they are
crucial for studying the sensitivity of the solution process with respect to changes in the
initial data. This sensitivity analysis is a central tool for a wide range of applications. For
instance, the Fréchet derivatives can be used to derive optimality conditions for stochastic
control problems or establish recursive formulae for conditional expectations using the
dynamic programming principle. Further, the Fréchet derivatives of X¢ can be used in
numerical approximations of X*¢ as well as for (sub)gradient methods for optimization
problems. In particular, the Fréchet derivatives could be a useful tool for studying the
properties of the value function associated to the processes X**¢ and X*¢ and establishing
a Feynman-Kac-type result connecting the G-SDEs (6), (7) to a fully nonlinear and nonlocal
PDE, which is the subject of ongoing research by the authors.

For simplicity and conciseness, we use the following notation.

Notation 1. For a function f on [0, T] x Q x RY x 124, define

fls,w,1,8) = f(s,w,n(w), ) = f(s,w,%,6) ®)

x=1(w)

forany 0 < s < T,w € Qand &1y € L2, Often, we suppress the explicit dependence on w,
and write f(s,n,§) instead of f(s,w,1,§).

Thus, (4) can be written as
axiE = b(s, XU, X2 ) ds + (s, XU, xUE) d(B), + g (s, X0E, XU ) aBy, <<,
X =g (6)

Under mild assumptions on the coefficients, it is shown in [31] that (6) admits a unique
solution X'#; see Theorem 3.12 in [31]. For x € R, we associate to X'¢ the G-SDE

ax™ = b((s, X0V, XUE) s+ (s, XU XUT) d(B), + g(s, X0 XUT) By, <<,

X = x 7)
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with deterministic initial condition x € R?. The G-SDEs (6) and (7) are closely connected.
More precisely, if (6) and (7) each admit a unique solution, then the process X*¢ can be
obtained from X'*¢ by evaluating at x = & as formalized in Lemma 6. This allows us to
infer properties of X*¢ from properties of X**¢ by using the aggregation property of the
conditional sublinear expectation. More precisely, we have

B o(x{)] = E[JE [o(xt*%) | 7] } ®)
x=¢

and, thus, many of our auxiliary results are formulated in terms of conditional sublinear

expectations of X"

Our main contribution is the derivation of first- and second-order Fréchet derivatives
of the solution process as formalized in Propositions 2, 3, 4 and 5. For coefficients with
Lipschitz and bounded Fréchet derivative, we establish the Fréchet differentiability of X**¢
and X'¢. Moreover, we characterize each of the Fréchet derivatives of X!*¢ and X'* as the
unique solution of a G-SDE. These results are in line with the results on classical mean-field
SDEs; see [28].

This paper is structured as follows. In Section 2, we recall the G-framework before
establishing preliminary results such as continuity and growth properties of the solution
map (x,&) — (X4, X"%€) in Section 3. Section 4 is devoted to the first-order Fréchet
derivatives of the solution map in x and ¢, while the second-order derivatives are studied
in Section 5. Finally, in Section 6, we show how the formulation in [30] can be embedded
into the formulation in [31] and develop a notion of differentiability for maps on the space
of sublinear distributions.

Notation 2. Most of our results are obtained via approximations and the Gronwall inequality.
For the sake of conciseness and readability, we use the symbol < to denote that the left-hand side is
less than or equal a constant C > 0 times the right-hand side in the following sense.

For two maps f,g : ® — R with domain ©, we define

fSg = 3C>0:¥8eO: f(9) <Cg(d). ©)

2. Setting

In this section, we recall the generalized G-framework as introduced in Chapter 8
in [12]. Fixn > 1 and let Q := Cy(R,,R") denote the space of all continuous R"-valued
paths starting at the origin equipped with the topology of uniform convergence. Let F
denote the corresponding Borel o-algebra. Moreover, let F = (F;);>0 denote the natural
filtration generated by the coordinate mapping process B : Ry x (3 — R”" given by
Bi(w) = w(t).

Fix a convex and compact set . C S’} of symmetric non-negative definite n x n-
matrices and set

A% = {19 = (0¢)t>0 : ¥is L-valued and F-progressively measurable}.
Let Py denote the Wiener measure on ((, F), and define
Pi={Po(seB)": s A"},

where & @ B := [ 05 dBs denotes the Ito integral with respect to the stochastic basis
(Q, F,F, Py).
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Ford > 1 and a c-algebra G C F, let Bg(g ) denote the space of all bounded G-
measurable maps & : QO — RY. The set of probability measures P induces an upper
expectation on By (F) := B} (F), namely

E:By(F) >R, ¢+ E[g] := sup Ep[g],
pPepP
where Ep denotes the linear expectation with respect to P. The process B is a G-Brownian
motion with respect to £ and (Q, B, (F), ) is a sublinear expectation space. For p > 1,
define the norm

N 1
[l : By(F) = Ry, & (Gl == E[)IEI17] 7,

where ||-|| denotes the Euclidean norm on R? and let Lf’d(t) and L7 denote the completion
of B (F}) and Bf (F) with respect to || - |7 fort > 0. We set L(t) := Lf’l(t) andL? = LP",
Ford > 1and T > 0, let M¢ (0, T) denote the space of all maps X : [0, T] x Q — R? of

the form
m—1

X= Ig) gkl[tk/thrl)

withm € N,0 =ty < ... <t =T, and &, EBZ(]-"tk)foraHO <k<m-1. Forp >1,
define the norms

1

d A
Iy MEOT) > R, Xl = () EDIXIP) &)
1
4
- llge s MO, T) = Ry, (X[l = E| sup X7
0<s<T

and let Mff’d(o, T) and Hf’d(O, T) denote the completion of M‘Z(O, T) with respect to || -
HMi’ and || - ”Hi’/ respectively. Clearly, HZ’d(O, T) C Mf’d(O, T), and we set M} (0, T) :=
MY (0, T), HP (0, T) := HY' (0, T).

Set M (0, T) := M; (0, T) and let B! denote the i-th component of B for 1 < i < n.
Define the map Z; : M;(0,T) — L2(T) by

T ) m—1 ) )
LX) = | Xedsl= Y &(Bi,, ~BY,)
k=0

for each
m—1
X = kg%) ékl[tkftk+l)'

The map 7; is linear and continuous with respect to ||-||,;2 and, thus, can be uniquely
continuously extended to M2 (0, T). For 0 < t < s < T and X € M2(0, T), define

s .
/t X dBl, = T;(X1y ).
The quadratic variation of B is the map (B) : Ry x () — S', defined componentwise by

. , . [ . t .
(BB = B;Bﬁ—/ Blng—/ BidBl, >0
0 0
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for1 <i,j <mn. Forl <i,j<n,define the map Qi]- : M(0,T) — L}K(T) by

T o m—1 P i nj
Qij(X) = /0 Xs d<Bl’B]>s . kg:() gk(<BZ’B]>tk+1 ; <BZIB]>tk)
for each
m—1
X = Z gkl[tk/tkﬂ)'
k=0

The map Q;; is linear and continuous with respect to ||-|[yp1 and, thus, can be uniquely
continuously extended to Mi(O, T).For0<t<s<Tand X € M}F(O, T), define

/ts X, d<Bi, BJ'>M = Qij(X1y )

Since we consider G-SDEs with initial condition X; = ¢ with ¢ > 0, we introduce the

.

dXs = b(s, X) ds + h(s, X) d(B), + g(s, X) dBs, F<s<T,
Xe =23t (10)

following spaces:

sup || X||”

0<s<t

HA (1, T) = {X e 0,T) : &

for0 <t <T,p >1andd € N. We say that the G-SDE

with coefficients b : [t, T] x Q x H2(t,T) — R4, I : [t,T] x Q x H24(t,T) — R&xnxn
and g : [t,T] x Q x H¥(t,T) — R¥" admits a solution X € H>4(t, T) if there exists a
X € H*4(t, T) with X; = & quasi-surely and the components X*, 1 < k < d of X satisfy

s n s . n s ,
Xf—xf:/t be(u, X)du+ ) /t hkij(u,X)d<Bl,B]>u+Z/t gxi(u, X) dB.,
ij=1 i=1

quasi-surely for all t < s < T, where by, hki]-, griwithl <k <d,1 <i,j < ndenote
the components of the coefficients b, 1, g. Moreover, we say that the G-SDE (10) admits
a unique solution X € H%(t, T) if (10) admits a solution X € H2“(t,T) and, for any
X,Y € H2%(t,T) that solve (10), we have || X — Y|l =0.

3. Preliminary Results
In [31], it is shown that the G-SDEs
X — b(s, Xt xte ) ds + h(s, X, Xé’g) d(B), + g(s, x4, Xg"'f) dBs, F<s<T,
X =g, (11)
ax™ = b((s, X0V, xUE) ds + (s, XU XUT) d(B), + g (s, X0 XUT) By, <<,
X = x (12)

admit unique solutions X*¢, Xt*¢ ¢ H%4(t, T) under the following assumption; see As-
sumption 3.1 and Theorem 3.12 in [31].

Assumption 1. The coefficients b : [0, T] x R x 124 x QO — R%, h: [0, T] x R x L2 x Q) —
R and ¢+ [0,T] x RY x L2 x Q0 — R" are such that the following holds for all
components f = bk,hkl-j,gki, 1<4,j<n1<k<d
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fC 81 € ML(O,T) forallx e RY, ¢ € Bys and t <s < T,
2. There exist an integrable function « : [0, T] — R, a process K € ML(0, T), and continuous,
increasing and concave functions p1, 0z : Ry — Ry with p1(0) = p2(0) = 0and

1 1
/0 ST e (13)
such that
fs %8 w) = Fls,ym @) < x(s) pr(lx = yIP) + K@) pa(1IE = 1lF2),  (19)
[£(s,%,8, ) * < x(s) ] + Ko(w) (14 272 (15)
forallw € O, t <s < T,x,y € R, and &y € L24(T).

The existence and uniqueness results in [31] are obtained using Bihari’s inequality.
For the sake of simplicity, in this paper, we derive existence of first- and second-order
Fréchet derivatives of X"*¢ and X*¢ for coefficients with locally Lipschitz first- and second-
order Fréchet derivatives, respectively. Before studying the Fréchet differentiability, we
establish growth and continuity properties of the solution map under the following as-
sumptions on the coefficients.

Assumption 2. Letb: [0,T] x Q x R x L2¢ R4, hi: [0,T] x Q x RY x 124 — Rdxnxn,

and g : [0,T] x QO x RY x L24 — RI*" pe such that the following holds for all components
f = b gy &kiy 1 < i, j <, 1 <k < d.

1. Wehave f(-,x,&)1[s, T] € M2(0,T) forall x € R?, & € B¢ (F;) and 0 < s < T.
2. There exists a qo-integrable ag : [0, T| — [1,00) with qo > 2 such that

f(s,0,%,8) = fls,0,y,m)] < wols) (Ilx =yl + 1 = nll2)
forall x,y € R4, ¢, e Li’d, 0<s<Tandw € Q.
For convenience, let us define the set of coefficients
Fi= {bk,hkij,gki 1<k<d 1<ij< n}.
Corollary 1. If Assumption 2 is satisfied, then the following holds for all components f =

b, hiij ki 1 < i,j < m, 1 < k < d. There exists an integrable x : [0,T] — [1,00) and a
process K € M1 (0, T) such that

£ 5,00, 8) P < ws) (Il + 2112 ) +Ks(w)
forallxeRd,geL%d,Ogs < Tandw € Q.

Proof. The continuity condition in Assumption 2 implies

[f(s,0,%, ) < 21f(s,0,%,8) = £(5,0,0,0)]* +2/£(5,, 0,0
< dno(s)* (IIxI* + 116172 ) +21(s, 0, 0,0)

and, clearly, x := 4a3 > 1 is integrable. Finally, Assumption 2 implies that K :=
I£(-,0,0)]> € ML(0, T), where 0 denotes the originin R C 124(0). O
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Thus, we conclude that Assumption 2 is stronger than Assumption 1 and, thus,
Theorem 3.12 in [31] immediately yields the existence of unique solutions.

Proposition 1. If Assumption 2 is satisfied, then the G-SDEs (11), (12) admit unique solutions
XHe, Xt4E € H24(t, T).

In particular, we deduce that the solution map
RY x L24(t) — HY(t, T) x H¥(t, T),  (x,&) — (X", X")

is well-defined. Further, Corollary 1 implies that the solution map is of linear growth. More
precisely, we have the following growth properties.

Lemma 1. If Assumption 2 is satisfied, then we have

~ 2
Bl sup [X7| <1+ 1208

t<w<T

forall0 <t < Tand & € L2(t).

Proof. By Lemma A4 and Corollary 1, we have forallt <s < T

N 2
fo x4

sup
t<w<s

< eIl +f;/:1@[\f(u,x;c,xge> a

2 S tE 2
< el + [ B|xtn) (| C) K

S A
51+|\g||i§+/t K(u)EMxi;g

2
[+

2
”du,

and Gronwall’s inequality yields the desired result. [

Lemma 2. If Assumption 2 is satisfied, then there exists a K € ML(0, T) such that

E| sup X6
t<w<s

2 § A 2 2
7| 5 BIKG| R da ] + 2

forall0<t<s<T,x€RYand & € L24(t).

Proof. By Lemma A4 and Corollary 1, we have

E| sup Xi{,x’(: ’2 ‘ ft]
t<w<s
S+ X [ B[ (nx%,x) | 7 o
fer”/t

< 2 B s 7 tx,&
<+ [ BIKa | 7o+ [ o) (B[

< lxl*+ SE[K | Fi] du +||E|17 kB || x4
s R A du+ (2015 + [ B[

I b

2
LE) du

2
‘ ‘ ft} du,

where we used Lemma 1 in the last step. Finally, Gronwall’s inequality yields the desired
result. O
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Remark 1. By taking the sublinear expectation, Lemma 2 immediately yields

Bl sup th,x,g

t<w<T

2
2 2
| ] S Il + 11217

which is analogous to the result in Lemma 1. Many of the results for X' are stated in a conditional
form so that we apply them to the concatenation X' ]ng which, as we show in Lemma 6, is

indifferent from X*%.

Lemma 3. If Assumption 2 is satisfied, then

2

~

E| sup HXé’C — Xé’”

t<s<T

2
SE— 77||L§

forall0 <t < Tand &y c L2(t).
Proof. By Lemma A4, we have forallt <s < T

A~

2
) xbE — xh H

sup
t<w<s

S lig - nli% +j;/j@“f(u,}<f;€,xi’¢) — (x4, X3 ﬂ i

2

x4 — XM du.

2 s 2
Sle=nlts + [ ao(u?B| sup

t<w<u

Finally, Gronwall’s inequality yields the desired result. O

Lemma 4. Let 1 < p < qq. If Assumption 2 is satisfied, then

~

P
B sup |[X\*€— x| ]ﬂ] Sl =yl + & =7l

t<s<T

forall0 <t <T,&nyeL2(t)and x,y € R%,

Proof. By Lemma A4, we have forallt <s < T

k sup Xi{,x’g - X;’,M Hp ‘ Fi
t<w<s
s A
Slhe=yl"+ T [ B[ (x4, x0E) £ xi27, 307) || 7]

feF

< p ° Pl xtxe — xtyn
< Jx=yll” + | aolw) X

p
Li) du

p

7]
< P o[ il || xctee _ xetwn |
=yl + 12 =l + [ sl B[ xi% = x| 7| i,

where the last step follows from Lemma 3. Finally, Gronwall’s inequality yields the desired
result. O

For 77 € L1, we can define the concatenation

XTI X0 RY - (s0) = X @)= X @)
X:ﬂ w
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Lemma 5. If Assumption 2 is satisfied, then X"1¢ € H¥(t,T) forall0 < t < Tand &, 1 €
L24(t).

Proof. Lemma 4 implies (X"*¢ — X¥%) € H24(0,T) € M%4(0, T) and, thus, we immedi-
ately get X' € M2%(t, T) due to Lemma A4 in [31].
Moreover, Lemma 2 yields

2 2
< IRl + 12 + 12172 < oo,

*

A 2 I N
E| sup HX&’,U’gH =E|E

sup HX;’,X'é
t<w<T

t<w<T

2
"]

O

Lemma 6. If Assumption 2 is satisfied, then

H e _

forall0 <t < Tand & € L2(t).

Proof. By Lemma A4, we have forallt <s < T

|

Sl —¢l* + Z/ Uf " e X":) f(u,X,i’é,Xi,’g)‘Z‘}"t] du

feF

< |lx —¢|? +/ wo(1)? [HX”é Z'FHz’}}] du

fi tx,
E| sup || Xz ¢
t<w<s

and Gronwall’s inequality yields

tx, 2
B sup || xi7 - x S lx—el”
t<w<T
Finally, the aggregation property implies
e b | td ?
HX" — =E|E| sup HXw — ‘Ft =0.
t<w<T x=¢

O

4. First-Order Derivatives

In this section, we show that the solution map (x, &) +— X*¢ is Fréchet differentiable
for Fréchet differentiable coefficients with Lipschitz and bounded Fréchet derivatives.
More specifically, Propositions 2, 3 and 4 formalize the Fréchet differentiability of & — X*¢,
x + X' and & — XY¥¢ respectively. Before we turn to the differentiability results,
let us agree on some definitions and recall the fundamental theorem of calculus; see,
e.g., Theorem 5.1 in [32].

Definition 1. Let V and W be normed real vector spaces with norms ||-||y, and ||-||,y, respectively.
Amap f: V. — W is called Fréchet differentiable if, for every vy € V, there exists a continuous
linear operator Df (vg) : V — W such that
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lim [1f(v0 +v) — f(vo) — Df(vo)vllw _

0,
o[y —0 lolly

and the map
Df:V — B(V,W), v— Df(v)

is called the Fréchet derivative of f, where B(V, W) denotes the space of all bounded linear operators
L: V=W

A Fréchet differentiable map f : V. — W is called continuously Fréchet differentiable if the
Fréchet derivative v — D f(v) is continuous with respect to the operator norm. Let C*(V') denote
the space of all continuously Fréchet differentiable maps f : V — R.

In Section 5, we repeatedly use the following version of the fundamental theorem
of calculus.

Lemma 7. Let V and W be normed real vector spaces. If f : V. — W is continuously Fréchet
differentiable, then

1
Flvg +0) — f(v) = /O Df(vo + Av)vdA

forallv,vy € V.

Assumption 3. Letb: [0,T] x Q x R4 x L24 R4, i : [0, T] x Q x R? x L2 — RIxnxn,
and g : [0,T] x Q x RY x L24 — R4 be such that the following holds for all components
f = bk/hkijrgki with 1 S 1,] S n, 1 S k S d.

1.  Wehave f(s,w,x,) € Cl(Li'd) and f(s,w,-,¢) € Cl(]Rd)for al0<s<T,weq,
xeRland & e 124,
2. There exists a qi-integrable aq : [0, T] — [1,00) with q; > 2 such that
| Daf(s,0,%,8)z = Daf(s,0,y,m)zl < ax(s) |2 (Ix =yl + 11g = nll.z)
| Def(s,w,%,8)C — Defls,,y,mE] < (sl (v =yl + 15 = nll2)
| Def(s,w,x,8)y| < aa(s)

forall x,y,z € R4, ¢,n,C € Li'd, 0<s < Tandw € O, where Dyf(s,w,x,&) and
Dz f(s, w, x, &) denote the Fréchet derivatives of f with respect to x and ¢, respectively.

Remark 2. Note that Assumption 2 yields bounds for Dyf and Dgf which are uniform in
(w, x, ) and qo-integrable in s. To be specific, we have the following bounds for all components
f=bihij, 8kis 1 <1,j<n1<k<d,

| Dxf(s,w, x,8)y| < ag(s)]lyll, | Def(s,w,x,8)n| < ao(s)]lll2 (16)
forall x,y € R4, ¢, e Li’d,() <s<Tandw € Q.

Moreover, Assumption 3 implies that the Fréchet derivatives of the coefficients are in
M?2(0, T). More precisely, we have the following results.

Lemma 8. If Assumptions 2 and 3 are satisfied, then the following holds for all components
f= bk,hki]-,gki withl <i,j<n,1 <k <d. Themap

H24(0,T) x H>%(0,T) — ML(0, T), (X,Y) — f(-,X,Y)
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is Fréchet differentiable in each argument with Fréchet derivatives Dy f(-, X,Y) and Dgf(-, X,Y)
at (X,Y), respectively.

Proof. Assumption 2 implies that f(-, X,Y) € Mi(O, T) for all X,Y € Hi’d(O, T); see
Corollary 3.4 in [31]. Thus, the map (X,Y) — f(-, X, Y) is well-defined.
Let X,Y,Z € H%’d(O, T). Since f(s,w,-, &) € Cl(Rd) forall0 < s < T,w € Qand
& e L2, we have
1fCX+2Z,Y) = f(, X,Y) = Def(-, X, Y) Z]|\n
T A
:/0 B[[f(s, Xs + Zs, Ys) — f(5, Xs, Ye) — Dyf(s, X, Ye) Zs|] ds
T 7,1
S/o EM | Dy f(s, Xs + AZs, Ys)Zs — Dxf(s, Xs, Ys) Zs| dA | ds

< [[wR[IZ)2] &

5 T
<12l [ ms)as

Analogously, since f(s,w, x,-) € CH(L2%) forall0 < s < T, w € Q and x € RY, we have

F6XY42) = X0 = D X V)2l
= f(s, X, Ys + Zs) — f(s,Xs, Ys) — Def(s, Xs, Ys) Zs|] ds
/ EV | Def(s, Xs, Yo + AZs)Zs — Df(s, Xo, Yo) Zs| dA | ds
< [ w@lz) &
5 T
<12l [ ms)as
The integrability of a1 implies

1fC X +Z,Y) = f(, X, Y) = Daf(-, X, V) Z| [

hm t = 0/
1Zll2 0 1Z]]gz2

i IfC. XY +2Z) = f(, X,Y) = Def(-, X, Y)Z |\ 0

m = U
1Z]l2—0 1Z]| 2

That is, the map (X, Y) — f(-, X,Y) is Fréchet differentiable in each argument. [

Lemma 9. If Assumptions 2 and 3 are satisfied, then Dy f(-, X,Y)Z, Def(,X,Y)Z € M2(0, T)
for all components f = by, hyjj, 8xi, 1 <i,j <n, 1<k <dand X,Y,Z € H24(0,T).

Proof. Lemma 8 implies Dxf(:,X,Y)Z, Def(-, X,Y)Z € M! (0,T) for all X,Y,Z €
HZ4(0, T). Moreover, the bound in (16) yields

T T N
[ E[IDuf(s Xe )i s < [ wo(sVR[I1Z:]7] o < 1217 < o0

and

T 2 T 2 2 < 2
i B[] Dgfls, Xo, Yo)Z[*] ds < [ a5 l1ZslIEz 8 < 12 < o
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since ap is square-integrable and Z € H2%(0, T). Hence, Dxf(, X,Y)Z, Dzf(-, X, Y)Z €
M2(0,T) forall X,Y,Z € H*(0,T). O

Lemma 10. If Assumptions 2 and 3 are satisfied, then the G-SDE

ALY = Db (s, XU, XIE) ALY ds 4 Dah(s, XUV, XUF) ALY d(B),
+ ng<s, Xt Xﬁ'g)Aé’x’é’y dB;,, t<s<T,

AR _ (17)

admits a unique solution ALY e Hi'd(t, T)forall0 <t < T, x,y € R and ¢ € Li'd(t).
Moreover, the map
R? —» H2(t,T),  yw> AWV

is linear.

Proof. By Lemma 9, the coefficients in (17) are in M2 (0, T). Moreover, they are Lipschitz

continuous and, thus, (17) admits a unique solution ALXSY ¢ H}F'd(t, T)forall0 <t <T,

x,y € R?and & € L2%(t). In particular, we deduce that the map y — AY*%¥ is well-defined.
Let A € R. By Lemma A4, wehave forallt <s < T

21

N

Agjx,é,er/\Z o A’Z]xlély o /\AZ]?C,@',Z

E| sup
t<w<s
s 2
<y E[\Dxf(u,XL""C,XZC) (AR — AR Q) }du
fer’t

s N 2
< / wo(u)’B| sup ||ALEYTAE _ ALY _ ) plke ]du.

t <w<u

Finally, Gronwall’s inequality yields

=0.

HAZx,@yH\Z _ A;,x,é‘,y -~ AAL,x,é,z i

Since A € Rand y,z € R? were arbitrary, we deduce that y — AUYEY s linear. [
Lemma 11. Let 2 < p < qq. If Assumptions 2 and 3 are satisfied, then

14
sup [l 7

t<s<T

E < lyll?

orall 0 <t <T,x,y € RYand ELE'dt.
Y

Proof. By Lemma A4, we have for all t < s < T that

E| sup
t<w<s

s A
S vl + Z/t B[ | Duf (n, X0, X0 ) AL
feF

Ay’ ft]

P ‘ ft} du

t
sup Au’,x’é’y

t<w<u

s A
Sl + [ o) E

g ‘ ]—"t] du.

Gronwall’s inequality yields the desired result. [
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Proposition 2. Let 0 < t < T and & € L(t). If Assumptions 2 and 3 are satisfied, then the map
R — H2(t,T), x> X6
is Fréchet differentiable with Fréchet derivative
D, X' R H24(t,T),  y+s DyX0¥ey .= AWV
at x € R%,

Proof. By Lemma 10, the map Dy X"¥¢ : y s AP%CY is linear. Set Y := XW¥+vé — xtv¢

then
Exty, El
B sup [¥||*| = | sup |[ X XL < ) (18)
t<s<T t<s<T
due to Lemma 4. By Lemma A4, we have forall t <s < T that
R 2
E| sup Xi{,}x—ky,é - X;}x’g — Az,H
t<w<s
2
sy [e [\f XA XUE) = £, X0 X0E) = Daf (u, X0, XUE) A ]du
feF
1 2
-y / ‘ / Daf (1, Xi™ 4 MY, X ) Yudh = Daf (1, X5, X1 ) A ]du
feF 0
2
< Z/ / UDxf (1, X5 4+ A%, X0 ) Yo = D (0, X5, X0E) Y, }d)\du
fer
2
+ Z/ UDxf u, X5, X1 (Y A;’x’@'?’)‘ ]du
feF

gjmw%hnﬁ+%w%[ M%w1m

sup tery/é o X‘Z}ng _ AZ]X,@]/

t<w<u

Sl + [ wo(u)’E

2
] du,

where the last step follows from (18). Finally, Gronwall’s inequality yields

Hther§ thé Atxgy‘

o S o

Thus,
th,x+y,§ _ Xt,x,é _

lim £ =0,
lyl|—0 1yl
ie., DyX!% ;i s ALY is the Fréchet derivative of x +— X" atx ¢ R, [

Next, we show that the map x ~— X**¢ is continuously Fréchet differentiable.

Lemma12. Let2 < p < (g1 A 120) If Assumptions 2 and 3 are satisfied with qo > 4, then

E

tyy_||P
sup H DxXé’x'éz — Dst’MzH ‘ Fi
t<s<T

Szl (e = yllP + 12 =t

orall0 <t <T,ux, ,ZERdandg, EL%d t).
y Ui
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Proof. By Lemma A4, we have for all t < s < T that

N p
| sup || DXz — Dxxf;]y'”zH ‘E
t<w<s
S A
<Y / B[ D (o, X0, X45) DXl z = D (u, X0, X07) DX 2| | 7]
fer’t
S A
<Y / IEH D, f(u, xhe Xffé) D, X" — D, f(u, ngy’”,xfﬂ) DxX,t;x'gz’p ’ ]-“t] du
fer’t
.
+y / i ’Dx f(u,x,ﬁfy'”,xfﬂ)(Dxxf;"'@z— Dxxi;y'”z)”’ ’]—“t} du

fer’t

< [ (B[ || Daxi || xi - xi
t L

"] 7]

- 1 1
s ~ 2 2 . 2 2
< [ m@PB|| DXz p‘ft} ]E[HX{;"'é—Xf;WH p’]—‘t] du
t

S | A
+/ ()| X = xi | [ x| | 7]
t *
s A tx,& tyay_||P
+/ ao(u) B [|| Dexi 2 — DX:||"| 7] d
t
S N p
1zl (e =1+ 18 =l ) + [ o) 8[| DXy ™z = DuXz|” | 7] i,

where the last step follows from Lemmas 3, 4 and 11. Finally, Gronwall’s inequality yields
the desired result. [

Corollary 2. Let0 <t < T,{ € Lf;’i(t). If Assumptions 2 and 3 are satisfied with qy > 4, then
the map
RY — H2(t,T), x> X6

is continuously Fréchet differentiable.
Proof. Lemma 12 implies that
| Dy X6z — Dy X™Whz||

sup ||Z|| . 5 Hx_yH’
0#£zeR4

ie., x — DyX"¢ is continuous with respect to the operator norm. [

Lemma 13. Let 0 < t < Tand &, 1, € L2(t). If Assumptions 2 and 3 are satisfied with qo > 4,
then D, X147 € H24(t, T) with

E

tn, 2
sup HDwa”gCH ] S ||C\|fg/

t<w<T

where Dy X"157 denotes the map

0T x Q=R (s,w) = DX{"g(w) = A7 (w) :
x=1(w) y={(w)
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Proof. We have X'1¢ ¢ Hi’d(t, T) due to Corollary 5. Moreover, the G-SDE

dy, = Dxb(s, Xﬁf”’é,xéffv') Y, ds + th(s, xiE X§'§>YS d(B),
+ Dug(s X4, x{E)vodB,  t<s<T,

Y, =¢.

has a unique solution Y € Hid( t, T) since the coefficients are Lipschitz continuous and in
M2(0,T).
By Lemma A4, we have forallt <s < T

~

E

sup
t<w<s

s 2
Sly-cP+ X% [ EUDxf(u,Xf;"'é,xzé)Ai;“'y Daf (1, X7, XI5 ) Yo \ft] du
feF

Az x| 7]

Sly -2+ [ m(u)ZI@[Hxi;“ - x| A ft} i

+ /ts ag(u)*R [HAZX'M —Yy ’ ‘ ]:t} du

T | a N W e N
¢ =

S A
+ [ ot |45 - v,

2
‘ ]:t} du

sup
t<w<u

S A
Sly—2l*+ ||x—77||2||y||2+/t ao(u)’E

Ayw_nwﬂﬂlw

due to Lemmas 4 and 11. Gronwall’s inequality implies

~ £x,E, 2
B sup 4G = Yo|"| F| Sy =2+ Ix—nIPlyI?
t<w<T
and, thus,
b8 S txgy 2
HDXX'ng—Y‘  =E|&| sup HAH’,” —YwH ’]—“t — 0.
Hy t<w<T x=1,y=¢
Thatis, D,X""¢¢ =Y € H%(t, T). Finally, we have
f t 2 | T t 2 £ 2
E| sup HDxX'”'%H =E|E| sup HDXX,XIL:ZH ’}'t SJE{H@H ]
t<w<T t<w<T x=1,z=(

due to Lemma 11. O

Corollary 3. If Assumptions 2 and 3 are satisfied with qy > 4, then

S8l (I = vllz + 18 = xlhz )

B sup HDXXQ;”'%— Dxxi,;V'XgH
t<w<T

forall0 <t<Tand,n,l,v,x € Lﬁ’d(t).
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Proof. Lemma 13 together with the aggregation property yield

S t
£ e Do - D]
t<w<T
1
il t,x,¢ LY.X 2
<B|E| sup HDwa z— DyX4 zH ’}}
t<w<T x=H,y=v,z=(C

SE[IZ1 (Il = vil + 12 = xll2)]
S 12z (I = vz + 18 = xlhz )-
O
Lemma 14. Let 0 <t < Tand & € L2(t). If Assumptions 2 and 3 are satisfied with qo > 4, then

H Xtetnetn — xtestn — p, Xt’g'gﬂHHi

=0,
iyl 20 lI7ly2

where the limit is taken over 17 € L2 (t).

Proof. Due to Corollary 2, the map x ~— X"*¢*7 is continuously differentiable. In particu-
lar, we have

1
X;,x+y,§+17 _ X;,x,ém _ / DXXSt,x+/\y,§+:717 A\
0

g.s. forallt <s < T. Thus, Corollary 3 yields

&

sup H XEEFIEHT _ xtettn _ X;x;%”]
t<s<T

1/\
S/E
0

2
< lnli%s

sup H DXX;":JFM’CHU — Dstt’g’ch] dA
t<s<T

which implies the desired result. [
Lemma 15. If Assumptions 2 and 3 are satisfied with qo > 4, then the G-SDEs
AU = | Dab(s, X48, XU )YEH 4 Db (s, X6, xEE ) (DaxtE S + vI57) | ds
") |aB),
)

+ | Dag(s, XU, XE )Y 4 Dyg(s, xUE, xUF ) (DX + Y4 [ aB,,

+ [ Dal (s, X4, XEE) VIR 4 Dgh (s, X4, XUE) (DaxtE oy 4 viF

t<s<T,

Y/ =y, (19)
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A = [ Db (s, XU, XEO) ¥ 4 Dgb(s, X4, XUF) (DexEE - YIET ) [ ds
+ | Dah(s, XUV, XL IV 4 D (s, X0, X U8 ) (Daxt g + YT B
[ng(s X, Xt5>th§’7 + D§g<s X th)(D X*5577+Yt¢’7)]d35,

<T,
Yi =1 (20)

admit unique solutions Y51, Y61 € H24 (¢, T) forall0 < t < T, x € R and &, € L24(¢).
Moreover, the map
L) 5 HALT), e Y

is linear.

Proof. We have DxXt'gf‘fiy S Hﬁ’d(t, T) due to Lemma 13. Thus, Lemma 8 implies that
the coefficients in (19) are in M2 (0, T). Since they are Lipschitz continuous, (19) admits a
unique solution Y*& € H24(t, T).

Similarly, since Yt e Hi'd (t,T), the coefficients in (20) are in M2 (0, T) and Lipschitz
continuous and, thus, (20) admits a unique solution YR ¢ Hi’d(t, T).

Let#,{ € L2/ (t)and A € R. Lemma A4 yields forall t <s < T

B | sup

t<w<s

<y / “Dx £ (0, X078 X ) (iR e —/\Y;""@"?)ﬂ dh
feF

YHEAHAL _ bt /\Yzﬁ;"@@HZ]

+f§ / “Dgf (1w, X0, X0 ) (& Ae — A —AYf;x'@'g)ﬂ d

s 2
< / ao(u {HYt R RN Gl }du,
t

and Gronwall’s inequality yields || Y/*6/1FA8 — ytxi — Aytxet|| , =0. O

Lemma 16. If Assumptions 2 and 3 are satisfied with qo > 4, then

sup HY

t<w<T

2
] < ||77||L§

forall0 <t < Tand &y c L2(t).

Proof. By Lemma A4, we haveforallt <s < T
sup

Y r:vH
t<w<s

sw@+z/{
+ Z / U DC ;':,X“f)(DXXZ@":U +Yltl,g,,7> ’2} "

feF
Lz) e

< Il + ot (8]

S Il + [ oolo)B|

u Xf,g, xh é)}’:,’g’i7 ﬂ du

1]« oo

;,5,17 H } du
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due to Lemma 13. Finally, Gronwall’s inequality yields the desired result. [

Lemma 17. Let 2 < p < qq. If Assumptions 2 and 3 are satisfied with qy > 4, then

a ta P
&) sup [[vet|"|F| S 1nl” + il
t<w<T *

; tx, g l|P
&) sup |G| A S lmlP+ Il

t<w<T

forall0 <t<T,xe€ R? and éne Li’d(t).

Proof. By Lemma A4, we have forallt <s < T
&

sup
t<w<s

|7
<l +f§/t51@[\Dxf(u,Xizé,Xiﬁ)Yﬁ'g'”\” |7 du

+f;/tSEH Def(u, X, XIE) (DextFEy + 2" | 7

p
o + yhen

u

Sl + ooy (B[ | 7] + | Dexity

P
Li) du
Sl + il + [ aoto& [[vi7 || 7] aw,

and Gronwall’s inequality yields the desired result for Y*&/.
Analogously, we have for Y**&/ that
sup

14
&
t<w<s

S il +)§F[I@HDxf(u,Xiz"'?Xf;@)Yﬁ""é"?\p|ft} i

+f2 /tIEH Def (1, X, X4 ) (DX + i) || 7]
€F

i théx,é'ﬂ

p

£,¢,
o v

]+ oo

S HWHM/: ao(u)P<E[Hyﬁrxrf§ﬂ7

S ~ £,
Sl + i, + [ ool B ][ v

p
Li) du

"\
and Gronwall’s inequality yields the desired result for Y/¥¢1. [

Lemma18. Let0 <t < Tand¢,n € Li’d(t). If Assumptions 2 and 3 are satisfied with qg > 4,
then

:O,

Hytlélrl — Yt/élgfﬂ
HE

where Y'S/%1 denotes the map

0,T] x Q — RY, (5, w) — Y (w) = Yst'x'g'n(wﬂx:g(w)-
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Proof. Set Z := Dy X"y + Y"1, then || Z|;2 < |177]l;2 due to Lemmas 13 and 16. By
Lemma A4, wehave forallt <s<T

£ sp it x| )
<f§jp/ “Dxf<u XU, XYY Dyf (X0, X0 )i | ‘]—'}
L oo ) o) ]
+f€ZF/ “Dgf(u X4, X, 5)zu Def (u, X4 xfé)z‘ ’;t}du

il \ft] + ol [ — v || 7]

< [ niwrs]
+ [ ||zu||§%1E[HX;fc .
< s 21 ty,C t,x,C 2
= “1(“) E HXu - Xy ‘]:t
t y=¢
s . 2
+ /t oco(u)Z]E[HYf[é’”—Y,i’x’g’”H ‘]—}} du
s A
+_/t 061(L[)2||Zu||iz]E|:HXL’y’é _Xfl,x,g

2 2 2 ° 25 [ |[\46 txg,
Slg =P (1217 + 1202 ) + [ o) |||yt — v

ft:| du

g

2
’ Ft} ’y:[: du

7]

2
) ‘ ft:| du
Gronwall’s inequality yields

YNyt 2
w

S 1= xI” (gl + 1121z )

2’]—}] X_J —0.

Lemma19. Let 2 < p < (q1 A %). If Assumptions 2 and 3 are satisfied with qo > 4, then

1)

sup
t<w<s

and, thus, the aggregation property implies

A~

=E

Hyf@'? — Ytr(’:/é/ n t.6.1 théx'ér'//

sup HY
t<w<T

H2

O

bl ytynd

sup || ”\ﬂ] S 12y (Il =yllP + g =1l )

t<w<T

forall0 <t < T, xye€ R? and ¢, € Li’d(t).

Proof. Set Z¢ := D, X'647 + Y464 and Z7 := D, XY + Y14, then

o 127 S 1l
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due to Lemmas 13 and 16. Moreover,
WXPL = DaxIg| |+ |-
£1],
Sghzle = nlz + W5 =4 (21)
forall t < s < T due to Corollary 3.
By Lemma A4, we have forallt <s < T
B tiug Vit _yiwa|”| 5 ]
wW<s
txg b8\ yhadl tya ety |P
<Y Dxf u, X8 Xl ) Dxf(u,Xu X5 )Yu ’]-"t} du
feF
LYM b tx el iy [P
+f[€%/ (| Daf (s x027, x07) (v ¥4 — v 9 || 7]
r
+y / Dgf(u, Xﬁ;"";‘,xiﬁ)zg _ Dgf(u,XL’y"’,XL'”)ZE ‘ ‘}}] du
fer
ty, t, P
+Z/ [|Def (u, xi, xi7) (25— 21) || 7] e
ferF
S /t an ()" [ i | |t — x| | ]
s [N P
+/ an(w)? || X = x| [ i o< || ] e
t L%
s ~ P
+/ (X(] pEH t,x,ﬁ,{_yl‘,y,?i,CH ‘ft] du
+ [ o ( Xt || 7] ot )
+/ aq(u
N/oq (g + 1! )(Hx ylIP + 11 =l ) d
+ [tz =l (1217 + 12017, ) de
P
+/ ao) B [|| V4% — i | 7] e
[T a1y (I = vl + 1 = 17y )
t, t,
+ [ a2 18 =l + o) i =S|
t, tn,g||P
N(HCII”\ICIILE)(I\x—yIIHI\C aly) + [ Hn“ v ||”,
s N P
+ [ o) B[|[ ¥ — v ]
due to (21) and Lemmas 4 and 17. Further, Gronwall’s inequality implies that
E sup tx@é Yty’igH ‘
t<w<s
S L, o, p
< (120 + 0202 ) (e =P+ g =l ) + [ oat” it =i (22)
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forall t <s < T. From Lemma 18 and (22) we obtain

2
& sup Yfgé’g —Yé;”’g
t<w<s
1
ol bt || 2|
<B|B| sup VG - vy ||| A
t<w<s x=¢,y=n

2

SB[+ 2lz) (1 = ol + g = nlez) |+ [ v = vir? |

2
Ll

%

2 2 ° 2|\ tE, L1,
SIEINE =iz + [ oaCu?]|ViFE = i<,

and Gronwall’s inequality yields

1 sup Y?i;é,é’ — Y;:;"’g
t<w<s

S22 I8 =l
Hence, (22) becomes

sup Hyzi;xxé/é _ Y;;%Wrg
t<w<T

X

p\ﬂ] S (18”017 ) (= yliP + 12 = nll,).

O

We immediately obtain the following corollary.

Corollary 4. If Assumptions 2 and 3 are satisfied with qo > 4, then

f SN2l l1E —nlly2

w1
t<w<T

forall0 <t < Tand &1, € L2(¢).
Lemma 20. If Assumptions 2 and 3 are satisfied with qo > 4, then

~

2
t,x, /X, t,x,G,

B sup [[xg 4 — x5 - || A

t<w<s

5 N 2
Slnlify + [ ()R] X - X = Dty - i |

forall0 <t<s<T,xe€Rand &y c L2%(t).
Proof. Set

AC = Xt,x,§+71 _ Xt/xf’:, Y . — Yt,x,@',iy,
A= XV — XM 7 := Dy X"ty 4 Yo,

Lemmas 13 and 17 yield
1Z012 + 1Y 2 S Ml (23)
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Moreover, Lemma 2 implies
< ¢\ < |In|I*
1Al < il sup [[ad | 7| S Il (24)
<w<
By Lemma A4, we have forallt <s < T
sup A%, tx':”H ‘ft]
t<w<s
<y [ / prf (1 X, 4 285, XEET) A8 — Do, X4, X1 o }M
feF
2
+ Z/ UDxf(u X4 X ) (G - ) ‘}}} du
feF
2
+ Z/ / “Dgf (i, X075, XE + 2 ) b = Def (u, X, XF ) A (ft] A du
feF
2
+) / { M Xftxg Xf¢§>(Au —Zu) )ft} du
feF

4 .
G \ﬁ} + ||Au||izE{ ] + \|Au||§> A du

5/ al(u)2<IAE{ A
- [Pooe]o
Sl + [ oa(?8 2

due to (24) and (23). Finally, Gronwall’s inequality implies the desired result. [

\ }',} a1 ()| A — Zu |21

- Yy

| 7] a1~ 2zl

Lemma 21. Let 0 < t < T and &, 5 € L24(t). If Assumptions 2 and 3 are satisfied with gy > 4,

then
HXt,@‘m _xté

*:0’

Iyl 20 7l

where the limit is taken over y € L2 (t).

Proof. By Lemmas 18 and 20, we have

N 2
1A sup X;;é:é"""/ _ thtligfg _ Yzzgr"] H
t<w<s
PR N 2
=E|E| sup XZ’,X":JF” — Xi,’,x’g — Y;x,é,q H ‘ Fi
t<w<s x=¢
2
t g /G t,G,
Slllt + [ o B[ X = XIE - Dy - i | e
2
£, i, , /G
Slllt + [ o) Hx“ﬁ” X~ DxtEy ] a

+/t a1 (u) EMXLM*’? D G Yf;é'”Hz] chi

I ||’7Hi§ + HXt'ngW/é”rﬂ _ xtEEH _ p

+ /; wy () U’X,Z'é,éw - XiE = m e

and Gronwall’s inequality yields

H XL+ _ xtEE _ ytﬂ;’ﬂ?' (25)

) ||,7H2+th§+né+rl XtEE+T _
HN
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Finally, observe that

H XS — XEE DXty — yt

H!

‘ + H XEEETn _ xtis yt,é’,ﬂ‘
H!

HZ
S ”WH%% + HXLC-H?@-H? _ &Lt DxXt’C’éﬂ‘

H}
due to (25) and, thus, Lemma 14 implies

I XEetn — Xte — D, Xbeby — Yhe

e

Il 20 ll7ly2

O

Proposition 3. Let 0 < t < T. If Assumptions 2 and 3 are satisfied with qo > 4, then the map

L24(t) — HY(t,T), &~ X%
is continuously Fréchet differentiable with Fréchet derivative
D, X" : L24(t) — H2(1, T),
at & e L24(1).
Proof. Lemmas 10, 13, 15 and 16 imply that the map
L24(t) — HY(4,T), 57+ DeX"Ey 4 YUEH

is linear and continuous.
Further, Lemma 21 implies

HXt,x,§+£77 _ xtag DxXt’g’gﬂ _ Yt/€/77|

1
lim T —o.
l7]l—0 [17ly2
Finally, observe that
H D XHEHIEHI 7 Lyttt p xtedy yf,C,é‘ 1
H!
=E|k sup H DXX;;x+y’§+ﬂz — DXXZ’,X’@‘Z + YZ,}x+y’§+'7’é — Yé}x’g’gH ‘ Fi
t<w<T
1
P by, &+ txg || ’
SE|E| sup HDqu’, Yol DX z” ‘]—"t
t<w<T x=gy=12=¢
1
~ e bty il g2 ’
+B|B| sup [yt et —yimo T F
t<w<T x=Ey=1n2=

S Ileallllee

7 D§th§;7 = DyX"Ey 4+ YEEH

x—C,y—ri,z—C]

due to Lemmas 12, 13, 18 and 19. Thus, { — DgXt'C is continuous with respect to the

operator norm. [J
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Proposition 4. Let 0 < t < T and x € R?. If Assumptions 2 and 3 are satisfied with qo > 4, then

the map
L) — HA(L,T), & XME

is continuously Fréchet differentiable with Fréchet derivative
DX L24(4) — H2(t,T), 5+ DeX"*Ey = YIREN
at & € L24(t).
Proof. Lemmas 15 and 16 imply that the map
L24(t) — HX(t, T), 5w YA

is linear and continuous. Moreover, we have

HXf,x@Jﬂl — xtxg _ yt,xé,ﬂH , < ”77”%2 + HXf,CJH? — xt€ _ DxXt":'gn — yh&m )
H: * H,

due to Lemma 20 and, thus, Lemma 21 yields

bRt — Xt yhd|

2
lim T o
lyll—0 17l2

Finally, observe that

HYt,x,é,g o Yt,x,ly,C

i < NElzlle =7l
due to Lemma 19. Thus, the map ¢ — DéXt""g is continuous with respect to the operator
norm. [

5. Second-Order Derivatives

In this section, we show the interchangeability in order of differentiation in Lemma 26
and establish the second-order Fréchet differentiability of (x, &) — X"*¢ in Propositions 5
and 7. For a normed real vector space V, let C2(V) denote the space of all f € C!(V)
such that Df(-)v € C!(V) for all v € V and, for convenience, we set D?f(vg)(vo,v1) :=
D Df(vg)v1 v; for vy, v1,vp € V.

Assumption 4. Letb: [0,T] x Q x RY x L24 — R4, i [0,T] x Q x R? x 124 — Réxnxn,
and g = [0,T] x Q x RY x 124 — RI¥*" be such that the following holds for all components
f = b, hyij, §ri with1 <i,j <mn, 1 <k <d.

1. We have f(s,w,-,&) € C*(RY), Dgf(s,w,-, &)y € C'(RY) and Dyf(s,w,x,-)y €
Cl(Li'd)for al0<s<T,weQxyc R? and éne Li'd.
2. There exists a square-integrable ay : [0, T] — [1,00) such that
‘D,%f(s,w,x,g)(y,z) - Dif(s/wfvré')(%z)‘ < () Iy lHIz[l1lx =}
| Dy Def(s,,%, )72 — DaDyf(s, 0,0, 2| < ax®lal €02 (I~ + 12 =z,
| Dg Dxf(s,0,%,8)2¢ = D Daf(s,w,,1)28| < aas) 2] 12llp2 (1 =yl + 11 = 72

forall0<s<T,we),vxyze R? and ¢, 1,0 e Li'd.
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Lemma22. Let0 <t <T,x € RY and & € L2%(t). If Assumptions 2, 3 and 4 are satisfied with
qo > 4, then the G-SDE

AC A — Db (s, XU, XUE) LV ds
+ D2b(s, X4, X4 (s Xt’x’gy, Dxng"'ifz) ds
+ D5, X2, X ) e g
+ D%h (s xb*e, X“f) (D X““?‘y, DxXt by )d(B>s
+ ng<s Xﬁ""";,xtg) cletuz gp.
+ D3g(s, X4, X (Do X!y, Do XI2) d,, F<s<T,

CrHe® — 0 (26)
admits a unique solution Ct%¢¥% € HY4(t,T) forall 0 <t < T, x,y,z € R¥ and & € 1L24(¢).

Moreover, the map
R xR? — H2(t,T),  (y,z) — C™E¥2

is bilinear.
Proof. The SDE (26) has a unique solution Ct¢¥% ¢ H24(t,T) since the coefficients
are Lipschitz and of linear growth due to Lemma 11 for any y,z € R?. Thus, the map

(y,z) s Ct*EY7 is well-defined.
LetA e Rand v, x,y,z € R4, By Lemma A4, we have forallt <s < T

ﬂ
< Z / U D, f(u thé Xt(’;) (Ct xEy+Avz Cf;x":'y'z _/\Clt[x,ﬁ,v,z)

feF
5 N 2

S / IXO(M)ZE |:Hcilrx/§/y+/\vrz o Ci,xrg/ylz o )ch‘/xrngzz :| du’
t

Hcf,xrif,y'l'/\vlz — CtxGyz _ \ctrguz

7 tx.¢y+Av, £,x,6.Y, 1X,6,0,
D wa§y+ vz_warjyz_/\C;‘ngvz

sup
t<w<s

2
}du

and Gronwall’s inequality implies

= 0,
H?

ie., y — C"*&¥7 is linear. Analogously, we obtain that z — C"**¢¥7 is linear. [J

Lemma 23. If Assumptions 2, 3 and 4 are satisfied with qo > 4, then

tx,6.Y,2

sup ||c ] S RER

t<w<T

forall0 <t < T,x,y,z€ Riand & € Li'd(t)-
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Proof. By Lemma A4, we haveforallt <s < T

21
L B[ |ois(exi ) oo o)

feF
Bt
< [/ e[| ox ”éyu o] ot

feF
S It oa(?B | i ] an.

Finally, Gronwall’s inequality implies the desired result. [

7 tx,G.y,z
E| sup ||Cy by
t<w<s

Ja

t X,C,Y,Z

Proposition 5. Let 0 < t < T. If Assumptions 2, 3 and 4 are satisfied with qy > 6 and g1 > 3,
then the map

R? — HZ(,T),  xr— X'5E

is twice Fréchet differentiable for every & € L24(t). More precisely, for every x € R% and
&€ L2(t), the map

DX RTx RY — HX(4,T),  (y,2) — DEX"™E(y,z) := Cl4Y2
is bilinear and continuous and such that

H Dy XbAH0Ez — Dy Xb¥Ez — DEXHOE (y,z)‘ i,
* — 0

lim
lyll—0 [yl

forallz € RY,

Proof. The map (y,z) — C"*¢¥7 is bilinear and continuous due to Lemmas 22 and 23. Set
AF = XS XEYG ) then

sup |%]°| 7i

t<w<

S lyll° (27)

ik

t<w<T

due to Lemma 4, and Lemma 12 implies
3
sup H D.X tx”‘y gy DxX;;x’éyH ’ ]-'t] dar

<f®
S J0 | t<w<T

< lyll°. (28)

Further, set AY* := D, X"**¥4z — D, X/*¢z, then Lemma 12 yields

< lylP. (29)

3
E| sup Ay
t<w<T
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By Lemma A4, we have forallt <s < T

2‘|
< Z/ “Dxf u XiHE x )Dxxt”yé D f(u XhE, X’C> D, X2
feF

n £,,6,Y,
3 A — Clre

sup
t<w<s

— Duf (u, X0, X0 ) €% — D2 (w, X0, X0 ) (DX y, DaXi™z) | } "
S /t's wz(u)ZE[IIAZII“HDfo;x@zHZ] e () B || A5 85| ]

+ | [ Doty oo

+ /t ao(u)Z]E[HA;fX—CL"‘@W }

< [t 28 jaz1) B [anxiﬁ'ézuer+a1<u>zfa[||Ais|}% B lla3 ] du

+/«1 oot~ o] |'s o)
+ [ oy “A” Clree }
1

4 2 s 2 L8,
Sl (1+ 121R) + oolu B a7 - i+

due to (27)—(29) and Lemma 11. Finally, Gronwall’s inequality yields

2
3

2
H D, Xty — D X, — D,%X“"C(y,Z)‘ e S yI7 @+ 11zl

which implies the desired result. [
Lemma 24. If Assumption 2, 3 and 4 are satisfied with qy > 6 and g1 > 3, then the G-SDE

dDY N — Db (s, XUV, XUE) DA ds
+ D3b((s, X4, xIF) (DaX{y, DXy s
+ Dy Dgb(s, X, XU DXy DXy s
+ Dah(s, X4, X ) DY (),
+ D35, X4, xUE) (DX y, DXy d(B),
+ D Dgh(s, X4, X\F) Do Xy DXy d(B),
+ Dig((s, XU, XL8) DL 4
+ Dig(s, X, xU0) (Duxty, D xt¥ ) ds
+ D Dgg(s, X0, XUF ) De X iy DLx¥Ey B, F<s<T,

DIV — ¢ (30)

admits a unigue solution DtXEYI ¢ H%’d(t, T)forall0 <t <T, xy€ R4, ¢y € Li'd(t).
Moreover, the map

RY > L) = HM(L, ), (y,) > DP5E0
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is bilinear.

Proof. The SDE (30) has a unique solution DSy ¢ Hi’d (t, T) since the coefficients are
Lipschitz and of linear growth due to Lemmas 11 and 17 for any y € R? and 5 € 124 (t).
Thus, the map (y,77) — D"*¢¥1 is well defined.

LetA e R, y,z € R% and 1,0 € Li’d(t). By Lemma A4, we have forallt <s < T

I

2
< X [ B]|Par(n i ) (0205 o i) a

txrj +Az, t,x,é, g t,x,8,z,
E sup Y m_ Dy Y _ ADy U

t<w<s

feF
. 2
< [ aow?2 i+ - s _apipen ],
t
and Gronwall’s inequality yields that
HDt,x,cj,erAz _ Dt,x,@,y _ )\Dt,x,tj,z -0
H2

*

ie., y — DYV is linear. Analogously, we obtain that 17 +— D!*¢¥/ is linear. [

Lemma 25. If Assumption 2, 3 and 4 are satisfied with qy > 6 and q1 > 3, then

t<w<T

wpk”“ﬂ]smmma

Proof. By Lemma A4, we have forallt <s < T

2| sup ol

t<w<s

< 2/ UDxf<u X6 X ) Dy }du
feF

L8| oar(ait ) oot o)

+ Z/ “Dngf ", Xu’“‘f X{F)Déx“‘%D X xﬁy‘ }du
feF

S e W R L N R
and Gronwall’s inequality implies
‘2
forall t < s < T. Finally, observe that forall t <s < T
B|[[ooxy ooy | = & 2| ooty pex [ 5]
<h|R M DxXé'x’éyH4 ‘ ]__t} %IAE {H D(:X;'x'éZH4 ‘ ]__t} 3

2 2
SIS

n £,2,6,Y,
E| sup Dy 22
t<w<s

< [ wG?a]| Doty pexied | a

-

due to Lemma 11, which implies the desired result. [
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Proposition 6. Let 0 < t < T and &, € L¥(t). If Assumption 2, 3 and 4 are satisfied with
qo > 6 and g1 > 3, then the map

R — H2(1,T), x> DeX"*%y
is Fréchet differentiable with Fréchet derivative
Dy DXy . RY — HX(t,T),  yrr DXy = DVEV
at x € R4

Proof. By Lemmas 24 and 25, the map y ++ D"*&¥/1 is linear and continuous.
Set AS := DgX!"* "€y — DgX"*¢y, then Lemma 19 yields

8] e o]

t<w<T

S Il Ny, (31)

As in the proof of Proposition 5, set A¥ := X/**¥¢ — Xt%6 then

A

t<w<T t<w<T

sup HA" Dy fux"fyH \ 15|ly||6. (32)

sup [|a%]° ]ﬂ] < vl

By Lemma A4, we havefort <s < T

B sup Ang;"":rw)ﬂ
t<w<s
< 2/ UDXf(u XiHE x tg’;’) DéxtwygﬂJer(u XiHE x tg)D Xty

feF
= Daf (u, X4, X ) DXy = Def (1, X0, X4E) DeXify

— D (, X5, XIE) DA — D (u, X4, X1 ) (D2 Xy, DX )

2
- D, D; f(u, xte Xf,’§> D Xy Dxxf;"'éy‘ }
S 2,\
S [ mr|
Jt
S 2.
+/ aq(u) IE{ A

+/ (1 ’D,-;X

A,

] e i o
_ Dfo[X,éyHZH DéX&x,éﬂHz} N az(u)zﬁ[HA,’j”‘l] H DgX,’;":,?H; "

LZEU } +a0(u)2fE{

2
AX — DX ‘AE fo;x'é'y'”H }du

< [ o Jai ] eaine]
o more[els| ) oo 7] a
‘WM%WMww%mﬂﬁwwwmﬂﬂm
+ [ watw?B[1a7)] | Dexi?

+/oc1 ’Dgx LZE“A" D, X% }+v¢0(u)2fE“Angf[x’g’y’”HZ} du

< it |\,,||Lz +/t ao(u) E[HAi 7D,2x,§,yn7H2} du

due to (31), (32) and Lemma 17. Finally, Gronwall’s inequality yields

H DgXt’x+y’€17 _ DgXt""gr] _ Dt,x,élyJ]

RS S Iyl lle
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which implies the desired result. [

Lemma 26. If Assumption 2, 3 and 4 are satisfied, then the following holds for all components
f = bk/hkijrgki/ 1 S i,j S n, 1 S k S d:

Dy [Def(s,x, &)y = De[Daf(s,x,O)yly
forall0 <s <T,x,y€ R4, ¢, e Li’d and w € Q.
Proof. Let0 <s < T,x,y € R4, ¢, e Li'd and w € Q). We have
Ii=f(s,x+y,d+n,w0) = fls,x+y,,w) = f(s,x,¢ +1,w0) + f(s,x,8,w)
= /01 Def(s,x +y, &+ AMn,w)n — Def(s,x, ¢ + AMn,w)n diy

1 1
:/0/0 Dy D (5, % + Aoy, & + A, )y y dAg dAy
=D, Dgf(s,x,(f,w)iyy+R1

with
1 r1
R] ZI/O /0 Dx Dgf(s/x+/\2yr§+)\l71/w)77y* Dx Dgf(s,xlg,w)y]ydAZ d)\1
1 r1
< /0 /0 | Dy Dgf (s, x 4+ Aoy, & + A, w)ny — Dx Daf(s, x, &, w)ny| dAs dAs

1 r1
< /O /O a(s) [yl 1z (A2 llyll + A Iyl 2 ) @Az dAy
< lyllinlz (Il + il )-

Analogously, we have
I'=f(s,x+yc+nw)—flsx8+nw) = flsx+y&w)+flsxEw)
1
:/0 Dy f(s, x + My, ¢ +1,w)y — Dxf(s, x + My, &, w)y dry

1 1
:/0/0 De Dy f(s, x + My, ¢ + Aonp, w)y 17 dAp dAy
Dy Def(s,x, 5, w)ny + Ry

with

1 r1
Ry ::/O /0 De Dyf(s, x + My, & + Aoy, w)ny — Dy Def(s, x, &, w)n y dry dAq
< Iyl ez (vl + Nl )-

Thus, we get

| Dy Def(s, x,&,w)ny — Dy Def(s, x, &, w)n y|
[l

Syl + Il

forall0 <s < T,w € Q,x,y € RYand & 7 € L2%(t). By letting 17]l;2 and ||y|| tend to
zero, we conclude the desired result. [
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Proposition 7. Let 0 < t < T, x € R? and & € L2%(t). If Assumptions 2, 3 and 4 are satisfied
with gy > 6 and q1 > 3, then the map

L27(t) — H24(1,T), &> DXy
is Fréchet differentiable with Fréchet derivative

De D X"y 1L27(t) — H24(t,T), 5 — DgDyX"*Cyp .= Dh*eun
at & € L2A(¢).

Proof. By Lemmas 24 and 25, the map # + D**¢¥1 is linear and continuous.
For all components f = bk,hijk, it 1 <k <d,1<i,j<n,wehave

Dy Def(s,w,x,§)ny = Dg Dxf(s,w,x,8)y 1,
Dif(s,w,x,&)(y,2) = Dif(s,w,x,&)(z,y)

forall0<s<T,we ), x,y,z¢€ R? and ¢, n e Li’d due to Lemma 26 and the symmetry of
the second-order Fréchet derivative.
Fix x,y € R? and ¢, e Li'd, and set

A= XM — X
A(f = Xt,x,€+17 _ Xt,x,@’/

A = D XMy - D XEYy,

From Lemmas 3, 4 and 12, we obtain

f 2 2
Bl sup [[A0l?| < Iz,
t<w<T ]
. £ 116] 16
&) sup |a%["| < Ul
t<w<T ]
;
n ) 3 3
B[ sup |85 | S Il
t<w<T ]

Moreover, Lemma 19 yields

I

T

t<w<T

3
sup H DCXZt[,x’HMU — DgXi,',x'g;yH ] dA
t<w<T

6
< lnllSs,

and we have
E| sup HAw— D;;XL;%H

1
< / H De X"y — D,';Xt'gﬂ’
t<w<T 0

- dar

1
S / H DxXt,§+)\77,C+/\1771 _ Dxxt,é,gﬂ’
0

A
H!

CdA

*

1
I / Hyhéﬂrm . yt,m‘
0

2
S HWHLg

due to Corollaries 3 and 4.
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By Lemma A4, we have forallt <s < T

2
sup ||ANE — DL
t<w<s
sLf® “ Daf (w, X, X ) DXy = Def (1w, X3, X1 ) DXy
feF

— Duf (1, Xy, XUE) D — DAf(u, X078, X0 ) (Do X0, DaXi ey )
— D Daf (u, X, X1 ) DXy DeXify H du
< [[wtore |5 oot

+/sa2(u)2||Au||iz(|AL,||52E[“DxX;x,gy"z-
+ [ [
+/ “1(”)
+/ aq(u ( {
—I—/ ao(u [

S Inlialyl®+ [ ao<u>2@ﬂ A

+B {H D, X!

])a

- ooy ot
Dextt [HDX tx@y’2:| o
%8 } +18ulE a7

2
xg Z,X,C,y,nH } du
2
} du.

,f;‘

K

x, tx,8y,
uC _ Du Yy

Finally, Gronwall’s inequality yields the desired result. [

6. Application to Functions of Sublinear Distributions

In [30], the authors consider mean-field G-SDEs with coefficients that depend on the

sublinear distribution of the solution process, where the sublinear distribution of a random

variable ¢ is defined as the mapping ¢ + [&[¢(¢)]. More precisely, they introduce the set D

consisting of all functionals F : Lip(R?) — R which satisfy the following properties. Here,
Lip(IR?) denotes the space of all Lipschitz functions ¢ : R" — R and Lip, (RY) C Lip(R¢)
the subspace of functions with Lipschitz constant smaller than or equal to 1.

SAERC I

Constant-Preservation: For all ¢ € Lip(R?) with ¢ = ¢ € R, we have F(¢) = c.
Monotonicity: For all ¢, € Lip(R¥) with ¢ > 1 everywhere, we have F(¢) >
Positive Homogeneity: For all ¢ > 0 and ¢ € Lip(R?), we have F(cp) = cF(¢).
Subadditivity: For all ¢,y € Lip(R?), we have F(¢ + ¢) < F(¢) + F(9).
Boundedness: We have

E(y).

[F(9) = ¢(0)] < co.

sup
@€Lip; (RY)

Further, the authors define the metric

d: DxD =R, (F,G) — d(F,G) := |F(@) — G(¢)|

sup
@€Lip, (RY)



Mathematics 2025, 13, 3099 34 of 40
and consider a G-SDE of the form
Xy = b(i’, X3, FX[) dt + h(t, X3, FXt) d<B>t + g(t, X3, Fxt) dBy, 0<t<T,
Xo = x, (33)

where x € R and the coefficients b, g and h are defined on [0, T] x R? x D and, for ¢ € L}F'd,
the functional F; : Lip(RY) — R is defined by ¢ + E[p(¢)]. Clearly, for any X that
satisfies (33), we have X € HY(t,T) and, in particular, Fx, € D forall0 < t < T; see also
Remark 3.2 in [30].

The authors show that (33) admits a unique solution X € Mi’d(O, T) for any initial
value x € R? when the coefficients satisfy the following assumption; see Theorem 4.1
in [30].

Assumption 5. Let b : [0,T] xR xD — R% h: [0,T] x RY x D — R™" gnd g -
[0,T] x R? x D — R¥*" be such that the following holds for all components f = by, hiij, 8kis
1<ij<n1<k<d.

1.  Wehave f(-,x,F) € M2(0,T) forall x € R and F € D.
2. There exists a constant K > 0 such that

(6%, F) = f(t,y,G)| < K(||x — yI> + d(F,G)).

We can embed the formulation from [30] into our setting by defining coefficients b, §
and fion [0, T] x Q x R? x 124 componentwise by

bi(s,w,x, ) == bi(s, x, Fz), flki]-(s,w, x,&) = hki]-(s, X, Fr), Ski(s,w,x, ) == gki(s, x, Fz).

Note that in contrast to the general formulation in [31], the coefficients b, h and g
are deterministic. Moreover, for the components f = Bk, ﬁkij, $ri,1<14,j<n1<k<d,
Assumption 5 yields

f(t,w,x,8) = ft,w,ym)| < K(lx =yl +d(Fy Fy))
<K(Jlx=yll+ Iz =nlz)

foralwe 0,0<s<T,x,y¢€ R? and ¢, n e Li’d since

A~

d(F Fy)) = sup  [Blo(@)] — Blo(n)]| < BIIE -yl = 18— nlls < 15— nllz-
p€Lip; (RY)

Further, we have f(~,x, [;’)l[S,T] € Mi(t, T)forall x € RY and & € Bg(]:s), 0<s<T.
That is, if the coefficients b, h and g satisfy Assumption 5, then the coefficients b, h and §
satisfy Assumption 2. In particular, Theorem 3.12 in [31] implies Theorem 4.1 in [30].

The aim of this section is to show how our regularity results from Sections 4 and 5 can
be applied to equations of type (33). Note that D is not a vector space and, thus, we need
to consider a different notion of differentiability for functions defined on D. In classical
mean-field theory, we encounter a similar issue when considering functions defined on
the space of square-integrable distributions 9, (R?). By lifting a function f : P,(RY) — R
to a function f : Lz(Rd, O, F,P) — Rand considering the Fréchet derivative of the lifted
function £, Lions developed a useful notion of derivative which is commonly referred to
as Lions derivative; see, e.g., [33] for more details. In the same manner, we might want to
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lift a function f : D — R to a function f : L2¢ — R such that f(¢) = f (Fz) forall & € L4,
but it is not immediately clear whether the space L2 is rich enough in the sense that

D= {Fg : Lip(RY) - R, ¢ — B[p(¢)] : ¢ € Lifd} —: Dy,

However, it is sufficient to consider the restriction of the coefficients b, h and g in (33)
to [0, T] x R? x Dy so that b, i and § are the respective liftings defined on [0, T] x R? x 1.24
so that we can define a notion of differentiability for b, 1 and g in terms of the Gateaux or
Fréchet derivatives of b, i and §, respectively.

In the following, we develop a notion of differentiability for a map f : Dy — Rin
terms of the Gateaux derivative of its lifting f. More specifically, for Fz € Dy, we define
the map

Af(Fr): RT 5 R, x> f (&), (34)

where 9f(¢; x) denotes the Gateaux derivative of f at & € L2 in the direction x € R,
In particular, the construction implies that df (F;) is well defined when the lifting f is
Fréchet differentiable at & € 124 since Gateaux differentiability is weaker than Fréchet
differentiability. Moreover, the definition ensures that df (F;) is such that df (Fz) = 9f(F;)
forall g, 7 € 124 with F=F.

Lemma 27. Let f : Dy — R be such that its lifting f : 12% — R is Gateaux differentiable at
e 12, Ify € L2% is such that Fz = Fy, then f is Gateaux differentiable at n and

of(&:0) = of (1;0)

for all { € 124 such that & and y are independent of , where df(&; () denotes the Gateaux
derivative of f at & in the direction {.

Proof. Since Fg = F,7, we have

Elp(2)] = Elp(n)]

for all ¢ € Lip(RY). Let ¢ € Lip(R¥), then y — ¢(y + x) is Lipschitz for all x € R¥. Since &
and 7 are independent of {, we have

EW@+AQM—EFW@+xn

| = B[Blptr+)

o] = Eletr +20).

X:/\C xX=

Since this holds for all ¢ € Lip(R?), we obtain Fr; ), = Fyyag forall A > 0. By the Gateaux
differentiability of f, we have

o MEHAD - f@O - wf@n| |+ A0 - ) - 29f(Ei0)

A—0 A A—0 A

Thus, f is Gateaux differentiable at 77 and we conclude df(&; ) = 9f(7;{) from the unique-
ness of the Gateaux derivative. [

Clearly, the identity 9f(&;-) = 9f(;-) on L2? implies the identity on RY. Hence,
Lemma 27, immediately yields the following corollary.
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Corollary 5. Let f : Dy — R be such that its lifting f : L2? — R is Gateaux differentiable at
& € 12 in the direction x for all x € RY. If 5 € L2% is such that Fz = F;, then f is Gateaux
differentiable at n and

0f(&;x) = 9f(n; x)
forall x € RY.

Note that of (Fz) : x — 0 (& x) corresponds to the restriction of the Gateaux differen-
tial to R and, thus, we can apply F € D to of (Fz) if the Gateaux differential is Lipschitz.

Definition 2. Let f : Dy — R. We say that f is differentiable if its lifting f is Gateaux
differentiable at & in the direction x for all x € R and the Gateaux differential x — 9f (& x) is
Lipschitz on R? for any & € 127, The derivative df : Dy x Dy — R is given by

-

By Corollary 5, we have of (Fz,-) = of(Fy,-) forall {,n € L24 with Fz = F; if the
lifting f is Gateaux differentiable. Moreover, we obtain df (Fz, Fy) = of (Fg, Fy) for all
¢,n,0 € Li’d with F; = F; if the Gateaux differential is Lipschitz. In particular, the deriva-
tive of : Dy x Dy — Ris well-defined if the lifting f is Fréchet differentiable. Hence, if the
coefficients in (33) are sufficiently differentiable in the sense of Definition 2, we can apply

OF (Fe,Fy) = Fy(x v 0f (&) = B [aﬂc;x)

the results from Sections 4 and 5 to obtain the first- and second-order variation process of
the unique solution of (33).

7. Conclusions

In Sections 4 and 5, we derive G-SDEs for the first- and second-order Fréchet deriva-
tives of the unique solution X*¢, X**¢ of the generalized mean-field G-SDEs (11), (12).
These G-SDEs are analogous to the SDEs of the Fréchet derivatives for classical mean-field
processes; see [28]. The main difference is that the G-SDEs are expressed in terms of the
Fréchet derivatives of the coefficients, while the respective SDEs are expressed in terms
of the Lions derivatives of the coefficients. However, the Lions derivative of a function
f is precisely the Fréchet derivative of its lifting f; see [33]. In that sense, our results are
perfectly in line with the results on classical mean-field SDEs in the literature. This is ex-
pected since by choosing % = {Id}, the G-Brownian motion becomes a standard Brownian
motion and our setting is reduced to the classical setting with linear expectations. That
is, the classical mean-field SDEs can be embedded into our setting and, thus, our results
immediately yield SDEs describing the first- and second-order Fréchet derivatives of a
classical mean-field process.

We note that the assumptions on the coefficients that we use throughout this pa-
per are more general than the global Lipschitz and boundedness assumptions in [28].
Thus, by restricting our setting to standard Brownian motion, our regularity results from
Sections 4 and 5 extend the results for classical mean-field SDEs to more general coefficients.
For simplicity, the assumptions in our paper are chosen such that the Gronwall inequality
can be applied throughout. In particular, the continuity assumptions can be weakened to
consider other forms of local Lipschitz continuity, e.g., suitable for the Bihari inequality.
However, we believe that the integrability assumptions on &g, a1 cannot be significantly
relaxed when following a similar line of argument since these integrability assumptions

HXZX+%§ . Xf{x’é

4 2
ensure that products such as ‘ H Dfo,’x’ézH appearing in the proof of

Proposition 5 are integrable.
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Future research may study a larger class of generalized mean-field G-SDEs. For
instance, it could consider generalized mean-field SDEs with more general coefficients
or driven by a (sub)-fractional G-Brownian motion; see [34-37] for more details on (sub)-
fractional G-Brownian motion. Moreover, future research could explore the application
of the obtained first- and second-order Fréchet derivatives for control and optimization
problems, numerical approximation schemes or gradient methods.

Conditional Sublinear Expectation please see Appendix A.
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Appendix A. Conditional Sublinear Expectation
Lemma Al. Let 0 <t < Tand X € M(0, T). Then

[/ X ds ‘]—'t]_ BX, | Fi] ds

Proof. Since X € My(0,T), thereexistm € N, t =ty < ... < t,, = T, and s € By(Fy,),
0 <k <m —1 such that

m—1
X1[t,T] = Y &ty trsn),
k=0

and
T m—1
/t Xods = Y Cpe(tis1 — te)-
k=0

Due to the sublinearity of the conditional expectation, we obtain
. T _|m=1

Eu Xsds‘]-'t] =B\ L Gultn — 1) | T

< Z (8 | Ft] (b1 — tr)

:/t BX, | Fi] ds

O

Corollary Al. Let p > 1,0 <t < Tand X € MY (0,T). Then

T p
]E[/ X, ds
t

Proof. This follows immediately from the construction of M. (0, T) and Jensen’s inequality. []

| <@t [ e[xr 7] 8

Lemma A2. Leta € R", p > 1,0 <t < Tand X € ML (0, T). Then

) T p T .
E{/ Xsd<B“>S’ ‘ﬁ] <(T-0F [ RN F]
¢ t
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Proof. By Corollary 3.5.5 in [12], we have

‘<Ba>tk+1 — (B4, Taa(tes1 — te)-

Thus, Jensen’s inequality yields

/Xs d(B),

Ce | x|

< (T~ 'ozh / |X,P d.
t
Finally, Corollary Al yields the desired result. [

Lemma A3. Leta e R", p>2,0<it<Tand X € Mf(O, T). Then

/ X, dB"

T A
<(T-nTal [ R[X)|F]d
t
Proof. The Burkholder-Davis—-Gundy inequality yields

14
T 2
/XSdB” ‘ ’ ‘/t X2 d(B"), ‘]—'t]

) TA
<C(T-0)'7al, [ B[IXI|F] b
t

sup
t<w<T

t

sup < CPIEI

t<w<T

where the last step follows from Lemma A2. O

Lemma Ad. Letp > 2,0 <t < T, & € LP(t) and by, hyij 8k € ME(O,T) for 1 < k < d,
1 <i,j < n. Let X satisfy

dXs = b(s) ds + h(s) d(B), + g(s) dBs, t<s<T

X =¢.
Then
sup |1 X" | ft]
t<s<w
<\|¢||*’+2 Y[Rl 1 7] + &)1 ] + Bllguo) | 7] &
k=1i,j=1

Proof. This follows from Corollary Al and Lemmas A2 and A3. O
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