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Abstract

Purpose High-grade meningiomas have high recurrence rates and limited prognosis. Radioligand therapies are approved in
extracranial malignancies, but their value in brain tumours including meningiomas is unclear, as data on target expression
is scarce.

Methods CNS WHO grade 2 and 3 meningioma samples were immunohistochemically stained for somatostatin receptor
2a (SSTR2a), fibroblast activation protein (FAP), and human epidermal growth factor receptors 2/3 (HER2/HER3). Target
expression was correlated with (epi-)genetic tumour subtyping by DNA methylation analysis, genetic alterations, and
survival.

Results Meningioma samples of 58 patients were included. SSTR2a expression (membranous/cytoplasmic) was observed in
43/55 (78.2%), and FAP expression in 15/58 (25.9%) evaluable samples, with HER2 and HER3 expression in one specimen
each (1.7%). Membranous SSTR2a expression was strong in 18 (32.7%), intermediate in 12 (21.8%), and weak in 11
(20.0%) samples. While SSTR2a expression was more homogenous and mainly seen in regions with higher cellularity, FAP
immunoreactivity was predominantly seen in tumour stroma and regions of lower cellularity. SSTR2a immunoreactivity was
associated with TRAF7 wildtype status (p=0.034). FAP expression was more frequent in meningiomas of CNS WHO grade
3 (vs. CNS WHO 2; p<0.001), and samples with NF2 mutations (p=0.032) or CDKN2A/B deletions (p=0.013) compared
to wildtype. FAP and SSTR2a expression (present vs. absent) were not associated with overall survival (p>0.05).
Conclusion SSTR2a and FAP are expressed in high-grade meningioma samples to a variable extent, and differences across
meningioma subtypes underscore the need for biomarkers to improve patient selection. Spatial heterogeneity of target
expression should be considered in radioligand therapy design.
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Introduction

Accounting for ~40% of intracranial tumours, meningiomas
are the most commonly diagnosed primary neoplasms in the
central nervous system (CNS) [1]. Due to their circumscribed
and extra-axial localization, most meningiomas exhibit
benign biological behaviour and are therefore frequently
cured by sole resection [2]. However, about 20% of
meningiomas show invasive growth patterns and/or atypical
features and are therefore classified as either CNS WHO grade
2 or 3 based on histological and molecular characteristics
such as TERT promoter mutations or homozygous deletions
of CDKN2A/B [3]. In higher-grade meningiomas, further
treatment modalities such as radiotherapy or stereotactic
radiosurgery are needed depending on tumour grade and
residual tumour volume. After exhaustion of local therapies,
also systemic treatment can be applied albeit based on
limited evidence [2]. In this regard, an increasing number
of clinical trial initiatives investigating cytotoxic therapies,
targeted agents, and immunotherapy underscores the unmet
need in this patient population [4]. Indeed, overall survival
in patients with high-grade meningioma and no further local
therapeutic options reaches about 11 months in median
[5]. In particular, systemic therapy may also be indicated
in cases of extracranial metastasis to liver, lungs or bones,
occurring rarely in higher grade meningioma and leading to
severely impaired prognosis [6].

Combining the specificity of tumour-specific ligands
with the cytotoxic activity of radionuclides, radioligand
therapies have emerged as promising systemic treatment
strategy and have been approved for use in prostate cancer
(["""Lu]Lu-PSMA-617) as well as neuroendocrine tumours
(["""Lu]Lu-DOTA-Tyr3-octreotate, [!”’Lu]Lu-DOTATATE)
based on pivotal trial results [7, 8]. In the latter, the abundant
expression of somatostatin receptor (SSTR) family
members is harnessed to maximize antitumoral efficacy
while minimizing systemic off-target effects [9]. Similarly,
SSTR expression has been shown in meningiomas [10], and
early phase trials of somatostatin receptor antagonists such
as pasireotide or octreotide have been performed [11, 12].
Accordingly, SSTR-directed positron emission tomography
(PET) using [*®Ga]Ga-DOTATATE, [®Ga]Ga-DOTA-
Tyr3-octreotide  ([**Ga]Ga-DOTATOC), and [®*Ga]
Ga-DOTA-1-Nal(3)-octreotide  ([**Ga]Ga-DOTANOC)
is used in preoperative and pre-radiotherapy planning, to
distinguish treatment-related changes from recurrence,
and in challenging locations with unclear tumour extent
[2]. With regard to therapeutic applications, data from case
series and small prospective trials have shown therapeutic
responses after radionuclide treatment with SSTR ligands
linked to lutetium-177 or yttrium-90 [13, 14], but further
investigation is warranted and ongoing.
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However, responses towards SSTR-targeted radionuclide
treatment and SSTR expression are variable. For instance,
specific subgroups such as neurofibromatosis type
2-associated meningiomas show lower SSTR expression
compared to others [15], underscoring the urgent need
to systematically explore radioligand target expression
across molecular subtypes [16]. Another emerging target is
fibroblast activation protein (FAP), a transmembrane serine
protease expressed on cancer-associated fibroblasts, tumour
cells of various entities and also in fibrotic processes, but
not in benign conditions or resting fibroblasts in adult
tissue, including normal brain samples [17—19]. Based on
these marked differences in FAP expression, diagnostic and
therapeutic radionuclide approaches targeting FAP showed
promising results in preclinical studies and small case series
of various extracranial malignancies [20, 21]. Similarly,
members of the human epidermal growth receptor family
such as HER2 and HER3 have been investigated for
theranostic approaches in extracranial tumours [22], while
prior studies have shown conflicting results on target
expression in meningioma [23-26].

Here, we evaluated the expression of SSTR2a, FAP,
HER2 and HER3 in a molecularly characterized cohort of
patients with CNS WHO grade 2 and 3 meningioma.

Patients and methods
Patient cohort

Adult patients (age>18 years) with meningiomas of CNS
WHO grades 2 and 3 who were diagnosed at the Medical
University of Vienna (Vienna, Austria) between 2000 and
2020 were identified from the Neuro-Biobank of the Medical
University of Vienna and included in this retrospective study.
Histological diagnosis was performed by a board-certified
neuro-pathologist, and reclassification according to the
WHO Classification of Central Nervous System Tumours
2021 was performed [3]. Accordingly, meningiomas with
clear cell or chordoid histology, and/or 4-19 mitotic figures
per 10 high-power fields (HPF, as approximation for 0.16
mm? as defined by WHO 2021), and/or brain invasion and/
or further atypical features were graded as CNS WHO
grade 2. Meningiomas with TERT promoter mutation and/
or CDKN2A4/B homozygous deletion and/or >20 mitotic
figures/10 HPF or carcinoma-, sarcoma-, or melanoma-like
histology were considered as CNS WHO grade 3.

Data were collected retrospectively and stored in a
FileMaker-based database (FileMaker Pro Advanced/Server
19, FileMaker Inc., Santa Clara, CA, USA) and handled in
pseudonymized form. The study was approved by the ethics
review board of the Medical University of Vienna (approval
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no. 2081/2022) and conducted according to institutional and
national standards and compliant to the Helsinki Declaration
of 1964 with all its amendments. Due to the retrospective
nature of the study, obtainment of informed consent from
included patients was waived.

DNA methylation analysis and panel sequencing

DNA methylation profiling and methylation class allocation
of these cases was available from previous analyses using
[lumina EPIC 850k chips as described [27, 28]. Similarly,
panel sequencing of tumour samples for NF2, TRAF7,
KLF4, SMO, AKTI, TERT promotor, ARID, SUFU and
PIK3CA for these cases had been performed for a previous
investigation using the Illumina NextSeq 500 platform in
paired-end mode [28].

Immunohistochemistry

Sections of 4 pum were prepared from formalin-fixed,
paraffin-embedded tumour samples. Immunohistochemical
(IHC) stainings for SSTR2a and FAP were prepared using
anti-SSTR2a rabbit monoclonal antibody (clone EP149,
Cell Marque/Millipore Sigma, Rockin, CA, USA) and anti-
FAP recombinant rabbit monoclonal antibody (clone JAS56-
11, Thermo Fisher Scientific/Invitrogen, Carlsbad, CA,
USA). Stainings of HER2 and HER3 were performed using
the Ventana Benchmark Ultra platform (Roche Diagnostics,
Rotkreuz, Switzerland) using anti-HER?2 rabbit monoclonal
antibody (PATHWAY HER?2 (clone 4B5), catalogue no.
790—4493, RRID: AB 2921204, ready-to-use [RTU],
Roche) and anti-HER3 rabbit monoclonal antibody (clone
D22C5, RRID: AB 2721919, 1:100, Cell Signaling
Technology, Cambridge, UK) as described previously [29].
Positive controls and non-tumorous brain tissue samples
were included (Supplementary Fig. 1). Here, pancreatic
tissue samples (islet cells) were used as a positive control
for SSTR2a and FAP, whereas breast cancer and lung
cancer brain metastases were used for HER2 and HER3,
respectively. Stainings of non-tumourous temporal lobe
sections were negative for all stainings except SSTR2a as
reported [30, 31].

Protein expression was evaluated semiquantitatively
for SSTR2a (negative, 1+/2+/3+) and dichotomously for
FAP given the overall lower staining intensity (positive
vs. negative in the tumour stroma and on tumour cells;
Supplementary Fig. 2), as well as HER2 and HERS3.
Spatial heterogeneity (areas with high/low cellularity;
stroma; regions with angiogenetic activity) was described
qualitatively. Haematoxylin/eosin slides for correlation
were available from initial diagnostic workup.

Statistical analysis

Results are given as absolute numbers and percentages,
and independence of categorical variables (such as
tumour subtypes with semiquantitative target expression)
was assessed using Chi-square and Fisher’s exact test as
appropriate. Distributions of metric variables between
groups were compared using Mann-Whitney-U test. Overall
survival (OS) was defined as the time between surgery and
last follow-up or death, whereas progression-free survival
(PFS) was defined as the time between surgery, last
follow-up, or either progression/recurrence or death, and
was illustrated using the Kaplan Meier method. Survival
between groups was compared using the log-rank test.
Further survival analysis in different subgroups suchas WHO
grades or according to genetic alterations was not feasible
due to small sample size and a limited number of events.
Statistical significance was defined as p<0.05, and analysis
was conducted using R 4.4.1 using the packages ggplot2,
gridExtra, survival, survminer, and ComplexHeatmap [32].
Given the exploratory and hypothesis-generating design of
the study, no correction for multiple testing was performed
[33].

Results
Baseline characteristics

Overall, 58 meningioma patients were included, of whom
35 (60.3%) were female. Median age was 60 years (range:
19-83). Most tumours were located at the cerebral convexity
or falx/parasagittal (36/58, 62.1%), and 31/58 (53.4%)
meningiomas were atypical according to initial histological
diagnosis. Tumours were classified as CNS WHO grade 2
in 39/58 (67.2%), CNS WHO grade 3 in 18/58 (31.0%),
and CNS WHO grade 1 in one tumour which was initially
assigned WHO grade III based on previous classification
due to rhabdoid histology but lacked further atypical or
anaplastic features. Further baseline characteristics are
given in Table 1.

Expression of SSTR2a, FAP, HER2 and HER3 in
meningioma samples

Photographs of representative slides are given in Fig. 1.
SSTR2a expression (either membranous, cytoplasmic,
or both) was seen in 43/55 (78.2%) evaluable samples
(Fig. la/c), while FAP expression was detected in 15/58
(25.9%) included samples (Fig. 1b/d). Membranous
SSTR2a immunoreactivity was seen in 41/55 (74.5%)
samples, of whom 18 (32.7%) showed strong (3+), 12
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Table 1 Baseline characteristics

n=>58
Sex
male 23 (39.7%)
female 35 (60.3%)
Age at surgery (median, range) 60 (19-83) years
Tumour location
Cerebral convexity 21 (36.2%)
Falx/parasagittal 15 (25.9%)
Sphenoid wing 7 (12.1%)
Tentorium 5 (8.6%)
Posterior fossa 2 (1.7%)
other (including cerebellopontine angle, intraorbital, petrous ridge, spinal) 4 (6.9%)
unknown 4 (6.9%)
Type of surgery
diagnosis/first surgery 39 (67.2%)
recurrence 13 (22.4%)
unknown 6 (10.3%)
Documented radiotherapeutic treatment in clinical course
yes 22 (37.9%)
no 27 (63.8%)
unknown 9(15.5%)
Histology (including original grading)
atypical (WHO grade II) 30 (51.7%)
chordoid (WHO grade II) 9 (15.5%)
anaplastic (WHO grade I1I) 18 (31.0%)
rhabdoid (WHO grade I1I) 1 (1.7%)
CNS WHO grade (WHO 2021)
CNS WHO grade 1 1 (1.7%)
CNS WHO grade 2 39 (67.2%)
CNS WHO grade 3 18 (31.0%)
Meningioma methylation class
ben-1 10 (17.2%)
ben-2 9 (15.5%)
ben-3 4 (6.9%)
int-A 23 (39.7%)
int-B 4 (6.9%)
malignant 8 (13.8%)
Prevalence of genetic alterations
NF2 mutation 25 (43.1%)
ARID1A4/1B/2 mutation 13 (22.4%)
TRAF7 mutation 8 (13.8%)
CDKN24/B homozygous deletion 5 (8.6%)
SMO mutation 3 (5.2%)
AKTI mutation 2 (3.4%)
SUFU mutation 2 (3.4%)
KLF4 mutation 1 (1.7%)
TERT promoter mutation 1 (1.7%)
Progression-free survival (median, 95%CI) 63.3 months (95%CI: 28.9— not reached)
Overall survival (median, 95%CI) 153 months (95%CI: 74.3— not reached)
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Fig. 1 Immunohistochemical stainings of SSTR2a (a/c), FAP (b/d), eosin slides shown in lower panels of (a) and (b). FAP=fibroblast
HER?2 (e), HERS3 (f). Magnification 200x (a, b, e, f) and 400x (c, d), activation protein, HER2/HER3 =human epidermal growth receptor
scale bars (50 um/100pum) as illustrated. Corresponding haematoxylin/ 2/3; SSTR2a=somatostatin receptor subtype 2a
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Fig. 2 Associations between SSTR2a, FAP, HER2 and HER3 expression and clinical and molecular factors. FAP=fibroblast activation protein;
HER2/HER3 =human epidermal growth receptor 2/3; IHC=immunohistochemistry; SSTR2a=somatostatin receptor subtype 2a
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Fig. 3 SSTR2a expression according to (a) CNS WHO grade, (b) TRAF7 mutational status, and (¢) methylation class, ben 1/2/3=methylation
class benign 1/2/3; int-A/B=methylation class intermediate A/B; mut=mutant; wt=wildtype

(21.8%) intermediate (2+), and 11 (20.0%) weak (1+)
immunoreactivity. Cytoplasmic immunoreactivity was
observed in 31/55 samples (56.4%), of whom intermediate
cytoplasmic staining was seen in 20 (36.4%) and weak
expression in 11 (20.0%) samples. In contrast, HER2 and
HER3 expression was rarely observed, with only one
sample each showing expression on tumour cells (Fig. 1e/f).

Spatial heterogeneity and overlap of SSTR2a, FAP,
HER2 and HER3 expression

In general, SSTR expression was homogenous and seen
predominantly in regions with higher cellularity (Fig. 1a/c).
FAP staining was seen in stroma-rich regions and areas
of lower cellularity (Fig. 1b/d) and marked angiogenetic
activity. Except for rare staining of vascular structures,
no FAP immunoreactivity on non-tumoral structures was
evident. Numerically, FAP expression was more frequent
in SSTR2a-positive samples (14/43, 32.6%) than in
those lacking immunoreactivity for SSTR2a (1/12, 8.3%;
p=0.147). The one HER2-positive sample showed also
immunoreactivity for SSTR2a, whereas the HER3-positive
sample displayed SSTR2a expression but lacked FAP
immunoreactivity.
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Correlation of SSTR2a, FAP, HER2 and HER3
expression with clinical and molecular
characteristics

A summary of molecular alterations, methylation classes
(MC) and target expression is given in Fig. 2.

SSTR2a expression (either membranous and/or
cytoplasmic vs. no expression) did not correlate with CNS
WHO grade, DNA methylation class or genetic alterations
except TRAF7 mutation, as 3/7 (42.9%) of TRAF-mutant
showed SSTR2a immunoreactivity compared to 40/48
(83.3%) TRAF-wildtype samples (p=0.034, Fig. 3a-c).

FAP expression was more frequently seen in CNS WHO
grade 3 tumours (12/18, 66.7%) compared to CNS WHO
grade 2 (3/39,7.7%, p<0.001, Fig. 4a). In terms of molecular
alterations, FAP expression was more frequent in samples
with NF2 mutation (10/25, 40.0%) than in those with NF2
wild-type (5/33, 15.2%, p=0.032, Fig. 4b). Similarly,
tumours with homozygous deletions of CDKN2A/B
showed more often FAP expression (4/5, 80.0%) than
their counterparts with intact CDKN2A/B (11/53, 20.8%,
p=0.013, Fig. 4c). No further correlations with molecular
alterations including mutations of ARID1A/ARID1B/ARID2,
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Fig. 4 FAP expression according to (a) CNS WHO grade, (b) NF2 mutational status, (¢) CDKN2A/B, and (d) methylation class. ben
1/2/3 =methylation class benign 1/2/3; int-A/B=methylation class intermediate A/B; mut=mutant; wt=wildtype

TRAF7,SMO, AKTI, SUFU, KLF4, and the TERT promoter
were observed. In addition, 4/8 (50.0%) samples of MC
malignant and 2/4 (50.0%) of MC intermediate-B (int-B)
showed FAP expression, followed by 4/10 (40.0%) with MC
benign-1 (ben-1) and 5/23 (21.7%) with MC intermediate-A
(int-A), whereas there were no FAP-positive samples in MC
ben-2 and ben-3 (p=0.069, Fig. 4d). Interestingly, patients
with FAP-expressing meningiomas were slightly older
than their FAP-negative counterparts (median: 63 [range:
54-76] vs. 58 years [19-83], p<0.001), while there were
no correlations with sex, tumour location, or type of surgery
(first surgery/diagnosis vs. recurrence).

HER2 expression was observed in one meningioma
sample of CNS WHO grade 3 of intraorbital location which
also showed FAP expression and homozygous deletion of
CDKNZ2A/B. Conversely, the HER3-positive sample was a
CNS WHO grade 2 meningioma located in the posterior
fossa with TRAF7 mutation, but lacking FAP expression.

Correlation of target expression with survival

Patients with samples showing no SSTR2a immunoreactivity
had tendentially longer OS (median: 17.3 years [95%CI:
12.7- n.r.]) than their counterparts showing membranous
and/or cytoplastic staining (median: 7.9 months [95%CI:
4.0- n.r.]; p=0.051, Fig. 5a). In contrast, FAP expression
did not correlate with OS (median [FAP-positive]: 6.1 years

[959%CI: 3.3— not reached], vs. median [FAP-negative]:
17.3 years [95%CI: 7.9— not reached]; p=0.19, Fig. 5b).

Discussion

Herein, we evaluated the expression of several potential
targets for radioligand treatment approaches in high-grade
meningioma. SSTR2a and FAP were expressed in a subset
of 78% and 26% of samples, respectively. In contrast,
HER2/HER3 staining was only observed in one sample
each. Previously, FAP expression had been evaluated in
a wide array of extracranial tumours, with particularly
high SUV,_.. on PET using 8Ga-linked FAP-targeting
tracers in sarcomas and pancreatic carcinoma correlating
with semiquantitative assessment of the number of FAP-
positive cells in IHC staining of tumour tissue and stroma
[34]. In line, early-stage clinical trials mainly included
these entities and showed overall promising results when
using a *°Y-based radioligand ([*°Y]Y-FAPI-46) [35]. Also
in meningioma, [*®Ga]Ga-FAPI uptake was observed in
case reports, particularly at tumour borders [36—38]. More
recently, a case of a patient with rhabdoid meningioma
receiving ['7’Lu]Lu-FAP-2286 treatment was reported,
showing therapeutic responses of liver, bone, and pancreatic
metastases after confirmation of FAP expression by pre-
therapeutic [**Ga]Ga-FAP-2286 PET [39].
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Fig. 5 Overall survival according to (a) SSTR2a and (b) FAP expression. p-values as determined by log-rank test

Still, a large-scale evaluation of SSTR2a and FAP
expression in a molecularly characterized cohort of CNS
WHO grade 2 and 3 meningioma samples was missing
so far. Indeed, the presence of the target— either assessed
by pretherapeutic PET scans or IHC in tumour tissue—
is generally regarded as a prerequisite for a clinically
relevant activity of radioligand therapies. For instance, a
predictive value has been shown in patients with prostate
cancer receiving [!7’Lu]Lu-PSMA-517 therapy [40] and
patients with neuroendocrine tumours undergoing [!""Lu]
Lu-DOTATATE treatment [41]. Also in meningioma,
SSTR2a expression correlated with progression-free
survival in patients treated with ['"’Lu]Lu-DOTATATE
according to a small retrospective analysis [42], although
evidence for use of ['"’Lu]Lu-DOTATATE in meningeal
neoplasms remains limited and further investigation
is needed, ideally within prospective trials including
investigations on predictive biomarkers [13]. This also
extends to the still conflicting evidence on the correlation
of SSTR2a expression with tumour grade and survival in
meningioma [15, 43, 44].

In contrast to SSTR2a, FAP was only expressed in
a subset of tumours. This highlights the importance of
rational patient selection potentially benefitting from
radionuclide treatments, particularly those targeting
FAP. Importantly, FAP expression was numerically more
frequent in SSTR2a-positive samples in our cohort.
Moreover, we observed that FAP expression is particularly
pronounced in tumours with NF2-mutant higher WHO
grade or more malignant epigenetic subclass or tumours
harbouring homozygous CDKN2A/B deletions. The
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classification of meningioma has undergone substantial
changes in the last decade, and molecular testing
has gained increasing importance in the prognostic
assessment but also treatment decisions [3, 27, 45]. While
our results remain exploratory given the small number of
cases in certain subgroups, they underscore the need for
pre-therapeutic evaluation of target expression.

While SSTR2a was expressed homogenously in
regions of high cellularity, FAP-positive areas were
predominantly found in stroma-rich regions and areas
of lower cellularity, consistent with previous data in
extracranial tumours [46]. Ideally, a theranostic target
is expressed homogenously throughout the tumour
and in all tumour manifestations to improve exposure
to the treating radionuclide. However, the inter- and
intralesional heterogeneity frequently hampers the
efficacy of radioligand therapies [47]. In this regard, the
choice of the emitting radionuclide remains of prime
importance given the diverse ranges and linear energy
transfer values of a, B and Auger electron-emitting
substances. Here, tandem approaches may represent
a promising strategy to combine the higher range of
emitters with the improved linear energy transfer of
a-emitting radionuclides. Indeed, early data in prostate
cancer alternating treatment of the B-emitting compound
['"Lu]Lu-PSMA with the a-emitting [**’Ac]Ac-PSMA
are encouraging [48, 49]. Moving forward, combined
approaches aimed at distinct targets such as SSTR2a
and FAP might further support overcoming treatment
resistance and intratumoral heterogeneity.
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Data on dosimetry are scarce in meningioma and
underscore the high variability of absorbed doses upon
['"7Lu]Lu-DOTATATE treatment [50]. Radiation doses
absorbed by the tumour are strongly dependent on
exposure times and pharmacokinetic properties of the
used radioligand. For FAP-targeted agents, a considerable
number of different radioligands with varying retention
times is under investigation in preclinical studies [21].
These include [!”’Lu]Lu-FAP-2286, ['7’Lu]Lu-FAPI-04,
['Lu]Lu-DOTA.SA.FAPI and ['”Lu]Lu-DOTAGA.
(SA.FAPi), as well as [*°Y]Y-FAPI-46 using different
chelators and radionuclides to improve intratumoral
accumulation and to align the physical half-life with
pharmacokinetic parameters. In the only case report
on FAP-targeted radioligand treatment in metastatic
rhabdoid meningioma, [**Y]Y-FAPI-46 has been used.
However, dosimetry data are not reported, and further
investigation is needed to identify the optimal compound
[39].

This study has important limitations, mainly due to the
retrospective design which is inherently linked to cohort
heterogeneity and missing clinical data. In addition,
small sample numbers in specific subgroups limit the
generalisability of the results and preclude additional
correlative analyses between target expression and (epi-)
genetic classes as well as survival. Ideally, additional
validation of SSTR and FAP expression using PET
imaging would allow to assess target heterogeneity within
patients, but was not feasible due to the retrospective
nature of the study.

In conclusion, our data show that SSTR2a is
expressed in most meningioma samples, and also FAP-
targeted approaches hold therapeutic potential given
the expression of FAP in a relevant subgroup. Whereas
radioligand therapies targeting SSTR2a have shown
promising activity in small, mainly retrospective studies,
prospective randomised trials encompassing translational
biomarker research are planned and in activation (such
as LUMEN-1, NCT06326190). While FAP-targeting
treatments are being investigated in early phase trials
of extracranial tumours, our findings suggest that these
agents might be more relevant as a complementary
therapeutic approach (or as combination partners) in
aggressive meningiomas, rather than as an alternative
treatment option in tumours with absent or low SSTR2a
expression.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s00259-0
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