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Abstract

Extrapolation with domain size has received plenty of attention recently, both in its own
right and as part of the broader issue of scaling inference and learning to large domains.
We consider Markov logic networks and relational logistic regression as two fundamental
representation formalisms in statistical relational artificial intelligence that use weighted
formulas in their specification. However, Markov logic networks are based on undirected
graphs, while relational logistic regression is based on directed acyclic graphs. We show
that when scaling the weight parameters with the domain size, the asymptotic behaviour
of a relational logistic regression model is transparently controlled by the parameters, and
we supply an algorithm to compute asymptotic probabilities. We show using two exam-
ples that this is not true for Markov logic networks. We also discuss using several exam-
ples, mainly from the literature, how the application context can help the user to decide
when such scaling is appropriate and when using the raw unscaled parameters might be
preferable.

Keywords Markov logic networks - Relational logistic regression - Scaling by domain
size - Bayesian networks

1 Introduction

In the last 20 years, Statistical Relational Artificial Intelligence (StarAl) has devel-
oped into a promising approach for combining the reasoning skills of classic symbolic
Al with the adaptivity of modern statistical AL It is not immediately clear, however,
how StarAl behaves when transitioning between domains of different sizes. This is
a particularly pertinent issue for StarAl since the modular design of statistical rela-
tional formalisms, that are presented as a general template alongside a given concrete
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domain, is one of their main attractions. Furthermore, scalability and the prohibitive
costs of learning and inference on large domains have proven a key barrier to the wide-
spread deployment in applications, and therefore a transfer of learning results from a
smaller set of training data to a larger set of test data is especially attractive.

The topic of extrapolating across domain sizes has therefore received some attention
from the literature, and general patterns of behaviour have become clear. On the one
hand, Jaeger and Schulte (2018, 2020) have provided very limiting necessary condi-
tions under which domain size does not affect inference in different StarAl approaches.
On the other hand, Poole et al. (2014) have characterised the extrapolation behaviour
of both Markov Logic Networks (MLNs) and Relational Logistic Regression models
(RLRs) on a small class of formulas on which the inferences turn out to be asymp-
totically independent of the learned or supplied parameters. This characterisation was
extended and partly corrected by Mittal et al. (2019) using considerable analytic and
numerical effort. They also present a proposal to mitigate the domain-size dependence
in MLNs by scaling the weights associated with formulas according to the size of the
domain, calling the resulting formalism Domain-size Aware Markov Logic Networks
(DA-MLNSs). With similar computational effort, they prove that asymptotic probabili-
ties in DA-MLNs are dependent on the supplied parameters for some example cases.
However, a general and systematic investigation of this dependence is still lacking.

1.1 Aims of the paper

This paper has three main objectives: First, we introduce a representation of the prob-
ability of an atom in a grounding of an MLN as the integral of a function

807 (%)) directly derived from the weight parameters of the model. We then

R@)
use this tool to evaluate the asymptotic probabilities (with increasing domain size) of
two examples, and we see that neither MLNs nor the scaled DA-MLNs prove adequate
to ensure an asymptotic behaviour that actually depends on the parameters of the
model: R(x) in the (DA-)MLN given by P = R(x) : w, and Q(x) in the (DA-)MLN
given by P A OQ(x) A R(x, ).

Second, we adapt domain-size dependent scaling of weights to a directed analogue
of MLNs, the RLRs introduced by Kazemi et al. (2014a, 2014b), to obtain a formal-
ism that we call Domain-size Aware Relational Logistic Regression (DA-RLR) in anal-
ogy to DA-MLNs. We show that the weight-independent asymptotic behaviour that
was exemplified above for MLNs and DA-MLNs does not occur in DA-RLRs; in fact,
we provide an algorithm to determine the asymptotic probabilities. To the best of our
knowledge, this is the first StarAl formalism for which such a complete characterisa-
tion of the asymptotic probabilities from the supplied parameters is known.

Finally, the natural interpretation of scaled weight parameters as weighting propor-
tions, rather than raw numbers, of influencing factors, allows us to investigate whether
possible scenarios of changing domain sizes are more adequately covered by a scaled
or an unscaled model. We will discuss with reference to examples of both real and
toy models from the existing literature how the context of a use case can help a user
to make that decision, and we will see that a particularly important case of changing
domain size, that of a model trained on a random sample of a full data set, can be ide-
ally represented by a scaled model.

sigmoid(
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1.2 Prior research on extrapolation across domain sizes

The issues around changing domain sizes were noticed very early on in the develop-
ment of Statistical Relational AI. Already Jaeger (1998) discussed the existence of
asymptotic probabilities in relational Bayesian networks (another directed networks
approach), making a connection with finite model theory and infinite models of prob-
abilistic theories. This is indeed a very interesting connection, and it would be an
exciting direction for further work to investigate the implications the current work on
asymptotic probabilities has for infinite models (See Sect. 7).

However, he did not characterise the probabilities that relational Bayesian networks
would converge to, nor the conditions under which those probabilities depend on the
weights. This was first explicitly isolated as a problem by Jain et al. (2010), who intro-
duced Adaptive Markov Logic Networks (AMLNs) as a proposed solution. This was
the first suggestion to vary the weights given to the formulas of an MLN as the domain
size increases. While our approach can be seen as a special case of a putative RLR-
translation of AMLNS, the focus of this work differs from that of Jain et al. (2010) in at
least two important ways. Firstly, we isolate one particular scaling function and inves-
tigate its technical properties and its asymptotic behaviour in depth. Secondly, while
Jain et al. advocate learning the function from data in different domains, we suggest
considering the choice of scaling a semantic problem that has as much do with how the
data was obtained or is interpreted as with the data itself.

A detailed analysis of the behaviour of the uncorrected models was undertaken by
Poole et al. (2014) with reference to MLNs and the new framework of RLRs introduced
by Kazemi et al. (20142014a,b). They undertook a study of the asymptotic behaviour
of MLNs and proved 0—1 laws for a certain class of MLNs (corrected by Mittal et al.
(2019)). On the other hand, Jaeger and Schulte (2018) showed that a narrow class of
MLNs (corresponding to the o-determinate MLNs that define infinite models in the
work of Singla and Domingos (2007)) are well-behaved and indeed invariant under an
increase in domain-size.

Most recently, Mittal et al. (2019) refined the classification of Poole et al. (2014)
and suggested a putative solution to the problem of probabilities changing with domain
size. In their model of DA-MLNs, which will be formally introduced in Sect. 2.3,
weights are changing according to a formula that relies explicitly on the number of
connections a formula could possibly induce. They showed that for certain combina-
tions of MLNs and queries, the asymptotic probabilities depend in a non-trivial way
on the weights if they are considered as a DA-MLNs, but not, if they are considered
as a straightforward MLNs. We will see in Sect. 3 in some examples that this does not
generalise across DA-MLNs and queries, and will suggest a reason why this is unlikely
to be solved by simply changing the way the weights are recalibrated depending on the
induced connections.

Instead, we believe that a transition towards directed models will overcome what
we consider the main technical weakness of the DA-MLNs, the aggregation func-
tion from the numbers of connections of different literals in the same formula. In a
directed model, we can focus our attention on scaling with regard to the relation at
the child node, rather than having to aggregate different connections. We show that
when applied to the RLR approach, the scaling of the weighting with the domain size
has both a very natural interpretation and guarantees weight-dependent behaviour as
domain size increases.
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1.3 Extrapolation and scalability

Understanding the asymptotic behaviour of a statistical relational formalism can be a major
contribution to scalability. Despite the recent advance in lifted inference approaches, which
exploit symmetries induced by the statistical relational formalism, the inherent complexity of
the task provides a natural limit to the scalability of inference — See the work of Jaeger (2000,
2015), Jaeger and van den Broeck (2012) and Cozman and Maua (2017) for an overview of
the results around this topic.

Asymptotic investigations provide for a different approach: Rather than providing a new
method for exact inference or for approximate inference that is guaranteed to be a good esti-
mate on any domain, an asymptotic representation allows us to compute asymptotic probabili-
ties, which are then good estimations on large domains, and whose error limits to 0 as domain
sizes increases. This enables a form of approximate inference in time constant with domain
size; since the approximation is only valid asymptotically with increasing domain size, this
does not contradict the known results regarding the complexity of approximate inference cited
above.

DA-MLNSs were originally introduced not for approximate inference, however, but for the
parameter learning task. Learning parameters involves many inference steps, exacerbating the
scalability issues described above. Therefore, learning parameters from randomly sampled
subsets of an intended training set has the potential to improve parameter learning times sub-
stantially. If the asymptotic probabilities are convergent, then one would assume that sampling
from sufficiently large subsets would give a good estimate of the optimal parameters, by the
following procedure:

Sample substructures of domain size m < n, where m is larger than the highest arity ocur-
ring among the relation symbols of the DA-MLN and the arity of the queries we are typically
interested in. Find the parameters 6 of Gj, that maximise the sum of the log-likelihoods of the
samples of size m. Now consider G,. By the asymptotic convergence of probabilities, if 7 is
sufficiently large, these parameters maximise the likelihood of obtaining sampled substruc-
tures of size m using G, including realisations of the typical queries. This procedure is related
to that of Kuzelka et al. (2018), but while they consider samples of size m as training data,
they still learn with respect to a fixed sample size n.

However, estimating the parameters in this way only works if the asymptotic probabilities
are truly dependent on the parameters. It is well-known from Poole et al. (2014) and Mittal
et al. (2019) that for ordinary MLNs and RLRs, this is not generally the case. We see below
that there are even DA-MLNs where the query probabilities do not vary asymptotically with
parameters.

In our contribution, we provide an algorithm to compute asymptotic probabilities with
respect to DA-RLRs and show that the asymptotic limit indeed depends on the parameters
associated with the DA-RLRs. We thereby contribute to applications to both parameter learn-
ing and inference on DA-RLRss. Furthermore, via the transparent rescaling relationship of
DA-RLRs to RLRs, they can be exploited for learning and inference in RLRs themselves.

2 Markov logic networks and relational logistic regression

In this section we will lay out our terminology and briefly present the syntax and
semantics of Markov Logic Networks and Relational Logistic Regression. Both of
these approaches combine statistical with logical information, and both use weights to
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achieve this. However, MLNs are based on undirected graphical models (Markov Net-
works) while RLRs are based on directed graphical models (Bayesian Networks). An
insightful discussion on this distinction and its importance in Statistical Relational Al
can be found in the textbook of De Raedt et al. (2016).

2.1 Terminology

All the frameworks that we consider in this paper use the terminology of relational
first-order logic in both their syntax and the definition of their semantics. While we
repeat it here in brief, it can be found in most standard logic textbooks.

A (relational) signature L is given by a set of relation symbols R, each of a given
natural number arity, and a set of constants a. A relation symbol of arity 0 is known
as a proposition. We always assume that our signature contains the propositions T and
1. In a multi-sorted signature, each constant is annotated with a sort label, and each
relation symbol is annotated with a list of sort labels of length equal to its arity. The
language corresponding to a given signature additionally has infinitely many variables
for each sort. An L-term is either a constant or a variable. An L-atomis a relation sym-
bol together with a list of terms (whose sorts correspond to the list of sorts with the
relation symbol). An L-literal is then given by either an atom or a negated atom, where
negation is indicated by —. A (quantifier-free) L-formula ¢ is defined recursively from
literals using the binary connectives A, V and —. An L-structure X is given by a multi-
sorted domain D (a set of individual elements for each of the sorts of the signature)
and an interpretation of each of its symbols, that is, an element of the correct sort for
every constant and a set of lists of elements of the correct sorts for each relation sym-
bol. In all these terms, the signature will be omitted where it is clear from context.

If £ C £ are two signatures, then we can consider any £'-structure as an £-structure
simply by omitting the interpretations of the symbols not in L. In this situation, the £
-structure is called the reduct and the £'-structure is called the extension.

A formula is grounded by substituting elements of the appropriate domains for its
variables, and it is ground if it does not (any longer) contain variables. Therefore, any
choice of elements from the domains matching the sorts of the variables in a formula is
a possible grounding of that formula.

A ground atom holds or is true if the substituted list of elements lies in the interpre-
tation of the relation symbol. T holds in every interpretation and L holds in no inter-
pretation. Whether a formula holds is then determined by giving =, A, V and — their
usual meanings as 'not’, ’and’, or’ and “if... then...” respectively.

We will adopt the notation X for a tuple (x;,x,, ...) whose length we do not wish to
specify, and we may write X € D when all entries in X are in D. We will further use the
notation |@(x)| ;for the number of all true possible groundings of @(¥) in X (the sub-
script will be omitted where the structure is clear from the context).

Finally, let us set some notation for directed acyclic graphs that we will use later
on: A cycle is a path from a node to itself in the directed graph, a loop is a path from
a node to itself in the underlying undirected graph. A directed acyclic graph (DAG) G
is a directed graph without cycles, a polytree is a directed acyclic graph without loops.
Nodes without parents are called roots, nodes without children are called leaves. The
length of the longest path from a root node to a given node is the latter node’s index.
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2.2 Markov logic networks

As MLNSs have been extensively discussed in the literature, we will use this subsection
mainly to set some notation. A more complete discussion can be found in the original
paper by Richardson and Domingos (2006) or the textbook of De Raedt et al. (2016).
Therefore we will also restrict the definition of MLNs to a setting large enough to
accommodate all the examples in this work and in the papers mentioned in Sect. 1.2

Definition 1 Let £ be a (potentially multi-sorted) relational signature. A Markov Logic
Network T over L is given by a collection of pairs (¢;, w;) (called weighted formulas) where
@ is a quantifier-free £-formula and w € R. We call w the weight of ¢ in T.

Example 1 As a running example for the next subsections, we will consider a signature
with two unary relation symbols Q and R. Then one could build an MLN consisting of just
one formula, R(x) A Q(y) : w. If the signature is single-sorted, one should distinguish it
from the MLN {R(x) A Q(x) : w}, where the variables are the same. An example domain
for the single-sorted signature would be the three-element domain {1,2,3}, which gives
rise to 9 possible groundings of the formula R(x) A Q(y) : w, one for each choice of x and

y.

Markov Logic Networks have been introduced by Richardson and Domingos (2006)
and have since then been highly influential in the field of Statistical Relational Al. Their
semantics is based on undirected networks, which means that any literal in a formula
can influence any other in a dynamic way. We can obtain such a semantics for an MLN
T by choosing a (finite) domain for each sort of £. Given such a choice, we will define
the semantics as a probability distribution over all L-structures on the chosen domains
as follows:

Definition 2 Given a choice D of domains for the sorts of £, an MLN T over £ defines a
probability distribution on the possible L-structures on the chosen domains as follows: let
X be an L-structure on the given domains. Then

PT,D(x) = %exp(zwini(x))

where i varies over all the weighted formulas in 7, n,(¥X) is the number of true groundings
of @; in X, w; is the weight of ¢, and Z is a normalisation constant to ensure that all prob-
abilities sum to 1.
As the probabilities only depend on the sizes of the domains, we can also write Py, for
domains of size n when the signature is single-sorted.
We refer to Y w;n,(%X) as the weight of X and write it as wy(X).
1

Example 2 In the MLN R(x) A Q(x) : w, the probability of any possible structure X with
domain D is proportional to exp (w - n(¥X)), where n(X) is the number |R(x) A Q(x)| of
elements a of D for which R(a) and Q(a) hold in the interpretation from X. In the MLN
w : R(x) A O(y), however, this probability is proportional to exp (w -n' (f)), where n'(%X)
is the number of pairs (a, b) from D X D for which R(a) and Q(b) hold in the interpretation
from X. In other words, n/ (%) is the product |R(x)| - |Q(Y)|.
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2.3 Domain-size aware Markov logic networks

Mittal et al. (2019) have introduced weight scaling to MLNs in order to compensate for
the effects of variable domain sizes. They call the resulting formalism Domain-size Aware
Markov Logic Networks (DA-MLNs) and we will rehearse the main definitions from their
paper here.

Definition 3 A Domain-size Aware Markov Logic Network (DA-MLN) is given by the
same syntax as a regular MLN (see Definition 1).

In order to adapt the semantics to changing domain size, Mittal et al. (2019) use the
concept of a connection vector.

Definition 4 Let ¢ be a formula. Let ¥ be the set of literals of ¢ and for every y € P, let
V,, be the set of free variables in ¢ not occurring in y. For every variable x, let D, signify
its domain. Then the connection vector of @ is the set { ] |Dx| lyw € P}

x€V,,
Example 3 The connection vector of the formula R(x) A Q(x) is given by the set
{1,1} = {1}, since the same variables occur in both literals and therefore both products in
the definition are empty. The connection vector of the formula R(x) A Q(y) is given by the

set {|Dy‘, |D,|}. since Vg, =y and Vo) = X. If the signature is single-sorted, |Dy’ =|D,|

and the connection vector simplifies to {|D,]}.

The connection vector records how many tuples each literal could possibly connect to;
in the formula P(x) A O(x, y) A R(z), for instance, the literal P(x) could connect to |D,|-|D,|
many tuples, the literal Q(x, y) could connect to |D_| many tuples and the literal R(z) could
connect to |D,|-|D,| many tuples. We will see several examples later where even in a sin-
gle-sorted structure the connection vector can contain different elements.

The problem now is to aggregate this information into a single scaling factor. Mittal
et al. (2019) use the maximum of the entries of the connection vector, but suggest investi-
gating other options as well (see Subsection 3.4 below).

Definition 5 Given a choice of domains for the sorts of £, a DA-MLN T over £ defines a
probability distribution on the possible £-structures on the chosen domains as follows: let
X be an L-structure on the given domains. Then

1 w;
Prp(X) = = ex —n(X
o) = - p(Z z i
where 7n,(X) is the number of true groundings of ¢; in X, w; is the weight of @,, C; j, is the
maximum of the entries of the connection vector of ¢;, and Z is a normalisation constant to

ensure that all probabilities sum to 1. If the connection vector is empty, then C;, is set to
be 1.

Example 4 For R(x) A Q(x), Cpy = 1, while for R(x) A Q(»), C)y = max <|D}.|, D, )

Mittal et al. (2019) give several examples of how moving from ordinary to DA-MLNs
changes the asymptotic behaviour; we will see further examples in Sect. 3 below.
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2.4 Relational logistic regression

Relational Logistic Regression differs from MLNs in that it is based on directed rather
than undirected models. Thus rather than allowing arbitrary weighted formulas, one first
specifies a Relational Belief Network (RBN). A detailed exposition of RLRs is given by
Kazemi et al. (2014b), and we will restrict ourselves here to the case of a relational sig-
nature without constants.

Definition 6 A Relational Belief Network (RBN) over a (relational) signature (without
constants) £ is a directed acyclic graph whose nodes are relation symbols from £ and in
which every relation symbol appears exactly once.

A Relational Logistic Regression T over a relational signature £ consists of an RBN
G whose nodes R are labelled with a pair (@, (y;, w;, V,);), where @ is an L-atom starting
with R and (y;, w;, V), is a set of triples such that V; is a finite set of variable symbols, y; a
quantifier-free formula and w; € R. Furthermore, the following are required to hold:

1. None of the variable symbols appearing in g are ina V;

2. Only relation symbols from parents of R occur in y;, and every variable in y; appears
either in @ or is in V;. If R is a root node, then there is only one possible formula, with
yw = T and V; is set to be @.

Furthermore, for any formula y(x), let the index of w with respect to a given or implied
RBN be defined as the largest index of any relation symbol ocurring in y.

Example 5 Consider the single-sorted signature { Q, R} already used in the examples of the
last subsections. Then we can form the RBNs Q — R and R — (. Choosing the latter,
we now have to choose a weight wy for R(x). This determines the probability of R(a) to
hold for any a € D. At Q, take @ :=0(x). Then for a fixed weight w, we can distinguish an
RLR with y :=R(x) (and V;:=0) and an RLR with y :=R(y) (and V;: ={y}).

While the semantics of the MLNs in Definition 2 was given as a single probability
distribution, we will define the semantics of the RLR by recursion over the underlying
RBN. More precisely, the definition will proceed by recursion over the index of the rela-
tion symbols as nodes of the RBN. To facilitate writing, we will introduce some nota-
tion before defining the semantics of an RLR:

Definition 7 The sigmoid function is defined by sigmoid(k)::e:lf%. We will further-

more use the expression 1, for the function that takes a structure as input and returns 1
whenever y holds in that structure and O otherwise. Finally, we will use the convention of
denoting with y(a/X) the grounding of y where d is substiuted for the variables X.

Let £, be defined as the subsignature of £ consisting of all those relations that label a
node of index smaller than n. Then we will define a probability distribution on the possible
L,-structures on a given domain D for £ by induction over n and as the product of the prob-
abilities for every grounding of the atom:

n = 0: The probability of any given grounding of the atom in £, at node O is given by
sigmoid(w), the probability of its negation thus by 1 — sigmoid(w).

Assume now that a probability distribution on £, -structures has been defined. We will
now extend it to £, -structures as follows: The probability of an £, -structure is given by
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the probability of its £,-reduct multiplied with the conditional probability of the ground-
ings of the atoms in £, ;\L,. These are given by

PORX)) = Singid(zwizlvl,(a/V,)))

i aeD

Note that the right-hand side of this equation only depends on the £, -reduct because of the
conditions on the y; from the definition of an RLR above.

Example 6 Consider the two RLRs R — Q introduced in the example above. Then the
probability of R(a) is sigmoid(w) in each case. Where Q(x) is annotated with R(x) : w',
the probability of Q(a) for any given element a is sigmoid(w’ - 1 R(a))» Which is sigmoid(w')
if R(a) is true and L otherwise. Where QO(x) is annotated with R(y) : w’, the probability of
Q(a) for any given element a is given by sigmoid(w’ Y, ., 1z(,)) = sigmoid(w’ - m), where
m is the number of domain elements b such that R(b) is true. In particular, it does not
depend on whether R(a) itself is true or not.

3 Asymptotic probabilities in MLNs and DA-MLNs

In this section we will build on the work of Mittal et al. (2019) and give two examples of
dependencies for which an asymptotic behaviour that depends on the weight is achieved
neither in MLNs nor in DA-MLNSs. In order to give a clear and rigorous structure to our
derivations, we will first introduce probability kernels for Markov logic and prove some
basic facts about their behaviour under limits. Then we continue to give a characterisation
of asymptotic probabilities in some MLNs and DA-MLNs. To formalise this discussion
and make it more amenable to calculation, we will use measure and integral notation for
the probability distributions arising from MLNs. We will use p7 p, to refer to the probability
measure induced by an MLN T on a choice of domains D, which can again be replaced by
ur 5 where the domains of the sorts s are of cardinality 7.

3.1 Characterising probabilities in MLN and DA-MLN

In order to determine the probability of a certain ground atomic formula being true, we
compute the probability measure of the set of all worlds in which this formula holds. In
many cases, e. g. if the signature itself does not contain any constants, this probability is
independent of the domain elements used in grounding the formula. In that case, we will
write P(R(X)) for a tuple of variables to indicate that the choice of grounding is immaterial.
This can also be conveniently written as an integral

PT,D(R(a))= / lR(a)dﬂr,D

We would like to replace the indicator function in the integral with a function that we can
express analytically in terms of the weights of the MLN model. We can achieve that by
considering the weighted mean of the indicator functions between two models that only
differ in the value of R(a).
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Let X be a structure and let @ € ¥ be a tuple. Then let X be the structure that poten-
tially differs from X only in that R(d) holds in X, regardless of whether it holds in X.
X_p@ is defined analogously. In this way the class of all structures of a given domain size
divides equally in structures of the form X and structures of the form X_g., and there
is a natural one-to-one correspondence betwen structures of each type. Therefore we can
compute the integral above by instead considering the weighted mean of the indicator
function on both X and X_ge). This mean can be described in terms of an auxiliary func-
tion that reflects the dependence of the weights on the validity of R(X):

Definition 8 Let X be a structure of domain size n, @ € T and let T be a (DA-)MLN. Then
5;(’;(&‘) =) Wi (X)) — D wn(Ep).
The weighted mean of 1) on Xz, and Xz can now be computed as follows:

Proposition 1 For any MLN T, any structure X on a choice of domains D and any ground

atom R(a), the pir p-weighted mean of 1z on X and X_g, is given by sigmoid(é&%(%))

exP(ZWz”i(xR(z)))
. H(Xg) l)—‘
1 (X ) _ 1 [—u(xﬂm)] _ exp(win(E-ra)
ﬂ(x}e(a)) + ,U(x—.R(a)) H @) 1 exp(Xwin(Xga)))
H(E g + _— 1
CXP(ZW:”i(xﬁR(a)))
T.D
exp(8, (X)) b
=—p . = SIngId(ﬁR(L)(x))
exp(5R£a)(x)) +1 “

Proof
Using this characterisation, we can express the probability of R(d) as an integral over 6,
which is directly connected to the weights in the (DA-)MLN.

Corollary 1 For any MLN T, any choice of domains D and any ground atom R(a),
Pro(R@) = [ sigmoid L2y

Remark 1 Note that Corollary 1 is an implicit characterisation or property of the probabili-
ties induced by the MLN, rather than an alternative definition. In particular, the probabili-
ties from the MLN T occur on both sides of the equality, once as the PT’D(R(Zi)) and once
as the p7 p,.

The key tool that makes Corollary 1 usable in concrete calculations is the classical
law of large numbers from probability theory:

Proposition 2 The strong law of large numbers: Let (Xn)neN be a sequence of real, integra-
ble, identically distributed and pairwise independent random variables. Then the sequence

i(2i=l...nxi) converges to the expected value of X, almost surely. This applies in particular
when X; are sequences of identically distributed independent Bernoulli trials.
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We also derive a lemma which we will need at several points. Later we will use a much
sharper version of the same idea in our exact treatment of asymptotic probabilities in
domain-size aware directed models.

Lemma 1 Let ¢ be a formula with at least one free variable. If, for all @ € D for any D of
any size and any structure X on D, sigmoid(ézg)) >k € (0,1), then for all N € N and
every € > 0, there is an n € N such that for any domain D larger than n, the probability
that @ has less than N true groundings in D is less than .

Proof In any sufficiently large domain, consider the events Y;: =¢(a;,) for d; € D as Boolean
random variables. Then by sigmoid(égig) > k, for each i € N, the conditional probability
of success of Y; given any sequence of outcomes of the ¥; for j < i is at least k. Consider the
sequence of random variables (X;),cn Where X; is a Bernoulli trial with success probability
k. Since the conditional probability of success of ¥; given any sequence of outcomes of the

Y, for j <iis at least k, we can consider (Yi)ieN to be stochastically dominated by (Xl-)

ieN”
However, by the law of large numbers, izizlmnX ;) converges to k almost surely and there-
fore, in particular the sequence X, ..., Xy has more than n successes with probability
above 1 — £ when the N is sufficiently large. A fortiori this also holds for (Yi)ieN' a

We now turn to investigating the asymptotic behaviour of several MLNs and DA-MLNSs.

3.2 The formulaP — R(x)

The formula P — R(X) is the converse of R(x) — P, possibly the most studied formula in
discussions on varying domain sizes and asymptotic probability. Poole et al. (2014) give a
detailed analysis of the behaviour of P in this configuration, but we will focus here on the
asymptotic behaviour of R(x).

Proposition 3 Let T,, be the MLN given by the formula P — R(x) : w, w> 0, |D,| = n.
Then the asymptotic probability of P is 0 and the asymptotic probability of R(x) is %, inde-
pendent of the value of w.

Proof We will use our results from the preceding subsection. We observe that
Pr J(R() = / sigmoid(8, " \duy ,
= /sigmoid(w' 1P)d,uTM < /sigmoid(w)duTwn = sigmoid(w).

Thus, Lemma 1 holds and for all N € Nthere is ann € Nsuch that P(|-R(X)| > N) > 1 — .
Therefore we see that, for sufficiently large n,

/sigmoid(—w' |ﬂR(x)|x)d/4Tw’n < (1 —¢g)sigmoid(—w - N) + ¢,

which converges to 0 as n grows to infinity and € approaches 0. Thus,
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lim PTW,[(P) = lim / sigmoid(éIT,“”n)dyTw,n = lim / sigmoid(—w - |"R(x)|x)dllrw,n =0.

This proves the first part of the proposition. We will now use this to prove the second part.
Since the asymptotic probability of P is 0, there is for every € > 0 an N € N such that
Pr n(P) < e.Thus,

lim PT“_AV,,(R(x)) = lim / sigmoid(élzz;;l)dyrwn = lim / sigmoid(w - 1,) = sigmoid(O)dyTM = %

As P — R(x) is logically equivalent to =R(x) — —P, we obtain analogous results for
R(x) - P:

Corollary 2 Let T,, be the MLN given by the formula R(x) — P : w,w > 0,|D,| = |D,| = n.
Then the asymptotic probability of R(x) is % and the asymptotic probability of P is 1, inde-
pendent of the value of w.

Of course, it is well known that MLNs do not generally behave well asymptotically.
Usually, however, this phenomenon has been observed in atoms that have an unbounded
number of connections themselves. Here, the issue stems from the fact that the atom with
which it is connected has an unbounded number of connections and therefore degenerates.

Since moving to DA-MLNs will regulate the asymptotic behaviour of P, one might
expect that this will also make the probability of P weight-dependent. However, unfortu-
nately, scaling the weights with the domain size will itself impact R(x) in the same way:

Proposition 4 Let T, be the DA-MLN given by the formula P — R(x) : w,w > 0,|D,| = n.
Then the asymptotic probability of R(x) is %, independent of the value of w.

Proof The connection vector for the formula P — R(x) is (n, 1), and so weights will be
scaled using the factor n.

limP; ,(R()) = lim / sigmoid(8,")duy, , = lim / sigmoid(Z= - 1p)dpy ,
n—co W n—oco w? n—oco n we

< lim sigmoid(m) = sigmoid(0) = %
n—oo n

Again, we obtain a corollary on R(x) — P : w.

Proposition 5 Let T, be the DA-MLN given by the formula R(x) — P : w,w > 0,|D,| = n.
Then the asymptotic probability of R(x) is %, independent of the value of w.

We see that in fact, neither semantics displays adequate, weight-dependent scaling
behaviour for this weighted formula.
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3.3 TheformulaP A Q(x) A R(x, y)

In this subsection we will discuss the formula P A Q(x) A R(x,y) as an example in which
DA-MLNs overcompensate for the amount of connections of one literal, namely Q(x).
In ordinary MLNs, the asymptotic probability of Q(x) is 1, regardless of the weight.

Proposition 6 Let T,, be the MLN given by the formula P A Q(x) AR(x,y) : w, w> 0,
|D,| = |Dy| = n. Then the asymptotic probability of Q(x) is 1, independent of the value of
w.

Proof First observe that on all structures, 6?,“"" will be at least %:
sigmoid(él“”n) = sigmoid(w - |Q(x) A R(x,y)|) > sigmoid(0) = %

We will now establish that, for any fixed x, the probability of P A R(x,y) is always
at least j:. This is a consequence of the Bayesian formula, which implies that
PARX,y) = PTW,L(P)PTM(R(X, ¥)|P). Since the analysis of Subsection 3.1 is just as valid
for conditional probabilities, we can derive

[sigmoid(8," ) - 1pduy ,  [sigmoidw - 1g) - Lpdpir ,
Pr, #(R(x,y)|P) = - = =
" PTw,n(P ) PTw,n(P )
[ sigmoid©) - 1,du,, SPraP)
> Pr.a(P) ~ PrP) 2

and therefore Pr. (P A R(x,y)) % . % = %. Thus we can once again apply Lemma 1 and

conclude that, asymptotically, there will be arbitrarily many pairs (x, y) with P A R(x,y)
with arbitrarily high probability. As in the proof of Proposition 3,

lim’PK 20K) = lim/sigmoid(ég‘z)’_';)dyn n= lim/sigmoid(w- |P ARG, X))dur , =1

In DA-MLNS, the situation is reversed, and in fact, the probability of Q(x) will always
tend to %:

Proposition 7 Let T,, be the DA-MLN given by the formula P A Q(x) AR(x,y) : w, w > 0,
|D,| = |Dy| = n. Then the asymptotic probability of Q(x) is %, independent of the value of
w.

Proof The connection vector for the formula P A Q(x) A R(x,y) is (%, n, 1), and so weights
will be scaled using the factor 2.
T,.n

lim P, ,(0O(x)) = lim/sigmoid(ég(;))dﬂT n = lim/sigmoid(l2 “|P ARG, X)Ddpur , <
n—sco W’ n—oo wr n—oo n w

< lim / sigmoid(= - n)duy , = lim sigmoid(*) = sigmoid(0) = 1
n—oo n w? n—oo n 2
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Again we observe that neither formalism behaves satisfactorily when scaling to larger
domains.

3.4 Discussion

When introducing DA-MLNSs, Mittal et al. (2019) use the aggregation function max as a
pragmatic choice with good formal properties that also proved to work well in practice.
However, they also point out that investigating different choices could be an avenue for
further research, specifically mentioning the function sum. Therefore, we would like to dis-
cuss briefly to what extent the issues raised in this section depend on the precise aggrega-
tion function used.

It seems clear that, since the asymptotic behaviour is degenerate in those cases in which
6 limits to either O or oo, the order of the scaling coefficient is more important than the pre-
cise number. When using the maximum function as an aggregation function, the order will
be the same as the highest order among the entries of the connection vector. This scaling
will be unsuitable though for investigating the behaviour of the other literals in the formula,
since the scaling will overcompensate for the number of connections. This is exactly what
happens in the examples discussed here. Therefore, changing the aggregation function to
summation would rather exacerbate than mitigate the issues, since the weights would then
be scaled down even further.

Instead, it might seem plausible to use a concept of mean. Since we are dealing with
multiplicative scaling, the arithmetic mean would not be a natural choice, and would be of
the same order as the maximum. Instead, one might try the geometric mean as an aggrega-
tion function. This will not regulate the asymptotic behaviour of the literals at the extremes
- in fact, if one considers the standard example of R(x) — P : w, one would overcompen-
sate for the connections of the R(x) and undercompensate for the connections of the P.
Therefore, the geometric mean would be far from theoretically optimal, and in fact, since
the orders of the connection numbers of the literals are different, no single aggregation
function will be adequate for all literals. However, the convergence to the degenerate prob-
abilities would be slowed for all literals, and this might be relevant in practical applications.

We will now continue along a different line, and switch our representation formalism
from MLNs and undirected models, where all literals influence each other and connec-
tions will need to be aggregated, to RLRs and directed models, where only a single literal
is being influenced and one can scale directly along the possible connections of that single
literal.

4 Domain-size-aware RLR

We have seen in the preceding sections that while DA-MLNs enhance the dependence of
limit behaviour on the weights of the formulas, there are cases where they cannot solve
the issue with regards to all queries. More precisely, we see that the issue comes from
the aggregation function and the need to choose a single weight for formulas whose liter-
als have different numbers of connections. While we have also seen that MLNs can have
weight-independent limit behaviour even when there is only at most one connection from
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the literal concerned, the example given is dependent on the other literal in the formula
having infinitely many connections and thus limiting to probability 1.

We therefore introduce a domain-size aware version of RLRs, which make use of
directed acyclic graphs to provide directionality. After defining our version in the com-
ing subsection, we then move on compare it to DA-MLNs and unscaled RLRs, discuss a
natural interpretation of scaled weights as proportions and suggest a mechanism to accom-
modate constants in our signature.

4.1 Definition of domain-size-aware RLR

In this subsection, we will adapt the principle of DA-MLNs to the weighted directed
model approach of RLRs, and we will see that since there is only one literal that is directly
affected by any connection (the child literal of the edge), we can avoid the problem of
aggregating a connection vector and can scale directly by the domain sizes of the free vari-
ables in the corresponding variable set. Formally, we define:

Definition 9 A domain-size aware Markov Logic Network (DA-RLR) T is given by the
same syntax as an RLR (see Definition6). However, the semantics differs as follows from
the semantics given in Definition 7:

Let D be a multi-sorted domain reduct and let D, be the sort of a variable x. For any set
of variable symbols V let D]y :=]],c 1D,

Then the induction step of Definition 7 is replaced as follows:

The probability of an £, -structure is given by the probability of its £, -reduct multi-
plied with the probability of the groundings of the atoms in £, ;\L,,. These are given by

POG) = sigmoid( Y —— D1, av.)-
i V,

Wi
|D| i aeD

Remark 2 Any variable y in V; which does not occur in y; incrases the unscaled weight in
the numerator by a factor |Dy|, but this is exactly counteracted by increasing the scaling

factor in the denominator by the same factor. Therefore, in the context of DA-RLRs we can
always assume that V; is excactly all variables in y; that do not occur in ¢.

The definition now explicitly depends on the domain sizes just as the definition of
DA-MLNs depends on domain sizes. However, the number |D|;, in the denominator now
represents the possible domains of connection for just the atom Q(X) — since this is the
only child of that edge relation, there is no connection vector and no aggregation function.
For this representation, we can show how the limit probability of any formula varies with
the weights chosen as domain sizes approach infinity. We suggest that a similar argument
might apply to DA-MLNs in which every entry of the connection vector is of the same
order of magnitude; however, the algorithm we give below for determining the asymptotic
behaviour of DA-RLRs depends heavily on an underlying DAG to terminate.

4.2 Relationship of DA-RLRs to unscaled RLRs and to DA-MLNs

A main feature of weight scaling approaches such as DA-RLRs or DA-MLNSs is the
transparent relationship to the underlying framework. This means that, when restricted
to a single underlying domain, there is a 1-to-1 correspondence between DA-RLRs and
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RLRs, defined simply by multiplying the weights w; with the factor |D]y,. This has several
consequences:

Firstly, it gives a good idea of the expressivity of domain-size aware formalisms. On
a given domain, the same classes of probability distributions over possible worlds can be
expressed by DA-RLRs and by ordinary RLRs, and one can be converted to the other trans-
parently. The expressivity of RLRs has been studied by Kazemi et al. (2014b) in terms
of the decision thresholds that can be expressed by an RLR. They show that all deci-
sion thresholds polynomial in the number of tuples satisfying a given formula ¢ can be
expressed by an RLR.

Proposition 8 Let L be the signature {Q} U {R;},., with a nullary relation Q and relations
{R;},c; of positive arity. Then for any polynomial p(V) with terms v;, each indicating a num-
ber of (tuples of) individuals for which a Boolean formula ¢j(5'c) of {R;}c; is true or false,
there is an RLR T such that for any D, the probability of Q with respect to a domain D
defined by T is greater than 0.5 if and only if p > 0.

On any given fixed domain size, then, the same holds for DA-RLRs. Furthermore,
Kazemi et al. show that any decision threshold that can be represented by an RLR is of this
form:

Proposition 9 Let L be the signature {Q} U {R;},., with a nullary relation Q and relations
{R;},; of positive arity, and let T be an RLR over this signature. Then there is a polynomial
p(V) with terms v;, each indicating a number of (tuples of) individuals for which a Boolean
formula qﬁj(?c) of {R;}ic; is true or false, such that for any D, the probability of Q with

respect to a domain D defined by T is greater than 0.5 if and only if p > 0.

Secondly, the 1-to-1 correspondence between RLRs and DA-RLRs on a fixed domain
means that algorithms for learning and inference developed for the RLR framework imme-
diately transfer to DA-RLRs. This includes the boosted structure learning approach of
Ramanan et al. (2020), which was shown there to be fully competitive with state-of-the-art
structure learning algorithms for Markov Logic Networks. It is important to bear in mind
that the semantics for (DA-)RLRs are still defined on a given domain by grounding to a
Bayesian Network; this allows us to employ all the grounded and lifted exact and approxi-
mate inference algorithms developed for Bayesian Networks (see the corresponding chap-
ters of De Raedt et al. (2016) for an overview).

On a given domain, this also means that the relationship between DA-MLNs and DA-
RLRs reduces to the relationship between MLNs and RLRs. In terms of expressivity, they
are in fact incomparable. Buchman and Poole (2015, Theorem 2) showed that MLNs can-
not represent the aggregation function used in RLRs. On the other hand, being a directed
formalism, RLRs cannot deal with cyclic dependencies in an obvious way. Therefore, the
choice of representation framework (directed vs undirected) will usually depend on proper-
ties of the relationships that should be represented. However the additional consideration
that (scaled directed) DA-RLRs have better asymptotic properties than (scaled undirected)
DA-MLNs may sway this choice where no stronger reasons prevail.
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4.3 Interpretation of scaled weights and asymptotic behaviour

There is a very intuitive interpretation of the —— ZaeDlw,(a /v, from Definition 9, as this

IDI

W The latter expression shows that this is just
\4

the weighted proportion of tuples for which y; holds.
We can therefore assert the analogue of Propositions 8 and 9 for DA-RLRs, where we
replace “number of tuples” with “proportion”:

expression is clearly equivalent to w;

Proposition 10 Let L be the signature {Q} U {R;},c; with a nullary relation Q and rela-
tions R; of positive arity. Then for any polynomial p(V) with terms v;, each indicating a
proportion of (tuples of) individuals for which a Boolean formula ¢; (X) of {R;},e; is true
or false, there is a DA-RLR T such that for any D, the T-probability of Q with respect to a
domain D is greater than 0.5 if and only if p > 0. Conversely, for any DA-RLR T over this
signature, there is such a polynomial p(v), such that for any D, the T-probability of Q with

respect to a domain D is greater than 0.5 if and only if p > 0.

However, if we add proposition symbols, a DA-RLR has two types of conditions - those
depending on proportions (of formulas with free variables) and those depending just on
a Boolean true/false value (of propositions). Asymptotically, the two types of conditions
behave very differently. To see why, consider the language consisting of two relations P
and R, where P is a O-ary proposition and R a unary predicate. Now consider the inde-
pendent distribution, where both P and R(x) for any x have probablhty Now cons1der a
domain size limiting to infinity. In this scenario, the probability of P Wlll still be = - in half
of the worlds it will be true, in half of the worlds it will not. The same goes for R(a) for
an element a that is contained in every domain. Contrast this with the proportion of x for
which R holds. Asymptotically, the probability to choose a sequence of domains in which
this proportion limits to % has probability 1. This is exactly the statement of the strong law
of large numbers (see e. g. Chapter III in the book by Bauer (1996). In other words, it is a
sure event — the proportion will definitely be asymptotically %, but one has no idea whether
in a given large domain from the sequence P will hold. That is random and therefore not
sure at all.

4.4 Constants

We close this section by briefly discussing how to incorporate constants into the semantics
of (DA-)RLRs above. The issue with adding constants to the language is how to include
them in the Relational Belief Network. Consider for example a single-sorted signature with
one binary relation symbol R and one constant c¢. A naive approach that simply adds an
additional node where constants fill a space in the binary relation would then include the
following nodes: R(x, x), R(c, x), R(x, ¢), R(c, c¢). However, R(c, c) is also an instance of the
other three expressions. We propose here to include constants by viewing the interpretation
of the constants as additional and outside of the domain and thus replace R(c, x) and R(x, c)
by new unary relation symbols R, (x) and R .(x) and R(c, c¢) with a proposition R,. .. This
allows us to fix the probabilities and the effects of constants in relations separately (the
motivation for including constants in the first place). Not explicitly including constants in
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our language has the additional benefit that all domain elements (which are now unnamed)
are treated symmetrically by the RLR formalisms, so that we can evaluate the probability
P(R(x)) without specifiying which domain element instantiates x. However, if we assume
nothing to be known about the constants, we can adapt a given DA-RLR to reflect this fact.

Definition 10 The generic extension of a given DA-RLR by constants a is derived from
the DA-RLR as follows:

Add the nodes for the new relation symbols introduced by substituting the constant at
appropriate (sort-matching) places.

Let (R, ), (w;, w;&. E))[) be the label of R, where ¥ are in the places into which d is
substituted in R;. The label of R; is given by (R;(3), (w;, v/ @,_z'))i), where v is obtained
from y; by replacing all occurrences of Q(%, ¥, 7) for a relation symbol Q with Q;(3,7).

The parents of R; are exactly those relation symbols that occurr in a y.

When discussing asymptotic probabilities below, the proportion of a domain that
is named by constants in the signature approaches 0 as the domain size increases,
so whether they are counted as part of the domain or not is immaterial for the limit
behaviour.

To formulate this, we briefly introduce some notation:

Definition 11 A sequence of domain choices (D), is called ascending if for all n € N,
(D,)g € (Dy41) for every sort of the signature. A sequence of L-structures X, on D,, is
called ascending if the interpretations of every relation symbol in £ agree on X, and X, ,
whenever all entries of a tuple are taken from D,,.

Lemma 2 Let T be a DA-RLR over the signature L and let (D,),cn be an ascending
sequence of choices of domains for the sorts of L, such that the domain sizes of every sort
are unbounded. Then for every relation symbol R(X), the limit of the probability of R(X)
with respect to D, as n — oo, in T is the same as the corresponding limit probability of R;
in Ty, the generic extension of T by appropriate constants d.

Proof The probabilities encoded in the DA-RLR T are given as

1 -
. . w; . . wi@/v)
51gm01d<Z|D—|Vzlw,-(5/V,))> = s1gm01d<2wiz IDly, )

i aeD i aeD

In the DA-RLR T3, it is easy to see that the calculation is the same, with the sole excep-
tion that the constants are not counted in the calculation of the proportion. However, the
contribution of the constants limit to 0 with increasing domain size, and since the sigmoid
function is continuous, this implies the statement of the lemma. O

We close this section with two examples of networks obtained by a generic extension:
Example 7 Consider the two RLRs of earlier examples, both with the RBN R — Q and the
labels ¢ = Q(x), w = R(x) and ¢ = Q(x), w = R(y) respectively. Assume further that we are

extending them generically by a constant a. Then those extensions have different RBNs:
The former has the RBN
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<_
Q=—5x

while the latter has

. / T
Qa Q

because substituting a for x in R(x) results in R(a) = R,, while substituting a for x in R(y)
leaves R(y) unchanged.

5 Asymptotic probabilities

In this section we provide an algorithm for calculating the asymptotic probabilities of a
DA-RLR as domain sizes increase.

Schulte et al. (2013) introduce a semantics for Bayesian Networks that are specifically
designed abstractly to reason about proportions (or class-level probabilities as they are
referred to there) rather than with respect to a specific grounding. However, since the prob-
abilities and their depedencies are interpreted as random substitutions rather than taking
class-wise probabilities into account directly, this limits them to modelling a linear rela-
tionship, rather than the sigmoidal relationship that is encoded by DA-RLRs. Therefore,
we will have to choose a somewhat different formalism, which we will introduce in several
stages.

It is based on the observation (formally stated by Halpern (1990) and also utilised by
Schulte et al. (2013)) that the proportion of domain elements x satisfying y (x) can be inter-
preted as the probability of a satisfying y(a), where a is a new constant that we have no
additional information about. While this is ordinarily only true on a given structure, since
proportion is only defined with respect to a given structure, we can then resort to the law
of large numbers to show that the variation between structures satisfying the same proposi-
tions vanishes as domain size increases. We will therefore recur to the method of encoding
constants using propositions introduced in Subsection 4.4 above.

We first provide an outline of the algorithm in words, and then corresponding
pseudocode.

We will simultaneously compute two separate but interlinked quantities:

1. A probability distribution over the propositions ocurring in a given DA-RLR, which
models the asymptotic probability distribution of those propositions as domain sizes
increase; more precisely, given a set of values C for (some of the) propositions ocurring
in the DA-RLR, a number between [0, 1].

2. For any formula y and any complete set of values C for all the propositions P with
index(P) < index(y) in the DA-RLR, a number p,, € [0, 1] which models the asymptotic
proportion of tuples d satisfying w(d) from any domain for which C is true as domain
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sizes increase. More precisely, with probability 1 a sequence of domains whose domain
sizes approach infinity and which satisfy C has proportions tending to p,,.

The algorithm proceeds as follows:

Py c: For any w(¥) and any C, we compute Py by adding new constants a to the lan-
guage, whose number and sorts match X, and set Py o be the probability of y(a) condi-
tioned on C, computed with respect to the generic extension of the DA-RLR by a. As y(a)
is a Boolean combination of atoms without free variables, which are propositions in the
generic extension, this reduces to knowing the probability distribution of those proposi-
tions. Note that the index of all propositions required for this computation is not more than
the index of y.

Propositions: Computing the probability distributions of the propositions can be
done in a sequential manner by ordering the propositions P; by index and then comput-
ing the probability of P; = X; conditioned on P; = X; for all j < i. So assume a choice C
of values of all propositions of lower index than P; are given. Then, by the algorithm for
Dy.c We can also compute p,, - for all y of lower index than P;. Now we can define the
probability of P; given C to be sigmoid(},wy - Py,.c) Where k varies over the labels of P;.

Since all the y; have lower index than P;, the algorithm terminates when it reaches
index O (root nodes).

Algorithm 1 Functional Pseudocode

cond_probability :: (Proposition, Values of propositions of lower order, DA-RLR) -> Double
cond_probability (p, c, t) = sigmoid( sum([w * proportion (psi,c,t)| (w,psi) in labels (p,t)])

proportion :: (Formula, Values of propositions of equal or lower order, DA-RLR) -> Double
proportion(psi, c, t) = probability(substitution (psi,as), c, generic (t, as))

where as = free_variables (psi)

labels :: (Relation Symbol, DA-RLR) -> [(Double, Formula)]
/* retrieves the labels from the DA-RLR */

probability :: (Formula of propositions, (Partial) values of propositions, DA-RLR) -> Double

/* computes the conditional probabilities using iterated calls to cond_probability */

substitution :: (Formula, [Sort]) -> Formula of Propositions

/* substitutes a sort-matching list of constants for the free variables of the formula */

free_variables :: Formula -> [Sort]

/* returns the sorts of the free variables in the formula */

generic :: (DA-RLR, [Sort]) -> DA-RLR

/* returns the generic extension as discussed in Subsection 4.4 */

Using the law of large numbers, we perform induction on the index to show that the
algorithm is indeed sound:
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Theorem 1 Let T be a DA-RLR over the signature L and let (D)), be an ascending
sequence of choices of domains for the sorts of L, such that the domain sizes of every sort
are unbounded. Then the following hold:

The limit of the probabilities of any formula containing just the propositions in L as
n — oo is given by the probability distribution calculated in Algorithm 1.

For any quantifier-free L-formula y, the proportion of tuples of a randomly chosen
ascending sequence of L-structures X, on D, satisfying a given set of values C for the
propositions in L, limits to p,, c almost

Proof We prove the theorem by induction on the index, simultaneously for both the prob-
abilities of the propositions and the proportions of the formulas.

As our goal is to use the law of large numbers, we restrict the formulas we consider to
complete descriptions y of X, that is, formulas which determine for each relation symbol
R and sort-appropriate tuple 7 from X whether R(Z) holds or not. This includes the proposi-
tions, which take the empty tuple. Every quantifier-formula can be expressed as a disjunc-
tion of mutually incompatible complete descriptions, and hence their proportions can sim-
ply be computed as the sum of the proportions of their associated complete descriptions.

Furthermore, to avoid issues arising from tuples with overlapping entries, we show a
slightly stronger form of the theorem which allows us to proceed variable by variable.

Let w(X,y) be a complete desciption in the variables X, , let ¢ be the complete descrip-
tion of X implied by y and let C be the choice of values for the propositions that is implied
by w. Let

po = DwC
.0 Poc
Then for any 6,€,{ > 0 and any ascending sequence of domain choices (D,), there is
an N € N such that for all n > N, a randomly chosen sequence of L-structures X, on D,
satisfying a given set of truth values @(X) for the quantifier-free formulas in £ with free
variables among X, with probability at least 1 — ¢, for a proportion of at least 1 — & of sort-
appropriate tuples for X in D, that satisfy ¢, the proportion of sort-appropriate tuples for y
in D, that satisfy y(X, ) lies between p,, , — 6 and p,, , + 6.

Iteratively using Bayes’rule for the proportions we are computing, we can now restrict
our attention to complete descriptions of the form y (X, y), where y is a single variable.

Root nodes: The probability of any proposition P at the root is given by sigmoid(w),
which is exactly the value used in the algorithm too. Since all root propositions are inde-
pendent of each other, the probability of Boolean combinations is computed in a straight-
forward way using the axioms of probability.

For any formula y(X) using only relation symbols at the root nodes, the probability of
any given tuple a to satisfy w(d) is as given by the algorithm (as we have just seen). Fur-
thermore, for any 4, b, and 4, b, in D, w(a, b,) and w(d, b,) are independent of each other
when conditioned on the implied complete description y’(X) of a. Therefore, the require-
ments of the law of large numbers are satisfied, and the proportion of tuples X for which
w (%) holds limits to p,, ,» almost surely.

Index i + 1: The probability of any proposition P given a reduct to the language of index
i is given by sigmoid(}’, w, - (proportion of tuples satisfying y;)), where the index of each
v, is i or less. By the induction hypothesis, the proportion of tuples satisfying y; limits to
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Dy, c almost surely. Since the sigmoid function is continuous, this implies that the probabil-
ity of P limits to sigmoid(},w - pwc) as computed by the algorithm.

For any formula y(X) of index i + 1, the asymptotic probability of any tuple a to satisfy
w(a) is given by the algorithm (as we have just seen).

As for the initial case, we have to argue that the events y(d, b,) and (@, b,) are inde-
pendent for d,b,,b, € D. We can verify this, however, by adding both l;] and 1;2 as con-
stants to the RLR and considering the generic extension. Then we can see that all joint
ancestors of both w (@, b,) and y(d, b,) are from the original RLR. In particular, they are all
either included in C or their proportions can be calculated from y’ by the induction hypoth-
esis, to any desired level of accuracy on an arbitrarily large proportion of tuples a. We can
now restrict our attention to those tuples and see y(d, b,) and y(d, b,) as independent after
conditioning on y’, since they can be approximated from above and below to arbitrary pre-
cision by independent sequences ofrandom variables.

This allows us to invoke the law of large numbers again and to conclude that the propor-
tion of tuples a satisfying y limits to p,, ,, almost surely. |

6 Discussion and mixed RLR

Jain et al. (2010), who were the first to discuss adapting the weights to the population size,
advocate learning the size-to-weight function from datasets of different sizes. In this sec-
tion, we will use the interpretation we have given of scaled weights as proportions (rather
than absolute numbers of incidences) to argue that the semantics of the use case can give
an indication as to whether scaling is appropriate or not.

6.1 Interpretation of weight scaling

The key is that we have to assess whether the dependency we stipulate by assigning a
weight to a formula shows a dependence on absolute numbers of an associated event or a
dependence on the proportion of possible events that satisfy the criteria.

To see the difference, imagine the following scenario: We would like to model how
much a student has learned depending on whether the teaching he has received has been
good or poor. Say that we decide to use a vocabulary consisting of two domains whose
individuals are “lessons” and “students” and then two predicates, a unary predicate “good
lesson” G(x) ranging over the first domain and a unary predicate “learning success” L(y)
ranging over the second. We could then frame this question in different ways. First, assume
that we would like to evaluate the effectiveness of the teaching - has a student learnt suf-
ficiently much considering the amount of time he spent being taught. In this case, it seems
reasonable to assume that this will depend on the proportion of lessons that have been
good. Whether a student is in education for 12 years or 9 years, we would still believe that
the effectiveness of teaching depends on its quality. However, we could also evaluate the
sheer amount of learning a student has received - then L(x) might represent a certain fixed
skill level, like “can read and write”. Now it would not seem sensible to use a proportional-
ist model: instead, it seems rather reasonable to believe that in the limit of more and more
lessons, the student will eventually have attended enough good ones to have learnt the skill.
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Bearing this distinction in mind, we will evaluate how our findings relate to the different
scenarios discussed in Kazemi et al. (2014b).

6.2 A closer look at the examples from Kazemi et al. (2014b)

In their introduction, Kazemi et al. (2014b) list a number of different ways in which chang-
ing population sizes might be relevant in an Al model. In the first scenario, elaborated in
Poole (2003), the likelihood of someone having committed a crime is dependent on how
many other people fit the description of the criminal. One way to implement this would
be as follows: There is one domain of suspects, a unary predicate C(x) for being a crimi-
nal and a unary predicate D(x) for matching the description of the criminal. We then have
propositions C; and D; for Joe being a criminal and matching the description respectively.
This is in the spirit of introducing a constant j for Joe and proceeding in the manner of Sub-
section 4.4. The RBN could be as given below,

Clz) —=C;
D(z) D;

and the formulas involved would be atomic with a positive weight attached to C(x) and C;
when evaluating D(x) and D; repectively (as well as a base weighting to reflect the inher-
ent likelihood of D(x) independent of the crime) and a negative weight given to C(x) when
evaluating C;.

Note that we need the separate treatment for Joe since a general model, everyone being
less likely to be the criminal if another person is the criminal would introduce a cycle into
the RBN.

In this model, scaling of weights could only be considered at the edge C(x) to C;, as
this is the only one with parent variables that are not in the child. However, here scaling is
counterproductive: The edge is intended to model that there is likely to be just one crimi-
nal, and that if there is one there is unlikely to be another. So here the model as it stands
seems well equipped to deal with the issue of varying domain size without any scaling.
If there are more people that are a priori equally likely to have committed the crime, then
the likelihood for Joe having committed it is smaller. Kazemi et al. (2014b) introduce a
different kind of varying domain size: they say that it is arbitrary which population we
base our model on, whether it is the neighbourhood, the city or the whole country. How-
ever, we think that which scale to use should not be arbitrary, since any model will rely
on the assumption that everyone is equally likely to have committed the crime. In a gang
stabbing, the population should be restricted to the gang membership; in an internet-based
case of credit card fraud, one might have to consider the whole world. Another option of
dealing with this would be to have an arbitrary population but then adapt the description
predicate D(x) to include “lives in the area of the crime”. In that case, this weight should
indeed be scaled by population size, at least if we assume that the population we choose
definitely encompasses at least everyone living in the area of the crime. This is, in a sense,
the opposite scaling of what has been suggested here: We are scaling precisely to make
the likelihood of D(x) limit to O independent of the chosen weights since we are intending
to condition on D; anyway when evaluating the RBN later. While this is a very interesting
phenomenon, exploring its technical background is outside the scope of the present work.
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In the second example, Kazemi et al. (2014b) mention a situation in which the popula-
tion is variable, such as the population of a neighbourhood or of a school class. This is
much like the example we have discussed above in relation to learning success: While the
number of lessons a student takes varies between students, how we want to deal with this
situation depends on exactly what sort of question we are asking.

6.3 Mixed RLR

The examples above show that the decision to use or not to use proportional scaling in a
model depends on exactly the sort of questions we are asking of the model and also why
exactly the population is varying in the first place. It might also very well be appropri-
ate to use proportional scaling on some of the connections but not on others, leading to
mixed RLR. Consider for instance an application that models pollution in a lake. The model
has two domains, one for tributaries to the lake and one for human users of the lake. The
signature has two unary predicates, R(x) signifying that the water from tributary x is pol-
luted, and H(y), meaning that human y pollutes the lake, as well as a proposition P mean-
ing that the lake is polluted. If we were to assume that pollution in the lake depends on the
proportion of incoming water that is polluted and the amount of pollution added to that
by humans, we could mark the formula involving R(x) as proportional while keeping the
formula involving H(y) as absolute. Mixed RLRs could thus be useful to model situations
in which connections have different quality, and could simply be represented by marking
some formulas to be proportional and some not. As the overall probabilities are obtained
from the individual weights using logistic regression, one can simply adapt some of the
individual weights as the domain size changes, while leaving others unchanged.

Concerning the expressiveness of mixed RLRs, we can again turn to Propositions 8
and 9. However, since we adapt weights that appear as the coefficients of the polynomials
p mentioned there, we cannot express mixed terms containing both proportions and raw
numbers in decision thresholds.

Proposition 11 Let L be the signature {Q} U {R;};c; with a nullary relation Q and rela-
tions R; of positive arity. Then for any pair of polynomials p(v) and q(F) with terms v;,
each indicating a proportion of (tuples of) individuals for which a Boolean formula qu(})
of {R;},c; is true or false, and r, each indicating a number of (tuples of) individuals for
which a Boolean formula y;(X) of {R;}c; is true or false, there is a mixed RLR T such that
for any D, the T-probability of Q with respect to a domain D is greater than 0.5 if and only
if p+ g > 0. Conversely, for any DA-RLR T over this signature, there are such polynomi-
als p(v) and q(¥), such that for any D, the T-probability of Q with respect to a domain D is
greater than 0.5 if and only if p+ g > 0.

6.4 Random sampling

While random sampling from subpopulations has already been considered as a means for

scalable learning in Subsection 1.3 above, it can also occur in naturally variable domains.
By passing from RLRs to DA-RLRs, we move from considering absolute numbers

of parent atoms (which are heavily distorted by random sampling) to proportions, which
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should be approximately conserved. For a concrete example, let us consider the model of
teaching and learning from Subsection 6.1. Assume we had decided to consider absolute
learning success, which usually would not suggest scaling by domain size. However, we
can only observe a limited sample of lessons, and how many that is varies from school to
school. Now if we were to estimate learning success here, it is natural to make it dependent
on the proportion and not the number of good lessons that we are seeing.

Random sampling is prevalent throughout the natural and social sciences, however, and
for instance the drug study example of Kazemi et al. (2014b) also falls under this category.

6.5 Projective families of distributions

Jaeger and Schulte (2018, 2020) discussed the concept of projectivity and supplied a
complete characterisation of projective families of distributions in terms of exchangeable
arrays. To formulate it, we consider an embedding 1 : D — D’ of (potentially multi-sorted)
domains to be a set of injective maps between the matching sorts of D an D’. For every
such embedding ¢ : D — D’ and every L-structure X’ on the domain D', we define X’ to
be the L-structure on the domain D for which a relation R holds for X € D if and only if R
holds for 1(}) in X.

Definition 12 Let (P; ), be a family of probability distributions over the possible £
-structures on the domain D. (P; ), is called projective if for all injective maps: : D — D'
and all £-structures with domain D’ the following holds:

PT,D(x) = PT,D/({qu: =X}

The importance of projectivity stems from the fact that for a: : D — D’ and any quan-
tifier-free £-formula ¢, the (Py j)-probability that @(a) holds for a given @ € D is the same
as the (Pr p)-probability that (p(z(_&)) holds. In particular, this means that the probabilities
of a quantifier-free ground query that only mentions m << n elements of a domain of size
n can actually be evaluated in the domain of size m consisting only of those m elements.
Therefore, the complexity of such queries is constant with respect to domain size. As dis-
cussed by Jaeger and Schulte (2018), under certain mild additional assumptions, projec-
tivity also guarantees statistical consistency of learning parameter learning on randomly
sampled subsets. This property relates projectivity directly to the task addressed by the
present article.

While projective families of distributions have very attractive properties, their expressiv-
ity is limited. In particular, the fragments of common frameworks identified as projective
by Jaeger and Schulte (2018) do not involve any interaction with a potentially unbounded
number of other domain elements. In the case of RLRs, this means in the notation of Defi-
nition 6 that every variable occurring in a formula y; occurs in the corresponding ¢. In
fact, they are exactly the RLRs for which the variable set V, is empty and therefore the DA-
RLR semantics coincides with the unscaled semantics of RLRs. In this paper, we analyse
the asymptotic behaviour of DA-RLRs and conclude from there that the asymptotic prob-
abilities are well-defined and depend meaningfully on the input weights. However, unlike
in aprojective family of distributions, we do not claim that the asymptotic probabilities are
actually equal to the probabilities on a given fixed domain. Indeed, it is easy to see that
general DA-RLRs are not projective.
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Proposition 12 There is a non-projective DA-RLR.

Proof Consider the DA-RLR T of Example 5, with a signature £ := {Q,R}, an RBN
R — Q, weightwp = 0for R, ¢ = Q(x), y = R(y) and wyp = 1.

We consider a domain D with a single element a, and the quantifier-free query for-
mula y := Q(a) AR(a). Then P ,(x) = Prp(R(a)) - Prp(Q(a)|R(a)) by the Bayesian
formula. By the definition of the DA-RLR semantics, we obtain Pr,(R(a)) = 0.5 and
Prp(Q(a)|R(a)) = sigmoid(1) = 0.73, and therefore Pr ,(x) ~ 0.37.

Now consider a domain D’ with two elements a and b. Then we can assert as before
that Prp(x) = Prp(R(@) - Prp(Q(a@)|R(a)) and that Py p(R(a)) =0.5. However,
there are now 2 possibilities for R(b): With a 0.5 probability, R(d) holds. For that case,
Pr.p(Q(a)|R(a), R(b)) = sigmoid(1) ~ 0.73. With a 0.5 probability, though, R(b) does not
hold. Then Pr p, (Q(a)|R(a), 7R(D)) = sigmoid(0.5) ~ 0.62 Overall, we can conclude that
Prplx)~05-(0.5-0.73+0.5-0.62) < 0.37. Therefore, (Pr p)p is not projective. O

In other words, we unlock the much greater expressivity of DA-RLRs, which can
model interactions involving potentially unbounded numbers of elements, by giving up the
requirement that probabilities are constant on all domains in favour of the requirement that
they are asymptotically convergent in a meaningful way.

7 Conclusion

We have seen that DA-RLRS provide a framework for statistical relational Al that inherits the
expressiveness of — and the inference and learning algorithms available for — RLRs but takes
into account domain size when interpreting the weight parameters. By providing an algorithm
to compute the asymptotic probabilities in DA-RLRs, we unlock their use for asypmptotically
sound learning and inference. We also show that the asymptotic probabilities obtained in this
way depend meaningfully on the weight parameters supplied. This improves on the proper-
ties of DA-MLNSs, which are shown to lack asymptotic dependence on the weight parameters
in several paradigmatic cases. Our results are optimal in the sense that DA-RLRs do not pos-
sess full projectivity. Since the scaling of weights is such a transparent operation, we can
also introduce mixed RLRs, which have both scaled and unscaled aggregators. This promises
to enhance modelling capabilities for a large class of practical examples, whose behaviour
across domain sizes does not conform to a polynomial increase in decision threshold.

Beyond DA-RLRs themselves, our work could have wider implications on other directed
formalisms such as probabilistic logic programming. While probabilistic logic program-
ming does not employ weights and it is therefore less obvious how to apply the scaling
factor, our work demonstrates that directed approaches as such have a distinct advantage
when tackling domain size extrapolation. Since DA-RLRs are ultimately rooted in logistic
regression, they could also utilise the advances and extensions of that field, such as multi-
nomial regression for multivalued data. Any relational analogue of such a derived formal-
ism will probably be able to utilise the results of this paper with little additional effort.

The methods developed in this paper for the analysis of MLNs and DA-MLNs also
promises further applications to the study of undirected formalisms, which are still highly
popular tools for statistical relational learning and knowledge representation. Such consid-
erations could help researchers move beyond the heavy computational machinery in cur-
rent use and towards a more transparent and rigorous probability-theoretic treatment.
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