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Abstract

It has been established that, in Bayesian tasks, performance and typical errors in reading
information from filled visualizations depend both on the type of the provided visualiza-
tion and information format. However, apart from reading visualizations, students should
also be able to create visualizations on their own and successfully use them as heuristic
tools in modeling tasks. In this paper, we first want to broaden the view on Bayesian rea-
soning to probabilistic tasks with two binary events in general and embed the whole pro-
cess of solving these tasks using probabilistic visualizations in a modified modeling frame-
work. Thereby, it becomes apparent that most of the steps remained untouched by existing
research. Second, in the present empirical study, we focused on one part of the largely
unexplored creation process and examined enfering statistical information into empty visu-
alizations as heuristic tools. N=172 participants had to enter conditional and joint prob-
abilities or the corresponding frequencies into empty visualizations in a paper-and-pen-
cil test. We analyze (a) students’ performance when entering information in visualizations
and (b) typical errors, both dependent on the information format (probabilities vs. natural
frequencies), which empty visualization structure (2x2 table, double tree, net diagram) was
provided, and type of information (conditional vs. joint information). The well-known posi-
tive effect of natural frequencies on participants’ performance was evident when entering
conditional information into 2x2 tables and net diagrams. However, with respect to joint
information, no superior effect of frequencies was observed. Furthermore, the theoretical
implementation of our research in a modeling cycle allows us to identify desiderata for
future research.
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1 Introduction

How likely is it that a person is infected with COVID if they have tested positive on a
COVID rapid test? Questions like this have repeatedly preoccupied us during the course of
the pandemic and involve what is known as a “conditional probability.” Conditional prob-
abilities frequently pose challenges for people in our society, a striking example of which is
Donald Trump’s statement in October 2020 that 85% of people who wore masks neverthe-
less got the coronavirus (Dale, 2020; Enaganti et al., 2022). In this statement, he confused
two “inverse” proportions. In fact, the Centers for Disease Control and Prevention had
found in a study of 154 participants that, of those who were ill, a total of 85% said that they
wore a mask either “always” or “often” over the 2 weeks prior to the beginning of their ill-
ness. Unfortunately, errors like this frequently occur (Shaughnessy, 1992).

Especially difficult in the context of conditional probabilities are Bayesian tasks (i.e.,
probabilistic tasks that can be solved with Bayes’ formula; for an example, see the well-
known mammography problem in Table 1), which regularly lead to wrong judgments even
among experts in various fields like law or medicine (Hoffrage et al., 2000; Operskalski &
Barbey, 2016; Spiegelhalter et al., 2011). In Bayesian reasoning situations, two strategies
can help one to overcome typical difficulties: (1) replacing percentages by natural frequen-
cies (e.g., saying “80 out of 100 infected people receive a positive test result” instead of
“80% of the infected people receive a positive test result,” see the two columns of Table 1)
and (2) visualizing the statistical information, see Fig. 1 (Binder et al., 2015; Bocherer-
Linder & Eichler, 2019; Gigerenzer & Hoffrage, 1995; Khan et al., 2015; McDowell et al.,
2018). Despite its obvious relevance to mathematics education, research on Bayesian

Table 1 The well-known mammography problem is a typical Bayesian situation requiring the calculation of
an “inverse” conditional probability

Probability format Frequency format

Problem  The probability of breast cancer (D) is 2% for a woman 200 out of every 10 000 women

at age forty who participates in routine screening at age forty who participate in

If a woman has breast cancer, the probability is 80% that a routine screening have breast
she will have a positive mammogram result (T +) cancer (D)

If a woman does not have breast cancer, the probability 160 out of every 200 women with
is 10% that she will also have a positive mammo- breast cancer will have a positive
gram result mammogram result (T +)

What is the probability that a woman in this age group 980 out of every 9 800 women with-
who has a positive mammogram result actually has out breast cancer will also have a
breast cancer? positive mammogram result

How many women with a positive
mammogram result actually have
breast cancer?

Correct Possible solution algorithm: 160 women who have breast cancer
solution  p(p|r4) = POOTH _ PI+DIPD) 08002 40 also have a positive mammogram
PO RHDIPOP(T4D)PD) 08002401098 result. 980 women do not have

breast cancer but have a positive
mammogram result. Therefore,
(160+980)=1 140 women have
a positive mammogram result; of
those, 160 women actually have
breast cancer

160 out of 1 140
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Fig. 1 Visualizations of situations with two binary events (based on the values of Table 1, D: has breast can-
cer, D: does not have breast cancer, T+: positve mammogram result, T—: negative mammogram result). Left:
probability visualizations (i.e., the numerical values are presented as percentages, decimal numbers, or frac-
tions); right: frequency visualizations. All sixteen elementary probabilities are depicted simultaneously only
in the probability net. Especially for node-branch-structures, it is possible to illustrate probabilities and fre-
quencies simultaneously in one visualization (e.g., by superimposing the left and the right diagram)
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reasoning has been predominantly conducted by cognitive psychologists (e.g., see Barbey
& Sloman, 2007; McDowell & Jacobs, 2017), focusing primarily on participants’ (intui-
tive) performance in tasks like those in Table 1.

In this paper, we want to broaden Bayesian reasoning as it is investigated so far by psy-
chologists by implementing the perspective of mathematics education. This will be accom-
plished by three major shifts of focus.

First, the focus of this paper is not limited to the special case of Bayesian reasoning but
covers probabilistic situations involving two binary events (i.e., health status and medical
test result) in general. From a mathematical point of view, these situations feature sixteen
elementary probabilities (four marginal, four joint, and eight conditional probabilities).
However, most Bayesian reasoning tasks feature only four specific probabilities (three given,
one asked), yet there are a lot of other probabilities that can be involved in such situations.
Nevertheless, since previous research has predominantly focused only on Bayesian reason-
ing, this special case will play a major role in the theoretical part of this paper.

Second, in mathematics education, tasks that are related to real-world situations in general
or applications of probability in particular can be interpreted in a modeling context (Gage,
2012; Kaiser & Sriraman, 2006) involving several steps that need to be successfully com-
pleted during the solving process. Although in the last 30 years a flurry of research on Bayes-
ian reasoning has investigated the effect of information formats (e.g., probabilities vs. natural
frequencies) and the power of visualizations (e.g., tree diagrams or 2x2 tables, see Fig. 1),
most of this research has been based on stimuli, where the beneficial elements were already
implemented by the experimenter (for a few training studies, see Biichter et al., 2022; Feufel
et al., 2023; Sedlmeier & Gigerenzer, 2001; Steib et al., 2024) and therefore neglect many
relevant modeling steps. For everyday teaching and learning of probability in school, how-
ever, it is indispensable that students can in the end construct visualizations on their own—
even out of a real situation. Thus, it is important to look at the entire modeling cycle (see, e.g.,
Blum & Leiss, 2007, Fig. 2) and what difficulties learners face in each of the individual steps.

Third, awareness of potential errors in any step of the solving process is a crucial aspect of
a teacher’s professional knowledge. Thus, the research on common erroneous strategies also
should be broadened to other steps of the modeling process. In dealing with “conditional infor-
mation” (in the following we understand this term to mean a conditional probability or the
corresponding natural frequency), first indications of typical errors and how these depend on
the information format and the type of visualization being used have already been documented
in studies on Bayesian reasoning. However, little is known about typical errors concerning
other steps of the modeling cycle or even other inferences (e.g., requiring joint probabilities).

3
rest of the /—\ mathematics
world math. model
Dreal model D and problem .
2 and problem 1 Understanding
1 2 Simplifying
3 Mathematizing
i f)i:gglﬁe%] O [J situation 4 4 Working mathematically
5 Interpreting
7 6 Validating
real results 7 Exposing
\—/ D math. results
5

Fig.2 The modeling cycle by Blum and Leiss (2007).
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Therefore, this article pursues two goals: first, in the theoretical background, the process
of solving probabilistic tasks with two binary events using a visualization is embedded in a
modeling cycle. Second, one aspect is examined in more detail in an empirical study: while
previous studies have mainly focused on problem solving or/and reading from filled visual-
izations, the present study looks at another step of the modeling cycle, focusing on entering
statistical information into empty visualizations as part of peoples’ ability to use (known)
visualizations for mathematical modeling (i.e., in the context of probabilistic tasks but not
limited to Bayesian tasks). Therefore, we examine the influence of information format and
visualization type on participants’ ability to fill numerical conditional or joint information
(i.e., probabilities or frequencies) at the correct localizations in empty visualizations.

2 Theoretical background

In the following, probabilistic situations and corresponding tasks with two binary events
are interpreted in the modeling framework (2.1) and the relevant conceptual and procedural
knowledge is outlined (2.2). Next, an overview of the role and functions of visualizations
in probability concerning situations with two binary events is given (2.3), and expanded
by a summary of their most important characteristics (2.4). Finally, the last part gives an
overview of the current state of research concerning the use of visualizations for solving
probabilistic tasks with two binary events (2.5).

2.1 The modeling cycle for probabilistic tasks with two binary events

In general, modeling is seen as an important activity in mathematics and has been organized
into various mathematical (e.g., Blum and Leiss, 2007) and statistical modeling cycles, such
as the PPDAC cycle (Wild & Pfannkuch, 1999). Because probability models (e.g., modeling
hypothetical structural relationships) are fundamental to the teaching of statistics and sto-
chastics we specify the well-known modeling cycle by Blum and Leiss (2007), see Fig. 2,
for the use of visualizations to solve probabilistic tasks with two binary events, see Fig. 3
(see also, e.g., Eichler & Vogel, 2015). In order to better illustrate the various stages of

3a
rest of the — 0O .
world O Vis(ua,iZN mathematics
empty

2 aﬁeéiIprrrg)%&ilfrl11 1 Understanding

1 wam 2 smeiting
4a 3 Mathematizing

o ronam L1 Situatio] 3a Choosing a visualization
3b Translating/Entering values
7 Vis‘ffnlli;c?;ionn 4 Working mathematically
6 real 4a Calculating missing values
Esu"s math. 4b Finding a solution
~ reE’]]ts 4b 5 Interpreting

5 6 Validating
7 Exposing

Fig.3 The modeling cycle by Blum and Leiss (adapted, 2007), specified for probability problems with two binary
events that are solved using a visualization. A concrete modeling task here could be that a marginal probability,
a joint probability, and a conditional probability are given in a real modeling context (in a non-underdetermined
task), and another marginal probability is to be calculated. Typical Bayesian tasks would also be conceivable here.
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Table2 The modeling cycle for solving probabilistic tasks involving two binary events based on a visuali-

zation

Step 1 In reality, probabilistic situations with two binary events do not occur as

Understanding neatly structured as the example for a Bayesian reasoning task in Table 1
and usually include unnecessary information, for example, informa-
tion on prevalence in other age groups. Therefore, the first task for the
problem solver is to construct a situation model, which means to gain a
structured overview of the situation as a whole

Step 2 In order to transfer the situation model into a real model, the problem is

Simplifying structured further by identifying and focusing on its relevant aspects
(e.g., a situation with the two binary events health status and test result;
conjecture that there might be a dependency between the two events) and
omitting any excess information, such as prevalence in other age groups

Step 3a Tasks with two binary events are often solved with the help of visualiza-

Mathematizing: Choosing a
visualization

Step 3b
Mathematizing: Entering
values

Step 4a

Working mathematically:
Determining missing
values

tions and this is also strongly encouraged in the classroom. In the fol-
lowing—also in line with the focus of this article—we look at a typical
solution algorithm that uses a visualization as a heuristic tool. In this
case, a suitable visualization is chosen and drawn to represent the situ-
ation. In certain cases (e.g., if the situation involves an event with more
than two characteristics), the visualization needs to be adapted in order to
represent the situation adequately. Success in solving (probabilistic) tasks
depends largely on the type and quality of the used visualization, as well
as on the students’ strategic knowledge for the construction of adequate
visualizations (Hembree, 1992; Rellensmann et al., 2017; Zahner &
Corter, 2010), which can be seen as conceptual knowledge according to
the distinction of conceptual and procedural knowledge of Hiebert and
Lefevre (1986)

Afterward, the given information needs to be correctly inserted into the
chosen visualization, which requires procedural knowledge (e.g., how
to calculate conditional probabilities from joint probabilities) and concep-
tual knowledge (e.g., a sufficient comprehension of subset relations,
part-whole relationships, and part-part relationships, different types of
probabilities and their differentiation; Drose et al., 2022; Post & Prediger,
2022; Shaughnessy, 1992). Furthermore, knowledge on the visualiza-
tion’s structure and limitations is helpful, since not all probabilities can

be entered into every visualization (e.g., 2x2 tables are rather unsuitable
for displaying conditional probabilities; tree diagrams do not display joint
probabilities, see also Sect. 2.4), which can be seen as conceptual knowl-
edge according to the distinction of conceptual and procedural knowledge
of Hiebert and Lefevre (1986)

If needed, missing values are calculated and added to the visualization.
This requires knowledge on the visualization as a symbolic representation
(procedural knowledge type 1, Hiebert & Lefevre, 1986). For example,
in a tree diagram, percentages on branches coming from the same node
always add up to 100%. However, appropriate conceptual knowledge can
also be helpful here to avoid typical errors such as confusing joint and
conditional probabilities (Drose et al., 2022) and appropriate procedural
knowledge type 2, i.e., knowledge of rules and algorithms (Hiebert &
Lefevre, 1986), is helpful, e.g., to calculate a conditional probability with
the help of a marginal and a joint probability

@ Springer



Students’ performance and typical errors in filling empty... 143

Table 2 (continued)

Step 4b After calculating the missing values, one can either simply read the desired
Working Mathematically: probability from the visualization, or it needs to be calculated (e.g., a
Finding a solution conditional probability is calculated as a fraction of two numbers in

the 2x2 table), which again requires procedural knowledge in using the
formula (procedural knowledge type 2) or visualizations (procedural
knowledge type 1) adequately, and conceptual knowledge that prevents
one from confusing different probabilities (e.g., the probability of B given
A with the probability of A given B)

Step 5 After calculating a mathematical result, it has to be transferred back into
Interpreting the real-world scenario and is interpreted as an answer to the original
question or the real model. This step requires a change of language
and making sense of the numerical values: Mathematical solutions use
abstract formulations, while the real-world result uses a wording similar
to the situation model, for example, “the probability of being infected,
given a positive test result, is 14%”

Step 6 The result is then used to validate the utility of the constructed model. For

Validating typical Bayesian tasks, the calculated results are often substantially lower
than most people would expect them to be. For example, the positive
predictive value (i.e., the probability that a woman actually has cancer if
she has a positive test result) for the mammography problem is frequently
overestimated (Casscells et al., 1978; Eddy, 1982).

Therefore, it is necessary to check the modeling assumptions once again.

This includes reviewing the visualization that was used regarding its
internal coherence and concordance with the situation model

Step 7 If the model is considered to be sufficient for solving the task, the results

Exposing can be applied to the real-world situation, for example, by reaching a
decision. Otherwise, steps 2 to 9 are run through once again with further
adjustments to the model

constructing a probabilistic visualization, steps 3 ("mathematizing") and 4 ("working math-
ematically") are split into substeps. A short description of the individual steps can be found
in Table 2. Please note that this modeling cycle depicts only one out of many possible ways
to solve a probabilistic task with two binary events using a visualization. Furthermore, the
steps do not necessarily have to be accomplished in this particular order and the cycle can
be entered and exited at any point—depending on the complexity of the task at hand.

2.2 Conceptual and procedural knowledge for solving probabilistic tasks with two
binary events

Solving probabilistic problems with two binary events requires conceptual and procedural
knowledge at various points in the modeling cycle, as already outlined in Table 2 (see
also Drose et al., 2022). In the following, we refer to the distinction between conceptual
knowledge and two types of procedural knowledge according to Hiebert and Lefevre
(1986). For understanding probabilistic problems containing two binary events, concep-
tual knowledge is required to recognize and distinguish marginal, conditional, and joint
information (Shaughnessy, 1992), which builds on prior mathematical knowledge of the
different types of probabilities like part-whole relationships and part-part relationships
(Prediger & Schink, 2009). Moreover, in order to understand what, for example, “20%
out of 40%” means, it is necessary to have developed the relevant basic ideas (also called
“Grundvorstellungen”) of percentages or fractions. Depending on the situation and the
exact wording, the phrase can mean “20%. 40% =8% of the whole” (if it refers to a joint
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probability: e.g., “20% of the 40% (women) of all persons are ill”’) or “20%/40%=50% of the
part” (if it refers to a conditional probability: e.g., “20% of the 40% women,” Wiesner et al.,
in press). This is closely linked to grasping part-part relationships or part-whole relationships
in a probabilistic situation (Post & Prediger, 2022), that is, correctly identifying the two nested
subsets of the sample space that make up a probability and their relationship to each other (e.g.,
as numerator and denominator of a fraction or as the two numbers in a natural frequency).

Relevant procedural knowledge type 1 (according to Hiebert & Lefevre, 1986, see also
Saenz, 2009) includes knowledge of the symbolic representation (and formal language)
and therefore the ability to construct and—if necessary—modify appropriate visualizations
for the given situation. Moreover, procedural knowledge type 2, that means, knowledge of
rules and algorithms, is necessary in order to determine missing values, for example, the
rules for calculating with probabilities (e.g., P(X):l—P(A) or P(ANB)=P(A)- P(BIA)).
Additionally, language skills are crucial to decode the verbal information and interpret it
mathematically and vice versa.

Visualizations play a special role for the relevant knowledge on probabilistic situations,
and the conceptual knowledge and also procedural knowledge type 1 are closely related to
visualizations: on the one hand, commonly used visualizations (e.g., 2x2 tables or branch-
ing structures like tree diagrams) and their characteristics can be considered to be part of
the procedural knowledge type 1: learners need to know what information is displayed in
which way in different visualizations (see 2.4). On the other hand, visualizations can be
used fo build the above-described conceptual knowledge, for example, by displaying differ-
ent relationships of the several subsets of a sample space in order to foster the differentia-
tion of the marginal, joint, and conditional probabilities. Furthermore, when creating and
working with visualizations, it becomes clear whether students have already developed suf-
ficient conceptual knowledge and procedural knowledge about the different types of prob-
abilities. Therefore, a visualization is also a carrier of this knowledge. This results in dif-
ferent functions of visualizations, which will be further discussed in the following section.

2.3 The role and functions of probabilistic visualizations

Similar to the dual cognitive-communicative function of language in mathematics (Maier
& Schweiger, 1999), probabilistic visualizations serve multiple purposes. First, they are
considered to be a helpful heuristic tool that can be useful in mathematical problem solv-
ing or modeling, even for experts (Hembree, 1992; Rellensmann, 2019; Uesaka et al.,
2007). In probability, for example, tree diagrams can be used to organize and enumerate a
sample space (Nunes et al., 2014) and students have been reported to spontaneously create
visualizations when solving probabilistic or combinatoric tasks (Zahner & Corter, 2010).

Second, probabilistic visualizations can also be used as a medium for communication.
Although many visualizations serve only a communicative function (e.g., bar charts or pie
charts), some predominantly heuristic visualizations can take on both functions (e.g., tree
diagrams, see Spiegelhalter et al., 2011).

Third, probabilistic visualizations are also used as feaching material to build up con-
ceptual knowledge about probabilistic concepts. They can help learners see connections
between part-part relationships and conditional probabilities, as well as the connection
between part-whole relationships and joint or marginal probabilities (Drose et al., 2022).
Furthermore, visualizations are also suitable for developing relevant conceptual knowledge
so that they can enable the differentiation of conditional and joint probabilities and their
conscious contrasting (Diaz & Batanero, 2009; Shaughnessy, 1992).
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Taking these functions into account, the educational standards adopted by many coun-
tries see fundamental visualizations like 2x2 tables or tree diagrams as learning objects
themselves that are therefore mandatory in coursework (ACARA, 2022; Kultusminis-
terkonferenz, 2022; NCTM, 2023). This suggests that familiarity with common probabil-
istic visualizations itself can be considered to be part of the conceptual knowledge and not
just a by-product of probability education. However, it is important that these visualiza-
tions are not exclusively treated as fixed structures but can also be adapted and used flex-
ibly if necessary while still remaining their key characteristics.

In the context of probabilistic tasks with two binary events, we want to study visualiza-
tions (see Fig. 1) primarily in their function as heuristic tools that can facilitate certain
steps of the solving process of these tasks (see Fig. 3). In contrast, most previous studies
on (intuitive) Bayesian reasoning studied visualizations primarily in their (passive) com-
municative function since visualizations were usually provided completely filled and often
in place of a text that presented the relevant statistical information for the following task.
However, the present study does not aim to fully cover the function of heuristic tools and
all steps of the modeling cycle at once. Nevertheless, it focusses on participants’ ability to
use their conceptual knowledge of probabilities on known and adapted visualizations. '

The relevant conceptual differences between the visualizations that will be used in the
empirical part of this paper are outlined in the following section.

2.4 Visualizations of two binary events

In probability education, students can use various visualizations as heuristic tools to solve
(modeling) problems involving two binary events. The present study focuses on 2x2 tables,
double trees, and net diagrams (see Fig. 1). While 2x2 tables are quite common, dou-
ble trees and net diagrams are largely unused in schools.

Probabilistic visualizations differ as to which statistical information is displayed. For two
binary events, there is a total of sixteen elementary probabilities: four marginal probabilities
P(D), P(D), P(T +), P(T-), four joint probabilities PO N'T +), (DN T +), (DN T-), (DN T-), and
eight conditional probabilities P(DIT +), P(DIT-), P(DIT +), P(DIT-), P(T +ID), P(T +|D), P(T-D),
and P(T-ID).2 Most visualizations do not explicitly include all of those 16 probabilities. In many
cases, a visualization focuses on either joint or conditional probabilities and thus neglects the
other one. Moreover, some visualizations are not symmetric in the sense that a conditional prob-
ability and its reverse (e.g., P(DIT+) and P(T+ID)) are not equally evident (e.g., tree diagrams
display only one of the two possible hierarchical structures; see Fig. 1).

Table 3 presents the most important features for some visualizations in both formats.
Remarkably, netdiagrams (Binder et al., 2020) display all sixteen elementary probabilities, which
can be seen as a structural advantage. However, students’ ability to switch between visualizations,
to draw connections between different visualizations, and to choose appropriate visualizations for
given tasks (e.g., depending on the information that is given or that has to be calculated) are seen
as key competencies summarized in the concept of representational flexibility that has been shown
to be an important part in successful (flexible) mathematical problem solving in general (Acevedo
Nistal et al., 2009; Novick & Hmelo, 1994; Zahner & Corter, 2010).

! Double trees and net diagrams are usually not (yet) treated in schools but follow the same rules for enter-
ing probabilities or frequencies as tree diagrams as another well-known node-branch-structure.

2 Besides these sixteen elementary probabilities, there are P(@), P(Q2), and the probabilities of unions of
subsets (e.g., P(DUT +)).
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Table 3 Features of the 2x2 table, tree diagram, double tree, and net diagram in both formats, which can be
used as heuristic tools for modeling situations with two binary events

Visualization Format Marginal probabilities/ Joint probabilities/  Conditional probabili-
frequencies can be frequencies can be  ties/frequencies can be
displayed directly displayed directly displayed directly

2x2 table Probabilities 4 v/ no

Frequencies v v v
Tree diagram  Probabilities Only 2 out of 4 no Only 4 out of 8
Frequencies Only 2 out of 4 v Only 4 out of 8
Double tree Probabilities v no v
Frequencies v v v
Net diagram Probabilities 4 v
Frequencies v v v

2.5 Previous research on the use of visualizations for probabilistic tasks with two
binary events

Previous research has primarily focused on the special case of Bayesian reasoning but has
nevertheless generated important insights into the effects of information formats and visuali-
zations on participants’ performance and typical errors in solving probabilistic tasks with two
binary events in general. First, Bayesian tasks are solved correctly more often if the task is
presented in natural frequencies instead of probabilities (e.g., “80 out of 100 infected people
receive a positive test result” instead of “80% of the infected people receive a positive test
result”, frequency effect, Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017). Second,
presenting the task using a completely filled visualization instead of or next to a textual rep-
resentation can also facilitate solving Bayesian tasks (Binder et al., 2015; Bocherer-Linder
& Eichler, 2019; Gigerenzer & Hoffrage, 1995; Khan et al., 2015; McDowell et al., 2018).
Furthermore, visualizations seem to be of greater benefit if displayed in the frequency format
rather than in the probability format (see Fig. 1, Binder et al., 2015). Yet, recent studies have
shown that the frequency effect (for visualizations) does not hold if the task calls for joint
instead of conditional information (Binder et al., 2020; Stegmiiller et al., 2024).

The following section describes typical errors that are known from previous studies.
These are mainly observable error patterns that may be based on misconceptions. It has to
be noted that an observed error pattern or a correct answer does not indicate whether or not
the student has a general misconception (Riccomini, 2005).

2.5.1 Typical errors in solving tasks including conditional probabilities

Various errors for dealing with conditional information, especially in the context of Bayes-
ian reasoning, will be summarized and explained using the mammography problem (see
Table 1) in the following. In most of the studies cited below, the visualizations were already
completely filled and participants’ ability in extracting statistical information adequately
was examined.
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One of the most frequently observed errors (an overview is given in Table 4) is the so-
called joint occurrence error, where a conditional probability is wrongly interpreted as a joint
probability (e.g., P(DIT+) is interpreted as P(DNT +)). This error pattern may be based on
the following misconception: In terms of part-whole relationships, the part is hereby recog-
nized correctly (i.e., the numerator of the corresponding fraction or the first number in the
natural frequency is identified correctly as DNT +), whereas the whole (i.e., the superset or
the second number) is erroneously interpreted as the whole sample space Q instead of the
subset T+. A lack of conceptual knowledge in regard to part-whole relationships therefore
contributes to this error pattern. In the example given in Table 1, the joint occurrence error
would lead to the answer 1.6% or 160 out of 10 000.

Another common error is the Fisherian, subsequently called inverse error: A condi-
tional probability is mistaken for its inverse conditional probability, that means, P(DIT +) is
confused with P(T +ID) (in the mammography problem, this strategy yields 80% instead of
14%). In this case, the part is again identified correctly, but the corresponding whole is
chosen wrongly (i.e., D instead of T+ ; Falk, 1986; Gigerenzer & Hoffrage, 1995; Kahne-
man et al., 1982). This error pattern can be caused by a lack of conceptual knowledge
regarding the part-whole relationship but can also be facilitated by a lack of knowledge on
how to verbally formulate different types of probabilities adequately. Erroneously assum-
ing that the two events D and T+ are independent (i.e., P(DIT +)=P(D)) is called the base-
rate-only error. Similarly, the evidence-only error focuses only on the conditional event,
which means that P(DIT +) is confused with P(T +). Both of these errors result in a wrong
interpretation of part and whole, leading to the answers 2% or 11.4%, respectively. Finally,
ignoring the intersecting structure of the two events and therefore misinterpreting the part-
whole relationship leads to the pre-Bayes error, where the probability P(DIT+) is mistak-
enly expressed as IDI/IT+l (or IDI out of IT+), yielding 200/1140 = 17.5%. This strategy
uses a correct whole but a false part.

Table 4 Correct solution and typical error patterns for Bayesian tasks (Binder et al., 2020; Bruckmaier
et al., 2019; Diaz & Batanero, 2009; Eichler & Bocherer-Linder, 2018; Gigerenzer & Hoffrage, 1995;
Steckelberg et al., 2004; Woike et al., 2023; Zhu & Gigerenzer, 2006)

Probabilities® Frequencies®

Correct solution (Bayesian) PD)-P(T+|D) _ IT+NDI out of IT+|
P(D)-P(T+|D)+(1-P(D))-P(T+|D)

Error patterns

Joint occurrence P(D) - P(T+|D) IT+NDI out of QI
Inverse error P(T+ID) IT+nDI out of IDI
Base-rate-only P(D) IDI out of 1QI
Evidence-only P(D)-P(T+|D) + (1 — P(D))-P(T+ |ﬁ) T+ out of 1QI
Likelihood-subtraction P(T+|D) — P(T+ |B) Not applicable
False-alarm-complement 1 —P(T+|D) IT-nDI out of DI
50%-rule 50% Not applicable
Missing base-rate® ___P@+D) Not applicable

P(T+|D)+P(T+|B)

*Probabilities and cardinalities are labeled according to Fig. 4. We consider Q to be the set containing all
individual people of the (imaginary) sample, for example, IQI=10 000 (people). Therefore, the cardinal-
ity of the subsets (e.g., IDI) yields the expected frequency with which the corresponding event is going to
occur; ® “missing base-rate” is similar to the Bayesian formula but missing the so-called base-rate P(D)
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Fig.4 Schematic net diagram for the two events fest result (positive/negative) and health status (has the
disease/does not have the disease), representing the sixteen elementary probabilities, as used in Table 4.
Probabilities/frequencies that are given in a typical Bayesian inference task are blue; the probability that has
to be calculated is red

)
P(T-)
(al-1d

P(-ID) | _ | P(T+|D).

Further errors are shown in Table 4. Since only the net diagram can display all relevant
probabilities, it is used (Fig. 4) to explain the letters in Table 4.

2.5.2 Typical errors in solving tasks that include joint inferences

While typical errors involving conditional probabilities are well-known via research on
Bayesian reasoning, errors in calculating joint probabilities have been studied less fre-
quently (for an exception, see, e.g., Binder et al., 2020). To illustrate these errors, we con-
sider the visualizations in Fig. 1 together with the question, “What is P(T4+ND)?” as an
example of a joint inference task. In that case, the correct solution is 1.6%.

In analogy with the joint-occurrence error in Bayesian reasoning, a common mistake
in handling joint probabilities is to not identify the whole as the entire sampling space Q
but as a smaller subset, in that way confusing joint and conditional probabilities, leading
to an error which we call conditional error, where P(DNT+) is confused with P(T+ID) or
P(DIT+), that is, 14% or 80%, respectively, in the example in Fig. 1 (see also Table 5).

Another mistake occasionally seen—the independence error—originates from the erro-
neous use of a well-known formula: If and only if the events D and T+ are independent,
P(DNT+)=P(D)-P(T+) holds true. If insufficient conceptual knowledge of stochastic inde-
pendence has been built up, the formula is sometimes misused when the joint probabilities are
calculated from two not stochastically independent events. In the example, this strategy yields
2.0%11.4% ~ 0.2%.

In general, for both joint and conditional probabilities, one or more negations might
sometimes be misread from the text, leading to the negation error where, for example,
P(DIT+) is confused with P(DIT+), or P(DNT+) is confused with P(DNT+). Further
errors are shown in Table 5.
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Table 5 Correct solution and typical error patterns for joint inferences (Binder et al., 2020)

Probabilities® Frequencies®

Correct solution P(D)-P(T+|D) or P(T+)-P(D|T+) IT +and DI out of 1QI
Error patterns
Conditional error P(T+|D) or P(D|T+) IT +and DI out of IDI or

IT+and DI out of IT +I
Independence error P(D)-P(T+) Not applicable
Negation error e.g.,P(T —nD) e.g., IT-and DI out of 1QI
Double joint probability P(D)-P(T+|Dn- Not applicable

P(T+) - P(D|T+)

*For explanation of the letters, see Fig. 4

2.5.3 The influence of information format and visualization on typical errors

As briefly discussed earlier, visualizations differ in the way they present probabilistic infor-
mation. As a result, some visualizations are particularly susceptible to typical or unique
error patterns.

A 2x2 table can provoke confusion of probabilities since its inner cells serve multiple
purposes: On the one hand, each of these cells directly displays one joint probability, while
on the other hand, each cell can be used to determine two conditional probabilities in com-
bination with a corresponding marginal cell in the same row or column (Batanero et al.,
1996; Roca & Batanero, 2006). This seems especially challenging for the calculation of
conditional information in the probability format with percentages, possibly because divid-
ing two percentages by each other in order to get yet another percentage is a rather unfamil-
iar operation and requires a thorough understanding of the part-part model (note that the
calculation of conditional information from 2x2 tables is independent of the information
format, i.e., in both formats, the numbers from the same cells have to be divided).

Despite their straightforward structure, tree diagrams have been reported to be fre-
quently misconstructed and/or misinterpreted, for example, in the solving of combination
problems (Lamanna et al., 2022) or sequential probabilistic problems (Awuah & Ogbon-
naya, 2020). However, misconstruction can also occur in situations with two binary events,
especially if conditional probabilities need to be calculated, since tree diagrams focus only
on one “conditional direction.”

Considering the efforts that are being made in statistics education to foster students’ mod-
eling competencies (Biehler et al., 2017; Pfannkuch et al., 2018; Zapata-Cardona, 2018) and
their high universal relevance (e.g., in the recent Covid pandemic: “What is the probability that
I am infected if I have a positive test result?”), it is remarkable that the vast majority of empiri-
cal research for the case of visualizations for probabilistic situations with two binary events has
focused almost exclusively on step 4b of the modeling cycle (reading completely filled visu-
alizations), in particular concerning Bayesian tasks (see Fig. 5). However, when confronted
with probabilistic situations in real life or in school book tasks, visualizations are not provided.
Therefore, constructing a visualization and entering numerical values is a crucial aspect of
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Fig.5 The modeling cycle by Blum and Leiss (adapted, 2007), color-coded to display current state of
research concerning, e.g., Bayesian reasoning

solving (but also for understanding/structuring) a probabilistic task. Although there have been
isolated efforts to cover this area, the few studies focusing on earlier steps in the modeling
cycle have been rather small and did not further investigate erroneous strategies (Bobek &
Corter, 2010; Friederichs et al., 2014; Zahner & Corter, 2010). Therefore, the question remains
open as to whether participants, who, e.g., decide to solve the task of Table 1 with the help of
a visualization, are able to put numbers such as that given in the problem (Table 1) at the right
places in visualizations (e.g., the ones displayed in Fig. 1, if they are still empty).

The intention of the present study is to take one step back from the usual focus (i.e.,
green arrow in Fig. 5) and examine students’ abilities and difficulties when using visualiza-
tions as heuristic tools. The focus of the empirical study is on typical errors made in enter-
ing a given probability or natural frequency into an empty visualization.

3 Research questions and hypotheses

The current study investigates one specific aspect of students’ ability in using visualiza-
tions as heuristic tools. The focus is on students’ performance and typical error patterns in
entering conditional or joint probabilities, or corresponding frequencies, into empty visu-
alizations (2x2 tables, double trees, and net diagrams). The research questions (RQ), with
hypotheses (H), are summarized in Table 6.
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Table 6 Research questions with hypotheses

Research question

Hypotheses

RQ1: Does the format of information (probabilities
vs. frequencies) and the given empty visualization
affect participants’ performance in entering condi-
tional and joint information (i.e., conditional and
joint probabilities, or the corresponding natural
frequencies)?

RQ2: Does the format of information (probabilities
vs. frequencies) and the given empty visualization
affect typical participants’ error patterns in enter-
ing conditional and joint information (i.e., condi-
tional and joint probabilities or the corresponding
natural frequencies)?

H1a: The percentage of correct entries will be
higher if the information is given in frequencies
rather than probabilities (both for conditional and
joint information) because we expect the format
effect to hold for entering information into visu-
alizations as well (for joint probabilities; however,
the findings of Binder et al. 2020 suggest that we
may not find a systematic format effect here)

H1b: Net diagrams and double trees will lead to bet-
ter performance in entering conditional probabilities

compared to 2x2 tables, since conditional probabili-
ties cannot be directly entered in 2x2 tables

Hlc: Net diagrams and 2x2 tables will lead to
higher performance in entering joint probabilities
compared to double trees because double trees do
not directly display joint probabilities

H2a: In general, we expect to observe analog
typical error patterns in filling out visualizations
that are already known from research on solving
Bayesian reasoning tasks with the help of purely
textual versions or with the help of completely
filled visualizations. However, previous empiri-

cal findings suggest that errors in reading from
visualizations can differ from errors in filling out
visualizations (Cox, 1997)

H2b: Furthermore, we expect to observe new error
patterns: (1) filling in the given information in
multiple places on the visualization (one of them
correct and the other one incorrect), (2) just fill-
ing in the set or the subset but not both pieces of
information from the natural frequency into the
visualization, or (3) errors that are related to the
formulated negation (e.g., test negative)

H2c: Compared to all visualizations, the joint
occurrence error will appear most often in
the entering of conditional probabilities into

2x2 tables, since 2x2 tables do not directly display
conditional but joint probabilities

4 Methods
4.1 Design of the study

In order to examine students’ ability to use empty visualizations as heuristic tools and fill them
correctly, a paper-and-pencil test was carried out using the introductory stories of two typi-
cal Bayesian tasks, the mammography problem and a short version of the economics problem
(Ajzen, 1977). Participants were asked in each problem to enter one specific given numerical
information into provided empty visualizations (see Fig. 6). Note that—in contrast to typical
(Bayesian) reasoning problems—for each task, only one piece of statistical information was
given that had to be placed into a visualization (i.e., it was not necessary to infer a, e.g., positive
predictive value).
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Fig.6 Empty visualizations (2x2 table, double tree, net diagram) for the mammography context. Visualiza-
tions for the economics context were structurally equivalent but were labeled with “students” instead of
“women” and E (economics course) and C (career-oriented) instead of B and T+

The design of the study includes two factors of interest and one factor that is not of
interest, resulting in a 2 X 3 X 2 design (see also Table 7):

e Factor 1: Format of information—probabilities vs. frequencies
e Factor 2: Visualization—2x2 table vs. double tree vs. net diagram
e Factor 3 (not a factor of interest): Context—mammography vs. economics

In total, 24 tasks were implemented (see Table 7), and each participant completed one
testlet that included four of these tasks in the following way: Tasks 1 and 2 had the same
format of information, context, and visualization but asked for entering a different type of
information (e.g., task 1 conditional information and task 2 joint information, or vice versa).
Tasks 3 and 4 also differed from each other only in the type of information that had to be

Table 7 Design of the 24 used problem versions

Format of information Context Type of information that had to be entered

Conditional information  Joint information

Probabilities Mammography problem 2x2 table 2%2 table
Double tree Double tree
Net diagram Net diagram
Economics problem 2x2 table 2x2 table
Double tree Double tree
Net diagram Net diagram
Natural frequencies Mammography problem 2x2 table 2%2 table
Double tree Double tree
Net diagram Net diagram
Economics problem 2x2 table 2x2 table
Double tree Double tree
Net diagram Net diagram

Each participant was given a testlet containing two out of the 12 pairs of tasks, which address one condi-
tional and one joint information (the 12 pairs are represented as 12 rows in the table). The two pairs of tasks
have a different context, format, and visualization. Each of the (in sum) four individual tasks was presented
on an individual sheet of paper. Two different contexts were used, in order to allow each participant to
answer two different pairs of questions instead of just one
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entered, but had a different context, format of information, and visualization as the first two
tasks. If, for instance, the mammography context appeared in the probability format with a
2x2 table in the first two tasks of a particular testlet, the remaining two tasks of the testlet
featured the economics context in the natural frequency format with a double tree or a net dia-
gram. The order of context, information format, visualization, and type of information were
varied systematically between the testlets so that every possible combination was covered.

4.2 Materials

Each task began with an introductory story (see Table 8); after that, one of the three dif-
ferent kinds of empty visualizations, presenting only the labeling of the events (but no

Table 8 Task formulations

Context

Mammography

Economics

Introductory story

Visualization

Information format

Instruction

Conditional informa-
tion: conditional
probability or
corresponding
natural frequency

Joint information:
joint probability or
corresponding nat-
ural frequency

Imagine you are a reporter for a women’s
magazine and you want to write an
article about breast cancer. As part of your
research, you focus on mammography
as an indicator of breast cancer. You are
especially interested in the question of
what it means when a woman has a positive
result (which indicates breast cancer) in
such a medical test. A woman can have
breast cancer (B) or not (B). Furthermore,
she can get a positive (T +) or a negative
(T-) result. All women in this exercise
participate in routine screenings

2x2 table, double tree, or net diagram

Natural frequency
version

Please enter the fol-
lowing two bold
printed numbers in
the correct nodes/
fields in the follow-
ing visualization,
or check [x] that
the numbers cannot
be entered because
there is no fitting
node/field

Out of 8 860 women
who participate in
routine screening
and get a negative
result, 40 do have
breast cancer

160 out of 10 000
women have breast
cancer and get a
positive result

Probability version

Please enter the
following bold
printed probability
in the correct
branch/field in the
following visu-
alization, or check
[x] that the prob-
ability cannot be
entered because
there is no fitting
branch/field

The probability that
a woman who gets
a negative result
has breast cancer
is 0.5%

The probability
that a woman has
breast cancer and
gets a positive
result is 1.6%

205 out of 1 000

Imagine you are interested in whether career-
oriented students are more likely to attend an
economics course. The school psychological
service evaluates the correlations between
stated goals and choice of courses for you.

A student can be career-oriented (C) or not
(C). Furthermore, a student can choose an
economics course (E) or not (E). All students
in this exercise participated in the evaluation

2x2 table, double tree, or net diagram

Natural fre-
quency version

Probability version

Please enter the
following two

Please enter the following
bold printed probability in

bold printed the correct branch/field in
numbers in the the following visualization,
correct nodes/ or check [x] that the prob-
fields in the ability cannot be entered

following visual-
ization, or check
[x] that the num-
bers cannot be
entered because
there is no fitting
node/field

Out of 387
students who
are not career-
oriented, 115
choose an eco-
nomics course

because there is no fitting
branch/field

The probability that a student
who is not career-oriented
chooses an economics
course is 29.7%

The probability that a student
is career-oriented and
chooses an economics
course is 20.5%

students are
career-oriented
and choose

an economics
course
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numerical values) was given (see Fig. 6). The structure was already provided (which is
important because double trees and net diagrams were new to the students), and the statisti-
cal information had to be entered in the appropriate place. For this purpose, participants
got one piece of information (a conditional probability or the corresponding two abso-
lute frequencies, or a joint probability or the corresponding two absolute frequencies; see
Table 8) that they had to enter in the given visualization. They could also check a box that
it was not possible to enter the given information, which was sometimes the correct answer
(see also Table 8 for task formulations).

4.3 Participants

The study was carried out in late 2020 and early 2021 and therefore was affected by
lockdowns due to COVID-19. In order to obtain a sufficient sample size, N=172 partic-
ipants were recruited both from a university (N=152) and secondary-school (six classes
from a German Gymnasium, N=120) in Bavaria. The university students were at the
beginning of their studies in Biology and had not taken any courses in mathematics or
statistics in university. Out of the 52 university students, 38 were female and 14 male.
Their ages ranged from 17 to 60, with an average of 20.73 (SD=6.13). Out of the 120
secondary-school students, 45 were female and 75 male. They were in Grades 11 and
12, and their ages ranged from 16 to 19, with an average of 17.09 (SD=0.89). Since
conditional as well as joint probabilities are part of the Bavarian curriculum in Grades
10 and 11, all school students had encountered this topic in their last school year, but
they had not dealt with it in their current school year. Therefore, all students were famil-
iar with joint and conditional probabilities, as well as with 2x2 tables containing prob-
abilities and frequencies and tree diagrams containing probabilities, but not with tree
diagrams containing absolute frequencies in their nodes, double trees, or net diagrams.

The testlets were distributed randomly to the participants, resulting in similar group
sizes, as can be seen in Table 9.

Participants were asked to state their gender, age, and math grade in their last school
report card.

The study was carried out in accordance with the University Research Ethics Standards.
The students were informed that their participation was voluntary and anonymity was guar-
anteed. The participants provided their written informed consent to participate.

Table 9 Group sizes for the different visualizations, formats, and types of information (across both con-
texts)

Format Type of information 2x2 table Double tree Net diagram Sum

Probabilities Conditional 57 56 59 172
Joint 57 56 59 172

Frequencies Conditional 58 56 58 172
Joint 58 56 58 172
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4.4 Coding
4.4.1 Conditional probability

In the probability versions of the task, the response was coded as correct if the probability
was entered at the correct branch in the double tree and net diagram or if the participant
checked the box that the given conditional probability could not be entered in the 2x2 table.
In the frequency versions, the response was classified as correct if both absolute numbers
were entered at the correct position in the given visualization.

4.4.2 Joint probability

The entry of the given joint probability was coded as correct if the given probability was
entered at the correct branch of the net diagram or cell of the 2x2 table or if the participant
checked the box that the probability could not be entered in the double tree. Again, in the
frequency version, the response was classified as correct if both absolute numbers were
entered correctly.

4.4.3 Specific cases

The response was coded as wrong if given probabilities or frequencies were entered mul-
tiple times (exception: the magnitude of the population was entered in both corresponding
nodes in the frequency double tree, compare Fig. 1). The response was also classified as
incorrect if the entry of the given conditional probability at the crossing branches of the
double tree could not be clearly allocated to one of the branches. This occurred only once
in the study.

4.4.4 Coding of the error patterns

Coding of the typical error patterns was based on a deductively derived coding scheme,
based on the well-known error patterns in reading information from diagrams (see theo-
retical background), complemented by inductively derived categories that occurred during
the coding process (Mayring, 2014). A code manual was developed to outline the typical
errors that we expected would occur in the study. Two raters coded 20% of all (conditional
and joint) entries independently according to this code manual (see Online Resources 1
and 2). Since all of the correct entries were rated in agreement with each other, and the
typical errors were classified identically in 99.3% of all cases, the remaining entries were
rated only by one coder.

In order to reduce the number of different error categories and present the results clearly,
only error patterns that were committed at least five times in any of the six versions were
accepted to be proper error pattern. Less frequent errors were summarized in a category
“other uniquely classifiable errors.” Nevertheless, the inverse error is additionally listed
because this is a well-known error and frequently occurred in solving pure text variants of
Bayesian tasks.

Sometimes, it was possible for one answer to be assigned to two or more error cat-
egories, for example, confusing joint with conditional probabilities, and also dropping a
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negation (e.g., P(DNT+) is confused with P(DIT-)). Some errors could not be assigned to
any category and were therefore labeled as “error unknown.”

4.5 Statistical model

In order to statistically compare the effects of information format and type of visualiza-
tion, we estimated generalized linear mixed models (GLMM) with a logit link function to
predict performance in entering conditional and joint information. Because of the dichoto-
mous dependent variable (O=incorrect, 1 =correct solution), we refrained from calculat-
ing a linear regression. Furthermore, we decided for a mixed analysis and against a, for
instance, logistic regression, due to our between-within-subject design since each partici-
pant solved several tasks. To take this aspect into account, we modeled the participants’
ID as a random factor. We specified the natural frequency version with a net diagram as
the reference category and included the possible explanatory factors “probabilities,”
“2x2 table,” and “double tree” via dummy coding. Furthermore, we included the interac-
tion terms (probabilities X 2x2 table) and (probabilities X double tree) and implemented the
mathematics grade from the last school report card into the model. Please note that grades
in Germany range from 1 to 6, with 1 being the best possible grade.

5 Results
5.1 Participants’ performance in entering conditional and joint information
5.1.1 Conditional information

When students are required to use empty visualizations as a heuristic tool and fill in the
given statistical information in the appropriate places, participants entered frequencies cor-
rectly more often into 2x2 tables and net diagrams than conditional probabilities (Fig. 7).
For double trees, however, both formats were entered almost equally often correctly. The
highest performance rate was found for entering frequencies into the net diagram, and the
lowest for stating that conditional probabilities cannot be entered into 2x2 tables.

As can be seen from Table 10, the (unstandardized) regression coefficient for entering
probabilities instead of natural frequencies was significant and negative as hypothesized
(H1a), which means the students were able to enter two absolute frequencies in the net dia-
gram more easily than one conditional probability. Presenting a 2x2 table or a double tree
instead of a net diagram only leads to a descriptive but not a significantly worse perfor-
mance of participants (H1b). Furthermore, there is a significant interaction effect between
information format and 2x2 table, whereas the interaction between information format and
double tree is not significant. This means that in the 2x2 table, the information format has
an even stronger influence on the participants’ performance than it does in the net diagram.
Furthermore, a student’s mathematics grade is a significant predictor for correct entry of
the numbers. Please note that the participants were familiar with 2x2 tables but not with
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Fig. 7 Percentages of correct entries of conditional information, separated by information format and visu-
alization type (across both contexts)

Table 10 Parameter estimates

from the generalized linear Covariates Estimate  SE Z P

I‘:‘;r"ff)‘rin’gi‘izl ifl‘“e,‘ff;‘fﬁg’a““’ Tntercept 237 049 484  <0.001

conditional information Probabilities -1.18 042 -2.79 <0.01
2x2 table -0.26 043  -0.59 0.55
Double tree —0.58 043 -1.34 0.18
2x2 table X probabilities —1.84 0.68 —2.71 <0.01
Double tree X probabilities 1.05 0.59 1.80 0.07
Mathematics grade -0.42 0.12  =3.55 <0.001
R arginal = 28.7%, R congitonas = 30-2%

double trees and net diagrams. Additionally, participants might prefer to enter a value over
stating that a value cannot be entered, if they are unsure.

5.1.2 Jointinformation

For the double tree and net diagram, frequencies were entered correctly more often than
joint probabilities (Fig. 8). However, almost all participants were able to enter joint prob-
abilities correctly into 2x2 tables. The lowest performance was found for responding that
joint probabilities cannot be entered into double trees.

As can be seen from Table 11, the (unstandardized) regression coefficient for probabilities
was significantly negative, which means that probabilities were entered correctly into the net
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Fig. 8 Percentages of correct entries of joint information, separated by information format and visualization
type (across both contexts)

diagram significantly less often than natural frequencies (H1a). Also, presenting a 2x2 table
or a double tree led to a significant negative regression coefficient, which demonstrates an
advantage of the frequency net (H1c). There is no significant interaction effect between infor-
mation format and double trees, which means that the influence of the information format
within the visualization is comparable in net diagrams and double trees. However, there is a
significant positive interaction effect between information format and 2x2 table, which means
that if 2x2 tables are considered instead of net diagrams, this interaction effect significantly
counteracts the negative effect of the information format in net diagrams (here, probability
2x2 tables help better than frequency 2x2 tables, whereas, in net diagrams, it is the other
way around, contrary to Hla). This means there is no general “frequency effect” for entering
Jjoint information, which has been repeatedly observed in studies focusing on conditional
probabilities (Gigerenzer & Hoffrage, 1995; McDowell & Jacobs, 2017). Furthermore,

Table 11 Parameter estimates

from the generalized linear Covariates Estimate  SE ‘ P

g‘;"fzcr'n’;‘ﬁzl lﬁ’igfefr‘:g‘gpfgﬁt Intercept 285 058 491  <0.001

information Probabilities —1.61 049 -3.30 <0.001
2x2 table -1.11 048 —-2.30 0.02
Double tree —1.03 049 -2.09 0.04
2x2 table X probabilities 3.70 0.81 4.56 <0.001
Double tree X probabilities 0.33 0.65 0.51 0.61
Mathematics grade -0.37 0.13 -2381 <0.01

RZmarginal = 283%’ RZCOnditional =34.6%
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the mathematics grade in the last school report card is again a significant predictor of correct
entry of numbers.

We found no significant effects regarding gender, the order of the task, subgroup (uni-
versity vs. school students), and the context of the task when including them into the mod-
els. Furthermore, implementing these factors did not change the main findings for predict-
ing students’ ability in filling empty diagrams with conditional or joint information found
by the GLMMs described above.

5.2 Typical error patterns when entering conditional and joint information
5.2.1 Conditional information

Table 12 separately lists typical error patterns encountered by information format and visu-
alization. First, typical errors, which are known from research on reading information from
visualizations, can be observed (confirming H2a), and some new errors occur in the filling in
of information in the visualizations used as heuristic tools (confirming H2b). Furthermore,
it is striking that the joint occurrence error was typical for the probability 2x2 table (84%)
but dropped to almost zero in the frequency 2x2 table (confirming H2c). Such a large perfor-
mance difference between probability and natural frequency versions when 2x2 tables were

Table 12 Percentages (and frequencies) of typical error patterns in entering conditional probabilities (or
corresponding frequencies) in the different visualizations

2x2 table double tree net diagram
ﬂ -:--:- : : :

Probabilities  Frequencies Probabilities Frequencies Probabilities Frequencies

12%(7)  67%(39) 59% (33) 61% (34) 46% (27) 76% (44)

Correct
solution
Error
patterns
JOlnt o, o, 0, o, o, o,
sccurrence 84% (48) 3% (2) 0% (0) 11% 6) 32%(19) 3% ((2)
Inverse error 0% (0) 3% (2) 5% (3) 4% (2) 0% (0) 0% (0)
Incomplete

(set or subset n.a.” 5% (3) n.a. 9% (5) n.a. 3% (2)
missing)
MUItlple o, o, 0, o, 0, o,
ANSWOrS 0% (0) 0% (0) 11% (6) 0% (0) 3% (2) 0% (0)
Negation error 5% (3) 9% (5) 4% (2) 7% (4) 2% (1) 2% (1)
Mistakenly

checked “not n.a. 10% (6) 18% (10) 9% (5) 14% (8) 9% (5)
possible”

Other uniquely

classifiable 0% (0) 2% (1) 4% (2) 7% (4) 0% (0) 10% (6)
errors

Error unknown 4% (2) 2% (1) 4% (2) 0% (0) 3% (2) 0% (0)

The column sums may add up to a number above 100% because in some cases two errors occurred at the
same time (see Sect. 4.4). However, these combinations occurred in an unsystematic way and are therefore
not reported here but can be seen in Online Resource 3. Errors marked in blue cannot occur when reading
from visualizations. *Not applicable
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used may be due to the fact that many uncertain participants preferred to enter the given
probability instead of checking the box that this was not possible. Also, with the probability
net, where there are branches for the joint probability, 32% of the participants committed
this error as opposed to 3% of those using the frequency net. In the probability double tree,
where such a branch is not even presented, this error cannot be made. Instead, participants
often either entered the probability in several branches on the double tree or stated that the
conditional probability could not be displayed within this visualization. However, in fre-
quency double trees, more than a quarter of the participants either committed the joint
occurrence error, failed to enter a complete frequency pair (incomplete), or stated that the
information could not be entered (mistakenly checked “not possible”).

5.2.2 Joint information

Since little is known thus far about error patterns regarding joint probabilities (for an
exception, see Binder et al., 2020; Stegmiiller et al., 2024), this analysis looking for typical
errors while using the different heuristic tools was rather exploratory.

Table 13 lists the typical error patterns separately by information format and visualiza-
tion. In the probability format, most participants who were not able to provide the correct

Table 13 Percentages (and frequencies) of typical error patterns in entering joint information in the differ-
ent visualizations

2x2 table double tree net diagram
= & Pl
Probabilities  Frequencies Probabilities Frequencies Probabilities Frequencies
CorreCt o, o, o, o, o, o,
solution 93% (53) 62% (36) 38% (21) 66% (37) 53% (31) 84% (49)
Error
patterns
Sr‘r’;’f““’“a] 0%(0) 7%#) 50%(28) 0% (0) 22%(13) 0% (0)
Marginal 0% (0) 2% (1) 2% (1) 18% (10) 0% (0) 3% (2)
Incomplete
(set or subset n.a.” 16 % (9) n.a. 4% (2) n.a. 5% (3)
missing)
Multiple
answeP;S 0% (0) 2% (1) 2% (1) 4% (2) 0% (0) 2% (1)
Negation error 2% (1) 2% (1) 2% (1) 2% (1) 7% (4) 2% (1)
Mistakenly
checked “not 5% (3) 14 % (8) n.a. 4% (2) 19%(11) 2% (1)
possible”
Other uniquely
classifiable 0% (0) 2% (1) 5% (3) 2% (1) 2% (1) 2% (1)
errors
Error unknown 0% (0) 2% (1) 2% (1) 2% (1) 3% (2) 0% (0)

The column sums may add up to a number above 100% because in some cases two errors occurred at the
same time (see Sect. 4.4). However, these combinations occurred in an unsystematic way and are therefore
not reported here but can be seen in Online Resource 4. Errors marked in blue cannot occur when reading
from visualizations. “Not applicable
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solution committed the conditional error, which means that participants entered the joint
information at a position in the visualization that is reserved for conditional information
(confirming H2a). This is particularly evident with the probability double tree, where in
half of the responses, the joint probability (which cannot be entered) was confused with a
conditional probability. Therefore, the reason for the large performance difference between
probability double trees and natural frequency double trees could be that many participants
entered the given joint probability in the wrong place instead of checking whether enter-
ing a joint probability in a double tree was possible. For the frequency 2x2 table, the most
common errors were to state erroneously that joint frequencies could not be entered and/
or to enter only an incomplete set of frequencies. For the frequency double tree, although
there was no confusion of joint with conditional information, the joint frequencies were
entered instead as marginal frequencies in 18% of the responses, which is quite remarkable
in that this marginal error has never been reported for interpreting visualizations.

6 Discussion

Previous studies on the effect of visualizations in probabilistic situations with two binary
events on participants’ performance almost exclusively focused on completely filled vis-
ualizations, whereas entering statistical information is also an important step in solving
probability tasks in school. Therefore, in this study, we theoretically embedded current
research on conditional probabilities in the modeling cycle and empirically examined one
step within this modeling cycle: In order to find out how well students use visualizations as
a heuristic tool in probabilistic tasks with two binary events, we pre-relieved the creation of
the empty structures and focused instead on students’ ability and typical problems in filling
in statistical information in different visualizations. In doing so, we also moved away from
typical Bayesian tasks. Instead, we considered situations with two binary events in general
and analyzed students’ performance and difficulties with respect to entering conditional
and joint information.

The following important results emerged: Participants’ performance, as well as typical
error patterns, in entering conditional or joint information depend on both the informa-
tion format and the given visualization. The famous frequency effect (Gigerenzer & Hof-
frage, 1995; McDowell & Jacobs, 2017), which also holds for determining conditional
information by using completely filled visualizations (Binder et al., 2015), can furthermore
be observed by entering frequencies into all empty visualizations except the double tree.
Using natural frequencies instead of probabilities drastically reduced the already known
joint occurrence error (Gigerenzer & Hoffrage, 1995; Woike et al., 2023) for the 2x2 table
and the net diagram. The joint occurrence error that often appears when interpreting prob-
ability 2x2 tables and searching for conditional information almost completely disappears
with frequency 2x2 tables. This error also appears when participants enter conditional
information.

However, the well-known frequency effect cannot be generalized to include entering
joint information. This is in line with the results of Binder et al. (2020) and Stegmiiller
et al. (2024) for completely filled visualizations. Thus, similar effects can be observed for
entering joint information as for interpreting visualizations. Again, the most common error
was to confuse joint with conditional probabilities, occurring often when only conditional
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probabilities could be entered (double tree) and less often when both probabilities could be
entered (net diagram). Using natural frequencies made the conditional error disappear for
the net diagram and the double tree.

Furthermore, in line with Cox (1997), we were also able to discover error patterns that
had not yet been observed from interpreting visualizations: When students are asked to
enter natural frequencies, sometimes only one absolute frequency is entered. Conversely,
sometimes information is entered into visualizations multiple times, which also reflects a
certain degree of uncertainty on the part of the students in filling in the visualizations. This
degree of uncertainty is also evident when one considers how many students incorrectly
checked that it was not possible to enter a particular piece of information even though it
was entirely possible to do so. A previously unknown error in the frequency double tree
was the confusion of joint information with marginal frequencies.

Overall, the results suggest that students lack conceptual knowledge on the different types
of probabilities and/or procedural knowledge (type 1) on visualizations. This is especially
apparent in the high proportion of confusions between joint probabilities and conditional
probabilities in the net diagram that displays both types of probabilities simultaneously. In
this context, it is also noticeable: While 93% of the students were able to correctly enter the
joint probability in 2x2 tables, 84% of the students also entered the conditional probability
in exactly the same place. However, the success of entering the information into the respec-
tive visualizations also depends on the given heuristic tool (i.e., the empty visualization) and
the given information format. Depending on the heuristic tool selected, students with the
same level of prior knowledge are likely to have varying difficulties, which must be taken
into account in lessons. So, if students correctly entered a joint probability in a 2x2 table,
this does not necessarily mean that students have sufficient conceptual knowledge to distin-
guish between joint and conditional information (Drdse et al., 2022; Shaughnessy, 1992).

6.1 Limitations

The task the participants had to solve typically does not appear in the isolated way it was
examined in this study but rather is a single step in the solving process of a probabilistic task.
In order to ensure that the participants used the intended visualizations and to rule out any
potential difficulties in drawing the visualizations, the visualizations were already provided
in the tasks. Therefore, the results relate more to the participants’ conceptual knowledge
on probabilities and procedural knowledge type 1 on visualizations and can only be inter-
preted indirectly from the perspective of visualizations as heuristic tools for modeling and
problem-solving. Howeyver, it remains unknown if the errors emerged predominantly due to a
lack of conceptual knowledge of the different types of probabilities, of the procedural knowl-
edge (type 1) of visualizations (e.g., inserting a correctly decoded probability into the wrong
place), or on the translation between the verbal and the mathematical representation (e.g.,
correctly entering an incorrectly decoded probability). Additionally, we do not know how
confident participants were in their answers and if or how often they hesitated to state that
information cannot be entered and applied some sort of availability heuristic instead (“just
write the information in the place that looks most like what is being searched for™).

The study was conducted during the pandemic of COVID-19. For this reason, partici-
pants were recruited from a university as well as from schools. Schools, in particular, were
heavily affected by lockdowns and school closures, so the knowledge and performance in
mathematics of the participating school students may differ from the regular level. How-
ever, previous studies (and also our data) show that effects of information format and
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visualization hardly differ for university and school students’ Bayesian reasoning (see
McDowell & Jacobs, 2017). Due to the sample size of 172 students, the results are only
meaningful to a limited extent. However, even with this sample size, significant effects are
already evident. In addition, the sample is a convenience sample and therefore a sample
bias may have occurred (e.g., students with a particularly high or low level of conceptual
knowledge in probabilities). Nevertheless, there is no reason to assume that the effects of
the information format or the visualizations would substantially change with larger sample
sizes or other samples—but rather that the entries into the visualizations would be better
or worse in general. Furthermore, participants were only recruited in Bavaria, Germany, so
a critical examination should be carried out if the results also apply to other countries or
even other states in Germany since the states have different curricula.

Finally, the comparison of the different visualizations is impaired by the fact that all
participants were familiar with 2x2 tables and tree-diagrams but not with double trees and
net diagrams. However, double trees and net diagrams are branching structures and there-
fore follow the same rules for reading and entering values as well-known (single) tree dia-
grams. In addition, performance with 2x2 tables was not systematically better than with the
unknown visualizations.

6.2 Conclusion and further research

Our results show that performance and typical errors when entering conditional and joint
information depend crucially on the information format and the respective visualization, in
a similar way to when reading conditional or joint information from visualizations (e.g.,
Binder et al., 2020). These findings can serve as important background knowledge for teach-
ers when they work with those visualizations in class. For example, mathematics teach-
ers can thus—depending on the visualization used—deliberately provoke typical mistakes
in order to address them constructively in the classroom. Moreover, it became once more
apparent that students lack conceptual knowledge of probabilities and/or procedural knowl-
edge on visualizations. This suggests that the different functions visualizations serve can-
not be treated separately from each other. Using visualizations as heuristic tools requires
procedural knowledge of visualizations themselves but also conceptual knowledge on prob-
abilities in general, that, in turn, can be fostered by using visualizations as teaching material.

In this paper, we studied students’ ability to enter given values into empty visualizations
primarily from the perspective of using visualizations as heuristic tools to solve probabil-
istic tasks. However, the ability to correctly enter numerical values into a visualization can
be useful in almost every step of the modeling cycle (see Fig. 2). For example, one could
use a visualization to structure the real problem situation (steps 1 and 2) or to interpret or
validate the results (steps 5 and 6) that were obtained without the help of visualizations
(e.g., by only using Bayes’ formula). Moreover, a visualization can be drawn to inform a
patient comprehensively about the result of a medical test (step 7), which also refers to the
communicative function of visualizations.

Considering the overarching modeling task, future research could focus on the remain-
ing steps of the solving process in order to discover further sources of error and better
understand participants’ difficulties in solving probabilistic tasks with two binary events.
This also includes analyzing whether students are able to select suitable visualizations
depending on the task (and the given parameters in the task) in terms of flexible use of
the visualization or making connections between different representations (Acevedo Nistal
et al., 2009; Novick & Hmelo, 1994; Zahner & Corter, 2010).
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