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Multicolor single-molecule FRET studies on dynamic

protein systems
Ecenaz Bilgen and Don C. Lamb

Forster resonance energy transfer (FRET) is a powerful tool for
studying protein conformations, interactions, and dynamics at
the single-molecule level. Multicolor FRET extends conven-
tional two-color FRET by incorporating three or more fluo-
rophores and thereby enabling a more comprehensive view of
complex biomolecular processes. This technique allows for the
simultaneous tracking of multiple structural changes, detecting
intermediate states, and resolving heterogeneous population
distributions. In this review, we discuss the recent advance-
ments in fluorophore labeling strategies and data analysis
methods that have significantly improved the precision and
applicability of multicolor FRET in protein studies. We then end
this review by showcasing recent applications for investigating
protein folding and processes involved in gene regulation.
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Introduction

Measurements of Forster resonance energy transfer
(FRET) at the single molecule level have been recog-
nized as a universal tool for studying the conformation
and dynamics of macromolecules [1—3]. Briefly, when
spectrally overlapping fluorescent molecules are in close
proximity, the excited donor (D) molecule can transfer
its energy to an acceptor (A) molecule with an efficiency
that depends on the inverse sixth power of the
donor—acceptor separation [4]. Thus, FRET is very
sensitive to distance changes within the range of
2—12 nm (or 20—120 A). Single-molecule FRET
(smFRET) has changed the way we see the biological
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world due to its power to resolve individual conforma-
tional states in heterogencous mixtures and the dy-
namics within them. Compared to other biophysical
techniques, smFRET experiments have the advantage
of being able to study molecules under physiological
conditions and require sub-attomoles of the labeled
sample. Traditionally, sSmFRET measurements depend
on one D-A pair to probe a single distance at a time.
However, it is now possible to probe coordinated mo-
tions in multiple dimensions by fluorescence labeling of
three [5] or four [6] distinct positions. This provides
more information for hybrid structural biology, making it
possible to investigate allosteric effects in proteins or
investigate structural changes in the presence or
absence of other biomolecules (Figure 1a).

Three and four-color FRET experiments were first
designed to investigate dynamics of nucleic acid systems
such as holiday junctions [5,6] and DNA origami struc-
tures [7,8] as well as DNA-protein assemblies [9]. How-
ever, up until recently, most multicolor FRETstudies have
been proof-of-principle experiments vyielding some
exciting results, but the number of challenges involved in
such experiments have kept the method from being
widely utilized. With the advancement in labeling
chemistries, fluorescent dyes, and data collection and
analyses approaches, multicolor FRET is now more
broadly applicable and can be used to investigate more
complex bimolecular machineries. This review begins
with a brief description of three-color FRET followed by
an overview of recent efforts to overcome the challenges
of multicolor FRET experiments. The last part of this
review summarizes the latest multicolor FRET applica-
tions in biomolecular systems.

Three-color FRET

An example of the energy transfer phenomenon be-
tween the three fluorophores is shown in Figure 1b.
Here, the donor molecule is in close proximity to two
acceptors (Ay and Ap), the first of which can also act as a
donor to A; (hence referred to as Aj(D;)). Energy
transfer can take place between all three FRET pairs
D]—Al(Dz), D]—Az, and Al(Dz)—Az, which allows the
simultaneous observation of distance changes between
all three FRET pairs, but complicates the analysis
[9,10]. A qualitative assessment of FRET efficiencies
between D-A; and D-A; can be derived from the raw
signal fractions in the donor and acceptor channels
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Figure 1
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An overview of single-molecule FRET and multicolor FRET applications on proteins. (a) An artistic representation of a protein containing three
fluorophores along with a list of benefits and challenges for such measurements. b) Diagram of energy transfer pathways in a three-color FRET system
after donor dye (D4) excitation (blue, left) or acceptor 1/donor 2 (A1(D>)) excitation (green, right). Energy can be transferred to either acceptor A{(D>) or Ao
(green and red, respectively) with transition probabilities Epa1 and Epaz. Additionally, A{(D2) can transfer energy to A, with a FRET efficiency of Ea1(pz) a2-
Energy transfer can also take place after direct excitation of acceptor A;(Dy).
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However, unlike two-color FRET, these values do not
directly correspond to distances. In three-color FRET
systems, energy transfer can, in general, occur between
all three dye pairs, meaning that the efficiency of
transfer to one acceptor is influenced by the quenching
effect of the second acceptor. The apparent FRET ef-
ficiencies from the donor dye to each acceptor,
(E})lAland E})IAZ), represent the transition probabilities
within the three-color FRET system and are related to
the single-pair FRET efficiencies (Ep, 4,(p,) and
Ep,4,) by:

[P
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Thereby, one compensates for the competition between
the two acceptors for energy transfer from the donor as
well as energy transferred between A;(D;) and Ay, and
hence, retrieves the FRET efficiency between the three
dye pairs as if each dye pair was isolated. Of course, as for
two-color experiments, additional corrections are
necessary to obtain the corrected or absolute FRET ef-
ficiencies. For three-color FRET, all three dyes are
typically selected from the visible region of the spec-
trum and have limited spectral separation. This leads to
spectral crosstalk (¢#), which can be significantly higher
than in the two-color FRET case, as well as direct
excitation (#¢) of the two acceptor fluorophores. In
addition, the quantum yield of the fluorophores and the
detection efficiency over the visible region can change
significantly, leading to different detection efficiencies
(7) in the three channels. When taking into account the
various correction factors, the FRET efficiencies are
given by:
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Current advances in multicolor FRET
studies

Multicolor FRET measurements in solution
Solution-based smFRET experiments are based on
measuring freely diffusing molecules at picomolar con-
centration on a confocal microscope. The fluorescently
labeled biomolecules generate single-molecule bursts as
they diffuse through the detection volume. For multi-
color FRET experiments, the setup needs to be equip-
ped with either alternating laser excitation (ALEX)
[11,12] or pulsed interleaved excitation (PIE) [13] as it
is necessary to directly excite Aj(D;) to calculate all
three FRET efficiencies. A schematic of our confocal
setup equipped with multiparameter fluorescence
detection (MFD) and pulsed interleaved excitation
(PIE) for three-color smFRET is shown in Figure 2a.
The use of nanosecond ALEX/PIE allows determination

of the fluorescence lifetime of the captured bursts,
which is useful to assess conformational dynamics taking
place faster than the diffusion time. Using fluorescence
correlation spectroscopy [14] or the dynamic photon
distribution analysis [15], the dynamics can be quanti-
fied on the ~ 100 ns to ms timescale. Employing ALEX
or PIE in multicolor FRET experiments also offers the
possibility to directly determine the correction factors
required for reporting accurate FRET efficiencies [16].
However, extracting precise distance information from
three-color FRET experiments remains difficult. The
main challenge is the high amount of noise in such ex-
periments. First, the fluorescence intensity after donor
excitation is divided across three detection channels.
Secondly, as the best fluorophores are in the blue to red
region of the visible spectrum, the close spectral prox-
imity of three fluorophores in this region leads to
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Figure 2
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PBS:Polarizing beam splitter

Experimental setups for measuring multicolor FRET. a) Scheme of a four-color MFD-PIE confocal setup. b) Scheme of a prism-type TIRF microscope
for multicolor FRET experimentation. AL:Achromatic lens, M:Mirror, DM:Dichroic mirror, EF:Emission filter, FC:Fiber coupler, PM:Polychroic mirror,
BS:Polarizing beam splitter, AOTF:Acousto-Optic Tunable Filters.
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significant spectral crosstalk and direct excitation. With
the number of corrections required to quantify the
distance between the three fluorophores, the analysis
becomes demanding,.

In order to overcome these challenges, we introduced a
three-color photon distribution analysis (3C-PDA) [17],
which expands on PDA introduced by the group of Claus
Seidel [18] and introduces a likelihood function
describing the three-color FRET process in diffusion-
based experiments. With this statistical approach, we
incorporated all necessary experimental correction fac-
tors into the analysis and then compared the resulting
proximity ratios to those of the background corrected
data, avoiding additional noise upon correcting the
FRET data. 3C-PDA can be used to simultaneously
describe three distances in the conformational space of a
biomolecule and reveal coordinated conformational
transitions. All of the above-mentioned burst analysis
tools are implemented in our open-source software

package PIE analysis with MATLAB (PAM) [19].

Multicolor FRET on surface-immobilized molecules

Depending on the system of interest, smFRET experi-
ments can be done on surface-immobilized molecules
using total internal reflection fluorescence (TIRF) mi-
croscopy [20]. A schematic of our prism-type multicolor
TIRF microscope setup with millisecond alternating
laser excitation (msALEX) [11,12] is shown in
Figure 2b. msALEX is typically performed using an
Acousto-Optic Tunable Filter (AOTF) but modern
lasers also allow direct modulation of the signal. The
excitation beam travels through a quartz prism and
utilizes the interface between the quartz and the
aqueous solution to generate total internal reflection.
The sample molecules are immobilized on the prism
surface so that they can be illuminated by the evanes-
cent field. Conformational changes happening from
seconds to minutes can be captured directly in smFRET
experiments. When expanding the color palette of these
experiments to three colors and beyond, the challenges
of quantitative data analysis on single-molecule trace
statistics become more pronounced. For instance, the
measured datasets are larger in multicolor FRET ex-
periments since a lower fraction of molecules contain all
three fluorophores, a large portion of the traces suffer
from low signal-to-noise ratios and/or dye photophysics.
Manual data sorting becomes more intense due to both
the increasing number of channels in multicolor FRET
experiments and the larger data sets. It has been shown
that deep learning can be used for rapid and automated
analysis of smFRET traces [21—23]. However, these
applications were limited to the classification of dual-
color FRET data. Recently, we expanded the previous
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work on automated trace classification software and
developed the open-source Deep-Learning Assisted,
Single-molecule Imaging (Deep-LLASI) package for
analysis of FRET data up to three colors [24,25]. Deep-
LASI offers visualization of corrected and apparent
FRET efficiencies, transition density plots between
different FRET states, and extraction of the kinetic
rates between them.

Protein labeling for multicolor FRET studies

The next major challenge for multicolor FRET is spe-
cifically labeling biomolecules with three or more fluo-
rophores. While this can be done with nucleotides or for
protein-nucleic acid complexes, the specific, fluorescent
labeling of proteins at more than two positions is not
straightforward. The conventional stochastic labeling
approach used for dual-color FRET labeling is not
applicable to three-color experiments as it would result
in a combination of six different labeling configurations.
One can reduce the complexity to two configurations by
combining stochastic labeling with different labeling
techniques for the third fluorophore, such as incorpo-
ration of non-canonical amino acids (ncAA) [26]. Three-
color specific labeling can be performed by expressing
and labeling two parts of the protein independently and
then using sortase-mediated ligation to combine them
and thereby generating a cysteine residue for specific
labeling with a third fluorophore [27,28]. Recently, we
presented a three-color labeling protocol for a double
mutant of the maltose-binding protein (MBP) [29].
The first position was labeling with Atto488 using a
ncAA and copper-catalyzed azide—alkyne cycloaddition
(CuAAC). We then took advantage of maltose binding to
block accessibility to a cysteine residue on the surface of
the maltose binding pocket following the approach of
Jager et al. [30]. In the presence of saturating maltose
concentrations, only one surface accessible cysteine was
available and Alexa647 could be selectively attached to
the second labeling position. After the removal of
maltose, the second cysteine could be labeled with
Atto565, yielding a specific three-color labeled MBP.

In a recent work by Bonhomme et al.,, the dimeric
human metabotropic glutamate receptor 2 (mGlu2)
could be successfully labeled at three positions with
three distinct labeling chemistries (Figure 3) [31]. They
genetically encoded two ncAA utilizing two different
stop codons in combination with fusion to a genetically
encoded self-labeling SNAP-tag (Figure 3a). In the first
protomer, a SNAP-tag is fused to the N-terminal along
with a p-propargyloxy-L-phenylalanine (PrF) in response
to the Amber codon (TAG) (Figure 3a). In the second
protomer, no SNAP tag was used and a trans-cyclooct-2-
en-L-lysine (TCOK) was incorporated in response to an
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Figure 3

Site-specific three-color labeling of the metabotropic glutamate receptor 2. a) Schematic representation of the mGlu2 protomer genes expressed to
produce a specifically-labeled 3-color smFRET sensor. b) The three orthogonal site-specific labeling reactions used for labeling the mGlu2 receptors in
the membrane of living cells: 1) SNAP-tag labeling using Atto488-06-benzylguanine; 2) TCOK labeling using Cy3B-Tetrazine; and 3) PrF labeling using
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AF647-Picolyl-Azide. Adapted from Ref. [31].
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Multicolor single-molecule FRET studies on proteins. a) Accessible volume calculations for the fluorophores Atto488, Atto565, and Atto647N
attached to the Hsp70 homolog DnaK in the ADP- (PDB:2KHO, top) and ATP-bound (PDB:4B9Q, bottom) states, respectively. b) From left to right: Two-
dimensional apparent distance distributions of the interdomain distance (Rgg) versus the lid conformation (Rgg) in the presence of a model substrate and
ATP for DnakK, BiP and Ssc1, respectively. Adapted from Ref. [26]. ¢) Surface immobilized 3-color FRET construct for the a;3D protein showing the labeling
positions of the three fluorophores. d) Site specific labelling scheme for the a.3D peptide. Alexa 488 is conjugated to 4-acetylphenylalanine (UA) at the N-
terminus, Alexa 594 (acceptor 1, A1) is linked to a cysteine at residue 33. An additional cysteine residue is introduced at the C-terminus via sortase-
mediated ligation of a short GGGC peptide and subsequently labeled with CF680R (acceptor 2, A2). e) Two a3D fluorescence trajectories of the donor
(green), acceptor 1 (orange), and acceptor 2 (red) at 2.25 M GdmCI. In the upper trajectory, folding/unfolding is monitored with all three fluorophores until
A2 photobleaches (indicated by the red arrow) followed by A1 photobleaching (orange arrow). The states identified by the Viterbi algorithm are repre-
sented in the color bar above the upper trajectory. In the lower trajectory, dynamics are followed until A2 photobleaches at around 145 ms (orange arrow).
Adapted from Ref. [41]. f) Structure of MBP (PDB ID:10OMP; NTD in yellow, CTD in blue) showing the accessible volumes available for Atto488 (blue),
Atto565 (green) and Alexa647 (red) at the labeling positions A52, K175 and P298, respectively. g-h) Waterfall plots of the FRET efficiency versus GuHCI
concentration following the conformational changes in the NTD (BG, left), CTD (GR, middle) and at the N—C interface (BR, right) during equilibrium
unfolding (G) and refolding (H). The white line separates the 0.9 M GuHCI measurement from the higher denaturant concentrations. Adapted from
Ref. [29].
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Figure 5
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Experimental approach for tracking the kinetics of histone H2A-H2B exchange between nucleosomes. a) Equimolar concentrations of two distinct
nucleosome types, each labeled differently, are combined to a total concentration of 400 nM under various conditions to observe the kinetics of nu-
cleosomes undergoing H2A-H2B exchange. b) The possible pathways leading to detectable H2A-H2B exchange using the three-color smFRET setup are
illustrated. The mixing of the labeled batches shown in (A) produces proximal or distal H2A-H2B histone exchange. Two example traces showing proximal
(upper trace) and distal (lower trace) exchange along with histograms of the FRET¢ys (red) and FRET¢ys 5 (brown) efficiencies shown to the side of the
traces (even after photobleaching of Cy5.5). In the case of proximal H2A-H2B exchange, high FRETcys 5 and low FRET¢ys signals are detected, which
leads to fast photobleaching of Cy5.5. In the case of distal H2A-H2B exchange, low-mid FRET¢ys, and non-zero FRET¢ys 5 signals are observed. Hence,
the distal exchange was analyzed due to the longer FRET traces. The other nucleosomes shown below in the parentheses do not generate any Cy5.5
signals. Adapted from Ref. [52]. Real time monitoring of the ribosomal subunit formation. c) A real-time single-molecule fluorescence assay is
depicted using zero-mode waveguides (ZMWSs). mRNA is tethered to the surface within the individual ZMWSs where the reactions are imaged.

Current Opinion in Structural Biology 2025, 93:103117

www.sciencedirect.com



www.sciencedirect.com/science/journal/0959440X

Ochre codon (TAA) (Figure 3a). Afterwards, a three-
step labeling procedure was performed directly in
living mammalian cells using 1) SNAP-tag labeling with
Atto488- 06—benzy1guanine, 2) strain-promoted inverse
electron-demand Diels—Alder cycloaddition reaction on
TCOK with Cy3B-Tetrazine, and a 3) CuAAC reaction
on PrF AF647-Picolyl-Azide (Figure 3b). Measurements
of 3-color FRET in combination with 3C-PDA on the
labeled construct revealed an intermediate conforma-
tional state of mGlu2, which could not be observed by
previous 2-color FRET studies. This new triple-labeling
strategy is generalizable and can be applied to other
protein systems.

Multicolor FRET studies on protein-folding
mechanisms

Chaperone proteins

Heat-shock proteins (Hsps) are a class of molecular
chaperones that maintain protein homeostasis and are
present in single-cell organisms to humans. A widely
studied chaperone is the dimeric 90-kDa heat-shock
protein (Hsp90) that shows distinct opening-closing
motions upon ATP hydrolysis. The movements of the
Hsp90 dimer have been observed by dual-color
smFRET experiments [32,33]. Hugel and co-workers
tackled the Hsp90 chaperone with three- [34] and
four-color [35] smFRET experiments and described
their multicolor FRET approaches in detail for their
potential application to other protein systems [36]. The
findings hinted at a more complex conformational
landscape where the dimer not only performs opening-
closing motions but also undergoes rotational and
translational movements. They reported that the dimer
opening and closing takes place in milliseconds to mi-
nutes, while further local transitions can happen as fast
as picoseconds. Hugel et al. recently aimed to bridge the
gap between minute-to-picosecond timescale move-
ments in the conformational landscape of Hsp90 by
investigating dynamics in the nanosecond regime [37],
but in this case using two-color FRET experiments.

Several variants of the 70 kDa heat shock protein
(Hsp70) family have been studied in detail including
the bacterial Hsp70, DnaK, human BiP from the endo-
plasmic reticulum and Sscl from the mitochondrial
matrix of yeast. These homologs show significant
structural similarity and are constructed of two domains,
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the substrate and nucleotide binding domains (SBD and
NBD). Upon interaction with ATP, the NBD and SBD
are in a docked conformation and the lid of the SBD
(SBD-lid) is open. After ATP hydrolysis, the SBD and
NBD undock and the SBD-lid closes. The allosteric
communication between the SBD and NBD of Hsp70s
has previously been studied with dual-color smFRET
experiments [16,38,39]. We have recently studied the
three Hsp70 homologs, DnaK, BiP and Ssc1, with three-
color smFRET where the SBD and NBD docking-
undocking and SBD-lid motions could be observed
simultaneously for the first time (Figure 4a) [26]. As a
labeling strategy, we attached Atto488 (B) site-
specifically using a ncAA to the NBD and Atto565 (G)
and Atto647N (R) stochastically to the SBD and lid. As
the FRET efficiency histograms were similar for the
NBD-lid and NBD-SBD dye pairs in two-color experi-
ments, we focused on the FRET efficiency changes
between the BG and GR dye pairs. The GR FRET pair
reports on the conformation of the lid, independent of
the labeling position, whereas the BG FRET pair reports
on the domain motion, with a potential additional
contribution from the lid depending on the labeling
position of the dyes. For large-scale changes between
the SBD and NBD, the potential contribution of the lid
conformation, depending on the labeling, could be
ignored or incorporated into the analysis. Using 3C-
PDA, we assessed the correlated, pair-wise changes in
the distance distributions (Rpg, interdomain FRET pair,
and Rgr, lid FRET pair (Figure 4b)). These results
pointed out that, in the presence of ATP and a model
substrate peptide, BiP prefers a more open-lid confor-
mation coupled with a closer interdomain distance than
the other homologs. In addition, the width of the FRET
distributions suggests that Ssc1 has a more mobile SBD-
lid and BiP has more restricted inter-domain motions
when compared to DnaK. The unique conformational
behavior of each Hsp70 homolog can be linked to the
specialized tasks they need to perform according to their
cellular residency.

Monitoring protein folding in real time

Protein folding is a challenging process where newly
synthesized amino acid chains seek their native 3-
dimensional structure in conformational space. Here,
multicolor FRET offers direct observation of the
different conformations that the protein adopts as it

Time-resolved, four-color fluorescence is recorded across ~150,000 ZMWs after 532 nm laser excitation. Fluorescence signal order and timing are
analyzed in ~100—200 ZMWs and association/dissociation kinetics are determined using probability-based models. The cumulative distribution functions
were then fit using exponential functions. Adapted from Ref. [54]. d) Schematic of the single-molecule three-color FRET experiment performed by Guca
et al. The 43S PIC (10 nM, labelled via 40S—Cy3 subunits (green) and elFs 1, 1A, 3, 5 and elF2—GTP—Met-tRNAiMet), 20 nM elF5B—Cy3.5 (orange) and
100 nM 60S—Cy5 (red) subunits were added to the mRNA sequences (mPA(-3), A(-3), or control m’G-A(-3)) tethered within ZMWSs in the presence of
saturating concentrations of elFs 4A, 4B, 4G and 4E at 30 °C. e) Example single-molecule fluorescence traces that depict sequential association of the
43S PIC subunit (green), elF5B (orange) and the 60S subunit (red). Dwell times corresponding to 43S PIC association (t;), elF5B association (t), 60S
subunit joining (#3) and elF5B departure times from the 80S complex (t;) are marked. In this trace, the loss of the 60S—Cy5 fluorescence signal is
attributed to photobleaching of the dye rather than departure of the ribosomal subunit. Adapted from Ref. [55].
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searches for the thermodynamically most stable config-
uration [40]. Chung and co-workers explored protein
folding with three-color smFRET and used the fluores-
cence lifetime information to measure the timescale of
the conformational changes during the folding of the
designed protein 03D [27]. In a more recent work, they
demonstrated a three-color FRET approach utilizing
continuous wave (CW) excitation and analyzed the
collected trajectories using a maximum likelihood
method (Figure 4c—d) [41]. The designed construct
was site-specifically labeled where Alexa488 was
attached to a 4-acetylphenylalanine (UA) residue at the
N-terminus and Alexa594 was labeled to a cysteine
residue at position 33. The third fluorophore, CF608R,
was introduced at the C-terminus to a cysteine that was
introduced by sortase-mediated ligation of a short pep-
tide sequence (GGGC, Figure 4c). Their proof-of-
concept measurements on folding of the previously
described o3D protein showed that their method can
resolve fast kinetics and reduce background signals and
photophysical artefacts.

The folding process is more complex for large, multi-
domain proteins, which often require assistance from
chaperones to achieve structural maturity. We have
recently studied the folding pathway of the maltose-
binding protein (MBP), a protein containing a discon-
tinuous two-domain fold, using three-color smFRET
[29]. We performed specific three-color labeling as
described above and used three-color FRET to monitor
the conformation of the N-terminal domain (N'TD), the
C-terminal domain (CTD), and the interface between
them (Figure 4e). We observed the real-time folding
kinetics of the slow-folding double-mutant (V8G and
Y283D) of MBP (DM-MBP), which folds more than an
order of magnitude slower than the wild-type protein. It
has been previously shown for wild-type MBP that the
NTD is able to fold faster than the CTD [42], and other
experiments on DM-MBP revealed a folding hysteresis,
which indicated a more complex folding [43]. With our
three-color FRET experiments, we aimed at distin-
guishing the intermediate states and the folding order of
the two domains. The three-color smFRET experiments
were performed in the presence of the denaturant
guanidine hydrochloride (GuHCI), allowing us to
monitor the conformational changes between all three
dye pairs as the protein unfolds and refolds (Figure 4f,
g). By having all three distances from the same mole-
cule, we can investigate the conformation of the C'TD in
proteins where the N'TD has folded and visa versa. Our
results revealed that the NTD and N—C interface of
the protein have to fold first before the folded confor-
mation of the CTD can be stabilized. We could also
show that the so-called “intermediate state” is actually
due to fluctuations between unfolded and compact

conformations on the millisecond timescale. We further
studied the MBP system in the presence of the bacterial
chaperonin GroEL/ES and demonstrated that the pro-
tein is still dynamic, both when bound and when
encapsulated within the chaperonin.

Multicolor smFRET studies to explore gene
regulation

Recently, a review on DNA and RNA processes has
summarized the important developments on the use of
multicolor FRET to study various transcriptional phe-
nomena [44] so we focus in this section here on publi-
cations that appeared afterwards. Histones are
octameric proteins made up of two dimeric H2A-H2B
and one tetrameric (H3—H4); subunits. Together
with the DNA, they are the basic components of chro-
matin that pack DNA by wrapping it around the his-
tones and release it during transcription. The dynamic
behavior of histone proteins is crucial for gene regulation
and has been explored by various dual-color smFRET
experiments [45—50]. Lee et al. investigated sponta-
neous histone exchange events between nucleosomes
using 3-color smFRET (Figure 5a, b) [51,52]. In the
most recent study, they labeled one batch of histones in
the DNA region with Cy3-Cy5 and another batch on the
H2A-H2B dimer with Cy5.5, mixed the batches
(Figure 5a) and measured the change in fluorescence
signal resulting from the replacement of the distal or
proximal histones (Figure 5b, right panel). The proximal
dimer exchanged nucleosomes would lead to a high
FRET signal from Cy5.5, which causes premature
photobleaching before being properly captured
(Figure 5b, right panel, upper trace). Therefore, they
used measurements of the distal HZA-H2B dimer probe
to compute the exchange rates. Briefly, they counted the
traces where a non-zero Cy5.5 signal was coupled to a
lowered Cy5 fluorescence, indicating exchanged nucle-
osomes. Their study revealed that the H2ZA-H2B sub-
units undergo assembly-disassembly on a timescale of a
few tens of seconds, which is accelerated at higher salt
concentrations. This supported the hypothesized
disassembly mechanism of the nucleosome as being
spontaneous, transient, and partial. They also showed
that the histone exchange reactions are faster in the
presence of the histone chaperone, nucleosome assem-
bly protein 1 (Napl), and slower in the case of CpG
methylation. With their findings, L.ee and co-workers
shed light on the mechanisms of histone exchange and
could directly visualize processes that influenced
its kinetics.

The group of T] Ha has recently performed a multicolor
FRET study on the zinc-finger transcription factor (TF)
from Drosophila melanogaster, GAE to reveal the details of
how eukaryotic TFs search through the tightly packed
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genome during gene expression [53]. Their results
demonstrated, for the first time, that eukaryotic TFs
combine 1D and 3D diffusional motions as a mechanism
of action to target DNA and nucleosomes.

Puglisi et al. studied the role of eukaryotic initiation
factors (elFs) in ribosomal subunit formation. elFs
mediate the formation of the ribosomal subunits on
messenger RNA (mRNA), which is necessary to start
translation. In four-color FRETexperiments, Puglisi et al.
could directly observe the formation of the functional
80S ribosomal subunit and the involvement of the elFs in
this process [54]. They aimed to identify whether
binding of eIF1A and elF5B would play a critical role in
the formation of the stable ribosomal subunit in-
teractions. In their single-molecule FRET assays, they
tethered mRNA strands to zero-mode waveguide
(ZMW) surfaces, labeled the ribosomal subunits 40S and
60S, and the initiation factors eIF1A and eIF5B each with
different colors of fluorescent dyes (Figure 5c). After
loading the readily formed mRNA complex onto the
ZMWs, they assessed the positioning of the ribosomal
subunits (40S or 60S) and the eFIs (eIF1A or eIF5B) on
the RNA strands via the increase in the respective fluo-
rescence signals. In their three-color control experi-
ments, they first visualized the binding of the 40S(Cy3)-
elF1A(Cy5) complex with the associated signal increase
and the FRET efficiencies due to their close proximity.
The simultaneous presence of both elF1A and eIF5B on
the mRNA—subunit complex is validated by the pres-
ence of both FRET signals between elF1A(Cy3)-
elF5B(Cy3.5) (R~70 A) and 40S(Cy3)-elF1A(Cy5)
(R~50 A). They also performed four-color FRET ex-
periments with the simultaneous addition of all labeled
components (subunits 40S and 60S; transcription factors
elF1A and elF5B), which revealed that the 60S subunit
(Cy5.5) binding happens after the dissociation of both
elF1A and elIF5B. Based on their findings from these
multicolor FRET experiments, they could kinetically
prepare different complexes and used single-particle
cryo-electron microscopy (cryo-EM) to visualize how
the 80S ribosomal initiation complex forms. In a follow-
up study, using a similar multicolor FRET assay, they
examined how N6—methyladenosine (m6A) modification
in the mRNA sequence influences translation initiation
(Figure 5e—d) [55]. Their results indicated that a single
m®A modification does not impact overall translation
yields nor the kinetics of the initiation complex assembly.

Conclusions and outlook

In this review, we have highlighted the works of many
research groups that have enabled multicolor FRET to
become a broadly applicable technique to study com-
plex biological processes. These studies include de-
velopments of multicolor bioorthogonal labeling
strategies and advanced data analysis tools, incorpo-
rating Al-driven algorithms to enhance the accuracy and
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robustness of multicolor FRET applications. We have
discussed recent applications of multicolor FRET that
have expanded the frontiers of structural biology, offer-
ing insights into bimolecular assemblies and their dy-
namics. In combination with other recent improvements
in FRET experiments, such as increasing the observa-
tion time via fluorophore exchange [56] or the use of
microfluidics [57], multicolor FRET promises to
become a powerful tool in the near future.
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