

Somnologie 2025 · 29:3-9 https://doi.org/10.1007/s11818-025-00495-6 Accepted: 12 January 2025 Published online: 27 January 2025 © The Author(s) 2025

Sleep and inflammation: a bidirectional relationship

Larissa C. Engert^{1,2} · Luciana Besedovsky³

- ¹ Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA
- ² Division of Sleep Medicine, Harvard Medical School, Boston, USA
- ³ Institute of Medical Psychology, LMU Munich, Munich, Germany

Abstract

Sleep and inflammation are bidirectionally linked, and this relationship is assumed to be important for the health and wellbeing of patients and the general population. Inflammatory activation affects sleep through pro-inflammatory mediators, such as cytokines and prostaglandins, which act on the central nervous system. These molecules can enhance but also disturb sleep, depending mainly on the magnitude of the inflammatory processes. Sleep, in turn, has far-reaching but complex effects on inflammation. Sleep deficiency has been shown to increase inflammatory molecules and activate pro-inflammatory signaling cascades, which may lead to immunopathology when chronically activated. In addition, sleep was shown to affect counter-inflammatory mechanisms, including anti-inflammatory glucocorticoid and pro-resolving resolution pathways. Here, we summarize established concepts and the most recent research in the field of sleep and inflammation. We further highlight the relevance of sleep-immune interactions in the clinical context, with examples related to insomnia, long COVID, and critical care. Finally, practical guidance is given for sleep and immune health in healthcare settings, and a research agenda is provided.

Keywords

Sleep deficiency · Insomnia · Immune system · Cytokines · Psychoneuroimmunology

Introduction

Sleep and inflammation are bidirectionally linked [3, 20]. It is an ordinary experience that the need for sleep is enhanced during acute (infectious) illness, and it seems intuitive that a good night's sleep supports recovery. This common belief is backed by scientific evidence demonstrating an intimate relationship between the two systems involved in the regulation of sleep and inflammation, i.e., the central nervous system and the immune system. The cellular components of these systems, including neurons and leukocytes, communicate with and influence each other via neuronal innervation, cell-cell interactions, and endocrine signaling [26, 36]. In the following, we first review the bidirectional relationship between sleep and inflammation. Thereafter, we set focus on the relevance of these interactions in the clinical context, with examples related to insomnia, long coronavirus disease (long COVID), and critical care. Finally, we provide practical guidance for the healthcare setting and highlight areas for future research.

The influence of inflammation on sleep

Inflammation is a pivotal biological process with various manifestations ranging from the well-known acute inflammatory response to infection or injury, up to regulation of homeostatic processes in the absence of any noxious challenges [29]. The difference between these manifestations is related to the magnitude or quality of the inflammatory process [29]. Chronic but still mild increases in inflammatory factors in the circulation, known as low-grade systemic inflammation, are associated with

Scan QR code & read article online

almost every human disease, where they lead to a loss of structure in tissues, a loss of function in various physiological processes, and a loss of homeostatic control in general [13, 29]. Therefore, uncontrolled inflammation can have far-reaching effects on health and disease.

Activation of a pro-inflammatory response triggers the release of cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF) from immune cells as well as the synthesis of prostaglandins (PG) in surrounding cells and tissues to coordinate the acute inflammatory response [3, 39]. However, these peripheral mediators, in particular IL-1β, TNF, and PGD₂, also act on the central nervous system to induce a behavioral sickness response (so-called sickness behavior) that includes, among other things, an increase in sleep and specifically in nonrapid eye movement (NREM) sleep [8, 43, 51]. The induction of sickness behavior, including sleepiness, in response to acute infection is thought to conserve metabolic energy, allowing maximization of the immune response to combat pathogens and support recovery [43]. However, inflammatory signals do not only affect sleep during acute sickness but are also relevant for the regulation of sleep under physiological conditions, as demonstrated by a reduction in physiological NREM sleep following blockade of the biological actions of certain proinflammatory cytokines in animals [20]. In contrast, increased signaling of certain anti-inflammatory cytokines, including IL-4 and IL-10, was shown to reduce the amount of NREM sleep and/or sickness behavior in rodents [20]. Of note, these physiological regulations of NREM sleep and sickness behavior seem to be related to the early-onset phase of infectious disease or mild inflammatory response activation, whereas stronger immune responses characterized by fever and high levels of circulating cytokines were shown to induce sleep disturbances [3, 14, 32]. The latter phenomenon might mark the shift to an elevated, and metabolically more costly [49], inflammatory response in an all-in approach of the body to combat more severe disease. Finally, inflammatory signals do not only affect sleep during acute sickness and physiological sleep but

can also have a maladaptive component in the context of chronic infectious or inflammatory diseases, which are often associated with sleep disturbances and daytime sleepiness [3].

In summary, inflammatory factors affect sleep under physiological conditions as well as during acute infectious or other inflammatory challenges, which has been studied most for the pro-inflammatory cytokines IL-1 β and TNF in animal experiments and likely serves a beneficial recovery function. On the other hand, inflammatory upregulation can lead to sleep disturbances and excessive daytime sleepiness in chronic infectious or inflammatory diseases, revealing its potentially maladaptive component.

The influence of sleep on inflammation

Several experimental studies have shown that sleep deprivation affects a broad spectrum of classical inflammatory markers, including blood counts of total leukocytes and various subsets, C-reactive protein (CRP) levels, inflammatory cytokine production, complement activation, and expression of cell adhesion molecules [3, 20]. While not all experimental studies have found effects of sleep deprivation on inflammatory markers and some studies even found opposite effects, the most consistent findings are increases in circulating leukocytes and leukocyte subsets as well as in certain pro-inflammatory cytokines, especially after more prolonged sleep-deprivation protocols [3]. In addition to sleep deprivation, a few studies have induced experimental sleep disruption (by induction of repeated forced awakenings) and also found effects on inflammatory markers [4, 24]. Of note, effects of sleep loss or disruption on inflammation can persist after one or even several nights of recovery sleep [15, 23, 47, 52]. Moreover, at least some effects seem to be sex dependent (e.g., [4, 22]). In addition to sleep deprivation or disruption, night-to-night variability in sleep parameters has also been found to be associated with inflammation. Specifically, one study reported that actigraphyassessed sleep inconsistency, operationalized by the standard deviation of various sleep parameters (such as sleep onset latency, wake after sleep onset, and number of awakenings) measured over 1 week in humans, was associated with an increase in inflammatory markers, including levels of IL-6, CRP, and fibrinogen [9]. Another study found that a higher irregularity of sleep, defined in this study by the standard deviation of sleep duration and of sleep onset time measured over 14 days with actigraphy, was associated with increased counts of circulating leukocytes and some leukocyte subsets in healthy young adults [19]. However, experimental studies are needed to show whether such night-tonight variability in sleep parameters is indeed causally responsible for the increase in inflammatory markers.

Experimental studies have also investigated effects of sleep on counter-regulatory mechanisms to inflammation, including classical anti-inflammatory mediators such as glucocorticoids and anti-inflammatory cytokines, e.g., IL-10, as well as pro-resolving mediators, i.e., the so-called specialized pro-resolving lipid mediators (SPMs) [3, 4, 11, 47]. The effects of sleep deprivation on the glucocorticoid cortisol are rather complex, with studies reporting mostly short-term and mild elevations, no changes, or even decreases in cortisol levels [30, 47]. Such discrepancies might be explained at least in part by sex differences [4], and effects also depend on the measurement timepoint [30]. With regard to inflammatory resolution pathways, a recent study found that prolonged experimental sleep disturbance induced a pronounced downregulation of a specific class of SPMs, namely the D-series resolvins and their precursor 17-HDHA, compared to undisturbed sleep [11]. Taken together, the evidence suggests that sleep is important to regulate anti-inflammatory pathways and that these can become dysregulated when sleep is deficient; however, further studies are needed in this understudied research field.

The influence of sleep on inflammation has not only been shown in experimental settings using objective measures of sleep but is also supported by studies investigating subjective sleep variables. For instance, a recent study showed that poor subjective sleep quality is associated with increased expression of IL-6 and TNF in lipopolysaccharide (LPS)-stimulated

monocytes in healthy older adults [35]. Moreover, several epidemiological studies have investigated the relationship between (mostly subjective) sleep measures and inflammation. While many of these studies found significant associations between a short habitual sleep duration or sleep disruption and increased inflammatory markers, such as plasma levels of CRP and IL-6, other studies failed to find such associations (reviewed in [3]). This is in line with more recent research. For example, two recent studies found associations between self-reported sleep disturbance symptoms and inflammatory markers, including CRP levels and the neutrophilto-lymphocyte ratio [18, 58], while another recent study did not find associations between various self-reported sleep variables, including sleep duration and insomnia symptoms, and cell counts of various immune cell subsets [34]. Of note, in studies assessing only subjective sleep parameters, it remains unclear whether these are accompanied by objective changes in sleep, which may at least in part explain discrepancies in findings. Objective

changes in sleep might be important for affecting inflammatory variables [53]; however, more research is needed to evaluate how purely subjective sleep changes without objective changes may influence inflammation. Discrepancies between study findings might also be explained by the fact that different sleep and inflammatory parameters were investigated in the different studies [3]. In addition, the time of day at which blood sampling was performed is not standardized, which can be problematic given the large circadian variation in most immune parameters [26, 55]. This can obscure the effects of sleep on inflammation and might explain why some studies failed to find significant associations. Based on the several experimental and epidemiological studies that did find associations between insufficient or disturbed sleep and inflammatory upregulation, the overall picture clearly indicates a relevant role of sleep in regulating inflammation.

The mechanisms underlying the effects of sleep deficiency on inflammation are not well known so far. However, it seems

that various signaling pathways play a role. For example, intracellular expression of the inflammatory transcription factor nuclear factor κB (NF-κB) was shown to be increased in the morning after partial sleep deprivation [21]. The same experimental model of partial sleep deprivation found increases in the expression of activated signal transducer and activator of transcription (STAT) family proteins [23]. A recent study employing a prolonged sleep disturbance protocol found increases in the stimulated intracellular production of cyclooxygenase-2 (COX-2), which is responsible for the formation of inflammatory PGs, compared to undisturbed sleep [15]. The relevance of PGs in sleep deprivation-induced inflammation was also shown in a recent study in mice, in which total sleep deprivation of 4 days was induced by housing mice in cages with a shallow layer of water, preventing the animals to assume their typical sleep posture [44]. This intervention induced an enhanced efflux of PGD₂ from the brain across the blood-brain barrier, thus triggering a systemic cytokine-storm-like pro-inflamma-

Hier steht eine Anzeige.

tory response with increased immune cell infiltration into organs, resulting in lethal multiple organ dysfunction syndrome [44]. While animal studies are important to decipher underlying pathways, such extreme, readily lethal techniques to prevent sleep are not directly comparable to sleep deprivation studies in humans and translation of the findings to humans therefore has to be done with caution. Overall, further studies are necessary to understand whether and how different molecular pathways interact to induce the complex effects of sleep deficiency on inflammatory markers.

The impact of sleep deficiency on inflammation is likely to have detrimental effects on health. Several epidemiological studies have shown that a short habitual sleep duration is associated with higher mortality and prospectively with an increased disease risk, such as for cancer, chronic pain, and cardiovascular, neurodegenerative, and metabolic diseases [3, 6, 7, 17, 46]. Importantly, the association between a short sleep duration and an increased mortality risk has been found to be mediated by markers of inflammation [16]. This demonstrates the relevance of the effects of sleep loss on inflammation for health overall. It was also shown recently that short sleep duration or poor sleep quality are associated with increased odds for acquiring COVID-19 or presenting more severe disease, including a higher mortality risk (e.g., [27, 38]). Chronic inflammation is suspected to be a factor relevant for this connection by dampening immunity against infection [13, 38]. While it is beyond the scope of the current review, it is worth mentioning that sleep also affects other components of the immune system besides classical inflammatory markers, such as T cell function and migration, antigen-specific responses to vaccination, and NK cell activity, as reviewed in detail elsewhere [3, 48].

In summary, the influence of sleep on inflammation has been shown in several experimental studies and is overall also reflected in epidemiological and smaller-scale correlational studies. There is a growing number of studies showing that sleep also affects counter-regulatory mechanisms to inflammation, suggesting that the effects of deficient sleep on inflammation can be mediated either by a direct upregulation of pro-inflammatory mechanisms, by a dysregulation of counter-inflammatory mechanisms, or both. Future studies will be necessary to disentangle such complex effects of sleep deficiency, also at the molecular level. Regardless of the underlying mechanisms, the effects of sleep deficiency on inflammation seem to have far-reaching effects on health, given that inflammation has been found to mediate the association between a short sleep duration and allcause mortality risk [6].

The relevance of sleep and inflammation in the clinical context

In the following, we discuss the relevance of the relationship between inflammation and sleep in the clinical context, with a focus on specific examples related to insomnia disorder, long COVID, and critical care.

Insomnia disorder

Chronic insomnia disorder is one of the most frequent sleep disorders (up to 10% of adults are affected), with a higher prevalence in females than in males (60% vs. 40%), and is characterized by prolonged sleep latency, difficulties in maintaining sleep, and/or early morning awakenings combined with impaired daytime functioning [40]. Epidemiological studies have shown that insomnia disorder or insomnia symptoms are prospectively associated with an increased risk for developing various disease conditions, including cancer, chronic pain, and cardiovascular, metabolic, and autoimmune diseases [10]. Insomnia is associated with changes in several physiologic systems, including the immune system, which are thought to mechanistically link insomnia with this increased disease risk [3, 10]. These physiological consequences seem to be most pronounced in individuals with insomnia in combination with objectively assessed short sleep duration [12, 531. It was shown recently that insomnia disorder in older adults is associated with higher gene expression (measured in the form of specific transcription factor activity) related to the pro-inflammatory NF-κB pathway but reduced gene expression related to the anti-inflammatory glucocorticoid pathway [35]. These results are in line with previous findings of inflammatory upregulation in insomnia disorder (e.g., [5, 56]) and further indicate a dysregulation of the balance between pro- and anti-inflammatory pathways, which might contribute to an increased morbidity risk in this population [35]. Of note, the diagnosis of insomnia is based solely on subjective symptoms and no objective measurements are required for the diagnostic process [40]. Future studies are necessary to investigate whether different forms of insomnia disorder, such as with or without objective short sleep duration, present with different inflammatory outcomes and also examine which role potential comorbidities might play in the associations found so far.

Long COVID

Long COVID is a debilitating condition, in which individuals who had an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; i.e., the virus inducing COVID-19)—whether asymptomatic, mild, or severe—suffer from persistent symptoms [1]. According to the World Health Organization (2022), long COVID is defined as "the continuation or development of new symptoms 3 months after the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other explanation." Common symptoms include fatigue, sleep disturbances, shortness of breath, and cognitive dysfunction [31]. About 10% of patients present with long COVID 6 months after acute SARS-CoV-2 infection [50]. Thus, long COVID is an unprecedented global health problem. Sleep disturbances are among the most frequently reported symptoms in long COVID [28, 31, 50]. Moreover, a recent study suggested a prospective association of pre-infection sleep quality, quantity, and severity of insomnia symptoms with the manifestation of long-term symptoms 3 months after acute COVID-19 [42]. Whether this finding also translates to the persistence of long COVID symptoms more than 3 months after acute COVID-19 illness is not known so far. Inflammatory dysregulation, in particular persistent immune activation, is assumed to be associated with

the manifestation of long COVID [1]. In turn, sleep disturbances can increase systemic inflammation, as described above. Therefore, a better understanding of the role of sleep deficiency and inflammation in long COVID might help to decipher the complex etiology and pathogenesis of this condition.

Critical care

The sleep of patients is frequently interrupted in the hospital environment, especially in the intensive care unit (ICU) [37, 54]. Thus, it was suggested that disturbed and deficient sleep in the ICU might affect immune function and make patients more vulnerable to infection and sepsis, potentially via an increase in inflammation [54]. Multiple strategies have been investigated to improve sleep and support recovery in the ICU. These include melatonergic drug administration in the evening and blue light therapy during the day to stabilize diurnal rhythmicity as well as the use of earplugs and eye masks to reduce environmental noise and light at night [33, 541. There are first indications that these countermeasures could be beneficial for promoting sleep and reducing delirium and inflammation in the ICU [2, 54, 57]. However, further research in this area is needed to support the implementation of such strategies into daily clinical practice.

Practical conclusions

In conclusion, sleep and inflammation share a bidirectional relationship, which is likely relevant for the acute and longterm health of patients and the general population. Therefore, recognition of the importance of sleep health in in- and outpatient healthcare settings is crucial. While good sleep health can help maintain inflammatory homeostasis, poor sleep health appears to promote disease progression and affect recovery. Furthermore, the effects of inflammation on sleep may lead to sleep problems in chronic infectious and inflammatory diseases. Thus, the following aspects should be considered:

 Good sleep health supports good immune health. In the long term, good sleep health could presumably

- reduce the risk of development of chronic diseases with an inflammatory component, including cancer, chronic pain, and cardiovascular, metabolic, autoimmune, and neurodegenerative diseases, and also reduce all-cause mortality risk.
- Sufficient and undisturbed sleep appears to be especially important for inpatient settings, as it may reduce the risk of infection or sepsis and improve infection outcome. Simple measures to improve sleep, such as providing earplugs and eye masks and exposure to morning light, might help to promote sleep and its potential beneficial effects on recovery in the hospital and especially the ICU.
- Chronic infectious and inflammatory diseases may induce sleep disturbances and excessive daytime sleepiness. While these are perturbing symptoms that justify treatment per se, targeting these sleep-related symptoms might also help to reduce the progression and severity of the underlying disease, given the bidirectional interaction between sleep and inflammation. Therefore, educating patients about good sleep habits seems even more important in this context.
- Many medications can affect sleep, which should always be considered in treatment decisions (for comprehensive reviews see [41, 45]). This is especially true for immune modulatory drugs that can directly affect the regulation of sleep, e.g., antihistamines [41].
- As distinct sex differences in inflammatory diseases [25] and sleep-deficiency-related inflammation become ever-more apparent, sex-conscious research, care, and treatment are crucial in sleep-health-related settings.

Research agenda

Despite substantial knowledge gained in the field, many aspects of the complex bidirectional relationship between sleep and inflammation are still unknown. Thus, future studies should address knowledge gaps and disentangle the complex effects of sleep deficiency on inflammation and vice versa. We propose the following tasks

to address some of the most relevant open questions:

- Scrutinization of the effects of inflammatory signaling on sleep under physiological and pathophysiological conditions in humans.
- Investigation of interactions and imbalances between pro-inflammatory, anti-inflammatory, and pro-resolving effects of sleep deficiency or inconsis-
- Unravelment of the molecular mechanisms underlying the interaction between sleep and inflammation.
- Further exploration of the role of the connection between sleep and inflammation and potential interventions in the clinical context, such as for long COVID and critical care.
- Investigation of sex differences in the relationship between sleep and inflammation.

Corresponding address

Luciana Besedovsky

Institute of Medical Psychology, LMU Munich Goethestr. 31, 80336 Munich, Germany luciana.besedovsky@med.uni-muenchen.de

Funding. This work was supported by the following grant: Sleep Research Society Foundation (SRSF) Career Development Award to LCE.

Funding. Open Access funding enabled and organized by Projekt DEAL.

Data availability statement. This article does not contain original data.

Declarations

Conflict of interest. L.C. Engert and L. Besedovsky declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were performed in accordance with the ethical standards indicated in each case.

Open Access. Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Linkzur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen

Original studies

ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de.

References

- Altmann DM, WhettlockEM, Liu S, Arachchillage DJ, Boyton RJ (2023) The immunology of long COVID. Nat Rev Immunol 23(10):618–634. https://doi.org/ 10.1038/s41577-023-00904-7
- Arık E, Dolgun H, Hanalioglu S, Sahin OS, Ucar F, Yazicioglu D, Doganl, Yilmaz ER (2020) Prospective randomized study on the effects of improved sleep quality after craniotomy on melatonin concentrations and inflammatory response in neurosurgical intensive care patients. World Neurosurg 140:e253—e259. https://doi.org/10. 1016/j.wneu.2020.05.017
- Besedovsky L, Lange T, Haack M (2019) The sleepimmune crosstalk in health and disease. Physiol Rev 99(3):1325–1380. https://doi.org/10.1152/ physrev.00010.2018
- Besedovsky L, Dang R, Engert LC, Goldstein MR, Devine JK, Bertisch SM, Mullington JM, Simpson N, Haack M (2022) Differential effects of an experimental model of prolonged sleep disturbance on inflammation in healthy females and males. PNAS Nexus 1(1):gac4. https://doi.org/10.1093/ pnasnexus/pgac004
- Burgos I, Richter L, Klein T, Fiebich B, Feige B, Lieb K, Voderholzer U, Riemann D (2006) Increased nocturnal interleukin-6 excretion in patients with primary insomnia: a pilot study. Brain Behav Immun 20(3):246–253. https://doi.org/10.1016/j. bbi.2005.06.007
- Cappuccio FP, D'Elia L, Strazzullo P, Miller MA (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33(5):585–592. https://doi.org/10.1093/sleep/33.5.585
- Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30(7):870–888. https://doi.org/10.3109/07420528.2013.782315
- Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–57. https://doi.org/10.1038/nrn2297
- Dzierzewski JM, Donovan EK, Kay DB, Sannes TS, Bradbrook KE (2020) Sleep inconsistency and markers of inflammation. Front Neurol 11:1042. https://doi.org/10.3389/fneur.2020.01042
- Engert LC, Haack M (2023) Immune, neuroendocrine, and metabolic functions in insomnia disorder. In: Kushida CA (ed) Encyclopedia of sleep and circadian rhythms, 2nd edn. Elsevier, San Diego, pp 113–122 https://doi.org/10.1016/B978-0-12-822963-7.00120-1
- Engert LC, Mullington JM, Haack M (2023)
 Prolonged experimental sleep disturbance affects
 the inflammatory resolution pathways in healthy

- humans. Brain Behav Immun 113:12–20. https://doi.org/10.1016/j.bbi.2023.06.018
- Fernandez-Mendoza J, Baker JH, Vgontzas AN, Gaines J, Liao D, Bixler EO (2017) Insomnia symptoms with objective short sleep duration are associated with systemic inflammation in adolescents. Brain Behav Immun 61:110–116. https://doi.org/10.1016/j.bbi.2016.12.026
- Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832. https://doi. org/10.1038/s41591-019-0675-0
- Haack M, Schuld A, Kraus T, Pollmächer T (2001) Effects of sleep on endotoxin-induced host responses in healthy men. Psychosom Med 63(4):568–578. https://doi.org/10.1097/ 00006842-200107000-00008
- Haack M, Engert LC, Besedovsky L, Goldstein MR, Devine JK, Dang R, Olia K, Molina V, Bertisch SM, Sethna N, Simpson N (2023) Alterations of pain pathways by experimental sleep disturbances in humans: central pain-inhibitory, cyclooxygenase, and endocannabinoid pathways. Sleep 46(6):zsad61. https://doi.org/10.1093/sleep/ zsad061
- Hall MH, Smagula SF, Boudreau RM, Ayonayon HN, Goldman SE, Harris TB, Naydeck BL, Rubin SM, Samuelsson L, Satterfield S, Stone KL, Visser M, Newman AB (2015) Association between sleep duration and mortality is mediated by markers of inflammation and health in older adults: the health, aging and body composition study. Sleep 38(2):189–195. https://doi.org/10.5665/sleep. 4394
- 17. Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA (2020) Perfect timing: circadian rhythms, sleep, and immunity—an NIH workshop summary. JCl Insight 5(1):e131487. https://doi.org/10.1172/jci.insight.131487
- Hepsomali P, Groeger JA (2022) Examining the role of systemic chronic inflammation in diet and sleep relationship. J Psychopharmacol 36(9):1077–1086. https://doi.org/10.1177/02698811221112932
- Hoopes EK, D'Agata MN, Berube FR, Ranadive SM, Patterson F, Farquhar WB, Edwards DG, Witman MA (2021) Consistency where it counts: sleep regularity is associated with circulating white blood cell count in young adults. Brain Behav Immun Health 13:100233. https://doi.org/10. 1016/j.bbih.2021.100233
- Irwin MR (2019) Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 19(11):702–715. https://doi.org/10.1038/s41577-019-0190-z
- Irwin MR, Wang M, Ribeiro D, Cho HJ, Olmstead R, Breen EC, Martinez-Maza O, Cole S (2008) Sleep loss activates cellular inflammatory signaling. Biol Psychiatry 64(6):538–540. https://doi.org/10. 1016/j.biopsych.2008.05.004
- Irwin MR, Carrillo C, Olmstead R (2010) Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav Immun 24(1):54–57. https://doi.org/10.1016/j.bbi.2009.06.001
- Irwin MR, Witarama T, Caudill M, Olmstead R, Breen EC (2015) Sleep loss activates cellular inflammation and signal transducer and activator

- of transcription (STAT) family proteins in humans. Brain Behav Immun 47:86–92. https://doi.org/10. 1016/j.bbi.2014.09.017
- Irwin MR, Olmstead R, Bjurstrom MF, Finan PH, Smith MT (2023) Sleep disruption and activation of cellular inflammation mediate heightened pain sensitivity: a randomized clinical trial. Pain 164(5):1128–1137. https://doi.org/10.1097/j. pain.0000000000002811
- Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638. https://doi.org/10.1038/nri. 2016.90
- Lange T, Luebber F, Grasshoff H, Besedovsky L (2022) The contribution of sleep to the neuroendocrine regulation of rhythms in human leukocyte traffic. Semin Immunopathol 44(2):239–254. https://doi.org/10.1007/s00281-021-00904-6
- Li P, Zheng X, Ulsa MC, Yang H-W, Scheer FAJL, Rutter MK, Hu K, Gao L (2021) Poor sleep behavior burden and risk of COVID-19 mortality and hospitalization. Sleep 44(8):zsab138. https://doi. org/10.1093/sleep/zsab138
- Linh TTD, Ho DKN, Nguyen NN, Hu C-J, Yang C-H, Wu D (2023) Global prevalence of post-COVID-19 sleep disturbances in adults at different followup time points: a systematic review and metaanalysis. Sleep Med Rev 71:101833. https://doi. org/10.1016/j.smrv.2023.101833
- Medzhitov R (2021) The spectrum of inflammatory responses. Science 374(6571):1070–1075. https:// doi.org/10.1126/science.abi5200
- Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12(3):197–210. https://doi.org/10.1016/j.smrv.2007.07.007
- 31. Merikanto I, Dauvilliers Y, Chung F, Wing YK, De Gennaro L, Holzinger B, Bjorvatn B, Morin CM, Penzel T, Benedict C, Koscec Bjelajac A, Chan NY, Espie CA, Hrubos-Strøm H, Inoue Y, Korman M, Landtblom A-M, Léger D, Matsui K, Mota-Rolim S, Nadorff MR, Plazzi G, Reis C, Yordanova J, Partinen M (2023) Sleep symptoms are essential features of long-COVID—compan healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II). J Sleep Res 32(1):e13754. https://doi.org/10.1111/jsr.13754
- Mullington J, Korth C, Hermann DM, Orth A, Galanos C, Holsboer F, Pollmächer T (2000) Dose-dependent effects of endotoxin on human sleep. Am J Physiol Regul Integr Comp Physiol 278(4):R947–R955. https://doi.org/10.1152/ ajpregu.2000.278.4.R947
- Nishikimi M, Numaguchi A, Takahashi K, Miyagawa Y, Matsui K, Higashi M, Makishi G, Matsui S, Matsuda N (2018) Effect of administration of ramelteon, a melatonin receptor agonist, on the duration of stay in the ICU: a single-center randomized placebo-controlled trial. Crit Care Med 46(7):1099–1105. https://doi.org/10.1097/CCM. 00000000000003132
- Noordam R, Ao L, Stroo JF, Willems van Dijk K, van Heemst D (2024) No evidence linking sleep traits with white blood cell counts: multivariableadjusted and Mendelian randomization analyses. Eur J Clin Invest 54:e14189. https://doi.org/10. 1111/eci.14189
- Piber D, Cho JH, Lee O, Lamkin DM, Olmstead R, Irwin MR (2022) Sleep disturbance and activation of cellular and transcriptional mechanisms of inflammation in older adults. Brain Behav Immun

- 106:67-75. https://doi.org/10.1016/j.bbi.2022.08.
- 36. Pick R, He W, Chen C-S, Scheiermann C (2019) Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol 40(6):524-537. https://doi.org/10.1016/j.it.2019.
- 37. Pisani MA, Friese RS, Gehlbach BK, Schwab RJ, Weinhouse GL, Jones SF (2015) Sleep in the intensive care unit. Am J Respir Crit Care Med 191(7):731-738. https://doi.org/10.1164/rccm. 201411-2099CI
- 38. Quan SF, Weaver MD, Czeisler MÉ, Barger LK, Booker LA, Howard ME, Jackson ML, Lane RI, McDonald CF, Ridgers A, Robbins R, Varma P, Wiley JF, Rajaratnam SMW, Czeisler CA (2023) Insomnia, poor sleep quality and sleep duration, and risk for COVID-19 infection and hospitalization. Am J Med 136(8):780-788. https://doi.org/10. 1016/j.amjmed.2023.04.002
- 39. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986-1000. https://doi.org/10.1161/ ATVBAHA.110.207449
- 40. Riemann D, Benz F, Dressle RJ, Espie CA, Johann AF, Blanken TF, Leerssen J, Wassing R, Henry AL, Kyle SD, Spiegelhalder K, Van Someren EJW (2022) Insomnia disorder: state of the science and challenges for the future. J Sleep Res 31(4):e13604. https://doi.org/10.1111/jsr.13604
- 41. Roux FJ, Kryger MH (2010) Medication effects on sleep. Clin Chest Med 31(2):397-405. https://doi. org/10.1016/j.ccm.2010.02.008
- 42. Salfi F, Amicucci G, Corigliano D, Viselli L, D'Atri A, Tempesta D, Ferrara M (2023) Poor sleep quality, insomnia, and shorts leep duration before infection predict long-term symptoms after COVID-19. Brain Behav Immun 112:140–151. https://doi.org/10. 1016/j.bbi.2023.06.010
- 43. Salvador AF, de Lima KA, Kipnis J (2021) Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21(8):526-541. https://doi.org/10.1038/s41577-021-00508-z
- 44. Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, LuL, Cui X-Y, Liu Z, Lv S-Q, Luo M, Liu Q, Li Y, Zhang EE (2023) Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 186(25):5500-5516. https://doi.org/10.1016/j. cell.2023.10.025
- 45. Seda G, Tsai S, Lee-Chiong T (2014) Medication effects on sleep and breathing. Clin Chest Med 35(3):557-569. https://doi.org/10.1016/j.ccm. 2014.06.011
- 46. Shattuck EC, Sparks CS (2022) Sleep duration is related to increased mortality risk through white blood cell counts in a large national sample. Am J Hum Biol 34(1):e23574. https://doi.org/10.1002/ aihb.23574
- 47. Simpson NS, Diolombi M, Scott-Sutherland J, Yang H, Bhatt V, Gautam S, Mullington J, Haack M (2016) Repeating patterns of sleep restriction and recovery: do we get used to it? Brain Behav Immun 58:142-151. https://doi.org/10.1016/j.bbi.2016. 06.001
- 48. Spiegel K, Rey AE, Cheylus A, Ayling K, Benedict C, Lange T, Prather AA, Taylor DJ, Irwin MR, Van Cauter E (2023) A meta-analysis of the associations between insufficient sleep duration and antibody response to vaccination. Curr Biol 33(5):998-1005. https://doi.org/10.1016/j.cub.2023.02.017
- 49. Straub RH, Cutolo M, Buttgereit F, Pongratz G (2010) Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern

Schlaf und Entzündung: eine wechselseitige Beziehung

Schlaf und Entzündung beeinflussen sich gegenseitig, und diese Beziehung wird als wichtig für Gesundheit und Wohlbefinden von Patientinnen und Patienten sowie der allgemeinen Bevölkerung angesehen. Entzündungsreaktionen beeinflussen den Schlaf über entzündungsfördernde Botenstoffe, wie Zytokine und Prostaglandine, welche auf das zentrale Nervensystem wirken. Diese Moleküle können den Schlaf fördern, aber auch stören, was insbesondere von der Stärke der entzündlichen Prozesse abhängt. Schlaf wiederum hat weitreichende, aber komplexe Auswirkungen auf Entzündungsparameter. Es wurde gezeigt, dass Schlafmangel entzündliche Botenstoffe und entzündungsfördernde Signalkaskaden aktiviert, was sich bei chronischem Bestehen vermutlich immunpathologisch auswirken kann. Des Weiteren wurde gezeigt, dass Schlaf entzündungshemmende Mechanismen beeinflussen kann, einschließlich der Glukokortikoid- und Resolutions-Signalwege. Im Folgenden werden allgemein anerkannte Prinzipien und neueste Forschungsergebnisse aus dem Gebiet der Schlaf- und Entzündungsforschung zusammengefasst. Des Weiteren wird die Bedeutung von Schlaf-Immun-Interaktionen im klinischen Kontext mit Beispielen zu den Krankheitsbildern Insomnie und Long-COVID sowie aus der Intensivmedizin verdeutlicht. Abschließend werden einige praktische Orientierungshilfen bzgl. der Schlaf-Immun-Interaktionen für die Gesundheitsversorgung gegeben und Bereiche mit weiterem Forschungsbedarf genannt.

Schlüsselwörter

Schlafmangel · Insomnie · Immunsystem · Zytokine · Psychoneuroimmunologie

- Med 267(6):543-560. https://doi.org/10.1111/j. 1365-2796.2010.02218.x
- 50. Thaweethai T, Jolley SE, Karlson EW et al (2023) Development of a definition of postacute sequelae of SARS-CoV-2 infection. 329(22):1934-1946. https://doi.org/10.1001/ iama.2023.8823
- 51. Urade Y, Hayaishi O (2011) Prostaglandin D₂ and sleep/wake regulation. Sleep Med Rev 15(6):411-418. https://doi.org/10.1016/j.smrv. 2011.08.003
- 52. van Leeuwen WMA, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, Härmä M, Porkka-Heiskanen T, Alenius H (2009) Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 4(2):e4589. https://doi.org/10.1371/journal.pone.
- 53. Vgontzas AN, Fernandez-Mendoza J, Liao D, Bixler EO (2013) Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev 17(4):241-254. https://doi.org/10.1016/j.smrv. 2012 09 005
- 54. Walker WE (2022) Goodnight, sleep tight, don't let the microbes bite: a review of sleep and its effects on sepsis and inflammation. Shock 58(3):189-195. https://doi.org/10.1097/SHK.000000000001976
- 55. Wang C, Lutes LK, Barnoud C, Scheiermann C (2022) The circadian immune system. Sci Immunol 7(72):eabm2465. https://doi.org/10. 1126/sciimmunol.abm2465
- 56. Xia L, Zhang P, Niu J-W, Ge W, Chen J-T, Yang S, Su A-X, Feng Y-Z, Wang F, Chen G, Chen G-H (2021) Relationships between a range of inflammatory biomarkers and subjective sleep quality in chronic insomnia patients: a clinical study. Nat Sci Sleep 13:1419-1428. https://doi.org/10.2147/ NSS.S310698

- 57. Yaşar NF, Badak B, Canik A, Baş SŞ, Uslu S, Öner S, Ateş E (2017) Effects of sleep quality on melatonin levels and inflammatory response after major abdominal surgery in an intensive care unit. Molecules 22(9):1537. https://doi.org/10.3390/ molecules22091537
- 58. Zagaria A. Lombardo C. Ballesio A (2022) Longitudinal association between sleep disturbance and inflammation, and the role of positive affect. JSleep Res 31(5):e13560. https://doi.org/10.1111/ isr.13560

Publisher's Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.