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Abstract

Algorithm configuration deals with the automatic optimization
of an algorithm’s parameters to maximize its performance on a
distribution of problem instances, such as Boolean satisfiability
or the traveling salesperson problem. While significant progress
has been made in developing optimizers for algorithm configura-
tion — so-called algorithm configurators — their evaluation remains
computationally expensive and often relies on real-world scenar-
ios with hard-to-control characteristics. This makes it challeng-
ing to analyze their strengths and weaknesses systematically. To
address this, we introduce SynthACticBench, a synthetic bench-
mark specifically designed to isolate and investigate key proper-
ties of algorithm configuration problems. Our benchmark distin-
guishes between properties related to the configuration space and
those associated with the objective function. We define a config-
urator’s ability to handle a particular property as its capability —
for example, the capability to manage hierarchical configuration
spaces. Using SynthACticBench, we evaluate two state-of-the-art
algorithm configurators, SMAC and irace, examining their com-
plementary capabilities and analyzing their performances across
diverse benchmark functions. By providing a controlled, scalable,
and capability-based evaluation environment, SynthACticBench
facilitates a more targeted analysis of algorithm configurators, help-
ing to advance research in the field. The benchmark is available at:
https://github.com/annaelisalappe/SynthACticBench/.
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1 Introduction

Automated algorithm configuration (AC) is a critical component in
the design and optimization of algorithms. It involves systematically
optimizing an algorithm’s parameters to maximize performance
on problem instances that follow a specific distribution [36]. In
many applications, ranging from combinatorial optimization to
machine learning, algorithm efficiency and effectiveness are highly
sensitive to parameter configurations [3, 7, 11, 23, 29], referred to
as hyperparameters in the machine learning community.

Automated algorithm configurators have been developed to tackle
this challenge, allowing practitioners to efficiently identify high-
performing configurations without manual intervention [2, 18, 20,
21, 27, 28, 32]. However, evaluating and improving these configu-
rators remains challenging due to the complexity and diversity of
real-world configuration problems used for validation.

Existing benchmarks for algorithm configurators often rely on
real-world use cases or adapted algorithm design problems [10,
23, 24, 38]. While these benchmarks provide practical insights and
highlight the importance of the problem; they are limited in that
the underlying characteristics of the configuration problems are
difficult to control. This lack of control hinders the precise analy-
sis of configurator behavior and makes it challenging to attribute
performance to specific capabilities of an algorithm configurator.
Consequently, identifying strengths, weaknesses, and areas for im-
provement becomes difficult. For example, configurators may per-
form well on certain benchmarks due to favorable characteristics,
such as few parameters or benign search landscapes [32], but strug-
gle in scenarios with high-dimensional spaces, noisy performance
functions, or a large proportion of irrelevant parameters.

To address these limitations, we propose the synthetic bench-
mark SynthACticBench. This evaluation framework is inspired
by Hernandez-Orallo [16], who proposes to evaluate a system based
on its cabilities. In our context, a capability refers to the extent to
which an algorithm configurator can handle a specific challenge
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Figure 1: SynthACticBench assesses the capabilities of algorithm configurators - their abilities to handle specific challenges
related to the configuration space and properties of the objective function in algorithm configuration problems.

related to an AC problem effectively. By structuring our benchmark
around distinct capabilities, we can systematically isolate and ana-
lyze key challenges commonly encountered in AC. Specifically, we
define and investigate 14 distinct capabilities, evaluating configura-
tors on challenges related to the configuration space, e.g., managing
mixed parameter types, and challenges arising from the objective
function, e.g., dealing with censoring due to timeouts.

Contributions. We propose SynthACticBench to evaluate algo-
rithm configurators. All in all, our contributions are threefold.

1. We define a comprehensive set of capabilities relevant to
algorithm configuration tasks and introduce the synthetic
benchmark SynthACticBench, designed for a targeted eval-
uation of algorithm configurators.

2. We conduct an exemplary evaluation of two state-of-the-art
algorithm configurators, Sequential Model-based Algorithm
Configuration (SMAC) [18] and Iterated Racing (irace) [28],

and random search as a common baseline on SynthACticBench,

providing insights into their performance across diverse
problem landscapes.

3. We implement SynthACticBench in a controlled and scal-
able environment, advancing future research in AC.

2 Algorithm Configuration

In many computationally complex optimization problems or con-
straint satisfaction tasks, an algorithm’s performance is highly
sensitive to the choice of its parameter configurations. These pa-
rameters, which may be of different types, such as categorical,
continuous, or integer, span the algorithm’s configuration space ©.
The effective configuration of these parameters is crucial to achiev-
ing optimal performance on a given class of problem instances. The
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process of automatically identifying high-performing parameter
configurations is referred to as algorithm configuration (AC) [36].

Formally, the AC problem for a target algorithm A can be defined
by a 4-tuple (O, 7, P, c¢) where © denotes the configuration space, 7
the instance space over which a probability distribution P is defined
and ¢ : © X 7 — R a cost metric, evaluating the performance of a
parameter configuration # € © on an instance i € 7. The configu-
ration space © comprises all (feasible) combinations of parameter
configurations, and 7 represents the instance space, which encom-
passes the set of problem instances for which the algorithm must be
configured. The cost metric c is typically related to the quality of the
solution returned by A, the runtime needed for obtaining a result,
or multiple of such criteria simultaneously. In the latter setting,
the cost metric ¢ maps to R” where n is the number of objectives
considered simultaneously [6]. For many real-world algorithms,
¢(0, 1) may exhibit stochastic behavior due to internal randomness
or environmental noise, necessitating the use of expected values
for evaluation.

The AC problem can thus be formulated as the following opti-
mization problem:

0* € argminE;_p [c(0,1)] .
0cO
In practical settings, the distribution P is typically approximated
by a finite i.i.d.-sampled set of training instances liyain C 7, which
reduces the above optimization problem to:
fe argmin—— c(6,i).

Tipns
6O | tra1n| i€ liain

Homogeneity Assumption. A fundamental assumption underly-
ing the AC problem is that the configuration space © contains a
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solution that generalizes well across the instance space 7. To this
end, we assume the problem instances to be homogeneous, meaning
that a configuration performs similarly across different problem
instances [37]. For some settings in the AC literature, such as per-
instance algorithm configuration [25, 43], this assumption is relaxed
to a set of problem instances comprising homogeneous subsets.
However, in this work, we stick to the homogeneity assumption.

Generally speaking, we can distinguish between two levels of
homogeneity: weak homogeneity and strong homogeneity. While
the former only requires the best configuration to perform con-
sistently the best across problem instances, the latter requires the
entire ranking of configurations to be consistent. In other words, for
any two configurations 6, 0, w.l.o.g. c(8},i) < c(0, i) holds for
all i € T if strong homogeneity is assumed. In SynthACticBench,
we create benchmarks where strong homogeneity is fulfilled.

3 Related Work

Various synthetic benchmarks have been proposed in the liter-
ature to evaluate and compare optimization algorithms. These
benchmarks are crucial for testing algorithms in a controlled, in-
terpretable, and scalable environment. For instance, the Black-Box
Optimization Benchmarking Suite (BBOB) [14] provides a set of
general synthetic benchmarking functions. The original version
contains 24 functions, varying in the number of conditioning vari-
ables, modality, and global structure. It has since been extended
to the Comparing Continuous Optimizers Benchmarking Suite
(COCO) [15], which additionally includes noisy functions, multi-
objective tasks, and discrete parameters. Further, the IOHprofiler [9]
offers a well-defined benchmarking framework, with a problem set
of 25 pseudo-Boolean functions selected to cover diverse charac-
teristics of real-world combinatorial optimization problems. These
benchmarks have been widely used in comparison studies [35, 41],
demonstrating their importance. However, as the benchmarks were
originally designed for general optimization methods, it is unclear
whether they can also be used in more specific domains, e.g., com-
paring algorithm configurators. For instance, Doerr et al. [8] inves-
tigated the suitability of the BBOB testbed for simulating hyperpa-
rameter optimization problems and found that the BBOB functions
may not adequately represent certain parameter tuning problems.

In contrast to synthetic benchmarks, real-world benchmarks
specifically tailored for AC have also been developed [23, 24]. These
benchmarks are designed to encompass diverse AC problems that
vary across key dimensions, e.g., the objective function, configu-
ration space, or the type of target algorithm objective [36]. While
these benchmarks are well-suited for comparing algorithm con-
figurators, they also come with limitations. Since the dimensions
of the AC problems are often combined within benchmark tasks,
it can be pretty challenging to determine why a configurator per-
forms well on a given problem instance. Additionally, real-world
benchmarks offer limited control over specific problem dimensions.
For example, AClib [24] features parameter spaces ranging from
2 to 270 parameters and a single problem class consisting of 768
parameters. However, there is a significant gap in the coverage of
problems with intermediate-sized parameter spaces.

Moreover, all of the aforementioned benchmarks, whether syn-
thetic or real-world, follow a task-oriented evaluation paradigm,

41

GECCO ’25, July 14-18, 2025, Malaga, Spain

which evaluates configurators based on their performance across a
set of diverse tasks. Ensuring task diversity is hence crucial for mak-
ing robust and generalizable claims about the suitability of different
configurators. In contrast, capability-based benchmarking offers
a distinct approach. As outlined by Hernandez-Orallo [16], this
paradigm evaluates systems based on their inherent capabilities. It
begins with identifying core capabilities that a configurator should
possess and then specifically designs synthetic test functions to
assess these capabilities. A synthetic, capability-based benchmark
offers a unique combination of advantages. This approach enables
a more targeted evaluation, facilitating the identification of the
strengths and weaknesses of different configurators. Additionally,
it enhances interpretability and control, as the synthetic nature al-
lows for complete oversight of the dimensions within the algorithm
configuration problem.

4 SynthACticBench Overview

We propose the synthetic benchmark SynthACticBench, inspired
by the approach of José Hernandez-Orallo, who advocates for eval-
uating a system - in our case, an algorithm configurator - “based
on its cognitive abilities rather than the specific tasks it is built to
solve” [16, p. 1]. Following this principle, we first collect capabilities
that we assume to be essential for algorithm configuration and then
design synthetic test functions to evaluate these capabilities.

Capabilities. We group the capabilities into configuration space
capabilities (C1-C7) and objective function capabilities (01-O7), as
illustrated in Figure 1. While the former investigates different struc-
tures in the configuration space, e.g., parameter interactions, mixed-
type parameters, or conditional parameter domains, the latter ex-
plores characteristics of the function itself, such as being censored,
having multiple objectives or temporal shifts. In principle, the tar-
get functions used to evaluate objective function capabilities can be
combined with all functions designed to assess configuration space
capabilities. Notably, the configuration space is also one of the key
dimensions in the problem view classification scheme proposed
by Schede et al. [36], whereas the dimensions target algorithm ob-
Jjective type, configuration adjustment, and external runtime setting
are included in the objective function capabilities. We provide an
overview of the included capabilities in Table 1 with references
to relevant papers that motivate the evaluation of most of them.
Further detailed discussions are provided in Sections 5 and 6.

Benchmark. We introduce SynthACticBench to offer greater
control and flexibility over key dimensions of algorithm config-
uration problems. Each benchmark within SynthACticBench is
designed to evaluate a specific capability, defined by one or mul-
tiple synthetic target functions f : © X I — R to be minimized.
We adhere to the standard AC notation, with the cost of a specific
parameter configuration given by the function value of that con-
figuration: c(0,i) = f;(6). Thus, the synthetic target function f
corresponds to the cost metric, assessing an algorithm configura-
tion for a problem instance, and its input parameters © correspond
to the configuration parameters, respectively. Consequently, the
algorithm configurator is concerned with minimizing the target
function over a set of problem instances, which corresponds to
identifying the optimal parameter configuration.
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Table 1: Capabilities that SynthACticBench evaluates.

Benchmark Name
C1: Relevant Parameters [12, 19]

Capability
Identify and handle relevant parameters.

§ C2: Parameter Interactions [31, 33] Detect and exploit parameter interactions.
& C3: Mixed-Type [4, 24] Tune mixed-type configuration spaces.
ep C4: Activation Structures [22,40]  Support activation structures.
:g C5: Hierarchical Structures [42] Manage hierarchical configuration structures.
©  Cé: Shifting Domains Adapt to shifts in parameter domains.

C7: Crashing Parameters [42] Handle crashing parameter evaluations.
s O1: Deterministic Objective Avoid redundant evaluations.
£ 02: Noisy Objective [36] Adapt sampling behaviour to noise level.
% 03: Multiple Objectives [36] Optimize multiple objectives simultaneously.
& O4: Time-Dependent Manage time-dependent distributional drift.
g  05: Right-Censored [36] Handle censored information (e.g. timeouts).
:-g 06: Multi-Modal Landscapes Escape local optima.

O7: Single-Peak Landscapes Search with uninformative feedback.

Many of the synthetic target functions in SynthACticBench are
based on the function f(61,...,6,) = X1, qi(6;) with quadratic
components q;(0;) = u - 91.2 + v - 0; + w, where the parameters u, v
and w are sampled from a uniform distribution U[a, b]. We will
refer to this function as quadratic target base function. We choose
quadratic functions as the base due to their versatility and simplicity.
They offer enough flexibility to model a wide range of function
behaviors through adjustable curvature and complexity by setting
the parameters u, v, and w. At the same time, their relative simplicity
ensures that the main focus of the benchmark lies in optimizing
the constructed target function rather than the base function itself.
Further, the simplicity maintains the ease of implementation, which
is crucial for the practicality of our benchmark. For notational
convenience, we denote a configuration 6 = (6s,...,0;) as the
values of parameter setting 0; in the following.

Instance generation. For each benchmark, we generate multiple
homogeneous instances by varying the output space of the corre-
sponding target function. For each instance, we sample an offset
from a standard normal distribution §; ~ N (g, 02) and add it to
the function’s output: f; = f;(0) + d;. The AC problem is given by:

0" e argminEs, _n(,..02) [fi(0) + 6] .
0co

For example, consider optimizing the target function f(0) =
5.60%2 - 2.0+ 0.3 with domain © = [-10,20] C R. Here, the offset
value sampled from P = N(0,1) is 0.3, and the only parameter to
be optimized is 6. An algorithm configurator would aim to find the
optimal parameter 6 = 0.2, which is the global minimum, and hence,
yields the minimal cost. Across different instances, the coefficients
(5 and -2 in this case) remain constant, hence also the optimal
parameter 9 is the same. However, the offset value varies, with
larger values leading to more challenging instances.

5 Configuration Space Capabilities

Configuration space capabilities evaluate how well algorithm con-
figurators handle various structural challenges in the configuration
space. This includes, e.g., identifying relevant parameters, handling
mixed-type parameters, and many more. For each capability, we
follow a consistent structure: we first provide the motivation behind
testing this capability, then describe the capability being evaluated,
followed by the scenario in which it is tested, and finally, detail the
specific benchmark implementation.
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5.1 C1: Relevant Parameters

Algorithms may expose hundreds of parameters [23]. However, in
many cases, only a handful of those parameters substantially affect
the algorithm’s performance [12, 19].

Capability. Identify effective (relevant) parameters and handle
noisy (irrelevant) parameters.

Scenario. The configurator is presented with a set of parameters,
but only a subset of these are relevant to the configuration process
and influence the function value.

Synthetic Benchmark. To evaluate this capability, we specify
the target function f : [-100,100]" — R as the sum of quadratic
and noisy functions f(0) = Zle qi(0;) + Z?zl n; where p+d = n.
The quadratic components are denoted by ¢;(6;), while the noisy
samples are drawn from the distribution n; ~ N(0,100), hence
being independent of the parameters ;. Thus, the minimum of
the target function occurs when (0, .. ., Hp) correspond exactly to
the minima of their respective quadratic subfunctions g;, while the
parameters (Op+1, ..., 0p14) can take arbitrary values.

5.2 C2:Parameter Interactions

In algorithm configuration and related fields, such as hyperparam-
eter optimization, a common assumption refers to the interdepen-
dence of parameters and that they need to be tuned together to
account for interaction effects [31, 33].

Capability. Detect and effectively exploit parameter interactions
by optimizing them jointly.

Scenario. The configurator is presented with a set of parameters
that exhibit interaction effects. For example, a change in one pa-
rameter influences the behavior of others, making independent
optimization insufficient to achieve the best outcome.

Synthetic Benchmark. We implement the well-known Rosenbrock
function [34] and the Ackley function [1]. The Rosenbrock function
is defined over the domain [—5, 10]" and features a narrow, curved
valley leading to its global minimum at (1,..., 1). The Ackley func-
tion is characterized by a nearly flat outer region, numerous local
minima, and a single global minimum at (0, ..., 0). It is defined over
the domain [—32.768,32.768]".

5.3 C3: Mixed-Type Configuration Spaces

A general challenge of algorithm configuration is that configurators
must handle mixed-type configuration spaces [4, 36].

Capability. Effectively tune configuration spaces consisting of dif-
ferent types of parameters.

Scenario. The configurator is presented with a set of mixed-type
parameters, including continuous, categorical, boolean, and integer.
Synthetic Benchmark. This benchmark is implemented as a com-
position of functions with categorical (), boolean (B), integer (Z),
and continuous (R) input domains: @” = K™ x B"2 x Z" x R™.
To each parameter domain, we assign a pre-specified proportion
of the total number of dimensions, i.e. n = ny + ny + n3 + ng. We
bound each categorical space K to a random number of categories
ranging between 3 and 20. We also bound each integer space Z
to the interval of [-100, 100] and each R to the interval of real-
values [—100, 100], respectively. For the final target function, we
use the above defined quadratic target base function. However, we
transform the categorical and boolean variables into continuous
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variables using uniform binning over their respective ranges before
querying the target function, while the integer and float parameters
are used directly in the optimization process.

5.4 C4: Activation Structures

Complex algorithm systems are typically based on submodules
that also expose parameters that need to be tuned. When different
submodules of the same type or serving the same sub-task can be
toggled, the effectiveness of tuning their exposed parameters de-
pends on the choice of the submodule and thus changes depending
on the corresponding parameter’s value [22, 40].

Capability. Handle activation structures when parameters become
active or inactive depending on the value of another parameter.
Scenario. The configurator is presented with a set of parameters
that can be grouped into distinct subsets each of which is active if
and only if a categorical parameter takes a certain value.
Synthetic Benchmark. This benchmark builds on the quadratic
target base function with domain © = [—100, 100]* ! x K. The n— 1
non-categorical parameters are partitioned into g groups, and the
categorical parameter can take values k € {1,...,g}. Depending
on k, only the parameters inside the activated group are evaluated
by the corresponding subfunctions. For example, for a given input
vector 6 = (64, ..., 0h—1, k), assume that 63, 04, 05 are grouped into
the group k = 2. If k then takes the value 2, the target function
evaluates only the activated parameters: f(0) = Z?=3 qi(0).

5.5 C5: Hierarchical Configuration Spaces

Submodules themselves may include additional submodules that
need to be chosen and tuned [42]. For instance, when configuring
machine learning methods for multi-label classification, the config-
uration process can involve up to several layers of hierarchy. These
layers may include ensembling methods for multi-label classifiers,
multi-label classifiers, ensembling methods for single-label classi-
fiers, and single-label classifiers.

Capability. Handle hierarchical configuration space structures
with deeply nested submodules.

Scenario. The configurator is presented with a set of parameters
that exhibit a hierarchical structure and expose parameters to be
tuned on different levels.

Synthetic Benchmark. We again implement the quadratic base
target function with the domain given by ® = [-100, 100]"~2 x k2.
The n — 2 non-categorical parameters are partitioned into g groups,
each further partitioned into h subgroups. The categorical parame-
ters can take values k1 € {1,...,g}and ks € {1,..., h}, respectively.
When ¢; and c; take certain values, only the parameters inside the
activated group and subgroup are evaluated by the corresponding
subfunctions. This benchmark essentially extends benchmark C4,
with one additional level introduced.

5.6 C6: Shifting Domains

Sometimes, the choice of some parameter affects the domains of
other parameters. For example, when configuring a decision tree,
setting a low maximum depth can restrict the valid ranges of param-
eters like the minimum number of samples per leaf or the maximum
number of features considered for a split.
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Capability. Handle shifts in the parameter domains for still effec-
tively optimizing with changed parameter domains.

Scenario. The configurator is presented with a set of parameters,
where the domain is shifted depending on a certain parameter.
Synthetic Benchmark. In this benchmark, the domains of param-
eters depend on each other, so changing one parameter’s value
results in a change of another parameter’s domain. The target func-
tion f is given by a sum of n quadratic functions. However, we
implement two instantiations that differ in their bounded parame-
ter domain. The original function fuig is bounded by [-100, 100]",
and the shifted function fie by [—100,100] x [0,200]*~1. The
target function evaluates forg if the first parameter is negative,
otherwise fshift.

5.7 C7: Crashing Parameterizations

Parameterizations can also result in a crash of the algorithm due to
e.g., a parameterization that does not fit into memory [42].
Capability. Handle configuration spaces with evaluation holes, i.e.,
subspaces that do not yield any performance evaluation.
Scenario. The configurator is presented with a set of parameters
spanning a configuration space but which contains certain sub-
spaces that result in a crash signal instead of a valid objective
function evaluation.

Synthetic Benchmark. The target function is again given by
f(0) = X1, qi(6;). H owever, the domain is modified. Specifically,
we randomly sample a hypercube with a given side length and ex-
clude it from the domain. If a parameter configuration falls within
this hypercube, the target function raises an error and does not
return a value.

6 Objective Function Capabilities

Objective function capabilities assess how well algorithm configu-
rators handle characteristics of the function itself, such as determin-
istic evaluations, multiple objectives, or temporal dynamics. The
test functions designed to evaluate objective function capabilities
can, in principle, be combined with those assessing configuration
space capabilities. We follow the same structure for describing each
capability as for the configuration space capabilities.

6.1 O1: Deterministic Objective Function

When dealing with deterministic algorithms, the relationship be-
tween the input parameters and the output is entirely predictable.
This means that for a given set of parameter values, the algorithm
will always produce the same result, and the output is not influ-
enced by any form of randomness or noise.

Capability. The configurator can notice that an objective function
is deterministic and thus does not waste its budget on multiple
evaluations of the same solution candidate.

Scenario. The configurator is provided with a deterministic func-
tion to optimize, where the output is entirely determined by the
specified parameter inputs. For any given set of parameter inputs,
the function consistently produces the same result.

Synthetic Benchmark. The objective function is a composition
of deterministic functions, which may include any aforementioned
noise-free target functions, that are used to test other capabilities.
As a result, it also inherits their domain.
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6.2 02: Noisy Objective Function

In real-world algorithm configuration problems, the evaluation of
solution candidates is often noisy either because the algorithms
themselves are non-deterministic or because the measurement of
the corresponding performance criterion is noisy [36]. This is, for
example, the case when considering runtime as a performance mea-
sure. Depending on the load of the execution environment and
tasks scheduled by the operating system, runtime measurements
may vary for the same parameterization.

Capability. The configurator can detect the noisiness of the objec-
tive function and adapt its sampling behavior to the noise level in
the evaluation. Note that we assume homoscedastic noise, i.e., the
noise is independent of any parameter values.

Scenario. The configurator is presented with a noisy objective
function, where evaluations of the same configuration can yield
different results due to the additional noise term.

Synthetic Benchmark. The target function is given by the qua-
dratic base target function; however, for each function evaluation,
an additional noise value independent of the parameter values is
added to the function’s output. This noise value is drawn from a
distribution, which can be normal, uniform, or exponential. For ex-
ample, assuming that the uniform distribution is chosen, the target
function is given by f(6) = X1, qi(6;) + € with e ~ U(-1,1).

6.3 0O3: Multiple Objectives

Objective functions for algorithms can be quite diverse and mea-
sure solution quality, runtime, memory occupation, fairness, in-
terpretability, etc. Often, several objectives are required to make
informative decisions between suitable compromises [36].
Capability. The configurator can handle the optimization of multi-
ple objectives simultaneously and returns a set of non-dominated
(ideally Pareto optimal) solutions.

Scenario. The configurator is given a multi-objective problem to
optimize two or more conflicting objectives.

Synthetic Benchmark. To evaluate the capability of multi-objective
optimization, we use the ZDT1 and ZDT3 functions [5], which were
introduced by Zitzler et al. [44]. These functions are widely rec-
ognized test functions for multi-objective optimization problems
featuring a set of Pareto-optimal solutions. Both functions are de-
fined on © = [0, 1]"™.

6.4 0O4: Time-Dependent Objective Functions

Environments may change over time, as do objective functions oper-
ating in these environments. For example, a computing system may
degrade over time and slow down, e.g., through inefficient cache
infrastructures, slower tasks scheduled by the operating system,
etc. Consequently, performance measures, particularly for runtime
or algorithm execution limited by runtime thresholds, may vary.
Capability. The configurator can efficiently optimize objective
functions that exhibit a distributional drift over time.

Scenario. The configurator is tasked with optimizing an objective
function that is influenced not only by the parameters but also by
an external factor, such as time.

Synthetic Benchmark. We implement one target function that
changes according to a linear drift f,ir and one, that changes ac-
cording to an oscillation f4j, both defined on © = [-100, 100]".
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The former is given by frift-op(0) = 2=, qi(0;)+a+b-t and the lat-
ter by foscil-op(8) = Xi; qi(0:) +sin(a+b - t) with a = 1,b = 0.005
and t the current time step.

6.5 0O5: Right-Censored Objective Functions

Right-censored objective functions are quite common in the domain
of algorithm configuration where typically runtime is optimized
and the time for evaluating a single configuration is limited by
the user to make the algorithm configuration problem decidable
and to ensure sufficient exploration of the configuration space [36].
Moreover, this avoids stalling in certain subspaces where evalua-
tion takes a long time, and evaluation resources are blocked when
evaluating these expensive-to-evaluate candidates.

Capability. The configurator can effectively handle censored infor-
mation, as a lower bound on the objective function is typically still
conceivable. In the example of optimizing runtime with timeouts,
we know that the true runtime exceeds the set timeout.
Scenario. The configurator is faced with objective functions that
are censored due to timeouts or other limitations.

Synthetic Benchmark. This benchmark wraps any other target
function in SynthACticBench and hence inherits its domain ©, but
cuts off the objective function at a certain level k > 0. This cutoff ¥
has to be specified beforehand. During the evaluation, the function
value of a configuration is only reported if it is not more than the cut-
off away from fnin = f(0%), i€, if | fmin—f| < |fimin|- k. Otherwise
the function raises an error and does not return a function value.
This benchmark is a special case of the crashing parameterization
benchmark C7.

6.6 06: Multi-Modal Landscapes

The landscape of an objective function can also be multi-modal,
exhibiting multiple local optima that can also be quite close to the
global optimum.

Capability. The configurator can handle multi-modal landscapes
of the objective function and avoids getting stuck in local optima.
Scenario. The configurator is presented with an objective function
that exhibits multiple local optima.

Synthetic Benchmark. The objective function is constructed s.t.
it has multiple local optima in different regions of the configuration
space. We implement the Ackley function [1] and the Griewank func-
tion [13]. The latter features a complex, multimodal landscape with
many regularly distributed local minima, and the global minimum
is located at (0, ..., 0). We restrict the domain to [—600, 600]".

6.7 0O7: Single-Peak Landscapes

A very difficult setting for optimizing an algorithm is when the land-
scape of the objective function is comparably flat and only exhibits
a single peaked optimum. Informally speaking, the configurator
is then tasked to find the needle in the haystack. Systematically
searching the configuration space, improving over sampling simply
at random, is particularly challenging.

Capability. The configurator can search with relatively uninfor-
mative feedback by the objective function and eventually identify
a single peak in the landscape.

Scenario. The configurator is given a function that is constant al-
most everywhere, except for a small peak for the global minimum.
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Synthetic Benchmark. The objective function is constructed so
that it only hits a peak in a single place, and the remaining land-
scape is flat. This benchmark is defined over a bounded domain
[—100, 100]™. A specific subspace, characterized as a hyper-cube of
a predefined width, yields the global minimum value of f(6*) = 0.0.
All regions outside this hyper-cube evaluate to 1.

7 Experiments

We conduct an empirical study comparing the algorithm configu-
rators irace [28], SMAC [18, 26], and random search as a baseline
across all benchmark problems specified in SynthACticBench. For
the multi-objective benchmark O3, we exclude irace from the eval-
uation since, to the best of our knowledge, it cannot deal with
multi-objective scenarios.

7.1 Experimental Setup

For each benchmark, we define the synthetic target function that
evaluates the corresponding capability in a 10-dimensional space.
If the target function is based on the quadratic target base function,
we sample the parameters u, v, and w from the uniform distribution
U[-10,10]. Further, we sample offsets from the normal distribution
N (0, 2) to generate 500 problem instances for each target function.
This number is inspired by the average number of instances in the
AClib benchmark suite. Regarding the specific benchmark choices,
we make the following adjustments. In C1, we select three relevant
parameters and seven noisy ones. In C4, the non-categorical pa-
rameters are divided into two groups, with only one group being
activated by the remaining categorical parameter. In C5, we define
three groups, each further split into two subgroups. For the objec-
tive function benchmarks, we modify O1 by wrapping the noisy
benchmark O2 while modifying the noise sampling distribution to
always return zero. In O5, we set the cutoff  to 0.8. In the bench-
marks C7 and O7, we set the cube side length and peak width to 0.5
times the length of the first dimension, respectively. At first glance,
this choice may seem overly generous. However, due to the curse
of dimensionality, the relative size of the cube shrinks rapidly as
the number of dimensions increases.

Each configurator executes 5,000 trials per benchmark, and we
repeat each experiment with 20 independent random seeds. All
experiments were conducted using 2 CPU cores and 8 GiB of RAM
per run. The computations were carried out on HPC nodes equipped
with two AMD Milan 7763 processors and 256 GiB of main memory.

7.2 Algorithm Configurators

We consider two state-of-the-art algorithm configurators and aim
to benchmark them with respect to their capabilities drafted in
SynthACticBench: SMAC [18, 26] and irace [30]. While we initially
planned to include the Gender-based Genetic Algorithm (GGA) [2]
and the Golden Parameter Search (GPS) [32] in our benchmark,
implementation challenges prevented its inclusion, and we leave it
for future work.

SMAC. SMAC [18, 26] is short for sequential model-based algo-
rithm configuration and represents a Bayesian optimization frame-
work that uses surrogate models (typically random forests) to ef-
ficiently explore and exploit the configuration space of the target
algorithm. It is particularly suited for scenarios with expensive
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evaluations, allowing for robust tuning of machine learning models
and combinatorial optimization algorithms.

irace. irace [30] is an iterated racing-based approach that se-
quentially eliminates poorly performing configurations based on
statistical tests. As for genetic algorithms in general, offspring con-
figurations are sampled from the fittest individuals via an individual-
specific probability distribution over the configuration space, nar-
rowing the probability distributions over time and thereby foster-
ing exploitation in the vicinity of the stronger configurations. It is
efficient for scenarios where evaluations are noisy or expensive, fo-
cusing computational effort on the most promising configurations.

7.3 Evaluation Method

We evaluate the performance of each configurator as follows. For
every benchmark function, we compute the final regret, which is
defined as the absolute difference between the function value of
the final configuration found by the configurator, f(6onf), and the
known global optimum, f(6*). The regret of this configuration is
hence given by:

Reonf = |f(gconf) - f(e*)| .

For the multi-objective benchmark O3, we use the difference
between the true Pareto front’s hypervolume and the hypervolume
of the Pareto front of the final configurations identified by the
configurator. The regrets are averaged over 20 seeds. To present
the regrets in a unified plot, we account for differences in scale
across different benchmarks by normalizing them. Let Rpax denote
the regret of the final configuration of the worst configurator for a
given benchmark. We then define the normalized regret as follows:

norm __ Rconf
conf Rmax
Thus, it holds that R2>" € [0,1] and RT" = 1 precisely if
con con

the configurator exhibits the worst performance among those com-
pared. Notably, the regret can be exactly 0, as the target functions
are synthetic and their exact minima are known. Furthermore, to
visualize the results in the bar plots shown in Figure 2, where a
higher bar corresponds to better performance, we apply the trans-
formation: g(R7°1E") = 1 — R2°1. The only exception is irace on
the O3 benchmark, which we were unable to execute. For this case,
we set the value in the bar plot to a value below 0 to indicate that
it is not applicable.

7.4 Results

The bar plots in Figure 2 provide a comparative analysis of the
performance of SMAC, irace, and random search across the vari-
ous capabilities defined in SynthACticBench. For each capability,
we display a bar per configurator, representing the transformed
normalized regret, higher values hence indicate better performance.

Several key trends can be observed: SMAC and irace exhibit
noticeably different performance profiles, reflecting their distinct
strengths. SMAC and irace both perform well on benchmark Cé,
which involves shifting domains; benchmark C1, which focuses
on identifying relevant parameters; and benchmark 06, which fea-
tures multimodal objective functions. SMAC demonstrates superior
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Figure 2: Evaluated configuration space capabilities (left) and objective function capabilities (right) of the algorithm configurators
irace and SMAC and random search. A larger covered area indicates better performance.

performance on benchmark C2, which evaluates the ability to iden-
tify interactions between parameters, and benchmark O7, which
involves a single peak in the objective function. This can be attrib-
uted to SMAC’s use of a surrogate model to approximate the target
function and, hence, the ability to exploit parameter interactions
effectively. On the other hand, irace excels in benchmarks that in-
volve crashing parameterizations (C7), time-dependent behaviors
(O4), and activation structures (C4). This is likely due to irace’s
ability to adaptively focus on the most promising configurations,
allowing it to adapt the population over time.

We note several details: (i) crashing parameterizations are not
handled in the same way by the current SMAC implementation as
in the original one [17], limiting the performance on C7; (ii) using
surrogate-models with an ii.d. assumption to guide the search
is a drawback in view of O4; and (iii) it is somewhat surprising
that SMAC underperforms w.r.t activation structures, since it is a
common belief that SMAC’s random-forest-based surrogate models
should handle them well. In some cases, the differences between
SMAC and irace appear marginal in the plots. This is due to the
normalization, which is based on the regret of the worst-performing
configurator. For instance, if random search performs particularly
poorly on a given benchmark while both irace and SMAC perform
well, their normalized regret values may appear similar. However,
on benchmark 06, for example, their absolute regrets differ by
a factor of 10, showing the benefits of a surrogate-guided global
search. When comparing regrets across different benchmarks, we
observe substantial variations in difficulty. For instance, SMAC
achieves a regret of 0 on benchmark O7, indicating that it has
found the true optimum. Similarly, SMAC and irace perform very
well on benchmark O6 and almost reach the optimum. However,
some benchmarks remain highly challenging despite their relatively
low dimensionality (only ten dimensions), particularly those that
involve a mix of different parameter types, such as continuous,
categorical, and integer variables.

8 Conclusion and Future Work

In this paper, we presented capabilities relevant to evaluating al-
gorithm configurators, including those related to the configura-
tion space (e.g., parameter interactions, mixed-type parameters,
or conditional domains) and the objective function (e.g., censor-
ship or multiple objectives). Building on these, we proposed the
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synthetic, capability-based SynthACticBench benchmark to of-
fer a structured, interpretable approach for comparing algorithm
configurators. This framework facilitates the identification of spe-
cific strengths and weaknesses of different algorithm configurators.
We further evaluated two state-of-the-art algorithm configurators,
irace, and SMAC, on SynthACticBench. Our evaluation revealed
that both configurators possess very different capabilities. SMAC
excels in handling parameter interactions and single-peak objective
functions, likely due to its use of surrogate models that allow it to
explore the parameter space efficiently. In contrast, irace performs
better on benchmarks involving time-dependent behaviors and
activation structures, which is attributed to its iterative racing ap-
proach and adaptive refinement of the search space. Looking ahead,
we aim to expand our evaluation to include additional algorithm
configurators, such as GGA [2] and GPS [32]. Moreover, we plan to
extend SynthACticBench to support both online and per-instance
algorithm configuration, which would allow us to explore addi-
tional dimensions of algorithm configurator problems identified
by Schede et al. [36], such as training settings, configuration adjust-
ment, or configuration scope. Many of the capabilities incorporated
in SynthACticBench - such as managing mixed parameter types
(C3), hierarchical structures (C5), or noisy objectives (O2) - are also
highly relevant to hyperparameter optimization [18, 39]. Therefore,
the broader HPO and Bayesian optimization communities could
also benefit from our benchmark. By extending SynthACticBench
to include benchmarks tailored explicitly to HPO, we aim to facili-
tate systematic comparisons across different optimization methods
and promote cross-domain advancements.
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