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Abstract

The multinomial logit model is the most widely used model for nominal
multi-category responses. One problem with the model is that many pa-
rameters are involved, another that interpretation of parameters is much
harder than for linear models because the model is non-linear. Both prob-
lems can profit from graphical representations. We propose to visualize
the effect strengths by star plots, where one star collects all the parameters
connected to one term in the linear predictor. In simple models one star
refers to one explanatory variable. In contrast to conventional star plots,
which are used to represent data, the plots represent parameters and are
considered as parameter glyphs. The set of stars for a fitted model makes
the main features of the effects of explanatory variables on the response
variable easily accessible. The method is extended to ordinal models and
illustrated by several data sets.

Keywords: Glyphs, star plots, visualization, multinomial logit model, ordered
response models.

1 Introduction

Multinomial response models are a common tool in categorical data analysis
with well-established theory. But in applications, in particular in the case of
many response categories, it is often tedious to keep track and interpret all of
the parameters. Therefore tools for visualization of the effects of explanatory
variables will be helpful for practioners.

In multivariate data analysis visualization techniques have a long tradition.
Skillfully devised graphical methods allow to look into data and uncover features
of the underlying data generating process. They are used to explore data and also
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to present results. Various books and articles are devoted to graphical represen-
tations of data, see, in particular, Cleveland (1985), Kastellec and Leoni (2007),
and the Handbook of Data Visualization (Chen et al., 2008).

In the following the focus is not on visualization of data but on the visual-
ization of fitted models to help in the interpretation of parameters. The aim of
closer linkage of statistical modelling with graphics is investigated in the case of
categorical response models. Categorical response models like the multinomial
logit models represent a challenge if the number of response categories and/or
the number of explanatory variables is large. Even for moderate numbers of ex-
planatory variables one obtains a large number of parameters and the impact
of the predictors on the response variable is hard to investigate because of the
transformation to logits. While the increase or decrease of the mean response
is easily seen in linear models, the effect on logits is much harder to explain to
practioners.

There has been some work in the visualization of categorical data. In particu-
lar graphical methods for the analysis of multiway contingency tables in the form
of mosaic plots (Friendly, 1994; Theus and Lauer, 1999; Hofmann, 2001; Meyer
et al., 2008) are widely used. But categorical response models that also contain
continuous predictors cannot be reduced to contingency tables without loss of
information. Therefore, for the general case of categorical responses mosaic plots
are not very helpful. More recently, in Fox and Andersen (2006) and Fox and
Hong (2009) the work on effect displays for generalized linear models (Fox, 2003)
was extended to multinomial and proportional-odds logit models, available in the
effects package (Fox and Andersen, 2006; Fox et al., 2011). The proposed effect
displays depict fitted category probabilities including pointwise confidence en-
velopes and are typically used for visualization of high-order terms. The package
provides several kinds of displays for polytomous logit models.

The objective of the present paper is to develop alternative graphical methods
for the general case of categorical response models with all types of regressors. In
Section 2 we briefly sketch the multinomial logit model and the interpretation of
parameters. In Section 3 more traditional tools for the graphical representation of
the effect of explanatory variables in the form of probability plots are considered.
The main tool, graphical tools for the visualization of parameters, is given in
Section 4. We conclude with an extension to ordinal response models.

2 The Multinomial Logit Model

In the following we shortly summarize the essential properties of the multinomial
logit model, which is the most frequently used model in regression analysis for un-
ordered categorical responses and is extensively treated, for example, in Agresti
(2002). For response Y ∈ {1, . . . , k} and the vector of explanatory variables x it
has the form
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P (Y = r|x) =
exp(βr0 + xT βr)

Σk
s=1 exp(βs0 + xT βs)

, (1)

where βT
r = (βr1, . . . , βrp). Since parameters β10, . . . , βk0, βT

1 , . . . ,βββT
k are not

identifiable additional constraints are needed. One option is to chose one of
the response categories as reference category. For example, by setting βk0 = 0,
βk = 0, category k is chosen as the reference category and interpretation of all
parameters refers to this category. Alternatively one can use the symmetric side
constraints

∑k
s=1 βs0 = 0,

∑k
s=1 βT

s = (0, . . . , 0). In both cases one has k − 1
intercepts and p(k − 1) effects of predictors, where p denotes the length of x.
Even for moderate number of predictors, say 10, and 5 response categories, one
obtains 40 parameters that represent effects of predictors. The result is a lengthy
list of parameter estimates that contains the relevant information but it takes
some skill and time to evaluate the effects.

The large number of parameters is due to the multi-dimensionality of
the model. The response variable Y ∈ {1, . . . , k} hides that the response
is actually multivariate. This becomes obvious by considering the distribu-
tion of the response. By defining dummy variables y1, . . . , yk−1 with Y =
r ⇔ yr = 1 the possible outcome vectors of length k − 1 are given by
(1, 0, . . . ), (0, 1, 0, . . . ) . . . (0, 0, . . . , 0). With probabilities given by πr(x) =
P (Y = r|x) = P (yr = 1|x) the vector yT = (y1, . . . , yk−1) follows a multino-
mial distribution y ∼ M(1,π(x)), where πT (x) = (π1(x), . . . , πk−1(x)) repre-
sents the vector of response probabilities. A closed representation of the (k − 1)-
dimensional model as a multivariate generalized linear model (GLM) uses the
form g(π(x)) = Xβ with (k − 1)-dimensional link function g, design matrix X
and all the parameters collected in βT = (β10, . . . , βk−1,0,β

T
1 , . . . , βT

k−1). Maxi-
mum likelihood estimation and parameter tests can be derived within the frame-
work of multivariate GLMs (see, for example, Tutz, 2012).

For the interpretation of the parameters it is essential to specify the iden-
tifiability constraint that is used. If k is chosen as the reference category one
obtains

log

(
P (Y = r|x)

P (Y = k|x)

)
= βr0 + xT βr, r = 1, . . . , k − 1, (2)

where the log-odds compare P (Y = r|x) to the probability P (Y = k|x). Then the
parameters reflect the effect of predictors on the relation between category r and
the reference category k. Symmetric side constraints are less often used although
there is a nice interpretation of parameters. For symmetric side constraints the
interpretation refers to the ”mean” response defined by the geometric mean

GM(x) = k

√√√√
k∏

s=1

P (Y = s|x) = (
k∏

s=1

P (Y = s|x))1/k.
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It is easily derived that

log

(
P (Y = r|x)

GM(x)

)
= βr0 + xT βr, r = 1, . . . , k,

holds. Therefore, βr reflects the effects of x on the logits when P (Y = r|x) is
compared to the geometric mean response GM(x).

When visualizing effects we will focus on symmetric side constraints because
effects do not refer to the assigned reference category but to all of the categories.
Also results of testing of hypothesis and corresponding p-values are easier to
interpret. If H0 : βrj = 0 is rejected for the model with reference category k the
jth variable distinguishes significantly between response Y = r and Y = k. If
H0 : βrj = 0 is rejected for the model with symmetric side constraint the jth
variable distinguishes between response Y = r and Y ̸= r.

3 Traditional Methods of Visualization: Probability Plots

When visualizing the effects of predictors the main problem with the multinomial
logit model is that the link function is not linear. Although odds are an intuitive
concept the log-odds in equ. (2) are not appropriate to obtain some feeling for
the impact of predictors. Therefore, a traditional way to visualize the effect of
explanatory variables is the plotting of response probabilities against the values
of specific covariates, see, for example, Agresti (2002).

For illustration we will consider the modelling of party choice with data from
the German Longitudinal Election Study. The response categories refer to the
dominant parties in Germany, in particular, the Christian Democratic Union
(CDU: 1), the Social Democratic Party (SPD: 2), the Liberal Party (FDP: 3),
the Green Party (4) and the Left Party (Die Linke: 5). With the five response
categories nine predictors were collected, age, political interest (1: less interested
0: very interested), religion (1: evangelical, 2: catholic, 3: otherwise), regional
provenance (west; 1: former West Germany, 0: otherwise), gender (1: male, 0:
female), union (1: member of a union 0: otherwise), satisfaction with the func-
tioning of democracy (democracy; 1: not satisfied 0: satisfied), unemployment
(1: currently unemployed, 0: otherwise), and high school degree (1: yes, 0: no).

Table 1 shows the estimated parameters together with standard errors. It
is seen that even in this simple example with moderate number of predictors
and response categories many parameters have to be investigated. A simple
way to illustrate the effect of a metric covariate like age is to plot the response
probabilities against age. But, of course, in a non-linear model as the logit model,
the form of the function strongly depends on the values of the other parameters.
In Figure 1 the probabilities are given for two sets of values, one where all other
predictors have value 0, one where all other predictors have value 1. It is seen
that not only the level but also the slope of the curves can vary with the chosen
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Table 1: Estimates of multinomial logit model for party preference data, sym-

metric side constraints.

Intercept Age Religion (2) Religion (3) Democracy (2) Pol.Interest (1)
CDU 1.397 0.308 0.404 -0.358 -0.766 0.202
SPD 0.469 0.148 -0.196 -0.428 -0.360 0.337
FDP -0.345 -0.111 0.090 0.326 0.002 -0.264
Greens -1.096 -0.398 -0.127 0.286 0.008 0.214
Left Party -0.425 0.053 -0.171 0.174 1.116 -0.488

Unemployment (2) Highschool (1) Union (2) West (1) Gender (1)
CDU -0.514 0.156 -0.408 -0.330 -0.262
SPD 0.127 -0.221 0.400 0.389 -0.191
FDP -0.560 0.051 -0.509 0.025 0.254
Greens -0.071 0.563 -0.391 0.639 -0.019
Left Party 1.018 -0.549 0.907 -0.723 0.218

Standard Errors

Intercept Age Religion (2) Religion (3) Democracy (2) Pol.Interest (1)
CDU 0.224 0.069 0.163 0.168 0.139 0.147
SPD 0.245 0.072 0.166 0.172 0.148 0.160
FDP 0.312 0.094 0.239 0.218 0.194 0.191
Greens 0.327 0.097 0.234 0.213 0.193 0.203
Left Party 0.313 0.094 0.233 0.205 0.229 0.185

Unemployment (2) Highschool (1) Union (2) West (1) Gender (1)
CDU 0.366 0.169 0.212 0.156 0.135
SPD 0.314 0.189 0.184 0.172 0.142
FDP 0.498 0.218 0.289 0.207 0.187
Greens 0.421 0.208 0.273 0.222 0.184
Left Party 0.301 0.243 0.216 0.194 0.181

value for the other variables. For example, the curve for the Social Democratic
Party (SPD) is rather flat in the upper panel, but increasing in the lower panel.

When explanatory variables are categorical bar plots with the probabilities
corresponding to the height of the bars can be used. Figure 2 shows the ef-
fect of unemployment on the choice probabilities. It shows, for example, that
unemployed persons have a stronger preference for the left party, preference for
CDU decreases. The tendency is the same if different values are chosen for the
other variables (Figure 3), but effect strength is quite different. If the other vari-
ables have value 1, the probability for CDU is among the lowest if voters are
unemployed.
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Figure 1: Estimated probabilities for party preference against age, all other

variables fixed at value 0 (upper panel), all other variables fixed at value 1 (lower

panel).

4 Glyphs for the Visualization of Parameters

The disadvantage of bar plots as well as curves is that they show effects under
the constraint that the other predictors have fixed chosen values. The plots vary
with the chosen values. An alternative approach that is propagated here is to
visualize the effect strength that is contained in the parameters rather than the
probabilities.

6



CDU SPD FDP Greens Left Party

not unemployed

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

CDU SPD FDP Greens Left Party

unemployed

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 2: Bar plot of estimated probabilities for party preference for unemploy-

ment=0 (left) and unemployment=1 (right), all other categorical variables fixed

at value 0, age at 50.
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Figure 3: Bar plot of estimated probabilities for party preference for unemploy-

ment=0 (left) and unemployment=1 (right), all other categorical variables fixed

at value 1, age at 50.

We will use glyphs that have traditionally been used to visualize data. Various
glyphs have been proposed in the literature, among them profile glyphs (Du Toit
et al., 1986), Chernoff faces (Chernoff, 1973) and stars (Anderson, 1957, Siegel
et al., 1972, Gnanadesikan, 1977). We will focus on star plots, but instead of using
them to visualize data, they are used to visualize parameters. The parameters of
the logit model themselves are less appropriate since they contain the effect on
logits, which do not carry much intuition. A much better way is to focus on the
odds that stand behind the log-odds (or logits).
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Figure 4: Effect stars showing the exponentials of parameters, p-values at the

rays refer to hypothesis H0 : βrj = 0, p-values given with the variable description

refer to hypothesis H0 : β1j = · · · = βkj = 0.

8



4.1 Star Plots for Parameters

The main tool is the representation of the odds of a model with symmetric side
constraints as

P (Y = r|x)

GM(x)
= exp(βr0 + xT βr) = eβr0ex1βr1 . . . expβrp = eβr0(eβr1)x1 . . . (eβrp)xp

.

From

P (Y = r|x1, . . . , xj + 1, . . . xp)/GM(x1, . . . , xj + 1, . . . xp)

P (Y = r|x1, . . . , xj, . . . xp)/GM(x1, . . . , xj, . . . xp)
= eβrp

it is seen that eβrj represents the multiplicative effect of variable j on the odds
P (Y = r|x)/GM(x) if xj increases by one unit.

In ”effect stars”, which are proposed here, the lengths of the rays emanating
from the center of the plot represent the exponentials of the parameters. Thus
one obtains a star plot for each variable that shows how strong the impact of
the predictor on the response is and what form it takes. In addition, we include
a (shaded) unit circle around the center that corresponds to the no-effects case,
where β1j = · · · = βkj = 0 or, equivalently, eβ1j = · · · = eβkj = 1 holds. Therefore,
the deviation from the circle shows the strength of the preference for one category
as the deviation from the circle. If the ray is outside the circle the increase in the
predictor increases the probability of the corresponding category, if it is inside the
circle the increase in the predictor decreases the response probability. By default
stars are standardized such that the maximal ray lengths of the stars have the
same value. This value also scales the radius of the unit circle.

Figure 4 shows the effect stars for the main effect model fitted to the party
choice data, where the quantitative variable age has been standardized. Let us
consider the effect of age. It is immediately seen that with increasing age the
Christian-democratic party (CDU) is more strongly favored while, in particular,
the response probability for the Greens decreases. An additional feature that is
included is the significance of the deviation. The value in brackets given at each
ray is the p-value of the hypothesis H0 : βrj = 0 for the model with symmetric
side constraint. The effects of age on responses CDU, SPD and Greens turned
out to be significant at the level 0.05, the former two with positive (outside
the circle), the latter with negative effect (within the circle). In addition, the
overall p-value for the hypothesis that one variable can be neglected, that is,
H0 : β1j = · · · = βkj = 0, is given with the description of the variable. For
example, age turned out to be highly significant (0.000), whereas the effect of
gender was weak (p-value of 0.151).

The advantage of the effect star plots is that all the effects of the variables
are shown simultaneously. Metric as well as continuous variables are given in
the same representation. In addition to the direction of the effect seen from the
shape of the star, information on the significance of specific effects is included,
as well as information about the whole variable.
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Relevant features are easily seen from the form of the stars. For example,
very strong deviations from the circle are found for the variables democracy,
unemployment and union. All these variables have a strong effect in favor of
the left party. Deviations from the star in favour of the Greens are seen for the
variables high school and west. Supporters of the Greens are found among more
educated persons from the former west.

CDU
(0.000)

SPD
(0.021)

FDP
(0.118)

Greens
(0.000)

Left Party
(0.288)

CDU
(0.017)

SPD
(0.012)

FDP
(0.453)

Greens
(0.002)

Left Party
(0.000)

Age
(0.000)

West
(1: west, 0.000)

Figure 5: Effect stars with reliability intervals for two variables (party prefer-

ence data)

4.2 Extensions and Alternatives

The presentation can be extended to include standard errors. Let σrj denote the
standard error for estimation of βrj. Then, a reliability interval for the exponen-

tial is given by [exp(β̂rj +1.96σrj), exp(β̂rj +1.96σrj)]. By plotting the lower and
the upper limit one obtains an inner and an outer star.

Figure 5 shows the plots of two predictors for the party preference data. If
p-values are large, for example, for FDP and the left party for variable age,
and FDP for variable west, the circle is covered by the corresponding intervals
whereas for highly significant predictors, for example, CDU for variable age, the
corresponding intervals are outside or within the circle. Inclusion of standard
errors is certainly helpful but with many stars information content can be high.
One strategy is to look first at all the stars without reliability intervals and then
pick out the interesting ones and look at them more closely.
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Figure 6: Effect stars with reference category (party preference data)

It should be noted that star plots for the exponentials of the parameters have
the same form if a reference category is chosen. But then a more appropriate
circle is the circle with radius defined by the reference category. The radius is
fixed by the length of the ray for the reference category. Figure 6 shows effects
of two variables with reference category CDU. Now rays inside the circle show
that the predictor decreases the preference for the corresponding category when
compared to the reference category. Rays outside the circle represent the opposite
effect. But in both cases interpretation is in relation to the specified reference
category (CDU). Consequently the p-values given now refer to the null hypothesis
H0 : βrj = 0 for parameters constrained by fixing the reference category.

In Figure 4 the main effect model was represented by star plots. But, of course,
also interaction terms can be represented as stars. For simplicity we consider
one interaction term that turned out to be significant, namely the interaction
between age and democracy. Figure 7 shows the stars for the marginal terms
and the interaction. The stars for the other variables do hardly change when the
interaction is included and therefore are not shown. When comparing to Figure
4 one sees that the main effect of democracy hardly changes while the main effect
of age is quite different. The interaction effect shows that the effect of age is
modified by the binary variable democracy (1: not satisfied, 0: satisfied). In
particular, the preference for the big parties, SPD and CDU, increases stronger
with age than is contained in the marginal effect of age if voters are not satisfied
with democracy. For the green and the left party the slope of age is smaller when
compared to the marginal effect if voters are not satisfied with democracy.
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Figure 7: Marginal and interaction term stars for age and democracy (party

preference data).

4.3 Alternative Displays

Star plots visualize parameters of fitted models. The plots are especially simple
for main effect models when predictors are binary or are measured on a metric
scale level. Then one star collects all the parameters connected to one explanatory
variable. For categorical predictors with more than two categories several stars
are linked to one predictor. The same holds when interactions are included.
Then one has at least three stars that are linked to two variables. Although the
interaction star as a visualization of the underlying effects is interpretable, the
effect of a variable is not easily seen since it has to be seen in combination with
the variable with which it interacts. The effect displays proposed by Fox and
Andersen (2006) are able to visualize the effects of interaction terms quite nicely
by allowing other predictors marginal to a given term to be set at average or
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Age*Democracy effect plot
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Figure 8: Effect plot for the interaction of age and democracy

other values.
For illustration we consider the interaction effect between the variables age and

democracy, for which stars are given in Figures 8 and 9. Figure 8 shows the typical
effect plots as curves and Figure 9 shows the ”stacked area” displays also offered
by the effects package (Fox et al., 2011). They visualize what the interaction star
in Figure 7 shows only qualitatively, that the preference for the big parties, SPD
and CDU, increases stronger with age if voters are not satisfied, for the green and
the left party the effect slope decreases if voters are not satisfied. In particular
the stacked area display visualizes nicely the effect of age and democracy on the
response. Nevertheless, it should be noted that the effects on the probabilities are
shown for fixed values of the other variables, in our case they have been chosen by
mean values. If other values are chosen the effects on probabilities might change.

One can also plot the linear predictor itself, which means the effect on the
logits. This plots would essentially show the same form of effects (but shifted)
for other values of the rest of the variables, but it has the disadvantage that it
is much harder to think in logits than in probabilities. For binary responses the
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Age*Democracy effect plot
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Figure 9: Stacked area display for the interaction of age and democracy.

effects package offers the option to label the response axis nonlinearly on the
probability scale. Then one can see the effect on probabilities from the scaling.
For multinomial the scaling is not so straightforward because it depends on the
logits that were chosen, that is, the reference category that has been fixed. In their
application Fox and Hong (2009) also rely on probability plots to visualize the
effects in multinomial models. Star plots avoid the dependence on the reference
category by using symmetric side constraints. By using odds rather than logits
the effect strength is somewhat more intuitive.

The essential difference between stars and effect displays provided by the
effects package is that stars visualize parameters with effect strength referring to
specific odds and effect displays visualize the effects on probabilities or logits as
curves. Effects displays are strong tools especially for interaction effects because
they include the marginal effects. After screening the effects by star plots it is
certainly a good idea to look at the plots provided the effects package, which, in
particular for metric predictors, show the continuous dependence on the predictor.
One other advantage of the effects package is that smooth effects of continuous
predictors can be included. Although one might construct stars that visualize
smooth effects it would destroy the simplicity of the visualization by stars (see
concluding remarks).
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Figure 10: Graphs for brand choice data with seven predictors and fixed ra-

dius. It is seen that stars for the significant predictors, mount, social level, price

sensitivity and education, deviate strongly from the circle.

4.4 Further Examples

For further illustration we consider brand choice data. The data refer to differ-
ent brands of coffee. The purchases of coffees of 2111 households were collected
by the Gesellschaft für Konsumforschung (Society for Consumer Research) and
are available at http://www.stat.uni-muenchen.de/service/datenarchiv/kaffee/.
The brands were named after the shops, which offer a regular brand and a
special brand, Aldi, AldiSpecial, Jacobs, JacobsSpecial, Eduscho, EduschoSpe-
cial, Tchibo, TchiboSpecial. The binary covariates were the number of packages
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bought (amount; 1: ≥ 2), age (1: ≥ 50), social level (1: low), monthly income
(1: ≥ 2500), persons in household, price sensitivity (1: sensitive), education (1:
high school). Figure 10 shows the corresponding glyphs. Three of the predictors
are not significant, namely age, income, and persons in household. It is seen that
the corresponding stars are very close to the circle. For the significant predictors
the stars deviate strongly from the no-effects circle. Naturally, the interpretation
of the single effects refers to the brands considered. One sees, for example, that
the brands, offered by the cheap discounter Aldi, are preferred if the social level
is low. Following the suggestion of an Associate Editor the stars are scaled in a
different way, namely by fixing the radius of the unit circle. What works well in
this example can be less advantageous for other data (see next example).

An often used example with a categorical predictor is the alligator food choice
considered in Agresti (2002). In the study by the Florida Game and Fresh Water
Commission the response is the primary food type in categories fish, invertebrate,
reptile, bird, and other. The explanatory variables are size, dichotomized into
≤ 2.3, > 2.3, gender (1: male, 0: female), and the lake where the reptiles lived
(four categories, 1: George, 2: Hancock, 3: Oklawaha, 4: Trafford), see Agresti
(2002). Figure 11 shows the resulting glyphs where lake George is used as the
reference category of the predictor lake. Therefore, the intercepts represent the
food preference in lake George for small female alligators. It is seen that size
of the alligator changes the food preference; larger alligators have a stronger
preference of bird and reptiles. Also the lake makes a difference. The effects have
to interpreted with respect to the reference lake George. It is seen that in the
other lakes in particular reptiles seem to be strongly prefered. In this example
the fixed radius yields stars of strongly varying size. Thus, one preferable scaling
of stars depends on the data - therefore, the option to fix the radius is included
as an option in the EffectStars package.

5 Ordinal Response Models

The graphical tool of parameter glyphs can also be used to uncover structures
in ordinal response models as the cumulative type models or the sequential type
models (for example, Agresti, 2009). For simplicity, we restrict consideration to
logit models. Let the response Y take values from ordered categories {1, . . . , k}.
The cumulative logit model has the general form

log

(
P (Y ≤ r|x)

P (Y > r|x)

)
= γ0r + xT γr, r = 1, . . . , k − 1,

or

P (Y ≤ r|x) =
exp(γr0 + xT γr)

1 + exp(γ0r + xT γr)
, r = 1, . . . , k − 1,
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Figure 11: Food choice for alligator data depending on size gender and lake

with fixed radius. Food preference strongly depends on the lake. Fixed radius

produces stars of strongly varying size.

The sequential logit model (also called continuation ratio model) has the form

log

(
P (Y = r|x)

P (Y > r|x)

)
= γ0r + xT γr, r = 1, . . . , k − 1,

or

P (Y = r|Y ≥ r, x) =
exp(γr0 + xT γr)

1 + exp(γ0r + xT γr)
, r = 1, . . . , k − 1.

The model is strongly related to discrete hazard models if the response refers
to categorical survival. Then the probability P (Y = r|Y ≥ r,x) represents the
probability of failure in (time) category r given category r is reached, which is a
discrete hazard. For details see, for example, Tutz (2012).

In both models the predictor has the form ηr = γ0r + xT γr. By allowing for
category-specific effects γT

r = (γr1, . . . , γrp) the model has as many parameters as
the multinomial logit model. In its simpler version, where γr = · · · = γk−1 = γ
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holds, the cumulative type model is also called the proportional odds model. Only
in this form it fully uses that response categories are ordered. An intermediate
case, where only some of the parameters are category-specific is the partial pro-
portional odds model (for example, Cox, 1995, Brant, 1990, Peterson and Harrell,
1990). With many predictors it is a demanding problem to find out which pa-
rameters can be specified as global, that is, not varying over categories, and which
ones as category-specific. In the exploration of the general model star plots can
be helpful.

For the representation of effects it is useful to represent the models in a slightly
different form. The cumulative logit model can be written as

P (Y ≤ r|x)

P (Y > r|x)
= eγr0ex1γr1 . . . expγrp = eγr0(eγr1)x1 . . . (eγrp)xp

.

Therefore, the exponential eγrj represents the multiplicative effect of variable j
on the cumulative odds P (Y ≤ r|x)/P (Y > r|x) if xj increases by one unit.
It is the effect on the dichotomization into response categories {1, . . . , r} and
{r + 1, . . . , k}. For the sequential logit model one obtains

P (Y = r|x)

P (Y > r|x)
= eγr0ex1γr1 . . . expγrp = eγr0(eγr1)x1 . . . (eγrp)xp

.

Therefore, the exponential eγrj represents the multiplicative effect of variable j
on the continuation ratio odds P (Y = r|x)/P (Y > r|x) if xj increases by one
unit.

In a star plot for the effects of variable xj the length of the rays is given by
eγ1j , . . . , eγk−1,j . As in the multinomial logit model the (dashed) unit circle refers
to the case where the jth variable can be neglected, that is, γ1j = · · · = γk−1,j = 0.
The p-value of the likelihood ratio test for the corresponding hypothesis H0 : γ1j =
· · · = γk−1,j = 0 is denoted by p-rel since the relevance of the jth predictor is
tested. When compared to the circle the stars show if the effects are larger than
1 (outside the circle) or smaller than 1 (inside the circle). In the sequential model
that means that a variable that has values within the circle decreases the odds
P (Y = r|x)/P (Y > r|x), rays outside the circle represent variables that increase
the odds. The interpretation of stars is the same as for the multinomial model,
that is, closeness to the unit circle means that the variable is not influential.

For illustration we consider the data from the German Munich founder study.
Data were collected on business founders who registered their new companies
at the local chambers of commerce in Munich and surrounding administrative
districts. The focus was on survival of firms measured in 7 categories, the first
six represent failure in intervals of six months, the last category represents survival
beyond 36 months. Various covariates are available, economic sector (1: industry,
manufacturing companies and building sector, 2: commerce, 3: service industry),
legal form (1: small trade without entry in the register of companies, 2: one man
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Figure 12: Stars for four predictors of the founder study with circles referring

to the no-effects case. For the significant variables, sector3 and legal3 the stars

are far away from the no-effects circle, for the significant variables, location and

new foundation, they are quite close.

business merchant, 3: GmbH, GmbH & CoKG, 4: GbR, KG, OHG), location
(0: residential area, 1: business area, industrial area or mixed), new (0: new
foundation, 1: partial take-over, take-over, miscellaneous), pecuniary reward (0:
main occupation, 1: additional occupation), seed capital (1: > 25000, 0: ≤
25000), equity capital (1: yes, 0: no), debt capital (1: yes, 0: no), market (0:
local market, 1: national market), clientele (0: wide spread, 1: small amount of
important customers), education of founder (1: A-levels, 0: minor), gender of
founder (1: male, 0: female), experience (1: > 10 years, 0: ≤ 10), number of
employees (1: > 2 , 0: ≤ 2), age of founder. The data of the Munich founder study
have also been used by Brüderl et al. (1992) and Kauermann et al. (2005) and
are available from the Central Archive for Empirical Social Research, University
of Cologne, Germany (http://www.gesis.org/ZA/). We restrict our analysis to
those firms that were founded completely new, which leaves us with 1224 cases.
We fitted the full sequential logit model with all 18 predictors but show only four
of the stars that resulted. Figure 12 shows the stars for sector3, legal3, location,
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and new foundation. It is seen that the first two variables are highly significant.
The variable sector3 has all values outside the circle, meaning that the odds
increase if the firm is in the service industry as compared to reference category
1 (industry). For variable legal3 the star is distinctly inside the circle meaning
that legal form 3 decreases the odds when compared to reference categry 1 (small
trade). For the other variables, location and new foundation, the stars are very
close to the circle. Consequently both predictors are not significant (see value in
brackets).
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Figure 13: Stars for five predictors of the founder study. Deviation from the

dashed circle implies relevance of the predictor, deviation from the dashed-dotted

circle implies that predictor is category-specific.

In ordinal models a second effect is interesting, namely if the effects are
category-specific or global. Therefore, a second (dashed-dotted) circle refers to
the model with global effects only, that is, γ1j = · · · = γk−1,j = γj. We fit the
model that contains all predictors with category-specific effects with the exception
of predictor j, which has global effect and include the circle with radius exp(γj).
The interpretation of stars with respect to the dashed-dotted circle is different.
Closeness to this circle means that the variable is global, strong deviation sig-
nals that it is category-specific. The hypothesis H0 : γ1j = · · · = γk−1,j = γj

investigates if the proportional odds assumption holds for the jth predictor. The
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corresponding p-value of the test is denoted by p-global since the test investigates
if the predictor has global effect. Figure 13 again shows the stars for only some
predictors although the full model has been fitted. All of the predictors that are
shown have significant effects (p-rel< 0.05). For predictors sector3, legal3 and
clientele the hypothesis that effects are global is not rejected (p-global> 0.05).
The corresponding stars are close to the dashed-dotted circle, although not close
to the dashed circle, which represents relevance. For the variable legal2 the star
is far away from the dashed-dotted circle and the hypothesis that the effects are
global is rejected.

In the illustrations we used the sequential model. There are two reasons.
First, the category-specific effects for the sequential model have a simple inter-
pretation. Second, the cumulative model often raises problems when a model
with category-specific effects is fitted. Maximum likelihood (ML) estimates may
not exist because the parameter space is restricted in a complicated way, one has
to postulate that γ10 + xT γ1 ≤ · · · ≤ γk−1,0 + xT γk−1 holds for all possible pre-
dictor values. If the maximum likelihood estimate does not exist an alternative is
to use in the star plot for variable xj values from the fitting of the global model,
which gives the circle, and values from the fitting of the model

log

(
P (Y ≤ r|x)

P (Y > r|x)

)
= γr0 + x1γ1 + · · · + xjγrj + · · · + xpγp,

where only variable xj has category-specific effects. But even then ML estimates
often deteriorate.

6 Concluding Remarks

We proposed a method to visualize the fitted effects of a categorical response
model. The method allows to identify the direction as well as the strength of the
effects. For ordinal models it is distinguished between the relevance of a predictor
and how strong the effects vary across the categories. Both aspects can be seen
from the corresponding stars. The full strength of the visualization method is
seen if one looks at the stars for all the covariates. In particular in the ordinal
response case we showed only selected stars although much more predictors were
used.

Star plots visualize parametric effects and therefore are useful for parametric
models. In principle the method can be extended to visualize the effect strength
in nonparametric models like the vector generalized additive model (Yee and
Wild, 1996). If the predictor has the form ηr = βr0 +

∑
j frj(xj), where frj(.)

are unspecified functions, the effect of variable j on the preference of category
r is given by the function frj(.), which is typically centered around zero. The
strength of the effect can be measured, for example, by erj =

∫
|frj(xj)|dxj.

Since the function is centered one obtains erj = 0 if the predictor has no effect
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and large values if the effect is strong. Stars with length of rays corresponding
to exp(erj) can be used to visualize the effect strengths for all categories. The
disadvantage over stars for parametric models is that the direction of the effect
gets lost: all strong effects will be found outside the circle, the no-effects case
results yields rays close to the circle. The method can also be used for factorial
predictors, if the integral is replaced by a sum over the corresponding absolute
values of the effects. Then one obtains for one categorical predictor just one
star instead of several stars. But, again, direction of effects gets lost. Therefore,
in this situation we prefer to look at several stars since information content is
higher. For nonparametric models with smooth effects effect displays provided
by the effects package (Fox and Hong, 2009) seem to be preferable.

All the computations were done by use of the free software R
(R Development Core Team (2010)). The program package Effect-
Stars that generates and plots effect stars is available at CRAN and
http://www.statistik.lmu.de/institut/lehrstuhl/semsto/software/index.html. It
contains many options to modify the resulting stars.
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