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Abstract

We study the regularity properties of the unique solution of a generalized mean-field G-
SDE. More precisely, we consider a generalized mean-field G-SDE with a square-integrable
random initial condition, establish its first- and second-order Fréchet differentiability in the
stochastic initial condition, and specify the G-SDEs of the respective Fréchet derivatives.
The first- and second-order Fréchet derivatives are obtained for locally Lipschitz coefficients
admitting locally Lipschitz first- and second-order Fréchet derivatives respectively. Our
approach heavily relies on the Grönwall inequality, which leverages the Lipschitz continuity
of the coefficients.

Keywords: mean-field; McKean–Vlasov; uncertainty; sublinear expectation; SDEs; derivative;
variation

MSC: 60H10

1. Introduction
Mean-field stochastic differential equations have emerged as a powerful mathematical

framework for modeling the dynamics of large populations of interacting agents subject to
random perturbations. Their significance lies in their ability to capture both the individual
stochastic behavior of agents and the macroscopic effects of collective interactions, making
them essential tools in fields such as physics, biology, economics, and quantitative finance.
In particular, a mean-field SDE serves as the representation of a system whose stochastic
evolution depends not only on the individual state but also on the distribution of the popu-
lation. The pioneering work of Kac [1] introduced the mean-field approach in the context
of kinetic theory, while McKean [2] first formalized nonlinear Markov processes whose
dynamics depend on their own law. Since then, mean-field SDEs have been extensively
studied and generalized, with foundational contributions by Sznitman [3] on propagation
of chaos and Lasry and Lions [4,5] and Carmona and Delarue [6,7] on mean-field games
and controls. These equations also underpin numerous modern applications, from systemic
risk modeling in finance to synchronization phenomena in neuroscience, underscoring
their broad relevance and mathematical richness.

In the 2000s, Shige Peng introduced the theory of sublinear expectations and, as a
special case, the G-setting as a framework to study Knightian uncertainty; see [8–11]. A
sublinear expectation can be expressed as the supremum of linear expectations over a set of
probability measures; see Theorem 1.2.1 in [12]. That is, if Ê is a sublinear expectation, then
there exists a set of probability measures P such that Ê = supP∈P EP, where EP denotes the
linear expectation with respect to P, and conversely, for every set of probability measures
P , the functional supP∈P EP defines a sublinear expectation. In that sense, a sublinear
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expectation can be thought of as the “worst“ outcome within a class of models. The G-
setting is used to quantify volatility uncertainty and consists of the so-called G-Brownian
motion and the G-expectation; see Chapter 3 in [12] for more details. There have been
significant advancements in the theory of sublinear expectations and the G-setting in recent
years. For instance, refs. [13–16] study the construction of sublinear expectations and their
properties, and refs. [17–20] study different classes of stochastic processes in a sublinear
expectation framework.

Besides the probabilistic interpretation of quantifying Knightian uncertainty, there is a
strong connection between sublinear expectations and fully nonlinear partial differential
equations. This has been extensively studied in, e.g., [21–24] for different types of backward
G-SDEs or [19,20,25,26] for forward G-SDEs. For classical mean-field SDEs, the depen-
dence of the coefficients on the distribution of the solution results in fully nonlocal PDEs;
see [27,28]. In that regard, the extension of mean-field theory to the G-expectation frame-
work is of particular interest, as it could establish a connection between a class of fully
nonlinear and nonlocal PDEs with a class of stochastic processes, which would allow the
PDE to be solved numerically by simulating the associated stochastic process.

First attempts to extend mean-field theory to the G-framework can be found in [29,30].
In [29], the author considers an SDE of the form

dXt = Ê[b(t, x, Xt)]
∣∣∣
x=Xt

dt + Ê[h(t, x, Xt)]
∣∣∣
x=Xt

d⟨B⟩t + Ê[g(t, x, Xt)]
∣∣∣
x=Xt

dBt, 0 ≤ t ≤ T,

X0 = x, (1)

where b, h, g : [0, T]×R×R → R, B denotes a one-dimensional G-Brownian motion and
Ê denotes the corresponding G-expectation. More details on the G-setting are provided
in Section 2 or can be found in [12]. Let L2,d

∗ denote the space of all Rd-valued random
vectors ξ with finite sublinear second moment Ê

[
∥ξ∥2

]
< ∞. For ξ ∈ L2,d

∗ , the functional
Fξ defined by

Fξ : Lip(Rd) → R, φ 7→ Fξ(φ) := Ê[φ(ξ)] (2)

can be interpreted as the “sublinear distribution” of ξ.
In [30], the approach from [29] is extended to higher dimensions and to coefficients

that depend on the sublinear distribution FXt of the d-dimensional solution process Xt.
That is, the authors consider an SDE of the form

dXt = b(t, Xt, FXt) dt + h(t, Xt, FXt) d⟨B⟩t + g(t, Xt, FXt) dBt, 0 ≤ t ≤ T,

X0 = x. (3)

In [30], the authors define a space containing all sublinear distributions and endow it
with a metric allowing them to define continuity conditions on the coefficients. However,
the space of sublinear distributions is not a vector space and, thus, it does not have a natural
notion of differentiability, which limits the study of regularity properties of the solution;
see Section 6 for a detailed discussion.

In [31], a novel formulation of a generalized mean-field G-SDE is introduced in
which the coefficients depend on the solution process as random variable. More precisely,
the authors consider a G-SDE of the form
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dXt,ξ
s = b

(
s, ω, x, Xt,ξ

s

)∣∣∣
x=Xt,ξ

s
ds + h

(
s, ω, x, Xt,ξ

s

)∣∣∣
x=Xt,ξ

s
d⟨B⟩s

+ g
(

s, ω, x, Xt,ξ
s

)∣∣∣
x=Xt,ξ

s
dBs, t ≤ s ≤ T,

Xt,ξ
t = ξ (4)

with coefficients defined on [0, T]×Ω×Rd ×L2,d
∗ and initial data ξ ∈ L2,d

∗ . This formulation
generalizes the formulations introduced in [29,30] where the coefficients depend on the
sublinear distribution. A significant advantage of the formulation in (4) is that L2,d

∗ is a
Banach space and, thus, it comes with standard notions of differentiability which are crucial
for the results in our paper.

In this paper, we are interested in regularity properties of the solution of a mean-field
SDE driven by G-Brownian motion. While the formulation (3) from [30] is closer to the
classical formulation, as it depends on the (sublinear) distribution of the solution process,
we work with the formulation (4) introduced in [31] since it allows us to consider Fréchet
differentiable coefficients and study the Fréchet differentiability of the solution Xt,ξ of (4)
with respect to the random initial condition ξ. The Fréchet derivatives of Xt,ξ capture how
perturbations of the initial data propagate through the stochastic system and, thus, they are
crucial for studying the sensitivity of the solution process with respect to changes in the
initial data. This sensitivity analysis is a central tool for a wide range of applications. For
instance, the Fréchet derivatives can be used to derive optimality conditions for stochastic
control problems or establish recursive formulae for conditional expectations using the
dynamic programming principle. Further, the Fréchet derivatives of Xt,ξ can be used in
numerical approximations of Xt,ξ as well as for (sub)gradient methods for optimization
problems. In particular, the Fréchet derivatives could be a useful tool for studying the
properties of the value function associated to the processes Xt,x,ξ and Xt,ξ and establishing
a Feynman–Kac-type result connecting the G-SDEs (6), (7) to a fully nonlinear and nonlocal
PDE, which is the subject of ongoing research by the authors.

For simplicity and conciseness, we use the following notation.

Notation 1. For a function f on [0, T]× Ω ×Rd × L2,d
∗ , define

f(s, ω, η, ξ) := f(s, ω, η(ω), ξ) = f(s, ω, x, ξ)
∣∣∣
x=η(ω)

(5)

for any 0 ≤ s ≤ T, ω ∈ Ω and ξ, η ∈ L2,d
∗ . Often, we suppress the explicit dependence on ω,

and write f(s, η, ξ) instead of f(s, ω, η, ξ).

Thus, (4) can be written as

dXt,ξ
s = b

(
s, Xt,ξ

s , Xt,ξ
s

)
ds + h

(
s, Xt,ξ

s , Xt,ξ
s

)
d⟨B⟩s + g

(
s, Xt,ξ

s , Xt,ξ
s

)
dBs, t ≤ s ≤ T,

Xt,ξ
t = ξ. (6)

Under mild assumptions on the coefficients, it is shown in [31] that (6) admits a unique
solution Xt,ξ ; see Theorem 3.12 in [31]. For x ∈ Rd, we associate to Xt,ξ the G-SDE

dXt,x,ξ
s = b

(
s, Xt,x,ξ

s , Xt,ξ
s

)
ds + h

(
s, Xt,x,ξ

s , Xt,ξ
s

)
d⟨B⟩s + g

(
s, Xt,x,ξ

s , Xt,ξ
s

)
dBs, t ≤ s ≤ T,

Xt,x,ξ
t = x (7)
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with deterministic initial condition x ∈ Rd. The G-SDEs (6) and (7) are closely connected.
More precisely, if (6) and (7) each admit a unique solution, then the process Xt,ξ can be
obtained from Xt,x,ξ by evaluating at x = ξ as formalized in Lemma 6. This allows us to
infer properties of Xt,ξ from properties of Xt,x,ξ by using the aggregation property of the
conditional sublinear expectation. More precisely, we have

Ê
[
Φ(Xt,ξ

s )
]
= Ê

[
Ê
[
Φ(Xt,x,ξ

s )
∣∣∣Ft

]∣∣∣
x=ξ

]
(8)

and, thus, many of our auxiliary results are formulated in terms of conditional sublinear
expectations of Xt,x,ξ .

Our main contribution is the derivation of first- and second-order Fréchet derivatives
of the solution process as formalized in Propositions 2, 3, 4 and 5. For coefficients with
Lipschitz and bounded Fréchet derivative, we establish the Fréchet differentiability of Xt,x,ξ

and Xt,ξ . Moreover, we characterize each of the Fréchet derivatives of Xt,x,ξ and Xt,ξ as the
unique solution of a G-SDE. These results are in line with the results on classical mean-field
SDEs; see [28].

This paper is structured as follows. In Section 2, we recall the G-framework before
establishing preliminary results such as continuity and growth properties of the solution
map (x, ξ) 7→ (Xt,ξ , Xt,x,ξ) in Section 3. Section 4 is devoted to the first-order Fréchet
derivatives of the solution map in x and ξ, while the second-order derivatives are studied
in Section 5. Finally, in Section 6, we show how the formulation in [30] can be embedded
into the formulation in [31] and develop a notion of differentiability for maps on the space
of sublinear distributions.

Notation 2. Most of our results are obtained via approximations and the Grönwall inequality.
For the sake of conciseness and readability, we use the symbol ≲ to denote that the left-hand side is
less than or equal a constant C > 0 times the right-hand side in the following sense.

For two maps f , g : Θ → R with domain Θ, we define

f ≲ g :⇐⇒ ∃C > 0 : ∀ϑ ∈ Θ : f (ϑ) ≤ C g(ϑ). (9)

2. Setting
In this section, we recall the generalized G-framework as introduced in Chapter 8

in [12]. Fix n ≥ 1 and let Ω := C0(R+,Rn) denote the space of all continuous Rn-valued
paths starting at the origin equipped with the topology of uniform convergence. Let F
denote the corresponding Borel σ-algebra. Moreover, let F = (Ft)t≥0 denote the natural
filtration generated by the coordinate mapping process B : R+ × Ω → Rn given by
Bt(ω) = ω(t).

Fix a convex and compact set Σ ⊆ Sn
+ of symmetric non-negative definite n × n-

matrices and set

AΣ :=
{

ϑ = (ϑt)t≥0 : ϑ is Σ-valued and F-progressively measurable
}

.

Let P0 denote the Wiener measure on (Ω,F ), and define

P :=
{

P0 ◦ (ϑ • B)−1 : ϑ ∈ AΣ
}

,

where ϑ • B :=
∫ ·

0 ϑs dBs denotes the Itô integral with respect to the stochastic basis
(Ω,F ,F, P0).
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For d ≥ 1 and a σ-algebra G ⊆ F , let Bd
b(G) denote the space of all bounded G-

measurable maps ξ : Ω → Rd. The set of probability measures P induces an upper
expectation on Bb(F ) := B1

b(F ), namely

Ê : Bb(F ) → R, ξ 7→ Ê[ξ] := sup
P∈P

EP[ξ],

where EP denotes the linear expectation with respect to P. The process B is a G-Brownian
motion with respect to Ê and (Ω, Bb(F ), Ê) is a sublinear expectation space. For p ≥ 1,
define the norm

∥ · ∥Lp
∗

: Bd
b(F ) → R+, ξ 7→ ∥ξ∥Lp

∗
:= Ê

[
∥ξ∥p] 1

p ,

where ∥·∥ denotes the Euclidean norm on Rd and let Lp,d
∗ (t) and Lp,d

∗ denote the completion
of Bd

b(Ft) and Bd
b(F ) with respect to ∥ · ∥Lp

∗
for t ≥ 0. We set Lp

∗(t) := Lp,1
∗ (t) and Lp

∗ := Lp,1
∗ .

For d ≥ 1 and T > 0, let Md
b(0, T) denote the space of all maps X : [0, T]× Ω → Rd of

the form

X =
m−1

∑
k=0

ξk1[tk ,tk+1)

with m ∈ N, 0 = t0 < . . . < tm = T, and ξk ∈ Bd
b(Ftk ) for all 0 ≤ k ≤ m − 1. For p ≥ 1,

define the norms

∥ · ∥Mp
∗

: Md
b(0, T) → R+, ∥X∥Mp

∗
:=

(∫ T

0
Ê
[
∥Xs∥p] ds

) 1
p
,

∥ · ∥Hp
∗

: Md
b(0, T) → R+, ∥X∥Hp

∗
:= Ê

[
sup

0≤s≤T
∥Xs∥p

] 1
p

,

and let Mp,d
∗ (0, T) and Hp,d

∗ (0, T) denote the completion of Md
b(0, T) with respect to ∥ ·

∥Mp
∗

and ∥ · ∥Hp
∗
, respectively. Clearly, Hp,d

∗ (0, T) ⊆ Mp,d
∗ (0, T), and we set Mp

∗(0, T) :=

Mp,1
∗ (0, T), Hp

∗(0, T) := Hp,1
∗ (0, T).

Set Mb(0, T) := M1
b(0, T) and let Bi denote the i-th component of B for 1 ≤ i ≤ n.

Define the map Ii : Mb(0, T) → L2
∗(T) by

Ii(X) :=
∫ T

0
Xs dBi

s :=
m−1

∑
k=0

ξk

(
Bi

tk+1
− Bi

tk

)
for each

X =
m−1

∑
k=0

ξk1[tk ,tk+1)
.

The map Ii is linear and continuous with respect to ∥·∥M2
∗

and, thus, can be uniquely

continuously extended to M2
∗(0, T). For 0 ≤ t ≤ s ≤ T and X ∈ M2

∗(0, T), define∫ s

t
Xu dBi

u := Ii(X1[t,s)).

The quadratic variation of B is the map ⟨B⟩ : R+ × Ω → Sn
+ defined componentwise by

〈
Bi, Bj

〉
t

:= Bi
tB

j
t −

∫ t

0
Bi dBj

s −
∫ t

0
Bj dBi

s, t ≥ 0
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for 1 ≤ i, j ≤ n. For 1 ≤ i, j ≤ n, define the map Qij : Mb(0, T) → L1
∗(T) by

Qij(X) :=
∫ T

0
Xs d

〈
Bi, Bj

〉
s

:=
m−1

∑
k=0

ξk

(〈
Bi, Bj

〉
tk+1

−
〈

Bi, Bj
〉

tk

)
for each

X =
m−1

∑
k=0

ξk1[tk ,tk+1)
.

The map Qij is linear and continuous with respect to ∥·∥M1
∗

and, thus, can be uniquely

continuously extended to M1
∗(0, T). For 0 ≤ t ≤ s ≤ T and X ∈ M1

∗(0, T), define∫ s

t
Xu d

〈
Bi, Bj

〉
u

:= Qij(X1[t,s)).

Since we consider G-SDEs with initial condition Xt = ξ with t ≥ 0, we introduce the
following spaces:

Hp,d
∗ (t, T) :=

{
X ∈ Hp,d

∗ (0, T) : Ê
[

sup
0≤s<t

∥Xs∥p

]
= 0

}

for 0 ≤ t ≤ T, p ≥ 1 and d ∈ N. We say that the G-SDE

dXs = b(s, X) ds + h(s, X) d⟨B⟩s + g(s, X) dBs, t ≤ s ≤ T,

Xt = ξt (10)

with coefficients b : [t, T] × Ω × H2,d
∗ (t, T) → Rd, h : [t, T] × Ω × H2,d

∗ (t, T) → Rd×n×n

and g : [t, T]× Ω × H2,d
∗ (t, T) → Rd×n admits a solution X ∈ H2,d

∗ (t, T) if there exists a
X ∈ H2,d

∗ (t, T) with Xt = ξ quasi-surely and the components Xk, 1 ≤ k ≤ d of X satisfy

Xk
s − Xk

t =
∫ s

t
bk(u, X) du +

n

∑
i,j=1

∫ s

t
hkij(u, X) d

〈
Bi, Bj

〉
u
+

n

∑
i=1

∫ s

t
gki(u, X) dBi

u

quasi-surely for all t ≤ s ≤ T, where bk, hkij, gki with 1 ≤ k ≤ d, 1 ≤ i, j ≤ n denote
the components of the coefficients b, h, g. Moreover, we say that the G-SDE (10) admits
a unique solution X ∈ H2,d

∗ (t, T) if (10) admits a solution X ∈ H2,d
∗ (t, T) and, for any

X, Y ∈ H2,d
∗ (t, T) that solve (10), we have ∥X − Y∥H2

∗
= 0.

3. Preliminary Results
In [31], it is shown that the G-SDEs

dXt,ξ
s = b

(
s, Xt,ξ

s , Xt,ξ
s

)
ds + h

(
s, Xt,ξ

s , Xt,ξ
s

)
d⟨B⟩s + g

(
s, Xt,ξ

s , Xt,ξ
s

)
dBs, t ≤ s ≤ T,

Xt,ξ
t = ξ, (11)

dXt,x,ξ
s = b

(
s, Xt,x,ξ

s , Xt,ξ
s

)
ds + h

(
s, Xt,x,ξ

s , Xt,ξ
s

)
d⟨B⟩s + g

(
s, Xt,x,ξ

s , Xt,ξ
s

)
dBs, t ≤ s ≤ T,

Xt,x,ξ
t = x (12)

admit unique solutions Xt,ξ , Xt,x,ξ ∈ H2,d
∗ (t, T) under the following assumption; see As-

sumption 3.1 and Theorem 3.12 in [31].

Assumption 1. The coefficients b : [0, T]×Rd ×L2,d
∗ ×Ω → Rd, h : [0, T]×Rd ×L2,d

∗ ×Ω →
Rd×n×n, and g : [0, T] × Rd × L2,d

∗ × Ω → Rd×n are such that the following holds for all
components f = bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d.
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1. f (·, x, ξ)1[s,T] ∈ M1
∗(0, T) for all x ∈ Rd, ξ ∈ Bbsd and t ≤ s ≤ T.

2. There exist an integrable function κ : [0, T] → R+, a process K ∈ M1
∗(0, T), and continuous,

increasing and concave functions ρ1, ρ2 : R+ → R+ with ρ1(0) = ρ2(0) = 0 and

∫ 1

0

1
ρ1(r) + ρ2(r)

dr = +∞, (13)

such that

| f (s, x, ξ, ω)− f (s, y, η, ω)|2 ≤ κ(s) ρ1

(
∥x − y∥2

)
+ Ks(ω) ρ2

(
∥ξ − η∥2

L2
∗

)
, (14)

| f (s, x, ξ, ω)|2 ≤ κ(s)∥x∥2 + Ks(ω)
(

1 + ∥ξ∥2
L2
∗

)
(15)

for all ω ∈ Ω, t ≤ s ≤ T, x, y ∈ Rd, and ξ, η ∈ L2,d
∗ (T).

The existence and uniqueness results in [31] are obtained using Bihari’s inequality.
For the sake of simplicity, in this paper, we derive existence of first- and second-order
Fréchet derivatives of Xt,x,ξ and Xt,ξ for coefficients with locally Lipschitz first- and second-
order Fréchet derivatives, respectively. Before studying the Fréchet differentiability, we
establish growth and continuity properties of the solution map under the following as-
sumptions on the coefficients.

Assumption 2. Let b : [0, T]× Ω ×Rd × L2,d
∗ → Rd, h : [0, T]× Ω ×Rd × L2,d

∗ → Rd×n×n,
and g : [0, T] × Ω × Rd × L2,d

∗ → Rd×n be such that the following holds for all components
f = bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d.

1. We have f (·, x, ξ)1[s, T] ∈ M2
∗(0, T) for all x ∈ Rd, ξ ∈ Bd

b(Fs) and 0 ≤ s ≤ T.
2. There exists a q0-integrable α0 : [0, T] → [1, ∞) with q0 ≥ 2 such that

| f(s, ω, x, ξ)− f(s, ω, y, η)| ≤ α0(s)
(
∥x − y∥+ ∥ξ − η∥L2

∗

)
for all x, y ∈ Rd, ξ, η ∈ L2,d

∗ , 0 ≤ s ≤ T and ω ∈ Ω.

For convenience, let us define the set of coefficients

F :=
{

bk, hkij, gki : 1 ≤ k ≤ d, 1 ≤ i, j ≤ n
}

.

Corollary 1. If Assumption 2 is satisfied, then the following holds for all components f =

bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d. There exists an integrable κ : [0, T] → [1, ∞) and a
process K ∈ M1

∗(0, T) such that

| f (s, ω, x, ξ)|2 ≤ κ(s)
(
∥x∥2 + ∥ξ∥2

L2
∗

)
+ Ks(ω)

for all x ∈ Rd, ξ ∈ L2,d
∗ , 0 ≤ s ≤ T and ω ∈ Ω.

Proof. The continuity condition in Assumption 2 implies

| f(s, ω, x, ξ)|2 ≤ 2| f(s, ω, x, ξ)− f(s, ω, 0, 0)|2 + 2| f(s, ω, 0, 0)|2

≤ 4α0(s)
2
(
∥x∥2 + ∥ξ∥2

L2
∗

)
+ 2| f(s, ω, 0, 0)|2

and, clearly, κ := 4α2
0 ≥ 1 is integrable. Finally, Assumption 2 implies that K :=

| f(·, 0, 0)|2 ∈ M1
∗(0, T), where 0 denotes the origin in Rd ⊆ L2,d

∗ (0).
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Thus, we conclude that Assumption 2 is stronger than Assumption 1 and, thus,
Theorem 3.12 in [31] immediately yields the existence of unique solutions.

Proposition 1. If Assumption 2 is satisfied, then the G-SDEs (11), (12) admit unique solutions
Xt,ξ , Xt,x,ξ ∈ H2,d

∗ (t, T).

In particular, we deduce that the solution map

Rd × L2,d
∗ (t) → H2,d

∗ (t, T)× H2,d
∗ (t, T), (x, ξ) 7→ (Xt,x,ξ , Xt,ξ)

is well-defined. Further, Corollary 1 implies that the solution map is of linear growth. More
precisely, we have the following growth properties.

Lemma 1. If Assumption 2 is satisfied, then we have

Ê
[

sup
t≤w≤T

∥∥∥Xt,ξ
w

∥∥∥2
]
≲ 1 + ∥ξ∥2

L2
∗

for all 0 ≤ t ≤ T and ξ ∈ L2,d
∗ (t).

Proof. By Lemma A4 and Corollary 1, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Xt,ξ
w

∥∥∥2
]
≲ ∥ξ∥2

L2
∗
+ ∑

f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,ξ

u , Xt,ξ
u

)∣∣∣2] du

≤ ∥ξ∥2
L2
∗
+

∫ s

t
Ê
[

κ(u)
(∥∥∥Xt,ξ

u

∥∥∥2
+

∥∥∥Xt,ξ
u

∥∥∥2

L2
∗

)
+ Ku

]
du

≲ 1 + ∥ξ∥2
L2
∗
+

∫ s

t
κ(u)Ê

[∥∥∥Xt,ξ
u

∥∥∥2
]

du,

and Grönwall’s inequality yields the desired result.

Lemma 2. If Assumption 2 is satisfied, then there exists a K ∈ M1
∗(0, T) such that

Ê
[

sup
t≤w≤s

∥∥∥Xt,x,ξ
∥∥∥2 ∣∣∣Ft

]
≲

∫ s

t
Ê
[
Ku

∣∣Ft
]

du + ∥x∥2 + ∥ξ∥2
L2
∗

for all 0 ≤ t ≤ s ≤ T, x ∈ Rd and ξ ∈ L2,d
∗ (t).

Proof. By Lemma A4 and Corollary 1, we have

Ê
[

sup
t≤w≤s

∥∥∥Xt,x,ξ
w

∥∥∥2 ∣∣∣Ft

]

≲ ∥x∥2 + ∑
f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)∣∣∣2 ∣∣∣Ft

]
du

≤ ∥x∥2 +
∫ s

t
Ê
[
Ku

∣∣Ft
]

du +
∫ s

t
κ(u)

(
Ê
[∥∥∥Xt,x,ξ

u

∥∥∥2 ∣∣∣Ft

]
+

∥∥∥Xt,ξ
u

∥∥∥2

L2
∗

)
du

≲ ∥x∥2 +
∫ s

t
Ê
[
Ku

∣∣Ft
]

du + ∥ξ∥2
L2
∗
+

∫ s

t
κ(u)Ê

[∥∥∥Xt,x,ξ
u

∥∥∥2 ∣∣∣ Ft

]
du,

where we used Lemma 1 in the last step. Finally, Grönwall’s inequality yields the desired
result.
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Remark 1. By taking the sublinear expectation, Lemma 2 immediately yields

Ê
[

sup
t≤w≤T

∥∥∥Xt,x,ξ
∥∥∥2

]
≲ ∥x∥2 + ∥ξ∥2

L2
∗
,

which is analogous to the result in Lemma 1. Many of the results for Xt,x,ξ are stated in a conditional
form so that we apply them to the concatenation Xt,x,ξ

∣∣
x=ξ

which, as we show in Lemma 6, is

indifferent from Xt,ξ .

Lemma 3. If Assumption 2 is satisfied, then

Ê
[

sup
t≤s≤T

∥∥∥Xt,ξ
s − Xt,η

s

∥∥∥2
]
≲ ∥ξ − η∥2

L2
∗

for all 0 ≤ t ≤ T and ξ, η ∈ L2,d
∗ (t).

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Xt,ξ
w − Xt,η

w

∥∥∥2
]

≲ ∥ξ − η∥2
L2
∗
+ ∑

f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,ξ

u , Xt,ξ
u

)
− f

(
u, Xt,η

u , Xt,η
u

)∣∣∣2] du

≲ ∥ξ − η∥2
L2
∗
+

∫ s

t
α0(u)

2Ê
[

sup
t≤w≤u

∥∥∥Xt,ξ
w − Xt,η

w

∥∥∥2
]

du.

Finally, Grönwall’s inequality yields the desired result.

Lemma 4. Let 1 ≤ p ≤ q0. If Assumption 2 is satisfied, then

Ê
[

sup
t≤s≤T

∥∥∥Xt,x,ξ
s − Xt,y,η

s

∥∥∥p ∣∣∣Ft

]
≲ ∥x − y∥p + ∥ξ − η∥p

L2
∗

for all 0 ≤ t ≤ T, ξ, η ∈ L2,d
∗ (t) and x, y ∈ Rd.

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Xt,x,ξ
w − Xt,y,η

w

∥∥∥p ∣∣∣Ft

]

≲ ∥x − y∥p + ∑
f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
− f

(
u, Xt,y,η

u , Xt,η
u

)∣∣∣p ∣∣∣Ft

]
du

≤ ∥x − y∥p +
∫ s

t
α0(u)

p
(
Ê
[∥∥∥Xt,x,ξ

u − Xt,y,η
u

∥∥∥p ∣∣∣Ft

]
+

∥∥∥Xt,ξ
u − Xt,η

u

∥∥∥p

L2
∗

)
du

≲ ∥x − y∥p + ∥ξ − η∥p
L2
∗
+

∫ s

t
α0(u)

pÊ
[∥∥∥Xt,x,ξ

u − Xt,y,η
u

∥∥∥2 ∣∣∣Ft

]
du,

where the last step follows from Lemma 3. Finally, Grönwall’s inequality yields the desired
result.

For η ∈ L1,d
∗ , we can define the concatenation

Xt,η,ξ : [0, T]× Ω → Rd, (s, ω) 7→ Xt,η,ξ
s (ω) := Xt,x,ξ

s (ω)
∣∣∣
x=η(ω)

.
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Lemma 5. If Assumption 2 is satisfied, then Xt,η,ξ ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T and ξ, η ∈

L2,d
∗ (t).

Proof. Lemma 4 implies
(
Xt,x,ξ − Xt,y,ξ) ∈ H2,d

∗ (0, T) ⊆ M2,d
∗ (0, T) and, thus, we immedi-

ately get Xt,η,ξ ∈ M2,d
∗ (t, T) due to Lemma A.4 in [31].

Moreover, Lemma 2 yields

Ê
[

sup
t≤w≤T

∥∥∥Xt,η,ξ
w

∥∥∥2
]
= Ê

[
Ê
[

sup
t≤w≤T

∥∥∥Xt,x,ξ
w

∥∥∥2 ∣∣∣Ft

]∣∣∣∣
x=η

]
≲ ∥K∥M1

∗
+ ∥η∥2

L2
∗
+ ∥ξ∥2

L2
∗
< ∞.

Lemma 6. If Assumption 2 is satisfied, then∥∥∥Xt,ξ,ξ − Xt,ξ
∥∥∥

H2
∗
= 0

for all 0 ≤ t ≤ T and ξ ∈ L2,d
∗ (t).

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Xt,x,ξ
w − Xt,ξ

w

∥∥∥2 ∣∣∣Ft

]

≲ ∥x − ξ∥2 + ∑
f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
− f

(
u, Xt,ξ

u , Xt,ξ
u

)∣∣∣2 ∣∣∣Ft

]
du

≤ ∥x − ξ∥2 +
∫ s

t
α0(u)

2Ê
[∥∥∥Xt,x,ξ

u − Xt,ξ
w

∥∥∥2 ∣∣∣Ft

]
du

and Grönwall’s inequality yields

Ê
[

sup
t≤w≤T

∥∥∥Xt,x,ξ
w − Xt,ξ

w

∥∥∥2 ∣∣∣Ft

]
≲ ∥x − ξ∥2.

Finally, the aggregation property implies

∥∥∥Xt,ξ,ξ − Xt,ξ
∥∥∥

H2
∗
= Ê

[
Ê
[

sup
t≤w≤T

∥∥∥Xt,x,ξ
w − Xt,ξ

w

∥∥∥2 ∣∣∣Ft

]∣∣∣∣
x=ξ

]
= 0.

4. First-Order Derivatives
In this section, we show that the solution map (x, ξ) 7→ Xt,x,ξ is Fréchet differentiable

for Fréchet differentiable coefficients with Lipschitz and bounded Fréchet derivatives.
More specifically, Propositions 2, 3 and 4 formalize the Fréchet differentiability of ξ 7→ Xt,ξ ,
x 7→ Xt,x,ξ and ξ 7→ Xt,x,ξ respectively. Before we turn to the differentiability results,
let us agree on some definitions and recall the fundamental theorem of calculus; see,
e.g., Theorem 5.1 in [32].

Definition 1. Let V and W be normed real vector spaces with norms ∥·∥V and ∥·∥W , respectively.
A map f : V → W is called Fréchet differentiable if, for every v0 ∈ V, there exists a continuous
linear operator D f (v0) : V → W such that
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lim
∥v∥V→0

∥ f(v0 + v)− f(v0)− D f(v0)v∥W
∥v∥V

= 0,

and the map
D f : V → B(V, W), v 7→ D f (v)

is called the Fréchet derivative of f , where B(V, W) denotes the space of all bounded linear operators
L : V → W.

A Fréchet differentiable map f : V → W is called continuously Fréchet differentiable if the
Fréchet derivative v 7→ D f (v) is continuous with respect to the operator norm. Let C1(V) denote
the space of all continuously Fréchet differentiable maps f : V → R.

In Section 5, we repeatedly use the following version of the fundamental theorem
of calculus.

Lemma 7. Let V and W be normed real vector spaces. If f : V → W is continuously Fréchet
differentiable, then

f(v0 + v)− f(v) =
∫ 1

0
D f(v0 + λv)v dλ

for all v, v0 ∈ V.

Assumption 3. Let b : [0, T]× Ω ×Rd × L2,d
∗ → Rd, h : [0, T]× Ω ×Rd × L2,d

∗ → Rd×n×n,
and g : [0, T] × Ω × Rd × L2,d

∗ → Rd×n be such that the following holds for all components
f = bk, hkij, gki with 1 ≤ i, j ≤ n, 1 ≤ k ≤ d.

1. We have f (s, ω, x, ·) ∈ C1(L2,d
∗ ) and f (s, ω, ·, ξ) ∈ C1(Rd) for all 0 ≤ s ≤ T, ω ∈ Ω,

x ∈ Rd and ξ ∈ L2,d
∗ .

2. There exists a q1-integrable α1 : [0, T] → [1, ∞) with q1 ≥ 2 such that

|Dx f(s, ω, x, ξ)z − Dx f(s, ω, y, η)z| ≤ α1(s)∥z∥
(
∥x − y∥+ ∥ξ − η∥L2

∗

)
,∣∣Dξ f(s, ω, x, ξ)ζ − Dξ f(s, ω, y, η)ζ

∣∣ ≤ α1(s)∥ζ∥L2
∗

(
∥x − y∥+ ∥ξ − η∥L2

∗

)
,∣∣Dξ f(s, ω, x, ξ)η

∣∣ ≤ α1(s)∥η∥L1
∗

for all x, y, z ∈ Rd, ξ, η, ζ ∈ L2,d
∗ , 0 ≤ s ≤ T and ω ∈ Ω, where Dx f(s, ω, x, ξ) and

Dξ f(s, ω, x, ξ) denote the Fréchet derivatives of f with respect to x and ξ, respectively.

Remark 2. Note that Assumption 2 yields bounds for Dx f and Dξ f which are uniform in
(ω, x, ξ) and q0-integrable in s. To be specific, we have the following bounds for all components
f = bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d,

|Dx f(s, ω, x, ξ)y| ≤ α0(s)∥y∥,
∣∣Dξ f(s, ω, x, ξ)η

∣∣ ≤ α0(s)∥η∥L2
∗

(16)

for all x, y ∈ Rd, ξ, η ∈ L2,d
∗ , 0 ≤ s ≤ T and ω ∈ Ω.

Moreover, Assumption 3 implies that the Fréchet derivatives of the coefficients are in
M2

∗(0, T). More precisely, we have the following results.

Lemma 8. If Assumptions 2 and 3 are satisfied, then the following holds for all components
f = bk, hkij, gki with 1 ≤ i, j ≤ n, 1 ≤ k ≤ d. The map

H2,d
∗ (0, T)× H2,d

∗ (0, T) → M1
∗(0, T), (X, Y) 7→ f(·, X, Y)
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is Fréchet differentiable in each argument with Fréchet derivatives Dx f(·, X, Y) and Dξ f(·, X, Y)
at (X, Y), respectively.

Proof. Assumption 2 implies that f (·, X, Y) ∈ M1
∗(0, T) for all X, Y ∈ H2,d

∗ (0, T); see
Corollary 3.4 in [31]. Thus, the map (X, Y) 7→ f (·, X, Y) is well-defined.

Let X, Y, Z ∈ H2,d
∗ (0, T). Since f (s, ω, ·, ξ) ∈ C1(Rd) for all 0 ≤ s ≤ T, ω ∈ Ω and

ξ ∈ L2,d
∗ , we have

∥ f(·, X + Z, Y)− f(·, X, Y)− Dx f(·, X, Y)Z∥M1
∗

=
∫ T

0
Ê[| f(s, Xs + Zs, Ys)− f(s, Xs, Ys)− Dx f(s, Xs, Ys)Zs|] ds

≤
∫ T

0
Ê
[∫ 1

0
|Dx f(s, Xs + λZs, Ys)Zs − Dx f(s, Xs, Ys)Zs| dλ

]
ds

≤
∫ T

0
α1(s)Ê

[
∥Zs∥2

]
ds

≤ ∥Z∥2
H2

∗

∫ T

0
α1(s) ds.

Analogously, since f (s, ω, x, ·) ∈ C1(L2,d
∗ ) for all 0 ≤ s ≤ T, ω ∈ Ω and x ∈ Rd, we have∥∥ f(·, X, Y + Z)− f(·, X, Y)− Dξ f(·, X, Y)Z

∥∥
M1

∗

=
∫ T

0
Ê
[∣∣ f(s, Xs, Ys + Zs)− f(s, Xs, Ys)− Dξ f(s, Xs, Ys)Zs

∣∣] ds

≤
∫ T

0
Ê
[∫ 1

0

∣∣Dξ f(s, Xs, Ys + λZs)Zs − Dξ f(s, Xs, Ys)Zs
∣∣ dλ

]
ds

≤
∫ T

0
α1(s)∥Zs∥2

L2
∗

ds

≤ ∥Z∥2
H2

∗

∫ T

0
α1(s) ds.

The integrability of α1 implies

lim
∥Z∥H2∗

→0

∥ f(·, X + Z, Y)− f(·, X, Y)− Dx f(·, X, Y)Z∥M1
∗

∥Z∥H2
∗

= 0,

lim
∥Z∥H2∗

→0

∥∥ f(·, X, Y + Z)− f(·, X, Y)− Dξ f(·, X, Y)Z
∥∥

M1
∗

∥Z∥H2
∗

= 0.

That is, the map (X, Y) 7→ f (·, X, Y) is Fréchet differentiable in each argument.

Lemma 9. If Assumptions 2 and 3 are satisfied, then Dx f(·, X, Y)Z, Dξ f(·, X, Y)Z ∈ M2
∗(0, T)

for all components f = bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d and X, Y, Z ∈ H2,d
∗ (0, T).

Proof. Lemma 8 implies Dx f(·, X, Y)Z, Dξ f(·, X, Y)Z ∈ M1
∗(0, T) for all X, Y, Z ∈

H2,d
∗ (0, T). Moreover, the bound in (16) yields

∫ T

0
Ê
[
|Dx f(s, Xs, Ys)Zs|2

]
ds ≤

∫ T

0
α0(s)

2Ê
[
∥Zs∥2

]
ds ≲ ∥Z∥2

H2
∗
< ∞

and ∫ T

0
Ê
[∣∣Dξ f(s, Xs, Ys)Zs

∣∣2] ds ≤
∫ T

0
α0(s)

2∥Zs∥2
L2
∗

ds ≲ ∥Z∥2
H2

∗
< ∞
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since α0 is square-integrable and Z ∈ H2,d
∗ (0, T). Hence, Dx f(·, X, Y)Z, Dξ f(·, X, Y)Z ∈

M2
∗(0, T) for all X, Y, Z ∈ H2,d

∗ (0, T).

Lemma 10. If Assumptions 2 and 3 are satisfied, then the G-SDE

dAt,x,ξ,y
s = Dxb

(
s, Xt,x,ξ

s , Xt,ξ
s

)
At,x,ξ,y

s ds + Dxh
(

s, Xt,x,ξ
s , Xt,ξ

s

)
At,x,ξ,y

s d⟨B⟩s

+ Dxg
(

s, Xt,x,ξ
s , Xt,ξ

s

)
At,x,ξ,y

s dBs, t ≤ s ≤ T,

At,x,ξ,y
t = y. (17)

admits a unique solution At,x,ξ,y ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T, x, y ∈ Rd and ξ ∈ L2,d

∗ (t).
Moreover, the map

Rd → H2,d
∗ (t, T), y 7→ At,x,ξ,y

is linear.

Proof. By Lemma 9, the coefficients in (17) are in M2
∗(0, T). Moreover, they are Lipschitz

continuous and, thus, (17) admits a unique solution At,x,ξ,y ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T,

x, y ∈ Rd and ξ ∈ L2,d
∗ (t). In particular, we deduce that the map y 7→ At,x,ξ,y is well-defined.

Let λ ∈ R. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥At,x,ξ,y+λz
w − At,x,ξ,y

w − λAt,x,ξ,z
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
At,x,ξ,y+λz

u − At,x,ξ,y
u − λAt,x,ξ,z

u

)∣∣∣2] du

≤
∫ s

t
α0(u)

2Ê
[

sup
t≤w≤u

∥∥∥At,x,ξ,y+λz
w − At,x,ξ,y

w − λAt,x,ξ,z
w

∥∥∥2
]

du.

Finally, Grönwall’s inequality yields∥∥∥At,x,ξ,y+λz
u − At,x,ξ,y

u − λAt,x,ξ,z
u

∥∥∥
H2

∗
= 0.

Since λ ∈ R and y, z ∈ Rd were arbitrary, we deduce that y 7→ At,x,ξ,y is linear.

Lemma 11. Let 2 ≤ p ≤ q0. If Assumptions 2 and 3 are satisfied, then

Ê
[

sup
t≤s≤T

∥∥∥At,x,ξ,y
s

∥∥∥p ∣∣∣Ft

]
≲ ∥y∥p

for all 0 ≤ t ≤ T, x, y ∈ Rd and ξ ∈ L2,d
∗ (t).

Proof. By Lemma A4, we have for all t ≤ s ≤ T that

Ê
[

sup
t≤w≤s

∥∥∥At,x,ξ,y
w y

∥∥∥p ∣∣∣Ft

]

≲ ∥y∥p + ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
At,x,ξ,y

u

∣∣∣p ∣∣∣Ft

]
du

≲ ∥y∥p +
∫ s

t
α0(u)

pÊ
[

sup
t≤w≤u

∥∥∥At,x,ξ,y
w

∥∥∥p ∣∣∣Ft

]
du.

Grönwall’s inequality yields the desired result.
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Proposition 2. Let 0 ≤ t ≤ T and ξ ∈ L2,d
∗ (t). If Assumptions 2 and 3 are satisfied, then the map

Rd → H2,d
∗ (t, T), x 7→ Xt,x,ξ

is Fréchet differentiable with Fréchet derivative

DxXt,x,ξ : Rd → H2,d
∗ (t, T), y 7→ DxXt,x,ξ y := At,x,ξ,y

at x ∈ Rd.

Proof. By Lemma 10, the map DxXt,x,ξ : y 7→ At,x,ξ,y is linear. Set Y := Xt,x+y,ξ − Xt,x,ξ ,
then

Ê
[

sup
t≤s≤T

∥Ys∥4

]
= Ê

[
sup

t≤s≤T

∥∥∥Xt,x+y,ξ
s − Xt,x,ξ

s

∥∥∥4
]
≲ ∥y∥4 (18)

due to Lemma 4. By Lemma A4, we have for all t ≤ s ≤ T that

Ê
[

sup
t≤w≤s

∥∥∥Xt,x+y,ξ
w − Xt,x,ξ

w − Ay
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣ f

(
u, Xt,x+y,ξ

u , Xt,ξ
u

)
− f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
− Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
At,x,ξ,y

u

∣∣∣2] du

= ∑
f∈F

∫ s

t
Ê
[∣∣∣∣∫ 1

0
Dx f

(
u, Xt,x,ξ

u + λYu, Xt,ξ
u

)
Yu dλ − Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
At,x,ξ,y

u

∣∣∣∣2
]

du

≲ ∑
f∈F

∫ s

t

∫ 1

0
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u + λYu, Xt,ξ
u

)
Yu − Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Yu

∣∣∣2] dλ du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Yu − At,x,ξ,y

u

)∣∣∣2] du

≤
∫ s

t
α1(u)

2Ê
[
∥Yu∥4

]
+ α0(u)

2Ê
[∥∥∥Yu − At,x,ξ,y

u

∥∥∥2
]

du

≲ ∥y∥4 +
∫ s

t
α0(u)

2Ê
[

sup
t≤w≤u

∥∥∥Xt,x+y,ξ
w − Xt,x,ξ

w − At,x,ξ,y
w

∥∥∥2
]

du,

where the last step follows from (18). Finally, Grönwall’s inequality yields∥∥∥Xt,x+y,ξ − Xt,x,ξ − At,x,ξ,y
∥∥∥2

H2
∗
≲ ∥y∥4.

Thus,

lim
∥y∥→0

∥∥Xt,x+y,ξ − Xt,x,ξ − At,x,ξ,y
∥∥

H2
∗

∥y∥ = 0,

i.e., DxXt,x,ξ : y 7→ At,x,ξ,y is the Fréchet derivative of x 7→ Xt,x,ξ at x ∈ Rd.

Next, we show that the map x 7→ Xt,x,ξ is continuously Fréchet differentiable.

Lemma 12. Let 2 ≤ p ≤
(
q1 ∧ q0

2
)
. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤s≤T

∥∥∥DxXt,x,ξ
s z − DxXt,y,η

s z
∥∥∥p ∣∣∣Ft

]
≲ ∥z∥p

(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
for all 0 ≤ t ≤ T, x, y, z ∈ Rd and ξ, η ∈ L2,d

∗ (t).
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Proof. By Lemma A4, we have for all t ≤ s ≤ T that

Ê
[

sup
t≤w≤s

∥∥∥DxXt,x,ξ
w z − DxXt,y,η

w z
∥∥∥p ∣∣∣Ft

]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
DxXt,x,ξ

u z − Dx f
(

u, Xt,y,η
u , Xt,η

u

)
DxXt,y,η

u z
∣∣∣p ∣∣∣Ft

]
du

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
)

DxXt,x,ξ
u z − Dx f

(
u, Xt,y,η

u , Xt,η
)

DxXt,x,ξ
u z

∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,y,η

u , Xt,η
)(

DxXt,x,ξ
u z − DxXt,y,η

u z
)∣∣∣p ∣∣∣Ft

]
du

≤
∫ s

t
α1(u)

pÊ
[∥∥∥DxXt,x,ξ

u z
∥∥∥p∥∥∥Xt,x,ξ

u − Xt,y,η
u

∥∥∥p ∣∣∣Ft

]
du

≤
∫ s

t
α1(u)

pÊ
[∥∥∥DxXt,x,ξ

u z
∥∥∥2p ∣∣∣Ft

] 1
2
Ê
[∥∥∥Xt,x,ξ

u − Xt,y,η
u

∥∥∥2p ∣∣∣Ft

] 1
2

du

+
∫ s

t
α1(u)

p
∥∥∥Xt,ξ

u − Xt,η
u

∥∥∥p

L2
∗
Ê
[∥∥∥DxXt,x,ξ

u z
∥∥∥p ∣∣∣Ft

]
du

+
∫ s

t
α0(u)

pÊ
[∥∥∥DxXt,x,ξ

u z − DxXt,y,η
u z

∥∥∥p ∣∣∣Ft

]
du

≲ ∥z∥p
(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
+

∫ s

t
α0(u)

pÊ
[∥∥∥DxXt,x,ξ

u z − DxXt,y,η
u z

∥∥∥p ∣∣∣Ft

]
du,

where the last step follows from Lemmas 3, 4 and 11. Finally, Grönwall’s inequality yields
the desired result.

Corollary 2. Let 0 ≤ t ≤ T, ξ ∈ L2,d
∗ (t). If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

the map
Rd → H2,d

∗ (t, T), x 7→ Xt,x,ξ

is continuously Fréchet differentiable.

Proof. Lemma 12 implies that

sup
0 ̸=z∈Rd

∥∥DxXt,x,ξz − DxXt,y,ξ z
∥∥

H2
∗

∥z∥ ≲ ∥x − y∥,

i.e., x 7→ DxXt,x,ξ is continuous with respect to the operator norm.

Lemma 13. Let 0 ≤ t ≤ T and ξ, η, ζ ∈ L2
∗(t). If Assumptions 2 and 3 are satisfied with q0 ≥ 4,

then DxXt,η,ξζ ∈ H2,d
∗ (t, T) with

Ê
[

sup
t≤w≤T

∥∥∥DxXt,η,ξ
w ζ

∥∥∥2
]
≲ ∥ζ∥2

L2
∗
,

where DxXt,η,ξ ζ denotes the map

[0, T]× Ω → Rd, (s, ω) 7→ DxXt,η,ξ
s ζ(ω) := At,x,ξ,y

s (ω)
∣∣∣
x=η(ω),y=ζ(ω)

.
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Proof. We have Xt,η,ξ ∈ H2,d
∗ (t, T) due to Corollary 5. Moreover, the G-SDE

dYs = Dxb
(

s, Xt,η,ξ
s , Xt,ξ

s

)
Ys ds + Dxh

(
s, Xt,η,ξ

s , Xt,ξ
s

)
Ys d⟨B⟩s

+ Dxg
(

s, Xt,η,ξ
s , Xt,ξ

s

)
Ys dBs, t ≤ s ≤ T,

Yt = ζ.

has a unique solution Y ∈ H2,d
∗ (t, T) since the coefficients are Lipschitz continuous and in

M2
∗(0, T).

By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥At,x,ξ,y
w − Yw

∥∥∥2 ∣∣∣Ft

]

≲ ∥y − ζ∥2 + ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
At,x,ξ,y

u − Dx f
(

u, Xt,η,ξ
u , Xt,ξ

u

)
Yu

∣∣∣2 ∣∣∣Ft

]
du

≲ ∥y − ζ∥2 +
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,x,ξ

u − Xt,η,ξ
u

∥∥∥2∥∥∥At,x,ξ,y
u

∥∥∥2 ∣∣∣Ft

]
du

+
∫ s

t
α0(u)

2Ê
[∥∥∥At,x,ξ,y

u − Yu

∥∥∥2 ∣∣∣Ft

]
du

≤ ∥y − ζ∥2 +
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,x,ξ

u − Xt,z,ξ
u

∥∥∥4 ∣∣∣Ft

] 1
2 ∣∣∣

z=η
Ê
[∥∥∥At,x,ξ,y

u

∥∥∥4 ∣∣∣Ft

] 1
2

du

+
∫ s

t
α0(u)

2Ê
[∥∥∥At,x,ξ,y

u − Yu

∥∥∥2 ∣∣∣Ft

]
du

≲ ∥y − ζ∥2 + ∥x − η∥2∥y∥2 +
∫ s

t
α0(u)

2Ê
[

sup
t≤w≤u

∥∥∥At,x,ξ,y
w − Yw

∥∥∥2 ∣∣∣Ft

]
du

due to Lemmas 4 and 11. Grönwall’s inequality implies

Ê
[

sup
t≤w≤T

∥∥∥At,x,ξ,y
w − Yw

∥∥∥2 ∣∣∣Ft

]
≲ ∥y − ζ∥2 + ∥x − η∥2∥y∥2

and, thus,

∥∥∥DxXt,η,ξζ − Y
∥∥∥2

H2
∗
= Ê

[
Ê
[

sup
t≤w≤T

∥∥∥At,x,ξ,y
w − Yw

∥∥∥2 ∣∣∣Ft

]∣∣∣∣
x=η, y=ζ

]
= 0.

That is, DxXt,η,ξζ = Y ∈ H2,d
∗ (t, T). Finally, we have

Ê
[

sup
t≤w≤T

∥∥∥DxXt,η,ξζ
∥∥∥2

]
= Ê

[
Ê
[

sup
t≤w≤T

∥∥∥DxXt,x,ξz
∥∥∥2 ∣∣∣Ft

]∣∣∣∣
x=η, z=ζ

]
≲ Ê

[
∥ζ∥2

]
due to Lemma 11.

Corollary 3. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥DxXt,η,ξ
w ζ − DxXt,ν,χ

w ζ
∥∥∥] ≲ ∥ζ∥L2

∗

(
∥η − ν∥L2

∗
+ ∥ξ − χ∥L2

∗

)
for all 0 ≤ t ≤ T and ξ, η, ζ, ν, χ ∈ L2,d

∗ (t).
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Proof. Lemma 13 together with the aggregation property yield

Ê
[

sup
t≤w≤T

∥∥∥DxXt,η,ξ
w ζ − DxXt,ν,χ

w ζ
∥∥∥]

≤ Ê

Ê[ sup
t≤w≤T

∥∥∥DxXt,x,ξ
w z − DxXt,y,χ

w z
∥∥∥2 ∣∣∣Ft

] 1
2 ∣∣∣∣

x=η, y=ν, z=ζ


≲ Ê

[
∥ζ∥

(
∥η − ν∥+ ∥ξ − χ∥L2

∗

)]
≲ ∥ζ∥L2

∗

(
∥η − ν∥L2

∗
+ ∥ξ − χ∥L2

∗

)
.

Lemma 14. Let 0 ≤ t ≤ T and ξ ∈ L2
∗(t). If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

lim
∥η∥L2∗

→0

∥∥Xt,ξ+η,ξ+η − Xt,ξ,ξ+η − DxXt,ξ,ξ η
∥∥

H1
∗

∥η∥L2
∗

= 0,

where the limit is taken over η ∈ L2,d
∗ (t).

Proof. Due to Corollary 2, the map x 7→ Xt,x,ξ+η is continuously differentiable. In particu-
lar, we have

Xt,x+y,ξ+η
s − Xt,x,ξ+η

s =
∫ 1

0
DxXt,x+λy,ξ+η

s η dλ

q.s. for all t ≤ s ≤ T. Thus, Corollary 3 yields

Ê
[

sup
t≤s≤T

∥∥∥Xt,ξ+η,ξ+η
s − Xt,ξ,ξ+η

s − DxXt,ξ,ξ
s η

∥∥∥]

≤
∫ 1

0
Ê
[

sup
t≤s≤T

∥∥∥DxXt,ξ+λη,ξ+η
s η − DxXt,ξ,ξ

s η
∥∥∥] dλ

≲ ∥η∥2
L2
∗
,

which implies the desired result.

Lemma 15. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then the G-SDEs

dYt,ξ,η
s =

[
Dxb

(
s, Xt,ξ

s , Xt,ξ
s

)
Yt,ξ,η

s + Dξ b
(

s, Xt,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
ds

+
[

Dxh
(

s, Xt,ξ
s , Xt,ξ

s

)
Yt,ξ,η

s + Dξ h
(

s, Xt,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
d⟨B⟩s

+
[

Dxg
(

s, Xt,ξ
s , Xt,ξ

s

)
Yt,ξ,η

s + Dξ g
(

s, Xt,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
dBs,

t ≤ s ≤ T,

Yt,ξ,η
t = η, (19)
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dYt,x,ξ,η
s =

[
Dxb

(
s, Xt,x,ξ

s , Xt,ξ
s

)
Yt,x,ξ,η

s + Dξ b
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
ds

+
[

Dxh
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Yt,x,ξ,η

s + Dξ h
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
d⟨B⟩s

+
[

Dxg
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Yt,x,ξ,η

s + Dξ g
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,ξ,ξ

s η + Yt,ξ,η
s

)]
dBs,

t ≤ s ≤ T,

Yx
t = η (20)

admit unique solutions Yt,ξ,η , Yt,x,ξ,η ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T, x ∈ Rd and ξ, η ∈ L2,d

∗ (t).
Moreover, the map

L2,d
∗ (t) → H2,d

∗ (t, T), η 7→ Yt,x,ξ,η

is linear.

Proof. We have DxXt,ξ,ξ η ∈ H2,d
∗ (t, T) due to Lemma 13. Thus, Lemma 8 implies that

the coefficients in (19) are in M2
∗(0, T). Since they are Lipschitz continuous, (19) admits a

unique solution Yt,ξ,η ∈ H2,d
∗ (t, T).

Similarly, since Yt,ξ,η ∈ H2,d
∗ (t, T), the coefficients in (20) are in M2

∗(0, T) and Lipschitz
continuous and, thus, (20) admits a unique solution Yt,x,ξ,η ∈ H2,d

∗ (t, T).
Let η, ζ ∈ L2,d

∗ (t) and λ ∈ R. Lemma A4 yields for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Yt,x,ξ,η+λζ
w − Yt,x,ξ,η

w − λYt,x,ξ,ζ
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Yt,x,ξ,η+λζ

u − Yt,x,ξ,η
u − λYt,x,ξ,ζ

u

)∣∣∣2] du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Yt,x,ξ,η+λζ

u − Yt,x,ξ,η
u − λYt,x,ξ,ζ

u

)∣∣∣2] du

≲
∫ s

t
α0(u)

2Ê
[∥∥∥Yt,x,ξ,η+λζ

u − Yt,x,ξ,η
u − λYt,x,ξ,ζ

u

∥∥∥2
]

du,

and Grönwall’s inequality yields
∥∥Yt,x,ξ,η+λζ − Yt,x,ξ,η − λYt,x,ξ,ζ

∥∥
H2

∗
= 0.

Lemma 16. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥Yt,ξ,η
w

∥∥∥2
]
≲ ∥η∥2

L2
∗

for all 0 ≤ t ≤ T and ξ, η ∈ L2,d
∗ (t).

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,η
w

∥∥∥2
]

≲ ∥η∥2
L2
∗
+ ∑

f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,ξ

u , Xt,ξ
u

)
Yt,ξ,η

u

∣∣∣2] du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,ξ

u , Xt,ξ
u

)(
DxXt,ξ,ξ

u η + Yt,ξ,η
u

)∣∣∣2] du

≲ ∥η∥2
L2
∗
+

∫ s

t
α0(u)

2
(
Ê
[∥∥∥Yt,ξ,η

u

∥∥∥2
]
+

∥∥∥DxXt,ξ,ξ
u η

∥∥∥2

L2
∗

)
du

≲ ∥η∥2
L2
∗
+

∫ s

t
α0(u)

2Ê
[∥∥∥Yt,ξ,η

u

∥∥∥2
]

du
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due to Lemma 13. Finally, Grönwall’s inequality yields the desired result.

Lemma 17. Let 2 ≤ p ≤ q0. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥Yt,ξ,η
w

∥∥∥p ∣∣∣Ft

]
≲ ∥η∥p + ∥η∥p

L2
∗
,

Ê
[

sup
t≤w≤T

∥∥∥Yt,x,ξ,η
w

∥∥∥p ∣∣∣Ft

]
≲ ∥η∥p + ∥η∥p

L2
∗

for all 0 ≤ t ≤ T, x ∈ Rd and ξ, η ∈ L2,d
∗ (t).

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,η
w

∥∥∥p ∣∣∣Ft

]

≲ ∥η∥p + ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,ξ

u , Xt,ξ
u

)
Yt,ξ,η

u

∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,ξ

u , Xt,ξ
u

)(
DxXt,ξ,ξ

u η + Yt,ξ,η
u

)∣∣∣p ∣∣∣Ft

]
du

≲ ∥η∥p +
∫ s

t
α0(u)

p
(
Ê
[∥∥∥Yt,ξ,η

u

∥∥∥p ∣∣∣Ft

]
+

∥∥∥DxXt,ξ,ξ
u η

∥∥∥p

L2
∗
+

∥∥∥Yt,ξ,η
u

∥∥∥p

L2
∗

)
du

≲ ∥η∥p + ∥η∥p
L2
∗
+

∫ s

t
α0(u)

pÊ
[∥∥∥Yt,ξ,η

u

∥∥∥p ∣∣∣Ft

]
du,

and Grönwall’s inequality yields the desired result for Yt,ξ,η .
Analogously, we have for Yt,x,ξ,η that

Ê
[

sup
t≤w≤s

∥∥∥Yt,x,ξ,η
w

∥∥∥p ∣∣∣Ft

]

≲ ∥η∥p + ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Yt,x,ξ,η

u

∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
DxXt,ξ,ξ

u η + Yt,ξ,η
u

)∣∣∣p ∣∣∣Ft

]
du

≲ ∥η∥p +
∫ s

t
α0(u)

p
(
Ê
[∥∥∥Yt,x,ξ,η

u

∥∥∥p ∣∣∣Ft

]
+

∥∥∥DxXt,ξ,ξ
u η

∥∥∥p

L2
∗
+

∥∥∥Yt,ξ,η
u

∥∥∥p

L2
∗

)
du

≲ ∥η∥p + ∥η∥p
L2
∗
+

∫ s

t
α0(u)

pÊ
[∥∥∥Yt,x,ξ,η

u

∥∥∥p ∣∣∣Ft

]
du,

and Grönwall’s inequality yields the desired result for Yt,x,ξ,η .

Lemma 18. Let 0 ≤ t ≤ T and ξ, η ∈ L2,d
∗ (t). If Assumptions 2 and 3 are satisfied with q0 ≥ 4,

then ∥∥∥Yt,ξ,η − Yt,ξ,ξ,η
∥∥∥

H2
∗
= 0,

where Yt,ξ,ξ,η denotes the map

[0, T]× Ω → Rd, (s, ω) 7→ Yt,ξ,ξ,η
s (ω) := Yt,x,ξ,η

s (ω)|x=ξ(ω).
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Proof. Set Z := DxXt,ξ,ξ η + Yt,ξ,η , then ∥Z∥H2
∗
≲ ∥η∥L2

∗
due to Lemmas 13 and 16. By

Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,η
w − Yt,x,ξ,η

w

∥∥∥2 ∣∣∣Ft

]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,ξ

u , Xt,ξ
u

)
Yt,ξ,η

u − Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Yt,ξ,η

u

∣∣∣2 ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Yt,ξ,η

u − Yt,x,ξ,η
u

)∣∣∣2 ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,ξ

u , Xt,ξ
u

)
Zu − Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Zu

∣∣∣2 ∣∣∣Ft

]
du

≲
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ

u − Xt,x,ξ
u

∥∥∥2∥∥∥Yt,ξ,η
u

∥∥∥2 ∣∣∣Ft

]
+ α0(u)

2Ê
[∥∥∥Yt,ξ,η

u − Yt,x,ξ,η
u

∥∥∥2 ∣∣∣Ft

]
du

+
∫ s

t
α1(u)

2∥Zu∥2
L2
∗
Ê
[∥∥∥Xt,ξ

u − Xt,x,ξ
u

∥∥∥2 ∣∣∣Ft

]
du

≤
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,y,ξ

u − Xt,x,ξ
u

∥∥∥4 ∣∣∣Ft

] 1
2 ∣∣∣

y=ξ
Ê
[∥∥∥Yt,ξ,η

u

∥∥∥4 ∣∣∣Ft

] 1
2

du

+
∫ s

t
α0(u)

2Ê
[∥∥∥Yt,ξ,η

u − Yt,x,ξ,η
u

∥∥∥2 ∣∣∣Ft

]
du

+
∫ s

t
α1(u)

2∥Zu∥2
L2
∗
Ê
[∥∥∥Xt,y,ξ

u − Xt,x,ξ
u

∥∥∥2 ∣∣∣Ft

]∣∣∣
y=ξ

du

≲ ∥ξ − x∥2
(
∥ζ∥2 + ∥ζ∥2

L2
∗

)
+

∫ s

t
α0(u)

2Ê
[∥∥∥Yt,ξ,η

u − Yt,x,ξ,η
u

∥∥∥2 ∣∣∣Ft

]
du.

Grönwall’s inequality yields

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,η
w − Yt,x,ξ,η

w

∥∥∥2 ∣∣∣Ft

]
≲ ∥ξ − x∥2

(
∥ζ∥2 + ∥ζ∥2

L2
∗

)
and, thus, the aggregation property implies

∥∥∥Yt,ξ,η − Yt,ξ,ξ,η
∥∥∥2

H2
∗
= Ê

[
Ê
[

sup
t≤w≤T

∥∥∥Yt,ξ,η
w − Yt,x,ξ,η

w

∥∥∥2 ∣∣∣Ft

]∣∣∣∣
x=ξ

]
= 0.

Lemma 19. Let 2 ≤ p ≤
(
q1 ∧ q0

2
)
. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥Yt,x,ξ,ζ
w − Yt,y,η,ζ

w

∥∥∥p ∣∣∣Ft

]
≲ ∥ζ∥p

L2
∗

(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
for all 0 ≤ t ≤ T, x, y ∈ Rd and ξ, η, ζ ∈ L2,d

∗ (t).

Proof. Set Zξ := DxXt,ξ,ξ ζ + Yt,ξ,ζ and Zη := DxXt,η,ηζ + Yt,η,ζ , then∥∥∥Zξ
∥∥∥

H2
∗
+ ∥Zη∥H2

∗
≲ ∥ζ∥L2

∗
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due to Lemmas 13 and 16. Moreover,∥∥∥Zξ
s − Zη

s

∥∥∥
L1
∗
≤

∥∥∥DxXt,ξ,ξ
s ζ − DxXt,η,η

s ζ
∥∥∥

L1
∗
+

∥∥∥Yt,ξ,ζ
s − Yt,η,ζ

s

∥∥∥
L1
∗

≲ ∥ζ∥L2
∗
∥ξ − η∥L2

∗
+

∥∥∥Yt,ξ,ζ
s − Yt,η,ζ

s

∥∥∥
L1
∗

(21)

for all t ≤ s ≤ T due to Corollary 3.
By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Yt,x,ξ,ζ
w − Yt,y,η,ζ

w

∥∥∥p ∣∣∣Ft

]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Yt,x,ξ,ζ

u − Dx f
(

u, Xt,y,η
u , Xt,η

u

)
Yt,x,ξ,ζ

u

∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,y,η

u , Xt,η
u

)(
Yt,x,ξ,ζ

u − Yt,y,η,ζ
u

)∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Zξ

u − Dξ f
(

u, Xt,y,η
u , Xt,η

u

)
Zξ

u

∣∣∣p ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,y,η

u , Xt,η
u

)(
Zξ

u − Zη
u

)∣∣∣p ∣∣∣Ft

]
du

≲
∫ s

t
α1(u)

pÊ
[∥∥∥Yt,x,ξ,ζ

u

∥∥∥p∥∥∥Xt,x,ξ
u − Xt,y,η

u

∥∥∥p ∣∣∣Ft

]
du

+
∫ s

t
α1(u)

p
∥∥∥Xt,ξ

u − Xt,η
u

∥∥∥p

L2
∗
Ê
[∥∥∥Yt,x,ξ,ζ

u

∥∥∥p ∣∣∣Ft

]
du

+
∫ s

t
α0(u)

pÊ
[∥∥∥Yt,x,ξ,ζ

u − Yt,y,η,ζ
u

∥∥∥p ∣∣∣Ft

]
du

+
∫ s

t
α1(u)

p
∥∥∥Zξ

u

∥∥∥p

L2
∗

(
Ê
[∥∥∥Xt,x,ξ

u − Xt,y,η
u

∥∥∥p ∣∣∣Ft

]
+

∥∥∥Xt,ξ
u − Xt,η

u

∥∥∥p

L2
∗

)
du

+
∫ s

t
α1(u)

p
∥∥∥Zξ

u − Zη
u

∥∥∥p

L1
∗

du

≲
∫ s

t
α1(u)

p
(
∥ζ∥p + ∥ζ∥p

L2
∗

)(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
du

+
∫ s

t
α1(u)

p∥ξ − η∥p
L2
∗

(
∥ζ∥p + ∥ζ∥p

L2
∗

)
du

+
∫ s

t
α0(u)

pÊ
[∥∥∥Yt,x,ξ,ζ

u − Yt,y,η,ζ
u

∥∥∥p ∣∣∣Ft

]
du

+
∫ s

t
α1(u)

p∥ζ∥p
L2
∗

(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
du

+
∫ s

t
α1(u)

p∥ζ∥p
L2
∗
∥ξ − η∥p

L2
∗
+ α1(u)

p
∥∥∥Yt,ξ,ζ

u − Yt,η,ζ
u

∥∥∥p

L1
∗

du

≲
(
∥ζ∥p + ∥ζ∥p

L2
∗

)(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
+

∫ s

t
α1(u)

p
∥∥∥Yt,ξ,ζ

u − Yt,η,ζ
u

∥∥∥p

L1
∗

du

+
∫ s

t
α0(u)

pÊ
[∥∥∥Yt,x,ξ,ζ

u − Yt,y,η,ζ
u

∥∥∥p ∣∣∣Ft

]
du

due to (21) and Lemmas 4 and 17. Further, Grönwall’s inequality implies that

Ê
[

sup
t≤w≤s

∥∥∥Yt,x,ξ,ζ
w − Yt,y,η,ζ

w

∥∥∥p ∣∣∣Ft

]

≲
(
∥ζ∥p + ∥ζ∥p

L2
∗

)(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
+

∫ s

t
α1(u)

p
∥∥∥Yt,ξ,ζ

u − Yt,η,ζ
u

∥∥∥p

L1
∗

du (22)
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for all t ≤ s ≤ T. From Lemma 18 and (22) we obtain

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,ζ
w − Yt,η,ζ

w

∥∥∥]2

≤ Ê

Ê[ sup
t≤w≤s

∥∥∥Yt,x,ξ,ζ
w − Yt,y,η,ζ

w

∥∥∥2 ∣∣∣Ft

] 1
2 ∣∣∣∣

x=ξ, y=η

2

≲ Ê
[(

∥ζ∥+ ∥ζ∥L2
∗

)(
∥ξ − η∥+ ∥ξ − η∥L2

∗

)]2
+

∫ s

t
α1(u)

2
∥∥∥Yt,ξ,ζ

u − Yt,η,ζ
u

∥∥∥2

L1
∗

du

≲ ∥ζ∥2
L2
∗
∥ξ − η∥2

L2
∗
+

∫ s

t
α1(u)

2
∥∥∥Yt,ξ,ζ

u − Yt,η,ζ
u

∥∥∥2

L1
∗

du,

and Grönwall’s inequality yields

Ê
[

sup
t≤w≤s

∥∥∥Yt,ξ,ζ
w − Yt,η,ζ

w

∥∥∥] ≲ ∥ζ∥L2
∗
∥ξ − η∥L2

∗
.

Hence, (22) becomes

Ê
[

sup
t≤w≤T

∥∥∥Yt,x,ξ,ζ
w − Yt,y,η,ζ

w

∥∥∥p ∣∣∣Ft

]
≲

(
∥ζ∥p + ∥ζ∥p

L2
∗

)(
∥x − y∥p + ∥ξ − η∥p

L2
∗

)
.

We immediately obtain the following corollary.

Corollary 4. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥Yt,ξ,ζ
w − Yt,η,ζ

w

∥∥∥] ≲ ∥ζ∥L2
∗
∥ξ − η∥L2

∗

for all 0 ≤ t ≤ T and ξ, η, ζ ∈ L2,d
∗ (t).

Lemma 20. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤s

∥∥∥Xt,x,ξ+η
w − Xt,x,ξ

w − Yt,x,ξ,η
w

∥∥∥2 ∣∣∣Ft

]

≲ ∥η∥4
L2
∗
+

∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ+η

u − Xt,ξ
u − DxXt,ξ,ξ

u η − Yt,ξ,η
u

∥∥∥]2
du

for all 0 ≤ t ≤ s ≤ T, x ∈ Rd and ξ, η ∈ L2,d
∗ (t).

Proof. Set

∆ξ := Xt,x,ξ+η − Xt,x,ξ , Y := Yt,x,ξ,η ,

∆ := Xt,ξ+η − Xt,ξ , Z := DxXt,ξ,ξ η + Yt,ξ,η .

Lemmas 13 and 17 yield
∥Z∥H2

∗
+ ∥Y∥H2

∗
≲ ∥η∥L2

∗
. (23)
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Moreover, Lemma 2 implies

∥∆∥H2
∗
≲ ∥η∥L2

∗
, Ê

[
sup

t≤w≤T

∥∥∥∆ξ
w

∥∥∥4 ∣∣∣Ft

]
≲ ∥η∥4

L2
∗
. (24)

By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥∆ξ
w − Yt,x,ξ,η

w

∥∥∥2 ∣∣∣Ft

]

≲ ∑
f∈F

∫ s

t

∫ 1

0
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u + λ∆ξ
u, Xt,ξ+η

u

)
∆ξ

u − Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
∆ξ

u

∣∣∣2 ∣∣∣Ft

]
dλ du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
∆ξ

u − Yu

)∣∣∣2 ∣∣∣Ft

]
du

+ ∑
f∈F

∫ s

t

∫ 1

0
Ê
[∣∣∣Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u + λ∆u

)
∆u − Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
∆u

∣∣∣2 ∣∣∣Ft

]
dλ du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
(∆u − Zu)

∣∣∣2 ∣∣∣Ft

]
du

≲
∫ s

t
α1(u)

2
(
Ê
[∥∥∥∆ξ

u

∥∥∥4 ∣∣∣Ft

]
+ ∥∆u∥2

L2
∗
Ê
[∥∥∥∆ξ

u

∥∥∥2 ∣∣∣Ft

]
+ ∥∆u∥4

L2
∗

)
dλ du

+
∫ s

t
α0(u)

2Ê
[∥∥∥∆ξ

u − Yu

∥∥∥2 ∣∣∣Ft

]
+ α1(u)

2∥∆u − Zu∥2
L1
∗

du

≲ ∥η∥4
L2
∗
+

∫ s

t
α0(u)

2Ê
[∥∥∥∆ξ

u − Yu

∥∥∥2 ∣∣∣Ft

]
+ α1(u)

2∥∆u − Zu∥2
L1
∗

du

due to (24) and (23). Finally, Grönwall’s inequality implies the desired result.

Lemma 21. Let 0 ≤ t ≤ T and ξ, η ∈ L2,d
∗ (t). If Assumptions 2 and 3 are satisfied with q0 ≥ 4,

then

lim
∥η∥L2∗

→0

∥∥Xt,ξ+η − Xt,ξ − DxXt,ξ,ξ η − Yt,ξ,η
∥∥

H1
∗

∥η∥L2
∗

= 0,

where the limit is taken over η ∈ L2,d
∗ (t).

Proof. By Lemmas 18 and 20, we have

Ê
[

sup
t≤w≤s

∥∥∥Xt,ξ,ξ+η
w − Xt,ξ,ξ

w − Yt,ξ,η
w

∥∥∥2
]

= Ê

Ê[ sup
t≤w≤s

∥∥∥Xt,x,ξ+η
w − Xt,x,ξ

w − Yt,x,ξ,η
w

∥∥∥2 ∣∣∣Ft

]∣∣∣∣∣
x=ξ


≲ ∥η∥4

L2
∗
+

∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ+η

u − Xt,ξ
u − DxXt,ξ,ξ

u η − Yt,ξ,η
u

∥∥∥]2
du

≲ ∥η∥4
L2
∗
+

∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ+η,ξ+η

u − Xt,ξ,ξ+η
u − DxXt,ξ,ξ

u η
∥∥∥]2

du

+
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ,ξ+η

u − Xt,ξ,ξ
u − Yt,ξ,η

u

∥∥∥2
]

du

≲ ∥η∥4
L2
∗
+

∥∥∥Xt,ξ+η,ξ+η − Xt,ξ,ξ+η − DxXt,ξ,ξ η
∥∥∥2

H1
∗

+
∫ s

t
α1(u)

2Ê
[∥∥∥Xt,ξ,ξ+η

u − Xt,ξ
u − Yt,ξ,η

u

∥∥∥2
]

du,

and Grönwall’s inequality yields∥∥∥Xt,ξ,ξ+η − Xt,ξ,ξ − Yt,ξ,η
∥∥∥

H2
∗
≲ ∥η∥2

L2
∗
+

∥∥∥Xt,ξ+η,ξ+η − Xt,ξ,ξ+η − DxXt,ξ,ξη
∥∥∥

H1
∗
. (25)



Mathematics 2025, 13, 3099 24 of 40

Finally, observe that∥∥∥Xt,ξ+η − Xt,ξ − DxXt,ξ,ξ η − Yt,ξ,η
∥∥∥

H1
∗

≤
∥∥∥Xt,ξ+η,ξ+η − Xt,ξ,ξ+η − DxXt,ξ,ξ η

∥∥∥
H1

∗
+

∥∥∥Xt,ξ,ξ+η − Xt,ξ,ξ − Yt,ξ,η
∥∥∥

H2
∗

≲ ∥η∥2
L2
∗
+

∥∥∥Xt,ξ+η,ξ+η − Xt,ξ,ξ+η − DxXt,ξ,ξ η
∥∥∥

H1
∗

due to (25) and, thus, Lemma 14 implies

lim
∥η∥L2∗

→0

∥∥Xt,ξ+η − Xt,ξ − DxXt,ξ,ξη − Yt,ξ,η
∥∥

H1
∗

∥η∥L2
∗

= 0.

Proposition 3. Let 0 ≤ t ≤ T. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then the map

L2,d
∗ (t) → H1,d

∗ (t, T), ξ 7→ Xt,ξ

is continuously Fréchet differentiable with Fréchet derivative

DxXt,ξ : L2,d
∗ (t) → H2,d

∗ (t, T), η 7→ Dξ Xt,ξη := DxXt,ξ,ξη + Yt,ξ,η

at ξ ∈ L2,d
∗ (t).

Proof. Lemmas 10, 13, 15 and 16 imply that the map

L2,d
∗ (t) → H1,d

∗ (t, T), η 7→ DxXt,ξ,ξ η + Yt,ξ,η

is linear and continuous.
Further, Lemma 21 implies

lim
∥η∥→0

∥∥Xt,x,ξ+εη − Xt,x,ξ − DxXt,ξ,ξ η − Yt,ξ,η
∥∥

H1
∗

∥η∥L2
∗

= 0.

Finally, observe that∥∥∥DxXt,ξ+η,ξ+ηζ + Yt,ξ+η,ζ − DxXt,ξ,ξ ζ − Yt,ξ,ζ
∥∥∥

H1
∗

= Ê
[
Ê
[

sup
t≤w≤T

∥∥∥DxXt,x+y,ξ+η
w z − DxXt,x,ξ

w z + Yt,x+y,ξ+η,ζ
w − Yt,x,ξ,ζ

w

∥∥∥ ∣∣∣Ft

]∣∣∣∣
x=ξ,y=η,z=ζ

]

≲ Ê

Ê[ sup
t≤w≤T

∥∥∥DxXt,x+y,ξ+η
w z − DxXt,x,ξ

w z
∥∥∥2 ∣∣∣Ft

] 1
2 ∣∣∣∣

x=ξ,y=η,z=ζ


+ Ê

Ê[ sup
t≤w≤T

∥∥∥Yt,x+y,ξ+η,ζ
w − Yt,x,ξ,ζ

w

∥∥∥2 ∣∣∣Ft

] 1
2 ∣∣∣∣

x=ξ,y=η,z=ζ


≲ ∥ζ∥L2

∗
∥η∥L2

∗

due to Lemmas 12, 13, 18 and 19. Thus, ξ 7→ Dξ Xt,ξ is continuous with respect to the
operator norm.
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Proposition 4. Let 0 ≤ t ≤ T and x ∈ Rd. If Assumptions 2 and 3 are satisfied with q0 ≥ 4, then
the map

L2,d
∗ (t) → H2,d

∗ (t, T), ξ 7→ Xt,x,ξ

is continuously Fréchet differentiable with Fréchet derivative

Dξ Xt,x,ξ : L2,d
∗ (t) → H2,d

∗ (t, T), η 7→ Dξ Xt,x,ξη := Yt,x,ξ,η

at ξ ∈ L2,d
∗ (t).

Proof. Lemmas 15 and 16 imply that the map

L2,d
∗ (t) → H2,d

∗ (t, T), η 7→ Yt,x,ξ,η

is linear and continuous. Moreover, we have∥∥∥Xt,x,ξ+η − Xt,x,ξ − Yt,x,ξ,η
∥∥∥

H2
∗
≲ ∥η∥2

L2
∗
+

∥∥∥Xt,ξ+η − Xt,ξ − DxXt,ξ,ξ η − Yt,ξ,η
∥∥∥

H1
∗

due to Lemma 20 and, thus, Lemma 21 yields

lim
∥η∥→0

∥∥Xt,x,ξ+η − Xt,x,ξ − Yt,x,ξ,η
∥∥

H2
∗

∥η∥L2
∗

= 0.

Finally, observe that∥∥∥Yt,x,ξ,ζ − Yt,x,η,ζ
∥∥∥

H2
∗
≲ ∥ζ∥L2

∗
∥ξ − η∥L2

∗

due to Lemma 19. Thus, the map ξ 7→ Dξ Xt,x,ξ is continuous with respect to the operator
norm.

5. Second-Order Derivatives
In this section, we show the interchangeability in order of differentiation in Lemma 26

and establish the second-order Fréchet differentiability of (x, ξ) 7→ Xt,x,ξ in Propositions 5
and 7. For a normed real vector space V, let C2(V) denote the space of all f ∈ C1(V)

such that D f (·)v ∈ C1(V) for all v ∈ V and, for convenience, we set D2 f (v0)(v2, v1) :=
D D f(v0)v1 v2 for v0, v1, v2 ∈ V.

Assumption 4. Let b : [0, T]× Ω ×Rd × L2,d
∗ → Rd, h : [0, T]× Ω ×Rd × L2,d

∗ → Rd×n×n,
and g : [0, T] × Ω × Rd × L2,d

∗ → Rd×n be such that the following holds for all components
f = bk, hkij, gki with 1 ≤ i, j ≤ n, 1 ≤ k ≤ d.

1. We have f(s, ω, ·, ξ) ∈ C2(Rd), Dξ f(s, ω, ·, ξ)η ∈ C1(Rd) and Dx f(s, ω, x, ·)y ∈
C1(L2,d

∗ ) for all 0 ≤ s ≤ T, ω ∈ Ω, x, y ∈ Rd and ξ, η ∈ L2,d
∗ .

2. There exists a square-integrable α2 : [0, T] → [1, ∞) such that∣∣∣D2
x f(s, ω, x, ξ)(y, z)− D2

x f(s, ω, v, ξ)(y, z)
∣∣∣ ≤ κ(s)∥y∥∥z∥∥x − v∥,∣∣Dx Dξ f(s, ω, x, ξ)ζ z − Dx Dξ f(s, ω, y, η)ζ z
∣∣ ≤ α2(s)∥z∥∥ζ∥L2

∗

(
∥x − y∥+ ∥ξ − η∥L2

∗

)
,∣∣Dξ Dx f(s, ω, x, ξ)z ζ − Dξ Dx f(s, ω, y, η)z ζ

∣∣ ≤ α2(s)∥z∥∥ζ∥L2
∗

(
∥x − y∥+ ∥ξ − η∥L2

∗

)
for all 0 ≤ s ≤ T, ω ∈ Ω, v, x, y, z ∈ Rd and ξ, η, ζ ∈ L2,d

∗ .
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Lemma 22. Let 0 ≤ t ≤ T, x ∈ Rd and ξ ∈ L2,d
∗ (t). If Assumptions 2, 3 and 4 are satisfied with

q0 ≥ 4, then the G-SDE

dCt,x,ξ,y,z
s = Dxb

(
s, Xt,x,ξ

s , Xt,ξ
s

)
Ct,x,ξ,y,z

s ds

+ D2
xb
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, DxXt,x,ξ
s z

)
ds

+ Dxh
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Ct,x,ξ,y,z

s d⟨B⟩s

+ D2
xh
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, DxXt,x,ξ
s z

)
d⟨B⟩s

+ Dxg
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Ct,x,ξ,y,z

s dBs

+ D2
xg
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, DxXt,x,ξ
s z

)
dBs, t ≤ s ≤ T,

Ct,x,ξ,y,z
t = 0 (26)

admits a unique solution Ct,x,ξ,y,z ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T, x, y, z ∈ Rd and ξ ∈ L2,d

∗ (t).
Moreover, the map

Rd ×Rd → H2,d
∗ (t, T), (y, z) 7→ Ct,x,ξ,y,z

is bilinear.

Proof. The SDE (26) has a unique solution Ct,x,ξ,y,z ∈ H2,d
∗ (t, T) since the coefficients

are Lipschitz and of linear growth due to Lemma 11 for any y, z ∈ Rd. Thus, the map
(y, z) 7→ Ct,x,ξ,y,z is well-defined.

Let λ ∈ R and v, x, y, z ∈ Rd. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Ct,x,ξ,y+λv,z
w − Ct,x,ξ,y,z

w − λCt,x,ξ,v,z
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Ct,x,ξ,y+λv,z

u − Ct,x,ξ,y,z
u − λCt,x,ξ,v,z

u

)∣∣∣2] du

≲
∫ s

t
α0(u)

2Ê
[∥∥∥Ct,x,ξ,y+λv,z

u − Ct,x,ξ,y,z
u − λCt,x,ξ,v,z

u

∥∥∥2
]

du,

and Grönwall’s inequality implies∥∥∥Ct,x,ξ,y+λv,z − Ct,x,ξ,y,z − λCt,x,ξ,v,z
∥∥∥

H2
∗
= 0,

i.e., y 7→ Ct,x,ξ,y,z is linear. Analogously, we obtain that z 7→ Ct,x,ξ,y,z is linear.

Lemma 23. If Assumptions 2, 3 and 4 are satisfied with q0 ≥ 4, then

Ê
[

sup
t≤w≤T

∥∥∥Ct,x,ξ,y,z
w

∥∥∥2
]
≲ ∥y∥2∥z∥2

for all 0 ≤ t ≤ T, x, y, z ∈ Rd and ξ ∈ L2,d
∗ (t).
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Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Ct,x,ξ,y,z
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣D2

x f
(

u, Xt,x,ξ
u , Xt,ξ

u

)(
DxXt,x,ξ

u y, DxXt,x,ξ
u z

)∣∣∣2] du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Ct,x,ξ,y,z

u

∣∣∣2] du

≤
∫ s

t
α1(u)

2Ê
[∥∥∥DxXt,x,ξ

u y
∥∥∥2∥∥∥DxXt,x,ξ

u z
∥∥∥2

]
+ α0(u)

2Ê
[∥∥∥Ct,x,ξ,y,z

u

∥∥∥2
]

du

≲ ∥y∥2∥z∥2 +
∫ s

t
α0(u)

2Ê
[∥∥∥Ct,x,ξ,y,z

u

∥∥∥2
]

du.

Finally, Grönwall’s inequality implies the desired result.

Proposition 5. Let 0 ≤ t ≤ T. If Assumptions 2, 3 and 4 are satisfied with q0 ≥ 6 and q1 ≥ 3,
then the map

Rd → H2,d
∗ (t, T), x 7→ Xt,x,ξ

is twice Fréchet differentiable for every ξ ∈ L2,d
∗ (t). More precisely, for every x ∈ Rd and

ξ ∈ L2,d
∗ (t), the map

D2
xXt,x,ξ : Rd ×Rd → H2,d

∗ (t, T), (y, z) 7→ D2
xXt,x,ξ(y, z) := Ct,x,ξ,y,z

is bilinear and continuous and such that

lim
∥y∥→0

∥∥∥DxXt,x+y,ξz − DxXt,x,ξ z − D2
xXt,x,ξ(y, z)

∥∥∥
H2

∗

∥y∥ = 0

for all z ∈ Rd.

Proof. The map (y, z) 7→ Ct,x,ξ,y,z is bilinear and continuous due to Lemmas 22 and 23. Set
∆x := Xt,x+y,ξ − Xt,x,ξ , then

Ê
[

sup
t≤w≤T

∥∆x
w∥

6
∣∣∣Ft

]
≲ ∥y∥6 (27)

due to Lemma 4, and Lemma 12 implies

Ê
[

sup
t≤w≤T

∥∥∥∆x
w − DxXt,x,ξ

w y
∥∥∥3 ∣∣∣Ft

]
≤

∫ 1

0
Ê
[

sup
t≤w≤T

∥∥∥DxXt,x+λy,ξ
w y − DxXt,x,ξ

w y
∥∥∥3 ∣∣∣Ft

]
dλ

≲ ∥y∥6. (28)

Further, set ∆x,x := DxXt,x+y,ξ z − DxXt,x,ξz, then Lemma 12 yields

Ê
[

sup
t≤w≤T

∥∆x,x
w ∥3

]
≲ ∥y∥3. (29)
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By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥∆x,x
w − Ct,x,ξ,y,z

w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x+y,ξ

u , Xt,ξ
u

)
DxXt,x+y,ξ

u z − Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
DxXt,x,ξ

u z

− Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Ct,x,ξ,y,z

u − D2
x f
(

u, Xt,x,ξ
u , Xt,ξ

u

)(
DxXt,x,ξ

u y, DxXt,x,ξ
u z

)∣∣∣2] du

≲
∫ s

t
α2(u)

2Ê
[
∥∆x

u∥
4
∥∥∥DxXt,x,ξ

u z
∥∥∥2

]
+ α1(u)

2Ê
[
∥∆x

u∥
2∥∆x,x

u ∥2
]

du

+
∫ s

t
α1(u)

2Ê
[∥∥∥∆x

u − DxXt,x,ξ
u y

∥∥∥2∥∥∥DxXt,x,ξ
u z

∥∥∥2
]

+
∫ s

t
α0(u)

2Ê
[∥∥∥∆x,x

u − Ct,x,ξ,y,z
u

∥∥∥2
]

≤
∫ s

t
α2(u)

2Ê
[
∥∆x

u∥
6
] 2

3 Ê
[∥∥∥DxXt,x,ξ

u z
∥∥∥6

] 1
3
+ α1(u)

2Ê
[
∥∆x

u∥
6
] 1

3 Ê
[
∥∆x,x

u ∥3
] 2

3 du

+
∫ s

t
α1(u)

2Ê
[∥∥∥∆x

u − DxXt,x,ξ
u y

∥∥∥3
] 2

3
Ê
[∥∥∥DxXt,x,ξ

u z
∥∥∥6

] 1
3

+
∫ s

t
α0(u)

2Ê
[∥∥∥∆x,x

u − Ct,x,ξ,y,z
u

∥∥∥2
]

≲ ∥y∥4
(

1 + ∥z∥2
)
+

∫ s

t
α0(u)

2Ê
[∥∥∥∆x,x

u − Ct,x,ξ,y,z
u

∥∥∥2
]

due to (27)–(29) and Lemma 11. Finally, Grönwall’s inequality yields∥∥∥DxXt,x+y,ξ z − DxXt,x,ξz − D2
xXt,x,ξ(y, z)

∥∥∥
H2

∗
≲ ∥y∥2(1 + ∥z∥)

which implies the desired result.

Lemma 24. If Assumption 2, 3 and 4 are satisfied with q0 ≥ 6 and q1 ≥ 3, then the G-SDE

dDt,x,ξ,y,η
s = Dxb

(
s, Xt,x,ξ

s , Xt,ξ
s

)
Dt,x,ξ,y,η

s ds

+ D2
xb
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, Dξ Xt,x,ξ
s η

)
ds

+ Dx Dξ b
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Dξ Xt,ξ

s η DxXt,x,ξ
s y ds

+ Dxh
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Dt,x,ξ,y,η

s d⟨B⟩s

+ D2
xh
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, Dξ Xt,x,ξ
s η

)
d⟨B⟩s

+ Dx Dξ h
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Dξ Xt,ξ

s η DxXt,x,ξ
s y d⟨B⟩s

+ Dxg
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Dt,x,ξ,y,η

s dBs

+ D2
xg
(

s, Xt,x,ξ
s , Xt,ξ

s

)(
DxXt,x,ξ

s y, Dξ Xt,x,ξ
s η

)
dBs

+ Dx Dξ g
(

s, Xt,x,ξ
s , Xt,ξ

s

)
Dξ Xt,ξ

s η DxXt,x,ξ
s y dBs, t ≤ s ≤ T,

Dt,x,ξ,y,η
t = 0 (30)

admits a unique solution Dt,x,ξ,y,η ∈ H2,d
∗ (t, T) for all 0 ≤ t ≤ T, x, y ∈ Rd, ξ, η ∈ L2,d

∗ (t).
Moreover, the map

Rd × L2,d
∗ (t) 7→ H2,d

∗ (t, T), (y, η) 7→ Dt,x,ξ,y,η



Mathematics 2025, 13, 3099 29 of 40

is bilinear.

Proof. The SDE (30) has a unique solution Dt,x,ξ,y,η ∈ H2,d
∗ (t, T) since the coefficients are

Lipschitz and of linear growth due to Lemmas 11 and 17 for any y ∈ Rd and η ∈ L2,d
∗ (t).

Thus, the map (y, η) 7→ Dt,x,ξ,y,η is well defined.
Let λ ∈ R, y, z ∈ Rd and η, ζ ∈ L2,d

∗ (t). By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Dt,x,ξ,y+λz,η
w − Dt,x,ξ,y,η

w − λDt,x,ξ,z,η
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)(
Dt,x,ξ,y+λz,η

u − Dt,x,ξ,y,η
u − λDt,x,ξ,z,η

u

)∣∣∣2] du

≤
∫ s

t
α0(u)

2Ê
[∥∥∥Dt,x,ξ,y+λz,η

u − Dt,x,ξ,y,η
u − λDt,x,ξ,z,η

u

∥∥∥2
]

du,

and Grönwall’s inequality yields that∥∥∥Dt,x,ξ,y+λz − Dt,x,ξ,y − λDt,x,ξ,z
∥∥∥

H2
∗
= 0,

i.e., y 7→ Dt,x,ξ,y,η is linear. Analogously, we obtain that η 7→ Dt,x,ξ,y,η is linear.

Lemma 25. If Assumption 2, 3 and 4 are satisfied with q0 ≥ 6 and q1 ≥ 3, then

Ê
[

sup
t≤w≤T

∥∥∥Dt,x,ξ,y,η
w

∥∥∥2
]
≲ ∥y∥2∥η∥2

L2
∗
.

Proof. By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥Dt,x,ξ,y,η
w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Dt,x,ξ,y,η

u

∣∣∣2] du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣D2

x f
(

u, Xt,x,ξ
u , Xt,ξ

u

)(
DxXt,x,ξ

u y, Dξ Xt,x,ξ
u η

)∣∣∣2] du

+ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Dξ Xt,x,ξ

u η DxXt,x,ξ
u y

∣∣∣2] du

≲
∫ s

t
α0(u)

2Ê
[∥∥∥Dt,x,ξ,y,η

u

∥∥∥2
]
+ α1(u)

2Ê
[∥∥∥DxXt,x,ξ

u y
∥∥∥2∥∥∥Dξ Xt,x,ξ

u η
∥∥∥2

]
du,

and Grönwall’s inequality implies

Ê
[

sup
t≤w≤s

∥∥∥Dt,x,ξ,y,η
w

∥∥∥2
]
≲

∫ s

t
α1(u)

2Ê
[∥∥∥DxXt,x,ξ

u y
∥∥∥2∥∥∥Dξ Xt,x,ξ

u η
∥∥∥2

]
du

for all t ≤ s ≤ T. Finally, observe that for all t ≤ s ≤ T

Ê
[∥∥∥DxXt,x,ξ

s y
∥∥∥2∥∥∥Dξ Xt,x,ξ

s η
∥∥∥2

]
= Ê

[
Ê
[∥∥∥DxXt,x,ξ

s y
∥∥∥2∥∥∥Dξ Xt,x,ξ

s z
∥∥∥2 ∣∣∣Ft

]∣∣∣
z=ζ

]
≤ Ê

[
Ê
[∥∥∥DxXt,x,ξ

s y
∥∥∥4 ∣∣∣Ft

] 1
2

Ê
[∥∥∥Dξ Xt,x,ξ

s z
∥∥∥4 ∣∣∣Ft

] 1
2 ∣∣∣

z=ζ

]
≲ ∥y∥2∥ζ∥2

L2
∗

due to Lemma 11, which implies the desired result.
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Proposition 6. Let 0 ≤ t ≤ T and ξ, η ∈ L2,d
∗ (t). If Assumption 2, 3 and 4 are satisfied with

q0 ≥ 6 and q1 ≥ 3, then the map

Rd → H2,d
∗ (t, T), x 7→ Dξ Xt,x,ξ η

is Fréchet differentiable with Fréchet derivative

Dx Dξ Xt,x,ξ η : Rd → H2,d
∗ (t, T), y 7→ Dξ Xt,x,ξ η y := Dt,x,ξ,y,η

at x ∈ Rd.

Proof. By Lemmas 24 and 25, the map y 7→ Dt,x,ξ,y,η is linear and continuous.
Set ∆ξ := Dξ Xt,x+y,ξ η − Dξ Xt,x,ξ η, then Lemma 19 yields

Ê
[

sup
t≤w≤T

∥∥∥∆ξ
w

∥∥∥3 ∣∣∣Ft

]
≲ ∥η∥3

L2
∗
∥y∥3. (31)

As in the proof of Proposition 5, set ∆x := Xt,x+y,ξ − Xt,x,ξ , then

Ê
[

sup
t≤w≤T

∥∆x
w∥

6
∣∣∣Ft

]
≲ ∥y∥6, Ê

[
sup

t≤w≤T

∥∥∥∆x
w − DxXt,x,ξ

w y
∥∥∥3 ∣∣∣Ft

]
≲ ∥y∥6. (32)

By Lemma A4, we have for t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥∆ξ
w − Dt,x,ξ,y,η

w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x+y,ξ

u , Xt,ξ
u

)
Dξ Xt,x+y,ξ

u η + Dξ f
(

u, Xt,x+y,ξ
u , Xt,ξ

u

)
Dξ Xt,ξ

u η

− Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Dξ Xt,x,ξ

u η − Dξ f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Dξ Xt,ξ

u η

− Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Dt,x,ξ,y,η

u − D2
x f
(

u, Xt,x,ξ
u , Xt,ξ

u

)(
DxXt,x,ξ

u y, Dξ Xt,x,ξ
u η

)
− Dx Dξ f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
Dξ Xt,ξ

u η DxXt,x,ξ
u y

∣∣∣2]
≲

∫ s

t
α1(u)

2Ê
[∥∥∥∆ξ

u

∥∥∥2
∥∆x

u∥
2
]
+ α2(u)

2Ê
[
∥∆x

u∥
4
∥∥∥Dξ Xt,x,ξ

u η
∥∥∥2

]
du

+
∫ s

t
α1(u)

2Ê
[∥∥∥∆x

u − DxXt,x,ξ
u y

∥∥∥2∥∥∥Dξ Xt,x,ξ
u η

∥∥∥2
]
+ α2(u)

2Ê
[
∥∆x

u∥
4
]∥∥∥Dξ Xt,ξ

u η
∥∥∥2

L2
∗

du

+
∫ s

t
α1(u)

2
∥∥∥Dξ Xt,ξ

u η
∥∥∥2

L2
∗
Ê
[∥∥∥∆x

u − DxXt,x,ξ
u

∥∥∥2
]
+ α0(u)

2Ê
[∥∥∥∆ξ

u − Dt,x,ξ,y,η
u

∥∥∥2
]

du

≲
∫ s

t
α1(u)

2Ê
[∥∥∥∆ξ

u

∥∥∥3
] 2

3
Ê
[
∥∆x

u∥
6
] 1

3 du

+
∫ s

t
α2(u)

2Ê
[
Ê
[
∥∆x

u∥
6
∣∣∣Ft

] 2
3 Ê

[∥∥∥Dξ Xt,x,ξ
u η

∥∥∥6 ∣∣∣Ft

] 1
3
]

du

+
∫ s

t
α1(u)

2Ê
[
Ê
[∥∥∥∆x

u − DxXt,x,ξ
u y

∥∥∥3 ∣∣∣Ft

] 2
3
Ê
[∥∥∥Dξ Xt,x,ξ

u η
∥∥∥6 ∣∣∣Ft

] 1
3
]

du

+
∫ s

t
α2(u)

2Ê
[
∥∆x

u∥
4
]∥∥∥Dξ Xt,ξ

u η
∥∥∥2

L2
∗

du

+
∫ s

t
α1(u)

2
∥∥∥Dξ Xt,ξ

u η
∥∥∥2

L2
∗
Ê
[∥∥∥∆x

u − DxXt,x,ξ
u

∥∥∥2
]
+ α0(u)

2Ê
[∥∥∥∆ξ

u − Dt,x,ξ,y,η
u

∥∥∥2
]

du

≲ ∥y∥4∥η∥2
L2
∗
+

∫ s

t
α0(u)

2Ê
[∥∥∥∆ξ

u − Dt,x,ξ,y,η
u

∥∥∥2
]

du

due to (31), (32) and Lemma 17. Finally, Grönwall’s inequality yields∥∥∥Dξ Xt,x+y,ξη − Dξ Xt,x,ξη − Dt,x,ξ,y,η
∥∥∥

H2
∗
≲ ∥y∥2∥η∥L2

∗
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which implies the desired result.

Lemma 26. If Assumption 2, 3 and 4 are satisfied, then the following holds for all components
f = bk, hkij, gki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d:

Dx
[

Dξ f(s, x, ξ)η
]
y = Dξ [Dx f(s, x, ξ)y]η

for all 0 ≤ s ≤ T, x, y ∈ Rd, ξ, η ∈ L2,d
∗ and ω ∈ Ω.

Proof. Let 0 ≤ s ≤ T, x, y ∈ Rd, ξ, η ∈ L2,d
∗ and ω ∈ Ω. We have

I := f(s, x + y, ξ + η, ω)− f(s, x + y, ξ, ω)− f(s, x, ξ + η, ω) + f(s, x, ξ, ω)

=
∫ 1

0
Dξ f(s, x + y, ξ + λ1η, ω)η − Dξ f(s, x, ξ + λ1η, ω)η dλ1

=
∫ 1

0

∫ 1

0
Dx Dξ f(s, x + λ2y, ξ + λ1η, ω)η y dλ2 dλ1

= Dx Dξ f(s, x, ξ, ω)η y + R1

with

R1 :=
∫ 1

0

∫ 1

0
Dx Dξ f(s, x + λ2y, ξ + λ1η, ω)η y − Dx Dξ f(s, x, ξ, ω)η y dλ2 dλ1

≤
∫ 1

0

∫ 1

0

∣∣Dx Dξ f(s, x + λ2y, ξ + λ1η, ω)η y − Dx Dξ f(s, x, ξ, ω)η y
∣∣ dλ2 dλ1

≤
∫ 1

0

∫ 1

0
α2(s)∥y∥∥η∥L2

∗

(
λ2∥y∥+ λ1∥η∥L2

∗

)
dλ2 dλ1

≤ ∥y∥∥η∥L2
∗

(
∥y∥+ ∥η∥L2

∗

)
.

Analogously, we have

I = f(s, x + y, ξ + η, ω)− f(s, x, ξ + η, ω)− f(s, x + y, ξ, ω) + f(s, x, ξ, ω)

=
∫ 1

0
Dx f(s, x + λ1y, ξ + η, ω)y − Dx f(s, x + λ1y, ξ, ω)y dλ1

=
∫ 1

0

∫ 1

0
Dξ Dx f(s, x + λ1y, ξ + λ2η, ω)y η dλ2 dλ1

= Dx Dξ f(s, x, ξ, ω)η y + R2

with

R2 :=
∫ 1

0

∫ 1

0
Dξ Dx f(s, x + λ1y, ξ + λ2η, ω)η y − Dx Dξ f(s, x, ξ, ω)η y dλ2 dλ1

≤ ∥y∥∥η∥L2
∗

(
∥y∥+ ∥η∥L2

∗

)
.

Thus, we get ∣∣Dx Dξ f(s, x, ξ, ω)η y − Dx Dξ f(s, x, ξ, ω)η y
∣∣

∥y∥∥η∥L2
∗

≲ ∥y∥+ ∥η∥L2
∗

for all 0 ≤ s ≤ T, ω ∈ Ω, x, y ∈ Rd and ξ, η ∈ L2,d
∗ (t). By letting ∥η∥L2

∗
and ∥y∥ tend to

zero, we conclude the desired result.
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Proposition 7. Let 0 ≤ t ≤ T, x ∈ Rd and ξ ∈ L2,d
∗ (t). If Assumptions 2, 3 and 4 are satisfied

with q0 ≥ 6 and q1 ≥ 3, then the map

L2,d
∗ (t) → H2,d

∗ (t, T), ξ 7→ DxXt,x,ξ y

is Fréchet differentiable with Fréchet derivative

Dξ DxXt,x,ξ y : L2,d
∗ (t) → H2,d

∗ (t, T), η 7→ Dξ DxXt,x,ξ y η := Dt,x,ξ,y,η

at ξ ∈ L2,d
∗ (t).

Proof. By Lemmas 24 and 25, the map η 7→ Dt,x,ξ,y,η is linear and continuous.
For all components f = bk, hijk, gik, 1 ≤ k ≤ d, 1 ≤ i, j ≤ n, we have

Dx Dξ f(s, ω, x, ξ)η y = Dξ Dx f(s, ω, x, ξ)y η,

D2
x f(s, ω, x, ξ)(y, z) = D2

x f(s, ω, x, ξ)(z, y)

for all 0 ≤ s ≤ T, ω ∈ Ω, x, y, z ∈ Rd and ξ, η ∈ L2,d
∗ due to Lemma 26 and the symmetry of

the second-order Fréchet derivative.
Fix x, y ∈ Rd and ξ, η ∈ L2,d

∗ , and set

∆ := Xt,ξ+η − Xt,ξ ,

∆ξ := Xt,x,ξ+η − Xt,x,ξ ,

∆x,ξ := DxXt,x,ξ+ηy − DxXt,x,ξy.

From Lemmas 3, 4 and 12, we obtain

Ê
[

sup
t≤w≤T

∥∆w∥2

]
≲ ∥η∥2

L2
∗
,

Ê
[

sup
t≤w≤T

∥∥∥∆ξ
w

∥∥∥6
]
≲ ∥η∥6

L2
∗
,

Ê
[

sup
t≤w≤T

∥∥∥∆x,ξ
w

∥∥∥3
]
≲ ∥y∥3∥η∥3

L2
∗
.

Moreover, Lemma 19 yields

Ê
[

sup
t≤w≤T

∥∥∥∆ξ
w − Dξ Xt,x,ξ

w η
∥∥∥3

]
≤

∫ 1

0
Ê
[

sup
t≤w≤T

∥∥∥Dξ Xt,x,ξ+λη
w η − Dξ Xt,x,ξ

w η
∥∥∥3

]
dλ

≲ ∥η∥6
L2
∗
,

and we have

Ê
[

sup
t≤w≤T

∥∥∥∆w − Dξ Xt,ξ
w η

∥∥∥] ≤
∫ 1

0

∥∥∥Dξ Xt,ξ+ληη − Dξ Xt,ξ η
∥∥∥

H1
∗

dλ

≤
∫ 1

0

∥∥∥DxXt,ξ+λη,ξ+ληη − DxXt,ξ,ξ η
∥∥∥

H1
∗

dλ

+
∫ 1

0

∥∥∥Yt,ξ+λη,η − Yt,ξ,η
∥∥∥

H1
∗

dλ

≲ ∥η∥2
L2
∗

due to Corollaries 3 and 4.
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By Lemma A4, we have for all t ≤ s ≤ T

Ê
[

sup
t≤w≤s

∥∥∥∆x,ξ
w − Dt,x,ξ,y,η

w

∥∥∥2
]

≲ ∑
f∈F

∫ s

t
Ê
[∣∣∣Dx f

(
u, Xt,x,ξ+η

u , Xt,ξ+η
u

)
DxXt,x,ξ+η

u y − Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
DxXt,x,ξ

u y

− Dx f
(

u, Xt,x,ξ
u , Xt,ξ

u

)
Dt,x,ξ,y,η

u − D2
x f
(

u, Xt,x,ξ
u , Xt,ξ

u

)(
Dξ Xt,x,ξ

u η, DxXt,x,ξ
u y

)
− Dξ Dx f

(
u, Xt,x,ξ

u , Xt,ξ
u

)
DxXt,x,ξ

u y Dξ Xt,ξ
u η

∣∣∣2] du

≲
∫ s

t
α1(u)

2Ê
[∥∥∥∆ξ

u

∥∥∥4∥∥∥DxXt,x,ξ
u y

∥∥∥2
]

du

+
∫ s

t
α2(u)

2∥∆u∥2
L2
∗

(
∥∆u∥2

L2
∗
Ê
[∥∥∥DxXt,x,ξ

u y
∥∥∥2

]
+ Ê

[∥∥∥DxXt,x,ξ
u y

∥∥∥2∥∥∥∆ξ
u

∥∥∥2
])

du

+
∫ s

t
α1(u)

2Ê
[∥∥∥∆ξ

u − Dξ Xt,x,ξ
u η

∥∥∥2∥∥∥DxXt,x,ξ
u y

∥∥∥2
]

du

+
∫ s

t
α1(u)

2
∥∥∥∆u − Dξ Xt,ξ

u η
∥∥∥2

L1
∗
Ê
[∥∥∥DxXt,x,ξ

u y
∥∥∥2

]
du

+
∫ s

t
α1(u)

2
(
Ê
[∥∥∥∆x,ξ

u

∥∥∥2∥∥∥∆ξ
u

∥∥∥2
]
+ ∥∆u∥2

L2
∗
Ê
[∥∥∥∆x,ξ

u

∥∥∥2
])

du

+
∫ s

t
α0(u)

2Ê
[∥∥∥∆x,ξ

u − Dt,x,ξ,y,η
u

∥∥∥2
]

du

≲ ∥η∥4
L2
∗
∥y∥2 +

∫ s

t
α0(u)

2Ê
[∥∥∥∆x,ξ

u − Dt,x,ξ,y,η
u

∥∥∥2
]

du.

Finally, Grönwall’s inequality yields the desired result.

6. Application to Functions of Sublinear Distributions
In [30], the authors consider mean-field G-SDEs with coefficients that depend on the

sublinear distribution of the solution process, where the sublinear distribution of a random
variable ξ is defined as the mapping φ 7→ Ê[φ(ξ)]. More precisely, they introduce the set D
consisting of all functionals F : Lip(Rd) → R which satisfy the following properties. Here,
Lip(Rd) denotes the space of all Lipschitz functions φ : Rn → R and Lip1(Rd) ⊆ Lip(Rd)

the subspace of functions with Lipschitz constant smaller than or equal to 1.

1. Constant-Preservation: For all φ ∈ Lip(Rd) with φ ≡ c ∈ R, we have F(φ) = c.
2. Monotonicity: For all φ, ψ ∈ Lip(Rd) with φ ≥ ψ everywhere, we have F(φ) ≥ F(ψ).
3. Positive Homogeneity: For all c ≥ 0 and φ ∈ Lip(Rd), we have F(cφ) = cF(φ).
4. Subadditivity: For all φ, ψ ∈ Lip(Rd), we have F(φ + ψ) ≤ F(φ) + F(ψ).
5. Boundedness: We have

sup
φ∈Lip1(Rd)

|F(φ)− φ(0)| < ∞.

Further, the authors define the metric

d : D ×D → R, (F, G) 7→ d(F, G) := sup
φ∈Lip1(Rd)

|F(φ)− G(φ)|
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and consider a G-SDE of the form

dXt = b(t, Xt, FXt) dt + h(t, Xt, FXt) d⟨B⟩t + g(t, Xt, FXt) dBt, 0 ≤ t ≤ T,

X0 = x, (33)

where x ∈ Rd and the coefficients b, g and h are defined on [0, T]×Rd ×D and, for ξ ∈ L1,d
∗ ,

the functional Fξ : Lip(Rd) → R is defined by φ 7→ Ê[φ(ξ)]. Clearly, for any X that
satisfies (33), we have X ∈ H1,d

∗ (t, T) and, in particular, FXt ∈ D for all 0 ≤ t ≤ T; see also
Remark 3.2 in [30].

The authors show that (33) admits a unique solution X ∈ M2,d
∗ (0, T) for any initial

value x ∈ Rd when the coefficients satisfy the following assumption; see Theorem 4.1
in [30].

Assumption 5. Let b : [0, T] × Rd × D → Rd, h : [0, T] × Rd × D → Rd×n×n, and g :
[0, T]× Rd ×D → Rd×n be such that the following holds for all components f = b̃k, hkij, g̃ki,
1 ≤ i, j ≤ n, 1 ≤ k ≤ d.

1. We have f(·, x, F) ∈ M2
∗(0, T) for all x ∈ Rd and F ∈ D.

2. There exists a constant K > 0 such that

| f(t, x, F)− f(t, y, G)| ≤ K
(
∥x − y∥2 + d(F, G)

)
.

We can embed the formulation from [30] into our setting by defining coefficients b̂, ĝ
and ĥ on [0, T]× Ω ×Rd × L2,d

∗ componentwise by

b̂k(s, ω, x, ξ) := bk
(
s, x, Fξ

)
, ĥkij(s, ω, x, ξ) := hkij

(
s, x, Fξ

)
, ĝki(s, ω, x, ξ) := gki

(
s, x, Fξ

)
.

Note that in contrast to the general formulation in [31], the coefficients b̂, ĥ and ĝ
are deterministic. Moreover, for the components f̂ = b̂k, ĥkij, ĝki, 1 ≤ i, j ≤ n, 1 ≤ k ≤ d,
Assumption 5 yields∣∣∣ f̂ (t, ω, x, ξ)− f̂ (t, ω, y, η)

∣∣∣ ≤ K
(
∥x − y∥+ d(Fξ , Fη)

)
≤ K

(
∥x − y∥+ ∥ξ − η∥L2

∗

)
for all ω ∈ Ω, 0 ≤ s ≤ T, x, y ∈ Rd and ξ, η ∈ L2,d

∗ since

d
(

Fξ , Fη)
)
= sup

φ∈Lip1(Rd)

∣∣∣Ê[φ(ξ)]− Ê[φ(η)]
∣∣∣ ≤ Ê[∥ξ − η∥] = ∥ξ − η∥L1

∗
≤ ∥ξ − η∥L2

∗
.

Further, we have f̂(·, x, ξ)1[s,T] ∈ M2
∗(t, T) for all x ∈ Rd and ξ ∈ Bd

b(Fs), 0 ≤ s ≤ T.
That is, if the coefficients b, h and g satisfy Assumption 5, then the coefficients b̂, ĥ and ĝ
satisfy Assumption 2. In particular, Theorem 3.12 in [31] implies Theorem 4.1 in [30].

The aim of this section is to show how our regularity results from Sections 4 and 5 can
be applied to equations of type (33). Note that D is not a vector space and, thus, we need
to consider a different notion of differentiability for functions defined on D. In classical
mean-field theory, we encounter a similar issue when considering functions defined on
the space of square-integrable distributions P2(Rd). By lifting a function f : P2(Rd) → R
to a function f̂ : L2(Rd, Ω,F , P) → R and considering the Fréchet derivative of the lifted
function f̂ , Lions developed a useful notion of derivative which is commonly referred to
as Lions derivative; see, e.g., [33] for more details. In the same manner, we might want to
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lift a function f : D → R to a function f̂ : L2,d
∗ → R such that f̂ (ξ) = f (Fξ) for all ξ ∈ L2,d

∗ ,
but it is not immediately clear whether the space L2,d

∗ is rich enough in the sense that

D =
{

Fξ : Lip(Rd) → R, φ 7→ Ê[φ(ξ)] : ξ ∈ L2,d
∗

}
=: D0.

However, it is sufficient to consider the restriction of the coefficients b, h and g in (33)
to [0, T]×Rd ×D0 so that b̂, ĥ and ĝ are the respective liftings defined on [0, T]×Rd × L2,d

∗
so that we can define a notion of differentiability for b, h and g in terms of the Gateaux or
Fréchet derivatives of b̂, ĥ and ĝ, respectively.

In the following, we develop a notion of differentiability for a map f : D0 → R in
terms of the Gateaux derivative of its lifting f̂ . More specifically, for Fξ ∈ D0, we define
the map

∂ f (Fξ) : Rd → R, x 7→ ∂ f̂ (ξ; x), (34)

where ∂ f̂ (ξ; x) denotes the Gateaux derivative of f̂ at ξ ∈ L2,d
∗ in the direction x ∈ Rd.

In particular, the construction implies that ∂ f (Fξ) is well defined when the lifting f̂ is
Fréchet differentiable at ξ ∈ L2,d

∗ since Gateaux differentiability is weaker than Fréchet
differentiability. Moreover, the definition ensures that ∂ f (Fξ) is such that ∂ f (Fξ) = ∂ f (Fη)

for all ξ, η ∈ L2,d
∗ with Fξ = Fη .

Lemma 27. Let f : D0 → R be such that its lifting f̂ : L2,d
∗ → R is Gateaux differentiable at

ξ ∈ L2,d
∗ . If η ∈ L2,d

∗ is such that Fξ = Fη , then f̂ is Gateaux differentiable at η and

∂ f̂(ξ; ζ) = ∂ f̂(η; ζ)

for all ζ ∈ L2,d
∗ such that ξ and η are independent of ζ, where ∂ f̂ (ξ; ζ) denotes the Gateaux

derivative of f̂ at ξ in the direction ζ.

Proof. Since Fξ = Fη , we have

Ê[φ(ξ)] = Ê[φ(η)]

for all φ ∈ Lip(Rd). Let φ ∈ Lip(Rd), then y 7→ φ(y + x) is Lipschitz for all x ∈ Rd. Since ξ

and η are independent of ζ, we have

Ê[φ(ξ + λζ)] = Ê
[
Ê[φ(ξ + x)]

∣∣∣
x=λζ

]
= Ê

[
Ê[φ(η + x)]

∣∣∣
x=λζ

]
= Ê[φ(η + λζ)].

Since this holds for all φ ∈ Lip(Rd), we obtain Fξ+λζ = Fη+λζ for all λ > 0. By the Gateaux
differentiability of f̂ , we have

0 = lim
λ→0

∣∣∣ f̂ (ξ + λζ)− f̂ (ξ)− λ∂ f̂(ξ; ζ)
∣∣∣

λ
= lim

λ→0

∣∣∣ f̂ (η + λζ)− f̂ (η)− λ∂ f̂(ξ; ζ)
∣∣∣

λ
.

Thus, f̂ is Gateaux differentiable at η and we conclude ∂ f̂(ξ; ζ) = ∂ f̂(η; ζ) from the unique-
ness of the Gateaux derivative.

Clearly, the identity ∂ f̂ (ξ; ·) = ∂ f̂ (η; ·) on L2,d
∗ implies the identity on Rd. Hence,

Lemma 27, immediately yields the following corollary.
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Corollary 5. Let f : D0 → R be such that its lifting f̂ : L2,d
∗ → R is Gateaux differentiable at

ξ ∈ L2,d
∗ in the direction x for all x ∈ Rd. If η ∈ L2,d

∗ is such that Fξ = Fη , then f̂ is Gateaux
differentiable at η and

∂ f̂(ξ; x) = ∂ f̂(η; x)

for all x ∈ Rd.

Note that ∂ f (Fξ) : x 7→ ∂ f̂ (ξ; x) corresponds to the restriction of the Gateaux differen-
tial to Rd and, thus, we can apply F ∈ D to ∂ f (Fξ) if the Gateaux differential is Lipschitz.

Definition 2. Let f : D0 → R. We say that f is differentiable if its lifting f̂ is Gateaux
differentiable at ξ in the direction x for all x ∈ Rd and the Gateaux differential x 7→ ∂ f̂ (ξ; x) is
Lipschitz on Rd for any ξ ∈ L2,d

∗ . The derivative ∂ f : D0 ×D0 → R is given by

∂ f (Fξ , Fη) := Fη(x 7→ ∂ f̂ (ξ; x)) = Ê
[

∂ f̂(ξ; x)
∣∣∣
x=η

]
.

By Corollary 5, we have ∂ f (Fξ , ·) = ∂ f (Fη , ·) for all ξ, η ∈ L2,d
∗ with Fξ = Fη if the

lifting f̂ is Gateaux differentiable. Moreover, we obtain ∂ f (Fξ , Fη) = ∂ f (Fξ , Fζ) for all
ξ, η, ζ ∈ L2,d

∗ with Fη = Fζ if the Gateaux differential is Lipschitz. In particular, the deriva-
tive ∂ f : D0 ×D0 → R is well-defined if the lifting f̂ is Fréchet differentiable. Hence, if the
coefficients in (33) are sufficiently differentiable in the sense of Definition 2, we can apply
the results from Sections 4 and 5 to obtain the first- and second-order variation process of
the unique solution of (33).

7. Conclusions
In Sections 4 and 5, we derive G-SDEs for the first- and second-order Fréchet deriva-

tives of the unique solution Xt,ξ , Xt,x,ξ of the generalized mean-field G-SDEs (11), (12).
These G-SDEs are analogous to the SDEs of the Fréchet derivatives for classical mean-field
processes; see [28]. The main difference is that the G-SDEs are expressed in terms of the
Fréchet derivatives of the coefficients, while the respective SDEs are expressed in terms
of the Lions derivatives of the coefficients. However, the Lions derivative of a function
f is precisely the Fréchet derivative of its lifting f̂ ; see [33]. In that sense, our results are
perfectly in line with the results on classical mean-field SDEs in the literature. This is ex-
pected since by choosing Σ = {Id}, the G-Brownian motion becomes a standard Brownian
motion and our setting is reduced to the classical setting with linear expectations. That
is, the classical mean-field SDEs can be embedded into our setting and, thus, our results
immediately yield SDEs describing the first- and second-order Fréchet derivatives of a
classical mean-field process.

We note that the assumptions on the coefficients that we use throughout this pa-
per are more general than the global Lipschitz and boundedness assumptions in [28].
Thus, by restricting our setting to standard Brownian motion, our regularity results from
Sections 4 and 5 extend the results for classical mean-field SDEs to more general coefficients.
For simplicity, the assumptions in our paper are chosen such that the Grönwall inequality
can be applied throughout. In particular, the continuity assumptions can be weakened to
consider other forms of local Lipschitz continuity, e.g., suitable for the Bihari inequality.
However, we believe that the integrability assumptions on α0, α1 cannot be significantly
relaxed when following a similar line of argument since these integrability assumptions

ensure that products such as
∥∥∥Xt,x+y,ξ

u − Xt,x,ξ
u

∥∥∥4∥∥∥DxXt,x,ξ
u z

∥∥∥2
appearing in the proof of

Proposition 5 are integrable.
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Future research may study a larger class of generalized mean-field G-SDEs. For
instance, it could consider generalized mean-field SDEs with more general coefficients
or driven by a (sub)-fractional G-Brownian motion; see [34–37] for more details on (sub)-
fractional G-Brownian motion. Moreover, future research could explore the application
of the obtained first- and second-order Fréchet derivatives for control and optimization
problems, numerical approximation schemes or gradient methods.

Conditional Sublinear Expectation please see Appendix A.
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Appendix A. Conditional Sublinear Expectation
Lemma A1. Let 0 ≤ t ≤ T and X ∈ Mb(0, T). Then

Ê
[∫ T

t
Xs ds

∣∣∣∣Ft

]
≤

∫ T

t
Ê[Xs | Ft] ds.

Proof. Since X ∈ Mb(0, T), there exist m ∈ N, t = t0 < . . . < tm = T, and ξk ∈ Bb(Ftk ),
0 ≤ k ≤ m − 1 such that

X1[t, T] =
m−1

∑
k=0

ξk1[tk, tk+1),

and ∫ T

t
Xs ds =

m−1

∑
k=0

ξk(tk+1 − tk).

Due to the sublinearity of the conditional expectation, we obtain

Ê
[∫ T

t
Xs ds

∣∣∣∣Ft

]
= Ê

[
m−1

∑
k=0

ξk(tk+1 − tk)

∣∣∣∣Ft

]

≤
m−1

∑
k=0

Ê[ξk | Ft](tk+1 − tk)

=
∫ T

t
Ê[Xs | Ft] ds.

Corollary A1. Let p ≥ 1, 0 ≤ t ≤ T and X ∈ Mp
∗(0, T). Then

Ê
[∣∣∣∣∫ T

t
Xs ds

∣∣∣∣p ∣∣∣∣Ft

]
≤ (T − t)p−1

∫ T

t
Ê
[
|Xs|p | Ft

]
ds.

Proof. This follows immediately from the construction of Mp
∗(0, T) and Jensen’s inequality.

Lemma A2. Let a ∈ Rn, p ≥ 1, 0 ≤ t ≤ T and X ∈ Mp
∗(0, T). Then

Ê
[∣∣∣∣∫ T

t
Xs d⟨Ba⟩s

∣∣∣∣p ∣∣∣∣Ft

]
≤ (T − t)p−1σ

2p
aa

∫ T

t
Ê
[
|Xs|p | Ft

]
ds.
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Proof. By Corollary 3.5.5 in [12], we have∣∣∣⟨Ba⟩tk+1
− ⟨Ba⟩tk

∣∣∣ ≤ σ2
aa(tk+1 − tk).

Thus, Jensen’s inequality yields∣∣∣∣∫ T

t
Xs d⟨Ba⟩s

∣∣∣∣p

≤
∣∣∣∣∫ T

t
|Xs|σ2

aa ds
∣∣∣∣p

≤ (T − t)p−1σ
2p
aa

∫ T

t
|Xs|p ds.

Finally, Corollary A1 yields the desired result.

Lemma A3. Let a ∈ Rn, p ≥ 2, 0 ≤ t ≤ T and X ∈ Mp
∗(0, T). Then

Ê
[

sup
t≤w≤T

∣∣∣∣∫ w

t
Xs dBa

s

∣∣∣∣p ∣∣∣∣Ft

]
≤ (T − t)

p−2
2 σ

p
aa

∫ T

t
Ê
[
|Xs|p | Ft

]
ds.

Proof. The Burkholder–Davis–Gundy inequality yields

Ê
[

sup
t≤w≤T

∣∣∣∣∫ w

t
Xs dBa

s

∣∣∣∣p ∣∣∣∣Ft

]
≤ CpÊ

[∣∣∣∣∫ T

t
X2

s d⟨Ba⟩s

∣∣∣∣
p
2
∣∣∣∣Ft

]

≤ Cp(T − t)
p−2

2 σ
p
aa

∫ T

t
Ê
[
|Xs|p | Ft

]
ds,

where the last step follows from Lemma A2.

Lemma A4. Let p ≥ 2, 0 ≤ t ≤ T, ξ ∈ Lp,d
∗ (t) and bk, hkij, gki ∈ Mp

∗(0, T) for 1 ≤ k ≤ d,
1 ≤ i, j ≤ n. Let X satisfy

dXs = b(s) ds + h(s) d⟨B⟩s + g(s) dBs, t ≤ s ≤ T

Xt = ξ.

Then

Ê
[

sup
t≤s≤w

∥Xs∥p
∣∣∣Ft

]

≲ ∥ξ∥p +
d

∑
k=1

n

∑
i,j=1

∫ w

t
Ê
[
|bk(s)|p | Ft

]
+ Ê

[∣∣∣hkij(s)
∣∣∣p
| Ft

]
+ Ê

[
|gki(s)|p | Ft

]
ds.

Proof. This follows from Corollary A1 and Lemmas A2 and A3.
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