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1. Introduction

Recently, there has been a particular interest in distinguishing different types of uncer-
tainty in supervised machine learning (ML) settings (Hiillermeier and Waegeman, 2021).
Aleatoric uncertainty captures the inherent randomness in the data-generating process. As
it represents variability that cannot be reduced even with more data, it is often referred to
as irreducible uncertainty. In contrast, epistemic uncertainty arises from a lack of knowl-
edge about the underlying data-generating process, which—in principle—can be reduced
by acquiring additional data or improving the model itself (viz. reducible uncertainty).
In parallel, interest in conformal prediction (CP)—both its theory and applications—has
become equally vigorous. Conformal Prediction (Vovk et al., 2005) is a model-agnostic
framework for uncertainty quantification that provides prediction sets or intervals with rig-
orous statistical coverage guarantees. Notably, CP is distribution-free and makes only the
mild assumption of exchangeability. Under this assumption, it yields prediction intervals
that contain the true label with a user-specified probability. Thus, CP is seen as a promising
tool to quantify uncertainty. But how is it related to aleatoric and epistemic uncertainty?
In particular, we first analyze how (estimates of) aleatoric and epistemic uncertainty en-
ter into the construction of vanilla CP—that is, how noise and model error jointly shape
the global threshold. We then review “uncertainty-aware” extensions that integrate these
uncertainty estimates into the CP pipeline.

2. Does CP account for aleatoric and epistemic uncertainty?

A~

For the sake of exposure, assume Y = f(X)+e¢e. Further, write §(X) = f(X)— f(X). Then,
the absolute residual used in standard CP can be written as R = |¢ + 6(X)|. Now, define
the conditional cdf Fpr,(t) = P(le +d(z)] <t|X =), where we assume ¢ ~ Prx_,.
Clearly, if d(x) = 0 (perfect knowledge) then Fp, is only driven by aleatoric uncertainty
(i.e., noise). If ¢ = 0 (deterministic world) then Fg,(t) = 1{t > [§(z)|}, i.e., a point
mass at the epistemic error. Now, let Px be the (unknown) marginal distribution of X.
By the law of total probability, Fr(t) = P(R < t) = [ Fpj,(t)dPx(x). Thus, the global
distribution of residuals (which is used in essence for split CP) is the Px-weighted mixture
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of all the local residual distributions. Consequently, the population (1 — «)-quantile is
q1-o = inf{t : Fp(t) > 1 — a}. Obviously, this yields [, Fgj.(q1-a) dPx(z) = 1 — o
Because each integrand Fgr(t) depends on both ¢ (aleatoric) and d(x) (epistemic), their
influence enters here only through the same integral. There is no way to disentangle them.
Therefore, the single threshold ¢;_, can not tell us whether a large future residual comes
from aleatoric or from epistemic uncertainty at that particular instance. So, aleatoric and
epistemic uncertainty is reflected in a global manner instead of instance-wise.

Homogeneous noise and constant model error. Suppose both sources of uncertainty are
uniform across x, namely, ¢ ~ P. (same distribution everywhere), and §(z) = dy (constant
model error). Then for every z, Fp,(t) = P(le + do| < t) = Fr(t), so no averaging over
Px is needed. The split CP quantile ¢;_, is chosen so that Fr(q1—o) = 1 — a, and hence
FR|x(q1_a) = 1—a for all z. In this setting, conformal intervals enjoy conditional coverage at
each x, and their width correctly reflects aleatoric and epistemic uncertainty instance-wise.

Heterogeneous noise and constant model error. Now suppose the model error is still
constant, i.e., 6(x) = dg, but the noise varies with x. Concretely, we assume & ~ P x=s
with Var[e|X = z] = 0?(x). Then the local residual cdf is Friz = P(le +do| < X =
r) = P(le| <t —do]) = Fo(t — |do|), which clearly depends on o(z). However, the vanilla
CP threshold is a single constant. The resulting interval has constant width, so it can not
adapt to regions of higher or lower noise. To correct for varying noise, define an estimate
6(z) ~ o(z) and define the normalized score (Papadopoulos et al., 2008; Lei et al., 2018)
U= (Y - f(X))/6(X). Let Fyjp(u) = P(IY — f(2)] < u6(2)|X = z) = Fyjp(ud () — [do])-
Crucially, if 6(z) = o(x), then Fy,(u) = F,;(o(x)u — |do]) depends on z only through the
shift do, not through the scale. Under mild regularity, one can show that these Fy;, are
identical in shape across z. Hence the global cdf Fiy(u) = [ Fy|,(2)dPx(x) coincides with
each local Fyy|,(u). We then choose T' = inf{u : Fiy(u) > 1 — a}. The resulting conformal
interval has width 26 (x)7T that scales with the local noise level. In contrast, conformalized
quantile regression (CQR) first models the (local) noise via conditional quantiles and then
adds a global slack to ensure validity (Romano et al., 2019). Thus, by normalizing residuals,
CP can reflect aleatoric uncertainty per instance.

General setting. In the fully general setting—where both the noise o(x) and the model
error §(x) vary arbitrarily with z—one seeks a conformal score that adapts both aleatoric
and epistemic uncertainty per instance. Uncertainty-Aware CQR (UCQR) replaces that
single slack with an z-dependent adjustment derived from an ensemble’s spread, so intervals
widen precisely where model error is high (Rossellini et al., 2024). EPICSCORE takes this
further by fitting a Bayesian predictive distribution of the nonconformity scores itself and
using its local quantiles to define the interval at each = (Cabezas et al., 2025).

Outlook. A natural next step is to forge a more explicit dialogue between the “two-
uncertainties” paradigm in ML—where aleatoric and epistemic uncertainty are formally
disentangled—and the rich, distribution-free guarantees of CP. While we discussed these
ideas in the context of regression, the same principles also apply to classification, as elabo-
rated by Javanmardi et al. (2025). More generally, the notion of “instance-wise” uncertainty
quantification is closely connected to the concept of “conditional coverage” in CP, which
is certainly worth further exploration. In this light, one may ask whether CP ought to
explicitly disentangle and adjust for aleatoric versus epistemic uncertainty.



ALEATORIC AND EPISTEMIC UNCERTAINTY IN CONFORMAL PREDICTION

Acknowledgments

Alireza Javanmardi was supported by the Klaus Tschira Stiftung. Yusuf Sale is supported by
the DAAD program Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored
by the Federal Ministry of Education and Research.

References

Luben Miguel Cruz Cabezas, Vagner Silva Santos, Thiago Ramos, and Rafael Izbicki. Epis-
temic uncertainty in conformal scores: A unified approach. In The 41st Conference on
Uncertainty in Artificial Intelligence, 2025.

Eyke Hiillermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine learning, 110(3):457-506,
2021.

Alireza Javanmardi, Soroush H Zargarbashi, Santo MAR Thies, Willem Waegeman, Alek-
sandar Bojchevski, and Eyke Hiillermeier. Optimal conformal prediction under epistemic
uncertainty. arXiv preprint arXiv:2505.19033, 2025.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
Distribution-free predictive inference for regression. Journal of the American Statisti-
cal Association, 113(523):1094-1111, 2018.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity
measures for regression conformal prediction. In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications (AIA 2008), pages 64—69, 2008.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression.
Advances in neural information processing systems, 32, 2019.

Raphael Rossellini, Rina Foygel Barber, and Rebecca Willett. Integrating uncertainty
awareness into conformalized quantile regression. In International Conference on Ar-
tificial Intelligence and Statistics, pages 1540-1548. PMLR, 2024.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a ran-
dom world, volume 29. Springer, 2005.



	Introduction
	Does CP account for aleatoric and epistemic uncertainty?

