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Abstract

Objective: Empirical evidence suggests substantial deficits regarding emotion recognition
in bulimia nervosa (BN). However, the nature of this impairment is subject of ongoing
research. Aim of the current study was to investigate the processing of emotional faces in

patients with BN.

Methods: Event-related potentials (ERPs) were recorded from 22 female patients with BN
and 22 matched healthy controls while viewing neutral, happy, fearful, and angry facial
expressions, and further analysed by using the brain electrical source localization method
(BESA). Subjects’ facial recognition performance was tested separately in a categorization
task. In addition, emotion identification skills were assessed with the Toronto Alexithymia

Scale (TAS) and the Eating Disorder Inventory (EDI subscale Interoceptive Awareness).

Results: BN patients reported greater difficulty in identifying their own feelings as well as
in the regulation of emotional states. Although performance in the categorization task was
comparable in BN and controls, the present ERP data demonstrate significant differences
at the post-perceptual level of emotional face processing. While early processes of
structural encoding, as indexed by the N170, were found to be intact, BN patients had a
significant reduction of N2 amplitudes and showed higher P3 amplitudes in response to
facial stimuli than healthy subjects. Furthermore, a source analysis in the time interval of
the N2 revealed that these differences could be related to specific structures that
collaborate with the emotional face processing system. In addition to core structures of
face recognition, a dipole in the inferior parietal lobule was found in healthy controls as
responding to fearful faces, whereas BN patients’ data revealed neural activity in the

parahippocampal gyrus.

Conclusion: The findings of the present study provide novel electrophysiological support
for a differential processing of emotional faces in patients with BN as compared to healthy
controls. Results suggest that BN patients have deficits in earlier and automatic emotion
classification, which are followed by an increased allocation of attentional resources to
compensate for those shortcomings. That mechanism might account for bulimics’
comparable ability to classify a variety of emotional expressions on a behavioral level, but
also underlines existing findings of increased difficulties in recognizing and evaluating

emotions in BN.



1 Introduction

It’s hard to imagine a life without emotions. We are seeking for moments of pleasure and
happiness and try to avoid those that lead to sadness or pain. Emotions are what life makes
worth living. The research of emotional states, their neural correlates, and their role for the
regulation of social cognition and behavior have become important topics in cognitive
neuroscience (Adolphs, 2003), and many studies have begun to elucidate the neural
network for the processing of emotions by measuring brain responses to emotionally

salient stimuli.

Although this work has already outlined a considerable framework on the regions and
temporal dynamics of emotional processing, research into deficits of emotional regulation,
which are found to be central features in many disorders, including bulimia nervosa, has
received only little empirical attention. Several lines of evidence suggest that eating
disorders are associated with substantial deficits in experiencing and regulating emotions.
Controversy exists regarding whether bulimic patients have a reduced ability to recognize
facial expressions of emotion, which is known to play an essential role in social

communication.

Therefore, the present study aims to investigate the processing of emotional faces in
patients with bulimia nervosa and in healthy control subjects by using cognitive,
behavioral, and electrophysiological measures. Before presenting details of existing
literature, a brief overview on clinical features in bulimia nervosa will be provided. A
separate chapter will focus on the physiological and neuroanatomical background of
emotional face recognition, as well as on the event-related potential and source localization
techniques which were used. Following the description of method and results of the present
study, experimental findings of the processing of emotional faces in bulimia nervosa will

be examined and discussed.



2 Bulimia nervosa — background and characteristics

Eating disorders, most notably anorexia nervosa (AN) and bulimia nervosa (BN), are
complex mental disorders that share the psychopathology of overevaluating one owns
shape and weight. In general, they are defined as disturbances of eating habits or weight-
control behavior, that should not be secondary to other medical disorders and that result in
a significant impairment of physical or psychosocial functioning (Fairburn & Harrison,
2003). While AN is characterized by a sustained and determined pursuit of weight loss,
frequent episodes of uncontrolled overeating (binge eating) are followed by efforts of

compensating for the excessive intake in patients with BN.

2.1 Clinical features and prevalence

Bulimia nervosa (Greek povlwia, from povg “the ox” and Awdg “the hunger”) is a
relatively newly recognized eating disorder that was first defined by Russell in 1979
(Russell, 1979). By evaluating themselves solely in terms of their shape and weight, BN
patients mislabel issues of food, eating and self-control as being more important than any
other aspect in their life. Attempts to control weight through restrictive dieting are
undermined by repeated cycles of binge eating. During such “binges”, the person feels a
lack of control and consumes unusual large quantities of food over a short period of time.
Binge eating is followed by an inappropriate compensatory behavior to prevent weight
gain, such as self-induced vomiting, misuse of laxatives, diuretics or other medications
(purging-type), but the individual may also take corrective actions such as fasting or
intense exercising (non-purging type). Patients with BN are of normal or above average

body weight (Walsh & Devlin, 1998; Fairburn et al., 2003).



Among all eating disorders, BN has the highest prevalence and mostly occurs in young
females aged 16-35 years. It has found to be about 20 times more common in women than
in men, appears predominantly in western societies and has a prevalence rate of 1-2%. The
disorder is characterized by a chronic, sometimes episodic course and tends to be self-
perpetuating. Moreover, because of the denial and shame associated with the illness, BN
can often go unacknowledged so that intervention and treatment is delayed for many years
(Fairburn & Harrison, 2003). Little is known about the long-term course and outcome of
BN, although findings indicate that about one third of the patients who recovered from BN
rapidly relapse (Keel, Dorer, Franko, Jackson, & Herzog, 2005) and many remain
chronically symptomatic, with some migrating between the different categories of eating

disorders (Fichter & Quadflieg, 2004).

2.2 Causes, contributory factors and comorbidity

The etiology of BN still remains unclear but social, psychological, genetic and biological
factors all seem to play a role for the development of this disorder. Several contributory
factors have been identified to promote eating pathology (for a review see Fairburn &
Harrison, 2003). Environmental risk factors include premorbid experiences like adverse
parenting, sexual abuse, family dieting or an emphasis on slimness. Other risk factors
identified in bulimics are certain character traits, most prominently low self-esteem or
anxiety. In addition, childhood and parental obesity, early menarche and parental
alcoholism have been among the predisposition for BN. Hereditary factors may increase
the risk of developing BN, as suggested from investigations about familial transmission
(Strober, Freeman, Lampert, Diamond, & Kaye, 2000). Genetic studies have examined
serotonin (5-HT)-related genes as possible causes. However, as no associations have yet

been clearly replicated, genes that might be involved in the development of the disorder



still have to be verified (Fairburn & Harrison, 2003). Altered serotonin neurotransmitter
activity, which has been found in BN patients, seems very likely to contribute to a
susceptibility to develop this disorder, because serotonin is involved in the regulation of
satiety and mood. As these alterations persist even after recovery of BN, it seems plausible
that they are not merely a consequence of abnormal eating regulation but might be a major
factor in the development of eating disorders or associated mood disturbances (Kaye et al.,
2001). Furthermore, the satiety hormone cholecystokinin (CCK), which is released
insufficiently in some patients with BN, might account for a sustained abnormal eating

behavior (Devlin et al., 1997).

It is generally agreed that the majority of patients with BN have a coexisting psychiatric
condition, although processes that give rise to such comorbidities haven’t been fully
elucidated yet. Mood disorders have been found to co-occur in the presence of BN and
other eating disorders in a vast number of cases (Blinder, Cumella, & Sanathara, 2006). It
has been argued that bulimic pathology and depression may be reciprocally related,
because each disorder increases the risk for onset of the other disorder. Depressed
individuals seem to binge eat in order to distract from negative emotions and use
compensatory behaviors to reduce physical discomfort and anxiety about weight gain.
Conversely, feelings of shame and guilt, that result from binge eating, increase the
probability for a depression (Stice, Burton, & Shaw, 2004). BN has also been associated
with significant elevations in one or more anxiety disorders, with obsessive-compulsive
disorder and social phobia being the most common. The onset of anxiety disorders
precedes the emergence of BN in the majority of cases (Godart, Flament, Lecrubier, &
Jeammet, 2000; Kaye, Bulik, Thornton, Barbarich, & Masters, 2004), which indicates that

early-onset anxiety may be one predisposing factor towards the development of BN.



2.3 Emotional dysregulation in eating disorders and bulimia nervosa

Research into the psychological processes underlying BN revealed that most bulimics have
substantial difficulties in recognizing emotions and an inability to cope appropriately with
emotional states. In fact, without the ability to identify the experienced emotion, choosing
an effective reaction is hardly possible (Sim & Zeman, 2004). This inability, which may
also be termed as “mood intolerance” (Fairburn, Cooper, & Shafran, 2003), is regarded as
one of the main mechanisms that promote the eating disorder. Bulimic patients respond to
negative mood, such as anger, anxiety, or depression with binge eating as a regulatory
behavior (Stice, 2001). Moreover, this seems to be accompanied with a decreased
awareness of the triggering mood state (Fairburn, Cooper, & Shafran, 2003). Empirical
research has found a poor interoceptive awareness, i.e. difficulties in recognizing and
discriminating internal states - including emotions and sensations of hunger or satiety - in
adolescent girls with BN (Sim & Zeman, 2004). In addition to self-report measures, Sim
and Zeman (2004) also assessed emotional awareness by using two objective measures.
Their findings demonstrate that girls with BN, as compared to the depressed and
community control groups, exhibited significantly longer latencies to retrieve emotional

information and endorsed significantly more labels to describe emotional situations.

Studies on emotional awareness in eating disorders emphasize alexithymia as a possible
mediating factor. Alexithymia refers to a cognitive-affective deficit, which is defined as a
multidimensional construct with three core deficiencies: (1) difficulties in identifying
feelings; (2) difficulties in describing feelings; and (3) limited imagination capacity with a
concrete/ externally oriented style of thinking (Bagby, Parker, & Taylor, 1994; Taylor,
Parker, Bagby, & Bourke, 1996). Several studies reported high levels of alexithymia

among patients with BN (Corcos et al., 2000; Sim et al., 2004; Bydlowski et al., 2005;



Gilboa-Schechtman, Avnon, Zubery, & Jeczmien, 2006; Montebarocci et al., 2006;
Berthoz, Perdereau, Godart, Corcos, & Haviland, 2007), especially on the first two factors
measuring difficulties in identifying feelings and difficulties in describing feelings
(Kessler, Schwarze, Filipic, Traue, & von Wietersheim, 2006). However, several
investigators have stressed a correlation between depression and alexithymia, as measured
with the Toronto Alexithymia Scale (TAS) self-report questionnaire. Higher TAS scores in
eating disorders have been mainly related to negative mood; after controlling for
depression, TAS scores were similar in eating disorders and controls (Bydlowski et al.,
2005; Montebarocci et al., 2006). Therefore, measuring alexithymia with the TAS might
not be sufficient to investigate emotion processing deficits in eating disorders. By
investigating a broader construct of emotional awareness, including an individual’s
capacity to describe not only his or her own emotional experience but also the emotional
states of others, Bydlowski et al. (2005) suggested a marked impairment in emotion

processing in eating disorders, which is independent of affective disorders.

Deficits in the identification of emotion in others are also indicated by several studies
investigating facial emotion recognition in eating disorders. Faces are multi-dimensional
stimuli conveying not only information about a person’s identity, gender, or age, but also
more social signals related to emotion, trustworthiness, attractiveness or intention
(Vuilleumier & Pourtois, 2006). The ability to decode socially relevant information is
essential to both automatic and volitional behavior (Adolphs, 2001). While some studies
found no significant differences between patients with AN or BN and control subjects in
their ability to recognize facial emotions (Mendlewicz, Linkowski, Bazelmans, &
Philippot, 2005; Kessler et al., 2006), several other studies suggested that patients with AN

show difficulties in recognizing emotions from facial expressions, as measured with
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performance tests (Zonnevijlle-Bender, van Goozen, Cohen-Kettenis, van Elburg, & van
Engeland, 2002; Kucharska-Pietura, Nikolaou, Masiak, & Treasure, 2004). These deficits
could contribute to poor social skills found in eating disorders such as problems in
communication and empathy. Electrophysiological techniques are able to reveal
abnormalities in the processing of stimuli even in the absence of differences in overall
behavioral performance. In a recent ERP study, Pollatos and colleagues (Pollatos, Herbert,
Gramann, & Schandry, in preparation) showed that females with AN exhibited decreased
P3 amplitudes in response to unpleasant facial expressions and suggested that this could be
linked to a diminished cognitive processing ability of emotional faces conveying negative

signals.

Two other ERP studies also revealed abnormal P3 components in eating disorders for the
processing of non-face stimuli. Whereas in one study, AN subjects elicited significantly
higher P3 amplitudes for body images and simple geometrical shapes (Dodin & Nandrino,
2003), in another study a prolonged P3 component was shown in an auditory two-tone
discrimination task for anorexic and bulimic patients (Otagaki, Tohoda, Osada, Horiguchi,
& Yamawaki, 1998). Dodin and Nandrino (2003) suggested, that these differences point to
a deficit of automatic information processing that could be explained in terms of a cortical
hyperarousal. According to this view, individuals with AN or BN are characterized by an
controlled information processing bias, that entails an attentional overload and that results

in difficulties in inhibiting irrelevant information.

Other lines of research have focused on neural disturbances in AN and BN in order to
investigate eating disorders and associated emotional dysregulation. Functional imaging

studies have used food and body shapes pictures or investigated subjects while eating to
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trigger symptom-related neural activity. Data on BN, however, are limited and seem to

differ from those on AN.

A single photon emission tomography (SPECT) study showed that perfusion of the frontal
lobes increased in AN patients that ate cake (Nozoe et al., 1993). In opposite to AN, the
perfusion of frontal areas decreased in BN while eating, which was demonstrated in
another study (Nozoe et al., 1995). In a fMRI experiment, food pictures elicited higher
activation in the anterior and lateral prefrontal cortex in AN than in controls, but lowest in
BN. Both BN and AN patients recruited medial orbitofrontal and anterior cingulate cortex
instead of the inferior parietal lobule and left cerebellum, which were activated in healthy

controls (Uher et al., 2004).

Other findings on AN include elevated activity in prefrontal cortex, anterior cingulate,
insular cortex, and amygdala while viewing high-caloric drinks (Ellison et al., 1998), in
bilateral medial temporal lobe and visual association cortex in response to high-calorie
foods (Gordon et al., 2001), and in amygdala as elicited by morphed images of subjects’

bodies (Seeger, Braus, Ruf, Goldberger, & Schmidt, 2002).

Taken together, in a large number of eating disorder patients, an abnormal activity in
frontal regions has been found in reponse to symptom-related stimuli such as food. As
similar dysfunctions have been found in obsessive-compulsive and affective disorders,
Uher et al. (2004) note the possibility of a common affect-related circuit based in the

medial prefrontal cortex that is activated by disorder-specific stimuli.

2.4 Summary of previous research and rationale of the study

To summarize, the emergent picture from studies investigating emotional awareness in

eating disorders indicates that patients with BN, and similarly in AN, have substantial
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deficits in the processing of emotions. Many studies have shown a poor ability in
recognizing and describing internal states and emotions in BN, which has been linked to
alexithymia. In addition, BN patients seem to have deficits in information processing while
perceiving emotional stimuli. While some work has focused on abnormalities in the
processing of symptom-related stimuli such as food or body images, others have suggested

difficulties in the identification of emotions in faces.

But whether patients with BN have impairments in the recognition of emotional faces is
still not answered satisfactorily. Data on BN, although more prevalent than AN, is limited.
Moreover, most of the research has relied solely on self-report to assess the patients’
ability to identify emotions in faces. Results of these categorization tasks are not clear-cut.
It is possible, that patients can show comparable performance when images are presented
for a relatively long time to answer, which can be considered as artificial. Also, patients
could learn to categorize shown faces by means of typical features that clearly indicate an
emotion (e.g. a smile for happiness). Such a performance test then measures more
cognitive than emotional recognition abilities (Kessler et al., 2006). Gilboa-Schechtman et
al. (2006) suggested, that emotional processing among eating disorders should be
examined more integratively with multiple measures. Taking these considerations into
account, the aim of the present study was to investigate emotional face processing in BN
by using self-report and behavioral measures as well as electrophysiological and source

localization methods.
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3 Event-related potentials and emotional face recognition

In this study, event-related potentials (ERPs) have been used to investigate emotional face
processing in BN. Because of their excellent temporal resolution, ERPs can serve as an
useful tool in oder to determine different stages giving rise to perceptual, cognitive,
emotional and behavioral processes in human everyday living. Although lacking accurate
spatial resolution, they can be used in source analysis methods to infer the location of
neural activity that gave rise to particular ERPs measured. The purpose of the following
sections is to provide a background on the topic of the recognition of emotions from faces

as well as an overview over the ERP technique and the source localization analysis.

3.1 Processing faces and emotional expressions

The perception of faces is known to be an essential part in social interactions and one of
the most developed visual processing skill in humans. Two types of information have to be
extracted in order to recognize a face: First, the face must be identified as belonging to a
unique individual, out of innumerable different faces and taking into account changes in
viewing angle, facial expression, and appearance. The recognition of identity must be
based on those features of a face, that are invariant across changes in expression. Second, a
face provides a wealth of information related to social communication that have to be
extracted from changeable aspects of a face (e.g. emotional expression and eye gaze)
(Posamentier & Abdi, 2003; Haxby, Hoffman, & Gobbini, 2000). Including both invariant
and changeable features of faces, the face perception system is suggested to engage highly
specialized systems, an idea that is supported by clinical cases with selective deficiencies
in face recognition. Prosopagnosics fail to identify people on the basis of their face but
have an intact facial expression processing, while other patients have normal performances

in the identification of faces but are impaired in the ability to recognize emotions from
14



faces (see e.g. Posamentier & Abdi, 2003, for a review). An influential cognitive model of
face perception by Bruce and Young (1986) was the first that emphasized distinct
psychological processes involved in the recognition of identity and in the recognition of
facial expression (Bruce & Young, 1986). According to their model, the processing begins
with the structural encoding of visual features of faces, which is followed by specialized
functions that analyse different types of information that are conveyed in a face or

associated from existing knowledge.

Faces provide a broad range of information that faciliate social behavior and experience,
especially through the expression of emotions. Neurobiologists and psychologists have
conceptualized emotions as concerted and adaptive psychophysiological processes that are
triggered by certain objects or situations to prepare an organism to act effectively in certain
contexts. An emotional response typically involves several components including bodily
changes, conscious experience (subjective feelings), appraisal of environmental and
internal information as well as behavioral aspects, e.g. facial expression (Damasio, 1999;
Gorman, 2004; Schandry, 2003). Based on the work by Ekman (Ekman, 1993; Ekman,
1999), it is generally accepted that facial expressions are innate and universal, as members
of different cultures classify them in the same way. Although it is debatable whether
emotional expressions might form a continuum comprising a small number of dimensions
(e.g. level of arousal, intensity, pleasure or aversion, etc.), or if they are to be
conceptualized as discrete classes (see e.g. Adolphs, 2002), the majority of research uses
six basic categories of emotions conveyed in faces: happiness, surprise, fear, anger,

sadness, and disgust.
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Numerous neurophysiological studies suggest a distributed neural system for the
processing of identity and expression of faces. The next sections will provide a background
of the methods used in this study. Then, important findings will be reviewed, that have
already made significant contributions to our understanding of the timing and structures

with that facial expressions are processed.

3.2 Electrophysiological measurements and the ERP technique

As compared with other brain imaging methods, such as the hemodynamic approaches
fMRI and PET which indirectly measure brain activity by recording slow metabolic
changes that are a consequence of neural activity, electroencephalography (EEG) is one of
the electromagnetic approaches for noninvasively and directly recording the electrical
activity of neuronal populations with a millisecond temporal resolution (Savoy, 2001;
Gevins, 2002; Luck, 2005). The physiological basis of the EEG signal, which is recorded
by electrodes placed on the scalp, originates in currents that are produced by a summation
of post-synaptic potentials from a large number of neurons. In the process of neuronal
signal transmission, post-synaptic potentials are changes in membrane voltage that arise
when neurotransmitters bind to receptors of the postsynaptic terminal. If, for example, an
excitatory neurotransmitter is released into a synapse causing ion channels to open,
positive ions flow into the postsynaptic neuron. Thereby the extracellular concentration of
positive ions will be reduced, leading to a net negativity on the outside of the apical
dendrite region (a current “sink”). The positively charged ions flow out of the neuron at its
cell body and basal dendrites, yielding a net positivity in this area (a current “source”).
Together, this polar structure of positive and negative electrical charges at the neuron
creates a (very small) dipole. In order to make such voltages recordable at the scalp, a

whole population of neurons must be activated similarly at the same time and must be
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aligned in a parallel orientation so that voltages will be summated and do not cancel each
other out. Fortunately, the layered structure of the cerebral cortex with vertically oriented
pyramidal cells and the synchronous activity of many neurons during information

processing provides recordable signals at the level of the scalp surface.

In order to measure brain activity to certain stimuli, the event-related potential (ERP)
technique is used (see e.g. Luck, 2005). ERPs are electrophysiological responses that occur
before, during and after a specific physical stimulus or mental event. Such stimulus-related
activity can be extracted from the continuous EEG recording. Assumed that the repeated
presentation of the stimulus always elicits equivalent responses while all other unrelated
brain activity occurs randomly, time-locked signal-averaging increases the signal-to-noise
ratio. That way, any unrelated activity will average to zero and any stimulus-related
activity will be visible in the average. In order to investigate effects in a group, grand
averages (GAs) are created by averaging together the averaged waveforms of the
individual subjects. Represented graphically with time (x-axis) and voltage (y-axis), the
resulting ERP waveform consists of successive components, that can be described as a
series of positive and negative waves. Typically, those components are named with a ‘P’ or
‘N’ (to indicate positive or negative deflection) and a number (to specify the timing of the
peak). The sequence of the components reflect different stages during cognitive processes.
Traditionally, ERP components have been classified according to their latency as being
either “exogenous” or “endogenous”. Short-latency components appear to reflect bottom-
up processing in that they are sensory-specific, sensitive to the size and intensity of the
stimulus, and are elicited maximally over modality-specific brain areas. By contrast, later

components are not sensory-specific, depend more on the properties of the given task, and
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are generally linked to post-perceptual stages that might involve top-down processes, e.g.

memory, attention, or response selection.

3.3 Emotional face processing stages as reflected by ERPs

Early cortical processing of faces, like any other visual perception, begins in occipital
cortices that perform basic operations on the individual features of a stimulus and on
figure-ground segmentation in order to construct a structural representation of that object.
In comparison to most other visual stimuli, the processing of faces requires a very fast
categorization at the unique level (the individual) and rapid associative processes linking
the percept with socially relevant information, e.g. the quality of the facial expression
(Adolphs, 2002). Previous research has shown enhanced responses to negative emotional
expressions (see Vuilleumier & Pourtouis, 2006 for an overview) already from 40 to 100
ms, which appears to be generated in V1 (primary visual cortex). Emotional modulations
also have been reported in the early component P1, which is largest at lateral occipital
electrode sites and peaks between 100-130 ms. These early effects are supposed to display
rapid but coarse perceptual routes that occur in parallel to the full structural encoding stage

(Adolphs, 2002).

A substantial amount of research has focused on the N170, an ERP component assumed to
reflect face-specific neural systems in the infero-temporal cortex. Whereas non-face
stimuli demonstrate a smaller or absent N170, faces have shown to elicit responses peaking
approximately 170 ms at occipital-temporal electrode sites (Bentin, Allison, Puce, Perez, &
McCarthy, 1996). In line with the early structural encoding stages of cognitive models
(Bruce & Young, 1986), many studies have found that this component is not influenced by
the saliency of internal facial features, indicating that the N170 presumably provides a

perceptual encoding and categorization process as a basis for subsequent expression and
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recognition analysis (Eimer, 2000). However, as others also reported emotional
modulations in N170 more recently (Blau, Maurer, Tottenham, & McCandliss, 2007), its

exact role is still a topic of debate.

Post-perceptual processing of faces, such as recognition of its identity or expression, has
been consistently reported to happen during the time windows subsequent to the N170
component, ranging in the N2 and the P3 (see Adolphs, 2002; Vuilleumier & Pourtois,
2006). The N2 (or N200), which has been shown to include several subcomponents, is
thought to reflect stimulus contrast and can be observed from 200-350 ms. Its amplitude is
viewed to index the degree of attention which is focused on the stimulus. Therefore, the N2
component is generally regarded as reflecting automatic and deliberate processes of
stimulus evaluation, discrimination, and classification (Naatdnen & Picton, 1986; Luck,
2005). Posterior ERP effects around 230-250 ms have been found to discriminate
emotional from neutral faces (Krolak-Salmon, Fischer, Vighetto, & Mauguiere, 2001;
Balconi & Pozzoli, 2003) and to elicit significantly higher amplitudes for threatening as
compared with friendly or neutral expressions (Sato, Kochiyama, Yoshikawa, &
Matsumura, 2001), thus indicating an early decoding process of emotional expressions of

faces in that time window.

Differential effects of emotional versus neutral faces have been reported to occur
particularly in later ERP components such as the P3 (or P300) wave. Consisting of several
distinguishable, task-dependent subcomponents such as the P3a and P3b, the P3 is often
found to be sustained over a prolonged time range from 300 to over 400 ms, characterized
by a large positivity and recorded maximally over centro-parietal scalp-regions (Luck,
2005). The P3 is primarily associated with working memory processes as well as the
allocation of attentional resources. Since it’s amplitude is larger when subjects devote

more emphasis to a task, the P3 is regarded to reflect the amount of cognitive effort that is
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needed for the evaluative categorization of meaningful stimuli (Kok, 2001). Concerning
the processing of faces, a variety of studies have shown that emotional expressions elicited
significantly higher P3 amplitudes than neutral expressions (Carretie & Iglesias, 1995;
Krolak-Salmon et al., 2001). Such late responses may reflect more complex cognitive

activity beyond the sensory-processing triggered by emotional stimuli.

3.4 Brain electrical source analysis

Source localization methods are used in order to identify the location and orientation of
neural structures that elicited a particular voltage distribution on the scalp (Luck, 2005;
Slotnick, 2005). Thereby, solutions of two discrete but dependent problems have to be
found. A specific cortical activation, which can be described by current dipoles, produces a
unique scalp voltage topography (“forward problem”). For realistic head shapes, modeled
of several concentric shells with varying conductive properties (brain, skull, scalp), this
precise distribution can be predicted. More difficult however is solving the “inverse
problem™: For any given scalp voltage topography there exist an infinite number of
possible source configurations that could produce the same scalp distribution (Helmholtz,

1853).

The brain electrical source analysis (BESA) technique (Scherg & Berg, 1996), an
equivalent current dipole approach that was used in this study, assumes that the
spatiotemporal scalp voltage distribution can be modeled by using a small number of
current dipoles, each of which represents the summation of neural activity within a cortical
area. Moreover, every dipole is supposed to be stationary with one fixed location and
orientation, but varies in strength over time. After determining the minimum number of
dipoles underlying a given scalp topography by a principal components analysis, a model-

fitting algorithm is used to estimate those locations and orientations that yield the best fit
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between the model and the data. Dipoles’ positions are modified in an iterative procedure,
so that they are adjusted slightly and reduce the residual variance with every iteration

(Luck, 2005; Slotnick, 2004).

The recognition of emotion from facial expressions is mediated by a distributed neural
system. The most prominent structures involved, which have been investigated in studies
using ERPs, lesions and functional imaging techniques, are reviewed in the following

section.

3.5 The functional neuroanatomy of emotional face processing

In line with the functional Bruce and Young (1986) model of emotional face analysis,
emphasizing separate psychological processes for the recognition of identity and emotion,
current neuro-anatomical models support a view of face recognition that involves distinct
neural structures in at least two steps of processing (Adolphs, 2002; Haxby et al., 2000):
The first step, in which the structural encoding of basic visual features takes place
(=perception), has been associated with early processes mainly mediated by a “core
system” of face perception (Haxby et al., 2000). In a second step, additional processes
serve to link a perceptual representation with existing conceptual knowledge in order to
derive a meaning from the face and its emotional expression (=recognition). The “extended
system” (Haxby et al., 2000) consists of neural structures of other cognitive functions, e.g.
attention or emotion, that collaborate with the core system and provide appropriate

supplementary information for the expression and recognition analysis of faces.
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Adolph’s (2002) model for recognizing emotion from facial expressions, depicted in
Figure 1, shows different stages from initial perception to later processes which link the
percept to conceptual knowledge as well as major structures and corresponding processes

involved.
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Figure 1: Adolph’s (2002) model outlining the processing of emotional facial expressions as a function
of time. The main structures involved are depicted on the left, corresponding timing of processes is shown on
the right. Note: LGN = lateral geniculate nucleus; FFA = fusiform face area; STG = superior temporal gyrus.
Source: (Adolphs, 2002).
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3.5.1 Structures for perceiving emotion from faces

Following the model of Adolphs (2002), the initial processing of emotional faces involves
two routes to perception: Subcortical mechanisms that bypass striate cortex include the
superior colliculus, the pulvinar thalamus, and amygdala. They presumably represent
structures that are specialized for the fast, coarse and automatic processing of certain
highly salient stimulus features, and are assumed to function in parallel with the second
route to perception, the cortical route. Early cortical processing begins in primary visual
areas, which provide input for the subsequent construction of a more detailed perceptual
representation in regions more anterior. Particular attention has been focused on three
bilateral regions in occipito-temporal visual extrastriate cortex subsumed as the core
system for face perception (Haxby et al., 2000). These regions, depicted in Figure 2, are in
the lateral fusiform gyrus, the superior temporal sulcus, and the inferior occipital gyrus,

and appear to be involved in different functions of face processing.

Neuroimaging studies have consistently shown that the fusiform gyrus is activated by
faces, as compared with evoked responses to other common objects or non-objects, and
with activity often bilaterally but more reliably found on the right (Kanwisher, McDermott,
& Chun, 1997). Although termed as the “fusiform face area” (FFA), it has been revealed
that this area is also activated when subjects are experts in the discrimination between
nonface objects, e.g. birds or cars (Gauthier, Skudlarski, Gore, & Anderson, 2000),
suggesting this area to be involved in perceptual processes for recognizing faces and other
objects at the subordinate level with unique properties. Most importantly, the fusiform
gyrus is viewed to be mainly involved in the processing of the structural, non-changeable,
and mainly static characteristics of faces, leading to the construction of a personal identity
behind a face (Haxby et al., 2000). In contrast, the region of the superior temporal sulcus

(STS) seems to be more involved in the perception of changeable properties of faces. With

23



the processing of motion-related information, this structure contributes to the recognition
of social relevant information embedded in the emotional expression and gaze direction
(Haxby et al., 2000). The third structure of the core system, the inferior occipital gyrus, has
been proposed to provide information about both structural and changeable features to the

fusiform gyrus and the superior temporal sulcus, respectively (Haxby et al., 2000).
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Figure 2: Core structures of face processing. The lateral fusiform gyrus, as shown on the medial surface of
the left hemisphere (upper image). The superior temporal sulcus and the inferior occipital gyrus, as viewed
from the lateral surface of the left cerebral hemisphere (lower image). Source: (Gray, 2000)
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3.5.2 Structures for the recognition of emotion in faces

While the structural representation of a face and the perceptual information about the facial
expression is encoded by processes and brain areas mentioned above, additional
anatomical structures are recruited in order to link those representations with conceptional
knowledge, giving meaning to faces (Adolphs, 2002). Emotional expressions in faces have
been found to evoke responses in a number of different brain areas which are associated
with emotion processing in general. Major structures included in this network, the
amygdala, the orbito-frontal cortex, somato-sensory cortices, and basal ganglia, shall be

described shortly.

Anatomically located in the medial temporal lobes, the amygdala is not a single
homogenous structure but consists of several nuclei that subserve different functions and
that are interconnected with multiple other brain areas. Shared in common is the
amygdala’s ability to modulate a large array of responses concerning attention, memory,
executive functioning, and emotional reactions (including behavioral, autonomic, and
endocrine changes), which depend on the emotional and social significance of the
perceived stimulus (Adolphs, 1999; Adolphs, 2002). Accordingly, the amygdala has been
shown to play a complex role in the processing of facial emotions, participating both in
early perceptual mechanisms as well as in later processes of cortical recognition.
Numerous studies, that have either examined patients with lesions in the amygdala or used
functional neuroimaging in normal subjects, have provided evidence that the amygdala is
an essential structure for recognizing emotions from facial expressions, particularly those
that signal danger or threat such as fear, anger, disgust, or sadness (for an overview see
Adolps, 2002). Subjects with damage to the amygdala have been found to show difficulties
in recognizing facial emotions of negative valence (Adolphs, Tranel, Damasio, &

Damasio, 1994) and to judge those faces as looking trustworthy, which are given the most
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negative characteristics by normal subjects (Adolphs, Tranel, & Damasio, 1998).
Functional imaging studies revealed that the amygdala is activated automatically by
multiple emotional expressions of negative valence, in normal subjects especially for
viewing fearful faces (Morris et al., 1996) or in psychiatric populations, e.g. subjects with a
social phobia for looking at neutral faces (Birbaumer et al., 1998). Although most of the
literature has focused on the preferential processing of the amygdala in response to fear-
related stimuli, there are also findings that support a more general view. According to this
account, the amygdala might trigger processing resources to resolve ambiguity in highly

salient stimuli that may be pleasant or aversive (Whalen, 1999; Davidson & Irwin, 1999).

Another key structure in the processing of emotional faces is the orbitofrontal cortex,
which is located within the frontal lobes above the orbits of the eyes. Based on extensive
connections between this region and the amygdalae on the one hand as well as temporal
cortices on the other hand, the orbitofrontal cortex has been proposed to play a major role
in modulating the processing of emotionally significant stimuli (Adolphs, 2002).
Consistent with this view are findings which show that damage to the orbitofrontal cortex,
predominantly on the right, could lead to impairments in recognition of emotional faces
(Hornak, Rolls, & Wade, 1996). Furthermore, neuroimaging studies have shown increased
activation in orbitofrontal cortex following the presentation of facial expressions,
especially those of anger (Phan, Wager, Taylor, & Liberzon, 2002). While the amygdala
seems to be play a major role in an automatic and implicit processing of facial emotions,
regions in orbitofrontal cortex are viewed to modulate those processes in a more explicit
and context-depending way (Narumoto et al., 2000; Adolphs, 2002). Taken together, these
two structures might participate in the process of emotional face recognition by linking the
perceptual representation with existing knowledge about the emotion. As Adolphs (2002)
argues, this can be accomplished via multiple connections to other brain areas: (a) to

temporal and occipital visual cortices, in order to fine-tune the categorisation of the facial
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expression; (b) to hippocampus and cortical regions, in order to retrieve stored
representations about that emotion; (c) to different other structures, including motor areas,
hypothalamus, and brainstem nuclei, that might contribute to the generation of knowledge

through “mirroring” the observed emotion.

Besides amygdala and orbitofrontal cortex, somatosensory-related cortices have been
found to participate in the processing of emotional meaning in faces. Lesions in right
primary and secondary somatosensory areas have been found to impair facial emotion
recognition, possibly by interfering with processes that represent somatic information
related to that emotion (Adolphs, 2002). Similarly, functional imaging studies revealed that
the insula, a visceral somatosensory cortex, was activated by various facial expressions
(Phan et al., 2002). Lesion studies, neuroimaging studies, and observations made in
diseases like Huntingon’s disease have provided evidence for the basal ganglia, which
consist of many different nuclei, as an additional structure in the neural network of facial
emotion recognition (for an overview see Adolphs, 2002). A meta-analysis of functional
imaging studies by Phan et al. (2002) found the basal ganglia presumably activated by the

emotions of happiness and disgust. Its detailed role however remains to be specified.

In addition to the structures mentioned above, several other brain areas also might play a
role in face processing. Mechanisms of selective attention might be involved, especially for
facial expressions that display threat or danger (Palermo & Rhodes, 2007). Importantly, the
processing is not strictly hierarchical, but also includes feedback connections (Adolphs,
2002). Figure 3 shall provide a structural overview of brain areas processing emotional

faces and illustrate their main connections.
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Figure 3: Structures for the processing of emotional faces. The three rectangles with beveled edges
indicate the core system for face perception, areas shaded in yellow represent regions involved in the
processing of identity, areas in red show regions involved in emotion analysis, and those in blue reflect the
fronto-parietal cortical network involved in spatial attention. Solid lines indicate cortical pathways, dashed
lines represent the subcortical route for rapid and coarse emotional expression processing. Source: (Palermo
& Rhodes, 2006).

3.6 Aim of the study

Aim of the present study was to investigate emotional face processing in BN by using
cognitive, behavioral, and electrophysiological measures. Based on the empirical literature
regarding eating disorders and recognition of facial expressions, several hypotheses were
tested. If BN is characterized by an impairment in facial emotion recognition, patients with
BN would perform worse in a task in that they have to categorize faces according to

emotional expressions, as compared to healthy controls.

Furthermore, if individuals with BN have difficulties in identifying emotions in faces,
these deficits would be reflected in post-perceptual processes of emotional face

recognition, in the time range of the ERP components N2 and P3. More specifically, if
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emotional faces are processed with more cognitive demand in BN, amplitudes of N2 and
P3 would be greater in BN that in control subjects. Another possibility would be that of a
BN patients’ diminished cognitive processing ability of faces, especially those conveying
negative expressions, that would result in decreased amplitudes of N2 and P3. In contrast,
earlier structural encoding processes, as indexed by the face-specific N170, are expected to

be comparable to those of healthy controls.

In an exploratory analysis, brain structures that could give rise to such ERP differences in
post-perceptual face processing of emotional content are investigated by using the source
localization method BESA. It is hypothesized that differences in ERP responses between
BN and control subjects reflect a dysfunctional activation pattern in structures related to

the processing of emotional information in faces.
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4 Methods

4.1 Subjects

Twenty-two patients with current bulimia nervosa (BN) were recruited from local
consultation units for eating disorders (ANAD e.V., Pathways, Caritas Ambulance,
Cinderella e.V., TCE Therapy Center) and paid for participation. All patients were females
(mean age = 23,95 years; SD = 7,3) and met DSM-I1I/ 1V criteria for bulimia nervosa as
assessed by the Structural Clinical Interview for DSM-I111 Axis | Disorders (SCID, for a
description see 4.2). They had been ill for an average duration of 9,13 years (SD = 7,64
years), with a first episode occuring at a mean age of 15,59 years (SD = 2,74 years). The
mean Body Mass Index (BMI) was in a normal range, with a value of 20,83 kg/m? (SD =
3,48 kg/m?). Seven of the 22 patients (31,82 %) were receiving psychotropic medication
including antidepressiva and pain relievers, six (27,27 %) were taking contraceptiva. Ten
patients (45,5%) possibly had major depressive symptoms, nine (40,9%) a generalized
anxiety disorder, eight (36,4%) showed anxiety disorder, six (27,3%) a social phobia, and
four (18,2%) a specific phobia. This was indicated by a self-report questionnaire
containing items from the SCID, which was administered as a screening measure to assess
for possible presence of anxiety and depressive symptomatology (see 4.2). However, it is
not to be equated with a full diagnosis. Given the high rates of comorbidity between mood,
anxiety and eating disorders, all patients with BN were included in this study to preserve

ecological validity.

Patients were compared with 22 females of similar age (mean age = 25,00 years; SD =
3,18), levels of education, and BMI (21,92 kg/m?; SD = 2,60 kg/m?2), who received either
course credit or were paid for participation. None of them had a past or current eating
disorder. Of the 22 control subjects, one (4,55 %) was receiving an antidepressivum, two
(9,09 %) were taking pain relievers regularly, and 10 (45,45 %) were taking contraceptiva.
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4.2 Instruments

The current study was conducted in accordance with the Declaration of Helsinki and
ethically approved by an institutional review board. Written informed consent was
obtained from all patients and control subjects. After measuring height and weight,
participants were asked to complete a series of self-report questionnaires (see below) and
to answer questions about personal data (age, educational background, medication, ICD-10

and DSM-111/ IV criteria of bulimia nervosa as well as onset and duration of illness).
The Restrained Scale

The Restraint Scale (Herman & Polivy, 1980) is a widely used self-report measure for the
assessment of dietary restraint, that includes 10 items scoring from 0 to 3 and 4 (maximum
score = 35), surveying thoughts about weight and behaviors relevant to eating disorders.

Higher scores indicate a higher restraint in eating behavior.
The Toronto Alexithymia scale (TAS-20)

Alexithymia was assessed with the TAS-20 (Bagby et al., 1994), which consists of 20
items loading on three factors: (1) difficulty in identifying feelings, (2) difficulty in
describing feelings, and (3) externally oriented thinking. Each TAS-20 item must be rated
on a five-point Likert scale from “strongly disagree” to “strongly agree”. In addition to a
total score (higher scores reflect greater alexithymia), single scores for the three subscales

were calculated.

A Self-Control-Scale (SCS-12)
In order to investigate individual’s skill of coping with problems appropriately, 12 items
were included in a questionnaire that assessed the participants’ self-control. Examples for

the items (some are reversed) include “I can overcome temptations very well”, “I refuse
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things that are bad for me”, “It’s hard for me to abandon bad habits”. The statements are

scored on a five-point Likert scale from “applies not at all” to “applies fully”.
The Eating Disorder Inventory — 2 (EDI): Subscale “Interoceptive Awareness”

The EDI is a commonly used self-report questionnaire that adresses symptoms associated
with eating disorders (Garner, 1991). In this study the subscale “Interoceptive Awareness”
from the EDI was used to examine the participants’ perceived ability to recognize and
accurately respond to internal states, including emotions and sensations of hunger and
satiety. It consists of 10 items in a six-point Likert scale that require participants to answer

whether each statement applies from “always” ranging to “never”.
The State Trait Anxiety Inventory (STAI)

To quantify anxiety, the Spielberger State Trait Anxiety Index (Spielberger, Gorsuch, &
Lushene, 1970) was used. The STAI questionnaire consists of 40 items on a 4-point rating
scale measuring the anxiety state (Form X 1, 20 items) and anxiety disposition (Form X 2,

20 items). Minimum and maximum scores range from 20 to 80 points for each form.
The Structured Clinical Interview for Axis I DSM-I11 Disorders (SCID)

The Structured Clinical Interview for DSM-111 (SCID) is regarded as a standard method for
the detection and characterization of various Axis | disorders (Spitzer, Williams, Gibbon,
& First, 1992). Administered by an interviewer with extensive experience, it is designed to
yield a reliable and valid psychiatric diagnosis. Since a full diagnostic SCID interview
would not have been reasonable for the scope of the current study, participants were asked
to fill in a questionnaire containing the items of the SCID modules that assess Eating,
Anxiety and Panic Disorders, Social and Specific Phobia, Generalised Anxiety Disorder as

well as Major Depressive Disorder.
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The Beck Depression Inventory (BDI)

The BDI, the most widely used self-report depression questionnaire, was administered as a
measure to assess the presence of depressive symptomatology (Beck, 1978). Each of the 21
items includes four statements with ratings from 0 to 3, in which higher scores indicate an

increased severity of depression.

4.3 Stimuli and Procedure

Participants were seated in a comfortable chair in a dimly lit and sound attenuated
chamber, and a 19-inch computer screen was placed at a viewing distance of
approximately 140 cm at the center of their field of vision. Stimuli were a set of 200 full-
color photographic pictures of young, european adult faces selected from the Karolinska
Directed Emotional Faces (KDEF) image battery (Lundqvist, Flykt, & Ohman, 1998), that
included neutral, happy, fearful and angry facial expressions (50 different pictures of each

category, half depicting male and half female faces, all in frontal view).

The EEG-experiment consisted of three experimental blocks (two blocks with 67 pictures,
one block with 66 pictures). In each block, facial expressions from all categories were
presented in random order, with equal probabilities, but without immediate stimulus
repetition of the same person or facial expression. Each trial began with a 500-ms white
fixation cross at the center of the black screen. The stimuli were presented for 1500 ms and
were separated by an intertrial interval of 1500 ms. Before starting the EEG-recording, all
participants read carefully through printed instructions about the experimental procedure,
that informed them about the upcoming pictures of emotional faces in three blocks of about
4 minutes each. Further they were instructed to attend to the stimuli very closely, to sit
quietly and to look at the center of the screen to minimize muscle and eye movement

artifacts. Oral instructions and explanations were given by the experimenter in addition. No
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other tasks were imposed on the subjects during the EEG experiment in order to avoid
other brain processes, e.g. the preparation and execution of motor responses, that may alter
the recorded electrophysiology. After each block, there was a break allowing subjects to

rest for approximately 1-2 minutes.

Subsequent to the EEG experiment, participants performed a categorization task. They
were shown a selection of 40 of the previously presented faces (10 of each category,
randomly ordered). Again, preceded by a 500-ms fixation-cross, the stimulus was shown
for 1500 ms. Participants were given 10 seconds to classify the depicted facial expression
by checkmarking one of the possible categories (neutral, happy, fearful, angry) on a
response form. They were instructed to respond quickly and to carry out a categorization

even in the case of uncertainty. The whole experiment lasted approximately 2,5-3 hours.

4.4 EEG recording

EEG was recorded with Ag-AgCl electrodes from 62 leads over both hemispheres with DC
amplifiers (bandpass: 0.01-100 Hz; SYNAMPS, NeuroScan) and digitized at a sampling
rate of 1,000 Hz. Electrodes were mounted in an electrode cap (Easy Cap, Falk Minow
Services) at equidistant positions. All electrodes were referenced to Cz and grounded with
an electrode on the left cheek. Offline, EEG was re-referenced to linked mastoids. For the
BESA analysis, data assessed with the original reference was used. Horizontal and vertical
electrooculograms (EOG) were recorded from the outer canthi of both eyes (EOGy) and

from above and below the left eye (EOGy). Electrode impedance was kept below 5 KQ.
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4.5 ERP preprocessing and analysis

The EEG was averaged off-line for epochs of 1200 ms, starting 200 ms prior to stimulus
onset, and ending 1000 ms afterwards. The data was examined for EOG, muscle or other
electrophysiological artifacts. Eye blink correction was conducted based on methods
outlined by Gratton et al. (Gratton, Coles, & Donchin, 1983), which was implemented in
the analysis software Brain Vision. Trials containing any voltage exceeding + 120 puV were
excluded from analysis. Average ERPs were computed separately for each subject and

each of the four stimulus conditions.

To evaluate differences in ERPs response for the two groups, three components of standard
ERPs elicited by faces were investigated: the N170 (140-200 ms), the N2 (190-260 ms),
and P3 (270-400 ms). Respective time windows were chosen on the basis of visual

inspection of the data and in accordance with earlier studies.

For further statistical analysis of the ERPs, mean amplitudes were averaged for 12 regions,
determined by hemisphere (right/ left), horizontal plane (anterior/ medial/ posterior), and
vertical plane (inferior/ superior), as visualized in Figure 4. The data were statistically
evaluated with repeated measures ANOVAs with ‘hemisphere’ (right/ left), ‘region’
(antero-inferior/ antero-superior/ medial-inferior/ medial-superior/  postero-inferior/
postero-superior), and ‘category’ (neutral/ happy/ fearful/ angry) as within-subject factors
and ‘group’ (bulimic patients/ control subjects) as between-group factors. Greenhouse-

Geisser corrections were used when appropriate.
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Figure 4: Layout of the electrode array. Electrodes in the shaded clusters were grouped for statistical
analysis. Frontal electrodes are shown at the top of the figure.

4.6 Brain electrical source analysis

In order to determine the location and timing of neural sources that contribute to the ERP
scalp recordings, a brain electrical source analysis was performed using the BESA
software. Although there is no unique solution to the inverse problem — intracerebral
sources cannot be uniquely calculated through given scalp fields - BESA offers algorithms
that allow a spatio-temporal modelling of current dipoles over defined time intervals. The
modelling process began with a principal component analysis (PCA) of the GA in the
selected time interval, that showed the main waveforms contributing to the total variance.
The results of the PCA gave information about the number of dipoles that should be used
in the model (two dipoles for each principal component). The orientation and location of
the dipoles were computed by an iterative, least-squares method, which minimizes the
residual variance, a value that indicates the percentage of data that cannot be explained by

the modelled dipoles, and maximizes the goodness of fit (GOF).
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5 Results

5.1 Sample characteristics

One-way ANOVAs were conducted to compare participants in the BN and control groups
on sociodemographic and questionnaire data (see Table 1). There were no significant
group differences as a function of age or the BMI. The two groups had the same

educational level, which was assessed by a scoring system for the German school system.

Table 1: Sociodemographic and questionnaire data of BN patients and controls

BN Controls

Mean (SD) Mean (SD) F (df=1,42) p
Age (years) 23,95 (7,3) 25,00 (3,2) 0,38 n.s.
Educational level 3,67 (0,6) 4,09 (0,6) 3,05 n.s.
BMI 20,83 (3,5) 21,92 (2,6) 1,39 n.s.
Restrained Eating Scale 23,05 (6,2) 9,82 (5,6) 55,43 faleie
TAS (Identifying Feelings) 21,55 (6,0) 12,14 (3,5) 40,26 falaiel
TAS (Describing Feelings) 15,00 (3,7) 9,59 (3,4) 25,35 ikl
TAS (Externally Thinking) 17,50 (4,3) 15,86 (3,3) 2,02 n.s.
TAS (Total Score) 54,05 (9,1) 37,59 (7,5) 42,63 falaied
SCS-12 24,05 (6,0) 28,77 (7,2) 5,60 *
EDI (Interoception) 30,32 (9,1) 48,50 (5,2) 66,45 falaied
STAI-State 42,59 (9,2) 35,59 (5,3) 9,51 **
STAI-Trait 55,18 (116) 38,55 (8,6) 29,22 falaled
BDI 39,52 (102) 25,33 (3,8) 35,51 falaied

Note: BN = bulimia nervosa; SD = standard deviation; BMI = body mass index; n.s. = not significant;
p<.05=* p<.0l=**p<.001=***

As expected, patients reported significantly more disturbed eating attitudes and behaviors
than controls, as measured by the Restrained Eating Scale (F(1,42) = 55,43, p < .001).
They also showed higher STAI state and trait anxiety (F(1,42) = 9,51, p < .01 and F(1,42)
= 29,22, p <.001) and BDI depression scores (F(1,42) = 35,51, p <.001) than the controls.
Moreover, patients endorsed more difficulty in the identification of bodily sensations, as
adressed by the EDI subscale “Interoceptive Awareness” (F(1,42) = 66,45, p <.001), and
in the appropriate regulation of emotional states, as measured by the SCS-12 (F(1,42) =

5,6, p < .05). Patients were significantly more alexithymic than the controls. Comparisons
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revealed significant differences between the groups for the TAS total score (F(1,42) =
42,63, p <.001) and for the TAS subscales “Difficulties Identifying Emotions” (F(1,42) =
40,26, p < .001) and “Difficulties Describing Emotions” (F(1,42) = 25,35, p < .001).
However, patients and controls showed comparable results for the subscale “Externally

Oriented Thinking”.

5.2 Emotional face recognition performance

The participants’ performance in the emotional face categorization task is visualized in
Figure 5. In order to determine group differences for the ability to discriminate between the
presented emotions, a repeated-measures ANOVA was conducted. The analysis revealed a
significant main effect of emotional face category (F(3,126) = 7,50, p < .001), which
indicates that the four emotions are categorized differently. Happy and fearful faces
(correctly categorized by all participants in 98,64 % and 97,50 %, respectively) were

recognized more easily than angry (95,45 %) and neutral faces (93,64 %).
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Figure 5: Recognition performance of healthy controls and BN patients. Percentages of correctly
recognized emotional expressions are visualized for every category. Bars represent standard error of means.
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A comparison of the recognition performance shows very small, but no significant
differences among the two groups, thus indicating that patients are not impaired regarding

the emotional face recognition skills on a behavioral level.

To further investigate the data, Spearman-Rho correlations between recognition
performances and questionnaire scores were calculated. Anaylsis revealed no significant
correlations between correct categorization and BDI, STAI-State, STAI-Trait, EDI
(Subscale Interoceptive Awareness), SCS-12, or Restrained Eating scores. Significant
negative correlations could only be observed between participants’ recognition
performance of neutral faces and the TAS total score (r = .32, p <.05) as well as the TAS

subscale “Difficulty in Describing Emotions” (r = .41, p <.01).

5.3 ERPs waveform analysis

Figure 6 provides an overall picture of ERP morphology across the scalp for BN patients
(left) and controls (right), showing the GA responses to all emotional and neutral face
categories at the midline electrodes Fz, Cz, and Pz (from top to bottom). Emotional
modulations of the waveforms are evident for both groups, clearly observable starting at
about 150 ms post stimulus. A comparison of GAs of the groups in each emotional face
category, illustrates differences particularly around 200 ms, and in the time range of 300 -

400 ms.

To evaluate differences in ERPs response for the two groups, three components of standard
ERPs elicited by faces were investigated: the N170 (140-200 ms), the N2 (190-260 ms),
and P3 (270-400 ms). Respective time windows were chosen on the basis of visual
inspection of the data and in accordance with earlier studies; the corresponding mean

amplitude was examined in detail.
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Figure 6: Overview of event-related potentials (ERPs) for bulimic patients (left) and healthy control
subjects (right). Shown are grand averages (GAs) for all face categories (neutral, happy, fearful, angry)
across the midline electrodes Fz, Cz, and Pz (from top to bottom). Of primary interest are the ERP
components N170, N2, and P3, which are observable over central and/ or posterior sites. Note: Positive

voltages down.
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N170 (140-200 ms)

There was no significant mean N170 amplitude difference between the two groups. The
ANOVA revealed a main effect for region (F(5, 215) = 14.80, p < .001) and category
(F(3,129) = 25.77, p < .001) as well as significant interaction between those two factors
region and category (15,645) = 12,52, p < .001), indicating a differential processing of

emotional faces among both groups.
N2 (190-260 ms)

The ANOVA revealed a main effect for group (F(1, 42) = 5.33, p < .05), confirming that
mean N2 amplitude of the bulimics (2.08 uV) significantly differed from that of the
controls (1.45 V). Moreover, a main effect for hemisphere (F(1, 42) = 6.36, p < .05)
indicated a higher mean activity in the right hemisphere, and a main effect for region (F(5,
210) = 26.62, p < .001) revealed that medial-superior and postero-superior regions
accounted for most of the N2 activity. In addition, a main effect for category (F(3, 126) =
9.26, p <.001) was found, in that responses to fearful and angry faces differed significantly
from neutral and happy faces. The analysis showed a significant interaction between the
factors hemisphere and region (F(5,210) = 5.33, p < .05) and between the factors region
and category (F(15, 630) = 6.93, p < .001). However, a group x category interaction did

not reach statistical significance (F(3,126) = 1.74, p = 1.67).
P3 (270-400 ms)

ERP differences between BN patients and control subjects could also be observed in the P3
time window. This was was reflected by a significant group effect (F(1, 42) = 4.77, p <
.05), in that bulimics revealed higher mean P3 activity (2.08 puV) than controls (1.45 pV).
Furthermore, the ANOVA revealed main effects for region (F(5, 210) = 21.74, p < .001),
category (F(3, 126) = 3.80, p <.05), and a significant region x category interaction (F(15,
630) = 2.61, p <.05), again no significant interaction between factors group and category.
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To further illustrate the processing of faces in BN patients and healthy controls, the next

two

figures show difference waves and topographical maps of the scalp voltage

distribution derived from the GAs for neutral (Figure 7) and fearful (Figure 8) expressions.
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Figure 7: Neutral faces — Difference waves of grand averages (GAs) from BN patients and healthy control
subjects (left). The GAs show differences at 200 ms at frontal and central electrode sites, as well as from 300
ms at posterior sites. Topographic maps (right) show the voltage distribution on the scalp at 200 ms. The
bilateral distribution is seen for both groups. A distinct midline focus is observable in the map of BN
patients.
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Figure 8: Fearful faces — Difference waves of GAs from BN patients and controls (left). The GAs show
even more differences at 200 ms at frontal and central sites (and from 300 ms at posterior sites) as compared
to those elicited by neutral faces (Figure 7). Topographic maps (right) of the voltage distribution at 200 ms.
As for neutral faces, a bilateral distribution in both, and a central midline in BN patients is observable.
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5.4 Spatiotemporal analysis of underlying sources

In order to investigate differences in emotional face processing between bulimic patients
and control subjects, a spatiotemporal source analysis was carried out. To account for
differences regarding category, sources for both “neutral” faces and “fearful” faces were

examined in detail.

For each group and each of the two face categories, a PCA of the GAs was computed.
Every PCA revealed two main waveforms contributing significantly to the total variance
(cutoff criterion: explained variance less than 1%). To select a relevant time interval,
reliable activation differences of the two groups and peak latencies of the principal

components were considered.

Both components showed an early activation peak around 100 ms post stimulus and a later
activation peak around 200 ms. In the subsequent measurement window (300-1000 ms),
components’ curves increased continuously without observable peaks. Since significant
ERP differences of the two groups were identified starting from 190 ms, and no peaks were
present from 300 ms, the N2 time interval of 190-260 ms was chosen for the

spatiotemporal source analysis in all cases.

Neutral faces - control subjects

The PCA on the GA of control subjects for neutral faces revealed two principal
components (explained variances 94,8% and 4,9%). Based on this result, a model with four
dipoles was developed by using an iterative, least-square method. The final model
explained 93% of the total variance. Source waveforms and locations are depicted in
Figure 9. Sources 1 and 2, with an activation peak in the time interval 190-260 ms, were

located in the right and left middle temporal gyrus. Sources 3 and 4 were both adjusted to
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fit their earlier peak activity around 130-150 ms. One was located near the left inferior

occipital gyrus and the other in the right fusiform gyrus.

Figure 9: Brain electrical source analysis model : Neutral faces — Control subjects. The left side of the
figure shows channel overplot and the two principal components. Below these, the four source waveforms
are depicted. The shaded area illustrates the time window of investigation (190-260 ms). To the right,
locations of the dipoles are displayed both in a head scheme and in standard MRI anatomical view. The first
and second dipole is located approximately in the right and left middle temporal gyrus, whereas third and
fourth dipoles are near inferior occipital gyrus and fusiform gyrus.

Neutral faces — BN patients

Similar to the results of the control subjects, a PCA on the GA of neutral faces for the
bulimics revealed two principal components (explained variances of 90,6% and of 9,0%,
respectively), so that four dipoles were fitted for a model (see Figure 10). With a first peak
around 110 ms, activity waveforms for dipole 1 and 2 showed a second maximum in the

investigated time range 190-260 ms and resembled data of the control subjects in curve
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progression. Likewise, source 1 located in the right middle temporal gyrus; source 2
however was found to be located in the left middle occipital gyrus. Activity waveforms of
dipoles 3 and 4, very similar to those of control subjects, both showed a single peak at 130-
150 ms; therefore the third and fourth sources were fitted to that time interval in addition.
Again, locations of sources 3 and 4 were found in right fusiform gyrus and left inferior

occipital gyrus. This model accounted for 90,64% of the total variance.

\§ \

Figure 10: Brain electrical source analysis model : Neutral faces — BN patients. Channel overplot, the
two principal components, as well as the four source waveforms are depicted to the left. The shaded area
illustrates the time window of investigation (190-260 ms). To the right, locations of the dipoles are displayed
both in a head scheme and in standard MRI anatomical view. Similar as for the control subjects, the first and
second dipole was found near the right and left middle temporal gyrus. The third and fourth dipoles are again
located near fusiform gyrus and inferior occipital gyrus.
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Fearful faces — control subjects

With two principal components revealed by the PCA (explained variances 90,6% and
8,9%), a model with four dipoles was created for the data for control subjects’ processing
of fearful faces. The activity waveforms resembled those for neutral faces, so the same
steps of analysis were done. In doing so, the following sources have been found: right
middle temporal gyrus (source 1), left inferior parietal lobule (source 2), right fusiform
gyrus (source 3), and left inferior occipital gyrus (source 4). The final model, which is

depicted in Figure 11, explained 95,96% of the total variance.
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Figure 11: Brain electrical source analysis model : Fearful faces — Control Subjects. To the left, channel
overplot, the two principal components, and the four source waveforms are depicted. The shaded area marks
the time window of investigation (190-260 ms). To the right, locations of the dipoles are displayed both in a
head scheme and in standard MRI anatomical view. The analysis revealed the first dipole to be located near
the middle temporal gyrus, and the second in the inferior parietal lobule. The third and fourth dipoles are in
the fusiform gyrus and inferior occipital gyrus.
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Fearful faces — BN patients

The PCA on the GA of bulimics viewing fearful faces resulted in two principal
components (explained variances 81,9%, and 17,7%; see Figure 12). Dipoles 1 and 3
resulted in activity waveforms with two peaks (around 190 ms and 300 ms), before
increasing to a maximum activity in the late slow wave time interval. Thus, in the presence
of all other sources, dipoles 1 and 3 were slightly adjusted to fit to their local maximum at
190 ms. Dipoles 2 and 4 have an early peak activity at 100 ms and a later peak at 250 ms.

From 300 ms, both show a steady but weak increase in activity.

Figure 12: Brain electrical source analysis model : Fearful faces — BN patients. Channel overplot, the
two principal components, as well as the four source waveforms are depicted to the left. The shaded area
illustrates the time window of investigation (190-260 ms). To the right, locations of the dipoles are displayed
both in a head scheme and in standard MRI anatomical view. In strong contrast to the other models, the first
dipole was found in the parahippocampal gyrus. The second, third, and fourth dipoles were located in the
superior occipital gyrus, the inferior occipital gyrus, and the middle temporal gyrus, respectively.

48



In contrast to the other models, the strongest activity was found to be in the left
parahippocampal gyrus (dipole 1). The following dipoles 2 and 3 located in the left
superior occipital gyrus, and the right inferior occipital gyrus, respectively. The right
middle temporal gyrus was found to be the fourth dipole. This model explained 95,35% of

the total variance.

To further test the validity of all the models developed above, supplementary dipoles have
been added to them. None of those new dipoles could be fitted, which suggests that the

models explained the data best in the investigated time window.

For an overview of the models obtained, Talairach coordinates and anatomical correlates

are given in Table 2.

Table 2: Dipoles with Talairach coordinates, anatomical correlates, Brodmann areas (BA),
hemisphere, peak latency and dipole strength (in the time interval 190-260 ms)

Dipole  Talairach coordinates Anatomical Hemisphere  Peak latency  Peak dipole
(x,y,2) correlate (BA) (ms) strength (nAM)
neutral faces — control subjects
1 43, -67, 30 middle temporal gyrus (BA 39)  right 231 40
2 -57,-71, 35 middle temporal gyrus (BA 39)  left 233 23
3 -32,-95, 2 inferior occipital gyrus (BA 18)  left 159 39
4 48, -41, -13 fusiform gyrus (BA 37) right 159 42
neutral faces — BN patients
1 41, -65, 27 middle temporal gyrus (BA 39)  right 248 47
2 -50, 91, 10 middle occipital gyrus (BA 19) left 251 28
3 46, -52, -23 fusiform gyrus (BA 37) right 162 52
4 -30, -84, -9 inferior occipital gyrus (BA 18)  left 162 41
fearful faces — control subjects
1 44, -66, 31 middle temporal gyrus (BA 39)  right 237 41
2 -48, -65, 46 inferior parietal lobule (BA 40)  left 238 21
3 49, -5, -26 fusiform gyrus (BA 20) right 159 47
4 -39, -83, -3 inferior occipital gyrus (BA 18)  left 162 43
fearful faces — BN patients
1 -28,-32, -9 parahippocampal gyrus (BA 36) left 190 59
2 -29, -79, 25 superior occipital gyrus (BA 19) left 245 34
3 47,-90, 8 inferior occipital gyrus (BA 18)  right 190 36
4 58, -72,19 middle temporal gyrus (BA 39)  right 250 38
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6 Discussion

Albeit not undisputed, recent research suggested an impairment in the recognition of
emotional faces in eating disorders. Aim of this study was to determine whether patients
with BN have deficits in the processing of emotional expressions. Although performance
in a categorization task was comparable in BN and control subjects, the present ERP data
demonstrate significant differences at the post-perceptual level of emotional face
processing. Furthermore, a source analysis revealed that these differences could be related

to specific structures that collaborate with the emotional face processing system.

6.1 Decreased emotional awareness but normal classification skills in BN

In accordance with previous studies, questionnaire data showed that BN patients were
characterized by deficits in emotional functioning. They reported greater difficulty in
identifying their own emotional and physiological sensations as well as in the regulation of
emotional states. Providing additional support for bulimics difficulty in identifying and
describing emotions, BN patients were found to be significantly more alexithymic than the
controls, as measured with the TAS. Although additional effects of comorbid mood and
anxiety disorders haven’t been disentangled yet, it can be concluded that individuals with

BN have limited access to their own emotions.

Based on above findings, one could assume that these impairments also cause difficulties
in representing another person’s emotional experience, e.g. that conveyed in faces.
Contrary to expectations, in the categorization task patients with BN showed only very
small, but no significant differences from healthy controls in their ability to classify
neutral, happy, fearful, and angry faces. This finding dovetails with other research on
eating disorders that detects no impairments in emotional face recognition skills on a

behavioral level. However, as already adressed earlier, performance tests may not be

50



sufficient to reveal emotion processing deficits in eating disorders, because subjects might
classify basic emotional features of faces correctly but they might not comprehend the

emotional or social meaning of that expression.

6.2 Differences in ERPs: Reduced N2 and elevated P3 amplitudes during

emotional face processing in BN

The present ERP data provide novel evidence for differential processing of emotional faces
in BN as compared to healthy controls. As expected, while the structural encoding level of
facial stimuli, as indexed by the N170, was found to be intact, significant differences were
observable during emotional expression processing in the subsequent time windows of N2

and P3.

Emotional and neutral faces elicited a negative deflection around 230 ms (N2), which was
distributed mainly over posterior sites, in both BN and control subjects. The
electrophysiological activity observed in N2 is assumed to represent specific cognitive
processes for the early decoding of emotion in facial expressions. As the most prominent
finding, BN subjects had a marked reduction of the mean N2 amplitude for all faces in
contrast to healthy control participants. The general reduction might reflect impaired
cortical activation of automatic processes subserving emotion discrimination and
classification in BN. Moreover, N2 potentials were greatest for fearful faces in controls, a
finding which is consistent with previous research on healthy adults, whereas bulimics’ N2
peaks were lower for emotional than for neutral faces. It seems that while greater
attentional resources are allocated to process highly affective stimuli such as fear in
healthy participants, the degree of attention focused on facial expressions is decreased and

early cortical decoding processes are not generated sufficiently in individuals with BN.
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Differences in the processing of emotional faces between BN patients and controls could
also be observed in the P3 component, which is regarded to reflect working memory and
attentional processes. Here, as compared to healthy controls, BN subjects elicited
significantly higher P3 amplitudes for all facial expressions, that are observable over P3-
related centro-parietal scalp regions. This suggests that individuals with BN devote a
higher amount of cognitive effort in order to evaluate and categorize facial expressions
accordingly. Moreover, bulimics showed enhanced modulation for those faces conveying

emotional information, which was rather weakly pronounced in healthy participants.

Taken together, the ERP differences between BN and control subjects - the general
reduction of the N2 and the subsequent enhancement of P3 to emotional as compared to
neutral faces - raise the possibility that difficulties in earlier and automatic emotion
classification were followed by an increased allocation of attentional resources to
compensate for those deficits. That mechanism may account for bulimics’ comparable
ability to classify a variety of emotional expressions on a behavioral level, as demonstrated
in this study and other neuropsychological reports, but also underlines existing findings of

substantial difficulties in recognizing and evaluating emotions in BN.

While no other study on eating disorders adressed the N2 component, two studies have
investigated the effects of visual stimuli on the P3 in AN. Nevertheless, the results of the
current experiment did not replicate those from the study of Pollatos and colleagues (in
preparation), in which AN subjects exhibited decreased P300 amplitudes to negative
emotional faces and failed to show an emotional modulation, as compared to healthy
participants. Rather, the effects on P3 in this study could parallel Dodin and Nandrino’s
(2002) finding, in that AN patients showed significantly higher P3 amplitudes in response
to body images and simple geometric shapes than control subjects. The authors suggested

that this difference can be explained in terms of an increase in arousal, entailing a

52



heightened level of attentional resources. AN patients would therefore have deficits in
automatic information processes and a bias towards an analytical controlled information
processing, wherein stimuli are treated regardless of their relevance to a specific situation.
Similarly, current results could be associated with this controlled information processing
bias, because BN subjects also showed an enhanced P3. However, this greater allocation of
attentional resources was not irrespective of stimulus type, since the P3 of BN was
characterized by emotional modulations with highest amplitudes for fearful, angry and
happy expressions and lowest for neutral faces. Furthermore, observed effects of the N2 in
BN in this study are difficult to reconcile with this account. On the one hand, it could be
stated that the general reduction of N2 relates to deficits in automatic information
processing. On the other hand, this reduction would hardly be consistent with a
hyperaroused state in eating disorders, unless its impact displays only in later processing

stages.

As results differ strikingly, it has to be stressed that discrepancies between both studies
mentioned above and the results of the current study may be largely due to methodological
differences, including the selection of stimuli (body and geometrical shape images versus
emotional faces). Most importantly it is unclear, if individuals with AN and BN share the
same common mechanisms for processing of emotional stimuli. Although both eating
disorders show deficits in the recognition of emotion, the results of this study provide
evidence that BN patients show a reduction of N2, but also an enhancement in P3 during

emotional face recognition.

6.3 Sources of neural activation during emotional face processing in BN

Further support for the differential processing in BN at an post-perceptual stage of

emotional face recognition derives from the source analysis, which was carried out in the
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time interval of the N2 component. Brain activation and underlying dipoles in BN patients

versus healthy control subjects were compared for neutral and fearful faces.

Across neutral faces, both healthy controls and BN patients showed a general pattern of
brain activation to faces, which is consistent with previous research (see e.g. Vuilleumier
& Pourtois, 2006). The common sources identified located in the middle temporal gyrus,
fusiform gyrus, and inferior occipital gyrus, whereas in BN patients the middle occipital
gyrus was found additionally, instead of bilateral middle temporal gyrus dipoles in control
subjects. Concerning peak activation, the structure of waveforms closely matched for
sources in both groups respectively. These regions are highly consistent to face-related
areas reported by fMRI and PET studies as well as by depth electrode recordings
(Vuilleumier & Pourtois, 2006). Moreover, locations of the dipoles correspond
approximately to the core system for face perception (lateral fusiform gyrus, superior
temporal sulcus, inferior occipital gyrus) that mediates both invariant and changeable
aspects (e.g. expression) of faces (Haxby et al., 2000). The data obtained suggest that
individuals with BN elicit activation patterns and sources very similar to those of healthy

subjects when presented with neutral faces.

The models obtained for fearful expressions show that different neural sources may be
activated in patients and controls in the recognition of emotion in faces in the time range of
the N2 component. Middle temporal gyrus, fusiform gyrus, and inferior occipital gyrus
were again found as sources presumably mediating the visual analysis of faces in healthy
controls. In addition, a dipole was located in the inferior parietal lobule, a region which is
regarded to be part of a top-down attentional control system that modulates activity in
extrastriate cortex (Hopfinger, Buonocore, & Mangun, 2000). Facial expressions
displaying threat or danger are very likely to automatically elicit processes of visual

attention (Palermo & Rhodes, 2006). The finding of involvement of greater attentional
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resources is in accordance with present ERP data, indicating that fearful faces are

processed more thoroughly and elicit a higher mean N2 amplitude in healthy subjects.

Activity recorded for the visual processing of fearful faces in BN patients has been found
to be generated in the superior and inferior occipital gyrus as well as in the middle
temporal gyrus. In addition, source analysis revealed another, and even stronger dipole
activity located in the parahippocampal gyrus. This region is adjacent to the hippocampus
and has been traditionally associated with learning and memory processes (Zola-Morgan &
Squire, 1993). Being a part of the limbic system, functional imaging studies have revealed
this area to be involved in emotional processes as well, so that besides other structures,
most prominently the amygdala, activity in the parahippocampal gyrus has been found to
be evoked by fear-related pictures (Phan et al., 2002). It is however worth considering that
amygdala responses to fearful expressions have been suggested to generate direct
modulatory influences on visual cortex and thus enhance the processing of emotional
stimuli, whereas the hippocampal area has been shown not to be linked to such emotional
modulation (Vuilleumier, Richardson, Armony, Driver, & Dolan, 2004). Interestingly, one
PET study found that AN patients exhibited greater activation in bilateral parahippocampal
gyri compared with control subjects, when averaged across all experimental conditions
including the viewing of food and non-food images (Gordon et al., 2001). The authors
suggested that this finding is similar to results in patients with psychotic disorders and may
be related to the body image distorsion common to AN. However, these results should be
interpreted with caution. A recent study that investigated facial emotion recognition in
schizophrenia by using fMRI and ERPs found no such increases in activation of the
parahippocampal gyrus in patients (Johnston, Stojanov, Devir, & Schall, 2005).
Furthermore, performance deficits in schizophrenia patients were associated with early
stages of face processing in that study, which contrasts present results of facial expression

recognition in BN. Integrating those findings highlighted above and the results of the
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current study, it seems very likely that the parahippocampal gyrus is - besides other areas
for the processing of visual features - part of a distributed network that is activated in
eating disorders and presumably related to the decoding, but not to the modulation and

enhancement of the processing of negative emotions.

6.4 Summary

In summary, the findings of the present study provide novel electrophysiological support
for a differential processing of emotional faces in patients with BN as compared to healthy
controls. Reviewed literature suggests a process that includes both an early stage of facial
feature encoding as well as subsequent stages of expression and recognition analyses that
can be assessed by scalp-recorded ERPs. Current results provide evidence for an impaired
processing of emotional faces in BN that occurs at the post-perceptual level. It seems that
patients with BN are characterized by deficits in earlier and more automatic classification
processes, as indexed by a reduction of the N2, and deepened evaluation of the emotional
content in faces afterwards, as indicated by an enhancement of the P3. This mechanism
could ultimately lead to the finding of normal performance in facial emotion recognition
tasks in BN on a behavioral level. Additional support for the conclusion that patients with
BN have deficits in the emotional processing of faces emerges from the source analysis
that was carried out in the time interval of the N2. While the models obtained suggest that
individuals with BN engage sources very similar to those of the control group when
presented with neutral faces, a different activation pattern can be observed for fearful
faces. In addition to sources commonly found for mediating the visual analysis of facial
features, a dipole in the inferior parietal lobule, indicating greater attentional resource
allocation for fearful faces, was found in healthy subjects. Contrary, BN patients’ data

revealed neural activity in the parahippocampal gyrus, presumably processing negative
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emotions but not producing direct enhancing effects on visual cortex, which could relate to

the absence of an emotional modulation.

Although the current study underlines existing findings of substantial difficulties in
recognizing and evaluating emotions in BN, results are exploratory and should be regarded
with caution. Since the source analysis method does not provide the anatomical precision
reached by functional imaging studies, there is potential for error in the localization of
activation foci. This imprecision is of particular relevance to the findings of the
parahippocampal gyrus, which is adjacent to other important areas such as the
hippocampus or amygdala. Given that the nature of emotional dysfunction in eating
disorders is a topic of more recent research with diverse results, replication of the present
findings about facial emotion recognition in BN will be critical. Future studies would
benefit from the joint use of cognitive, behavioral, and physiological measurements as well
as from the inclusion of clinical control groups such as depression or anxiety patients to
further elucidate the mechanisms underlying the deficits of emotional processing in eating
disorders in general and in BN specifically. The prevalence and social significance of
human emotions and their disorders ensure that the research of emotion and its role in
social cognition and behavior will be an increasingly important theme in modern

neuroscience.
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