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A B S T R A C T

Background: Due to differences in learners’ resources in specific learning situations, they may not profit equally 
from learning activities such as task practice or learning with analogies. Scaffolds can help to adapt learning 
activities to learners’ needs.
Aims: We want to answer the question who benefits from what scaffold when learning about fractions on the 
number line in digitally-enriched mathematics instruction in the classroom.
Sample: Participants were 332 6th-Graders.
Methods: Dynamic visualizations were used as information-processing scaffold when learning with analogies. 
During repeated practice, adaptive task difficulty was implemented as motivational scaffold and individualized 
explanations based on typical mistakes were offered as information scaffold. Students were randomly assigned to 
one of the scaffold conditions or a control group without scaffolds. As characteristics potentially affecting 
learning processes during learning activities, we assessed prior knowledge, sustained attention, general 
reasoning, visual-spatial abilities as well as interest and self-concept in mathematics. These learner character
istics were included as predictors in Generalized Linear Mixed Models, together with the experimental condi
tions. Due to the nature of the multi-track school system in Germany, advanced placement school (APS; 
Gymnasium) students and vocational school (VS; Mittelschule) students were considered separately.
Results and conclusion: For APS students, the different scaffolds yielded minimal effects. For VS students, dynamic 
visualizations could compensate for lower general reasoning and visual-spatial ability when learning with 
analogies and adaptive task difficulty seemed to successfully counteract lower interest during practice. In
struction can be individualized based on the conditioning of scaffolds on the specific mechanisms underlying 
different learning activities.

1. Introduction

There is broad evidence for the effectiveness of one-on-one tutoring 
with substantial positive effects (e.g., Cohen et al., 1982; Nickow et al., 
2024; Pellegrini et al., 2021; Rheinheimer et al., 2010). Catering to the 
needs of the individual during the learning process is at the core of 
several instructional approaches, such as personalized, individualized, 
and adaptive instruction (e.g., Dockterman, 2018; Hillmayr et al., 2020; 
Plass & Pawar, 2020). While research utilizing techniques from educa
tional data mining and learning analytics can uncover individual vari
ations in learning processes and offer personalization in terms of content 
and difficulty level (Goldhammer & Zehner, 2017), we still lack answers 

to the question who profits from what kind of treatment (e.g., Cherni
kova et al., 2023; Plass & Pawar, 2020; Tetzlaff et al., 2021). In this 
study, we address this gap by starting with specific learning activities 
and adding different scaffolds to examine what works best for which 
learners — with the ultimate goal of providing all students with cogni
tively stimulating mathematics instruction at the secondary school level.

Traditional aptitude-treatment-interaction (ATI) research (e.g., 
Cronbach & Snow, 1977; Snow, 1991) investigates the fit between in
dividual learner prerequisites and the learning situation, mostly 
focusing on group differences based on pretest scores (or expertise 
levels; e.g., Kalyuga, 2007) and on the effects of varying levels of 
guidance (e.g., Fukuda et al., 2022; Lazonder & Harmsen, 2016). 
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Differential effectiveness research (Hunt, 1975) has broadened the scope 
of traditional ATI research by moving beyond the exclusive reliance on 
strictly experimental designs and the restrictive statistical requirement 
of a significant disordinal interaction (e.g., Faddar & Kjeldsen, 2022). In 
the broader context of social and behavioral research, the explicit 
recognition that treatments vary in effectiveness across different pop
ulations and contexts has recently been termed the ‘Heterogeneity 
Revolution’ (Bryan et al., 2021). Based on theories of causal mecha
nisms, behavioral researchers try to demonstrate that a treatment effect 
diminishes or disappears as a function of critical factors, such as specific 
individual characteristics (e.g., Bryan et al., 2021; Krefeld-Schwalb 
et al., 2024; Veltri, 2023). But which individual characteristics may be 
relevant for learning in a specific learning situation (treatment) based on 
theories of causal mechanisms? This question cannot be answered 
without considering the learning activities within the learning situation 
and their affordances.

1.1. How the affordances of learning activities can inform scaffolding

The last decades of research on learning and instruction resulted in a 
number of well-documented, established learning activities that are 
based on largely accepted general principles of learning (see e.g., 
Ainsworth, 2006; Eccles & Wigfield, 2020; Gentner, 1983; Georghiades, 
2000). We define activities as learning activities when they prompt 
learners to engage with, direct, shape, or optimize cognitive, meta
cognitive, and/or motivational processes to acquire knowledge (by as
sociation or differentiation, integration, and restructuring; e.g., Carey, 
2000) or to practice retrieval or the application of knowledge.

Learning activities that can support knowledge acquisition include, 
for example, generating solutions to novel problems prior to instruction, 
engaging with contrasting cases, learning with analogies, and comparing 
superficially different examples to identify a common underlying concept 
(e.g., Firth et al., 2021; Hofer et al., 2018; Loibl et al., 2024; Reinhold 
et al., 2024; Rittle-Johnson, 2017; Roy & Chi, 2005; Schwartz et al., 
2011; Zepeda et al., 2015). Likewise, several learning activities have 
been investigated that support the practice and application of knowl
edge. These include comparing problem types or solution methods using 
alternative ordering tasks to foster procedural flexibility (e.g., Rit
tle-Johnson, 2017; Star, 2005). Other examples are employing motor 
imagery to enhance motor performance (e.g., Guillot & Collet, 2008), 
using retrieval practice to promote long-term retention of procedural and 
declarative knowledge (e.g., Roediger & Butler, 2011), and engaging in 
problem-solving within simulated real-world scenarios to support 
knowledge application (e.g., Fischer et al., 2022).

Yet, students often do not profit equally from different learning ac
tivities due to variation in their individual resources related to the 
cognitive, metacognitive, or motivational processes required for 
learning (e.g., Hofer et al., 2018; Hofer & Stern, 2016; Reinhold, Hofer, 
Berkowitz, et al., 2020; Reinhold, Hofer, Hoch, et al., 2020; Stern, 
2017). For fact learning, for instance, there is evidence for age-related 
differences in performance between the learning activities prediction 
generation and example-based learning. The latter seems to correlate with 
the learners’ ability for analogical reasoning (Breitwieser & Brod, 2021). 
Similar results are reported for generating drawings and generating ques
tions (Brod, 2020). Likewise, comparing solution methods seems to be less 
effective than comparing problem types of studying examples sequen
tially, if students do not possess sufficient prior knowledge 
(Rittle-Johnson et al., 2009). In a collaborative learning setting, activ
ities that involved comparing only one stochastic concept during the in
dividual learning phase were less effective for learners with low prior 
knowledge than those that contrasted three different stochastic concepts 
(Deiglmayr & Schalk, 2015). Regarding non-cognitive learner resources, 
beneficial motivational and emotional orientations, such as learners’ 
self-concept, and emotional engagement, including intrinsic motivation 
and interest, turned out to be relevant prerequisites for getting the most 
out of practice tasks in mathematics (Reinhold et al., 2021). Across 

studies, we see that sometimes students cannot make use of a specific 
learning activity as intended—for example, due to a lack of intrinsic 
motivation or insufficient prior knowledge. This is were scaffolding 
could come into play (see Fig. 1).

Wood et al. (1976) broadly described scaffolding as the process of 
guiding somebody through a task that would be impossible to complete 
without calibrated support. According to most conceptualizations of 
scaffolding, it refers to additional information that is provided on top of 
a learning activity supporting the learner (e.g., Belland, 2017; Dumont, 
2019; Heitzmann et al., 2019; Nguyen, 2021; Pea, 2004; Puntambekar, 
2022). Building on the concept of representational scaffolding (Fischer 
et al., 2022), we expand the definition of scaffolding beyond the pro
vision of additional information (e.g., providing individualized expla
nations in addition to corrective feedback) to also include modifications 
in the implementation of the learning activity itself, with the goal of 
altering its demands. These modifications may involve, for example, 
using dynamic rather than static visualizations of content or adapting 
the difficulty level of practice tasks based on learner performance 
instead of predefined difficulty levels during practice. Scaffolds can 
specifically address cognitive, metacognitive, or motivational processes 
relevant for the learning activity to work as intended and hence help to 
adapt those activities to the needs of individual learners. The distinction 
between learning activities and scaffolding is critical, as it clarifies the 
nature of scaffolds as tools designed to enhance or support particular 
learning processes required to realize the potential of specific learning 
activities (see Fig. 1) allowing for a more targeted and purposeful use of 
scaffolding in research and practice.

To summarize, we consider all systematic amendments to and 
modifications in the implementation of a learning activity as scaffolding 
as long as they tap underlying cognitive, motivational, or metacognitive 
processes. Since these classifications are not supposed to be determin
istic in the sense that a specific scaffold can only fulfill one function in 
the learning process (e.g., motivational), we refer to cognitive, moti
vational and metacognitive scaffolding as ‘scaffolding intentions’ (van 
de Pol et al., 2010).

The mechanisms underlying cognitive scaffolding are grounded in the 
idea of a multi-memory model cognitive architecture and the processes it 
describes as central to learning (e.g., Sweller et al., 2019). We speak of 
cognitive information scaffolding whenever scaffolding provides missing 
knowledge that is, however, important to process information. We speak 
of cognitive information-processing scaffolding whenever scaffolding sup
ports activation of existing knowledge, selection, processing in working 
memory, encoding, or integration. Examples are provided in Fig. 2.

While cognitive scaffolding supports the cognitive processes 
involved in learning, motivational scaffolding targets the motivational 
factors that influence the depth and duration of volitional engagement in 
cognitive and metacognitive learning processes. Synthesizing what the 
various existing theories of learning motivation have in common, a 
learner’s current motivation comprises an expectancy and a value 
component related to the current activity that is initiated, directed, 
controlled, regulated, maintained, and evaluated depending on that 
motivation. Both the situation and individual characteristics affect the 
expectancy and value component and hence current motivation (see 
Dresel & Lämmle, 2011; Eccles et al., 1983; Wigfield & Eccles, 2000). 
Accordingly, motivational scaffolding may activate relevant existing 
motivational traits, support (situational) feelings of competence, au
tonomy, and relatedness, promote self-efficacy and a positive 
self-concept and hence increase the expectancy of success, e.g., via 
supporting beneficial attributions, and stress the value of a task (e.g., 
Deci & Ryan, 2008; Weiner, 1985; see Fig. 2 for examples). Belland and 
colleagues (2013) provide a comprehensive framework for motivational 
scaffolding.

Finally, metacognitive scaffolding, which is not investigated in the 
present study, is intended to support metacognitive processes such as 
analyzing, planning, executing, and monitoring own learning behavior 
(Bannert et al., 2014; Lim et al., 2023).
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1.2. Understanding the domain of fractions to derive learning activities

Before considering which scaffolds to implement, it is essential to 
first identify which learning activities are appropriate for the specific 
content domain. A solid understanding of fractions is a foundational 
aspect of mathematics learning (Booth & Newton, 2012), yet remains 
highly challenging for many students (Bailey et al., 2012; Lortie-Forgues 
et al., 2015; Reinhold et al., 2025; Reinhold, Hofer, Hoch, et al., 2020; 
Reinhold, Obersteiner, Hoch, et al., 2020). One concept that is partic
ularly challenging to grasp is fraction measurement, which involves 
understanding the placement of fractions on a structured number line 
(Behr et al., 1993; Kieren, 1976; Wong & Evans, 2008).

Two specific features contribute to the difficulty of number line tasks 
as illustrated in Fig. 3: first, variation in how the unit is subdivided; and 
second, variation in the total length of the number line, which may not 
be identical to the defined unit (Behr et al., 1983). These variations 
create task formats in which naïve counting strategies based on natural 
number knowledge often lead to systematic errors (Hannula, 2003; 
Novillis-Larson, 1980). To solve such tasks correctly, students should 

interpret a fraction a/b as a measure of a out of b congruent parts of the 
defined unit (Kieren, 1976; Wong & Evans, 2008). As it is often the case 
in mathematics, the ability to use the number line as a tool to represent 
fractions can be described as a mixture of interrelated conceptual and 
procedural knowledge (Crooks & Alibali, 2014; Nuraydin et al., 2023; 
Rittle-Johnson, 2017). By building on students’ prior knowledge, in
struction can guide them to relate familiar components of a rectangle to 
corresponding fractions on the number line, thereby supporting their 
understanding of the challenging concept of fraction measurement (see 
Fig. 4). Through repeated practice with placing fractions on number 
lines that systematically vary in relevant difficulty-generating features 
(as described above), students can further develop both conceptual and 
procedural knowledge. Accordingly, we chose learning with analogies and 
repeated practice as well-established learning activities in mathematics 
education that support the acquisition and practice of conceptual and 
procedural knowledge and combined them in tablet-based instruction in 
the classroom.

1.3. Learning with analogies with dynamic visualizations as cognitive 
information-processing scaffold

The learning activity learning with analogies can help us to infer new 
abstractions from what we already know and to understand concepts as 
systems of relationships that can be connected and flexibly manipulated 
(e.g., Gentner & Holyoak, 1997; Richland & Simms, 2015). The process 
of analogical reasoning is demanding and it often does not happen 
without support (e.g., Gentner et al., 2003; Kubricht, Lu, & Holyoak, 
2017; Starr et al., 2018). Depending on their processing resources, in
dividual learners differ in their capability to mentally hold and manip
ulate relationships in the analogy (e.g., Gray & Holyoak, 2020; Richland 
& Simms, 2015). Moreover, learners have to recognize similarities and 
differences between the target and the source of the analogy. This 
structure mapping process is affected by the learners’ cognitive re
sources including general reasoning or spatial abilities (e.g., Begolli 

Fig. 1. Illustration of the interplay between learning activities, learner re
sources, and scaffolding to optimize learning processes.

Fig. 2. Grid showing examples of combinations of learning activities with scaffolds differing in their intentions. Italic typeface indicates examples implemented in 
this study.

Fig. 3. Typical task involving the placement of 3/4 on a structured num
ber line.
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et al., 2015; Braasch & Goldman, 2010; Krawczyk et al., 2008). 
Accordingly, learners with less resources in that regard are less likely to 
make use of analogies as learning activity (Gray & Holyoak, 2021).

We hence suggest to support learning with analogies with dynamic 
visualizations as scaffold (acknowledging that there are other options for 
scaffolding). The representation of relations via dynamic visualizations 
can support the integration of knowledge and structure mapping 
(Hegarty & Kriz, 2008). They provide an external representation to help 
learners build an adequate mental model of the relationships in the 
analogy (see Hegarty & Kriz, 2008; Lichti & Roth, 2018; Lowe & 
Schnotz, 2014). Accordingly, dynamic visualizations (instead of static 
visualizations of the analogy) can act as an information-processing 
scaffold supporting cognitive processes during knowledge acquisition 
with analogies.

There is evidence that these visualizations might be especially 
beneficial for learners with less cognitive resources, including visual- 
spatial ability (Höffler, 2010; Kubricht et al., 2017; Kühl et al., 2022). 
Yet, the evidence for visual-spatial ability as cognitive resource is, in 
parts, contradictory. Visual-spatial ability might help to follow a dy
namic visualization, especially for highly complex content (Kühl et al., 
2022). In that case, visual-spatial ability plays the role of an enhancer. 
However, there seems to be more support from recent research for 
another hypothesis, stating that learners with low visual-spatial ability 
might, in particular, be supported by the external representation pro
vided by the visualization, which helps them to build an adequate 
mental model they would not have been able to build themselves 
(Höffler, 2010). We hence assume dynamic visualizations to have the 
potential to compensate for deficits in visual-spatial ability. To sum up, 
as a cognitive information-processing scaffold, dynamic visualizations 
might help students with less cognitive resources, especially 
visual-spatial and general reasoning ability, to make use of the learning 
activity learning with analogies.

1.4. Repeated practice with adaptive task difficulty as motivational 
scaffold

A learning activity that is especially suited to improve learners’ 
procedural knowledge is repeated practice, which is closely related to the 
concepts of repeated testing or practice testing (e.g., Larsen et al., 2009; 
Stenlund et al., 2016). It has proven to be important to consolidate 
learning, especially if it involves active processing, problem solving, and 
reflection (e.g., Karpicke & Roediger III, 2007; Lehtinen et al., 2017) and 
if effortful retrieval is involved (Adesope et al., 2017; Roediger & Butler, 
2011; Stenlund et al., 2016). Yet, learners may feel overwhelmed or 
bored by inappropriate (too difficult or too easy) practice problems, 
which can harm the learning progress (Su, 2017; Tanaka & Murayama, 
2014).

One solution is to implement adaptive task difficulty (instead of pre
determined difficulty levels) as scaffold with the difficulty level being 
adapted to learners’ previous performance (e.g., Reinhold, Hoch, 
Werner, et al., 2020; Reinhold, Hofer, Hoch, et al., 2020; Sjaastad & 
Tømte, 2018). Accordingly, in the present study, task difficulty is 
adapted to a sequence of students’ previous performance referring to 
domain-specific difficulty generating factors (Kieren, 1976; Hannula, 

2003; Reinhold et al., 2025). This allows all students to learn with 
optimally challenging tasks (e.g., Wood et al., 1976).

In line with self-determination theory (e.g., Deci & Ryan, 2008), 
adaptive task difficulty as motivational scaffold during repeated practice 
can promote a sense of achievement and competence by experiencing 
tasks as challenging but manageable. A boosted sense of competence 
might be especially critical and hence increase learning motivation for 
students with below-average self-concept and interest in mathematics 
(Reinhold et al., 2021).

1.5. Repeated practice with individualized explanations based on typical 
mistakes as cognitive information scaffold

Repeated practice activities, described in section 1.4, often incor
porate some form of feedback, which plays a crucial role in learning 
through repeated practice (e.g., Abbott et al., 2017; Bosse et al., 2015; 
Wang & Yang, 2023). Feedback refers to information given to learners 
concerning a gap between their performance or comprehension and the 
desired instructional outcome. Extensive research has shown that feed
back is instrumental in advancing learners’ performance (e.g., Hattie & 
Timperley, 2007; Krapp, 2005; Narciss et al., 2014), allowing students to 
benefit from targeted generative processing (e.g., Moreno, 2004). The 
effectiveness of feedback, however, is contingent upon learners estab
lishing an internal mental representation of the practice task. Learners’ 
prior knowledge about the task and the learning content influence the 
ease of mentally representing the practice task. Processing of feedback 
can hence overwhelm an individual’s cognitive resources (e.g., Lam 
et al., 2011).

Feedback as part of a repeated practice learning activity can be 
provided in many different ways, among others, regarding feedback 
content and timing (see Panadero & Lipnevich, 2022). In the present 
study, basic corrective feedback is complemented by additional indi
vidualized explanations based on typical mistakes as a cognitive informa
tion scaffold in the context of repeated practice. These additional 
individualized explanations are derived from an analysis of the learners’ 
specific mistakes compared to empirically-validated typical mistakes on 
the task (Reinhold et al., 2025). Individualized explanations addressing 
domain-specific errors (e.g., Asterhan & Dotan, 2018) may facilitate 
targeted generative processing during feedback reception. Providing 
explicit and timely information about mistakes can help integrate new 
insights, even into less developed mental representations (e.g., Mason & 
Bruning, 2001; Moreno, 2004).

Low-prior knowledge learners tend to benefit more from feedback 
that includes immediate explanations, rather than just indicating correct 
or incorrect answers (e.g., Moreno, 2004). For high-prior knowledge 
learners, processing of comprehensive feedback has been found to cause 
unnecessary cognitive load in line with the redundancy principle and 
expertise reversal effects (see e.g., Fyfe, 2016; Fyfe et al., 2012; Fyfe & 
Rittle-Johnson, 2016; Kalyuga, 2007). The individualized explanations 
implemented in this study, however, are delivered solely in response to 
actual errors and are precisely targeted to address those specific mis
takes. Accordingly, high-prior knowledge learners could still benefit 
from individualized explanations when they do make a mistake, 
although they might be able to understand and resolve errors based on 
their existing knowledge as well.

At the same time, sufficient cognitive resources (Fyfe et al., 2015), 
such as sustained attention, may be essential to adequately process ex
planations that are provided as feedback during repeated practice. 
Accordingly, students with lower prior knowledge might especially 
profit from individualized explanations based on typical mistakes as 
cognitive information scaffold during repeated practice (e.g., Fyfe, 2016) 
– and higher sustained attention may help to make use of the scaffold.

2. The present study

The present study focused on students’ knowledge about fractions on 
Fig. 4. Analogy showing how parts of a rectangle relate to fractions on the 
number line.
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the structured number line in tablet-based mathematics instruction in 
the classroom. We aimed to answer the following research question: 
During instruction about fractions on the number line based on established 
learning activities, who benefits from what type of scaffold linked to those 
learning activities?

Referring to existing research, dynamic visualizations were used as a 
cognitive information-processing scaffold when learning new informa
tion with analogies. During repeated practice, adaptive task difficulty 
was implemented as motivational scaffold and individualized explana
tions based on typical mistakes were offered as cognitive information 
scaffold. Accordingly, 6th-Grade students from German secondary 
schools were randomly assigned to one of the scaffold conditions or a 
control group without any scaffolds. To examine characteristics that 
may influence cognitive and motivational processes during lear
ning—and thus determine for whom the different scaffold conditions 
might be effective—prior domain knowledge, sustained attention, gen
eral reasoning, visual-spatial abilities, self-concept in mathematics, and 
interest in mathematics were assessed and included as predictors in 
Generalized Linear Mixed Models. These predictors, along with the three 
scaffold conditions and the control group, were used to predict knowl
edge of fractions on the number line.

We expected the cognitive information-processing scaffold dynamic 
visualizations to help students with less cognitive resources, i.e., general 
reasoning (H1) and visual-spatial ability (H2), to make use of the 
learning activity learning with analogies—and to be of no additional 
help for students with high cognitive resources.

Similarly, we hypothesized that the motivational scaffold adaptive 
task difficulty would be especially effective in supporting motivational 
processes, thereby enhancing learning during the learning activity 
repeated practice, more so for students with low interest (H3) and self- 
concept in mathematics (H4) than for those with high interest and self- 
concept.

Finally, the cognitive information scaffold—individualized expla
nations in response to domain-specific errors—was assumed to be 
particularly beneficial for learners with low prior knowledge. It was 
expected to allow them to learn from their mistakes during repeated 
practice. The scaffold was considered less essential for high-prior 
knowledge learners, as these learners are likely to make fewer mis
takes and to use their existing knowledge to understand and resolve 
errors (H5). In addition, we expected sufficient cognitive resources, 
especially sustained attention, to be a necessary prerequisite for students 
to process the individualized explanations—with students lacking sus
tained attention being ‘distracted’ by this additional information (H6). A 
visual summary of the six underlying hypotheses is given in Fig. 5.

3. Methods

3.1. Sample

A total of N = 332 6th-Grade students (146 female, 179 male, 7 
preferred not to tell) from k = 16 German secondary school classrooms 
participated in the study. Of those participants, 192 students attended 
advanced placement schools (APS; German Gymnasium, all in 2021) 
and 140 students attended vocational schools (VS; German Mittelschule, 
62 in 2021 and 78 in 2022 with no significant cohort differences on 
central study variables). There is broad evidence for significant differ
ences between students from those school types with regard to perfor
mance levels and learning conditions (e.g., Baumert et al., 2006, 2009; 
Dumont et al., 2013; Hofer et al., 2024; Reinhold, Hofer, Hoch, et al., 
2020). In both types of schools, fractions are part of the 6th-Grade 
curriculum. Accordingly, the students were formally introduced to 
fractions in advance of their participation in the study. This study fo
cuses on the specific topic of fractions on the number line, which the 
participants have had limited exposure to in their coursework. Students 
were randomly assigned to one of the four experimental conditions; the 
final resulting distribution is shown in Table 1.

3.2. Intervention procedure and experimental conditions

This study was conducted at two time points in July 2021 and 2022. 
The Bavaria n Ministry of Education (reference IV.7-BO4106.2019/52/ 
9) granted its approval including ethical clearance. After obtaining 
consent from school principals, teachers, and parents, researcher- 
provided tablets were used by the students during the 2-h interven
tion, conducted within their classrooms during regular school days and 
under the guidance of a trained investigator who was not the classroom 
teacher.

The digital learning environment utilized in this study is in parts 
based on the ALICE:fractions environment, which was developed in a 
collaborative effort between the Chair of Geometry and Visualization at 
the Department of Mathematics and the Heinz Nixdorf Foundation Chair 
of Mathematics Education, both at TU Munich (Reinhold, Hoch, Werner, 
et al., 2020; Reinhold, Hofer, Hoch, et al., 2020). In this digital envi
ronment, students first completed a prior knowledge test before indi
vidually working through four identically structured content blocks, all 
following exactly the same procedure but differing in the specific con
tent covered. Each block concluded with a block-specific post-test. The 
procedure is explained in more detail below.

Initially, students received concise instructional material on basic 
knowledge about fractions before completing a prior knowledge test 

Fig. 5. Interaction hypotheses regarding the effectiveness of the different scaffolds with varying learner characteristics. Black = Control condition; Orange =
Experimental condition with the scaffold and learner characteristic given in the respective headline. Performance on the number line tasks is measured as deviation 
from the target fraction on the number line (the smaller the deviation the higher the performance). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.)
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comprising four sections of increasing difficulty, assessing their 
comprehension of fractions on the number line. Subsequently, students 
engaged in the intervention, which consisted of four identically struc
tured sequential blocks of content and tasks – i.e., knowledge acquisition 
via learning with an analogy followed by practice of retrieval and 
application of knowledge with repeated practice – escalating in 
complexity. All blocks addressed understanding of fractions on the 
number line. Accordingly, the first block targeted the standard number 
line from 0 to 1 and segmentation had to be refined or coarsened. In the 
second block, students were introduced to fractions on a number line 
exceeding 1. In the third block, students had the opportunity to enhance 
their understanding of fractions on number lines by engaging with 
segmentations that did not align with the fractions to be placed on the 
number line. Finally, the fourth block dealt with placing fractions on 
number lines with no segmentation at all. Within all four blocks, the 
three experimental scaffolding conditions (illustrating screenshots are 
available as supplemental material) were embedded within the learning 
activities learning with an analogy or repeated practice to support students 
to acquire and practice retrieval and the application of knowledge 
related to fractions on the number line, as detailed in the following 
sections.

3.2.1. Dynamic visualizations as cognitive information-processing scaffold
Each block started with written information on the topic using 

analogies accompanied by static or dynamic (depending on the experi
mental condition) visualizations to support knowledge acquisition. 
Those visualizations represented block-specific analogies (i.e., learning 
with an analogy). For instance, they depicted how parts of a rectangle 
relate to fractions on the number line (see Fig. 4) to visualize the process 
of refining and coarsening. In the dynamic visualization condition, 
students could interact with the visualization by changing the denomi
nator of the fraction and observing the consequences for the source 
relationship (e.g., partition of a rectangle), while in all other conditions, 
students were provided with static visualizations of the analogy for 
different fractions. Students across all conditions were asked to sum
marize the knowledge acquired, facilitated by two reflection prompts.

3.2.2. Adaptive task difficulty as motivational scaffold
Subsequently, they practiced placing fractions accurately on a 

number line (see Fig. 3) for a duration of 5 min (i.e., repeated practice). 
During the practice phase, task difficulty was adjusted in accordance 
with the students’ performance in the adaptive task difficulty condition, 
utilizing empirically supported factors for generating difficulty levels 
(Reinhold et al., 2025): A random set of five tasks was generated on the 
pre-defined set of difficulty-generating factors. Students who completed 
three or fewer of those tasks correctly received another set within the 
same difficulty level, while those who completed more than three tasks 
correctly were presented with a set of increased difficulty. In all other 
experimental conditions, difficulty escalated after each set regardless of 
student performance.

3.2.3. Individualized explanations based on typical mistakes as cognitive 
information scaffold

After each practice task, students received corrective feedback 
indicating the accuracy of their response and, if necessary, providing the 
correct solution. Only in the individualized explanation condition, stu
dents received additional information, including an error analysis 

(based on their input and the most probable underlying error according 
to Reinhold et al., 2025) and guidance on reaching the correct solution.

Finally, students completed a post-test specific to each block, 
assessing their understanding of fractions on the number line (without 
feedback). The same procedure (knowledge acquisition via learning 
with an analogy, practice of retrieval and application of knowledge with 
repeated practice, block-specific post-test) was repeated across all four 
blocks. Each block was designed to take up 15 min. Subsequently, 
learner characteristics and demographic data were gathered through an 
online questionnaire (Lime Survey).

3.3. Instruments and scales

Table 2 provides information about the instruments and scales used 
in this study, with the exception of the assessment of knowledge about 
fractions on the number line, which is described in greater detail below. 
While the visuo-spatial ability test was conducted in a paper-based 
format, all other cognitive learner characteristics were evaluated using 
established tests administered via tablets. Motivational characteristics 
were gauged through self-report scales, employing response options 
structured on a Likert scale ranging from 1 = “rarely” to 4 = “mostly” or 
1 = “do not agree at all” to 4 = “completely agree”. Beyond the learner 
characteristics outlined in Table 2, several additional scales were 
employed as part of a broader data collection effort. These encompassed 
the trait assessments of mathematics anxiety, excessive demand, and 
behavioral and cognitive engagement as well as an optimal learning 
moments survey. However, these scales did not align with the focus of 
the current study.

Math educators devised the prior knowledge test on fractions on the 
number line and all block-specific post-tests, drawing from their class
room teaching expertise and existing research on fraction learning. Each 
item of the prior knowledge and the post-tests required learners to po
sition fractions on a number line (see Fig. 3; a screenshot is available as 
supplemental material), with variations introduced to reflect difficulty- 
generating factors as outlined by Reinhold, Hoch, and Hofer (2025; i.e., 
alignment of the denominator with the number line unit, length of the 
number line, presence or absence of specific segmentation). To assess 
prior knowledge, students’ baseline understanding of fractions on 
number lines was evaluated through eight items. Following the 
completion of each block, a post-test consisting of six to eight items was 
administered. In all of those assessments, lower scores indicated higher 
proficiency, as the results represented the deviation from the correct 
solutions (i.e., perfect performance would correspond to a score 
asymptotically approaching zero). Whenever prior knowledge was used 
as learner characteristic in interaction terms (e.g., Fig. 5), the resulting 
value was multiplied by (− 1) to create an equal scaling across all learner 
characteristics (i.e., to ensure that higher values consistently indicate 
higher manifestations on the respective learner characteristic) and 
hence facilitate interpretation.

Regarding the reliability of the instrument to assess students’ 
knowledge about fractions on the number line, the prior knowledge test 
(8 items) showed a near-to-perfect Cronbach’s alpha, α = .977, 95 % CI 
[0.973, 0.980]. All 28 post-test items from all four blocks also showed a 
near-to-perfect Cronbach’s alpha, α = .978, 95 % CI [0.975, 0.982]. 
Moreover, the nesting of post-test items in the four blocks was 
measurable with those post-test items; McDonald’s Omega (which 
automatically performs an explorative factor analysis, here with k = 4 
factors) perfectly mapped the four blocks in the factor structure, 
resulting in a hierarchical ωh = 0.83, an asymptotic ωa = 0.83, and a 
total ωt = 0.99. All other reliability estimates are provided in Table 3. 
Note that the coefficients for the visual-spatial ability test are low. 
However, for speeded tests, such as the visual-spatial ability test used in 
this study, conventional reliability estimates may not provide a valid 
indicator of reliability and parallel forms should be used instead (e.g., 
Gulliksen, 1950). Reliability has been ensured following this approach 
based on other samples (Jäger et al., 1997).

Table 1 
Distribution of the sample to the four experimental conditions.

School 
type

Control Ind. 
Explanations

Adapt. 
Difficulty

Dyn. 
Visualization

Total

APS 46 51 47 48 192
VS 31 37 38 34 140
Total 77 88 85 82 332
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3.4. Statistical analyses

The statistical analyses were performed in R (R Core Team, 2021), 
version 4.3.1. Based on prior studies on systematic differences between 
different school tracks in the German school system (e.g., Guill et al., 
2017; Reinhold, Hoch, Werner, et al., 2020; Reinhold, Hofer, Hoch, 
et al., 2020), APS students can be expected to outperform VS students on 
cognitive and motivational learner characteristics. To adequately 
consider the specifics of our student sample before addressing our 
research question, we conducted Welsh t-tests comparing students from 
the two school tracks regarding the learner characteristics; 
Welsh-corrected effect sizes were estimated using the {rstatix}-package, 
version 0.7.2, (Kassambara, 2023). Expecting school track-related sub
groups within our sample, we further had to show that there were no 
significant differences in any of the learner characteristics between the 
randomly assigned experimental conditions within each subgroup. We 
accordingly used Kruskal-Wallis tests comparing students between the 
four conditions; tests were performed for each subgroup separately; ef
fect sizes were estimated using the {rstatix}-package.

Finally, our research question was answered with Generalized Linear 
Mixed Models (GLMM) for each learner characteristic separately using 
the {glmmTMB}-package, version 1.1.8, (Brooks et al., 2017). To 
appropriately model the absolute deviation from the correct value for 
fractions placed on the number line as the dependent variable, we 
assumed a lognormal distribution for the response variable; the 
lognormal distribution is particularly suited for positively skewed 
non-negative data.

To investigate the hypothesized interaction effects depicted in Fig. 5, 
we used the following fixed effect structure in all models: We included 
interaction terms between school type (baseline: VS; vs. APS), experi
mental condition (baseline: control group; vs. Dyn. Visualization/Ada. 
Difficulty (i.e., adaptive task difficulty)/Ind. Explanations), and learner 
characteristic (interest, self-concept, general reasoning, visual-spatial 
ability, sustained attention, and prior knowledge)—with each learner 
characteristic considered in a separate model. Aiming at the comparison 
of the learner characteristics within the respective subgroup (VS and 
APS), all learner characteristics were cluster mean centered within 
students of the same school track (Enders & Tofighi, 2007).

The multilevel structure of the data was considered in the random 
effects. Models included students nested in classrooms as random 

intercepts, as well as items nested in blocks; as the number of blocks was 
low (four), we only included an item random intercept and modelled the 
dependence of the four blocks of items as an additional fixed effect 
(Brauer & Curtin, 2018). Significance testing was conducted via model 
comparison, comparing a full model with all interaction terms to a 
restricted model without interaction terms between the learner char
acteristic and the scaffold of interest.

When significant interaction terms were identified, we examined the 
underlying subgroup interaction graphs using the hypothesized in
teractions (Fig. 5) as a reference point. This approach allowed us to 
interpret interactions between different learner characteristics and 
scaffolds within the respective subgroup, ensuring a comprehensive un
derstanding of potential ATI effects.

Only the estimates relevant for our hypotheses are reported in the 
results section; the full model tables are given as supplemental material 
to the present article. To ease the interpretation of the complex inter
action terms, estimated marginal means were calculated using the 
{emmeans}-package, version 1.8.8, (Lenth, 2023), and plotted using the 
{ggplot2}-package, version 3.5.0, (Wickham, 2016).

We used an alpha-level of 0.05 to investigate the six interaction 
hypotheses regarding the effectiveness of the different scaffolds with 
varying learner characteristics. The results of all other interactions are 
reported as explorative, tentative findings that might stimulate research 
and require further testing. Prioritizing the detection of potential 
interaction effects and minimizing the risk of missing them, for those 
explorative analyses, we also indicate results with a significance level of 
0.10 (e.g., Peteranderl et al., 2023). However, we point out that these 
results involve a high level of uncertainty and need to be confirmed 

Table 2 
Overview of all instruments and scales used in this study (adapted from Bach et al., 2024).

Learner 
Characteristic

Operationalization Adapted From Sample Items

Cognitive 
Characteristics

​ ​ ​

Sustained 
Attention

For 3 min, participants have to respond to stimuli (pictorial flowers) and 
sort them up or down, based on two memorized rules. The number of z- 
standardized hits, omissions, mistakes, and dismissals is collected, and a 
score is built by subtracting the number of mistakes and omissions from 
the hits (score ranging between − 1 and 1).

Attention Swiping Task (AST; Koch et al., 
2021)

–

General 
Reasoning

As in classical matrices tests, nine fields are shown, each following a 
specific rule. Following this rule, students must fill in the ninth field by 
composing their answers from a selection of 20 elements. Students have 
16 min to complete 16 matrices tasks (maximum score = 16).

DESIGMA construction-based figural matrices 
task (Koch et al., 2022)

–

Visual-Spatial 
Ability

In a total of five tasks, students are presented with a paper folding 
template and have to choose from a selection of five objects the one that 
can be folded out of this (maximum score = 5).

Paper-Folding-Test (Jäger et al., 1997) of the 
Berliner Intelligenz-Struktur-Test (BIS-Test)

–

Motivational 
Characteristics

​ ​ ​

Math Self- 
Concept

Five items ask about students’ beliefs regarding their math abilities and 
skills.

SCMAT survey, used in the PISA 2012 
assessment (OECD, 2013)

“I have always been 
convinced that math is one of 
my best subjects.”

Interest in Math Four items assess interest as a trait. INTMAT survey, used in the PISA 2012 
assessment (OECD, 2013)

“I like math books.”

Table 3 
Reliability estimates.

Reliability

α ω

General reasoning .89 –
Sustained attention .88a –
Visual-spatial ability .45 .47
Self-concept .86 .87
Interest .84 .84

a For sustained attention, a split-half reliability was estimated (see Hofer et al., 
2022 for more details).

S.I. Hofer and F. Reinhold                                                                                                                                                                                                                    Learning and Instruction 99 (2025) 102177 

7 



through further studies with sufficiently large sample sizes.

4. Results

4.1. Descriptive results

Before addressing our research question, we had to consider the 
specifics of our student sample. We expected APS students to perform 
better on all learner characteristics than VS students. Table 4 shows that 
this was true for all learner characteristics except interest in mathe
matics. According to Welch t-tests, APS students outperformed VS stu
dents significantly in terms of prior domain knowledge, d = 1.20, 
general reasoning, d = 1.19, sustained attention, d = 1.04, and visual- 
spatial ability, d = 1.00, with large effect sizes, and in terms of self- 
concept, d = 0.46, with a medium-sized effect (Table 4). As for these 
results, we considered the two school tracks as subgroups within our 
sample in all analyses, indicating systematic differences in terms of the 
learning resources available to students.

Table 5 shows that the randomized distribution of students to the 
four conditions led to comparable groups in terms of the learner char
acteristics both in the APS and VS subgroup. Kruskal Wallis tests indi
cated that there was no significant difference in any of the learner 
characteristics in neither the APS nor the VS students (Table 5). We thus 
considered the experimental conditions comparable in both subgroups. 
Correlations of the learner characteristics for APS and VS students can be 
derived from Table 6. At a descriptive level, students from APS showed 
an estimated marginal mean deviation from the target fractions on the 
number line in the post-test knowledge measures of EMM = 0.078, 95 % 
CI [0.071, 0.086], while students from VS showed a higher estimated 
marginal mean deviation of EMM = 0.161, 95 % CI [0.146, 0.179].

4.2. Interactions between learner characteristics and scaffolds

All learner characteristics used in the following analyses are cluster 
mean centered with respect to the APS or VS subgroup (i.e., a value of 
0 represents the average within the specific subgroup). The means and 
standard deviations used for cluster mean centering are presented in 
Table 4.

We expected specific interactions between learner characteristics 
and type of scaffold (compared to the control group) in the digital 
learning environment (Fig. 5). Except for individualized explanations 
and sustained attention, we hypothesized compensatory effects of the 
different scaffolds, expecting them to compensate for low manifestations 
on the specific learner characteristics considered to be necessary to 
profit from the respective learning activity. Given the significantly lower 
manifestations on most of the learner characteristics in the VS subgroup 
compared to the APS subgroup (Table 4), effects might be more pro
nounced in the former subgroup with more potential for compensation 
at the lower end. Relevant parameter estimates for the GLMMs can be 
found in Table 7 (all estimated parameters are available as supplemental 
material).

Our first two hypotheses posited that dynamic visualizations would 
be particularly beneficial for students showing low general reasoning 
and low visual-spatial ability (Fig. 5). This was true for VS students. 

While no notable interaction effect was found for APS students (Fig. 6), 
there was a positive effect of dynamic visualization for low levels of 
general reasoning and no effect for high levels of general reasoning in 
the VS subgroup (Fig. 7). Regarding visual-spatial ability, again the 
interaction was present for VS students: For higher visual-spatial ability, 
dynamic visualization was not as beneficial as for lower visual-spatial 
ability, but it was still not worse than the control group (Fig. 7). The 
respective complex interaction terms were significant for both general 
reasoning, X2(8,68) = 24.96, p < .01, and visual-spatial ability, X2(8,68) 
= 20.15, p < .01. Exploratively, we found that dynamic visualization 
was more beneficial for highly-interested VS students than for highly- 
interested APS students, X2(8,68) = 24.32, p < .01, and that prior 
domain knowledge increased the positive effect of dynamic visualiza
tion for VS students, X2(8,68) = 23.08, p < .01.

Next, we hypothesized that adaptive task difficulty would be bene
ficial especially for low-interested students and students with low self- 
concept (Fig. 5). This was (in tendency) true for self-concept in APS 
students (Fig. 6). Contrary to our hypothesis, a positive effect of adaptive 
task difficulty was present for VS students with high self-concept 
(Fig. 7). For interest, the hypothesized interaction could be found for 
VS students with a decline of the positive effect of adaptive task diffi
culty for highly-interested VS students (Fig. 7). The respective complex 
interaction terms were significant for both interest, X2(8,68) = 28.51, p 
< .001, and self-concept, X2(8,68) = 18.03, p < .05. Exploratively, we 
found that higher visual-spatial ability increased the effect of adaptive 
task difficulty for VS students, X2(8,68) = 19.35, p < .05, and that 
adaptive task difficulty had a compensatory effect for VS students with 
lower prior knowledge compared to the control group, X2(8,68) =
13.40, p < .10.

Our fifth and sixth hypotheses posited that individualized explana
tions would be particularly helpful for students with low prior knowl
edge, and that they would benefit students with high sustained attention 
while potentially hindering those with low sustained attention (Fig. 5). 
Figs. 6 and 7 showed that neither of these was true for our study. 
However, we exploratively found individualized explanations to be 
especially helpful for VS students with high interest, X2(8,68) = 16.29, p 
< .05, high self-concept, X2(8,68) = 27.23, p < .001, and high visual- 
spatial ability, X2(8,68) = 23.21, p < .01 (Fig. 7).

To summarize, variation both in learner characteristics and in 
experimental conditions within the APS subgroup had little impact on 
knowledge about fractions on the number line (Fig. 6). The estimates for 
the VS students depicted in Fig. 7, however, indicate the potential of the 
different scaffolds to increase knowledge about fractions on the number 
line compared to the control condition and point to ATI effects within 
this subgroup.

5. Discussion

5.1. Summary of results

In this study, we propose an approach that provides insights needed 
to implement adaptive instruction by connecting the concept of scaf
folding with well-established learning activities. The scaffolding is 
meant to enhance their effectiveness to offer cognitively stimulating 

Table 4 
Comparison of APS and VS students regarding the learner characteristics.

APS students VS students

t df p dM SD M SD

Prior knowledge 0.12 0.12 0.28 0.15 10.27 232.89 0.00 1.20
General reasoning 5.63 4.27 1.76 1.66 − 11.43 259.99 0.00 1.19
Sustained attention 0.29 0.49 − 0.26 0.57 − 9.18 268.17 0.00 1.04
Visual-spatial ability 2.06 1.19 0.97 0.98 − 9.26 332.43 0.00 1.00
Interest 2.15 0.75 2.16 0.78 0.07 296.25 0.94 0.01
Self-concept 2.61 0.76 2.26 0.73 − 4.21 311.15 0.00 0.46
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instruction for a broader range of students. This involves considering 
how these learning activities work and incorporating insights from 
research on how different students engage with them. Accordingly, 

dynamic visualizations were used as a cognitive information-processing 
scaffold when learning new information with analogies. During repeated 
practice, adaptive task difficulty was implemented as a motivational 
scaffold and individualized explanations based on typical mistakes were 
offered as a cognitive information scaffold. In Table 8, we summarize the 
findings according to our hypotheses (see Fig. 5) and only interpret the 
result (see table note) that is not discussed in more detail in the subse
quent sections.

Given the large discrepancy in prior learning resources between APS 
and VS students (Table 4), it is reasonable to assume that the interven
tion was more challenging for the latter, who may therefore have had 
greater potential to benefit from scaffolding – especially those with less 
available prior learning resources even within this group (see Reinhold, 
Hofer, Hoch, et al., 2020; Schwartz et al., 2016).

Table 5 
Comparison of the experimental conditions regarding the learner characteristics for APS und VS students.

APS students

Control Ind. Explanations Ada. 
Difficulty

Dyn. Visualization

KW df p η2M SD M SD M SD M SD

Prior knowledge 0.13 0.14 0.12 0.13 0.11 0.11 0.11 0.12 0.53 3.00 0.91 − 0.01
General reasoning 5.59 4.47 5.60 4.21 5.79 4.19 5.54 4.34 0.26 3.00 0.97 − 0.01
Sustained attention 0.14 0.60 0.38 0.38 0.36 0.44 0.29 0.51 6.36 3.00 0.10 0.02
Visual-spatial ability 2.07 1.14 2.10 1.27 2.09 1.02 2.00 1.34 0.05 3.00 1.00 − 0.02
Interest 2.21 0.65 2.16 0.78 2.05 0.71 2.19 0.83 1.52 3.00 0.68 − 0.01
Self-concept 2.62 0.78 2.63 0.80 2.54 0.71 2.64 0.77 0.54 3.00 0.91 − 0.01

VS students

Prior knowledge 0.26 0.18 0.29 0.14 0.30 0.15 0.26 0.15 1.77 3.00 0.62 − 0.01
General reasoning 2.00 1.90 1.59 1.21 1.82 1.78 1.65 1.77 0.82 3.00 0.84 − 0.02
Sustained attention − 0.30 0.52 − 0.19 0.59 − 0.33 0.55 − 0.21 0.61 1.39 3.00 0.71 − 0.01
Visual-spatial ability 1.13 1.09 0.78 0.92 1.07 1.00 0.91 0.93 2.95 3.00 0.40 − 0.00
Interest 2.39 0.86 2.10 0.60 1.95 0.75 2.26 0.88 5.57 3.00 0.14 0.02
Self-concept 2.41 0.60 2.12 0.71 2.11 0.74 2.46 0.80 7.56 3.00 0.06 0.03

Table 6 
Correlations of the learner characteristics for APS und VS students.

1. 2. 3. 4. 5. 6.

1. General reasoning – 0.15 ¡0.45 0.41 0.28 0.35
2. Interest 0.27 – − 0.01 0.46 0.15 0.07
3. Prior knowledge ¡0.29 ¡0.21 – ¡0.28 − 0.08 − 0.07
4. Self-concept 0.21 0.62 ¡0.26 – 0.22 0.27
5. Sustained attention 0.10 0.12 − 0.05 0.06 – 0.02
6. Visual-spatial ability − 0.03 0.13 − 0.16 0.17 0.17 –

APS students = above diagonal; VS students = below diagonal. Significant 
correlations at level p < .05 are printed in bold.

Table 7 
Relevant parameter estimates from the generalized linear mixed models.

Fixed effects

Learner Characteristics (LC)

Interest Self-Concept General Reasoning Vis.-Spa. Ability Sustained Attention Prior Knowledge

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

School Typea 0.448 0.040 0.468 0.042 0.452 0.038 0.473 0.043 0.469 0.044 0.470 0.043
x Dyn. Vis. 1.103 0.127 1.028 0.113 1.115 0.126 1.058 0.126 1.057 0.124 1.085 0.128
x Ada. Difficulty 1.109 0.126 1.051 0.114 1.047 0.116 1.011 0.118 1.032 0.119 1.010 0.114
x Ind. Explanations 1.067 0.120 1.066 0.115 1.075 0.118 1.032 0.120 0.965 0.112 1.023 0.116

LCb 0.841 0.048 0.924 0.070 0.786 0.044 0.975 0.062 0.799 0.059 0.842 0.056
x Dyn. Vis. 1.041 0.082 0.860 0.078 1.178 0.093 1.096 0.103 1.116 0.107 0.948 0.097
x Ada. Difficulty 0.994 0.081 0.906 0.085 1.130 0.086 0.937 0.086 1.146 0.109 1.040 0.097
x Ind. Explanations 0.834 0.080 0.819 0.078 1.061 0.103 0.918 0.082 1.095 0.104 1.009 0.099

LCb x School Typea 1.111 0.092 0.950 0.086 1.150 0.086 0.979 0.084 1.206 0.103 1.103 0.090
x Dyn. Vis. 0.984 0.108 1.198 0.138 0.853 0.091 0.917 0.110 0.863 0.100 1.033 0.127
x Ada. Difficulty 1.017 0.118 1.149 0.137 0.855 0.090 1.113 0.140 0.899 0.107 0.917 0.109
x Ind. Explanations 1.265 0.157 1.318 0.154 0.927 0.111 1.087 0.127 0.904 0.112 0.962 0.114

Random effects Var. SD Var. SD Var. SD Var. SD Var. SD Var. SD

Students (k = 332)c 0.093 0.305 0.083 0.287 0.090 0.300 0.103 0.322 0.095 0.308 0.089 0.298
Classrooms (k = 16) 0.004 0.063 0.007 0.084 0.003 0.057 0.005 0.069 0.006 0.079 0.006 0.077
Items (k = 28) 0.019 0.137 0.018 0.133 0.017 0.132 0.018 0.134 0.017 0.132 0.019 0.137

Model characteristics ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Observations 8611 ​ 8611 ​ 8611 ​ 8639 ​ 8423 ​ 8299 ​
R2

marginal 0.301 ​ 0.304 ​ 0.294 ​ 0.279 ​ 0.288 ​ 0.295 ​
R2

conditional 0.441 ​ 0.436 ​ 0.431 ​ 0.434 ​ 0.434 ​ 0.441 ​

a Baseline for factor School Type is VS (vocational school), i.e., effects represent a shift from VS to APS students.
b Respective learner characteristics are given in the column head. All further estimates can be found in the supplemental material.
c Per model, between 0 and 17 students had to be excluded from the analyses due to randomly missing data resulting from technical problems in data processing (see 

supplemental material for the exact number per model).
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5.2. Research implications: layered scaffolding

In the preceding section, we established that individuals are more 
likely to require scaffolding when confronted with challenging content. 
However, processing and utilizing scaffolds may also require certain 
individual prerequisites. Adaptive task difficulty, for instance, was only 
beneficial for VS students with a comparably high self-concept in 
mathematics. A positive self-concept might have helped them to work on 
tasks within one difficulty level until mastery without giving up. This is 
in line with studies showing associations between self-concept, self- 
assessment practice in learning situations, and academic performance 
(e.g., Guay et al., 2010; Xia et al., 2021; Yang et al., 2023). Likewise, in 
our exploratory analyses, prior knowledge seemed to help VS students 
process the dynamic visualizations, confirming research on the impor
tance of existing knowledge for the integration of the new information 
provided by the dynamic visualization (e.g., Kalyuga, 2008) or for the 
targeted orientation of the learners’ visual attention while working with 
the visualization (e.g., Hegarty & Kriz, 2008). In the explorative ana
lyses, we also found catalytic effects of adaptive task difficulty and 
individualized explanations for VS students with higher visual-spatial 
ability. The number line task, in general, requires the learners to pro
cess visual-spatial information. Assuming that adaptive task difficulty 
motivates learners to practice with more engagement, this engagement 
could be better invested with higher spatial ability helping the learners 
process the number line task. In addition to the number line itself, the 
individualized explanations were in parts displayed visually, for 
instance, by indicating the correct segmentation if the denominator was 
ignored. Students with higher visual-spatial ability might have profited 
more from this kind of additional explanatory information. Finally, in 
the exploratory analyses, it was found that self-concept and interest in 
mathematics enhanced the effects of individualized explanations for VS 

students. This finding underscores the significance of adequate moti
vation in engaging with and learning from personalized feedback (see 
DePasque & Tricomi, 2015 from a neuropsychological perspective), an 
aspect that has not been investigated intensively in educational research 
so far (see Gan et al., 2021). Along a similar vein, Lam and colleagues 
(2011) demonstrated that affect influences the effectiveness with which 
learners process feedback, finding that individuals with higher levels of 
positive affect were not adversely impacted by either low or high 
feedback frequencies.

All those catalytic effects could also be used to inform the design of 
additional scaffolds: If, for instance, a certain level of motivation is 
required to process individualized explanations, they might be com
bined with a motivational scaffold, such as statements that stress the role 
of effort in learning (see Belland et al., 2013; Hamm et al., 2014). 
Likewise, a cognitive information-processing scaffold (e.g., signaling; 
Boucheix et al., 2013) could be added to dynamic visualizations to guide 
learners’ attention. Graded assistance (Reinhold, Hofer, Hoch, et al., 
2020) providing knowledge relevant for the processing of the visuali
zation could be implemented as additional cognitive information scaf
fold, to give just a few examples. We refer to this instructional design 
process combining cognitive, motivational, and/or metacognitive scaf
folds within a learning activity as layered scaffolding.

Numerous studies have explored the integration of additional sup
port within a particular instructional design. However, due to variations 
in language and descriptions of the instructional design process across 
these studies, alignment proves challenging. Using the framework of 
(layered) scaffolding within learning activities might be one way to help 
synthesize findings across studies in the future.

On a more general level, we have to consider the actual utilization of 
the scaffolds by students (Reinhold et al., 2024). We didn’t find the 
expected effects for individualized explanations. Other than 

Fig. 6. Interactions between learner characteristics and scaffolds for APS students. Black = Control condition; Orange = Experimental condition with the specific 
scaffold indicated on the right; 95 % CI for the experimental condition is shown as orange ribbon. White background = Hypothesized interactions; Gray background 
= Explorative investigation. Levels of significance: ***p < .001, **p < .01, *p < .05, †p < .10. Values are estimated marginal means (EMMs) derived from the same 
GLMM reported in Table 7. The figure does not represent a separate model but a disaggregated visualization of the three-way interaction. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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hypothesized, this cognitive information scaffold did not compensate for 
lower prior knowledge and its effectiveness also didn’t depend on sus
tained attention. However, lower prior knowledge does not imply that 
those students make use of the learning opportunity provided and the 
trait-measure of sustained attention does not imply that students actu
ally attend to the individualized explanations in the learning situation. 
Self-report data on students’ situational engagement as well as log data 

(e.g., time on task, time on feedback, reaction to feedback, number of 
tasks processed, number of tasks solved correctly, number of in
teractions with the visualization), documenting the actual interactions 
of students with each scaffold, can be used to categorize students 
depending on how they make use of each scaffold in follow-up studies. 
This information could then, in turn, be used to inform the design of 
layered scaffolding.

5.3. Limitations

Several limitations should be acknowledged in interpreting the 
findings of this study. First, while our hypotheses are based on proposed 
underlying mechanisms, in the present study, no process data were 
analyzed to directly test these mechanisms. As mentioned above, process 
data from digital tools may serve as suitable indicators for student-tool- 
interactions that may operationalize how students engage with digital 
interventions (Reinhold et al., 2024). In the case of the present study, 
additional analyses of process data may shed light on (1) how scaffolds 
were utilized by individual students (e.g., usage of the dynamic visual
ization tools, processing of individualized explanations, pace in the 
adaptive task difficulty condition) and on (2) whether the scaffolds 
worked in the way we theoretically assumed.

Second, dynamic measurement approaches, including the consider
ation of trait-state distinctions, could offer a more nuanced under
standing of the cognitive and motivational characteristics and processes 
and their interactions with scaffolds. Such a dynamic perspective ac
knowledges changes in learning prerequisites along the learning process 
(e.g., Chernikova et al., 2020; Engelmann et al., 2021; Tetzlaff et al., 
2021).

Third, the assumption of linear aptitude-treatment interactions may 
oversimplify the complexity of the relationships observed in the data. 
Exploring non-linear interactions could provide a more accurate repre
sentation of how individual differences interact with instructional 

Table 8 
Summary of findings for all hypotheses.

Hypothesis Scaffold Expected 
Effect for 
Students 
With …

Confirmed Exploratory 
Findings

H1 Dynamic 
Visualization

Low General 
Reasoning

Yes (VS) high interest → 
more beneficial 
(VS); high prior 
knowledge → 
more beneficial 
(VS)

H2 Dynamic 
Visualization

Low Visual- 
Spatial 
Ability

Yes (VS)

H3 Adaptive Task 
Difficulty

Low Interest Yes (VS) high visual- 
spatial ability → 
more beneficial 
(VS); low prior 
knowledge → 
more beneficial 
(VS)a

H4 Adaptive Task 
Difficulty

Low Self- 
Concept

No ↔ high 
self-concept 
→ more 
beneficial 
(VS)

H5 Individualized 
Explanations

Low Prior 
Knowledge

No high interest, 
self-concept, and 
visual-spatial 
ability → more 
beneficial (VS)

H6 Individualized 
Explanations

High 
Sustained 
Attention

No

VS = vocational school; APS = advanced placement school. Exploratory findings 
were not hypothesized.

a Result might indicate that the less you know, the more you can learn within 
an adaptive practice situation, if you continue practicing.

Fig. 7. Interactions between learner characteristics and scaffolds for VS students. Black = Control condition; Orange = Experimental condition with the specific 
scaffold indicated on the right; 95 % CI for the experimental condition is shown as orange ribbon. White background = Hypothesized interactions; Gray background 
= Explorative investigation. Levels of significance: ***p < .001, **p < .01, *p < .05, †p < .10. Values are estimated marginal means (EMMs) derived from the same 
GLMM reported in Table 7. The figure does not represent a separate model but a disaggregated visualization of the three-way interaction. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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design. Person-centered analyses, including latent profile analyses, are 
also a promising approach for examining various configurations of 
learner characteristics and their interactions with instructional support.

Additionally, this study focused on testing mechanisms within spe
cific learning activities using particular scaffolds. Future research could 
extend these investigations by testing the proposed mechanisms with 
alternative learning activities and scaffolds. For example, variation in 
pace or complexity of the presentation of the content embedded in 
different learning activities (also referred to as representational scaf
folding, Fischer et al., 2022) could be considered in addition.

5.4. Practical implications

Students with less beneficial learning prerequisites appear to benefit 
from scaffolding in fraction instruction in secondary school mathe
matics. The scaffolds seem to enable them to make use of proven 
learning activities. Within this group of students, individual differences 
affect the effectiveness of scaffolds, underscoring the potential value of 
adaptive teaching, with or without digital tools, especially for these 
learners. The present findings can be used to help teachers adapt their 
regular classroom instruction. In particular, dynamic visualizations 
might be helpful for students with lower general reasoning and visual- 
spatial abilities to process analogies. Adapting task difficulty to stu
dents’ performance seems to improve practice for students with lower 
interest. Since higher self-concept may increase this effect, teachers 
could try to strengthen students’ competence beliefs and emphasize 
individual progress during practice, in line with the idea of layered 
scaffolding.
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