
Journal of Automated Reasoning (2025) 69:5
https://doi.org/10.1007/s10817-024-09702-9

Interpolation and SAT-Based Model Checking Revisited:
Adoption to Software Verification

Dirk Beyer1 · Nian-Ze Lee1 · Philipp Wendler1

Received: 11 August 2022 / Accepted: 6 July 2023 / Published online: 5 February 2025
© The Author(s) 2025

Abstract
The article Interpolation and SAT-Based Model Checking (McMillan in: Proc. CAV 2003,
LNCS, Springer [56]) describes a formal-verification algorithm,whichwas originally devised
to verify safety properties of finite-state transition systems. It derives interpolants from unsat-
isfiable BMC queries and collects them to construct an overapproximation of the set of
reachable states. Although 20 years old, the algorithm is still state-of-the-art in hardware
model checking. Unlike other formal-verification algorithms, such as k-induction or PDR,
which have been extended to handle infinite-state systems and investigated for program anal-
ysis,McMillan’s interpolation-basedmodel-checking algorithm from 2003 has not been used
to verify programs so far. Our contribution is to close this significant, two decades old gap
in knowledge by adopting the algorithm to software verification. We implemented it in the
verification framework CPAchecker and evaluated the implementation against other state-of-
the-art software-verification techniques on the largest publicly available benchmark suite of
C safety-verification tasks. The evaluation demonstrates that McMillan’s interpolation-based
model-checking algorithm from 2003 is competitive among other algorithms in terms of both
the number of solved verification tasks and the run-time efficiency. Our results are important
for the area of software verification, because researchers and developers now have one more
approach to choose from.

Keywords Software verification · Program analysis · Model checking · Interpolation ·
Interpolation-based model checking · CPAchecker · SMT · SAT

1 Introduction

Automatic software verification [48] is an active research field in which automated solutions
of the following problem are studied: Given a program and a specification, decide whether
the program satisfies the specification or not. In this paper, we focus on the verification
of reachability-safety properties, asserting that some error location in the program should
never be reached by the control flow. Other specifications, including termination, memory
safety, concurrency safety, and overflows, are also investigated in the literature. Although
the problem of software verification is in general undecidable, many important concepts,
including various predicate-abstraction techniques [5, 40, 42, 46], counterexample-guided
abstraction refinement (CEGAR) [34], large-block encoding [11, 20], interpolation [45, 57],

1 LMU Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-024-09702-9&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0000-0002-5139-341X

5 Page 2 of 29 D. Beyer et al.

1 extern int nondet();
2 int main(void) {
3 unsigned int x = 0;
4 while (nondet()) {
5 x += 2;
6 }
7 if (x % 2) {
8 ERROR: return 1;
9 }
10 return 0;
11 }

(a) C program

l3

l4 l5

l7

l8

l10

l11

unsigned int x = 0; [nondet()]

x += 2;[!nondet()]

[x % 2]
[!(x % 2)]

ERROR: return 1;
return 0;

(b) Control-flow automaton

Fig. 1 An example C program (a) and its CFA (b) (adopted from loop-invariants/even.c in the benchmark set
of the 2022 Competition on Software Verification (SV-COMP’22) [8])

together with the advances in SMT solving [7] and combinationswith data-flow analysis [15],
make it feasible to apply verification technology to industry-scale software, such as device
drivers [4, 6, 23, 52], web services [31, 36], and operating systems [63].

To illustrate the reachability-safety verification of a program, consider the C program
in Fig. 1a. The program first initializes the variable x to 0 and keeps incrementing x by 2
while the nondeterministic value returned from the function nondet() is nonzero. Once
the nondeterministic value equals zero, the control flow exits the loop and tests whether x is
odd. If x is odd, the control flow reaches the error location at line 8; otherwise the program
terminates without errors. The goal of the reachability-safety verification is to either prove
that the error location is unreachable by the control flow or find an execution path of the
program reaching the error location.

As the verification of finite-state and infinite-state transition systems share much sim-
ilarity, some classic model-checking algorithms for software (infinite-state systems), such
as bounded model checking (BMC) [25, 35] or k-induction [13, 38, 51], were originally
developed for hardware (finite-state systems). A well-known example of such technology
transfer is property-directed reachability (PDR) [28]. After it obtained huge success in hard-
ware model checking, many research efforts have been invested for its software-verification
adoption [12, 26, 32, 50, 55].

1.1 Interpolation-BasedVerification Approaches

McMillan’s algorithm [56] from 2003 is another state-of-the-art approach for hardware
model checking, prior to the invention of PDR. It utilizes Craig interpolation [37] to derive
interpolants from unsatisfiable BMC queries and computes an overapproximation of the
set of reachable states as the union of the interpolants. Its idea of abstracting objects with
interpolants has been extended beyond state sets and underpinned various interpolation-
based verification approaches and tools. Abstractions of transition relations [49], traces [43],
predicates over program variables [5, 45], and function calls [61] have been studied in the
literature. We classify in Fig. 2 different usages of Craig interpolation and highlight some

123

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp22/c/loop-invariants/even.c

Interpolation and SAT-Based Model Checking Revisited Page 3 of 29 5

Abstraction with Craig Interpolation

State Set

IMC IMPACT PDR Interpolation-Sequence (ISB)

Transition Relation Trace Predicate Function

Fig. 2 Classification of different abstractions using Craig interpolation

important algorithms regarding state-set abstraction. An overview of several representative
interpolation-based formal-verification approaches is provided in Sect. 2.

Despite its success in hardware model checking and profound theoretical impact on
program analysis, McMillan’s algorithm [56] from 2003 has not been investigated for soft-
ware verification. We emphasize that McMillan’s interpolation-based algorithm for model
checking from 2003 should not be mistaken for other, later interpolation-based verification
approaches. In the following, we refer to the algorithm proposed by McMillan from 2003 as
interpolation-based model checking and abbreviate it as IMC.

One potential concern to apply IMC to software, raised by its inventor McMillan in his
later paper [57] presenting the algorithm Impact, was the scalability of the underlying deci-
sion procedure to handle the entire unrolled program. Compared to IMC, Impact derives
interpolants only for individual execution paths, reducing the workload of the solver. For-
tunately, due to the advancements in SMT solving, delegating formulas encoding the entire
unrolled program to the solvers has become feasible. Therefore, it is time to revisit IMC and
evaluate its performance against the state of the art. Other SMT-based approaches have been
thoroughly compared already in the literature [14].

1.2 Our Research Questions and Contributions

In this paper, we explore the applicability of the IMC algorithm to software verification.
Specifically, we answer the following two research questions. First, we investigate how to effi-
ciently adopt IMC to software verification. Asmentioned earlier, IMCwas originally invented
to verify sequential Boolean-logic circuits (hardware), whose transition relations, required
to perform IMC, are easy to derive: The downstream circuitry of the memory elements (i.e.,
registers) encodes the next-state function of the system,which can then be naturally expressed
as a transition relation between system states. It is less straightforward, by contrast, to extract
a transition relation from a program (software). Although representing a program as a tran-
sition relation with the program counter is in principle possible, such conversion mixes the
reasoning of the control-flow structure and the program semantics, and hence, does not work
for IMC in practice as we show in Sect. 4. To address this research question, we propose an
efficient software adoption of IMC via large-block encoding, separating the analysis of the
control flow and the program semantics by exploring the analogy between the execution paths
of a sequential Boolean-logic circuit and a program. We also present the first implementa-
tion of the IMC algorithm for software verification and make it available in the open-source
framework CPAchecker [17, 19]. The details of the proposed adoption and implementation
will be discussed in Sects. 5 and 6, respectively. Our second research question focuses on
evaluating the performance of the IMC adoption against the state of the art. To address this
research question, we compare the proposed implementation against other state-of-the-art
software-verification algorithms, including PDR, BMC, k-induction, predicate abstraction,

123

5 Page 4 of 29 D. Beyer et al.

and Impact, on the largest benchmark suite of C safety-verification tasks in Sect. 7. Our exper-
imental results show that IMC is competitive in terms of both effectiveness (the number of
solved tasks) and efficiency (the elapsed CPU time).

Novelty

(1) This paper closes the two decades old gap of knowledge by investigating the applica-
bility of IMC to software verification. We analyze the characteristics of IMC in the context
of software verification, and our empirical evaluation indicates its competitiveness against
the state-of-the-art approaches. (2) Our replication of the IMC algorithm as open-source
implementation broadens the spectrum of available software-verification techniques, which
is important in practice because researchers, developers, and tool users nowhavemore choices
at their disposal. (3) While the application of large-block encoding to program analysis has a
long history, to the best of our knowledge, using large-block encoding to represent an algo-
rithm that originated from a different research community for software is a new idea, which
may shed light on the efficient adoptions of other algorithms.

Significance

IMC is an important verification algorithm in hardware verification. It is a risk to leave the
potential of it unexplored for the verification of software. Therefore, we believe that the
knowledge about the algorithm’s adoption to software is a significant improvement of the
state of the art and has the potential to inspire other works in the area of software verification.

Correctness

We show the correctness of our algorithms in Theorem 1. Our implementation is based
on components from the CPAchecker framework [19], which is a well-maintained software
project with lots of evidence that the components work well. Large-block encoding is a sound
component from the literature [11, 20].

The effectiveness and efficiency of our implementation is empirically evaluated with
experiments on a large benchmark set in Sect. 7. We discuss possible threats to validity that
might affect the soundness of our conclusions from the experimental results in Sect. 7.5.

2 RelatedWork

IMC has popularized the idea of using interpolation for verification, and although IMC itself
has not been applied to software so far, there are many approaches for software verification
that make use of interpolation. Based on the classification in Fig. 2, we will discuss several
representative interpolation-based approaches and tools, as summarized in Table 1. Interested
readers are referred to the chapter [59] byMcMillan in the Handbook of Model Checking for
a broader survey. Of course, there exist many techniques for computing interpolants. We do
not discuss them here as interpolant computation is typically orthogonal to the used verifica-
tion algorithm. In our implementation, we use an off-the-shelf SMT solver for interpolation
(MathSAT5 [33]).

123

Interpolation and SAT-Based Model Checking Revisited Page 5 of 29 5

Table 1 Important interpolation-based formal-verification approaches and tools

Approach Year Publication Contribution

IMC 2003 [56] First interpolation-based model-checking algorithm

Predicate abstraction 2004 [45] Discovering relevant predicates from
interpolants to refute false alarms

TR approximation 2005 [49] Refining an abstract TR with interpolants
to avoid exact image computation

Impact 2006 [57] Performing lazy abstraction by computing
sequences of interpolants on program paths

Slicing abstraction 2007 [29] Splitting abstract states with interpolants

ISB 2009 [62] Imitating BDD-based model checking by
abstracting states with interpolants

Trace abstraction 2009 [43] Refining an overapproximation of
possible traces with interpolant automata

Lazy annotation 2010 [58] Annotating a program with interpolants
derived from Hoare triples

Function summaries 2011 [61] Summarizing function calls with interpolants
to reduce future analysis effort

Software PDR 2012 [32] Combining Impact-like proof-based interpolants
and PDR clause generation

CTIGAR 2014 [26] Refining abstraction failures
relative to single steps with interpolants

Blast 2004 [16, 45] First software model checker using interpolation

CSIsat 2008 [24] First open-source interpolation engine

CPAchecker 2009 [11, 19] Large-block encoding and interpolation

Wolverine 2011 [54] First public implementation of Impact

Ufo 2012 [2] Combining predicate and interpolation methods

Duality 2013 [60] Solving constrained Horn clauses with interpolation

Spacer 2013 [53] Combining proof-based approaches and CEGAR

Safari 2014 [3] Backward Impact-like analysis with arrays

2.1 State Sets

The most closely related algorithm is Impact [57] from the same author, which is also based
on the idea of computing a fixed point from interpolants. Impact applies interpolation to
formulas of single program paths instead of the whole program and generates a sequence
of interpolants for a spurious counterexample, one interpolant after each program statement
on the execution path. It also computes fixed points of reachable states per program location
instead of globally. One adaptation [32] of property-directed reachability (PDR) [28] to
software computes sequences of sets of clauses for refuting spurious counterexamples, and
these sequences also form valid sequences of interpolants. Under this view, the approach is
similar to Impact, only differing in how the interpolants are computed. A hybrid approachwith
a combination of proof-based interpolation (as in Impact) and PDR-based clause generation
has also been suggested [32]. CTIGAR [26] is another attempt to extend PDR to software.
It combines Cartesian predicate abstraction with PDR and considers an abstract state as a
conjunction of the predicates satisfied by the corresponding concrete state. Different from

123

5 Page 6 of 29 D. Beyer et al.

other adaptations of PDR, CTIGAR avoids expensive pre-image computation by focusing on
refinement relative to single steps of the transition relation.

A related approach for hardware model checking is interpolation-sequence based model
checking (ISB) [62]. In contrast to IMC, which computes only one interpolant at a time that
overapproximates states reachablewithin a certain number of steps, ISB derives a sequence of
interpolants from an unsatisfiable BMC query, and each interpolant is an overapproximation
of the states reachable within an increasing number of steps. This is similar to Impact, just
with ISB computing sequences of interpolants for an unrolling of thewhole transition relation
instead of single program paths like Impact. In ISB, the fixed point is found if the interpolant
derived at the last unrolled loop head implies the disjunction of all previous interpolants.

The approach of lazy annotation [58] combines symbolic execution and interpolation to
generate Hoare-style annotations for a program in a similar way as a conflict-driven clause-
learning SAT solver. An annotation on a program edge is a condition that will block any
future execution from this edge to an error location. The method symbolically executes the
input program along some chosen path to search for an error location. If the execution is
blocked by an edge, it backtracks and produces an annotation by interpolation, which is a
valid precondition of the edge’s Hoare triple. This method is also applicable to program
testing because it explores only feasible traces.

2.2 Predicates, Transition Relations, Traces, and Functions

Another popular use of interpolation for software verification is to derive predicates from
interpolants for predicate abstraction [5, 45] in the refinement step of CEGAR, typically by
breaking up the interpolants into atomic predicates. In contrast to IMC and Impact, which
both create the final abstract model of the program (the overapproximation of the set of
reachable states) directly from interpolants, predicate abstraction uses Boolean or Cartesian
abstraction over the set of derived predicates and may generalize better. Interpolation has
also been used to avoid the expensive exact image computation in predicate abstraction [49],
refining an abstract transition relation to guarantee convergence given adequate predicates.
Slicing abstraction [29] is another technique related to predicate abstraction. It splits abstract
states using predicates obtained from Craig interpolants to refine the abstraction.

Trace abstraction [43, 44] extends the concept of abstracting information by Craig inter-
polation to representing program paths with interpolants. Given an unsatisfiable BMC query,
it derives a sequence of interpolants and constructs an interpolant automaton out of them.
This interpolant automaton excludes spurious traces that share the same reason of infeasibil-
ity with the current one. A novel counterexample-guided abstraction refinement scheme is
proposed for trace abstraction to prove the correctness of a program.

Interpolants are also applied to summarize function calls in a program [61]. This approach
replaces function calls with interpolants obtained in a previous analysis to reduce the sub-
sequent verification effort. Given an unsatisfiable BMC query involving a function call, a
summary of the function is computed as an interpolant between the function’s correspond-
ing formula and the rest of the BMC formula. Recently, Craig interpolation is also used to
abstract sequences of transition relations to find deep counterexamples [27].

2.3 Tools Based on Craig Interpolation

Several software-verification tools are developed on top of Craig interpolation. The tool
Blast [16, 45] provides the first implementation of a software-verification tool that uses

123

Interpolation and SAT-Based Model Checking Revisited Page 7 of 29 5

interpolants for computing abstractions. The tool CSIsat [24] was the first freely available
SMT solver with interpolation support. The verification framework CPAchecker [19] applies
Craig interpolation to large-block encodings of program code. The tool Wolverine [54] pro-
vides the first publicly available implementation of Impact, featuring a built-in interpolation
procedure and some support for bit-vector operations. The framework Ufo [2] is parameter-
ized by definable components of abstract post, refinement, and expansion, allowing various
verification techniques based on overapproximation and underapproximation. Craig interpo-
lation has also been applied to solve constrained Horn clauses (CHC). The tool Duality [60]
generalizes Impact to gradually unroll a program and solves the corresponding CHC formulas
with interpolation until it yields valid inductive invariants. The tool Spacer [53] combines
proof-based techniques with CEGAR, maintaining both an overapproximation and an under-
approximation of the input program. The tool Safari [3] implements a backward reachability
analysis with lazy abstraction based on theMCMT framework [41], which can be understood
as a backward variant of Impact, to support reasoning of arrays with unknown length.

3 Background

In the following, Boolean connectives ¬,∨,∧,→,≡ are used in their conventional seman-
tics. A first-order logical formula is also interpreted as a set of (program) states that satisfy
the formula, and we use the two terms interchangeably when it is clear from the context.

3.1 Interpolation-BasedModel Checking

Interpolation-based model checking (IMC) [56] is an algorithm for unbounded model check-
ing to verify safety properties of state-transition systems. It can be considered as an extension
of BMC, which is well-known for bug hunting. In order to describe IMC, we first define the
notation to formalize a state-transition system. Second, we review Craig’s interpolation the-
orem [37], which is the core concept to extend BMC to unbounded model checking.

3.1.1 State-Transition System

Let s and s′ be two arbitrary states in the state space of a state-transition system.We formalize
the state-transition system by three predicates over states. Predicate I (s) evaluates to true if
state s is an initial state of the system. Predicate T (s, s′) evaluates to true if the system can
transit from state s to state s′. It is also called the transition relation of the system. Predicate
P(s) evaluates to true if state s satisfies the safety property to be verified.

In the above formulation of a state-transition system, we do not assume the state space to
be finite or infinite. The working of IMC is similar in both cases, provided that the underlying
constraint solver (SAT/SMT solver) supports the reasoning over the corresponding logical
formulas.

3.1.2 Craig’s Interpolation Theorem

Given two first-order logical formulas α and β, if α⇒β, Craig’s interpolation theorem [37]
guarantees the existence of a logical formula γ such that α⇒γ and γ⇒β hold, and γ only
refers to the common variables of α and β. Formula γ is called an interpolant of α and β as
it is between α and β. In the model-checking community, Craig’s interpolation theorem is

123

5 Page 8 of 29 D. Beyer et al.

usually stated in an equivalent form based on unsatisfiability: Given an unsatisfiable formula
A∧ B, C is an interpolant of this formula if (1) A ⇒ C , (2) C ∧ B is unsatisfiable, and (3) C
only refers to the common variables of A and B.

3.1.3 Algorithm Description

The overall procedure of IMC [56] can be decomposed into two phases. The first phase
poses a BMC query by unrolling the transition relation k times and constructing a formula
representing all possible execution paths from an initial state to a bad state (a state that violates
the safety property) with k transitions.1 We use variable si to denote the state after the i th

transition. Furthermore, to facilitate Craig interpolation in the second phase, the BMC query
is partitioned into two formulas A and B (we omit ∧ for brevity):

I (s0)T (s0, s1)
︸ ︷︷ ︸

A(s0,s1)

T (s1, s2) . . . T (sk−1, sk)¬P(sk)
︸ ︷︷ ︸

B(s1,s2,...,sk)

(1)

If this formula is satisfiable, a violation is found, and we conclude that the system does
not fulfill the safety property. Otherwise, instead of simply increasing the unrolling upper
bound, IMC tries to prove the safety property from the unsatisfiable BMC query in its second
phase. According to Craig’s interpolation theorem, there exists an interpolantC(s1) referring
to the common variable s1, such that the following two conditions hold:

I (s0)T (s0, s1) → C(s1) and

C(s1)T (s1, s2) . . . T (sk−1, sk)¬P(sk) is unsatisfiable.

The above two conditions indicate that C(s1) is an overapproximation of the set of states
reachable from the initial states with one transition, and that states in C(s1) will not violate
the safety property after (k − 1) transitions.

An overapproximation of the set of reachable states can be built by iteratively computing
these interpolants. Suppose the interpolant contains some noninitial states. Changing the
variable used in the interpolant from s1 to s0, we pose another BMC query starting from the
interpolant, that is, with I (s0) replaced by C(s0):

C(s0)T (s0, s1)
︸ ︷︷ ︸

A′(s0,s1)

T (s1, s2) . . . T (sk−1, sk)¬P(sk)
︸ ︷︷ ︸

B′(s1,s2,...,sk)

If the formula is again unsatisfiable, another interpolant C ′(s1) exists, which is an overap-
proximation of the set of states reachable from the initial states with two transitions. Such
computation is repeated until the newly derived interpolant is contained in the union of the
initial states and all previous interpolants. In other words, the procedure stops when the union
of the initial states and all previous interpolants grows to a fixed point, i.e., a set of states
that is inductive with respect to the transition relation and hence contains all reachable states.
From the second condition of Craig’s interpolation theorem, it is guaranteed that this fixed
point implies the safety property, and hence the safety property is proved.

If anyBMCquery is satisfiable during the iteration in the secondphase,we cannot conclude
that the property is violated. The violation could be a wrong alarm, as some starting states in
the interpolants might not be reachable. Therefore, we have to return back to the first phase,

1 The original BMC query in McMillan’s 2003 paper [56] encodes all possible execution paths violating the
safety property with at most k transitions. In this work, we use an optimization discussed in Section 3.2 of
the 2003 paper to perform IMC incrementally and consider the property violation only after the last transition.

123

Interpolation and SAT-Based Model Checking Revisited Page 9 of 29 5

increase the unrolling upper bound, and precisely check the existence of a violation starting
from the initial states.

3.1.4 Towards an Efficient Adoption

While IMC is described in terms of logical formulas in the above discussion, the adoption
of this algorithm to a concrete state-transition system, such as a sequential Boolean-logic
circuit (hardware) or a program (software), requires a conversion from the system under
verification to the three predicates I (s), T (s, s′), and P(s). The conversion is simple for
sequential Boolean-logic circuits, which IMC originally focused on, as the input wires to
the registers of the circuit encode the function to compute the next state (i.e., the state after
transition) via the downstream circuitry in terms of the output wires of the registers (i.e.,
the current state). This state-transition function can be naturally expressed as a transition
relation. It is less straightforward, by contrast, to extract a transition relation from a program.
Although a brute-force conversion is available, representing a programvia a transition relation
with symbolic program counters conceals the structural information of the program from
the analysis. In Sect. 4, we examine why encoding a program as a transition relation with
symbolic program counters is not suitable for adopting IMC to software verification. The
main challenge towards an efficient adoption to software verification thus lies in obtaining
all required predicates while taking the program’s structure into consideration.

3.2 Program Representation

To facilitate the subsequent discussion of program analysis, here we provide some funda-
mental definitions for program representation from the literature [15, 16]. We consider an
imperative programming language whose variables are all integers. The operations are either
variable assignment or Boolean-expression evaluation. We represent such a program as a
control-flow automaton (CFA) A = (L, l0,G). A CFA is a directed graph with a set L of
nodes being program locations, an initial location l0 ∈ L indicating the entry point of the
program, and a set G ⊆ (L × Ops × L) being control-flow edges annotated with program
operations.

A reachability-safety verification task consists of a CFA and an error location of the CFA.
The task is to either prove that the error location is unreachable from the initial location or
find a feasible error path to the error location otherwise. For instance, the CFA of the example
C program in Fig. 1a is shown in Fig. 1b. The initial location of this CFA is l3, and the error
location is l8.

3.3 Configurable Program Analysis

A configurable program analysis (CPA) [15, 17, 18] defines the abstract domain used for a
program analysis. As we implemented the proposed adoption of IMC in the framework
CPAchecker [19], which utilizes CPA as the core concept, we provide necessary back-
ground knowledge about CPA as follows. To simplify the presentation, we omit the dynamic
precision adjustment of CPA because it is irrelevant for this paper. Please refer to the
literature [14, 18] for further details.

123

5 Page 10 of 29 D. Beyer et al.

3.3.1 Definition

A CPA D = (D,� ,merge, stop) consists of an abstract domain D, a transfer relation � ,
and the operatorsmerge and stop. The abstract domain D = (C, E, [[·]]) consists of a setC of
concrete program states, a semilattice E = (E,
) over a set E of abstract states and a partial
order
, and a concretization function [[·]] to map an abstract state to the represented set of
concrete program states. The transfer relation � ⊆ E × E computes abstract successor
states. The merge operator merge : E × E → E specifies how to merge two abstract
states when the control flow meets. The stop operator stop : E × 2E → B determines
whether an abstract state is covered by a given set of abstract states. The operators merge
and stop can be chosen appropriately to influence the abstraction level of the analysis.
Common choices include mergesep(e, e′) = e′ (which does not merge abstract states) and
stopsep(e, R) = (∃e′ ∈ R : e
 e′) (which determines coverage by checking whether the
given abstract state is less than or equal to any other reachable abstract state according to the
semilattice).

3.3.2 Fundamental CPAs and Composite CPA

Several fundamental CPAs are used in this paper: The Location CPA L [18] uses a flat
lattice over all program locations to track the program counter explicitly; the Loop-Bound
CPA LB [13, 14] tracks in its abstract states for every loop of the program how often the loop
body has been traversed on the current program path. Another important CPA, namely the
PredicateCPAP [14], serves as the core data structure underlying the proposed IMCadoption.
The Predicate CPA P for adjustable-block encoding (ABE) [20] uses a triple (ψ, lψ , ϕ) of
an abstraction formula ψ , an abstraction location lψ , and a path formula ϕ as an abstract
state. The abstraction formula ψ stores the abstraction of the program state computed at the
program location lψ . The path formula ϕ syntactically encodes the program behavior from
the abstraction location lψ to the current program location. Abstract states where the path
formula ϕ is true are called abstraction states; other abstract states are intermediate states.

Several CPAs can be combined using a Composite CPA [17] to achieve synergy. The
abstract states of the Composite CPA are tuples of one abstract state from each component
CPA and the operators of the Composite CPA can delegate to the component CPAs’ operators
accordingly. We also use the ARG CPA A to store the predecessor-successor relationship
between abstract states to track the abstract reachability graph (ARG).

3.3.3 CPA Algorithm

CPAs can be used by the CPA algorithm [14, 15, 17], which gets as input a CPA and an
initial abstract state, for reachability analysis. The algorithm performs a classic fixed-point
iteration by looping until all abstract states have been completely processed and returns the
set of reachable abstract states. The proposed adoption of IMC relies on an extension of the
CPA algorithm, named CPA++ [14]. Instead of an initial abstract state, the CPA++ algorithm
takes a set of reached abstract states and a set of frontier abstract states awaiting processing.
It additionally receives as input a function abort to determine whether it should abort early
for some abstract state. Upon completion, the CPA++ algorithm returns the updated reached
set and waiting list of abstract states.

123

Interpolation and SAT-Based Model Checking Revisited Page 11 of 29 5

4 A Straightforward Adoption with Symbolic Program Counters

Before presenting the proposed efficient adoption of IMC for software verification, we take
a step back by first discussing a straightforward method to encode IMC with symbolic
program counters, as mentioned in Sect. 3.1.4. We will also demonstrate, both conceptually
and empirically, why such a brute-force encoding is not suitable for IMC on software.

4.1 Encoding Transition Relations with Symbolic Program Counters

The straightforward method derives the three predicates, namely, the initial condition, transi-
tion relation, and safety property, via introducing a variable pc to store the program counter.
Given a CFA whose initial location is l0, the initial condition can be encoded as pc = l0. The
transition relation of the CFA is the disjunction of the formula pc = li ∧ op ∧ pc′ = l j for
each edge (li , op, l j) of the CFA, where op is the operation annotated to the edge, and the
variable pc′ stores the program counter after the operation is executed. Suppose a location
lE of the CFA is specified as the error location for a reachability-safety verification task, then
the corresponding safety property of the task can be expressed as pc �= lE .

We use the example CFA in Fig. 1b to illustrate the encoding. Recall that a primed variable
denotes the program variable after one transition. With the symbolic program counter pc,
the initial condition is encoded as I (pc) = (pc = l3); the safety property is expressed as
P(pc) = (pc �= l8); the transition relation T (pc, x, pc′, x ′) of the CFA is captured as:

(pc = l3 ∧ x ′ = 0 ∧ pc′ = l4) ∨
(pc = l4 ∧ nondet() �= 0 ∧ pc′ = l5 ∧ x ′ = x) ∨
(pc = l4 ∧ nondet() = 0 ∧ pc′ = l7 ∧ x ′ = x) ∨
(pc = l5 ∧ x ′ = x + 2 ∧ pc′ = l4) ∨
(pc = l7 ∧ x%2 �= 0 ∧ pc′ = l8 ∧ x ′ = x) ∨
(pc = l7 ∧ x%2 = 0 ∧ pc′ = l10 ∧ x ′ = x) ∨
(pc = l8 ∧ pc′ = l11 ∧ x ′ = x) ∨
(pc = l10 ∧ pc′ = l11 ∧ x ′ = x)

Note that for each program variable that is not assigned by an operation, the primed variable
must be set equal to the respective unprimed variable. For example, x is not assigned by the
edge (l4, [nondet()], l5), so x ′ = x needs to be added to the edge’s disjunctive term.

Having derived the three predicates, we can perform IMC as described in Sect. 3.1. The
following BMC query unrolls the transition relation k times and tests if the property can be
violated after k transitions:

I (pc0) ∧ T (pc0, x0, pc1, x1) ∧ . . . ∧ T (pck−1, xk−1, pck, xk) ∧ ¬P(pck).

To ease the readability, we abbreviate T (pci , xi , pc j , x j) as Ti, j in the following. Note that
the correctness of the example program can be proved if the invariant x%2 = 0 is established
at the program location l4.

4.2 Drawbacks of the Encoding

The obstacle hindering IMC to work with the encoding is the weak interpolants derived from
the queries. In particular, when program-counter variables appear in unsatisfiable queries,

123

5 Page 12 of 29 D. Beyer et al.

the resultant interpolants tend to concern themselves mainly with the program counter pc
but seldom mention the program variables. The lack of strong interpolants arises from syn-
tactically infeasible paths encoded in the BMC queries. We will discuss this problem using
the example CFA in Fig. 1b. First, note that for this CFA, a potential error path from l3 to l8
must have an odd number of edges and at least three edges. In other words, a BMC query
with an even number of transitions is trivially unsatisfiable, and the derived interpolant does
not need to (and usually will not) refer to the program variable x .

For the BMC queries with a syntactically feasible path (k = 3, 5, 7, 9, . . .), the derived
interpolants may involve the program variable x . However, IMC could still fail to reach
a fixed point in this situation (and does so in practice). As an example, we continue on
the CFA in Fig. 1b, unroll the transition relation with k = 5, and pose the BMC query
I ∧ T0,1 ∧ T1,2 ∧ T2,3 ∧ T3,4 ∧ T4,5 ∧¬P . This unsatisfiable BMC query allows syntactically
feasible paths, and thus it is possible to yield useful interpolants. Suppose, with luck, a good
interpolant τ1 = (pc = l4 ∧ x%2 = 0) is derived, which is exactly the required invariant
to prove the correctness of the program. In the following, we demonstrate how this valuable
information might be discarded, unfortunately, if IMC is performed without knowledge of
the program structure.

The IMC algorithm described in Sect. 3.1 aims at building a fixed point by iteratively
computing more interpolants to overapproximate reachable states. After computing τ1, the
next interpolant is derived from a BMC query with the initial condition replaced by the
previous interpolantwith appropriately shifted indices: τ1∧T0,1∧T1,2∧T2,3∧T3,4∧T4,5∧¬P .
This query is trivially unsatisfiable because no path can go from l4 to l8 with five transitions,
which are the start and end points enforced by τ1 and ¬P , respectively. Therefore, the
interpolant for this query usually concerns only the program counter and loses the information
about program variables. For example, we might obtain τ2 = (pc = l5 ∨ pc = l7). Starting
from τ2, the next BMC query is satisfiable because there is a feasible path from l5 to l8 with
five transitions. As a result, the IMC algorithm fails to reach a fixed point for k = 5 and
has to go back to the BMC phase with an incremented unrolling bound. A better interpolant
without the program counter, e.g., (x%2 = 0) instead of τ2, could have prevented the loss of
the information, but it is rare to get such high-quality interpolants even from state-of-the-art
interpolation engines.

We conducted an experiment on 723 tasks from the category ReachSafety-Loops used in
the 2022Competition on SoftwareVerification [9] to support our conceptual reasoning above.
Among the 505 tasks without property violation, IMC with symbolic program counters only
proved 11 tasks. Moreover, this encoding of IMC can prove the tasks because the numbers
of loop iterations in these 11 tasks are bounded, not because it constructed a fixed point
from interpolants. In our experiment, IMC with symbolic program counters never found a
fixed point by interpolation for any task and usually got trapped in the suboptimal situation
explained above.

4.3 Lessons Learned

To avoid weak interpolants that only concern the program counter and thus prevent reaching
a fixed point, we must not pose BMC queries about syntactically infeasible paths. At the
core of this issue is mixing the information about the control flow and program semantics
in the transition relation when IMC is adopted with the brute-force conversion and symbolic
program counters. Next, we will present another adoption of IMC based on large-block

123

Interpolation and SAT-Based Model Checking Revisited Page 13 of 29 5

encoding, which separates the analysis of the control flow from the fixed-point computation
of IMC and hence improves the quality of derived interpolants.

5 An Efficient Adoption with Large-Block Encoding

In this section, we describe our proposed approach for adopting IMC to software verification.
In essence, we utilize large-block encoding (LBE) [11] to draw an analogy between a program
and the state-transition system discussed in Sect. 3. The idea is not only helpful for this paper
but might also shed light on the efficient adoptions of other algorithms.

As explained in Sect. 4, explicitly encoding symbolic program counters into the transition
relation of a CFA is not ideal for adopting IMC to software verification. Sequential Boolean-
logic circuits, for which IMC was originally designed, usually have only one feedback loop.
By contrast, a CFA could have arbitrarily many loops. To simplify the problem, we start by
considering single-loop programs. As a program with multiple loops can be converted into
a single-loop program by a standard transformation [1, 39], this simplification will not hurt
the generality of the proposed approach. The effect of the single-loop transformation on the
performance of IMC will be discussed in Sect. 5.1.

To obtain the transition relation of a single-loop program, we take advantage of LBE [11].
Given a CFA, LBE repeatedly rewrites the original CFA in order to summarize it. In the
summarized CFA, each loop-free subgraph of the original CFA is represented by a single
control-flow edge. The edge is annotated with a formula that encodes the program behavior
of the represented subgraph of the original CFA.

For single-loop programs, applying LBE will always result in a summarized CFA with a
structure as shown in Fig. 3a. It has an initial location l0, a loop-head location lH , a loop-body
location lB , a loop-tail location lT , and an error location lE . These locations correspond to
program locations in the original single-loop CFA before summarization. The edges of the
summarized single-loop CFA are labeled with the following formulas: Formula ϕ0 summa-
rizes the subgraph from l0 to lH , formula C is the loop condition, formula ϕL summarizes
the subgraph from lB back to lH , and formulas ϕE , ϕ′

E summarize the subgraphs from lT , lB
to lE , respectively.

We notice that the summarized single-loop CFA has a natural analogy to those predicates
used in Sect. 3.1: The initial-state predicate I (s) is analogous to ϕ0, the transition relation
T (s, s′) is analogous to C ∧ ϕL , and the negated safety property ¬P(s) is analogous to
(¬C ∧ ϕE) ∨ (C ∧ ϕ′

E). Using LBE, we successfully obtain the required predicates without
explicitly encoding the program counter into the formulas.

Furthermore, in order to perform IMC, we have to unroll the summarized single-loop CFA
and construct the BMC query Eq. (1). In Fig. 3b, we unroll the CFA by drawing all possible
paths starting from l0, iterating the loop k times (k + 1 visits to lH), and finally reaching lE .
A node in Fig. 3b consists of a program location which the control flow is currently at and a
formula σ to encode all possible paths starting from the program location of the preceding
node. Note that σ is indexed with the unrolling counter i to distinguish between different
iterations.

To discover the similarity between Eq. (1) and Fig. 3b, we additionally label a node
in Fig. 3b with the subformula in Eq. (1) that σ corresponds to. From those labels, we observe
that the formulas in the unrolled CFA nicely match the subformulas in Eq. (1). We name the
formula matching I (s0) prefix formula, the formula matching T (s0, s1) loop formula, and
the formula matching T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧ ¬P(sk) suffix formula.

123

5 Page 14 of 29 D. Beyer et al.

l0

lH lB

lT

lE

ϕ0

C

ϕL¬C

ϕE

ϕ′
E

(a) Summarized single-loop CFA

(l0, true)

(lH , ϕ0|i=0) : I(s0)

(lH , (C ∧ ϕL)|i=1) : T (s0, s1)

(lH , (C ∧ ϕL)|i=2) : T (s1, s2)
...

(lH , (C ∧ ϕL)|i=k) : T (sk−1, sk)

(lE , ((¬C ∧ ϕE) ∨ (C ∧ ϕ′
E))|i=k) : ¬P (sk)

(b) k -Unrolling

Fig. 3 A summarized single-loop CFA (a) and its k-unrolling (b)

We use the example CFA in Fig. 1b to illustrate how the LBE-based adoption of IMC
separates the analysis of the control flow and the semantical reasoning about program states.
The adoption avoids the usage of symbolic program counters in the formulas and hence often
leads tomore helpful interpolants. Recall that in Sect. 4, a copy of the transition relationmeans
the execution of one program edge. Therefore, the BMC query I (s0)∧T (s0, s1)∧¬P(s1) is
equivalent to (pc0 = l3)∧(pc0 = l3∧ x1 = 0∧ pc1 = l4)∧(pc1 = l8), which encodes only
a single step from the initial program location l3. Since the error location l8 is syntactically
unreachable from l3 via one edge, the resulting interpolant does not need to concern the
program variable x . In practice, an interpolant for this query could be pc1 �= l8.

By contrast, if the required predicates I (s), T (s, s′), P(s) are obtained with LBE, the
BMC query I (s0) ∧ T (s0, s1) ∧ ¬P(s1) is equivalent to x0 = 0 ∧ ¬(r0 = 0) ∧ x1 =
x0 + 2∧ r1 = 0∧¬(x1%2 = 0), where r0 and r1 denote the first and second returned values
from the function nondet(), respectively. It represents the semantics of all syntactically
feasible paths from l3 to l8 that visit the loop-head location l4 twice. By Craig’s interpolation
theorem, the interpolant has to talk about the program variable x . In fact, as will be shown
in Sect. 6.3, IMC is able to prove the correctness of the example CFA by deriving the loop
invariant x%2 = 0 as an interpolant.

5.1 Effect of Single-Loop Transformation

In our approach, programs with multiple loops are transformed to single-loop programs
before IMC is applied. The transformation introduces a fresh loop-head location, which is
the unique entry to the new single loop, and a location variable to track which old loop should
be entered next. Auxiliary logic is added to the CFA to redirect the control flow between the
new loop head and the old ones based on the location variable.

Due to the existence of the location variable, there might be trivially infeasible program
paths that enter a different loop from the one required by the location variable. As discussed
in Sect. 4, trivially unsatisfiable queries often result in weak interpolants that prevent IMC
from converging to a fixed point. One solution to this issue is to use a dedicated CPA to track

123

Interpolation and SAT-Based Model Checking Revisited Page 15 of 29 5

the location variable, which works similarly to the Location CPA. This CPA will not produce
successors that enter a wrong loop, and when used in a composite CPA, it eliminates the
aforementioned infeasible paths from the analysis.

In our experiments, we evaluated the IMC adoption with and without the CPA tracking the
location variable. The latter treats the location variable as a normal variable and encodes it in
the SMT formulas. No significant difference was observed from the empirical results. Unlike
the issue of symbolic program counters discussed in Sect. 4, having the location variable (and
the related infeasible program paths) in the BMCqueries does not slow down the convergence
of IMC. This is because the BMC queries obtained by LBE also include syntactically feasible
paths. To refute these syntactically feasible paths, the interpolants cannot be trivial and have
to concern the program variables. Since the performance of the two alternatives are similar,
we stick to the one without the additional CPA for simplicity.

6 Implementation in CPACHECKER

In this section, we will describe an implementation to adopt IMC with large-block encoding.
We implemented the proposed adoption in the verification framework CPAchecker [19],
leveraging its flexibility provided by configurable program analysis [17]. Before delving
into implementation details, we emphasize that the idea to extract a transition relation with
LBE is general and independent of the underlying framework. We chose to implement the
proposed adoption in CPAchecker because it provides (1) the necessary components for the
adoption, which are highly configurable, and (2) the implementations of various state-of-the-
art software-verification algorithms, which is convenient for the evaluation.

6.1 Data Structures

The Predicate CPA for ABE [20] serves as the core data structure in our IMC adoption to
store formulas that encode program semantics. We add to an abstract state (ψ, lψ , ϕ) of
the Predicate CPA a block formula σ , which encodes all possible paths from the previous
abstraction location to the current abstraction location and is used to compute the abstraction
formula. In the implementation of CPAchecker, a block formula is already stored in the data
structure for abstraction formulas. We append it to an abstract state of the Predicate CPA in
order to make the subsequent discussion more understandable.

With the help of ABE, we can achieve the effect of LBE via using the block-adjustment
operator blkl [20]. The operator blkl will make the Predicate CPA convert an intermediate
state to an abstraction state if the current program location is at the loop head or the error loca-
tion. Under this configuration, the unrolled ARG, if projected to abstraction states, will have a
similar structure to Fig. 3b. Therefore,we can easily obtain the required formulas by collecting
and combining the block formulas from the corresponding abstraction states in the ARG.

It is worth noting that here we take advantage of the flexibility of the Predicate CPA: By
choosing an appropriate implementation for the block-adjustment operator, we can configure
the Predicate CPA to be suitable for IMC (together with the algorithms described in the fol-
lowing) without further changes to its definition. Other choices for its operators would allow
it to implement different algorithms like Impact, predicate abstraction, and k-induction [14].
Using the Predicate CPA as common framework not only highlights conceptual differences
and similarities between the approaches but also allows for comparing them experimentally
with the set of confounding variables kept to a minimum.

123

5 Page 16 of 29 D. Beyer et al.

6.2 Algorithmic Procedures

We present an algorithm for the adoption of IMC to software verification in Algorithm 1,
which is based on the CPA++ algorithm [14]. The algorithm assumes single-loop programs
as input. We apply single-loop transformation [1, 39] to input programs with multiple loops
as a preprocessing. The algorithm takes as input an upper limit kmax for a counter k that
tracks the number of loop iterations on a program path2 and a composite CPA consisting of
the Location CPA, the Predicate CPA, and the Loop-Bound CPA.

Algorithm 1 IMC: main procedure
Input: an upper limit kmax for the loop unrolling bound k,

a composite CPA D with components: the Location CPA L,
the Predicate CPA P, and the Loop-Bound CPA LB

Output: false if an error path to lE is found,
true if a fixed point is obtained,
unknown otherwise

1: k := 1
2: e0 := (l0, (true, l0, true, true), {lH
→ −1}) // Create initial abstract state at l0
3: reached := waitlist := {e0}
4: while k ≤ kmax do
5: (reached,waitlist) := CPA++(D, reached,waitlist, k)
6: σp := σ | (lH , (·, ·, ·, σ), {lH
→ 0}) ∈ reached
7: σl := true
8: if k > 1 then
9: σl := σ | (lH , (·, ·, ·, σ), {lH
→ 1}) ∈ reached
10: σs := ∧k−1

i=2 σ | (lH , (·, ·, ·, σ), {lH
→ i}) ∈ reached ∧
∨ {σ | (lE , (·, ·, ·, σ), {lH
→ (k − 1)}) ∈ reached}

11: if sat(σp ∧ σl ∧ σs) then
12: return false // Found an error path via BMC query
13: if k > 1 and reach_fixed_point(σp ,σl ,σs) then
14: return true // Obtained a fixed point via interpolation
15: k := k + 1
16: return unknown

Algorithm 2 IMC: reach_fixed_point(σp ,σl ,σs)
Input: prefix formula σp , loop formula σl , and suffix formula σs
Output: true if a fixed point is reached, false otherwise
1: image := start := σp // Set current reachable and starting states to initial states
2: while ¬sat(start ∧ σl ∧ σs) do
3: τ := get_interpolant(start ∧ σl , σs) // formula A: start ∧ σl ; formula B: σs
4: τ := shift_variable_index(τ, σp)
5: if ¬sat(τ ∧ ¬image) then
6: return true // Interpolant implies image: fixed point
7: image := image ∨ τ // Find new states: enlarge image
8: start := τ // Start next iteration from new states
9: return false // Reach error: might be wrong alarm

2 While the algorithm CPA++ unrolls the program k times, the algorithm Algorithm 1 uses the last unrolling
only for encoding the predicate P(s) and thus only k − 1 copies of T (s, s′) appear in its BMC query. This is
done for consistency with other algorithms expressed on top of the same unifying framework [14].

123

Interpolation and SAT-Based Model Checking Revisited Page 17 of 29 5

An abstract state of the composite CPA is (l, (ψ, lψ , ϕ, σ), {lH
→ i}), where the first
element is an abstract state of the Location CPA representing the current program location l,
the second element is an abstract state of the Predicate CPA as explained above, and the third
element is an abstract state of the Loop-Bound CPA recording that the loop body starting
from lH has been completely traversed i times already. We also use the ARG CPA A to store
the predecessor-successor relationship between abstract states. To increase readability, we
simply use abstract states as elements in the ARG and explicitly give the unrolling upper
bound k as a parameter to the CPA++ algorithm (instead of passing it via the precision of the
initial abstract state as in the literature [14]). We also omit the aborting function and assume
that the CPA++ algorithm never aborts early (i.e., we pass abortnever = {·
→ false}).

After unrolling the CFA with the CPA++ algorithm (line 5), we have to collect prefix,
loop, and suffix formulas to pose a BMC query and perform the fixed-point computa-
tion via interpolation. The formula collection is described in lines 6 to 10, where we
write σ |(l, (ψ, lψ , ϕ, σ), {lH
→ i}) to denote the block formula σ of the abstract state
(l, (ψ, lψ , ϕ, σ), {lH
→ i}). The prefix formula σp is the block formula of the abstract state
(lH , (·, ·, ·, σ), {lH
→ 0}); if the loop body has been completely traversed at least once, i.e.,
k > 1, the loop formulaσl is the block formula of the abstract state (lH , (·, ·, ·, σ), {lH
→ 1}),
otherwise, it is set to true; the suffix formula σs is the conjunction of the following two for-
mulas: the conjunction of block formulas of the abstract state (lH , (·, ·, ·, σ), {lH
→ i})
for i = 2, . . . , (k − 1) and the disjunction of the block formulas of the abstract states
(lE , (·, ·, ·, σ), {lH
→ (k − 1)}).

Note that the above formula collection at abstract states whose locations equal lH is
unambiguous, meaning that there is a unique abstract state satisfying the conditions imposed
by the Location CPA L and the Loop-Bound CPA LB. This is because we assume single-
loop programs and use LBE to summarize all paths between two adjacent abstraction states.
After collecting these formulas, the BMC query is simply the conjunction of the prefix,
loop, and suffix formulas. If the BMC query is unsatisfiable, we try to compute a fixed point
usingAlgorithm2,which implements the procedure described in Sect. 3.1 to iteratively derive
interpolants from unsatisfiable BMC queries and grow a fixed point as their union.

Algorithm 2 first initializes both image, which stores an overapproximation of the reach-
able states, and start, which stores the starting states of BMCqueries, to be the prefix formula.
Using start∧ σl as formula A and σs as formula B, we derive an interpolant τ . As discussed
in Sect. 3.1, the i th interpolant is an overapproximation of the reachable states after i loop
iterations. We change the variables used in the interpolant to those in the prefix formula and
check whether the interpolant implies image. If so, a fixed point has been reached, and we
conclude the property is true; otherwise, we enlarge image by adding the states contained
in the interpolant to it and pose another BMC query starting from the interpolant. If any
BMC query during the iteration is satisfiable, we return back to Algorithm 1 and increase the
loop-unrolling counter k to check whether the violation is a wrong alarm.

6.3 Example

We demonstrate step-by-step how to apply Algorithm 1 and Algorithm 2 to verify the CFA
in Fig. 1b. The ARG constructed by the CPA++ algorithm when k = 2 is shown in Fig. 4. In
this figure, each abstract state is a tuple (l, (ψ, lψ , ϕ, σ), {l4
→ i}) of the abstract states ofL,
P, and LB. Note that every abstract state in the ARG has an abstraction formula ψ (the first
element in an abstract state of Predicate CPA) equal to true because IMC does not compute
an abstraction formula. Instead, it relies on interpolants for the abstraction of program states.

123

5 Page 18 of 29 D. Beyer et al.

e0: (l3, (true, l3, true, true), {l4 −→� 1})

e1: (l4, (true, l4, true, x0 = 0), {l4 �→ 0})

e2: (l7, (true, l4, r0 = 0, x0 = 0), {l4 �→ 0})

e3: (l8, (true, l8, true, r0 = 0 ∧ ¬(x0%2 = 0)), {l4 �→ 0})

e4: (l10, (true, l4, r0 = 0 ∧ x0%2 = 0, x0 = 0), {l4 �→ 0})

e5: (l5, (true, l4,¬(r0 = 0), x0 = 0), {l4 �→ 0})

e6: (l4, (true, l4, true,¬(r0 = 0) ∧ x1 = x0 + 2), {l4 �→ 1})

e7: (l7, (true, l4, r1 = 0,¬(r0 = 0) ∧ x1 = x0 + 2), {l4 �→ 1})

e8: (l8, (true, l8, true, r1 = 0 ∧ ¬(x1%2 = 0)), {l4 �→ 1})

e9: (l10, (true, l4, r1 = 0 ∧ x1%2 = 0,¬(r0 = 0) ∧ x1 = x0 + 2), {l4 �→ 1})

e10: (l5, (true, l4,¬(r1 = 0),¬(r0 = 0) ∧ x1 = x0 + 2), {l4 �→ 1})

e11: (l4, (true, l4, true,¬(r1 = 0) ∧ x2 = x1 + 2), {l4 �→ 2})

Fig. 4 ARG constructed by the CPA++ algorithm [14] for the CFA in Fig. 1b (k = 2)

Abstract states whose predicate abstract state is an abstraction state (where the path formula
is always reset to true) are highlighted in gray. We use r to denote the returned value of the
function nondet.

The prefix formula σp is the block formula x0 = 0 of the abstract state e1, the loop
formula σl is the block formula ¬(r0 = 0) ∧ x1 = x0 + 2 of the abstract state e6, and the
suffix formula σs is the block formula r1 = 0 ∧ ¬(x1%2 = 0) of the abstract state e8
(note that the block formula of the abstract state e3, which also has location l8, is not
selected because l4
→ 0 does not match in line 10 of Algorithm 1). As the BMC query
x0 = 0 ∧ ¬(r0 = 0) ∧ x1 = x0 + 2∧r1 = 0 ∧ ¬(x1%2 = 0) is unsatisfiable, we try to com-
pute a fixed point using Algorithm 2.

Variables image and start are initialized to x0 = 0.Using x0 = 0∧¬(r0 = 0)∧x1 = x0+2
as formula A and r1 = 0∧ ¬(x1%2 = 0) as formula B, we can derive an interpolant τ from
the unsatisfiable BMC query. Assume that τ is x1%2 = 0, referring to the common variable
x1 of formulas A and B. After shifting the variable to the one used in σp , we obtain x0%2 = 0.
As the interpolant does not imply image, we enlarge the current image by disjoining it with
the interpolant. The computation is then repeated again, with start equal to x0%2 = 0 this
time. The BMC query in the second iteration becomes x0%2 = 0 ∧ ¬(r0 = 0) ∧ x1 =
x0 + 2 ∧ r1 = 0 ∧ ¬(x1%2 = 0), which is still unsatisfiable. Assume the interpolant is
again x1%2 = 0. Obviously, we have reached a fixed point, as the newly derived interpolant
implies image. Therefore, we conclude that the property holds.

123

Interpolation and SAT-Based Model Checking Revisited Page 19 of 29 5

6.4 Correctness

It is straightforward to see that Algorithm 1 is precise, i.e., does not produce wrong alarms,
because if it returns false, then the BMC query for all paths from l0 to lE at line 11 is
satisfiable, which implies that the CFA has a feasible path to lE . More interesting is the
soundness of Algorithm 1, i.e., whether it may produce wrong proofs, which we discuss in
the following. Its soundness follows from that of large-block encoding [11] and the original
IMC algorithm [56].We state the soundness of Algorithm 1when it is applied to a single-loop
CFA in Theorem 1. For CFAs with multiple loops, the soundness will also depend on that of
the single-loop transformation [1, 39].

Theorem 1 Given a single-loop CFA A and its corresponding composite CPA D as input, if
Algorithm 1 returns true upon D, then A does not have a feasible path to lE .

Proof We prove the statement by contradiction. Suppose Algorithm 1 returns true when the
value of the loop-unrolling counter k equals k̂, but the single-loop CFA has a feasible path
to lE . We split into two cases based on the number ĥ of the visits to lH on the error path.

First, assume ĥ ≤ k̂. Thanks to the sound summarization of LBE, the formula of the error
path must imply σp ∧ σl ∧ σs when k = ĥ. Therefore, Algorithm 1 should have returned
false at k = ĥ, because the BMC query at line 11 of Algorithm 1 is satisfiable. This result
contradicts the assumption that Algorithm 1 returns true.

Second, assume ĥ > k̂. Such an error path indicates the existence of a state ŝ that is
reachable from l0 by traversing the loop ĥ− k̂ times and will reach lE after further traversing
the loop k̂ − 1 times. We will show that Algorithm 2 will return false after discovering ŝ via
interpolation. Note that Algorithm 2 cannot return true before finding ŝ because the state
must be contained in the computed fixed point.

According to the property of the original IMC algorithm described in Sect. 3.1, the inter-
polant derived in the i th while-loop iteration of Algorithm 2 is an overapproximation of the
set of states reachable from l0 by traversing the loop i times. Therefore, ŝ must belong to
the interpolant τ derived in the (ĥ − k̂)th while-loop iteration of Algorithm 2, which will
be used as new starting states in the next iteration. Moreover, because of the soundness of
LBE, the formula from the (ĥ − k̂ + 1)th lH to lE (involving k̂ visits to lH) on the error
path must imply σl ∧ σs when we enter Algorithm 2 with k = k̂. Thus, in the beginning of
the next iteration, the satisfiability query at line 2 of Algorithm 2 must be satisfiable, which
makes Algorithm 2 return false. This in turn prevents Algorithm 1 from returning true when
k = k̂, contradicting our assumption.

Having analyzed the above two possibilities, we conclude that such a feasible error path
does not exist, and hence Algorithm 1 is sound. ��

6.5 Backward Derivation of Interpolants

Notice that in the example of Sect. 6.3, the “quality” of interpolants heavily affects the
convergence of the fixed-point computation. For example, instead of x1%2 = 0, which is
actually the loop invariant, suppose the interpolant derived by the solver is x1 = 2. Starting
from this interpolant, we might be trapped in a sequence of interpolants x1 = 4, x1 = 6,
x1 = 8, . . . and never reach a fixed point.

While in general it is difficult to control the interpolation process of the solver, there is a
trick tomitigate this problem. First, we switch the labels of the two formulas, i.e., we label the

123

5 Page 20 of 29 D. Beyer et al.

original formula B as the new formula A and the original formula A as the new formula B.
Second, we ask the solver to derive an interpolant for the new formulas and then negate it.
The negated interpolant is a valid interpolant for the original formulas A and B. In other
words, instead of get_interpolant(A, B), we use ¬get_interpolant(B, A).

Using this trick in IMC, we are actually deriving interpolants backwards from the safety
property. Therefore, we call it backward derivation of interpolants.With the backward deriva-
tion, we can in practice often avoid the bad interpolant x1 = 2 and obtain the good one
x1%2 = 0 for fast convergence of the example program in Sect. 6.3. Empirically, we found
that the backward derivation performs slightly better than the forward derivation. This phe-
nomenon might be attributed to the fact that deriving the interpolants backward from the
safety property side is likely to yield interpolants summarizing information more relevant to
proving the property. As a result, we use it as default in our implementation.

7 Evaluation

To evaluate the proposed adoption of IMC [56] and understand its characteristics, we carried
out two parts of experiments to answer the research questions below:

• Part 1: IMC vs. other SMT-based algorithms

– RQ1: Can IMC solve more safety-verification tasks?
– RQ2: Can IMC solve safety-verification tasks faster?
– RQ3: Can IMC solve tasks unsolvable by existing approaches?

• Part 2: IMC vs. Impact [57] (a closely related interpolation-based algorithm)

– RQ4: Why can IMC deliver more proofs than Impact?

We evaluated the adoption of IMC based on large-block encoding against several state-
of-the-art SMT-based algorithms on the largest publicly available benchmark suite of C
safety-verification tasks [8]. We excluded the naive adoption of IMC with symbolic program
counters from the evaluation because it was shown infeasible in the experiment described
in Sect. 4.

7.1 Evaluated Approaches

We assessed IMC against five SMT-based verification algorithms, including BMC [25],
k-induction [38], predicate abstraction [45], Impact [57], and PDR [28]. All of the compared
approaches are implemented in CPAchecker. The implementations of BMC, k-induction,
predicate abstraction, and Impact are built on top of the CPA++ algorithm in a unified
manner [14]. The implementation of PDR in CPAchecker follows a software-verification
adaptation named CTIGAR [26], which was compared against other PDR-related approaches
recently in the literature [12]. We did not include other state-of-the-art verifiers in the evalu-
ation to keep confounding variables at a minimum (same parser, same libraries, same SMT
solver, etc.). We chose CPAchecker because it is a flexible framework that performed well in
the competitions. Empirical results of CPAchecker against other software verifiers are avail-
able from the report [8] of the 2022 Competition on Software Verification (SV-COMP’22).

123

Interpolation and SAT-Based Model Checking Revisited Page 21 of 29 5

7.2 Benchmark Set

As the benchmark set, we used the verification tasks [9] from SV-COMP’22. We used
only verification tasks where the safety property is the reachability of a program loca-
tion. From those, we further excluded verification tasks that are not supported by at least
one of the compared approaches, e.g., those from the categories ReachSafety-Recursive and
ConcurrencySafety-Main. The resulting benchmark set consists of a total of 6024 verifi-
cation tasks from the subcategories AWS-C-Common-ReachSafety, DeviceDriversLinux64-
ReachSafety, DeviceDriversLinux64Large-ReachSafety, and uthash-ReachSafety of the cat-
egory SoftwareSystems and from the following subcategories of the category ReachSafety:
Arrays, Bitvectors, ControlFlow, ECA, Floats, Heap, Loops, ProductLines, Sequentialized,
XCSP, and Combinations. A total of 1793 tasks in the benchmark set contain a known spec-
ification violation, while the other 4231 tasks are assumed to be correct.

7.3 Experimental Setup

Our experiments were performed on machines with one 3.4GHz CPU (Intel Xeon E3-
1230 v5) with 8 processing units and 33GB of RAM each. The operating system was
Ubuntu 22.04 (64 bit), using Linux 5.15 and OpenJDK 17.0.5. Each verification task
was limited to two CPU cores, a CPU time of 15 min, and a memory usage of 15 GB.
We used BenchExec3 [22] to achieve reliable benchmarking and revision 43042 of branch
cfa-single-loop-transformation of CPAchecker for evaluation. We configured
CPAchecker to use the SMT theories of equality with uninterpreted functions, bit vectors,
floats, and arrays. All SMT queries were handled by MathSAT5 [33].

7.4 Results

RQ1: Effectiveness of IMC

The experimental results of all compared approaches are summarized in Table 2. Observe that
IMC produced the most correct results for both proofs and alarms among the interpolation-
based approaches (IMC, PDR, predicate abstraction, and Impact) and was second only to
k-induction in the evaluation. In comparison to themost-related approach Impact, IMCproved
the safety of 328 more programs and found 25 more bugs (an increase of 21% and 3%,
respectively). We will study the underlying mechanism that enables IMC to deliver more
proofs than Impact in RQ4. Meanwhile, BMC generated the most correct alarms as expected,
and k-induction correctly solved the most tasks, with the most correct proofs and the second-
most correct alarms. Moreover, although IMC is a new addition to CPAchecker, it did not
produce any wrong proof in the evaluation, identical to the other long-established approaches
in the software-verification framework. We consider the 3 wrong alarms of IMC not caused
by our implementation. They are related to the program encoding of CPAchecker, and other
approaches, such as predicate abstraction, also failed to solve these tasks correctly.

3 https://github.com/sosy-lab/benchexec

123

https://svn.sosy-lab.org/software/cpachecker/branches/cfa-single-loop-transformation/?p=43042
https://github.com/sosy-lab/benchexec

5 Page 22 of 29 D. Beyer et al.

Table 2 Summary of the results for 6024 reachability-safety verification tasks

Algorithm IMC PDR BMC k-Induction Predicate Abstraction Impact

Correct results 2766 1599 2388 3157 2346 2413

Proofs 1871 1136 1211 2158 1531 1543

Alarms 895 463 1177 999 815 870

Wrong proofs 0 0 0 0 1 0

Wrong alarms 3 1 1 1 2 2

Timeouts 2018 3373 2227 1841 1955 1725

Out of memory 160 23 363 221 13 107

Other inconclusive 1077 1028 1045 804 1707 1777

0 500 1 000 1 500 2 000
1

10

100

1 000

(a) Proofs

0 200 400 600 800 1 000 1 200
1

10

100

1 000

(b) Alarms

IMC PDR BMC

k-Induction Predicate Abstraction IMPACT

x-Axis: n-th fastest correct result
y-Axis: CPU time (s)

Fig. 5 Quantile plots for all correct proofs and alarms

RQ2: Efficiency of IMC

To study the run-time efficiency of IMC, we present the quantile plots for the compared
approaches in Fig. 5 and the scatter plots forCPU time spent on correctly solved tasks in Fig. 6.
The quantile plots for the correct proofs and alarms of the compared approaches are shown
in Fig. 5a and b, respectively. A data point (x, y) in the plots indicates that there are x tasks
correctly solved by the respective algorithm within a CPU time of y seconds each. Note that
IMC is not only effective in producing proofs and alarms but is also efficient. From Fig. 5, we
see that it is the most efficient and effective interpolation-based approach in the evaluation.

The scatter plots for the correctly solved tasks (including both proofs and alarms) of the
compared approaches are shown in Fig. 6. We omitted the scatter plot for BMC as it is mainly
inclined to bug hunting, while other approaches have more balanced behavior. A data point
(x, y) in the plots indicates that there is a task correctly solved by both IMC and a compared
approach,while IMC took aCPU time of y seconds and the other approach took aCPU time of
x seconds. Observe that IMC is often more efficient than a compared approach. For example,
while it solved fewer tasks compared to k-induction, its time efficiency is often better than
k-induction on the tasks which can be solved by both algorithms. This phenomenon could
be explained by the fact that, unlike k-induction, which relies on an external procedure to
generate auxiliary invariants, IMC generates interpolants fromBMCqueries and uses them to

123

Interpolation and SAT-Based Model Checking Revisited Page 23 of 29 5

1 10 100 1 000
1

10

100

1 000

(a) PDR

1 10 100 1 000
1

10

100

1 000

(b) k-Induction

1 10 100 1 000
1

10

100

1 000

(c) Predicate Abstraction

1 10 100 1 000
1

10

100

1 000

(d) IMPACT

Fig. 6 Scatter plots of CPU time in seconds for all correct results with IMC in y-axis and compared approaches
in x-axis

construct fixed points purely internally. Moreover, when representing helpful loop invariants,
i.e., those that help to prove the safety property of a program, requires complex formulas, the
interval-based data-flow analysis [10] used by the default configuration [13] of k-induction in
CPAchecker is disadvantageous because the expressiveness of candidate invariants is limited.
By contrast, IMC is favorable in such cases since it constructs a candidate fixed point (also a
loop invariant) as a union of previously derived interpolants, which in principle can encode
any combination of reachable states.

RQ3: Enhancing Software Verification with IMC

To highlight IMC’s contribution to software verification, we report the numbers of tasks
solvable by IMC but not by a compared approach because it ran out of resources. In our
evaluation, IMCsolved 1199, 929, 100, 323, and 185 tasks forwhichPDR,BMC, k-induction,
predicate abstraction, and Impact, respectively, failed to solve within the time or memory
limits. Overall, it uniquely solved 7 tasks for which all other approaches ran out of resources.

IMC performed best for the category ReachSafety-ECA. These event-condition-action
(ECA) [47] programs have a loop to receive external inputs, generate outputs, and update
internal variables based on the ECA rules, implemented by a complex control flow inside the
loop. Conceptually, the working of these programs is similar to that of sequential Boolean-
logic circuits. IMC naturally performs well on them because it originated from hardware
verification. Out of a total 1265 ECA programs, IMC solved a second most 565 tasks, while

123

5 Page 24 of 29 D. Beyer et al.

0 100 200 300 400
1

10

100

1 000

C
PU

tim
e
(s
)

IMC
IMPACT

(a) n-th fastest correct proof

1 10 100 1 000
1

10

100

1 000

(b) CPU time (s)

Fig. 7 Comparing IMC and Impact on safe ECA tasks: (a) quantile plot for proofs and (b) scatter plot for
elapsed CPU time of proofs with IMC in y-axis and Impact in x-axis

1 10 100 1 000
1

10

100

1 000

(a) Total interpolation time (s)

 1

 10

 100

 1 10 100
1

10

100

N
um

be
r
of

ta
sk
s

(b) Numbers of interpolation queries

Fig. 8 Scatter plots of (a) total interpolation time and (b) numbers of interpolation queries used to prove safe
ECA tasks with IMC in y-axis and Impact in x-axis

predicate abstraction, Impact, and k-induction solved 476, 555, and 607 respectively. We
will use the ECA tasks without property violation (namely, safe ECA tasks) to study the
performance characteristics of IMC and answer why it can deliver more correctness proofs
than Impact, a closely related interpolation-based approach.

RQ4: Performance Characteristics of IMC

IMC is the best interpolation-based verification algorithm in our evaluation. To profile its per-
formance characteristics and understand why it can deliver more proofs, we compared IMC
and Impact on the ReachSafety-ECA tasks without property violation. Among the 785 safe
ECA tasks, IMC and Impact proved the correctness of 423 and 390 of them, respectively. The
quantile plot in Fig. 7a shows that IMC not only delivered more proofs than Impact but also
spent less CPU time finding the proofs. The scatter plot in Fig. 7b further demonstrates that
IMC usually obtained a proof faster than Impact when both methods succeeded.

123

Interpolation and SAT-Based Model Checking Revisited Page 25 of 29 5

To understand the advantage of IMC over Impact for finding proofs, we investigate the
most essential and time-consuming step in their computation, namely, interpolation. The total
interpolation time and numbers of interpolation queries used by IMC and Impact to produce
proofs are compared in the scatter plots Fig. 8a and 8b, respectively. In Fig. 8b, the color
of a data point indicates the number of tasks falling into this coordinate. From the scatter
plots, observe that IMC usually required fewer interpolation queries and less interpolation
time to prove a task. Among the 382 safe ECA tasks proved by both IMC and Impact, IMC
invoked fewer interpolation calls for 354 of them. This phenomenon indicates that the quality
of interpolants derived by IMC were high, which enabled it to generalize better than Impact

on these tasks.
We attribute the quality of interpolants to two factors. First, IMC is known to generalize

better than approaches based on interpolation sequences in hardware verification [30]. Unlike
algorithms based on interpolation sequences [57, 62], IMC derives interpolants from not only
the initial states but also the previous interpolants. Such eager abstraction decreases the num-
bers of interpolation queries required to reach a fixed point. We observed the same effect for
software verification, as exhibited in Fig. 8b. Second, the proposed adoption of IMC analyzes
the control-flow structures separately and only encodes syntactically feasible program paths
without using symbolic program counters in the formulas. Therefore, the underlying SMT
solver can focus on the semantics of the program and derive useful interpolants about the
actual program variables. The proposed adoption is crucial for unlocking the potential of
IMC for software verification.

Answers to the Research Questions

For the first part of our evaluation where IMCwas compared against five SMT-based verifica-
tion approaches, the proposed approach with large-block encoding is effective and efficient.
Adopted with the proposed method, IMC, the first interpolation-based formal-verification
approach ever invented, is competitive against other state-of-the-art algorithms, which have
been investigated much more by the research community. The conclusion is well supported
by the experimental results: Our IMC implementation not only solved the second most veri-
fication tasks (Table 2) in the evaluation but was also efficient compared to other SMT-based
approaches (Fig. 6). In our experiments, it was the most efficient and effective interpolation-
based approach (Fig. 5). It uniquely solved 7 tasks for which all other approaches ran out of
resources, indicating its unique value to complement existing approaches.

In the second part of the evaluation, IMC was compared to Impact on a subset of the
SV-COMP’22 benchmark set to study its strength to find proofs. We observed that IMC
spent less effort on interpolation than Impact (Fig. 8), indicating that it derives high-quality
interpolants and generalizes better. The reason behind this phenomenon is that IMC eagerly
computes interpolants from not only the initial states but also the previous interpolants. The
same effect is also reported for hardware verification [30].

7.5 Threats to Validity

Here we discuss some threats that may affect the validity of our conclusions and how we
limited them. To ensure internal validity, all the compared algorithms are implemented in the
verification framework CPAchecker [19]. This practice minimizes the confounding variables
(front ends and utilities) and rules out differences unrelated to the algorithms. We also use
BenchExec [22] to ensure best possible measurement accuracy. To reduce the external threat

123

5 Page 26 of 29 D. Beyer et al.

resulting from the selection bias of verification tasks, we conduct the experiments using the
largest publicly available benchmark set [9] of C safety-verification tasks. Other external
threats arise from the selection of the compared approaches and underlying framework. It is
clear from the literature [14] that the compared approaches in this paper indeed represent the
state of the art of software verification; the onlymissingmain related state-of-the-art approach
is trace abstraction [44], for which the implementation in the framework is not yet mature
enough. Moreover, the chosen platform CPAchecker is a well-maintained software project
that performs well in the competitions, and the relative performance between CPAchecker

and other verifiers is available from SV-COMP’22 [8].

8 Conclusion

Software verification is a hard problem, and it is imperative to leverage as much knowledge
of the verification community as possible. Interpolation-based model checking (McMillan,
2003 [56]) is a successful hardware-verification algorithm, but in contrast to many other
interpolation-based verification approaches, this algorithm was not yet adopted to software
verification, and the characteristics of the algorithm when applied to software systems were
unknown. This paper presents the first theoretical adoption and practical implementation
of the algorithm for software verification, providing a base-line for other researchers to
build on. Surprisingly, it has taken two decades to close this significant gap of knowl-
edge by investigating the applicability to software verification. We present the novel idea
of utilizing the well established technique of large-block encoding to extract transition rela-
tions from programs, without encoding the control-flow structure of the program into the
formulas via symbolic program counters. The proposed adoption was implemented in the
open-source software-verification framework CPAchecker and evaluated against other state-
of-the-art software-verification algorithms on a large benchmark set of C verification tasks
for reachability properties.

Among the competing approaches, our implementation achieved a comparable perfor-
mance, evaluated in terms of both effectiveness (the number of correctly solved tasks) and
efficiency (the CPU time to solve tasks). Our IMC implementation was the most effective
and efficient interpolation-based approach in the evaluation. Furthermore, the new approach
was able to solve 7 programs for which all other approaches ran out of resources (15 min
CPU time or 15 GB memory usage), which shows that the new approach improves the state
of the art and complements the other approaches. We hope that our promising results stimu-
late other researchers to further improve the approach for software verification and that our
open-source implementation in the flexible framework CPAchecker helps other researchers
to understand the details of the algorithm.

Funding Open Access funding enabled and organized by Projekt DEAL. This project was funded in part by
the LMU Postdoc Support Fund.

DataAvailability To ensure verifiability and transparency of the results reported in this paper, all used software,
input programs, and raw experimental results are available in a supplemental reproduction package [21]. For
convenient browsing through the results, interactive tables are available at https://www.sosy-lab.org/research/
cpa-imc. Current versions of CPAchecker are also available at https://cpachecker.sosy-lab.org.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

123

https://www.sosy-lab.org/research/cpa-imc
https://www.sosy-lab.org/research/cpa-imc
https://cpachecker.sosy-lab.org

Interpolation and SAT-Based Model Checking Revisited Page 27 of 29 5

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aho,A.V., Sethi, R.,Ullman, J.D.: Compilers: Principles, Techniques, andTools.Addison-Wesley, Boston
(1986). https://www.worldcat.org/isbn/978-0-201-10088-4

2. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for abstraction- and
interpolation-based software verification. In: Proc. CAV, LNCS 7358, pp. 672–678. Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_48

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension of lazy abstrac-
tion with interpolation for programs with arrays. Form. Methods Syst. Des. 45(1), 63–109 (2014).
https://doi.org/10.1007/s10703-014-0209-9

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier: Technology trans-
fer of formal methods inside Microsoft. In: Proc. IFM, LNCS 2999, pp. 1–20. Springer (2004).
https://doi.org/10.1007/978-3-540-24756-2_1

5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In:
Proc. PLDI, pp. 203–213. ACM (2001). https://doi.org/10.1145/378795.378846

6. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static analysis. In: Proc.
POPL, pp. 1–3. ACM (2002). https://doi.org/10.1145/503272.503274

7. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model Checking, pp. 305–343.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_11

8. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS (2), LNCS 13244, pp.
375–402. Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_20

9. Beyer, D.: SV-Benchmarks: Benchmark set for software verification and testing (SV-COMP 2022 and
Test-Comp 2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5831003

10. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis to boost program
verification. In: Proc. ASE, pp. 2050–2053. IEEE (2023). https://doi.org/10.1109/ASE56229.2023.00213

11. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model
checking via large-block encoding. In: Proc. FMCAD, pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

12. Beyer, D., Dangl, M.: Software verification with PDR: An implementation of the state of the art. In: Proc.
TACAS (1), LNCS 12078, pp. 3–21. Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_1

13. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In: Proc.
CAV, LNCS 9206, pp. 622–640. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_42

14. Beyer, D., Dangl,M.,Wendler, P.: A unifying viewonSMT-based software verification. J. Autom.Reason.
60(3), 299–335 (2018). https://doi.org/10.1007/s10817-017-9432-6

15. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow analysis. In: Handbook
of Model Checking, pp. 493–540. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_16

16. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast. Int. J. Softw.
Tools Technol. Transf. 9(5–6), 505–525 (2007). https://doi.org/10.1007/s10009-007-0044-z

17. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing the con-
vergence of model checking and program analysis. In: Proc. CAV, LNCS 4590, pp. 504–518. Springer
(2007). https://doi.org/10.1007/978-3-540-73368-3_51

18. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjustment. In:
Proc. ASE, pp. 29–38. IEEE (2008). https://doi.org/10.1109/ASE.2008.13

19. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification. In: Proc. CAV,
LNCS 6806, pp. 184–190. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_16

20. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encoding. In: Proc.
FMCAD, pp. 189–197. FMCAD (2010). https://ieeexplore.ieee.org/document/5770949

21. Beyer, D., Lee, N.Z., Wendler, P.: Reproduction package for article ‘Interpolation and SAT-based model
checking revisited’. Zenodo (2023). https://doi.org/10.5281/zenodo.8245824

22. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions. Int. J. Softw. Tools
Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

23. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proc. ISoLA, LNCS 7610, pp. 1–6. Springer
(2012). https://doi.org/10.1007/978-3-642-34032-1_1

123

http://creativecommons.org/licenses/by/4.0/
https://www.worldcat.org/isbn/978-0-201-10088-4
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/s10703-014-0209-9
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-22110-1_16
https://ieeexplore.ieee.org/document/5770949
https://doi.org/10.5281/zenodo.8245824
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34032-1_1

5 Page 28 of 29 D. Beyer et al.

24. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: Proc. CAV, LNCS 5123,
pp. 304–308. Springer (2008). https://doi.org/10.1007/978-3-540-70545-1_29

25. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proc. TACAS,
LNCS 1579, pp. 193–207. Springer (1999). https://doi.org/10.1007/3-540-49059-0_14

26. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-guided
abstraction-refinement (CTIGAR). In: Proc. CAV, LNCS 8559, pp. 831–848. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_55

27. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power abstractions for
deep counterexample detection. In: Proc. TACAS, LNCS 13243, pp. 524–542. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_29

28. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VMCAI, LNCS 6538, pp. 70–87.
Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_7

29. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In: Proc. FSEN, LNCS 4767,
pp. 17–32. Springer (2007). https://doi.org/10.1007/978-3-540-75698-9_2

30. Cabodi, G., Nocco, S., Quer, S.: Interpolation sequences revisited. In: Proc. DATE, pp. 1–6. IEEE (2011).
https://doi.org/10.1109/DATE.2011.5763056

31. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca,M., O’Hearn, P.W., Papakonstanti-
nou, I., Purbrick, J., Rodriguez, D.: Moving fast with software verification. In: Proc. NFM, LNCS 9058,
pp. 3–11. Springer (2015). https://doi.org/10.1007/978-3-319-17524-9_1

32. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proc. CAV, LNCS 7358, pp. 277–293.
Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_23

33. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: TheMathSAT5 SMT solver. In: Proc. TACAS,
LNCS 7795, pp. 93–107. Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_7

34. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/10.1145/876638.876643

35. Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS,
LNCS 2988, pp. 168–176. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_15

36. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc. CAV (2), LNCS 10981,
pp. 38–47. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_3

37. Craig,W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268
(1957). https://doi.org/10.2307/2963593

38. Donaldson, A.F., Haller, L., Kröning, D., Rümmer, P.: Software verification using k-induction. In: Proc.
SAS, LNCS 6887, pp. 351–368. Springer (2011). https://doi.org/10.1007/978-3-642-23702-7_26

39. Donaldson, A.F., Kröning, D., Rümmer, P.: Automatic analysis of DMA races using model checking and
k-induction. FMSD 39(1), 83–113 (2011). https://doi.org/10.1007/s10703-011-0124-2

40. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proc. POPL, pp. 191–202.
ACM (2002). https://doi.org/10.1145/503272.503291

41. Ghilardi, S., Ranise, S.: Goal-directed invariant synthesis for model checking mod-
ulo theories. In: Proc. TABLEAUX, LNCS 5607, pp. 173–188. Springer (2009).
https://doi.org/10.1007/978-3-642-02716-1_14

42. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV, LNCS 1254, pp. 72–83.
Springer (1997). https://doi.org/10.1007/3-540-63166-6_10

43. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Proc. SAS, LNCS 5673,
pp. 69–85. Springer (2009). https://doi.org/10.1007/978-3-642-03237-0_7

44. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In:
Proc. CAV, LNCS 8044, pp. 36–52. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8_2

45. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proc. POPL,
pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

46. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. POPL, pp. 58–70. ACM
(2002). https://doi.org/10.1145/503272.503279

47. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box challenge 2012: Anal-
ysis of event-condition-action systems. In: Proc. ISoLA, LNCS 7609, pp. 608–614. Springer (2012).
https://doi.org/10.1007/978-3-642-34026-0_45

48. Jhala, R., Majumdar, R.: Software model checking. ACMComput. Surv. (2009). https://doi.org/10.1145/
1592434.1592438

49. Jhala,R.,McMillan,K.L.: Interpolant-based transition relation approximation. In: Proc.CAV,LNCS3576,
pp. 39–51. Springer (2005). https://doi.org/10.1007/11513988_6

50. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proc. FMCAD, pp. 85–92. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886665

123

https://doi.org/10.1007/978-3-540-70545-1_29
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1109/DATE.2011.5763056
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/s10703-011-0124-2
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/978-3-642-02716-1_14
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/11513988_6
https://doi.org/10.1109/FMCAD.2016.7886665

Interpolation and SAT-Based Model Checking Revisited Page 29 of 29 5

51. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In: Proc. Int. Work-
shop on Parallel and Distributed Methods in Verification, EPTCS 72, pp. 55–62. EPTCS (2011).
https://doi.org/10.4204/EPTCS.72.6

52. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux driver verifica-
tion process. In: Proc. Ershov Memorial Conference, LNCS 5947, pp. 165–176. Springer (2009).
https://doi.org/10.1007/978-3-642-11486-1_14

53. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in SMT-based
unbounded software model checking. In: Proc. CAV, LNCS 8044, pp. 846–862. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_59

54. Kröning, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In: Proc.
CAV, LNCS 6806, pp. 573–578. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_45

55. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow automata. In: Proc.
FMCAD, pp. 97–104 (2015). https://doi.org/10.1109/FMCAD.2015.7542258

56. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV, LNCS 2725, pp. 1–13.
Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

57. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV, LNCS 4144, pp. 123–136. Springer
(2006). https://doi.org/10.1007/11817963_14

58. McMillan, K.L.: Lazy annotation for program testing and verification. In: Proc. CAV, LNCS 6174, pp.
104–118. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6_10

59. McMillan, K.L.: Interpolation and model checking. In: Handbook of Model Checking, pp. 421–446.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_14

60. McMillan, K.L., Rybalchenko, A.: Computing relational fixed points using interpolation. Tech. Rep.
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-inter
polation/, Microsoft Research (2013)

61. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries in
bounded model checking. In: Proc. HVC, LNCS 7261, pp. 160–175. Springer (2011).
https://doi.org/10.1007/978-3-642-34188-5_15

62. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc. FMCAD, pp. 1–8. IEEE
(2009). https://doi.org/10.1109/FMCAD.2009.5351148

63. Zakharov, I.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E., Petrenko, A.K., Khoroshilov, A.V.: Config-
urable toolset for static verification of operating systems kernel modules. Program. Comp. Softw. 41(1),
49–64 (2015). https://doi.org/10.1134/S0361768815010065

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-22110-1_45
https://doi.org/10.1109/FMCAD.2015.7542258
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-14295-6_10
https://doi.org/10.1007/978-3-319-10575-8_14
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-interpolation/
https://www.microsoft.com/en-us/research/publication/computing-relational-fixed-points-using-interpolation/
https://doi.org/10.1007/978-3-642-34188-5_15
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1134/S0361768815010065

	Interpolation and SAT-Based Model Checking Revisited: Adoption to Software Verification
	Abstract
	1 Introduction
	1.1 Interpolation-Based Verification Approaches
	1.2 Our Research Questions and Contributions
	Novelty
	Significance
	Correctness

	2 Related Work
	2.1 State Sets
	2.2 Predicates, Transition Relations, Traces, and Functions
	2.3 Tools Based on Craig Interpolation

	3 Background
	3.1 Interpolation-Based Model Checking
	3.1.1 State-Transition System
	3.1.2 Craig's Interpolation Theorem
	3.1.3 Algorithm Description
	3.1.4 Towards an Efficient Adoption

	3.2 Program Representation
	3.3 Configurable Program Analysis
	3.3.1 Definition
	3.3.2 Fundamental CPAs and Composite CPA
	3.3.3 CPA Algorithm

	4 A Straightforward Adoption with Symbolic Program Counters
	4.1 Encoding Transition Relations with Symbolic Program Counters
	4.2 Drawbacks of the Encoding
	4.3 Lessons Learned

	5 An Efficient Adoption with Large-Block Encoding
	5.1 Effect of Single-Loop Transformation

	6 Implementation in CPACHECKER
	6.1 Data Structures
	6.2 Algorithmic Procedures
	6.3 Example
	6.4 Correctness
	6.5 Backward Derivation of Interpolants

	7 Evaluation
	7.1 Evaluated Approaches
	7.2 Benchmark Set
	7.3 Experimental Setup
	7.4 Results
	RQ1: Effectiveness of IMC
	RQ2: Efficiency of IMC
	RQ3: Enhancing Software Verification with IMC
	RQ4: Performance Characteristics of IMC
	Answers to the Research Questions

	7.5 Threats to Validity

	8 Conclusion
	References

