

Conformal Prediction Regions are Imprecise Highest Density Regions

Michele Caprio

Yusuf Sale

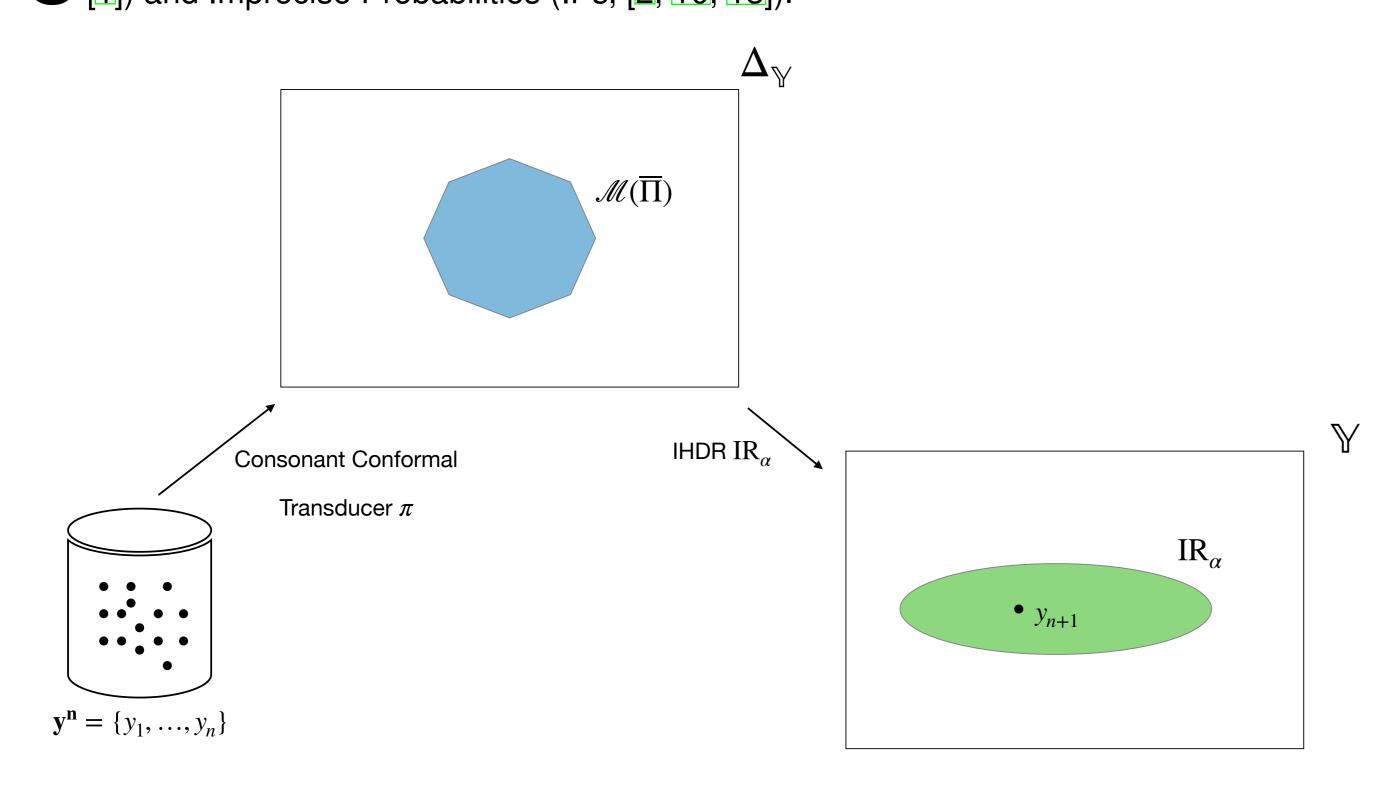
Eyke Hüllermeier

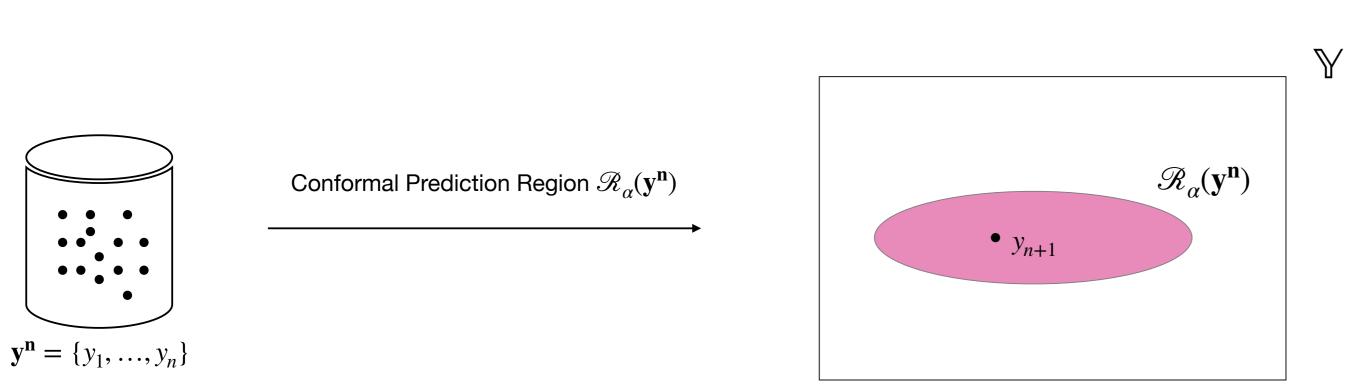
The University of Manchester & Manchester Centre for Al Fundamentals, Manchester, UK Ludwig-Maximilians-Universität München & Munich Center for Machine Learning, Munich, Germany

michele.caprio@manchester.ac.uk
{yusuf.sale,eyke}@ifi.lmu.de

1. Motivation

ONTINUE the endeavor started by Cella and Martin [5] to relate Conformal Prediction (CP, 11) and Imprecise Probabilities (IPs, [2, 10, 13]).





Research Question. Do Imprecise and Conformal Prediction Regions **coincide**? Do we get some bonus intuition on CP and IPs (and their relations) when investigating this?

2. Full Conformal Prediction

SUPPOSE that there is an **exchangeable** process Y_1, Y_2, \ldots with distribution \mathbf{P} , where each Y_i is a random element taking values in $(\mathbb{Y}, \Sigma_{\mathbb{Y}})$. We observe the first n terms of the process, $\mathbf{Y}^{\mathbf{n}} = (Y_1, \ldots, Y_n)^{\top}$.

Goal. Predict Y_{n+1} using a method that is **valid**.

Let $\mathbf{Y^{n+1}} = (\mathbf{Y^n}, Y_{n+1})^{\top}$. Consider the transform

$$\mathbf{Y}^{\mathbf{n+1}} \to \mathbf{T}^{\mathbf{n+1}} = (T_1, \dots, T_{n+1})^{\top}$$

defined by the rule

$$T_i := \psi_i \left(\mathbf{Y^{n+1}} \right) \equiv \Psi \left(\mathbf{y_{-i}^{n+1}}, y_i \right), \quad \forall i \in \{1, \dots, n+1\},$$

where $\mathbf{y_{-i}^{n+1}} = \mathbf{y^{n+1}} \setminus \{y_i\}$, and the *non-conformity measure* $\Psi : \mathbb{Y}^n \times \mathbb{Y} \to \mathbb{R}$ is invariant to permutations in its first vector argument. Large values of $\psi_i(\mathbf{y^{n+1}})$ suggest that the observation y_i is "strange" and does not conform to the rest of the data $\mathbf{y_{-i}^{n+1}}$.

 Y_{n+1} has not yet been observed: The above calculations cannot be carried out exactly. Nevertheless, the exchangeability-preserving properties of the transformations ψ_i provide a procedure to rank candidate values \tilde{y} of Y_{n+1} based on the observed $\mathbf{Y^n} = \mathbf{y^n}$.

Algorithm 1 Full Conformal prediction (CP)

Initialize: data y^n , non-conformity measure Ψ , grid of \tilde{v} values

for each \tilde{y} value in the grid do set $y_{n+1} = \tilde{y}$ and write $\mathbf{y^{n+1}} = \mathbf{y^n} \cup \{y_{n+1}\};$ define $T_i = \psi_i(\mathbf{y^{n+1}})$, for all $i \in \{1, ..., n+1\};$ evaluate $\pi(\tilde{y}, \mathbf{y^n}) = (n+1)^{-1} \sum_{i=1}^{n+1} \mathbb{1}[T_i \geq T_{n+1}];$ end for

return $\pi(\tilde{y}, \mathbf{y^n})$ for each \tilde{y} on the grid.

The output of Algorithm 1 is *conformal transducer* $\pi(\cdot, \mathbf{y^n})$ [12]: A measure of plausibility of the assertion that $Y_{n+1} = \tilde{y}$, given data $\mathbf{y^n}$.

 $\pi(\cdot, \mathbf{y^n})$ is used to derive the *Conformal Prediction Regions* (CPRs) [11, Equation (2)],

$$\forall \alpha \in [0, 1], \quad \mathscr{R}_{\alpha}(\mathbf{y^n}) := \{ \tilde{y} \in \mathbb{Y} : \pi(\tilde{y}, \mathbf{y^n}) > \alpha \},$$

which satisfy the following uniformly in n and in P [12],

$$P[Y_{n+1} \in \mathscr{R}_{\alpha}(\mathbf{y^n})] \ge 1 - \alpha.$$

3. Imprecise Probabilistic Background Notions

Definition: (Consonant) Plausibility Function [2]

An upper probability \overline{P} is k-alternating if for every collection $\{A,A_1,\ldots,A_k\}\subseteq \Sigma_{\mathbb{Y}}$ such that $A_i\subseteq A$, for all $i\in\{1,\ldots,k\}$,

$$\nu(A) \le \sum_{\emptyset \ne \mathcal{I} \subseteq \{1,\dots,k\}} (-1)^{|\mathcal{I}|-1} \nu(\cup_{i \in \mathcal{I}} A_i). \tag{1}$$

 \overline{P} is called a **plausibility function** pl if it is an ∞ -alternating capacity, i.e., if (1) holds $\forall k$. A plausibility function pl is said to be **consonant** if there exists a *plausibility contour* $\pi: \mathbb{Y} \to [0,1]$ such that (i) $\sup_{y \in \mathbb{Y}} \pi(y) = 1$; (ii) $pl(A) = \sup_{y \in A} \pi(y)$, $A \in \Sigma_{\mathbb{Y}}$.

Lemma: Algebraic Properties of Consonant Plausibility Function

A consonant plausibility function pl is a monoid homomorphism between the monoids $(\Sigma_{\mathbb{Y}}, \cup)$ and $([0, 1], \oplus)$, where \cup is the set union operation and \oplus is the tropical addition.

Definition: Imprecise Highest Density Region (IHDR) [7]

Let \underline{P} be a lower probability, and fix any $\alpha \in [0,1]$. An **Imprecise Highest Density Region** is a set $IR_{\alpha} \subset \Sigma_{\mathbb{Y}}$ such that (i) $\underline{P}[IR_{\alpha}] = 1 - \alpha$; (ii) $\int_{IR_{\alpha}} dy$ is a minimum.

4. Relations Between Conformal Prediction and Imprecise Probabilities

Definition: Under Consonance CP is Associated with an Upper Probability [5]

Suppose that the conformal transducer satisfies consonance, i.e.

$$\sup_{\tilde{y} \in \mathbb{Y}} \pi(\tilde{y}, \mathbf{y^n}) = 1, \quad \text{ for all } \mathbf{y^n} \in \mathbb{Y}^n.$$

Then, we can define a (predictive) upper probability as $\overline{\Pi}_{\mathbf{y^n}}(A) = \sup_{\widetilde{y} \in A} \pi(\widetilde{y}, \mathbf{y^n}), A \in \Sigma_{\mathbb{Y}}$.

Consonance (that can also be satisfied with a transformation of the conformal transducer π) holds quite generally e.g. for conformal prediction in continuous-data problems [4]. With $\overline{\Pi}_{\mathbf{y^n}}$, we obtain "for free" a credal set $\mathcal{M}(\overline{\Pi}_{\mathbf{y^n}}) := \{P : P(A) \leq \overline{\Pi}_{\mathbf{y^n}}(A), \forall A \in \Sigma_{\mathbb{Y}}\}.$

Lemma: Properties of $\overline{\Pi}_{\mathbf{y}^{\mathbf{n}}}$

Let $A \subseteq \Sigma_{\mathbb{Y}}$ be a generic collection of subsets of \mathbb{Y} . Upper probability $\overline{\Pi}_{\mathbf{y^n}}$ is (i) supremum preserving; (ii) coherent à la Walley [13]; and (iii) tropically finitely additive.

Propositions: CPRs are IHDRs

Let $IR^{\mathcal{M}}_{\alpha}$ be the IHDR for $\mathcal{M}(\overline{\Pi}_{\mathbf{V}^n})$. For any $\alpha \in [0,1]$ and any $n \in \mathbb{N}$, the following is true,

$$\mathsf{IR}^\mathcal{M}_lpha = \mathscr{R}_lpha(\mathrm{y^n}).$$

In addition, $P[Y_{n+1} \in \mathsf{IR}^{\mathcal{M}}_{\alpha}] \geq 1 - \alpha$ holds uniformly in P and in n.

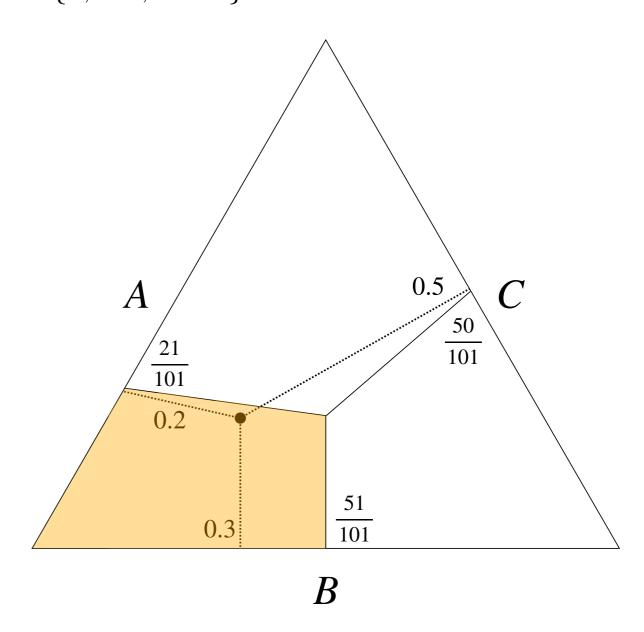
5. Discussion

THERE seems to be a sense in which CP assumes a vacuous prior [4, 6, 8, 9]. That is, CP appears akin to a Bayesian Sensitivity Analysis (BSA) procedure [3] whose prior credal set is the whole space of parameter probabilities. Contrary to BSA, though, CP is able to derive a non-vacuous predictive credal set $\mathcal{M}(\overline{\Pi}_{\mathbf{v}^n}) \subsetneq \Delta_{\mathbb{Y}}$.

Conjecture. The main reason for this, is that CP enjoys half-coherence [8, Section 5.2.2].

Consonance induces a "distortion" in the shape of $\mathcal{M}(\overline{\Pi}_{\mathbf{y^n}})$. The true data generating process need not be its centroid.

Example. Suppose $\mathbb{Y} = \{A, B, C\}$, and observe 20 A's, 30 B's and 50 C's. As a consequence, empirical pmf: $p^{\mathsf{emp}} = (0.2, 0.3, 0.5)^{\mathsf{T}}$. Choose non-conformity measure $\psi_i(\mathbf{y^{n+1}}) = 1 - p^{\mathsf{emp}}(y_i = k)$, for all $i \in \{1, \dots, n+1\}$.



Open Question 1. Why this happens?

Open Question 2. What are the consequences on the measure of AU?

Open Question 2.Is $\mathcal{M}(\overline{\Pi}_{\mathbf{V}^n})$ minimal (i.e. the smallest possible credal set associated with CP)?

