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A B S T R A C T

Objectives: The detection and classification of oral mucosal lesions is a challenging task due to high heterogeneity 
and overlap in clinical appearance. Nevertheless, differentiating benign from potentially malignant lesions is 
essential for appropriate management. This study evaluated whether a deep learning model trained to 
discriminate 11 classes of oral mucosal lesions could exceed the performance of general dentists.
Methods: 4079 intraoral photographs of benign, potentially malignant and malignant oral lesions were labeled 
using bounding boxes and classified into 11 classes. The data were split 80:20 for training (n = 3031) and 
validation (n = 766), keeping an independent test set (n = 282). The YOLOv8 computer vision model was 
implemented for image classification and object detection. Model performance was evaluated on the test set 
which was also assessed by six general dentists and three specialists in oral surgery. Evaluation metrics included 
sensitivity, specificity, F1-score, precision, area under the receiver operating characteristic curve (AUROC), and 
average precision (AP) at multiple thresholds of intersection over union.
Results: In terms of classification, the highest F1-score (0.80) and AUROC (0.96) were observed for human 
papillomavirus (HPV)-related lesions, whereas the lowest F1-score (0.43) and AUROC (0.78) were obtained for 
keratosis. In terms of object detection, the best results were achieved for HPV-related lesions (AP25 = 0.82) and 
proliferative verrucous leukoplakia (AP25 = 0.80; AP50 = 0.76), while the lowest values were noted for leu
koplakia (AP25 = 0.36; AP50 = 0.20). Overall, the model performed comparable to specialists (p = 0.93) and 
significantly better than general dentists (p < 0.01).
Conclusion: The developed model performed as well as specialists in oral surgery, highlighting its potential as a 
valuable tool for oral lesion assessment.
Clinical significance: By providing performance comparable to oral surgeons and superior to general dentists, the 
developed multi-class model could support the clinical evaluation of oral lesions, potentially enabling earlier 
diagnosis of potentially malignant disorders, enhancing patient management and improving patient prognosis.

1. Introduction

Oral potentially malignant disorders (OPMDs) represent a diverse 

group of clinically defined conditions, characterized by a variable risk of 
malignant transformation into oral squamous cell carcinoma (OSCC) [1,
2]. OPMDs present clinically as red, white or mixed red-white patches 
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with a heterogenous appearance. Their estimated global prevalence is 
4.5 % [3,4]. The primary challenge in the clinical context is to distin
guish OPMDs and OSCC from non-transformative conditions with 
similar clinical appearance [5]. This is crucial, as the five-year overall 
survival rate for OSCC drops from 85 % when identified in stage I to <40 
% when it has progressed to stage IV [3,6]. As of now, <30 % of patients 
with OSCC are diagnosed and treated in an early stage [7–10], and 
mortality remains high with 188,438 cases per year [11].

Detection and diagnosis of OPMDs and OSCC mainly relies on gen
eral dentists, who are an integral part of primary healthcare. During 
routine screening in general practice, oral lesions are diagnosed based 
on their clinical appearance, patient-related risk factors, medication and 
general illnesses. However, the wide spectrum and heterogenous clinical 
appearance of these lesions present a significant diagnostic challenge for 
dentists, with the accuracy of clinical evaluators varying considerably 
[12,13]. Absent or delayed targeted referrals due to diagnostic uncer
tainy negatively impacts on patient’s clinical prognosis for OSCC [14]. 
Vice versa, unneccesary referrals or follow-up visits generate healthcare 
costs and additional burden to patients.

Artificial intelligence (AI), especially convolutional neural networks 

(CNNs), hold a great potential for supporting dentists in the diagnostic 
screening processes for OPMDs and OSCC using photographic or histo
pathological images, computed tomography (CT) or optical coherence 
tomography (OCT) [15–20]. Multiple deep learning models have been 
employed for classification tasks, such as ResNet50 [21,22], VGG16 
[23], LeNet-5, MobileNetV2 [24] or Inception V3 [25], sometimes 
combined with segmentation [26–30] or object detection tasks [29,31]. 
The ability of algorithms such as You Only Look Once (YOLO) to 
simultaneously detect and classify suspicious lesions in clinical images 
in real time is a significant advancement in the field [32]. A range of AI 
models trained on intraoral photographs have been developed recently, 
often with accuracies of 80 % and higher for distinguishing OSCC from a 
negative control (healthy mucosa) [24,28,33], suspicious versus 
non-suspicious mucosa [34,35], OSCC versus OPMDs [36], benign 
versus malignant tumors [37,38], referral cases versus non-referral cases 
[39] or oral mucosal ulcer versus normal mucosa [40]. Other studies 
used subjective labels, such as referral decisions based on assessments 
from one to seven experts, which could introduce bias associated with 
individual experts’ judgment [41], and several were restricted to diag
nosing only one site within the oral cavity, such as the tongue [38,

Fig. 1. Flowchart of the image selection process.

J. Schwärzler et al.                                                                                                                                                                                                                             Journal of Dentistry 161 (2025) 105992 

2 



42–44]. Only a few studies developed and tested AI to distinguish 
multiple diagnoses, e.g. benign lesions, OPMDs and OSCC [45–50]. As 
guidelines for managing OPMDs and OSCC are based on a detailed dif
ferentiation of lesion types, AI models should ideally reflect most rele
vant diagnoses rather than grouping them together, as this reduces their 
clinical applicability [36]. In this aspect, a model distinguishing 16 
different lesion types was recently published, although the lesions were 
mostly benign and restricted to characteristic sites within the oral cavity 
[51].

Eleven types of oral mucosal lesions with red or white clinical 
manifestations were selected in this study. These included OSCC and 
important OPMDs, such as proliferative verrucous leukoplakia (PVL) 
[52], low-risk human papillomavirus (HPV)-related lesions (i.e. papil
loma, verruca vulgaris, condyloma acuminatum) [53], leukoplakia, and 
oral lichen planus (OLP) which was further subdivided into “white” 
(reticular, plaque-like) and “erosive" (erosive, atrophic) [54]. OPMDs 
must be distinguished from similar-looking lesions, including autoim
mune bullous diseases such as pemphigus vulgaris [55] or lesions caused 
by trauma or infection, such as ulcerous lesions (including aphthous 
lesions) and candidiasis, both of which have been shown to increase the 
risk of carcinogenesis [56,57]. Lesions with a leukoplakic appearance 
that are linked to specific habits were also included, such as frictional 
keratosis, morsicatio buccarum/linguarum, and smoking-related hy
perkeratosis of the palate (nicotine stomatitis). Additionally, lingua 
geographica was included for the associated diagnostic challenges and 
its prevalence.

The objective of the present study was to develop a CNN-based AI 
model for the detection and classification of the eleven types of oral 
mucosal lesions. To test the model’s performance in real-world settings, 
its predictions were compared with assessments by nine independent 
clinical examiners, including specialists in oral surgery and general 
dentists. The null hypothesis tested was that the diagnostic performance 
of the AI model would not be significantly different from clinicians.

2. Methods

This study was approved by the Ethics Committee of Charité – Uni
versity hospital Berlin (EA1-277-22). Its reporting followed the Check
list for Artificial Intelligence in Dental Research [58].

2.1. Data acquisition, selection, labeling and preprocessing

A total of 42,078 intraoral photographs of oral lesions were collected 
over 20 years in the department of oral medicine and oral surgery of 
Charité – University hospital Berlin. The photographs were taken using a 
professional digital single-lens reflex (DSLR) camera (Canon EOS 100D, 
Nikon D3100, Nikon D50 or Canon EOS 5D Mark II) with a circular flash 
and saved in the .jpeg format. The images were not used in any previous 
studies.

Images were systematically screened as depicted in Fig. 1. Initially, 
images were excluded if they were taken for treatment planning, intra- 
or post-operatively, if they did not display lesions with red and/or white 
appearance, and if lesions were related to dental conditions or peri
odontitis. Furthermore, images of insufficient quality were excluded. If 
there were multiple photographs from a specific site and angle taken on 
a single screening date, only the highest-quality image was selected. For 
the remaining 6318 images, clinical diagnoses were collected from the 
patient management system High Dent Plus (CompuGroup Medical, 
Koblenz, Germany), and if such diagnosis was not available, the image 
was excluded. Then, patient-related metadata (age upon documenta
tion, gender) were retrieved for the remaining images, and corre
sponding histopathological findings were identified if available. Non- 
histopathologically confirmed cases of OSCC were excluded. By 
removing 120 duplicates, the dataset was eventually reduced to 5207 
images.

At this stage, the dataset was reviewed and subsequently labeled by 

three annotators: a general dentist with 10 years of experience who 
received extensive training in the detection of oral lesions (JS), an oral 
surgeon with 5 years of experience (YM), and a maxillofacial surgeon 
with 9 years of experience (DS). YM and DS have been holding regular 
patient consultations regarding oral lesions in the department of 
maxillofacial surgery of a university hospital. Prior to the annotation 
process, annotators were calibrated on 129 randomly selected images 
which were not part of the final dataset (see below). Calibration was 
done in three rounds using the Redbrick AI annotation software (Zan
tula, Claymont, DE, USA), in which each annotator independently 
labeled lesions by placing bounding boxes and assigned each box to one 
of the 11 classes. Clinical diagnoses retrieved from the patient man
agement system were visible to the annotators. Bounding boxes of 
different annotators were considered as in agreement if their intersec
tion over union (IoU) was ≥0.5. Fleiss kappa equaled 0.94 for inter-rater 
and 0.97 (JS), 0.93 (YM) and 0.96 (DS) for intra-rater reliability, indi
cating excellent agreement and consistency among annotators. In cases 
where they disagreed, annotators engaged in a consensus review to 
ensure labeling consistency and accuracy.

In the main dataset, lesions were either classified according to the 
histopathological finding, which was available in approximately 30 % of 
cases, or according to the clinical diagnosis, which had been docu
mented by the treating physician based on clinical inspection, palpation 
and patient history. Each lesion was labeled using a bounding box (JS) 
and subsequently reviewed by one of the two surgeons (YM; DS). If the 
annotators agreed, the labels were used as the reference standard. If they 
disagreed (n = 322), the image was excluded from the dataset. Anno
tators further excluded: 329 images due to mismatch between the 
documented clinical diagnosis and the visual appearance of the lesion, i. 
e. if the image was not representative of the diagnosis; 182 images of 
infectious diseases; 207 cases of candidiasis which manifested as su
perinfections of other visually discernible lesions, and 42 images 
erythroplakia and erythroleukoplakia due to underrepresentation. 
Lastly, 46 images were excluded to prevent data leakage, as they 
stemmed from patients included in the test set. The final dataset of 4079 
images was then randomly split into training data (3031 images), vali
dation data (766 images) and test data (282 images).

To compensate for the imbalanced distribution of lesion types, 
oversampling and undersampling were employed for the training data
set. The overrepresented classes of OLP "white", OLP "erosive" and leu
koplakia were undersampled by excluding random images from the 
training set, whereas the underrepresented classes were oversampled by 
duplicating random images in the training set. As a result, the number of 
images per class was equivalent (n = 450). In addition, several image 
augmentation techniques were applied on-the-fly, including random 
rotation, flipping, scaling, and mosaicking in every epoch. Finally, all 
images were resized to 640 × 640 pixels.

2.2. Deep learning

We applied a state-of-the-art CNN for object detection, YOLO version 
8 (YOLOv8) [59], as implemented by Jocher et al. [60]. The network 
utilized a DarkNet backbone to extract features at three levels with 
varying resolutions, thereby ensuring the detection of objects of 
differing sizes. The feature maps were then aggregated into a feature 
pyramid network, enhancing multi-scale object detection capabilities. 
Unlike previous versions, YOLOv8 features anchorless detection, where 
potential object locations are predicted directly for each pixel without 
relying on predefined anchor boxes. Additionally, the architecture in
cludes a decoupled head, which separates the tasks of classification and 
localization (bounding box prediction). Allowing the model to optimize 
both tasks independently can improve its overall accuracy.

Model’s predictions were compared with the reference standard to 
compute the loss function, which comprises three components: classi
fication, localization and objectness. Objectness refers to a confidence 
score representing the probability that an object is present in the 
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particular grid point, whereas the classification score assigns the grid 
point to a specific class. Model’s weights were adjusted accordingly 
using backpropagation. With each training epoch, the networks were 
fine-tuned to predict with increasing accuracy based on the provided 
annotations. The batch size of the final model was 32. The Adam opti
mizer [61] was used with an initial learning rate of 0.01, which 

decreased during training. The dropout rate was set to 0.0, and the 
model was trained for 300 epochs with a weight decay rate of 0.0005. 
The hardware used for training included a graphics card NVIDIA RTX 
A4000 with NVIDIA Ampere GPU Architecture, 16 GB GDDR6 memory 
size and 19.2 TFLOPS of FP32-performance.

The final model generated bounding boxes for the detected objects. 

Table 1 
Final dataset - distribution of oral lesion types (split into sets for training, validation and testing) and patient demographics.

Lesion type Annotated images (n) Median age (inter-quartile range) [years] Sex (n)

Training Validation Testing Male Female

OSCC 161 43 24 62 (55–74) 104 (48 %) 113 (51 %)
PVL 92 25 9 60 (55–74) 44 (42 %) 62 (57 %)
Bullous diseases 187 47 25 70 (61–76) 66 (31 %) 139 (68 %)
HPV-related lesions 107 26 14 54 (40–63) 89 (67 %) 42 (32 %)
Leukoplakia 507 126 27 58 (48–66) 297 (47 %) 321 (52 %)
OLP "erosive" 636 166 44 64 (56–74) 183 (23 %) 588 (76 %)
OLP "white" 826 204 71 60 (51–68) 302 (29 %) 720 (70 %)
Ulcerous lesions 170 41 24 59 (39–70) 123 (53 %) 106 (45 %)
Candidiasis 179 42 21 63 (50–73) 103 (47 %) 114 (53 %)
Keratosis 102 28 13 49 (35–61) 79 (59 %) 56 (40 %)
Lingua geographica 64 18 10 60 (40–69) 50 (54 %) 42 (45 %)

Abbreviations: OSCC – oral squamous cell carcinoma; PVL – proliferative verrucous leukoplakia; HPV – human papilloma virus; OLP – oral lichen planus – "erosive" 
(erosive, atrophic) and "white" (reticular, plaque-like).

Table 2 
Diagnostic accuracy of the final model for the 11 types of lesions on the test set.

Sensitivity (Recall) Specificity F1-score Precision AUROC AP25 AP50 AP75

OSCC 0.54 0.98 0.63 0.76 0.84 0.53 0.36 0.23
PVL 0.89 0.97 0.64 0.50 0.91 0.80 0.76 0.16
Bullous diseases 0.64 0.95 0.59 0.55 0.87 0.61 0.48 0.14
HPV-related lesions 0.86 0.99 0.80 0.75 0.96 0.82 0.49 0.22
Leukoplakia 0.59 0.94 0.54 0.50 0.86 0.36 0.20 0.15
OLP "erosive" 0.48 0.95 0.54 0.62 0.86 0.44 0.34 0.20
OLP "white" 0.65 0.89 0.66 0.67 0.84 0.54 0.37 0.15
Ulcerous lesions 0.54 0.98 0.62 0.72 0.85 0.47 0.38 0.13
Candidiasis 0.86 0.96 0.73 0.64 0.81 0.57 0.37 0.21
Keratosis 0.38 0.98 0.43 0.50 0.78 0.44 0.44 0.39
Lingua geographica 0.70 0.99 0.67 0.64 0.90 0.73 0.58 0.35

Abbreviations: AUROC – area under the receiver operating characteristic curve; AP25, AP50, AP75 – average precision at intersection over union (IoU) > 0.25, 0.5, and 
0.75, respectively. Abbreviations: OSCC – oral squamous cell carcinoma; PVL – proliferative verrucous leukoplakia; HPV – human papilloma virus; OLP – oral lichen 
planus: "erosive" (erosive, atrophic) and "white" (reticular, plaque-like). The highest and lowest values for each metric are indicated in bold.

Fig. 2. The confusion matrix summarizes the performance of the final 11-class model. It displays overlap of the model’s predicted labels (x-axis) and the reference 
standard labels (y-axis) on the test set. No lesion was detected in two images of the test set. Given the imbalanced data, the confusion matrices display both absolute 
(a) and normalized (b) values. Abbreviations: OSCC – squamous cell carcinoma; PVL – proliferative verrucous leukoplakia; human papilloma virus (HPV)-related 
(papilloma, verruca vulgaris, condyloma acuminatum); OLP – oral lichen planus: "erosive" (erosive, atrophic), "white" (reticular, plaque-like).
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Non-maximum suppression was applied to eliminate redundant boxes, 
retaining only the most accurate and relevant predictions.

2.3. Comparison with clinicians

The performance of the final model was compared with a panel 
consisting of three specialists in oral surgery and six general dentists. 
The test set of 282 images was divided into three batches, each 
comprising 94 images and annotated by one specialist and two general 
dentists. The annotators received instructions on how to use the anno
tation software (RedBrick AI) and were asked to independently select a 
classification label and draw a bounding box for each lesion. There was 
no calibration of the general dentists and specialists, nor was any further 
information provided about the clinical diagnosis.

2.4. Evaluation

The classification performance of the model was evaluated using a 
confusion matrix and several statistical metrics: sensitivity (recall), spec
ificity, F1-score, precision (positive predictive value), and the area under 
the receiver operating characteristic curve (AUROC). It should be noted 
that specificity and AUROC may be inflated by using the one-vs-the-rest 
approach for calculating true negatives in this multiclass scenario with 
an imbalanced dataset. Therefore, precision-recall curves were also con
structed, as they are unaffected by true negatives and provide a more 
reliable evaluation under these conditions. Multiple thresholds (0.25, 0.5, 
0.75) of intersection over union (IoU) were used for the precision-recall 
curves and for the calculation of average precision (AP), which corre
sponds to the area under the interpolated precision-recall curve.

Fig. 3. Comparison of model’s predictions (yellow) with the reference standard (white) for 11 classes of oral lesions: OSCC – oral squamous cell carcinoma (1), PVL – 
proliferative verrucous leukoplakia (2), Bullous disease (3), HPV (human papilloma virus)-related lesion: papilloma (4), Leukoplakia (5), OLP – oral lichen planus 
"erosive" (erosive, atrophic) (6), OLP "white" (reticular/plaque-like) (7), Ulcerous lesion (8), Candidiasis (9), Keratosis: nicotine stomatitis (10) and Lingua geo
graphica (11). The model’s ability to accurately classify and detect the extent of oral lesions depends on their clinical characteristics, clarity of boundaries, and visual 
complexity of the information presented. Image 1 presents correct classification and localization, but the predicted bounding box does not fully match the reference 
standard. Images 2, 4, 8 demonstrate perfect visual detection and classification. Image 3 shows correct detection for one of the two oral sites visible in the image, 
while the other was not detected by the model. Images 6, 7 illustrate the presence of mixed lesions, especially for different types of OLP, which were challenging for 
the model. Images 5, 10 illustrate the difficulties of the model when complementary information, such as extraoral structures, is presented within the image frame.

J. Schwärzler et al.                                                                                                                                                                                                                             Journal of Dentistry 161 (2025) 105992 

5 



To account for class imbalance, we reported macro-averaged met
rics, i.e. unweighted averages of metrics across all classes, as well as 
weighted averages that take class sizes into account. The 95 % confi
dence intervals were calculated using bootstrapping, employing 
resampling with replacement over 1000 iterations. Model predictions 
were compared with clinicians using the McNemar test at a significance 
level of 0.05.

3. Results

3.1. Model performance

Table 1 summarizes the distribution of oral lesion types in the final 
dataset and basic demographic information of the patients. The median 
age of the individuals ranged from 49 to 70 years; the youngest patient 
group presented with keratosis, while the oldest suffered from bullous 
diseases. The distribution of sex was relatively balanced, except for OLP 
and bullous diseases, which were more prevalent in women (≥68 %), 
and HPV-related lesions which prevailed in men (67 %).

The metrics of the final model on the test set are summarized in 
Table 2, its learning curves are shown in the appendix. In terms of 
classification, the highest F1-score (0.80) and AUROC (0.96) were 
observed for HPV-related lesions, whereas the lowest F1-score (0.43) 
and AUROC (0.78) were obtained for keratosis. Confusion matrices with 
absolute and normalized counts are presented in Fig. 2. Keratosis was 
most likely to be confused with leukoplakia or OLP "white". The most 
frequently observed classes of confusion were "white" and "erosive" 
forms of OLP, which can occur simultaneously. This is also illustrated in 
Fig. 3, which presents examples of model’s predictions for each of the 
eleven classes, showing both correct detections and common errors.

In terms of object detection, i.e. considering the sizes and locations of 
bounding boxes, the best results were achieved for HPV-related lesions 
(AP25 = 0.82) and PVL (AP25 = 0.8; AP50 = 0.76). The lowest values 
were noted for leukoplakia (AP25 = 0.36; AP50 = 0.2), and at the IoU 
threshold of 0.75, low values were recorded for all lesion types (AP75 <
0.4).

3.2. Comparison with clinicians

Table 3 shows that the overall performance of the final model was 
comparable to that of specialists (p = 0.93); the model outperformed 
general dentists (p < 0.01). Results for individual classes are presented 
in Figs. 4 and 5, which display the min-max range of clinicians in 
comparison with the model’s ROC and precision-recall curves, respec
tively. The ROC curves summarize classification accuracy of the model 
and show that it was outperformed by specialists in diagnosing OSCC, 
ulcerous lesions, candidiasis and keratosis. General dentists had lower 
sensitivity for most lesion types, and their variability was higher than 
that of specialists (Fig. 4). Unlike ROC curves, precision-recall curves 
consider IoU of the bounding boxes as well, which contributed to the 
inferior performance because correctly classified lesions were 

considered as incorrect if IoU was <0.5.

4. Discussion

In this study, we developed a deep learning model to distinguish 11 
types of oral lesions with various transformative potential, based on the 
official WHO classification system of OPMDs [2,62]. The diagnostic 
performance of the AI model was found to be similar to that of spe
cialists, but significantly superior to that of general dentists. Our null 
hypothesis was therefore rejected.

The visual characteristics of OPMDs are often heterogeneous, and 
features of different OPMDs may overlap. Additionally, mixed forms of 
lesions are prevalent, which is why the diagnosis is clinically determined 
not only based on visual inspection, but also considering palpation, 
subjective symptoms and patient history, including risk factors [63] 
such as age, gender, smoking and alcohol consumption or viral, bacterial 
and mycotic infections. The development of the lesions over time is also 
an important factor, as some oral lesions are reactive and heal shortly 
after removing the cause, while others may show gradual progression in 
the long term; for instance, early PVL has been reported to mimic ho
mogenous leukoplakia or OLP [64,65].

The final model showed the highest precision (0.76) in classifying 
OSCC, while its recall was suboptimal – almost half of OSCC cases were 
misclassified, most commonly as leukoplakia (Fig. 2). The specificity 
(0.98) and AUROC (0.84) were high, but these metrics were inflated by 
the one-vs-the-rest approach; so they need to be interpreted cautiously. 
The highest recall (0.89) and AP50 (0.76) were observed for PVL, while 
HPV-related lesions exhibited the second highest recall (0.86) and the 
highest values of F1 score (0.80) and AP25 (0.82). As AP accounts for the 
overlap of predicted bounding boxes with the reference standard, this 
score was higher for lesions with well-defined margins than for those 
with indistinct boundaries like OLP "erosive" or keratosis (0.44). The 
lowest AP25 (0.36) and precision (0.50) were seen for leukoplakia, 
reflecting the WHO definition of leukoplakia as “a predominantly white 
patch or plaque that cannot be characterized clinically or pathologically 
as any other disorder”. Leukoplakia visually overlaps with several oral 
pathologies including keratosis, which had the lowest recall (0.38) and 
F1 score (0.43) (Table 2).

Previously developed models trained to classify just two different 
classes or visually distinct lesions, such as OSCC vs. healthy [33], ulcer 
vs. leukoplakia vs. healthy [47], or leukoplakia vs. OLP vs. OSCC vs. 
healthy [49], performed considerably better than our 11-class model. It 
is known that increasing the number of classifiable categories [15] de
creases diagnostic performance of AI models, especially for multifaceted 
lesions. This mirrors the clinical reality, in which dentists are often 
uncertain in distinguishing between various oral lesions with similar 
clinical appearance [13]. While models differentiating two or slightly 
more classes of oral lesions may achieve high metrics, their clinical 
applicability is limited for differential diagnosis of multiple lesion types. 
To our knowledge, only one highly accurate multi-class model has been 
reported to date, using attention-guided classification to distinguish 16 

Table 3 
Comparison of the final model performance on the test set with human annotators.

Accuracy Precision Recall F1-score

Macro-averaged results (95 % CI)
General dentists 0.41 (0.37–0.45) 0.42 (0.38–0.46) 0.42 (0.38–0.46) 0.39 (0.35–0.43)
Specialists 0.59 (0.53–0.65) 0.58 (0.52–0.63) 0.53 (0.46–0.59) 0.53 (0.47–0.59)
Final model 0.62 (0.56–0.68) 0.58 (0.51–0.66) 0.6 (0.54–0.68) 0.57 (0.51–0.65)

Weighted results (95 % CI)
General dentists 0.46 (0.41–0.5) 0.49 (0.44–0.54) 0.41 (0.37–0.45) 0.41 (0.37–0.46)
Specialists 0.58 (0.5–0.64) 0.64 (0.59–0.7) 0.59 (0.53–0.65) 0.6 (0.55–0.66)
Final model 0.65 (0.59–0.71) 0.64 (0.58–0.7) 0.62 (0.56–0.68) 0.62 (0.56–0.68)

Macro-averaged and weighted metrics are presented to account for class imbalance; CI: confidence interval. The McNemar test indicated a significant difference 
between general dentists and the final model (p < 0.01), as well as between general dentists and specialists (p < 0.01). There was no significant difference between 
specialists and the final model (p = 0.93).
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classes while considering the specific anatomical site [51]. However, 
most of the lesions in that study were benign, which makes the com
parison to our study difficult. In addition, the lesions may be visually 
more distinct and restricted to a specific region of the oral cavity, 
making the classification task easier.

In our study, approximately 30 % of lesions were confirmed by his
topathology, including all OSCC cases, and the remaining photographs 
were clinically classified by dental professionals privy to patient-related 
information such as age, gender and habits. This information was 
available to the annotators of the training dataset, which contributed to 
their high inter- and intra-rater agreement. In contrast, the clinical in
formation was available neither to the model, which was trained and 
tested only based on the visual features, nor to the specialists and den
tists. Combined with the high number of lesion types, this could 
contribute to their lower overall diagnostic accuracy on the test set. 
Notably, the overall performance of the model was similar to that of 

specialists, highlighting the difficulty of diagnosing OPMDs with similar 
features only based on visual inspection, but also demonstrating the 
value of having an AI-based diagnostic support available to general 
practitioners.

The use of AI-based diagnostic tools could help in timely diagnosis of 
OPMDs and OSCC, especially when combined with other clinical data. It 
could also help reduce the subjectivity and variability of the dentist’s 
assessment, possibly resulting in a faster referral or treatment, ulti
mately improving the prognosis. However, models need to cover a wide 
spectrum of lesions and achieve high accuracy, as false positive results 
may lead to unnecessary concerns and costs, while false negatives may 
be critical in case of malignant lesions [66]. Beyond performance met
rics, a critical challenge lies in the opaque, “black box” nature of many 
deep learning models, which limits the ability to understand how pre
dictions are made. This lack of transparency undermines clinician trust, 
especially in sensitive domains such as oncology, where explainability 

Fig. 4. Receiver operating characteristic curves of the final model for each of the 11 classes compared with specialists (blue) and dentists (red). The performance of 
human annotators is displayed as mean and Min-Max range. Abbreviations: OSCC – oral squamous cell carcinoma; PVL – proliferative verrucous leukoplakia; HPV – 
human papilloma virus; OLP – oral lichen planus – "erosive" (erosive, atrophic) and "white" (reticular, plaque-like); AUC – area under the curve.
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and accountability are essential. Therefore, future research should 
explore explainable AI approaches and uncertainty quantification 
techniques, which may support clinical deployment of AI tools [67–70]. 
Moreover, ethical AI development must also address accessibility and 
equity, particularly in underserved regions where diagnostic resources 
are scarce [71,72]. In such contexts, AI tools could help reduce dispar
ities and support earlier detection and referral.

This study comes with a number of limitations. First, both the model 
and the comparator dentists relied solely on image data when making 
their diagnoses. In clinical settings, further data would be available. 
Second, the data stemmed from one (albeit large) hospital, which may 
have an impact on generalizability. Notably, the data were collected 
over two decades by a wide range of practitioners using different sen
sors, increasing the heterogeneity of the data pool. Third, the under
representation of some classes either hindered model performance or 

even led to their exclusion, e.g. in case of erythroplakia, an important 
OPMD. Future studies should aim at using additional patient-related 
information and balancing the dataset, possibly involving multiple 
centers to achieve sufficient sample size and to improve model gener
alizability. If data sharing is not possible for legal or ethical reasons, 
paradigms such as federated learning could be employed.

5. Conclusion

We developed a multi-class deep learning model distinguishing 
various oral lesions, which performed comparable to specialists in oral 
surgery and significantly outperformed general dentists. However, when 
relying solely on visual information, machine learning models encounter 
the same diagnostic challenges as clinicians in classifying various oral 
lesions with similar clinical appearance. This study highlighted the need 

Fig. 5. Precision-recall curves of the final model for each of the 11 classes at the threshold of intersection over union – IoU = 0.5. The model was compared with 
specialists (blue) and dentists (red); their performance is displayed as mean and Min-Max range. Abbreviations: OSCC – oral squamous cell carcinoma; PVL – 
proliferative verrucous leukoplakia; HPV – human papilloma virus; OLP – oral lichen planus – "erosive" (erosive, atrophic) and "white" (reticular, plaque-like); AP50 – 
average precision at IoU ≥ 0.5.
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for diagnostic support in identifying OPMDs, particularly for general 
dentists. By integrating AI models into clinical practice, dentists may 
detect OPMDs at an earlier stage, ultimately contributing to enhanced 
prognosis and patient outcomes.
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