
Conformal Prediction Regions are
Imprecise Highest Density Regions

Michele Caprio Yusuf Sale Eyke Hüllermeier
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1. Motivation

CONTINUE the endeavor started by Cella and Martin [5] to relate Conformal Prediction (CP,
[1]) and Imprecise Probabilities (IPs, [2, 10, 13]).
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Research Question. Do Imprecise and Conformal Prediction Regions coincide? Do we
get some bonus intuition on CP and IPs (and their relations) when investigating this?

2. Full Conformal Prediction

SUPPOSE that there is an exchangeable process Y1, Y2, . . . with distribution P, where each
Yi is a random element taking values in (Y,!Y). We observe the first n terms of the

process, Yn = (Y1, . . . , Yn)
→.

Goal. Predict Yn+1 using a method that is valid.

Let Yn+1 = (Yn, Yn+1)
→. Consider the transform

Yn+1 ↑ Tn+1 = (T1, . . . , Tn+1)
→

defined by the rule

Ti := ωi
(
Yn+1

)
↓ ”

(
yn+1↔i , yi

)
, ↗i ↘ {1, . . . , n + 1},

where yn+1↔i = yn+1\{yi}, and the non-conformity measure ” : Yn≃Y ↑ R is invariant to per-
mutations in its first vector argument. Large values of ωi(yn+1) suggest that the observation
yi is “strange” and does not conform to the rest of the data yn+1↔i .

Yn+1 has not yet been observed: The above calculations cannot be carried out exactly. Nev-
ertheless, the exchangeability-preserving properties of the transformations ωi provide a pro-
cedure to rank candidate values ỹ of Yn+1 based on the observed Yn = yn.

The output of Algorithm 1 is conformal transducer ε(·,yn) [12]: A measure of plausibility of
the assertion that Yn+1 = ỹ, given data yn.

ε(·,yn) is used to derive the Conformal Prediction Regions (CPRs) [11, Equation (2)],

↗ϑ ↘ [0, 1], Rϑ(y
n) := {ỹ ↘ Y : ε(ỹ,yn) > ϑ},

which satisfy the following uniformly in n and in P [12],

P [Yn+1 ↘ Rϑ(y
n)] ⇐ 1↔ ϑ.

3. Imprecise Probabilistic Background Notions

Definition: (Consonant) Plausibility Function [2]
An upper probability P is k-alternating if for every collection {A,A1, . . . , Ak} ⇒ !Y such that
Ai ⇒ A, for all i ↘ {1, . . . , k},

ϖ(A) ⇑
∑

⇓⇔=I⇒{1,...,k}
(↔1)|I|↔1ϖ(↖i↘IAi). (1)

P is called a plausibility function pl if it is an ↙-alternating capacity, i.e., if (1) holds ↗k.
A plausibility function pl is said to be consonant if there exists a plausibility contour

ε : Y ↑ [0, 1] such that (i) supy↘Y ε(y) = 1; (ii) pl(A) = supy↘A ε(y), A ↘ !Y.

Lemma: Algebraic Properties of Consonant Plausibility Function
A consonant plausibility function pl is a monoid homomorphism between the monoids
(!Y,→) and ([0, 1],↑), where ↖ is the set union operation and ∝ is the tropical addition.

Definition: Imprecise Highest Density Region (IHDR) [7]
Let P be a lower probability, and fix any ϑ ↘ [0, 1]. An Imprecise Highest Density Region
is a set IRϑ ′ !Y such that (i) P [IRϑ] = 1↔ ϑ; (ii)

∫
IRϑ

dy is a minimum.

4. Relations Between Conformal Prediction and Imprecise Probabilities

Definition: Under Consonance CP is Associated with an Upper Probability [5]
Suppose that the conformal transducer satisfies consonance, i.e.

sup
ỹ↘Y

ε(ỹ,yn) = 1, for all yn ↘ Yn.

Then, we can define a (predictive) upper probability as #yn(A) = supỹ↘A ε(ỹ,yn), A ↘ !Y.

Consonance (that can also be satisfied with a transformation of the conformal transducer ε)
holds quite generally e.g. for conformal prediction in continuous-data problems [4].
With #yn, we obtain “for free” a credal set M(#yn) := {P : P (A) ⇑ #yn(A), ↗A ↘ !Y}.

Lemma: Properties of #yn

Let A ⇒ !Y be a generic collection of subsets of Y. Upper probability #yn is (i) supremum
preserving; (ii) coherent à la Walley [13]; and (iii) tropically finitely additive.

Propositions: CPRs are IHDRs

Let IRM
ϑ be the IHDR for M(#yn). For any ϑ ↘ [0, 1] and any n ↘ N, the following is true,

IRM
ω = Rω(y

n).

In addition, P [Yn+1 ↘ IRM
ϑ ] ⇐ 1↔ ϑ holds uniformly in P and in n.

5. Discussion

THERE seems to be a sense in which CP assumes a vacuous prior [4, 6, 8, 9]. That is, CP
appears akin to a Bayesian Sensitivity Analysis (BSA) procedure [3] whose prior credal

set is the whole space of parameter probabilities. Contrary to BSA, though, CP is able to
derive a non-vacuous predictive credal set M(#yn) ⊋ $Y.
Conjecture. The main reason for this, is that CP enjoys half-coherence [8, Section 5.2.2].

Consonance induces a “distortion” in the shape of M(#yn). The true data generating
process need not be its centroid.
Example. Suppose Y = {A,B,C}, and observe 20 A’s, 30 B’s and 50 C ’s. As a conse-
quence, empirical pmf: pemp = (0.2, 0.3, 0.5)→. Choose non-conformity measure ωi(y

n+1) =
1↔ pemp(yi = k), for all i ↘ {1, . . . , n + 1}.
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Open Question 1. Why this happens?
Open Question 2. What are the consequences on the measure of AU?
Open Question 2.Is M(#yn) minimal (i.e. the smallest possible credal set associated with CP)?
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