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ABSTRACT

Objectives: The detection and classification of oral mucosal lesions is a challenging task due to high heterogeneity
and overlap in clinical appearance. Nevertheless, differentiating benign from potentially malignant lesions is
essential for appropriate management. This study evaluated whether a deep learning model trained to
discriminate 11 classes of oral mucosal lesions could exceed the performance of general dentists.

Methods: 4079 intraoral photographs of benign, potentially malignant and malignant oral lesions were labeled
using bounding boxes and classified into 11 classes. The data were split 80:20 for training (n = 3031) and
validation (n = 766), keeping an independent test set (n = 282). The YOLOv8 computer vision model was
implemented for image classification and object detection. Model performance was evaluated on the test set
which was also assessed by six general dentists and three specialists in oral surgery. Evaluation metrics included
sensitivity, specificity, F1-score, precision, area under the receiver operating characteristic curve (AUROC), and
average precision (AP) at multiple thresholds of intersection over union.

Results: In terms of classification, the highest Fl-score (0.80) and AUROC (0.96) were observed for human
papillomavirus (HPV)-related lesions, whereas the lowest F1-score (0.43) and AUROC (0.78) were obtained for
keratosis. In terms of object detection, the best results were achieved for HPV-related lesions (AP25 = 0.82) and
proliferative verrucous leukoplakia (AP25 = 0.80; AP50 = 0.76), while the lowest values were noted for leu-
koplakia (AP25 = 0.36; AP50 = 0.20). Overall, the model performed comparable to specialists (p = 0.93) and
significantly better than general dentists (p < 0.01).

Conclusion: The developed model performed as well as specialists in oral surgery, highlighting its potential as a
valuable tool for oral lesion assessment.

Clinical significance: By providing performance comparable to oral surgeons and superior to general dentists, the
developed multi-class model could support the clinical evaluation of oral lesions, potentially enabling earlier
diagnosis of potentially malignant disorders, enhancing patient management and improving patient prognosis.

1. Introduction

group of clinically defined conditions, characterized by a variable risk of
malignant transformation into oral squamous cell carcinoma (OSCC) [1,

Oral potentially malignant disorders (OPMDs) represent a diverse 2]. OPMDs present clinically as red, white or mixed red-white patches
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Fig. 1. Flowchart of the image selection process.

with a heterogenous appearance. Their estimated global prevalence is
4.5 % [3,4]. The primary challenge in the clinical context is to distin-
guish OPMDs and OSCC from non-transformative conditions with
similar clinical appearance [5]. This is crucial, as the five-year overall
survival rate for OSCC drops from 85 % when identified in stage I to <40
% when it has progressed to stage IV [3,6]. As of now, <30 % of patients
with OSCC are diagnosed and treated in an early stage [7-10], and
mortality remains high with 188,438 cases per year [11].

Detection and diagnosis of OPMDs and OSCC mainly relies on gen-
eral dentists, who are an integral part of primary healthcare. During
routine screening in general practice, oral lesions are diagnosed based
on their clinical appearance, patient-related risk factors, medication and
general illnesses. However, the wide spectrum and heterogenous clinical
appearance of these lesions present a significant diagnostic challenge for
dentists, with the accuracy of clinical evaluators varying considerably
[12,13]. Absent or delayed targeted referrals due to diagnostic uncer-
tainy negatively impacts on patient’s clinical prognosis for OSCC [14].
Vice versa, unneccesary referrals or follow-up visits generate healthcare
costs and additional burden to patients.

Artificial intelligence (AI), especially convolutional neural networks

(CNNs), hold a great potential for supporting dentists in the diagnostic
screening processes for OPMDs and OSCC using photographic or histo-
pathological images, computed tomography (CT) or optical coherence
tomography (OCT) [15-20]. Multiple deep learning models have been
employed for classification tasks, such as ResNet50 [21,22], VGG16
[23], LeNet-5, MobileNetV2 [24] or Inception V3 [25], sometimes
combined with segmentation [26-30] or object detection tasks [29,31].
The ability of algorithms such as You Only Look Once (YOLO) to
simultaneously detect and classify suspicious lesions in clinical images
in real time is a significant advancement in the field [32]. A range of Al
models trained on intraoral photographs have been developed recently,
often with accuracies of 80 % and higher for distinguishing OSCC from a
negative control (healthy mucosa) [24,28,33], suspicious versus
non-suspicious mucosa [34,35], OSCC versus OPMDs [36], benign
versus malignant tumors [37,38], referral cases versus non-referral cases
[39] or oral mucosal ulcer versus normal mucosa [40]. Other studies
used subjective labels, such as referral decisions based on assessments
from one to seven experts, which could introduce bias associated with
individual experts’ judgment [41], and several were restricted to diag-
nosing only one site within the oral cavity, such as the tongue [38,
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42-44]. Only a few studies developed and tested Al to distinguish
multiple diagnoses, e.g. benign lesions, OPMDs and OSCC [45-50]. As
guidelines for managing OPMDs and OSCC are based on a detailed dif-
ferentiation of lesion types, AI models should ideally reflect most rele-
vant diagnoses rather than grouping them together, as this reduces their
clinical applicability [36]. In this aspect, a model distinguishing 16
different lesion types was recently published, although the lesions were
mostly benign and restricted to characteristic sites within the oral cavity
[51].

Eleven types of oral mucosal lesions with red or white clinical
manifestations were selected in this study. These included OSCC and
important OPMDs, such as proliferative verrucous leukoplakia (PVL)
[52], low-risk human papillomavirus (HPV)-related lesions (i.e. papil-
loma, verruca vulgaris, condyloma acuminatum) [53], leukoplakia, and
oral lichen planus (OLP) which was further subdivided into “white”
(reticular, plaque-like) and “erosive" (erosive, atrophic) [54]. OPMDs
must be distinguished from similar-looking lesions, including autoim-
mune bullous diseases such as pemphigus vulgaris [55] or lesions caused
by trauma or infection, such as ulcerous lesions (including aphthous
lesions) and candidiasis, both of which have been shown to increase the
risk of carcinogenesis [56,57]. Lesions with a leukoplakic appearance
that are linked to specific habits were also included, such as frictional
keratosis, morsicatio buccarum/linguarum, and smoking-related hy-
perkeratosis of the palate (nicotine stomatitis). Additionally, lingua
geographica was included for the associated diagnostic challenges and
its prevalence.

The objective of the present study was to develop a CNN-based Al
model for the detection and classification of the eleven types of oral
mucosal lesions. To test the model’s performance in real-world settings,
its predictions were compared with assessments by nine independent
clinical examiners, including specialists in oral surgery and general
dentists. The null hypothesis tested was that the diagnostic performance
of the AI model would not be significantly different from clinicians.

2. Methods

This study was approved by the Ethics Committee of Charité — Uni-
versity hospital Berlin (EA1-277-22). Its reporting followed the Check-
list for Artificial Intelligence in Dental Research [58].

2.1. Data acquisition, selection, labeling and preprocessing

A total of 42,078 intraoral photographs of oral lesions were collected
over 20 years in the department of oral medicine and oral surgery of
Charité — University hospital Berlin. The photographs were taken using a
professional digital single-lens reflex (DSLR) camera (Canon EOS 100D,
Nikon D3100, Nikon D50 or Canon EOS 5D Mark II) with a circular flash
and saved in the .jpeg format. The images were not used in any previous
studies.

Images were systematically screened as depicted in Fig. 1. Initially,
images were excluded if they were taken for treatment planning, intra-
or post-operatively, if they did not display lesions with red and/or white
appearance, and if lesions were related to dental conditions or peri-
odontitis. Furthermore, images of insufficient quality were excluded. If
there were multiple photographs from a specific site and angle taken on
a single screening date, only the highest-quality image was selected. For
the remaining 6318 images, clinical diagnoses were collected from the
patient management system High Dent Plus (CompuGroup Medical,
Koblenz, Germany), and if such diagnosis was not available, the image
was excluded. Then, patient-related metadata (age upon documenta-
tion, gender) were retrieved for the remaining images, and corre-
sponding histopathological findings were identified if available. Non-
histopathologically confirmed cases of OSCC were excluded. By
removing 120 duplicates, the dataset was eventually reduced to 5207
images.

At this stage, the dataset was reviewed and subsequently labeled by
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three annotators: a general dentist with 10 years of experience who
received extensive training in the detection of oral lesions (JS), an oral
surgeon with 5 years of experience (YM), and a maxillofacial surgeon
with 9 years of experience (DS). YM and DS have been holding regular
patient consultations regarding oral lesions in the department of
maxillofacial surgery of a university hospital. Prior to the annotation
process, annotators were calibrated on 129 randomly selected images
which were not part of the final dataset (see below). Calibration was
done in three rounds using the Redbrick AI annotation software (Zan-
tula, Claymont, DE, USA), in which each annotator independently
labeled lesions by placing bounding boxes and assigned each box to one
of the 11 classes. Clinical diagnoses retrieved from the patient man-
agement system were visible to the annotators. Bounding boxes of
different annotators were considered as in agreement if their intersec-
tion over union (IoU) was >0.5. Fleiss kappa equaled 0.94 for inter-rater
and 0.97 (JS), 0.93 (YM) and 0.96 (DS) for intra-rater reliability, indi-
cating excellent agreement and consistency among annotators. In cases
where they disagreed, annotators engaged in a consensus review to
ensure labeling consistency and accuracy.

In the main dataset, lesions were either classified according to the
histopathological finding, which was available in approximately 30 % of
cases, or according to the clinical diagnosis, which had been docu-
mented by the treating physician based on clinical inspection, palpation
and patient history. Each lesion was labeled using a bounding box (JS)
and subsequently reviewed by one of the two surgeons (YM; DS). If the
annotators agreed, the labels were used as the reference standard. If they
disagreed (n = 322), the image was excluded from the dataset. Anno-
tators further excluded: 329 images due to mismatch between the
documented clinical diagnosis and the visual appearance of the lesion, i.
e. if the image was not representative of the diagnosis; 182 images of
infectious diseases; 207 cases of candidiasis which manifested as su-
perinfections of other visually discernible lesions, and 42 images
erythroplakia and erythroleukoplakia due to underrepresentation.
Lastly, 46 images were excluded to prevent data leakage, as they
stemmed from patients included in the test set. The final dataset of 4079
images was then randomly split into training data (3031 images), vali-
dation data (766 images) and test data (282 images).

To compensate for the imbalanced distribution of lesion types,
oversampling and undersampling were employed for the training data-
set. The overrepresented classes of OLP "white", OLP "erosive" and leu-
koplakia were undersampled by excluding random images from the
training set, whereas the underrepresented classes were oversampled by
duplicating random images in the training set. As a result, the number of
images per class was equivalent (n = 450). In addition, several image
augmentation techniques were applied on-the-fly, including random
rotation, flipping, scaling, and mosaicking in every epoch. Finally, all
images were resized to 640 x 640 pixels.

2.2. Deep learning

We applied a state-of-the-art CNN for object detection, YOLO version
8 (YOLOV8) [59], as implemented by Jocher et al. [60]. The network
utilized a DarkNet backbone to extract features at three levels with
varying resolutions, thereby ensuring the detection of objects of
differing sizes. The feature maps were then aggregated into a feature
pyramid network, enhancing multi-scale object detection capabilities.
Unlike previous versions, YOLOvS features anchorless detection, where
potential object locations are predicted directly for each pixel without
relying on predefined anchor boxes. Additionally, the architecture in-
cludes a decoupled head, which separates the tasks of classification and
localization (bounding box prediction). Allowing the model to optimize
both tasks independently can improve its overall accuracy.

Model’s predictions were compared with the reference standard to
compute the loss function, which comprises three components: classi-
fication, localization and objectness. Objectness refers to a confidence
score representing the probability that an object is present in the
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Table 1
Final dataset - distribution of oral lesion types (split into sets for training, validation and testing) and patient demographics.
Lesion type Annotated images (n) Median age (inter-quartile range) [years] Sex (n)

Training Validation Testing Male Female
0SCC 161 43 24 62 (55-74) 104 (48 %) 113 (51 %)
PVL 92 25 9 60 (55-74) 44 (42 %) 62 (57 %)
Bullous diseases 187 47 25 70 (61-76) 66 (31 %) 139 (68 %)
HPV-related lesions 107 26 14 54 (40-63) 89 (67 %) 42 (32 %)
Leukoplakia 507 126 27 58 (48-66) 297 (47 %) 321 (52 %)
OLP "erosive" 636 166 44 64 (56-74) 183 (23 %) 588 (76 %)
OLP "white" 826 204 71 60 (51-68) 302 (29 %) 720 (70 %)
Ulcerous lesions 170 41 24 59 (39-70) 123 (53 %) 106 (45 %)
Candidiasis 179 42 21 63 (50-73) 103 (47 %) 114 (53 %)
Keratosis 102 28 13 49 (35-61) 79 (59 %) 56 (40 %)
Lingua geographica 64 18 10 60 (40-69) 50 (54 %) 42 (45 %)

Abbreviations: OSCC - oral squamous cell carcinoma; PVL — proliferative verrucous leukoplakia; HPV — human papilloma virus; OLP — oral lichen planus - "erosive"

(erosive, atrophic) and "white" (reticular, plaque-like).

Table 2
Diagnostic accuracy of the final model for the 11 types of lesions on the test set.
Sensitivity (Recall) Specificity Fl-score Precision AUROC AP25 AP50 AP75
0scc 0.54 0.98 0.63 0.76 0.84 0.53 0.36 0.23
PVL 0.89 0.97 0.64 0.50 0.91 0.80 0.76 0.16
Bullous diseases 0.64 0.95 0.59 0.55 0.87 0.61 0.48 0.14
HPV-related lesions 0.86 0.99 0.80 0.75 0.96 0.82 0.49 0.22
Leukoplakia 0.59 0.94 0.54 0.50 0.86 0.36 0.20 0.15
OLP "erosive" 0.48 0.95 0.54 0.62 0.86 0.44 0.34 0.20
OLP "white" 0.65 0.89 0.66 0.67 0.84 0.54 0.37 0.15
Ulcerous lesions 0.54 0.98 0.62 0.72 0.85 0.47 0.38 0.13
Candidiasis 0.86 0.96 0.73 0.64 0.81 0.57 0.37 0.21
Keratosis 0.38 0.98 0.43 0.50 0.78 0.44 0.44 0.39
Lingua geographica 0.70 0.99 0.67 0.64 0.90 0.73 0.58 0.35

Abbreviations: AUROC — area under the receiver operating characteristic curve; AP25, AP50, AP75 — average precision at intersection over union (IoU) > 0.25, 0.5, and
0.75, respectively. Abbreviations: OSCC — oral squamous cell carcinoma; PVL - proliferative verrucous leukoplakia; HPV — human papilloma virus; OLP - oral lichen
planus: "erosive" (erosive, atrophic) and "white" (reticular, plaque-like). The highest and lowest values for each metric are indicated in bold.
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Fig. 2. The confusion matrix summarizes the performance of the final 11-class model. It displays overlap of the model’s predicted labels (x-axis) and the reference
standard labels (y-axis) on the test set. No lesion was detected in two images of the test set. Given the imbalanced data, the confusion matrices display both absolute
(a) and normalized (b) values. Abbreviations: OSCC — squamous cell carcinoma; PVL - proliferative verrucous leukoplakia; human papilloma virus (HPV)-related
(papilloma, verruca vulgaris, condyloma acuminatum); OLP - oral lichen planus: "erosive" (erosive, atrophic), "white" (reticular, plaque-like).

particular grid point, whereas the classification score assigns the grid
point to a specific class. Model’s weights were adjusted accordingly
using backpropagation. With each training epoch, the networks were
fine-tuned to predict with increasing accuracy based on the provided
annotations. The batch size of the final model was 32. The Adam opti-
mizer [61] was used with an initial learning rate of 0.01, which

decreased during training. The dropout rate was set to 0.0, and the
model was trained for 300 epochs with a weight decay rate of 0.0005.
The hardware used for training included a graphics card NVIDIA RTX
A4000 with NVIDIA Ampere GPU Architecture, 16 GB GDDR6 memory
size and 19.2 TFLOPS of FP32-performance.

The final model generated bounding boxes for the detected objects.
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Fig. 3. Comparison of model’s predictions (yellow) with the reference standard (white) for 11 classes of oral lesions: OSCC - oral squamous cell carcinoma (1), PVL —
proliferative verrucous leukoplakia (2), Bullous disease (3), HPV (human papilloma virus)-related lesion: papilloma (4), Leukoplakia (5), OLP — oral lichen planus
"erosive" (erosive, atrophic) (6), OLP "white" (reticular/plaque-like) (7), Ulcerous lesion (8), Candidiasis (9), Keratosis: nicotine stomatitis (10) and Lingua geo-
graphica (11). The model’s ability to accurately classify and detect the extent of oral lesions depends on their clinical characteristics, clarity of boundaries, and visual
complexity of the information presented. Image 1 presents correct classification and localization, but the predicted bounding box does not fully match the reference
standard. Images 2, 4, 8 demonstrate perfect visual detection and classification. Image 3 shows correct detection for one of the two oral sites visible in the image,
while the other was not detected by the model. Images 6, 7 illustrate the presence of mixed lesions, especially for different types of OLP, which were challenging for
the model. Images 5, 10 illustrate the difficulties of the model when complementary information, such as extraoral structures, is presented within the image frame.

Non-maximum suppression was applied to eliminate redundant boxes, 2.4. Evaluation
retaining only the most accurate and relevant predictions.

The classification performance of the model was evaluated using a
confusion matrix and several statistical metrics: sensitivity (recall), spec-
ificity, F1-score, precision (positive predictive value), and the area under

The performance of the final model was compared with a panel the receiver operating characteristic curve (AUROC). It should be noted
consisting of three specialists in oral surgery and six general dentists. that specificity and AUROC may be inflated by using the one-vs-the-rest
The test set of 282 images was divided into three batches, each approach for calculating true negatives in this multiclass scenario with
comprising 94 images and annotated by one specialist and two general an imbalanced dataset. Therefore, precision-recall curves were also con-
dentists. The annotators received instructions on how to use the anno- structed, as they are unaffected by true negatives and provide a more
tation software (RedBrick AI) and were asked to independently select a reliable evaluation under these conditions. Multiple thresholds (0.25, 0.5,
classification label and draw a bounding box for each lesion. There was 0.75) of intersection over union (IoU) were used for the precision-recall

no calibration of the general dentists and specialists, nor was any further curves and for the calculation of average precision (AP), which corre-
information provided about the clinical diagnosis. sponds to the area under the interpolated precision-recall curve.

2.3. Comparison with clinicians
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Table 3

Comparison of the final model performance on the test set with human annotators.

Journal of Dentistry 161 (2025) 105992

Accuracy

Precision Recall

F1-score

General dentists
Specialists
Final model

0.41 (0.37-0.45)
0.59 (0.53-0.65)
0.62 (0.56-0.68)

General dentists
Specialists
Final model

0.46 (0.41-0.5)
0.58 (0.5-0.64)
0.65 (0.59-0.71)

0.49 (0.44-0.54)
0.64 (0.59-0.7)
0.64 (0.58-0.7)

Macro-averaged results (95 % CI)
0.42 (0.38-0.46)
0.58 (0.52-0.63)
0.58 (0.51-0.66)

0.39 (0.35-0.43)
0.53 (0.47-0.59)
0.57 (0.51-0.65)

0.42 (0.38-0.46)
0.53 (0.46-0.59)
0.6 (0.54-0.68)
Weighted results (95 % CI)

0.41 (0.37-0.45)
0.59 (0.53-0.65)
0.62 (0.56-0.68)

0.41 (0.37-0.46)
0.6 (0.55-0.66)
0.62 (0.56-0.68)

Macro-averaged and weighted metrics are presented to account for class imbalance; CI: confidence interval. The McNemar test indicated a significant difference
between general dentists and the final model (p < 0.01), as well as between general dentists and specialists (p < 0.01). There was no significant difference between

specialists and the final model (p = 0.93).

To account for class imbalance, we reported macro-averaged met-
rics, i.e. unweighted averages of metrics across all classes, as well as
weighted averages that take class sizes into account. The 95 % confi-
dence intervals were calculated using bootstrapping, employing
resampling with replacement over 1000 iterations. Model predictions
were compared with clinicians using the McNemar test at a significance
level of 0.05.

3. Results
3.1. Model performance

Table 1 summarizes the distribution of oral lesion types in the final
dataset and basic demographic information of the patients. The median
age of the individuals ranged from 49 to 70 years; the youngest patient
group presented with keratosis, while the oldest suffered from bullous
diseases. The distribution of sex was relatively balanced, except for OLP
and bullous diseases, which were more prevalent in women (>68 %),
and HPV-related lesions which prevailed in men (67 %).

The metrics of the final model on the test set are summarized in
Table 2, its learning curves are shown in the appendix. In terms of
classification, the highest Fl-score (0.80) and AUROC (0.96) were
observed for HPV-related lesions, whereas the lowest F1-score (0.43)
and AUROC (0.78) were obtained for keratosis. Confusion matrices with
absolute and normalized counts are presented in Fig. 2. Keratosis was
most likely to be confused with leukoplakia or OLP "white". The most
frequently observed classes of confusion were "white" and "erosive"
forms of OLP, which can occur simultaneously. This is also illustrated in
Fig. 3, which presents examples of model’s predictions for each of the
eleven classes, showing both correct detections and common errors.

In terms of object detection, i.e. considering the sizes and locations of
bounding boxes, the best results were achieved for HPV-related lesions
(AP25 = 0.82) and PVL (AP25 = 0.8; AP50 = 0.76). The lowest values
were noted for leukoplakia (AP25 = 0.36; AP50 = 0.2), and at the IoU
threshold of 0.75, low values were recorded for all lesion types (AP75 <
0.4).

3.2. Comparison with clinicians

Table 3 shows that the overall performance of the final model was
comparable to that of specialists (p = 0.93); the model outperformed
general dentists (p < 0.01). Results for individual classes are presented
in Figs. 4 and 5, which display the min-max range of clinicians in
comparison with the model’s ROC and precision-recall curves, respec-
tively. The ROC curves summarize classification accuracy of the model
and show that it was outperformed by specialists in diagnosing OSCC,
ulcerous lesions, candidiasis and keratosis. General dentists had lower
sensitivity for most lesion types, and their variability was higher than
that of specialists (Fig. 4). Unlike ROC curves, precision-recall curves
consider IoU of the bounding boxes as well, which contributed to the
inferior performance because correctly -classified lesions were

considered as incorrect if IoU was <0.5.
4. Discussion

In this study, we developed a deep learning model to distinguish 11
types of oral lesions with various transformative potential, based on the
official WHO classification system of OPMDs [2,62]. The diagnostic
performance of the AI model was found to be similar to that of spe-
cialists, but significantly superior to that of general dentists. Our null
hypothesis was therefore rejected.

The visual characteristics of OPMDs are often heterogeneous, and
features of different OPMDs may overlap. Additionally, mixed forms of
lesions are prevalent, which is why the diagnosis is clinically determined
not only based on visual inspection, but also considering palpation,
subjective symptoms and patient history, including risk factors [63]
such as age, gender, smoking and alcohol consumption or viral, bacterial
and mycotic infections. The development of the lesions over time is also
an important factor, as some oral lesions are reactive and heal shortly
after removing the cause, while others may show gradual progression in
the long term; for instance, early PVL has been reported to mimic ho-
mogenous leukoplakia or OLP [64,65].

The final model showed the highest precision (0.76) in classifying
OSCC, while its recall was suboptimal — almost half of OSCC cases were
misclassified, most commonly as leukoplakia (Fig. 2). The specificity
(0.98) and AUROC (0.84) were high, but these metrics were inflated by
the one-vs-the-rest approach; so they need to be interpreted cautiously.
The highest recall (0.89) and AP50 (0.76) were observed for PVL, while
HPV-related lesions exhibited the second highest recall (0.86) and the
highest values of F1 score (0.80) and AP25 (0.82). As AP accounts for the
overlap of predicted bounding boxes with the reference standard, this
score was higher for lesions with well-defined margins than for those
with indistinct boundaries like OLP "erosive" or keratosis (0.44). The
lowest AP25 (0.36) and precision (0.50) were seen for leukoplakia,
reflecting the WHO definition of leukoplakia as “a predominantly white
patch or plaque that cannot be characterized clinically or pathologically
as any other disorder”. Leukoplakia visually overlaps with several oral
pathologies including keratosis, which had the lowest recall (0.38) and
F1 score (0.43) (Table 2).

Previously developed models trained to classify just two different
classes or visually distinct lesions, such as OSCC vs. healthy [33], ulcer
vs. leukoplakia vs. healthy [47], or leukoplakia vs. OLP vs. OSCC vs.
healthy [49], performed considerably better than our 11-class model. It
is known that increasing the number of classifiable categories [15] de-
creases diagnostic performance of AI models, especially for multifaceted
lesions. This mirrors the clinical reality, in which dentists are often
uncertain in distinguishing between various oral lesions with similar
clinical appearance [13]. While models differentiating two or slightly
more classes of oral lesions may achieve high metrics, their clinical
applicability is limited for differential diagnosis of multiple lesion types.
To our knowledge, only one highly accurate multi-class model has been
reported to date, using attention-guided classification to distinguish 16
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Fig. 4. Receiver operating characteristic curves of the final model for each of the 11 classes compared with specialists (blue) and dentists (red). The performance of
human annotators is displayed as mean and Min-Max range. Abbreviations: OSCC — oral squamous cell carcinoma; PVL — proliferative verrucous leukoplakia; HPV —
human papilloma virus; OLP — oral lichen planus — "erosive" (erosive, atrophic) and "white" (reticular, plaque-like); AUC — area under the curve.

classes while considering the specific anatomical site [51]. However,
most of the lesions in that study were benign, which makes the com-
parison to our study difficult. In addition, the lesions may be visually
more distinct and restricted to a specific region of the oral cavity,
making the classification task easier.

In our study, approximately 30 % of lesions were confirmed by his-
topathology, including all OSCC cases, and the remaining photographs
were clinically classified by dental professionals privy to patient-related
information such as age, gender and habits. This information was
available to the annotators of the training dataset, which contributed to
their high inter- and intra-rater agreement. In contrast, the clinical in-
formation was available neither to the model, which was trained and
tested only based on the visual features, nor to the specialists and den-
tists. Combined with the high number of lesion types, this could
contribute to their lower overall diagnostic accuracy on the test set.
Notably, the overall performance of the model was similar to that of

specialists, highlighting the difficulty of diagnosing OPMDs with similar
features only based on visual inspection, but also demonstrating the
value of having an Al-based diagnostic support available to general
practitioners.

The use of Al-based diagnostic tools could help in timely diagnosis of
OPMDs and OSCC, especially when combined with other clinical data. It
could also help reduce the subjectivity and variability of the dentist’s
assessment, possibly resulting in a faster referral or treatment, ulti-
mately improving the prognosis. However, models need to cover a wide
spectrum of lesions and achieve high accuracy, as false positive results
may lead to unnecessary concerns and costs, while false negatives may
be critical in case of malignant lesions [66]. Beyond performance met-
rics, a critical challenge lies in the opaque, “black box” nature of many
deep learning models, which limits the ability to understand how pre-
dictions are made. This lack of transparency undermines clinician trust,
especially in sensitive domains such as oncology, where explainability
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Fig. 5. Precision-recall curves of the final model for each of the 11 classes at the threshold of intersection over union — IoU = 0.5. The model was compared with
specialists (blue) and dentists (red); their performance is displayed as mean and Min-Max range. Abbreviations: OSCC - oral squamous cell carcinoma; PVL —
proliferative verrucous leukoplakia; HPV — human papilloma virus; OLP — oral lichen planus — "erosive" (erosive, atrophic) and "white" (reticular, plaque-like); AP50 —

average precision at IoU > 0.5.

and accountability are essential. Therefore, future research should
explore explainable AI approaches and uncertainty quantification
techniques, which may support clinical deployment of Al tools [67-70].
Moreover, ethical Al development must also address accessibility and
equity, particularly in underserved regions where diagnostic resources
are scarce [71,72]. In such contexts, Al tools could help reduce dispar-
ities and support earlier detection and referral.

This study comes with a number of limitations. First, both the model
and the comparator dentists relied solely on image data when making
their diagnoses. In clinical settings, further data would be available.
Second, the data stemmed from one (albeit large) hospital, which may
have an impact on generalizability. Notably, the data were collected
over two decades by a wide range of practitioners using different sen-
sors, increasing the heterogeneity of the data pool. Third, the under-
representation of some classes either hindered model performance or

even led to their exclusion, e.g. in case of erythroplakia, an important
OPMD. Future studies should aim at using additional patient-related
information and balancing the dataset, possibly involving multiple
centers to achieve sufficient sample size and to improve model gener-
alizability. If data sharing is not possible for legal or ethical reasons,
paradigms such as federated learning could be employed.

5. Conclusion

We developed a multi-class deep learning model distinguishing
various oral lesions, which performed comparable to specialists in oral
surgery and significantly outperformed general dentists. However, when
relying solely on visual information, machine learning models encounter
the same diagnostic challenges as clinicians in classifying various oral
lesions with similar clinical appearance. This study highlighted the need
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for diagnostic support in identifying OPMDs, particularly for general
dentists. By integrating AI models into clinical practice, dentists may
detect OPMDs at an earlier stage, ultimately contributing to enhanced
prognosis and patient outcomes.
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