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Abstract
Recently, Cella and Martin proved how, under an
assumption called consonance, a credal set (i.e. a
closed and convex set of probabilities) can be de-
rived from the conformal transducer associatedwith
transductive conformal prediction. We show that
the Imprecise Highest Density Region (IHDR) asso-
ciated with such a credal set corresponds to the clas-
sical Conformal Prediction Region. In proving this
result, we establish a new relationship betweenCon-
formal Prediction and Imprecise Probability (IP)
theories, via the IP concept of a cloud. A byproduct
of our presentation is the discovery that consonant
plausibility functions are monoid homomorphisms,
a new algebraic property of an IP tool.
Keywords. conformal prediction, credal machine
learning, prediction sets, consonance

1. Introduction
Conformal prediction (CP) is a methodology intro-

duced by Vovk, Gammerman, and Shafer [68] whose
main goal is to output a prediction for the next observa-
tion’s value, given a collection of data points, which takes
into account the uncertainty faced by the agent. Loosely,
CP accounts for the latter by producing predictions in
the form of conformal prediction regions (CPRs), subsets
of the output space that are likely to cover the target of
prediction – the true outcome – with high probability,
for all possible exchangeable probability distributions on
the output space. CP is a model-free approach: it does
not require any distributional assumptions on the under-
lying data-generating process, making it a versatile and
widely applicable tool e.g. for statistical inference.
A key part of (transductive) CP is to derive the confor-

mal transducer 𝜋, a “score” between 0 and 1 that mea-
sures how “conformal” an element 𝑦 of the output space
𝕐 is to the data previously available to the user. The
“more conformal” element 𝑦 is, the closer its “score” is
to 1. In their work [19, 20], Cella and Martin show that,
once 𝜋 is available, an upper probability Π (that can be

thought of as the upper envelope of a closed and convex
set of probabilities, i.e. a credal set) can be derived from
it. This is possible under a given assumption called con-
sonance, which, roughly, tells us that there is at least an
element 𝑦 ∈ 𝕐 such that 𝜋(𝑦) = 1.1 Under consonance,
upper probability Π is defined as Π(𝐴) = sup

𝑦∈𝐴
𝜋(𝑦),

for all 𝐴 ⊆ 𝕐, and the corresponding credal set is given
byℳ(Π) = {𝑃 ∶ 𝑃(𝐴) ≤ Π(𝐴), ∀𝐴 ⊆ 𝕐}. That is,ℳ(Π)

contains all the probabilities on 𝕐 that are set-wise dom-
inated by Π.
In this work, we further the study of the relationship

between CP and Imprecise Probabilities (IPs). We show
that the Imprecise Highest Density Region (IHDR) as-
sociated withℳ(Π) is equivalent to the classical Con-
formal Prediction Region (CPR), and it retains the same
(uniform) probabilistic guarantee. Loosely, an IHDR [26]
is the IP counterpart of a Highest Density Region, which
in turn can be thought of as a Bayesian version of a Confi-
dence Interval. It is a collection of elements of the output
space𝕐, that all the elements of credal setℳ(Π) indicate
as being correct with high probability 1 − 𝛼, with signifi-
cance level 𝛼 chosen by the user. A visual representation
of our proposed method is given in Figure 1. In proving
this result, we also relate Conformal Prediction to the
concept of cloud [57], and discover a very interesting
algebraic property of consonant plausibility functions
like the upper probability Π.
We conclude with a discussion on the open problems

and unanswered questions on the nature of CP, and on
the relationship between CP and IP theory.
The paper is organized as follows. Section 2.1 recalls

the basics of (transductive) Conformal Prediction. Sec-
tion 2.2 introduces the concepts from Imprecise Proba-
bility (IP) theory that are needed in our work. Section
3 presents the relationship between conformal predic-
tion and the IP notion of plausibility functions noted
by Cella and Martin [19, 20]. Section 4 introduces Im-
precise Highest Density Regions (IHDRs). In Section 5,

1Consonance can for instance be obtained “artificially” by putting
to 1 the value of 𝜋 for argmax

𝑦
𝜋(𝑦) [19, Section 7].
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Figure 1. Top: Our proposed, “indirect” methodology to derive a prediction region. We first use the consonant conformal
transducer 𝜋 to derive credal setℳ(Π), and then extract from the latter the IHDR IR𝛼 . Bottom: Classical CP
methodology, in which the Conformal Prediction Region is obtained as in (1).

we derive the IHDR of our conformally-built credal set,
that corresponds to the classical conformal prediction re-
gion. Section 6 concludes our work and discusses further
interesting open problems.

2. Preliminaries
2.1. Conformal prediction. This section is based on
Cella andMartin [20, Section 4.1], who summarize work
by Shafer and Vovk [64] and Vovk, Gammerman, and
Shafer [68] on transductive conformal prediction.
Suppose that there is an exchangeable process

𝑌1, 𝑌2, … with distribution 𝐏, where each 𝑌𝑖 is a ran-
dom element taking values in 𝕐. Throughout the paper,
we denote by 𝐏 the true data generating process, and
by 𝑃 a generic element of ∆𝕐, the space of all (count-
ably additive) probability measures on 𝕐. Recall that a
sequence is exchangeable if, for any 𝑘 ∈ ℕ and any per-
mutation 𝜏, the two random vectors (𝑌1, … , 𝑌𝑘)⊤ and
(𝑌𝜏(1), … , 𝑌𝜏(𝑘))

⊤ have the same joint distribution. This
implies that the marginal distributions of the 𝑌𝑖 ’s are the
same.2
Wewant to solve the following statistical problem. Sup-

pose we observe the first 𝑛 terms of the process, that is,
𝐘𝐧 = (𝑌1, … , 𝑌𝑛)

⊤. With this data, and the assumption
of exchangeability, the goal is to predict 𝑌𝑛+1 using a
method that is valid or reliable in a certain sense.

2Exchangeability does not imply independence, so the standard
i.i.d. setup is in a sense more restrictive. Note also that we are not
assuming any parametric form for the distribution 𝐏.

Let 𝐘𝐧+𝟏 = (𝐘𝐧, 𝑌𝑛+1)
⊤ be an (𝑛 + 1)-dimensional

vector consisting of the observable 𝐘𝐧 and the yet-to-be-
observed value 𝑌𝑛+1. Consider the transform

𝐘𝐧+𝟏 → 𝐓𝐧+𝟏 = (𝑇1, … , 𝑇𝑛+1)
⊤

defined by the rule

𝑇𝑖 ∶= 𝜓𝑖
(
𝐘𝐧+𝟏

)
≡ Ψ

(
𝐲𝐧+𝟏
−𝐢

, 𝑦𝑖
)

for all 𝑖 ∈ {1, … , 𝑛 + 1}, where 𝐲𝐧+𝟏
−𝐢

= 𝐲𝐧+𝟏 ⧵ {𝑦𝑖} and
Ψ ∶ 𝕐𝑛 × 𝕐 → ℝ is a fixed function that is invari-
ant to permutations in its first vector argument. Func-
tion Ψ, which is called a non-conformity measure, is
constructed in such as way that 𝜓𝑖(𝐲𝐧+𝟏) is small if
and only if 𝑦𝑖 agrees with – i.e. is “close to” – a predic-
tion based on the data 𝐲𝐧+𝟏

−𝐢
. Or, the other way around,

large values 𝜓𝑖(𝐲𝐧+𝟏) suggest that the observation 𝑦𝑖 is
“strange” and does not conform to the rest of the data
𝐲𝐧+𝟏
−𝐢

. The key idea is to define 𝜓𝑖(𝐲𝐧+𝟏) in a way that
allows one to compare 𝑦𝑖 to a suitable summary of 𝐲𝐧+𝟏−𝐢

,
e.g.𝜓𝑖(𝐲𝐧+𝟏) = |mean(𝐲𝐧+𝟏

−𝐢
)−𝑦𝑖|, for all 𝑖 ∈ {1, … , 𝑛+1}.

Notice that transformation 𝐘𝐧+𝟏 → 𝐓𝐧+𝟏 preserves ex-
changeability.
As the value 𝑌𝑛+1 has not yet been observed, and

is actually the target of prediction, the above calcula-
tions cannot be carried out exactly. Nevertheless, the
exchangeability-preserving properties of the transforma-
tions described above provide a procedure to rank candi-
date values 𝑦̃ of 𝑌𝑛+1 based on the observed 𝐘𝐧 = 𝐲𝐧, as
shown in Algorithm 1.
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Algorithm 1 Conformal prediction (CP)
Initialize: data 𝐲𝐧, non-conformity measure Ψ, grid of
𝑦̃ values
for each 𝑦̃ value in the grid do

set 𝑦𝑛+1 = 𝑦̃ and write 𝐲𝐧+𝟏 = 𝐲𝐧 ∪ {𝑦𝑛+1};
define 𝑇𝑖 = 𝜓𝑖(𝐲

𝐧+𝟏), for all 𝑖 ∈ {1, … , 𝑛 + 1};
evaluate 𝜋(𝑦̃, 𝐲𝐧) = (𝑛 + 1)−1

∑𝑛+1

𝑖=1
1[𝑇𝑖 ≥ 𝑇𝑛+1];

end for
return 𝜋(𝑦̃, 𝐲𝐧) for each 𝑦̃ on the grid.

The output of Algorithm 1 is a data-dependent func-
tion 𝑦̃ ↦ 𝜋(𝑦̃, 𝐲𝐧) that can be interpreted as a measure
of plausibility of the assertion that 𝑌𝑛+1 = 𝑦̃, given data
𝐲𝐧. Vovk, Gammerman, and Shafer [68] refer to the func-
tion 𝜋 as conformal transducer. Conformal transducer 𝜋
plays a key role in the construction of conformal predic-
tion regions (CPRs). For any 𝛼 ∈ [0, 1], the 𝛼-level CPR
is defined as [67, Equation (2)]

ℛ𝛼(𝐲
𝐧) ∶= {𝑦𝑛+1 ∈ 𝕐 ∶ 𝜋(𝑦𝑛+1, 𝐲

𝐧) > 𝛼}, (1)

and it satisfies

𝑃 [𝑌𝑛+1 ∈ ℛ𝛼(𝐲
𝐧)] ≥ 1 − 𝛼, (2)

uniformly in 𝑛 and in 𝑃 [68]. That is, (2) is satisfied for
all 𝑛 ∈ ℕ and all exchangeable distributions 𝑃 on 𝕐.
Note that (2) holds regardless of the choice of the non-
conformity measure Ψ. However, the choice of this func-
tion is crucial in terms of the efficiency of conformal
prediction, that is, the size of the prediction regions.
Transductive conformal prediction (TCP) is not the

only way of carrying out conformal prediction. There
exists another type called inductive (or split) conformal
prediction (ICP). It assumes exchangeability and it is
used to build the same regionℛ𝛼(𝐲

𝐧) in (1) having the
same guarantee (2), while being computationally less
expensive than TCP. Since ICP produces the same region
as TCP, which is what we need in light of the goal of
our paper, we do not present ICP in detail. We refer the
interested reader to [3, 58].

2.2. Imprecise probabilities. Let (𝕐, Σ𝕐) be a measur-
able (prediction) space, where 𝕐 is a nonempty set and
Σ𝕐 is a 𝜎-algebra on 𝕐. A set function 𝜈 ∶ Σ𝕐 → [0, 1]

is called (Choquet) capacity if 𝜈(∅) = 0, 𝜈(𝕐) = 1, and
𝜈(𝐴) ≤ 𝜈(𝐵) for all 𝐴, 𝐵 ∈ Σ𝕐 such that 𝐴 ⊆ 𝐵 [20, 22,
25]. When 𝕐 is not finite, 𝜈 needs to be continuous from
above and below [5, Chapter 6].
Capacity 𝜈 is called a lower probability (LP) if it is su-

peradditive, that is, if 𝜈(𝐴 ∪ 𝐵) ≥ 𝜈(𝐴) + 𝜈(𝐵), for all
disjoint sets 𝐴, 𝐵 ∈ Σ𝕐. In the remainder of the paper,
we denote a generic LP by𝑃 in view of the following prop-
erty. A lower probability 𝑃 can be obtained as the lower
envelope of a set 𝒫 of probability measures on (𝕐, Σ𝕐),

that is,
𝑃(𝐴) = inf

𝑃∈𝒫
𝑃(𝐴),

for all𝐴 ∈ Σ𝕐 [20, 22, 69]. If 𝒫 is convex and closed,3 we
call it credal set; a credal set having a finite number of
extreme elements is called a finitely generated credal set
(FGCS).4
Let 𝑃 denote the dual of an LP 𝑃, that is, 𝑃(𝐴) = 1 −

𝑃(𝐴𝑐), for all𝐴 ∈ Σ𝕐.We call𝑃 an upper probability (UP).
It is subadditive, that is, 𝑃(𝐴 ∪ 𝐵) ≤ 𝑃(𝐴) + 𝑃(𝐵), for all
disjoint sets 𝐴, 𝐵 ∈ Σ𝕐. In addition, it can be obtained
as the upper envelope of a set 𝒫 of probability measures
on (𝕐, Σ𝕐), that is, 𝑃(𝐴) = sup

𝑃∈𝒫
𝑃(𝐴), for all 𝐴 ∈ Σ𝕐.

The duality of 𝑃 and 𝑃 means that knowing one of
them is sufficient to retrieve the other. We may refer to
either of them individually with the understanding of
their one-to-one relationship [42].
Capacity 𝜈 is said to be 𝑘-monotone if for every col-

lection {𝐴, 𝐴1, … , 𝐴𝑘} ⊆ Σ𝕐 such that 𝐴𝑖 ⊆ 𝐴, for all
𝑖 ∈ {1, … , 𝑘}, we have

𝜈(𝐴) ≥
∑

∅≠ℐ⊆{1,…,𝑘}

(−1)|ℐ|−1 𝜈
⎛

⎜

⎝

⋂

𝑖∈ℐ

𝐴𝑖

⎞

⎟

⎠

. (3)

If a capacity is (𝑘 + 1)-monotone, it is 𝑘-monotone as
well. The smaller the 𝑘, the broader the class [42]. Ca-
pacity 𝜈 is said to be 𝑘-alternating if for every collec-
tion {𝐴, 𝐴1, … , 𝐴𝑘} ⊆ Σ𝕐 such that 𝐴𝑖 ⊆ 𝐴, for all
𝑖 ∈ {1, … , 𝑘},

𝜈(𝐴) ≤
∑

∅≠ℐ⊆{1,…,𝑘}

(−1)|ℐ|−1𝜈(∪𝑖∈ℐ𝐴𝑖). (4)

If an LP 𝑃 is a 𝑘-monotone capacity, then its dual
UP 𝑃 will be 𝑘-alternating. Similarly, if an UP 𝑃 is a
𝑘-alternating capacity, then its dual LP 𝑃 will be 𝑘-
monotone.5
Lower probability 𝑃 is said to be convex if it is a 2-

monotone capacity, that is, if 𝑃(𝐴 ∪ 𝐵) ≥ 𝑃(𝐴) + 𝑃(𝐵) −

𝑃(𝐴 ∩ 𝐵), for all 𝐴, 𝐵 ∈ Σ𝕐. Similarly, UP 𝑃 is said to be
concave if it is a 2-alternating capacity, that is, if 𝑃(𝐴 ∪

𝐵) ≤ 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵), for all 𝐴, 𝐵 ∈ Σ𝕐 [15].
Lower probability 𝑃 is called a belief function if it is an

∞-monotone capacity, i.e., if (3) holds for every 𝑘; we
denote it by 𝑏𝑒𝑙. Upper probability 𝑃 is called a plausibil-
ity function if it is an∞-alternating capacity, i.e., if (4)
holds for every 𝑘; we denote it by 𝑝𝑙. Belief and plausi-
bility functions are dual [63]. A belief function induces

3Here and in the rest of the paper, closed has to be understood
with respect to the topology endowed to the space ∆𝕐 of all probability
measures on (𝕐, Σ𝕐), typically the weak or weak⋆ topologies.

4The extreme elements of an FGCS are those that cannot bewritten
as convex combinations of one another.

5Notice that an LP cannot be 𝑘-alternating because it is superaddi-
tive, and similarly aUP cannot be 𝑘-monotone because it is subadditive.

49



PMLR 290: 47–59 ISIPTA 2025

a set-valued random variable on the power set of 𝕐 [42]:
if 𝑏𝑒𝑙 is a belief function, its associatedmass function is
the non-negative set function

𝑚 ∶ Σ𝕐 → [0, 1], 𝐴 ↦ 𝑚(𝐴) ∶=
∑

𝐵⊆𝐴

(−1)|𝐴−𝐵|𝑏𝑒𝑙(𝐵),

(5)
where 𝐴 − 𝐵 ≡ 𝐴 ∩ 𝐵𝑐, and the subsets 𝐵 of 𝐴 have to
belong to Σ𝕐 as well. Mass function𝑚 has the following
properties:

(a) 𝑚(∅) = 0;

(b)
∑

𝐵⊆𝕐
𝑚(𝐵) = 1;

(c) 𝑏𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵), and this representation is

unique to 𝑏𝑒𝑙.
Equation (5) is called the Möbius transform of 𝑏𝑒𝑙 [71].
A mass function 𝑚 induces a probability measure on
Σ𝕐, namely as the distribution of a random set. These
concepts are further studied by Gong and Meng [42].
Plausibility function 𝑝𝑙 is said to be consonant if there

exists a function 𝜋 ∶ 𝕐 → [0, 1] such that
(i) sup

𝑦∈𝕐
𝜋(𝑦) = 1;

(ii) 𝑝𝑙(𝐴) = sup
𝑦∈𝐴

𝜋(𝑦), 𝐴 ∈ Σ𝕐.

Function 𝜋 corresponds to the probability density or
mass function (pdf/pmf) of𝑚, and is called a plausibility
contour. We now show an interesting algebraic property
of consonant plausibility functions.
Recall that a semigroup is a generic set 𝑆 together with

a binary operation † (that is, a function † ∶ 𝑆 × 𝑆 → 𝑆)
that satisfies the associative property, i.e. (𝑎 † 𝑏) † 𝑐 =
𝑎 † (𝑏 † 𝑐), for all 𝑎, 𝑏, 𝑐 ∈ 𝑆. Semigroup 𝑆 is called a
monoid if it has an identity element 𝑒, that is, an element
such that 𝑎†𝑒 = 𝑒†𝑎 = 𝑎, for all 𝑎 ∈ 𝑆. Recall also that a
monoid homomorphism is a map between monoids that
preserves the monoid operation and maps the identity
element of the first monoid to that of the second monoid.
We have the following.

Lemma 2.1. A consonant plausibility function 𝑝𝑙 is a
monoid homomorphism between the monoids (Σ𝕐, ∪) and
([0, 1],⊕), where ∪ is the set union operation and⊕ is the
tropical addition on [0, 1]

Proof. Consider the semigroups (Σ𝕐, ∪) and ([0, 1],⊕),
where ∪ is the usual set union operation, and⊕ is the
tropical addition, i.e. 𝑎 ⊕ 𝑏 = max{𝑎, 𝑏}, for all 𝑎, 𝑏 ∈
[0, 1] ⊂ ℝ. They are bothmonoidswith identity elements
∅ and 0, respectively.
Then, a consonant plausibility function 𝑝𝑙 is a map

𝑝𝑙 ∶ Σ𝕐 → [0, 1] such that 𝑝𝑙(∅) = 0, and 𝑝𝑙(𝐴 ∪ 𝐵) =

𝑝𝑙(𝐴)⊕𝑝𝑙(𝐵). This shows that 𝑝𝑙 is a monoid homomor-
phism, as desired.

While at the moment Lemma 2.1 seems like a result
of independent interest, unrelated to our main result

in Section 5, we point out how in the future it may be
useful to relate Imprecise Probabilities to an algebraic
version of Conformal Prediction, in the spirit of the field
of Algebraic Statistics [65].
Note that 𝜋(𝑦) is the upper probability assigned to

the singleton set {𝑦}, which means that the entire lower
and upper probability pair (𝑃, 𝑃) is determined by the
plausibility assigned to singletons. This is a unique fea-
ture of the consonance model [20, 36]. If we denote by
ℱ𝑚 the set of all focal elements, i.e., 𝐴 ∈ Σ𝕐 such that
𝑚(𝐴) > 0, then consonance corresponds to the case of
having nested focal elements. Specifically, for any two
elements 𝐴, 𝐵 ∈ Σ𝕐 we have either 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴,
indicating a hierarchical structure [63]. We mention in
passing that in classical possibility theory, “consonance”
refers to the nestedness property we just described, while
condition sup

𝑦∈𝕐
𝜋(𝑦) = 1 is usually referred to as “nor-

malization”. We do not make a distinction between the
two to be consistent with the terminology in Cella and
Martin’s works, and because normalization combined
with the condition 𝑝𝑙(𝐴) = sup

𝑦∈𝐴
𝜋(𝑦), 𝐴 ∈ Σ𝕐, im-

plies nestedness.
We conclude by pointing out that Imprecise Probabilis-

tic concepts like the ones we presented in this section are
routinely implemented in many applied fields, such as
Machine Learning and Artificial Intelligence [17, 32, 34,
37, 48, 61, 62, 70, 72], Statistics [9–14, 24, 60], Engineer-
ing [4, Chapter 4] – including aerospace engineering [66,
Chapter 5] – and Economics [23, 30, 31].

3. Relationship between belief
functions and TCP

This section is based on Cella and Martin [20, Section
4.2], who highlight the relationship between conformal
transducers and plausibility contours. Further works
that inspect such a relationship are [16, 44–46, 54].
One of the main concerns in the conformal literature

is to identify function 𝜋, taking values in [0, 1], such that
𝜋(𝑌𝑛+1, 𝐘

𝐧) is stochastically no smaller than Unif(0, 1)
under any exchangeable 𝑃 ∈ ∆𝕐. Also compare this
to classical hypothesis testing in statistics, where the
p-values under a true null hypothesis are distributed
uniformly. Vovk, Gammerman, and Shafer [68, Theorem
11.1] show that the conformal transducer returned by
Algorithm 1 satisfies this requirement. Suppose now that
function 𝜋 also satisfies

sup
𝑦̃∈𝕐

𝜋(𝑦̃, 𝐲𝐧) = 1 , for all 𝐲𝐧 ∈ 𝕐𝑛. (6)

This property holds quite generally for conformal pre-
diction in continuous-data problems: if 𝑦̃ is a point
at which the minimum of 𝑦̃ ↦ Ψ(𝐲𝐧, 𝑦̃) is achieved,
then 𝜋(𝑦̃, 𝐲𝐧) = 1 and (6) holds. For discrete-data
problems, see Cella and Martin [19]. Notice that con-
sonance can also be satisfied with a transformation of
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the conformal transducer 𝜋. For example, in Cella and
Martin [19, Section 7], the authors suggest the follow-
ing two adjusted conformal transducers: 𝜋′(𝑦, 𝐲𝐧) =

𝜋(𝑦, 𝐲𝐧)∕ sup
𝑦
𝜋(𝑦, 𝐲𝐧), for all 𝑦 ∈ 𝕐, and

𝜋′′(𝑦, 𝐲𝐧) = {
1 if 𝑦 ∈ argsup

𝑦∈𝕐
𝜋(𝑦, 𝐲𝐧)

𝜋(𝑦, 𝐲𝐧) otherwise
,

with the latter being more efficient. From (6), we can
define a (predictive) upper probability as follows6

Π𝐲𝐧(𝐴) = sup
𝑦̃∈𝐴

𝜋(𝑦̃, 𝐲𝐧), 𝐴 ∈ Σ𝕐. (7)

It is immediate to see how the upper probability in
(7) is a consonant plausibility function, as introduced in
Section 2.2. Conformal transducer 𝜋 corresponds to a
plausibility contour, and it fully determines the upper
and lower probabilities of the elements of Σ𝕐 via (7) and
the duality property of lower probabilities.
We now discuss some interesting properties of upper

probability Π𝐲𝐧 , namely that it is coherent, supremum
preserving, and tropically finitely additive.
Recall that the tropical semiring is the 3-tuple (ℝ ∪

{∞},⊕,⊗), where, for all 𝑎, 𝑏 ∈ ℝ ∪ {∞}, 𝑎 ⊕

𝑏 = max{𝑎, 𝑏}, and 𝑎 ⊗ 𝑏 = 𝑎 + 𝑏 [49]. As
a consequence, we can write that, for all 𝐴, 𝐵 ∈

Σ𝕐, Π𝐲𝐧(𝐴) ⊕ Π𝐲𝐧(𝐵) = max{Π𝐲𝐧(𝐴), Π𝐲𝐧(𝐵)} and
Π𝐲𝐧(𝐴) ⊗ Π𝐲𝐧(𝐵) = Π𝐲𝐧(𝐴) + Π𝐲𝐧(𝐵).
Recall also that a generic upper probability 𝑃 is supre-

mum preserving if 𝑃(∪𝐴∈𝒜𝐴) = sup
𝐴∈𝒜

𝑃(𝐴), for any
possible collection 𝒜 ⊆ Σ𝕐 [29].
Finally, we say that a generic upper probability 𝑃 is

coherent à la Walley [69, Section 2.5] if its dual lower
probability 𝑃 is such that, given an arbitrary collection
𝒦 of bounded random variables on 𝕐, we have that
sup[

∑𝑛

𝑗=1
(𝑋𝑗 −𝑃(𝑋𝑗)) −𝑚(𝑋0−𝑃(𝑋0))] ≥ 0, whenever

𝑚, 𝑛 ∈ ℤ+, and 𝑋0, 𝑋1, … , 𝑋𝑛 (not necessarily distinct)
are in𝒦.

Lemma 3.1 (Properties of a Consonant Upper Proba-
bility). Let𝒜 ⊆ Σ𝕐 be a generic collection of subsets of 𝕐.
Upper probabilityΠ𝐲𝐧 defined in (7) is supremum preserv-
ing and coherent à laWalley. In addition,Π𝐲𝐧 is tropically
finitely additive, that is,

|𝒜| < ∞ ⟹ Π𝐲𝐧

⎛

⎜

⎝

⋃

𝐴∈𝒜

𝐴
⎞

⎟

⎠

=
⨁

𝐴∈𝒜

Π𝐲𝐧(𝐴).

Proof. Upper probability Π𝐲𝐧 is supremum preserving
and coherent à la Walley by de Cooman and Aeyels [29]

6Let us note in passing that, when defining upper probability on
the basis of the plausibility contour,we turn ordinal (order) information
into cardinal information.

and Augustin, Coolen, De Cooman, and Troffaes [5, Sec-
tion 4.6.1]. Tropical finite additivity follows from Π𝐲𝐧

being supremum preserving, having assumed |𝒜| < ∞,
and the definition of additivity in the tropical semiring.
It can also be derived immediately from Lemma 2.1, or
the “maxitivity” of possibility theory [35].

Unlike classical finite additivity, tropical finite additiv-
ity does not require the events in 𝒜 to be disjoint. The
practical implications of Lemmas 2.1 and 3.1 – especially
the algebraic properties and the tropical additivity of
consonant plausibility functions – will be the subject of
future work.
Remark 3.1. Let us pause here to discuss a slight no-
tational abuse that we perpetrate throughout the paper.
When we say that “conformal transducer 𝜋 corresponds
to a plausibility contour”, we mean that conformal trans-
ducer 𝜋(⋅, 𝐲𝐧) corresponds to a plausibility contour 𝜋(⋅),
for all 𝐲𝐧 ∈ 𝕐𝑛.
From a practical point of view, adding consonance

to conformal prediction (that is, requiring (6) and (7)
to hold) creates no new computational challenges. The
standard use of Algorithm 1’s output is to extract the
prediction regionℛ𝛼(𝐲

𝐧) which is just the collection of
all 𝑦̃’s such that 𝜋(𝑦̃, 𝐲𝐧) exceeds 𝛼.
With the addition of consonance, Cella and Martin

[20] recommend two additional summaries. First, at least
in low-dimensional problems, a plot of 𝑦̃ ↦ 𝜋(𝑦̃, 𝐲𝐧) to
give a visual assessment of the information available in
the data 𝐲𝐧 regarding 𝑌𝑛+1, similar to the Bayesian pos-
terior predictive density function [20, Section 6]. Second,
for any 𝐴 ∈ Σ𝕐, the (prediction) upper probability at 𝐴
can be approximated as

Π𝐲𝐧(𝐴) ≈ max
𝑦̃ on the grid and in 𝐴

𝜋(𝑦̃, 𝐲𝐧).

Consonance also induces several practically relevant
properties that are inspected in Cella and Martin [20,
Section 4.2] and in Augustin, Coolen, De Cooman, and
Troffaes [5, Chapter 4].

4. Imprecise highest density regions
This section introduces the concept of Imprecise High-

est Density Region (IHDR), a subset of 𝕐 obtained from
a methodology that employs techniques from the impre-
cise probability literature [26]. Consider again a process
𝑌1, 𝑌2, … of random elements taking values in 𝕐.
Like in the case of conformal prediction, the goal is

to predict 𝑌𝑛+1 using a method that is valid. To this end,
an IHDR proceeds from a credal set 𝒫pred of candidate
distributions on 𝕐, which is supposed to be reliable in
the sense that it contains the true distribution.7

7Subscript “pred” denotes the fact that, in the present paper, we
are interested in a credal set of predictive distributions derived from
the data 𝐲𝐧 at hand via some procedure, e.g. generalized Bayes’ or
geometric updating [42].
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Definition 4.1 (Imprecise Highest Density Region [26]).
Let 𝒫pred be a credal set of distributions on 𝕐, and 𝑃 be
its lower probability. Call 𝑌𝑛+1 a random quantity that
takes values in 𝕐, and 𝛼 any value in [0, 1]. Then, set
IR𝛼 ⊆ 𝕐 is called a (1 − 𝛼)-Imprecise Highest Density
Region (IHDR) if

𝑃
[
𝑌𝑛+1 ∈ IR𝛼

]
= 1 − 𝛼

and ∫
IR𝛼

d𝑦 is a minimum. If 𝕐 is at most countable, we
replace ∫

IR𝛼
d𝑦 with | IR𝛼 |.

As a consequence of Definition 4.1, we have that IR𝛼
is the smallest subset of 𝕐 such that

𝑃[𝑌𝑛+1 ∈ IR𝛼] ≥ 1 − 𝛼, ∀𝑃 ∈ 𝒫pred. (8)

Here lies the appeal of the IHDR concept. Contrary to
the guarantee in (2) though – which holds for all the
possible exchangeable distributions 𝑃 on 𝕐 – the one in
(8) holds only for the distributions that are plausible for
the analysis at hand, that is, for all those in 𝒫pred.
Example. Let us now give an illustrating example of

how to derive an IHDR. Credal set 𝒫pred may originate
from different sources. One instance is robust Bayesian
inference [8, 18, 33], where𝒫pred corresponds to the (pos-
terior) predictive credal set induced by a prior credal set.
Suppose that we observe the first 𝑛 elements of the pro-
cess {𝑌𝑘}𝑘∈ℕ. A traditional Bayesian learner would first
specify a likelihood for the observations, and then elicit
a prior on the parameter of the likelihood distribution.
Imagine that the 𝑌𝑘 ’s are distributed according to a Pois-
son distribution Pois(𝜆), so that the conjugate prior for
the rate parameter 𝜆 is a Gamma distribution. Suppose
then that prior information is available but comes from
different sources or experiments. For instance, assum-
ing 𝜆 ∼ Gamma(𝑎𝑗 , 𝑏𝑗)may align with experiments on
one group 𝑗 ∈ {1, … , 𝐽}. Call 𝑃𝑗 the probability measure
whose pdf is Gamma(𝑎𝑗 , 𝑏𝑗), 𝑗 ∈ {1, … , 𝐽}. In this case,
a prior finitely generated credal set (FGCS)

𝒫prior =

⎧

⎨

⎩

𝑄 ∶ 𝑄 =

𝐽∑

𝑗=1

𝛽𝑗 ⋅ 𝑃𝑗 , 𝛽𝑗 ≥ 0,
𝐽∑

𝑗=1

𝛽𝑗 = 1

⎫

⎬

⎭

is a natural choice. This corresponds to the Bayesian
sensitivity analysis (BSA) approach to inference [7, 38,
41], [69, Section 5.9]. The extreme elements of 𝒫prior
are ex𝒫prior = {𝑃1, … , 𝑃𝐽}. By computing their posterior,
we obtain the extreme elements of the posterior FGCS,
ex𝒫post ⊆ {𝑃

post
1

, … , 𝑃
post
𝐽

} (continuing our example, the
elements of ex𝒫post are Gamma distributions with up-
dated shape and rate parameters).
The goal now is to predict 𝑌𝑛+1 using a valid or re-

liable method. To do so, first the agent derives the ex-
trema of the predictive FGCS, ex𝒫pred ⊆ {𝑃

pred
1

, … , 𝑃
pred
𝐽

}.
These are the probability measures whose pdf’s are

computed as 𝑝pred
𝑗

(𝑦𝑛+1|𝑦1, … , 𝑦𝑛) = ∫
∞

0
𝓁(𝑦𝑛+1|𝜆) ⋅

𝑝
post
𝑗

(𝜆|𝑦1, … , 𝑦𝑛)d𝜆, 𝑗 ∈ {1, … , 𝐽}, where 𝓁(𝑦𝑛+1|𝜆) is

our Poisson likelihood, and 𝑝post
𝑗

is the pdf of the poste-

rior measure 𝑃post
𝑗

, 𝑗 ∈ {1, … , 𝐽}. By well-known results
in Bayesian inference [43], each such a predictive dis-
tribution is a Negative Binomial. The predictive FGCS
is given by 𝒫pred = Conv(ex𝒫pred) ⊆ ∆𝕐, where Conv(⋅)
denotes the convex hull operator. By Caprio et al. [18,
Proposition 3], we know that 𝑃(𝐴) = inf𝑃∈ex𝒫pred 𝑃(𝐴) =

inf𝑃∈𝒫pred 𝑃(𝐴), for all 𝐴 ∈ Σ𝕐. Hence, to find our de-
sired IHDR, we only have to focus on searching for
the smallest region IR𝛼 such that (8) is satisfied for all
𝑃 ∈ ex𝒫pred. Notice that the complexity of computation
is linear in |ex𝒫pred|, that is, in the number of extreme
elements of 𝒫pred [5, Section 9.2.1]. ▴

Oftentimes, in Imprecise Probability theory, it is
posited that

𝐏 ∈ 𝒫pred, (9)

where – with an abuse of notation – 𝐏 has to be under-
stood as the marginal probability measure on 𝑌𝑛+1 de-
rived from the true joint distribution of 𝑌∞.8 This as-
sumption is not overly strong, as it may appear at first
glance. The credal set 𝒫pred will generally be wider, the
higher the uncertainty around the true 𝐏. There is also
an active literature that studies statistical tests which
check whether credal sets are calibrated à la (9) [2, 24,
39, 47, 56].
Assumption (9) is not needed for ℳ(Π𝐲𝐧). Indeed,

Martin [51] shows that Π𝐲𝐧 is the minimal outer conso-
nant approximation of the true data generating process
𝐏. This means thatΠ𝐲𝐧 is the narrowest upper bound for
the true distribution, that also satisfies the consonance
assumption. We can then conclude – although it is not
explicitly shown in their work – that credal regionℳ(Π)

contains the true data generating process.
Possible criticism to a generic IHDR. It requires

the agent to come up with 𝒫pred. To counter this ob-
jection, we point out how modeling choices are crucial
to model-based inference. A priori, we cannot say that
model-based approaches are to be preferred to model-
free ones, or vice versa. The choice will depend on
the available information. Let us also remark that con-
formal prediction is not a completely model-free ap-
proach either, since the user is required to specify a non-
conformity measure Ψ, which has a strong influence on
the size of the conformal prediction region.

8Throughout the paper, we denote by 𝐏 both the true data gener-
ating process on 𝑌∞ and its marginal on 𝑌𝑛+1. This abuse of notation
allows us to better communicate our results, and does not induce con-
fusion, as it is obvious from the context whether we are referring to
the joint or the marginal distributions.
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5. Building the equivalent prediction
region

In this section, we present the main contribution of
our work. We show that – for a given nonconformity
measure Ψ used to derive the conformal transducer 𝜋
– credal setℳ(Π𝐲𝐧) can be used to obtain a prediction
region that is equivalent to the CPR, and that retains the
same uniform guarantees.
Suppose (i) that the process 𝑌1, 𝑌2, … is exchangeable

and governed by a unique distribution 𝐏 (so that distri-
bution shifts are not allowed), and (ii) that the conformal
transducer 𝜋 is consonant, that is, sup

𝑦̃∈𝕐
𝜋(𝑦̃, 𝐲𝐧) = 1.

Let Π𝐲𝐧(𝐴) = sup
𝑦̃∈𝐴

𝜋(𝑦̃, 𝐲𝐧), for all 𝐴 ∈ Σ𝕐, be
the upper probability induced by 𝜋. Let also Π

𝐲𝐧
(𝐴) =

1 − Π𝐲𝐧(𝐴
𝑐), for all 𝐴 ∈ Σ𝕐, be the lower probability

dual to Π𝐲𝐧 . Letℳ(Π𝐲𝐧) be the credal set induced by
Π𝐲𝐧 , that is,

ℳ(Π𝐲𝐧) ∶=
{
𝑃 ∶ 𝑃(𝐴) ≤ Π𝐲𝐧(𝐴), ∀𝐴 ∈ Σ𝕐

}
.

To see thatℳ(Π𝐲𝐧) is indeed a credal set, we refer the
reader to Marinacci and Montrucchio [50] and Walley
[69]. We denote by IRℳ𝛼 , 𝛼 ∈ [0, 1], the IHDR associated
with the credal setℳ(Π𝐲𝐧) induced by the conformal
procedure, that is, IRℳ𝛼 ⊆ 𝕐 such thatΠ

𝐲𝐧
(IRℳ𝛼 ) = 1−𝛼

and ∫IRℳ𝛼 d𝑦 is minimal. Then, we have the following.

Proposition 5.1 (IHDR Corresponds to the Conformal
Prediction Region). For any 𝛼 ∈ [0, 1] and any 𝑛 ∈ ℕ,
the following is true

IRℳ𝛼 = ℛ𝛼(𝐲
𝐧).

Proof. Consider the function 𝛾 ∶ 𝕐 → [0, 1],

𝑦 ↦ 𝛾(𝑦) = {
𝜋(𝑦) if 𝜋(𝑦) ≤ 0.5

1 − 𝜋(𝑦) if 𝜋(𝑦) > 0.5
.

It is easy to see that 𝛾(𝑦) ≤ 𝜋(𝑦), for all 𝑦 ∈ 𝕐. In addi-
tion, by the consonance property of 𝜋, there exists 𝑦̃ ∈ 𝕐

such that 𝛾(𝑦̃) = 0. In turn, we have that [𝛾, 𝜋] is a cloud
[5, Definition 4.6]. Neumaier’s probabilistic constraint
on clouds [57], [5, Equation (4.9)] gives us the following

𝑃[𝑌𝑛+1 ∈ ℛ𝛼(𝐲
𝐧)]

= 𝑃[𝑌𝑛+1 ∈ {𝑦 ∈ 𝕐 ∶ 𝜋(𝑦, 𝐲𝐧) > 𝛼}]

≥ 1 − 𝛼 = Π
𝐲𝐧
(𝑌𝑛+1 ∈ IRℳ𝛼 ),

for all 𝑃 ∈ ℳ(Π𝐲𝐧). In turn, we have

Π
𝐲𝐧
[𝑌𝑛+1 ∈ ℛ𝛼(𝐲

𝐧)]

= Π
𝐲𝐧
[𝑌𝑛+1 ∈ {𝑦 ∈ 𝕐 ∶ 𝜋(𝑦, 𝐲𝐧) > 𝛼}]

≥ 1 − 𝛼 = Π
𝐲𝐧
(𝑌𝑛+1 ∈ IRℳ𝛼 ).

(10)

By the monotonicity of lower probabilities (see Section
2.2), then, we can conclude that IRℳ𝛼 ⊆ ℛ𝛼(𝐲

𝐧). But, by
the definition of Conformal Prediction Region, IRℳ𝛼 can-
not be strictly included inℛ𝛼(𝐲

𝐧). In turn, this implies
that IRℳ𝛼 = ℛ𝛼(𝐲

𝐧), as desired.

Proposition 5.1 ensures us of the following. Once we
derive the conformal transducer 𝜋, if we take the im-
precise probabilistic route based on (predictive) credal
setℳ(Π𝐲𝐧), we are able to obtain a prediction region
(an IHDR) IRℳ𝛼 . The latter corresponds to the Confor-
mal Prediction Regionℛ𝛼(𝐲

𝐧), for all possible choices of
significance level 𝛼 ∈ [0, 1]. We also point out how the
proof of Proposition 5.1 links Conformal Prediction to
the IP concept of a cloud, another profound connection
between the two literatures.
We note in passing that another proof of Proposition

5.1 exists, and is based onMartin [51, Page 25] as follows.
Thanks to the consonance of 𝜋, we have that

ℛ𝛼(𝐲
𝐧) = {𝑦 ∈ 𝕐 ∶ 𝜋(𝑦, 𝐲𝐧) > 𝛼}

=
⋂{

𝐴 ∈ Σ𝕐 ∶ Π𝐲𝐧
(𝐴) ≥ 1 − 𝛼

}

= IRℳ𝛼 ,

(11)

for all 𝛼 ∈ [0, 1].
A natural question at this point is whether IRℳ𝛼 en-

joys the same probabilistic guarantees asℛ𝛼(𝐲
𝐧). The

following proposition and corollary provide us with a
positive answer.

Proposition 5.2 (Elements of the IHDR). For all 𝛼 ∈

(0, 1], 𝑃 ∈ ℳ(Π𝐲𝐧) if and only if 𝑃[𝑌𝑛+1 ∈ {𝑦 ∈ 𝕐 ∶

𝜋(𝑦, 𝐲𝐧) > 𝛼}] ≥ 1 − 𝛼.9

Proof. Immediate from Augustin, Coolen, De Cooman,
and Troffaes [5, Proposition 4.1].

Corollary 5.1 (Probabilistic Guarantees of the IHDR).
For all 𝛼 ∈ [0, 1], the following holds uniformly in 𝑃 and
in 𝑛,10

𝑃[𝑌𝑛+1 ∈ IRℳ𝛼 ] ≥ 1 − 𝛼.

Proof. Pick any 𝛼 ∈ (0, 1] and any 𝑛 ∈ ℕ. Then, by Vovk,
Gammerman, and Shafer [68, Theorem 11.1] and Cella
and Martin [20, Section 4.2], we have that

𝑃[𝑌𝑛+1 ∈ {𝑦 ∈ 𝕐 ∶ 𝜋(𝑦, 𝐲𝐧) > 𝛼}] ≥ 1 − 𝛼, (12)

uniformly in 𝑃, that is, for all exchangeable distribu-
tion 𝑃 on 𝕐. By Proposition 5.2, then, all the (exchange-
able) probabilities 𝑃 ∈ ∆𝕐 satisfying (12) belong to

9The set {𝑦 ∈ 𝕐 ∶ 𝜋(𝑦, 𝐲𝐧) > 𝛼} is called a strong 𝛼-cut of 𝜋. If
we replace the strong inequality with a weak one, the set is called a
regular 𝛼-cut of 𝜋 [5, Section 4.6].

10Here too “uniformly in 𝑃” has to be understood as “for all ex-
changeable 𝑃 on 𝕐”.
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the credal set ℳ(Π𝐲𝐧). We also have that, by defini-
tion, Π

𝐲𝐧
[𝑌𝑛+1 ∈ IRℳ𝛼 ] = 1 − 𝛼, which implies that

𝑃[𝑌𝑛+1 ∈ IRℳ𝛼 ] ≥ 1 − 𝛼, for all 𝑃 ∈ ℳ(Π𝐲𝐧).
For 𝛼 = 0, the statement follows from (11) and Vovk,

Gammerman, and Shafer [68, Theorem 11.1]. Notice
how we could have directly used Vovk, Gammerman,
and Shafer [68, Theorem 11.1] to prove the whole result
(without splitting in the 𝛼 ∈ (0, 1] and 𝛼 = 0 cases),
but we preferred to state it as a corollary to Proposition
5.2 to better study the relationship between conformal
prediction and imprecise probabilities.

By combining Proposition 5.1 and Corollary 5.1 to-
gether, we can conclude that an imprecise probabilistic
approach delivers the same prediction region as classical
Transductive Conformal Prediction, and it retains the
same uniform probabilistic guarantees.
Let us also point out that Proposition 5.1 is an immedi-

ate consequence of Couso,Montes, and Gil [27, Theorem
2], where it is also shown that Corollary 5.1 holds for all
𝑃 ∈ ℳ(Π𝐲𝐧). Our result generalizes it slightly, by show-
ing that the statement actually holds for all exchangeable
𝑃 on 𝕐.

5.1. Varying the nonconformity measure Ψ. Propo-
sition 5.1 and Corollary 5.1 show that, once we fix the
non-conformity measure Ψ, an imprecise-probabilistic
approach gives us a prediction region that is equivalent
to the classical CPR. In the next paragraphs, wewill study
what happens when we change Ψ.
Notice that, for any 𝑛 ∈ ℕ representing the cardinality

of the (training) dataset, Conformal Prediction (CP) can
be seen as a set-valued function

𝐶𝑃 ∶ [0, 1] × 𝕐𝑛 × ℱ → Σ𝕐,

(𝛼, 𝐲𝐧, Ψ) ↦ 𝐶𝑃(𝛼, 𝐲𝐧, Ψ) = ℛΨ
𝛼 (𝐲

𝐧).
(13)

Here ℱ ⊆ ℝ𝕐𝑛+1 denotes the set of all possible non-
conformity measures,

ℱ ∶=
{
Ψ ∶ 𝕐𝑛 × 𝕐 → ℝ ∶ (𝐲𝐧+𝟏

−𝑖
, 𝑦𝑖) ↦ 𝜓𝑖(𝐲

𝐧+𝟏) ∈ ℝ
}
,

(14)

and ℛΨ
𝛼 (𝐲

𝐧) ≡ ℛ𝛼(𝐲
𝐧) ∈ Σ𝕐 denotes the Conformal

Prediction Region (in previous results we omitted the ex-
plicit reference to the choice of non-conformity measure
Ψ for notational convenience).11

Proposition 5.3 (Refining a CPR). Pick any 𝛼 ∈ [0, 1]

and any Ψ ∈ ℱ. Then, there exists Ψ′ ≠ Ψ such that
IRℳ𝛼 = ℛΨ

𝛼 (𝐲
𝐧) ⊇ ℛΨ′

𝛼 (𝐲𝐧), and the inclusion is strict for
some value of 𝛼. In addition, 𝑃[𝑌𝑛+1 ∈ ℛΨ′

𝛼 (𝐲𝐧)] ≥ 1−𝛼,
uniformly in 𝑃 and in 𝑛.12

11We make the implicit assumption thatℛΨ
𝛼 (𝐲

𝐧) ∈ Σ𝕐. To relax it,
simply substitute Σ𝕐 with 2𝕐.

12Here too “uniformly” has to be understood in the sense of “for
all the exchangeable probability measures on 𝕐”.

Proof. The first part is an immediate consequence of
Vovk, Gammerman, and Shafer [68, Theorem 2.10].
There, the authors provide a proof by construction, that
can be used to deriveℛΨ′

𝛼 (𝐲𝐧), and in turn the new non-
conformity measure Ψ′. The uniform probabilistic guar-
antee follows from Vovk, Gammerman, and Shafer [68,
Theorem 1.11].

Proposition 5.3 tells us that, while it is true that the
CPRℛΨ

𝛼 (𝐲
𝐧) corresponds to the IHDR IRℳ𝛼 associated

with the conformally-built credal setℳ(Π𝐲𝐧) for a fixed
non-conformity measure Ψ, we can always find a new
non-conformity measure Ψ′ that further improves on
IRℳ𝛼 = ℛΨ

𝛼 (𝐲
𝐧). In principle, different nonconformity

measures may reduce the size of the credal set; in addi-
tion, further shrinking the set may eventually require
more data.

5.2. Discussion. Before concluding this section, let us
add a discussion of the results we presented so far. As
pointed out by RyanMartin and coauthors in their recent
works (see e.g. [21, 51, 52], and especially [19]), there
seems to be a sense in which the conformal prediction
procedure assumes a vacuous prior, which captures the
concept of maximal (prior) ambiguity. That is, confor-
mal prediction appears to be akin to a Bayesian Sensi-
tivity Analysis (BSA) procedure [7] whose prior credal
set is the whole space of parameter probabilities. In BSA,
though, the posterior parameter probabilities (and hence,
also the predictive probabilities on 𝕐) obtained from
this prior class are again vacuous: no finite sample is
enough to annihilate a sufficiently extreme prior belief
[59], [18, Appendix B]. On the contrary, conformal pre-
diction is able to derive a non-vacuous predictive credal
setℳ(Π𝐲𝐧) ⊊ ∆𝕐.
This seems to suggest that there is something peculiar

about conformal prediction’s (possibilistic) quantifica-
tion of uncertainty, that allows it to handle the vacuous
prior case more efficiently than other imprecise proba-
bility frameworks like BSA. We conjecture that the main
reason for this is that CP enjoys half-coherence [51, Sec-
tion 5.2.2], while departing from the classical imprecise
probabilistic notion of (full) coherence [69, Section 2.5].
The latter entails extreme conservatism in the vacuous
prior case: as we pointed out before, a vacuous prior
set produces a vacuous predictive set. The gap between
conformal prediction, a powerful tool that efficiently
handles vacuous prior information, and the theoretically
well-developed imprecise-probabilistic literature – to-
gether with how to strike a balance between these two
paradigms – remains a largely unexplored research area,
and will be the object of future work.
Another issue worth discussing is that the consonance

assumption induces a “distortion” in the shape of the
credal setℳ(Π𝐲𝐧) induced by the conformal transducer
𝜋. With this, we mean thatℳ(Π𝐲𝐧) is “pushed” towards
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the boundaries of the space of probabilities on 𝕐, and
that the true data generating process is not its centroid.
To see this, consider the following example.
Suppose that𝕐 = {𝐴, 𝐵, 𝐶}, and thatwe observe 20𝐴’s,

30 𝐵’s and 50 𝐶’s. As a consequence of these observations,
we have that vector 𝑝emp = (0.2, 0.3, 0.5)⊤ represents the
empirical pmf. Suppose that the learner chooses non-
conformity measure 𝜓𝑖(𝐲𝐧+𝟏) = 1−𝑝emp(𝑦𝑖 = 𝑘), for all
𝑖 ∈ {1, … , 𝑛 + 1}. Put 𝑇𝑖 = 𝜓𝑖(𝐲

𝐧+𝟏), for all 𝑖 ∈ {1, … , 𝑛 +

1}. We have that 𝜓𝑖(𝐲𝐧+𝟏) = 0.8 for the 𝑦𝑖 ’s that are equal
to 𝐴, 𝜓𝑖(𝐲𝐧+𝟏) = 0.7 for the 𝑦𝑖 ’s that are equal to 𝐵, and
𝜓𝑖(𝐲

𝐧+𝟏) = 0.5 for the 𝑦𝑖 ’s that are equal to 𝐶. In turn,
we derive the conformal transducer 𝜋 as 𝜋(𝑦̃ = 𝑘, 𝐲𝐧) =
1

𝑛+1

∑𝑛+1

𝑖=1
1[𝑇𝑖 ≥ 𝑇𝑛+1], for all 𝑘 ∈ 𝕐, so that

𝜋(𝑦̃, 𝐲𝐧) =

⎧
⎪

⎨
⎪

⎩

21

101
𝑦̃ = 𝐴

51

101
𝑦̃ = 𝐵

1 𝑦̃ = 𝐶

.

As we can see, our choice on non-conformity measure
𝜓𝑖(𝐲

𝐧+𝟏), 𝑖 ∈ {1, … , 𝑛 + 1}, ensures consonance. The
values of the upper probabilities of the elements of Σ𝕐 =
2𝕐 can be found in Table 1. To derive them, we simply
computedΠ𝐲𝐧(𝐴) = sup

𝑦̃∈𝐴
𝜋(𝑦̃, 𝐲𝐧) andΠ

𝐲𝐧
(𝐴) = 1−

Π𝐲𝐧(𝐴
𝑐), for all 𝐴 ∈ 2𝕐. Of course, Π𝐲𝐧(∅) = Π

𝐲𝐧
(∅) =

0, and Π𝐲𝐧(𝕐) = Π
𝐲𝐧
(𝕐) = 1.

Π
𝐲𝐧

Π𝐲𝐧

{𝐴} 0 21∕101

{𝐵} 0 51∕101

{𝐶} 50∕101 1

{𝐴, 𝐵} 0 51∕101

{𝐵, 𝐶} 80∕101 1

{𝐴, 𝐶} 50∕101 1

Table 1. Values that the lower and upper probabilities as-
sign to the elements of Σ𝕐 = 2𝕐.

We depict the credal setℳ(Π𝐲𝐧) associated with the
values of upper probability Π𝐲𝐧 in Figure 2. As we can
see, the consonance assumption “pushes”ℳ(Π𝐲𝐧) to-
wards the boundary of the unit simplex, and – in this
particular case – towards the vertex associatedwith event
𝐶. Notice that this is not a mere consequence of the non-
conformity measure that we chose in this example, but
rather a characteristic ensuing from enforcing conso-
nance. Whether this deformation has an effect on the
size of the IHDR is an open question. What is appar-
ent, though, is that it makes it difficult to gain insights
around the true data generating process, which is not
the centroid ofℳ(Π𝐲𝐧) [55].

In addition, if we measure the aleatoric uncertainty
AU[ℳ(Π𝐲𝐧)] – the type of uncertainty that is inherent
to the data generating process, and as such, irreducible –
associated withℳ(Π𝐲𝐧) via the lower entropy 𝐻(𝑃) =
inf

𝑃∈ℳ(Π𝐲𝐧 )
𝐻(𝑃) [1], we have that AU[ℳ(Π𝐲𝐧)] =

𝐻(𝑃) = 0, because 𝛿{𝐶} ∈ ℳ(Π𝐲𝐧).13 While this is a
feature of the measure chosen for the AU, it still seems to
highlight a shortcoming of the consonance assumption.
Finally, we point out how proving or disproving a fun-

damental incompatibility between consonance andmini-
mality (i.e. whether consonancemight prevent the credal
set from being minimal in size) is a highly non-trivial
question, which we plan to inspect in future research.

A C

B

0.2

0.3

0.5
21

101

51
101

50
101

Figure 2. Visual representation ofℳ(Π𝐲𝐧) in our exam-
ple. As we can see, it is “pushed” towards the
boundary of the unit simplex. We also depicted
𝑝emp = (0.2, 0.3, 0.5)⊤ as a black dot.

6. Conclusion
In the present work we study the conformal construc-

tion of credal sets. We show that the IHDR generated by
the credal set induced by the conformal transducer 𝜋 is
equivalent to the classical CPR, and it retains the same
uniform probabilistic guarantee. Our results are devised
in the general effort of framing conformal prediction as a
model-free imprecise probabilistic method. This contin-
ues the undertaking of Cella and Martin [20], who show
that CP is related to credal sets and inferential models
[53]; we prove that it is also linked to clouds.
Notice that throughout the paper we tacitly operated

under the closed world assumption [15], that is, we as-
sumed that the support of the true data generating pro-
cess does not change, and it is equal to 𝕐. In the future,
we plan to forego this requirement.
We also intend to extend the conformal construction of

credal sets to the generalized CP frameworks studied in
Barber, Candès, Ramdas, and Tibshirani [6] and Gibbs,
Cherian, and Candès [40].

13Here 𝛿⋅ denotes the Dirac measure.
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Furthermore, we plan to (i) study in greater detail
the empirical implications of our results, and (ii) in-
spect whether set-function 𝐶𝑃 in (13) is continuous (in
some sense) in Ψ. If that were true, it would be easier
to find Ψ⋆ that minimizes ∫

ℛΨ
𝛼 (𝐲

𝐧)
d𝑦, that is, the non-

conformity measure Ψ⋆ that induces the smallest pos-
sible CPR which still satisfies the 1 − 𝛼 uniform proba-
bilistic guarantee.
In addition – building on our considerations in Section

5.2 – we plan to study the geometry of the conformally-
built credal setℳ(Π𝐲𝐧), e.g. in the spirit of Cuzzolin [28].
We are particularly interested in (a) its position within
the simplex, and (b) the distance between the true data
generating process 𝐏 and any notion of the centroid of
ℳ(Π𝐲𝐧) proposed by Miranda and Montes [55].
Finally, we would like to further our investigation on

the shortcomings of the consonance assumption. This
is because [16] showed that there is at least a case of
conformalized credal sets for classification problems in
which such an assumption can be foregone.
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