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Abstract

We solve explicitly a certain minimization problem for probability measures
involving an interaction energy that is repulsive at short distances and attractive at
large distances. We complement earlier works by showing that in an optimal part
of the remaining parameter regime all minimizers are uniform distributions on a
surface of a sphere, thus showing concentration on a lower dimensional set. Our
method of proof uses convexity estimates on hypergeometric functions.

1. Introduction and Main Result

We are interested in a minimization problem that arises in mathematical bi-
ology, mathematical physics and economics as a toy model for aggregation. It
involves a mean-field model of particles, or individuals, interacting through a pair
potential, whose resulting force is repulsive for short distances and attractive for
long distances. The short range repulsion restricts the collision of particles and the
long range attraction prevents particles from spreading out. One then expects the
interaction energy to achieve its minimal value at certain steady/stable states of
the system, and one interprets this as an example of self-organization and pattern
formation. These phenomena and related theory have been the subject of several
recent works, many of which we mention below. We would like to determine the
explicit equilibrium states of the interaction energy for a particular model, which
depends on two parameters related to the nature of the repulsive/attractive forces.
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The characterization of minimal energy states has previously been achieved for a
certain ranges of these parameters. Our contribution in this paper is to enlarge this
regime where the states of minimal energy are known. In particular, we will be able
to identify critical parameter values, where a phase transition occurs.

Let us now introduce the model and present our results. We work in spatial
dimension d > 1 and denote by P(R9) the set of Borel probability measures on
RY. For parameters —d < B < «a < oo, we consider the following functional,
defined for u € P(R%):

1
Caplid =5 ([ (b=l = 57l =517 o) die).

Here we use the convention to interpret y ~'|x — y|” for y = 0 as In |x — y|. The
minimal energy is

Eqpi=inf {€plul s pe PRD),
and we are interested in determining ;€ P(RY) such that
Eap() = Eq .
A special role will be played by the parameter value

—10 4+ 30 + 7d — ad — d*?
ﬂ*(a)'_ d—‘,—a—3 k)

defined for « > 2 and d > 2. This parameter value has already appeared in [2] in
a similar context. The function @ +— B, () is decreasing and satisfies for ¢ > 2,
—d 4 3 < B.(a) < B+(2) = —d + 4. It will be convenient to introduce a number
Ry, g defined, for By () < B < a, by

1
d+p—1 2d+a—2 a—p
1 (TS T (=)
Rap =3 d+271 2d+2;3—2 ey
r(==—)rE—)
and, fora =2 and —d < B < —d + 4, by
1
PEH D\
Rop=\—F—7"— . 2)
r+3)
Also, we will denote by Bg(a) the open ball of radius R centered at a.
We now state our main result.
Theorem 1. Letd > 2,2 < o <4 and B«(ax) < B <2 with B < a. Then
_1 _3 N r(ret ;
—g—2 od+a 31—2~(T2a—22)(/13_$)Rg,ﬁ ifB#0,

Eqy B = d—1 2d+a—2 red—1
' 1 (1 _1p METEZ) 1{r@=1n ' o
2a (1 In r(d])r(<1+gl)) T3 (F(dl) r<d21>> fp=0.
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The infimum is attained if for some a € R,
d—1| pd— 1
= (IS"7'IR, B ) 8331%&‘[5(11) :
Provided that (o, B) # (4, 2), these are the only minimizers of Eq g.

This result is sharp in the sense that, for 2 < « < 4, if 8 < « does not belong
to the interval [B«(«), 2], then the uniform distribution on the surface of a sphere
is not a minimizer; see item (d) in the remarks after the next theorem. Meanwhile,
it is conceivable that a similar result also holds outside the range 2 < « < 4 for
suitable values of 8.

We believe that the result of Theorem 1 is new, except in the particular cases
B =2and («, B) = (2, —d + 4), for which we provide references after the next
theorem. We refer to [19] for a classification of minimizers in the case («, 8) =
(4, 2) that we have excluded.

We use the method of proof of Theorem 1 to give an alternative proof of the
following known result concerning « = 2 and < B.(2) = —d + 4 (the latter
equality can be viewed as the definition of S, (2) ford = 1).

Theorem 2. Letd > 1, o = 2, and —d < B < min{2, —d + 4}. Then
d2-p) p2 :
. —2p—p) Rap ifp#0,
2.8 = re ' i
z<z+lnz+w—r<§>> ifp=0.
The infimum is attained if and only if, for some a € R,

du(x) = Cy' RS2 (RS 5 — Ix — a5 ]lBRzﬁ(a)(x)dx

with

2

T # ;- (3)
Remark 3. Here we collect some notes as well as results from previous works.
(a) As mentioned earlier, Theorem 2 (where o = 2) is a known result. The result
in the case B = —d + 2 of Coulomb repulsion is folklore. The result for —d <
B < —d + 2 can be extracted from the analysis of the porous medium equation
with fractional diffusion by Caffarelli and Vazquez [6]; for the case d = 1, see also
[21]. The result for —d 4+ 2 < B < min{—d + 4, 2} is due to Carrillo and Shu [13,
Theorem 5.1].
(b) The particular case (¢, 8) = (2, —d + 4) of Theorem 1 has been addressed
before. Specifically, in [13, Remark 5.8] Carrillo and Shu sketch how their method
of proof dealing with the regime —d + 2 < B < min{—d + 4, 2}, « = 2, allows
them to handle the limiting case 8 = —d + 4 for d > 2. As far as we understand,
this method does not extend to B > —d + 4. In particular, we point out that the
statement below [18, (2.4)] to the effect that the case —d +4 < B8 < 2 is solved in
[13] is incorrect, as confirmed by the authors of [18] in personal communication.
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(c) The limiting case 8 = 2 of Theorem 1 has been previously addressed. Indeed,
the minimization problem E, > with 8 = 2 was completely solved in two papers
[18,19] by Davies, Lim, and McCann, except for the case 2 < ¢ < 3ind =1
treated in [21]. Besides the result stated in Theorem 1 in this case, it is shown in
these papers that for « > 4 in d > 2, minimizers are uniform distributions on the
vertices of a regular simplex, while for « = 4 in d > 2 there is a large family of
minimizers. The papers [18,19] also contain partial results for 8 # 2.

(d)Forany 2 < o < 4 the assumption B, () < B < 2 on the parameter j satisfying
B < « is optimal for the minimizer being the uniform distribution on the surface
of a sphere. Indeed, if 8 > 2, then minimizing measures are supported on finitely
many points [9] and, if 8 < B« (), then the uniform distribution on the surface
of a sphere is not even a local minimizer [2]. For the latter point we also refer to
Step 1 in the proof of Lemma 12 below. We also note that [2] have shown a certain
stability property for 8 > B («) and that the analysis in that paper does not require
the assumption « € [2, 4].

(e) For ¢ = 2 (where B.(a) = —d + 4), as the parameter B increases, one sees
a transition from probability measures that are absolutely continuous with respect
to Lebesgue measure with bounded density (for —d < 8 < —d + 2) to such with
unbounded density (for —d +2 < B < —d +4) and further, if d > 3, to a singular
measure, namely uniform measure on the surface of a sphere (for —d+4 < 8 < 2).
Similar transitions are expected for any fixed 2 < o < 4. One may wonder whether
the transition points are always —d + 2 and S, («). For partial results for « = 4
see [13, Theorem 5.1], and for numerical results for « = 4 in dimension d = 1 see
[23]. One can observe a similar transition to more and more singular measures if
one fixes § = 2 and lets « increase; see item (c).

(f) A very brief comment on the proof: using the positive definiteness of the kernel
|x — y|¥ for y < 0 (or conditional negative definiteness for y < 2), as well as a
certain conditional positive definiteness for 2 < y < 4, we see that it is enough
to find a solution of the Euler-Lagrange relations. These state that the potential
of the relevant measure is constant on the support of the measure and attains its
minimum there. Verifying that the potential is constant on the support of the measure
is relatively easy in our situation. The difficulty is to show that outside the support
the potential is at least as large as this constant. Our starting point to solve this is to
express the potential as a hypergeometric function. This reduces matters to proving
a convexity inequality for hypergeometric functions. In the one-dimensional case in
[20] this was a relatively straightforward consequence of an integral representation
formula for hypergeometric functions. In the present situation, however, we are
outside the range of validity of this integral representation. We will show that one
can obtain the desired inequality by repeated differentiation. While hypergeometric
functions are a classical topic, we have not been able to find this result in the
literature. We hope that our result will be relevant in other situations as well.

(g) A related problem that has been receiving some recent study is that of minimizing
the Riesz interaction energy in the presence of an external field, leading to the energy
functional

1
f o x| dp ) — —ff B~y dur)du(y). ()
Rd 2 JJrdxpra
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This has be studied in, for instance, [4,16,17,24,27,29].
(h) The case where « — oo gives us the kernel

—vy|B .
2l it -y <1,

Weo,p(x — y) = p ®)
00

iflx —y|>1.

This situation is known as hard confinement and involves a constraint on the di-
ameter of the support of the probability measures. This topic has been studied in
[5,25].

Let us now put the model we are studying into context. From a very wide
perspective, it is a mean-field model for the distribution of particles/individuals
that interact via forces that have both attractive and repulsive components, and one
would like to find a minimizing probability measure for the corresponding energy
functional. Some models of this type are reviewed in [20]. More specifically, in
the present situation the only term in the energy functional is a pair interaction,
described by a certain potential W, and consequently the energy is of the form

1
3 // W(x —y)du(x)dp(y) .
R4 x R4

We refer, for instance, to the introduction of [2] for a large number of references
of where such models appear in biology and physics. Often, there seems to be no
canonical choice for the interaction potential W and one direction of investigation is
to understand how sensitive the qualitative behavior of minimizers is to changes in
W. Another line of research is to understand this behavior for some toy potentials.
A frequently used choice is the family W, g(z) = a Yz|¢ — Blz|P for o > B,
where one would like to understand a ‘phase diagram’ in the (&, §)-plane. This is
the model studied in this paper.

Qualitative and quantitative properties of minimizers that one would like to
understand are its absolute continuity with respect to Lebesgue measure [8] or the
dimensionality of the support [3,9,13,18, 19]. Despite some significant progress in
these works, the dimensionality of minimizers seems to be still unknown in a large
part of the («, 8)-plane. We also emphasize that numerical experiments [3, Table
4] suggest that the dimensionality is unstable under perturbations and can decrease.
The same may occur for nonradial interaction kernels W, as was recently explored
in several works; see, e.g., [11,12,14,15,28,30].

‘We should also mention that the corresponding time-dependent equation

ow .
3 div(u (VW % 1)),

which is formally the Wasserstein-2 gradient flow of the energy functional, has been
intensely studied. For instance, in [2] the measures appearing in Theorem 1 were
identified as steady states of the this time-dependent problem and their stability was
investigated. Similarly, the functions in Theorem 2 were identified as steady states
in [10]. We recall that being a steady state means, essentially, that the potential is
constant on the support of the measure. For being a global minimizer it is necessary
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(and, as we will see in Lemma 10, also sufficient) that, apart from this constancy,
the potential as at least as big as this constant outside of the support of the measure.
It is this latter condition that is responsible for the technical work in this paper.

2. Background: Some Facts About Hypergeometric Functions

In the proof of our main theorems, the potentials

[ (b=t = 57 = 517 ).
R4

of the candidate minimizers p will play an important role. To deduce properties of
these potentials, we will express them in terms of hypergeometric functions and
then prove and apply results for those.

This section is meant to recall the definition and properties of hypergeometric
functions and prove some that we have not been able to find in the literature. They
will be crucial in the proof of our main theorems.

We restrict ourselves to parameters a, b € R and ¢ € R\ (—Np) and consider
the hypergeometric series [22, (9.100)]

o0

F(a,b;C;z)=Z

n=0

a@+1)---(a+n-0)bb+1)---b+n-1) ,
et )-(ctn—1) 1-2--n o

Here (A +1)--- (L +n — 1) is interpreted as 1 if n = 0. By standard facts
about power series, this converges absolutely and uniformly on compact subsets of
{z € C: |z] < 1} and defines an analytic function in the open unit disc. We will
only be interested in values z € [0, 1).

We first summarize some facts about its boundary behavior as z — 17

Lemmad. Leta,b e R, c e R\ (—Ng) withc —a —b > 0.

(a) The functions z — F(a,b;c;z) on [0,1) and z — z “F(a,b;c;z7") on
(1, 00) extend continuously to z = 1 with

I'c)I'(c —a —b)

Fi(a,b;c;1) = . 6
2F1 (a, b;¢c; 1) Fe—a)Tc—b) (6)
(b) If c —a — b > 1, then their derivatives extend continuously to z = 1 with
d 'e)r(c—a—->b—-1)
— F(a,b;c;z) =ab 7
dz oo @ biei D) = ab = ™
and
d —a 4 re)r'c—a—-b-1)
— Fla,b;c; = — . 8
d“:1<z (" @2 )) Te—a—D)T(c-b) ®)
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c)lfc—a—>b > 2, then their second derivatives extend continuously to 7z = 1
Yy
with

d? o F()T(c—a—b-2)

d—zzZIIF(a,b,c,z)—a(a—i—l)b(b+1) Fe—aTe_b) )
and

d? L N T)T(c—a—b—2)

d_zzzzl(z F("’b’c’z ))_“(“+1)r(c—a—2)r(c—b)'

(10)

Proof. 1t is well known (see, e.g., [22, (9.102)]) that the hypergeometric series
converges on the boundary of the unit disc if c —a — b > 0. Its value at 1, given
in (6), can be found in [22, (9.122.1)]. This proves part (a).
Directly from the definition of the hypergeometric series we find that
d b
CFrabe=2Fa+1,b+lc+1:2). (11)
dz c
Therefore the facts about the derivative of the first function follow from the same
facts as for the function itself. For the second function we note that

diz (Z_”F (a, b; c; z_l)) = —az “7'F (a +1,b;¢; z_l) . (12)

This follows easily from [1, (15.2.3)]. Therefore the facts about the derivative of
the second function follow again from the same facts as for the function itself. This
proves part (b).

Part (c) is proved in the same way. O

The next lemma and its corollary are the crucial facts needed for the proof of
our main results. The important point is that they are proved for parameters b that
can be arbitrarily negative.

Lemma 5. Leta, b € R and ¢ > 0 such that ¢ > max{a, b}. Then F (a, b; c; 7) >
0 forall z € [0, 1).

Proof. By continuity with respect to ¢ we may assume that ¢ > max{a, b}. First
assume that b > 0. Then the assertion follows from the integral representation [22,
(9.111)],

1

F(a,b;c;z) = e AN =N =), (13)
L®)Te—>b) Jo

valid for ¢ > b > 0. Note that for b > 0 we did not use the assumption that ¢ > a.

For b < 0 we write —¢ > b > —{ — 1 for some £ € Ny and prove the assertion

by induction on £. We can consider the case ¢ = —1, proved above, as the base

case. For the induction step, let £ > 0. We use the formula (11) for the derivative of

F (a, b; c; 7). By induction hypothesis, we have F (a + 1,b+ 1;¢c+ 1;z) > 0. If

a < 0, we have % > 0 and we deduce F’ (a, b; c; z) > 0. Thus, F (a, b; c; z) >
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F (a,b;c;0) = 1forall z € [0, 1). Conversely, if a > 0, we have % < 0 and we
deduce F’ (a, b; c;z) < 0. Thus, F (a,b;c;z) > F(a,b;c; 1) forall z € [0, 1).
The assertion therefore follows from the formula (6) for F (a, b; c; 1) if one notices
that under our assumptions the argument of each one of the four gamma functions
is positive. This completes the proof of the lemma. O

Corollary 6. Let a, b € R and ¢ > 0 with ¢ > max{a, b}. On [0, 1), the function
zt+> F(a,b;c;z2)is

convex ifa(a+ )bb+1) >0,
concave ifa(a+ 1)b(b+1) <0.

If, in addition, ¢ > a + 2, then on (1, 00), the function (1,00) 3> z — z7%F
(a,b;c;27 1) is

convex ifaa+1) >0,
concave ifa(a+1) <0.

Proof. According to (11) and (12), we have

d? a(a+ Db +1)
—F@,b;c;7)) = ——F——-F 2,b+2; 2;
) (a,b;c;z) e D (a + +2;¢c+2;2)
and
d2
—(z7%F(a,b;c;z7")) =a(@+ l)z_“_zF a+2,bc;77') .
dz?
Therefore, the assertion follows from Lemma 5. O

The above corollary, which concerns a single hypergeometric function, suffices
to deal with a large part of the parameter regime in our main theorem, but in certain
cases we need a more delicate result about the difference of two hypergeometric
functions.

Lemma?7. Ifg > 0,0 <ay < ay,0 < by < by, andc > ay + by, then the function
2> F(ai, bi;¢;2) —qF (a2, ba; ¢; 2)

has at most one zero in [0, 1] and, if such a zero zo € [0, 1] exists, then the function
is negative in [0, zo) and positive in (2o, 1].

Here, in case zg = 0 we use the convention [0, zg) = ¢ and consequently we
make no assertion about the function on this empty set. A similar remark applies
in case zg = 1.



Arch. Rational Mech. Anal. (2025) 249:15 Page 9 of 28 15

Proof. In terms of the Pochhammer symbol (d), := Ffﬂd&'f) the function in the

lemma can be written as

o [ @Dn (b)) n(b2)n7
8(z) == F (a1, bi;c;2) —qF (a2, b2 ¢; 2) =Z [(azz)(nl,) —q(aii)(nz,) ]
n=0 ne e

For the proof we may assume that there is a z; € [0, 1] such that g(z1) > 0, as
otherwise there is nothing to show. We now break our proof into three steps.
Step 1. We claim that there is an N € Ny such that

@)n(b1)n < q(az)n(b2)n forn < N

and

(@)n(b1)n > q(a2)n(b2)n forn > N .

(Here and below an assertion for n < N is trivially satisfied if N = 0.)

To prove this, we first observe that there is an n € Ny such that (a1),(b1), >
q(a2)n(b2),. Indeed, otherwise we have (a1),(b1), < g(az),(ba), forall n € Ny,
which would imply that g(z) < 0 for all z € [0, 1], contradicting our assumption
g(z1) = 0. By choosing the minimal n, we obtain the existence of an Ny € Ny such
that (a1)n (b1)n < q(a2)n(b2), foralln < No and (a1)n, (b1) Ny = g(a2) Ny (b2) Ny -

Our second observiation is that if (a1),(b1), > g(az),(b2), for some n € Ny,
then

(@)n+1b1)n41 = (a1 + n)(b1 +n)(ai)n(b1)n
> (a1 +n) (b1 +n)g(a2)n(b2)n > g(a2)n+1(b2)ny1 -

This implies that (a1),(b1), > q(a2),(b2), for all n > Ny. The claim made at the
beginning of this step now follows with

— NO if (al)N()(bl)No > Q(QZ)NO (bZ)N() P
No+1 if (a1)ny(b1) Ny = q(a2) ny(D2) N, -

and show that

Step 2. With N from Step 1 we set p = %@‘J’M

N
1 /
58 (z) > g(z) forallz €[0,1). 14
Indeed, by (11),

1, lraib; axby
;g (z)=;[TF(a1 +1,b +1;c+1;z)—qTF(a2+1,b2—|—1;c+1;z)]

_1 i @Dnt1B)nt1 <az)n+1(b2)n+1] n
p

s (©)py1n! (©)p41n!

(ay +n)(by +n) [(al)n(bl)n (ar +n)(by +n) (az)n(bz)n] n

pc+n) ©@nn! L@ +mbi+1)  (©nn!

(a1 +n)(b +n)[(a1)n(b1)n _ (az)n(bz)n] n
p(c+n) (c)pn! (c)pn!

00
-3
n=0

00
>
n=0
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In the last inequality, we used our assumptions 0 < a» < aj and 0 < by < b;.

Since % is an increasing function of n and is one for n = N, we see

that forn < N,
(a1 +n)(b1 +n) [(al)n(bl)n _ (a2)n(b2)n] o @)n@®n _ (@2)n(b2)n
plc+n) (¢)pn! (c)pn!
and forn > N,
(a1 +n)(by +n) [(al)n (b1)n . (@2)n (bZ)n] - (a)n(b1)y . (@2)n(b2)n
p(c+n) (c)pn! ©)pn!

(¢)nn! (c)nn!

)

(c)nn! (c)nn!
Inserting this into our lower bound on g’(z), we obtain the differential inequality
(14).

Step 3. Using (14), we can now complete the proof of the lemma.

We first claim that g has at most one zero in the half-open interval [0, 1) and that,
if such a zero zg € [0, 1) exists, then g < Oon [0, zg) and g > 0 on (zg, 1). Indeed,
at every zero zg € [0, 1) of g we deduce from (14) that %g’(z()) > g(z0) = 0. This
implies that g has at most one zero in [0, 1), for if it had more than one zero, its
derivative would have to be nonpositive at at least one of the zeroes. This proves the
claim about the interval [0, 1). (We note in passing that the same argument implies
the full statement of the lemma under the additional assumption ¢ > aj + by + 1.
Indeed, under this assumption g’ extends continuously to z = 1 by Lemma 4 and
the proof above shows that (14) holds for z = 1 as well.)

We have to consider two cases, namely g has either no or exactly one zero in
[0, 1). In the latter case, we know that g > O on (zg, 1). By the differential inequality
(14), this implies that g is increasing in (zg, 1) and, consequently, g(1) > 0. This
proves the lemma in this case.

Assume now that g has no zero in [0, 1). Then either g > Oon [0, 1) or g < 0
on [0, 1). In the first case we can argue as before, deducing from the differential
inequality (14) that g is increasing on [0, 1) and therefore has no zero in [0, 1].
Meanwhile, when g < 0 on [0, 1), the existence of z; with g(z1) > 0 implies that
g has precisely one zero in [0, 1] and is negative to the left of it, as claimed. This
completes the proof. O

3. Potentials as Hypergeometric Series

Our goal in the present section is to express the potential of the candidate
minimizers in our main theorems in terms of hypergeometric functions, whose
definition we recalled in the previous section. We deal separately with the two parts
of the potential and write our formulas in terms of a parameter y that will later take
the values o or S.

Lemma 8. Let d > 2 and y € R. Then, for all x € R?,

2—y—d _ .
.1 il F (=5, 2574 4 161 72) if il > 1,
|x—w|Vda)=2712—dx rd g
i1 PG| F (-5 e iflxl < 1.
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If y > —d + 1, then Lemma 4 shows that the right side in (15) is continuous
at |x| = 1 and the proof below shows that the identity (15) extends to |x| = 1.

Proof. By introducing polar coordinates, we find
T r
fd k=0l do =572 / (|x|2 — 2Jx| cos 6 + 1) Zsind=2 040
Sd= 0

1 r _
= |Sd*2|/ <|x|2—2|x|t+1)2 a-)% ar
—1

1
— — 14 d=3 d=3
=222 [ a0 T a

Lz
I'd-1)

_ hd—2,ed-2 y _y d=1. 5 1. _4x|
= 21725122 A+l P (=5 Gl — 1 2
Here we have successively changed variables cosf = w - x/|x|, t = cos6, and
u = (1 4+ t)/2 and used the integral representation of the hypergeometric series
[22,(9.111)]. Inserting the expression for |[S?~2| and using the Legendre duplication
formula for the gamma function, we arrive at
d
2

1 _
/S[/_I X — ol do =27 T (el + DY F (=5, Fha - 1 )

* (RH+1?
if x| # 1. (16)

The claimed formula (15) follows from (16) by a transformation formula for the
hypergeometric series; see [22, (9.134.2)]. |

Note that in the previous proof we have found an alternative expression for
the left side in Lemma 8, namely (16). While the latter does not involve a case
distinction and might be aesthetically more pleasing, we have found the formula
(15) to be the more useful one for our purposes.

Lemma?9. Letd > 1 and —d < y < —d + 4. Then, for all x € R4,

r(=%=4)rtd)

2—y—d d
f =y A=y dy=n> a
lyl<I I'(%)
L) 12 ( y 2-y—d Y 72) .
o KT F =5, ;2= 55 0x if x| > 1,
X 1“(2—%)1“(‘%“’)| | 2 2 75 1x] if | x| (17
F(=5. -1 9 1x?) iflx] < 1.

Proof. For fixed x € R4, both sides of the claimed formula (17) are analytic
functions of y in {y € C: —d < Rey < —d + 4}, the restrictions on y coming
on the left side of the claimed formula from the local integrability properties of the
two factors in the integrand and on the right side from the domain of analyticity
of the gamma functions. Consequently, it suffices to prove this formula in the
range —d < y < min{0, —d + 4}. In the remainder of this step, we impose these
restrictions.
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In the proof, we will make repeated use of the following formula for the inverse
Fourier transform of a radial function:

d ; a2 [ a
<2n>‘2/df<|5|>e"f*ds=|x|‘2fo K2 f) oz (klxD dk. (18)

there J 2 is the Bessel function of the first kind of order ¢ &= 2 Asalfirst consequence
of this formula we obtain

(1 — |x|? ) ]1( Ln(x]) = (27T)_7

ey g DeS s
(19)

Indeed, this follows from (18) together with [22, (6.575.1)], which says that for
o,B>0andRev+1>Reu > —1,

/ooj @)l (Byh—" d {O ifa <8,
v+1 ot " Ht = 1 ﬂp. (a27/32)vfp.
0 AT (v—pt 1) gt ifo>p.
Next, under the restrictions —d < y < 0, we have
—4 Hy+4 (y+d) —d—y if-x
x|V = @Qm)"22V"2 I ,,) |E|77 75T dE . (20)

This is formula is well known. It can also be derived from [22, (6.561.14)] via (18).
Combining (19) and (20), we find that

/ =y (1 — |y|2)*2‘5‘d dy
lyl<1

)/ 617115y (Dei®™ dt

_ 2%+1

Using (18) once again, we can rewrite the right side as

r=rdd) 4o [
rep W B f
2 0

The formula in the lemma now follows from formulas [22, (6.574.1) & (6.574.3)],
which say that

@m)% 25+

/OOJV(at)JM(ﬂt)f)‘ dt
0

(il o« p(vhpoddl vopshdl .
2 T(FEEEE P (1) B 2 ’ ﬂz
if0<a < B,
(Uil B vhpu—itl  —vtp— H‘l w+1; 5
P TP T (1) @l 2

if0 < B <«,
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provided that Re(v + © — A + 1) > 0 and ReA > —1. (We have corrected two
misprints in [22] in the second line of the formula. Namely, we replaced 8" by g*
and we replaced ['(v + 1) by I'(i + 1). Indeed, the second line of the formula
follows from the first one if one interchanges simultaneously the roles of o and B
and of v and ). Note also that the restriction Re(v + u — A + 1) > 0 is satisfied
in our case since y < 0. This completes the proof of Lemma 9. O

We end this section by noting that Lemma 8§ can alternatively be proved similarly
as Lemma 9.

Second proof of Lemma 8. We only sketch the differences to the proof of Lemma
9. Again, using analyticity, we restrict ourselves to the range —d < y < 0.
The role of formula (19) is played by the formula

_d _d-2 .
8ga-1(x) = (27) 2/ 61777 Jaa (|E])e’S dé .
R4 2

This follows by Fourier inversion from the formula (18) when f is a delta measure
atk = 1.
Combining this with (20) and (18), we obtain

e _
Ix — |’ do = (2n)%2y+%¥ x|~

Y

Sd-1 ')

o0
x/ k_d_”“J%(k)J%(Hdek.
0

The claimed formula now follows using the formula for the integral of two Bessel
functions with a power function, given in the previous proof. O

If we use [22, (6.576.2)] for the integral of the product of two Bessel functions
instead of the formula given in the proof of Lemma 9, we arrive at (16).

4. Convexity

The Euler-Lagrange equations for our minimization problem say that the po-
tential is constant on the support of the minimizing measure and at least as big
outside of this support; see, e.g., [3]. The following lemma, which says that these
necessary conditions for a minimizer are, in fact, sufficient, plays a fundamental
role in the proof of our main results. It is at this point that the assumption2 < o < 4
enters.

Lemma 10. Letd > 1 andlet —d < <2 < a < 4 with B < a. Assume that
there are i € P(R?) and n € R such that

pap@ = [ (e = o1 = Bl =) dut. e B,
R4
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satisfies

Qa,p =N ON Rd and Qq,p =1 ON SUPP L.

Then w is a minimizer for £q g and n = 2E4 g. If (a, B) # (4, 2), then p is the
unique minimizer up to translations.

We only sketch the proof, as the details of the argument are similar as in the
proof of [21, Lemma 6]. The fundamental observation is the fact that the Fourier
transform of —8~!|z|# is positive for —d < < 0 and that its restriction to R?\ {0}
is positive for 0 < < 2. The behavior at the point 0 is irrelevant since the object
that is Fourier transformed is the difference of two probability measures, which has
integral zero, and therefore Fourier transform vanishing at the origin. Moreover,
we use the fact that the restriction to R? \ {0} of the Fourier transform of & ~!|z|¢ is
positive. As observed by Lopes [26], the behavior at the point O is irrelevant since
the argument is applied to the difference of two probability measures with equal
center of mass; see [7, Theorem 27] for an application of this argument. When
(o, B) # (4,2), then at least one of the convexities is strict and we obtain the
uniqueness (up to translations) of the minimizer.

5. Proof of Theorems 1 and 2

In this section we prove the main results stated in the introduction. We rely on
Lemma 10 and so only need to verify the conditions stated there are satisfied by
the potential of our candidate minimizing measure. In the setting of Theorem 1 the
condition that the potential is constant on the support of the candidate measure is
trivially satisfied by radial symmetry. The nontrivial part of the proof is to show that
potential is everywhere at least as big as on the support of the measure. This is the
main technical work, which relies on our lemmas about hypergeometric functions.

We now present the details.

Proof of Theorem I. We assume d > 2,2 < o < 4, and Bi(a) < B < 2 with
o > fB. We only prove the theorem for 8 # 0, the case B = 0 being similar; see
Section 7 for more details. We break our proof into two steps: finding the radius
of the sphere, then showing that the uniform measure on that sphere is indeed a
minimizer.

Step 1. It is convenient to introduce the function

[SaN

2—y—d — :
p F(—%, Y ﬁ ifp>1,
2

Yy (p) ==
Y F(—%, 757'1; ;,0) ifp<1.

2y

[SIEW

Under the assumption d + y > 2, it follows from Lemma 4 that vr,,, which is orig-
inally defined only [0, co) \ {1}, extends to a continuously differentiable function
on [0, 00). Indeed, the lemma implies that both v, and I//J//, defined on [0, c0) \ {1},
have left and right sided limits at p = 1 (the assumption d + y > 2 is needed for



Arch. Rational Mech. Anal. (2025) 249:15 Page 15 0f 28 15

1/f3’/) and elementary manipulations with gamma functions show that the left and
right sided limits coincide. In particular, Lemma 4 shows that

rérd+y-1 y THTd+y-2)

Yy (1) = r (&) 1202 and ¢ (1) = 5 (B2 (2
(22)

We will apply this with y equal to @ and 8, for which the assumption d + y > 2
is satisfied.

The functions v, are relevant, since by Lemma 8 and scaling, we can express
the total potential of the measure (1S9 RI-1=15,p 2(0) @S

e L o= (R w3
(23)

In particular, this total potential is radially symmetric and therefore constant on
spheres. We want to choose the radius R of the sphere in such a way that the total
potential is minimal at |[x| = R. The differentiability of v, implies that the total
potential is continuously differentiable with respect to |x|. Setting its derivative
equal to zero, we arrive at the condition

o 'Ry, (1) — B RPyL(1) = 0. (24)
In view of the expression for 1//{, (1) in (22), we see that this is satisfied if (and only

if)

o 1
oo (@ VBN (T4 p—2) T(HE2) PALE2) | 7
B v, (1) I'd+oa—2) F(W)F(ngﬁ—z)

= Ryp.

For the last equality we recall that R, g was defined in (1), and use the duplication
formula for the gamma function.
According to (23), the value of the total potential at |x| = Ry g is equal to

=n
|x|:Ra,ﬁ

411 / (oc_l X — Ry pool* — B~V Jx — Ra‘ﬂw|ﬂ) do
gdfl
with
n: a‘lR“ﬁwa<1>—ﬂ—1Rﬁ,gwﬂ<1>

( Yo(D) = B~ Up(OR G RE

v ()
«(1) =
(wu w<1>> o

a2 COTEETD) (1 1)
-7 F(2d+0[—2) re 01,/3 :
2

B«
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Here we used (24), (22), and the duplication formula for the gamma function.

To summarize our discussion so far, we have chosen the radius R = Ry g in
such a way that the potential has a critical point at |x| = R g. It still remains to
be shown that the potential has a global minimum at |x| = Ry g. Once we have
shown this, we can apply Lemma 10 and deduce that (|S¢~! |R3731)’1 SR, psd-1 18
a minimizer and we obtain the value E, g = n/2 for the minimal energy, which
coincides with the value stated in Theorem 2. If («, 8) # (4, 2), then the lemma
also implies that the minimizer is unique up to translations.

Step 2. In view of (23), the total potential having a global minimumat |x| = Ry g
is equivalent to the inequality

B
ety (|2 ) - (| )
o * Ra,ﬁ B P Ra,ﬂ

R R?
> %Py () — ;ﬁx/fﬂ(l) forall x € R? . (25)
o

This can be simplified to
o RS L vap) — B Wp(0) = a 'R P (1) — Bl yp(1)  forall p > 0.

Using (24) to relate Ry, g and 1///’3(1)/1%(1), it becomes

Y1) Y (1)
1 ¥ _ p-l 178 a1
B %(])Iﬂa(p) B Vp(p) =B 1//(;(1)%(1) B~ ¥p(l) forallp >0.
To prove this inequality, it suffices to show that the function
Yg(1)
-178 -1
> a(p) — 26
B %(l)w(m B o) (26)

is convex on [0, 0o). This is the content of Proposition 11 in the next section. Since
the function is differentiable at p = 1 and has vanishing derivative there, this will
prove the desired inequality and complete the proof of Theorem 1. O

We now proceed to the proof of Theorem 2. The overall strategy is the same
as for Theorem 1, and we briefly outline it before proceeding. We note that on the
support of the candidate minimizer, the 8-part of the potential (given by (17) with
y = B) is a hypergeometric function whose second index is —1, which means
that the hypergeometric function is an affine-linear function. In other words, the
B-potential inside the support is of the form by + bs|x|>. We then show that the
quadratic, i.e. « = 2, part of the potential is of the same form. By an appropriate
scaling, one can arrange that the coefficients of |x|? cancel each other, so that the
total potential is constant on the support of the candidate minimizer. It remains to
show that the potential is bounded from below by this constant. This is again the
main technical work, which we deduce from our lemmas about hypergeometric
functions.
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Proof of Theorem 2. We will prove the theorem for 8 # 0, the case 8 = 0 being
similar; see Section 7 for details. Recall that = 2 and —d < B < min{—d +4, 2}.

We first need an expression for the total potential. We denote the B-part of the
potential by

Bx) = —ﬂ‘lfl 1|x—y|ﬁ<1—|y|2>W dy @7
y<

and recall that we have obtained an expression for this in Lemma 9. To compute
the a-part of the potential, we recall the definition (3) of Cg. Expressing a beta
function in terms of gamma functions, we find that

/ (1= )5 dy = s l|/(1
Iyl<1

=2’1|S‘H|/ -0 ar
0

4—B—d
lied— 5 a I'( )
hs? =72 —— 2= =Cp
F( ) I'(=-)
(28)
and, similarly,
4- ,5 —d
2-p—d ad I'(—5—) d
[ wra-pn ey =t 22 - .
lyl<l 2 T(mH) 48

Thus,

d
Tdﬁlh—le—bd) dy—ZICﬂOﬂ +Z—E) (29)
yl<

It follows by scaling that

= yP? |x—y|ﬂ> 22y 2t
- R* — d
/y|<R( 5 5 )R — ) dy
_ R X)) 1 €8 pa-p
-wo(g)+ 30 (I3 +555)

Since F (a, —1;¢;z) = 1 — (a/c)z, it follows from Lemma 9 that
4—p—d
4 55) B, -
d(x)=—p n2 2 2 <1+—|x|>
ré) d

s (d
=-27'CpRy ) (E + |x|2) if x| < 1.
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Here we have used the definition of R; g from (2). We now see that with the choice
R = R; g the coefficient in front of |x|? vanishes and we have

lx — |2 lx — |/S 2-p—d
/ ( e [T R
[yI<R2, B

pd _
1 -1 4-p
= -2 CﬂR2ﬂ 8 +2 mCﬂRz’ﬂ
_gd(2 —
=—Cg gﬂﬁ ( A if x| < Ryp
B —B)
Therefore du(x) = 72+ﬁ (R — |x|? ) ILBR (x) dx is a probability
measure that satisfies the second cond1t10n in Lemma 10 W1th
d2 - p)
n = _R%Jg— .
B —B)

The task is now to show that the first condition in the lemma is satisfied as well,
namely that the total potential of y is at least n for [x] > R g. Once this is shown,
we infer from the lemma that p is the unique (up to translations) minimizer and we
obtain the value for the minimal energy stated in Theorem 2.

At this point it is convenient to introduce the function

res) g ( B 2-p—d B —1) :
1F -5, 12— 5 iftp>1,

vy i {TeDraEs T T e ’

—5,—1;%;,0) ifp<1.

Similarly as in the proof of Theorem 1, using some straightforward manipulations

with gamma functions, we deduce from Lemma 4 that i, which is originally defined

only in [0, 00) \ {1}, extends to a continuously differentiable function on [0, c0).
Using (17), we may rewrite ® in terms of w:

ﬁ-‘rd

<I>(x)=—ﬁ_ln% Y (1x]?).
1_‘(7)

and obtain, for all x € R,

Ix — y[? |x—y|ﬂ> ) 5, 2b=d
— (R 5—IyIH) ™7 dy
/I)’|<R2,/3( 2 p ’

(=54 ><ﬂ>
e R ()

(\Rw =

_ _ﬂflnd NE= ’3;1()1)“(@) < (\_‘ ) -

- w’a)(\éﬁf - 1)) +R()

= —137

Ry
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where

Cp 4 2 4 r¢=2=dy b
R@) = LRy (‘—x +—) _ g4 1 )d D)
2 ? Rz’ﬂ 4—8 ]"(7)

xRSy (wm + Wn(\%ﬁf - 1))

Since z — F(a, —1; c¢; 7) is affine linear, it follows that ¥ (o) = ¥ (1) +¢'(1)(p —
1) for p < 1. Therefore R is constant in {x : |x| < R g}, and its value is given by
the constant that we computed before,

4-d(2—pB)
2P pE—p)

Since R is a quadratic polynomial, this formula holds for all x € R?. The desired
inequality for the total potential is therefore equivalent to the inequality

—B (W) — v =y (- D) =0 forallp>1.

This inequality is a consequence of the convexity of ¥ for 8 < 0 and its concavity
for B € (0, 2), which we have shown in Corollary 6. This completes the proof of
Theorem 2. m|

R(x) =—CgR if x| < Ry .

6. Completion of the Proof of Theorem 1

The proof of Theorem 1 in the previous section relied on the convexity of a
certain function, which we will justify in this section.

Throughout this section, we assume thatd > 2,2 <« <4, B (0) < B <2
and B < «. We introduce the function

M -1
V(p) =B ———Va(p) =B ¥p(p), (30)
Ve (1)
where v/, and ¥4 are defined by (21). To lighten the notation, we do not reflect the
dependence of W on d, @ and f in the notation. The main result of this section is
the following proposition, which completes the proof of Theorem 1:

Proposition 11. The function V is convex on [0, 00).

For the proof of this proposition we will have to distinguish various cases. We
begin with the easiest one.

Proof of Proposition 11 for B > —d + 4. Tt follows from Corollary 6 that f~! Vs
is concave and v, is convex on each one of the two intervals (0, 1) and (1, c0)
(note that the inequality 8 > —d + 4 guarantees the assumption ¢ > a + 2 of the
corollary.) Since the derivatives of both functions extend continuously to the point
o = 1, we deduce that both functions have the respective concavity and convexity
properties on all of (0, co). Moreover, since, according to (22), 8~ 1//}/3(1) > 0 and
Y., (1) > 0, we obtain the claimed convexity of the function (26). This concludes
the proof of the proposition for 8 > —d + 4. O
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In the remainder of this section, we will prove Proposition 11 for 8 < —d + 4.
As in the preceding proof, we will show separately the convexity on [0, 1] and on
[1, 00). This is the respective content of the following two lemmas.

Lemma 12. Letd > 2,2 <o <4 and By(a) < B < —d + 4. Then V¥ is convex
on [0, 1].

Proof. Step 1. We show that W is twice continuously differentiable on [0, co)
and that W”(1) > 0. (We note that the twice differentiability on (1, c0) and the
continuity of the second derivative at 1 will not be needed in the proof of the present
lemma, but later in the proof of Lemma 13.)

Under the assumption d +y > 3, it follows from Lemma 4, together with some
manipulations of gamma functions, that v, is twice continuously differentiable on
[0, o0) and that

vy rHrd+y -3

Yy () =S(5 =D

22 1-\(¢1-§—§—4)l—-(20l-§—2y—2) : (31)

Since B.(o) > —d +3ford > 2 and 2 < a < 4, the assumptiond + y > 3
in the lemma is satisfied for both y = « and y = g. It follows that W is twice
continuously differentiable on [0, co) with

L (1
() =p"" zﬁ—il; Yo (1) — B~y (1)
_le I+ B —2) [ (£2=2) rHrd+a-3)
2°2 F(d+a_Z)F(d+/;372)l—-(2d+2;372) F(%)
1B rérd+p-3

— 551 - -
2°2 F(‘Hg 4) F(2d+2/.‘3 2)

1 NTrd+4-3) (g—”w+ﬁ_$i%i—wé—n)
zr(d+§74)l-(2d+2;372) 2 (d+a_3)d+2ﬂ 2 .

Since —d + 3 < B < —d + 4, we have

L TOrd+p-3)
ZF(d+g—4)F(2d+2ﬁ—2)

—104+3a+7d+od—d>

Meanwhile, the condition 8 > B, () = o —3 means
d+p —3)dte=4
(%—1( d )H;4—é—ngo.
(d+a—3) B2

This can be seen by setting the expression on the left side equal to zero and solving
the resulting quadratic equation for 8. The number of arithmetic manipulations can
be reduced by noting that § = « is one of the solutions of the quadratic equation.
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Factoring out B — « one arrives at a first order equation for 8. Thus, at the end, this
argument shows that ¥ (1) > 0, as claimed.

Step 2. We now assume thato = 4ifd = 2,3 <a <4ifd =3and2 <o <4
if d > 4 and show that ¥ < 0 on (0, 1).

Note that together with the information (1) > 0 from Step 1, this implies
that W” > 0 on [0, 1]. This proves the lemma under the above extra assumptions
on .

To prove the nonpositivity of

LV
Yo (1)
on (0, 1), recall from (22) that /3_110/’3(1) > 0 and ¥/ (1) > 0. Thus, it will be

sufficient to show that v/, is concave on (0, 1) and that 8 -1 1///’5 is convex on (0, 1).
According to (11) and (12) we have

— ’3 Iﬁw ﬁ—lwg/

4V

_Yyez -Y 4
W/(,O)Z de 22 2
’ Yo7 F(-% 41,5254 4,

,2+l,0) ifp<1,
) ifp>1.

The claimed concavity and convexity properties of ¥/, and S~/ /’3 now follow from
Corollary 6. The additional assumptions on « arise as follows: When considering

y = o we apply the corollary witha = =% +1,b = %, c= %’ + 1. Since

the prefactor —% 2*3*‘] is positive, we need to verify that a(a + 1)b(b + 1) < 0.
Since a(a + 1) = (=5 + 1)(=5 + 2) is nonpositive, we need to verify that
bb+1) = ‘# 6_‘;_‘1 is nonnegative. Recall that o ranges over [2, 4]. When
d > 4,then (6 —a —d)(4 —a —d) > 0 for all such «. For d = 3, this is only true
for « > 3 and for d = 2 it is only true for &« = 4. This proves ¥ < 0 on (0, 1)
under the stated assumptions on «.

Step 3. We now assume that either d = 2 and 2 < o < 4,ord = 3 and
2 <« < 3 and show that ¥ > 0 on (0, 1).

Together with Step 2, this will complete the proof of the lemma.

By continuity (or by a small variation of the following proof), we may assume
that @ > 2. By repeated application of (11), we have that

W(p)=C FQ2—%,60=8=d, &bt oy, p2— B, 0B84, dth, )

2 2
with
Cl = @—2d+a—Hd+p-2)Td+p I (HEId+% -1
: 4d(d +2) rd+a— Z)F(d+ﬂ)r’(d+g_1)’
Cy = C-PpUé-p-dd+p-2)
4d(d +2)

B

2 bl
and % >2— + o= ’3 —d . Moreover, C; and C; are both
positive. (Note that C; would vanish if we allowed o = 2.) Therefore we are in the

By the assumptions on d, «, and /3 we know that 0 < 2 — % < 2 —
0 < b-a=d _ 6=p=d
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situation of Lemma 7 and we infer that either " has no zero in [0, 1], or there is a
unique zero pg € [0, 1] and, in this case, ¥” > 0 on [0, pp) and ¥ < 0 on (pg, 1].

By Step 1, we know that ¥ (1) > 0. Thus, distinguishing the cases ¥”(1) > 0
and W’ (1) = 0, we deduce that in either case we have ¥’ > 0 on [0, 1). This
proves the assertion made at the beginning of this step and completes the proof of
the lemma. |

Finally, we discuss the function (30) on the interval [1, c0).

Lemma 13. Letd > 2,2 < o < 4 and B«(a) < B < —d + 4. Then the function
(30) is convex on [1, 00).

Proof. Tt suffices to show that

' ( )—ﬂ—lww”( ) — B (p)
p) = Vf&(l) o \P B 1Y
I///(l)a o o
_ g1 z_p o 2—a—d.d. -1
N 1//&(1)2(2 Dpi2F@ - 4. 254 407
()t s

is nonnegative on (1, oo). This is equivalent to showing that

Vi) o s asp
__p-lTpE i 2 _a 2-a—d.d. 1
g(p) =P —%(1)2(2 l)pzm )
- ﬁ”é(? - 1)F(2 — B 2bd d, oy

is nonnegative on (1, 00).
Since, by (11),

d o 4—-—a)2—a—d)
2z 2 2) 2d

F(3— % g=d, &2, gy,

and % <0<3-3< %, Lemma 5 tells us this derivative is nonpositive
on [0, 1) (note that 2 — o« — d < 0 under our assumptions). Taking z = ,0_1 we
therefore have that

pr>F2-5 24440

is a nondecreasing function on (1, 00). Again, from Lemma 5, we see that it is also

nonnegative.
Likewise, by (11),
d g 4-pHE-p—-4d —B—
B 2-B—d.d. \ _ B 4=B—d. di2.
d—ZF(z——,T,j,Z)— 2d F(3_§’T’T’Z)'

We claim that this is nonpositive for z € [0, 1). To see this, we apply the comment
made in the first part of the proof of Lemma 5, namely, that F(a, b; c; z) > 0 for
all z € [0, 1), provided that ¢ > b > 0 (without any assumption on a). Since
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F(a,b;c;z) = F(b,a;c; z), we also see that F(a, b; c;z) > 0forall z € [0, 1),
provided that ¢ > a > 0 (without any assumption on b). We apply this with
a=73-— g and ¢ = d+2 . Our assumptions —d +4 > 8 > B.(«) > —d + 3 show
that, indeed, ¢ > a > O Takln also into account that2— 8 —d < 0, we deduce that
the derivative <4 i FQ2 - > 2, z) is nonpositive on [0, 1). Taking z = p -1

we therefore have that

pr>F2—5. 254407

is a nondecreasing function on (1, 00).

Sinced > 2,2 <a <4and3 —d < B < 4 — d, a quick check shows
that ! %%<% — 1) and —ﬁ’lg(g — 1) are both nonnegative, and p P s
a positive and increasing function on (1, 0o). Thus g is an increasing function on
(1, 00).

We recall from Step 1 in the proof of Lemma 12 that W is twice continuously
differentiable on [0, o0) and that ¥”(1) > 0. Since g(1) = W”(1), we deduce
g(1) = 0. Together with the monotonicity of g that we have just proved, and we

have our claim. O
We are finally in position to complete the proof of the main result of this section.

Proposition 11 for B < —d + 4. 1t follows from Lemmas 12 and 13 that W is con-
vex on each one of the two intervals [0, 1] and [1, 00). Since W is continuously
differentiable at the point p = 1, we deduce that it is convex on all of (0, 00), as
claimed. |

7. Logarithmic Case

In this final section, we explain how the above proofs of Theorems 1 and 2 can
be extended to the case B = 0, where the expression 8! [x — y|# in the energy
functional is interpreted as In |x — y|. The basic idea is that the conditions in Lemma
10, which have been verified for g # 0, extend by continuity to the case 8 = 0.

Proof of Theorem 1 for = 0. We recall the definition of v, from (21). From the
definition of the hypergeometrlc series it follows that ¥y = 1, and it is easy to see
that wo =limy, oy~ (1//V — 1) exists. In particular, for any R > 0, we have

(D RITRR (1) RS

Thus, it follows from (23) that the total potential of (|S”l_1 |Rd_l Y 18,8 #(0) 1s equal
to

1 <|x — Rw|*

|Sd7]| S o

~E((x) -ra((2])

—In|x — Ra)|) dw
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The function ¥ is differentiable, as can be seen by studying the convergence behav-
ior of the corresponding power series at the endpoint of the radius of convergence;
see also Remark 14 below. Thus, setting the radial derivative of the total potential
equal to zero, we arrive at the condition

R 4 7/
— Y (1) = Y1) =0,
o

vghich is satisfied precisely for R = Rg,0 given by (1). Here we use the value of
w()(l), which can be read off from (22).
The inequality that needs to be shown is that, for all x € R4,

Rg 0 x |2 - x |2 -
Ce(| =) =10 Reo + 0 (|—) = (1) = In Reo + o(1)
o Ry0 Ra,0
By (32) and limg_.o Ry, = Ry,0, this inequality is a consequence of inequality
(25). |

Remark 14. The function v/ can be expressed as a generalized hypergeometric
series 3Fp R , whose definition can be found for instance in [22, Section

9.14]. This expression is not important for us, but may be useful in other contexts
and we give it here. Indeed, by introducing polar coordinates, we find that

1 T
/ In|x — w|do = -|Sd*2|f In <|x|2 —2lx|cosd + 1) sin?=2 6 d6
§d—1 2 0

1 1 d=3
=—|SH|/ In(|x>=2lx|t +1) (1 =37 dr
3571 ) )

l d-3 d-3
- zd—3|sd—2|/ 2In(1+ D)+ In(l = 220) (1= 0T ' du

d—1
_ =350~ 2|<z* YT
o

5
4x|  T(GHrE . L4 4 )
T+ x])? T (d) 3 2,d | (1+x])?

_ |x| L1, 4y
= Sd 1 1 1 - F 2 N
| I( n(l+x)) = ——5 2( 1+ [x])?

1+ xD2° 2.d
Here we have successively changed variables cosf = w - x/|x|, t = cosf and
u = (1 +1¢)/2. For the evaluation of the integral we applied the following integral
formula (see e.g. [31, eq. (4.1.2)]): For bg > ap > O and z € [0, 1),

(ao, ai,ax ) I"(bo)
3F> I|l=—
bo, by I (ao)T" (bo — ao)

1
x/ u® (1 — w0V Fay, ar; by zu) du . (33)
0
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_log(1—-2)
Z

Setting a; = ap = 1 and by = 2 and using that F (1, 1;2; z) = , we then

have

a()v 1’ 1 ‘ ) F(bO) ! ap—2 bo—ap—1
3F2( ) =- w7 (1 — u)?07% og(1 — zu) du .
by, 2 zI'(ap)T"(bo — ao) Jo
(34)

4lx]

In our setting, z = T+ x2

. Thus we see that, in the notation of the previous proof,

JP . L1L,4 4
A+vp2 2\ 24 |a+yp?)

Moreover, using the formula of the derivative of a generalized hypergeometric
function we find, after a tedious, but straightforward computation,

i (o) = ! V=1 a1, g, WP )
%(p)—2<ﬁ(1+ﬁ)+ﬁ(l+ﬁ)3F(l, Hidi 2.

Using a transformation formula for the hypergeometric series [22, (9.134.2)], we
can write this as

Vo(p) = In(1 4 /p) —

Gy = [T PSS+ L) ifp <1,
0 sp7 WP HL S 07 ifp > 1.

As in the proof of Lemma 4 we can deduce from the latter formula the continuity
of ¥ at p = 1, which was used in the previous proof.

Proof of Theorem 2. Let us set
~ 9. 2=d
Q(x) = — Infx —yl(1—1[yl") 2 dy,
lyl<1

so that, by scaling, the total potential of the measure v with

2—d
dv(y) := (R* — [y[*) 2 Lgpo)(»)dy

R (ComR+ (%)) + €0 e B ‘2+d

0 R 2 Rl ")
Here we recall that the constant Cg is defined in (3) and we use the expression for
itin (28) with 8 = 0. The potential of the quadratic (¢ = 2) part of the kernel was
computed similarly to the case 8 #= O.

We will denote the potential ® in (27) by ® g, making the 8-dependence explicit.
A short computation shows that for each x € R4,

lim (@4() +7'Cy) = B + Co. (35)

Here we have used again (28) and we have set C~‘0 = % lg=0Cg.
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As we have shown above in the proof of Theorem 2 for 8 # 0, the function

x.—>R2ﬁq>ﬁ< xﬂ) Cp pa- ﬁ(‘RZﬂ ilﬂ)

is constant on{x e R?: |x| < R, .8} and not smaller than this constant in {x €

¢ |x| > Ry p}. Clearly, these properties are preserved if we add the constant
R2 2.8 g-lc . Since B — Rj g is continuous, these properties are also preserved in
the limit B — 0. Thus, according to (35), we have shown that the function

Bo(8(5,) +60) + SR (|7 +5
X —_— -
2,0 Rao 0 2 20 Ry 4
is constant on {x € R? : |x| < R0} and not smaller than this constant in
{x € R? : |x| > Ry}. Clearly, this property is preserved if we add the constant

R%qO(Co InRy o — 6‘0). This shows that the conditions in Lemma 10 are satisfied
and we conclude as in the case 8 # 0. O
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