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Abstract

Software verifiers have different strengths and weaknesses, depending on the characteristics
of the verification task. It is well-known that combinations of verifiers via portfolio- and
selection-based approaches can help to combine their strengths. In this paper, we investi-
gate (a) how to easily compose such combinations from existing, ‘off-the-shelf’ verifiers
without changing them and (b) how much performance improvement each combination can
yield, regarding the effectiveness (number of solved verification tasks) and efficiency (con-
sumed resources). First, we contribute a method to systematically and conveniently construct
verifier combinations from existing tools using COVERITEAM. We consider sequential port-
folios, parallel portfolios, and algorithm selections. Second, we perform a large experiment to
show that combinations can improve the verification results without additional computational
resources. Our benchmark set is the category ReachSafety as used in the 11th Competition
on Software Verification (SV-COMP 2022). This category contains 5400 verification tasks,
with diverse characteristics. The key novelty of this work in comparison to the conference
version of the article is to introduce a validation step into the verifier combinations. By vali-
dating the output of the verifier, we can mitigate the adverse effect of unsound tools on the
performance of portfolios, especially parallel portfolios, as observed in our previous experi-
ments. We confirm that combinations employing a validation process are significantly more
robust against the inclusion of unsound verifiers. Finally, all combinations are constructed
from off-the-shelf verifiers, that is, we use the verification tools as published. The results of
our work suggest that users of combinations of verification tools can achieve a significant
improvement at a negligible cost, and more robustness by using combinations with validators.
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1 Introduction

Automatic software verification has been an active area of research since two decades [1],
and various tools and techniques have been developed to solve the problem of verifying
software [2—8]. The research has also been adopted in practice [9—12]. Each tool and tech-
nique has its own strengths in specific areas. In fact, an analysis of the results of category
ReachSafety of SV-COMP 2022 [5] shows that even though high-performing tools such as
CPACHECKER [13, 14] and ESBMC [15] share tasks that both tools can solve, there is a signif-
icant number of tasks solved uniquely by one of the two tools (see Fig. 1). In such a scenario,
it becomes obvious to combine these tools to benefit from the strengths of individual tools,
leading to a ‘meta verifier’ that solves more verification tasks (e.g., up to 692 tasks more
for a combination of CPACHECKER and ESBMC). Most current combination approaches are
hard-coded, that is, the choice of the tools to combine is fixed and the glue-code required to
combine them is specifically programmed.

We contribute a method to construct combinations in a systematic way, independently from
the set of tools to use. We considered the following three types of combinations: sequential and
parallel portfolio [16], and algorithm selection [17]. In a sequential portfolio, the components
are executed in sequence (one after another) until one of them succeeds (split time; full cores
and memory; split risk). In a parallel portfolio, the components are executed in parallel until
one of them solves the task (full time; split cores and memory; split risk). In algorithm
selection, first, a selector selects a component that is most likely to solve the given task, and
then only the chosen component is executed (full time; full cores and memory; full risk).

‘We use COVERITEAM [18-20] to construct and execute the combinations. COVERITEAM is
a tool that is based on off-the-shelf atomic actors, which are executable units based on tool
archives. It provides a simple language to construct tool combinations, and manages the
download and execution of the existing tools on the provided input. COVERITEAM provides a
library of atomic actors for many well-known and publicly available verification tools. A new
verification tool can be easily integrated into COVERITEAM within a few minutes of effort.

This paper is an extended version of an article presented at FASE 2022 [21], with an attempt
to mitigate its limitations. One of the limitations was that parallel portfolios are biased toward
faster tools and would produce incorrect results if there is a fast but unsound tool included
in the portfolio. We had mentioned two remedies for this issue: (i) add a validation step after
the verification and (ii) carefully select the verifiers to include in a portfolio.

In this work, we apply the first remedy: we add a validation step to validate the results
produced by a verifier. The verifiers that we use in our experiments also produce witnesses,

Verification Task

Fig. 1 Overlap of tasks solved by CPACHECKER and ESBMC in SV-COMP 2022
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in addition to the verdict, if the verification succeeds. Producing witnesses is a requirement
to participate in SV-COMP, as the competition grants points only to those verifiers whose
results can be validated. We use a subset of validators used in SV-COMP. For each VERIFIER we
construct a VERIFIER '*': a sequence of a verifier and a validator. We then put this combination
in sequential portfolios, parallel portfolios, and algorithm selections.

Our experiments are based on tools and benchmark verification tasks from the 11th Com-
petition on Software Verification (SV-COMP 2022) [5].
Contributions. We make the following contributions:

1. We show how to conveniently construct combination approaches from off-the-shelf veri-
fication tools in a modular manner, without changing the tools.

2. We perform an extensive comparative evaluation of combination approaches based on
sequential portfolios, parallel portfolios, and algorithm selections.

3. We provide a reproduction package containing tools and experiment data [22].

2 Overview of Combination Types for Off-the-Shelf Verifiers

In this study, we explore different types of combining verifiers to improve the overall ver-
ification effectiveness. We focus on the most common types of combinations that do not
require any changes to the existing tools (off-the-shelf) or communication between the
tools, which are: sequential portfolio [13, 23, 24], parallel portfolio [16, 25, 26], and algo-
rithm selection [17, 27-30]. We now briefly describe these combination types and give an
illustration in Fig. 2.
Sequential Portfolio. Portfolios combine several verifiers by executing them either sequen-
tially or in parallel. A sequential portfolio (Fig. 2a) executes a set of verifiers in sequence,
running them one after another. In this setting, each verifier is assigned a specific time limit
and the verifier runs until it finds a solution or reaches the time limit. If the current verifier
can solve the given verification task within the allocated time, the portfolio is stopped and
the solution is emitted. Otherwise, if the current verifier runs into a timeout without solving
the given task, it is terminated and the next one is started. CPA-Seq [13, 23] and Ultimate
Automizer [24] are examples of a sequential portfolio.
Parallel Portfolio. In contrast to a sequential portfolio, a parallel portfolio (Fig. 2b) executes
all verifiers in parallel, sharing all system resources like CPU cores and memory. As soon
as one algorithm solves the given verification task, the portfolio is stopped and the solu-
tion is emitted. Since the physical computing resources are shared in a parallel portfolio, a
tool may use up all its memory quota sooner than when running alone, and be terminated.
PredatorHP [25, 26] is an example of a parallel portfolio.
Algorithm Selection. To reduce spending resources on unsuccessful verifiers, algorithm
selection (Fig. 2c) is designed to select the verifier that is likely well suited to solve the given
verification task. More precisely, algorithm selection first analyzes the given verification task
for common characteristics, e.g., program features like the existence of a loop or an array. It
then selects a verifier that is most likely to solve verification tasks with those characteristics.
Then the selected verifier is executed. Algorithm selection was recently explored for selecting
from a set of verification algorithms, e.g., in PeSCo [27, 28], or from a set of sequential
portfolios of verification algorithms, e.g., in CPAchecker [29].

The above combination types have their own advantages and limitations when applied in
real-world scenarios. While algorithm selection gives the full resources to one verifier, and
thus, increases the chances that the verifier succeeds, it also takes the full risk of selecting
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‘erifier Verifier 2 i
Task Verifier 1 Verifier 3 Result
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(a) Sequential Portfolio
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Verifier 3 [+ \J Verifier 3
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Time Time
(b) Parallel Portfolio (c) Algorithm Selection

Fig. 2 (a) A sequential portfolio runs each verifier for a certain maximal amount of time in a sequence.
If a verifier stops with a result, the portfolio finishes. The available CPU time is split among the verifiers.
(b) A parallel portfolio runs all verifiers simultaneously. If a verifier stops with a result, the portfolio finishes.
The available CPU cores and memory are split among the verifiers. (¢) An algorithm selection first selects a
verifier and then executes it. The result produced by this verifier is taken. The selected verifier gets all available
resources, and also the risk that the verifier does not deliver a result is not split

a sub-optimal verifier. If the selection algorithm is not powerful enough or the selection
task is too difficult (i.e., the selection cannot be decided based on high-level features), the
selector might fail to identify a verifier that is appropriate for the given task. Although
portfolios omit this problem by assigning the verification task to several verifiers,
each verifier gets fewer resources.

Validation of the Verifier Results. Verifiers can have bugs, hence, it is desirable to validate
the result of the verification. One of the proposed options in the literature is that the verifier
produces a justification of its verdict in the form of a verification witness in an exchangeable
format [31-34]. A user can either inspect the witness manually [35] or use a tool to validate
the result produced by the verifier.

Verification followed by result validation can also be achieved by a combination of a
verifier and a validator. First, a verifier is executed to solve a verification task, then a validator
is executed to validate the result of the verifier. We refer to such a combination as validating
verifier (or VERIFIER ' ). A validating verifier has the advantage that each emitted verification
result is validated by an external validator.

Therefore, we can avoid emitting wrong results, which in turn can positively impact the
effectiveness of verifier combinations.
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Validators have been used in the competition on software verification since 2015 [36].
Intuitively, one can expect that the validation of a bug consumes much less resources compared
to finding the bug, whereas the proof validation is still resource intensive because the full state-
space must be considered. This intuition is supported by the resource-consumption data of
the validators in the software-verification competitions. Moreover, in the competition, alarm
validation is allocated 10% (= 1.5 min) of the CPU time of a verification run (15 min),
whereas proof validation gets the same CPU time as verification. Both the alarm and proof
validation are allocated about half the memory as verification (7 GB).

3 Constructing Combinations with COVERITEAM

COVERITEAM [18] is a tool for creating and executing tool combinations. It consists of a
language to describe combinations of tools and an execution engine for their execution. Tools,
e.g., verifiers, validators, testers, transformers, and their combinations, are called verification
actors in COVERITEAM. The inputs consumed and outputs produced by the verification
actors, e.g., programs, specifications, witnesses, and results, are called verification artifacts.
Verification artifacts are seen as basic objects, verification actors as basic operations, and
tool combinations as compositions of these operations.

Verification actors in COVERITEAM are of two kinds: atomic and composite. Atomic
actors are based on off-the-shelf tool archives. COVERITEAM uses features provided by
BENCHEXEC [37] to configure the command line, execute the tool in isolation, enforce
resource limits, and process the output produced by the tool. Atomic actors are con-
structed using the information provided in a YAML configuration file, which specifies the
BENCHEXECtool-info module, parameters to pass to the tool, resource limits, and the location
to download the tool archive from. Many publicly available tools for automatic verification
are supported by COVERITEAM, and their YAML configuration files are available in the
COVERITEAM repository [19].

Composite actors are created by combining COVERITEAM actors using the following
composition operators: SEQUENCE, PARALLEL, REPEAT, ITE, and PARALLEL-PORTFOLIO.
SEQUENCE executes the composed actors sequentially, PARALLEL in parallel, REPEAT repeat-
edly until the termination condition is satisfied, ITE (if-then-else) executes one actor if the
provided condition is true, otherwise, the other actor, PARALLEL-PORTFOLIO executes the
actors in parallel until one of them finishes with a result that satisfies the success condition,
and then terminates all remaining actors [18, 21, 38]. The work in this paper uses SEQUENCE,
PARALLEL, ITE, and PARALLEL-PORTFOLIO.

¢ = verdict € {T, F'}

true

——— verifier > c?

~
W

validator

Fig.3 Construction of a VERIFIER ' using COVERITEAM
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3.1 Validating Verifier

Figure 3 shows the construction of a combination VERIFIER ' for a verifier verifier and a val-
idator validator. This construction uses the COVERITEAM composition operators SEQUENCE
and ITE. The combination first executes the verifier. Then, it checks whether the verifier solved
the verification task (i.e., finishes with a verdict true or false) or not. A verifier might not
always succeed; it can finish the execution with an error or be terminated when it runs
out of resources. If the verifier solved the verification task, then the combination executes
the validator on the result of the verifier, otherwise, the verdict error or unknown is for-
warded. This construction can be generalized to use combinations of validators as validator.
For our experiments (see Sect. 4.3), we created validating verifiers using a portfolio of
validators instead of one validator.

3.2 Verifier Based on Sequential Portfolio

Figure 4a shows the construction of a sequential portfolio for two verifiers verifier1 and
verifier2. This construction is similar to VERIFIER '*', with the difference that the second
actor in this combination is also a verifier instead of a validator. This construction uses the
COVERITEAM composition operators SEQUENCE and ITE. The combination first executes
verifier1. If the execution of verifier1 successfully solves the task, then the combination
finishes with the result of verifier1, otherwise, verifier2 is executed and the combination
finishes with the result of verifier2.

This construction can be generalized to create sequential portfolios of arbitrary sizes. For
our experiments, we created sequential portfolios of 2, 3, 4, and 8 verifiers.

c=werdict ¢ {T, F}
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|
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(c) Algorithm Selection

Fig.4 Construction of verifiers based on sequential portfolio, parallel portfolio, and algorithm selection using
COVERITEAM(the incoming arrow from the left always represents the verification task; the outgoing arrow on
the right always represents the verification result)
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3.3 Verifier Based on Parallel Portfolio

Figure 4b shows the construction of a parallel portfolio for two verifiers verifier1 and veri-
fier2. This construction uses the COVERITEAM composition operator PARALLEL-PORTFOLIO,
which combines a set of actors of the same type (verifiers, testers, etc.) based on a success
condition. The success condition is defined over the artifacts produced by these actors, and
is evaluated whenever an actor finishes its execution. In this combination, both the verifiers
are executed concurrently. When one verifier finishes, its verdict is checked for the success
condition (i.e., verdict € {T, F}). If the success condition holds, then the combination fin-
ishes (terminating all remaining executing verifiers) and returns the verdict, otherwise, the
verdict is discarded and the combination waits for the second verifier to finish. If none of the
verifiers produces a result that satisfies the success condition, then the combination returns
the result of the last verifier. This construction can be generalized to create parallel portfolios
of arbitrary sizes. For our experiments, we created parallel portfolios of 2, 3, 4, and 8 verifiers.

3.4 Verifier Based on Algorithm Selection

Figure 4c shows the construction of an algorithm selection for two verifiers verifierl and
verifier2. This construction uses the COVERITEAM composition operators SEQUENCE and
PARALLEL, and some COVERITEAM actors for feature encoding, classifiers, and comparator.
The combination consists of two parts, the selector to determine an appropriate verifier
based on the given verification task and the execution of the selected verifier. In more detail,
the combination first executes the feature encoder on the verification task, in which a set
of predefined features is extracted and encoded from a given verification task (i.e., certain
characteristics that are believed to indicate difficulty for a verifier). The output is passed
on to a set of classifiers (classifier1 and classifier2), one for each verifier that is considered
for selection. Each classifier predicts the hardness (or difficulty) of the given verification
task for the corresponding verifier. The comparator then compares the hardness scores and
determines the verifier with the least value, which is predicted to be the most appropriate
verifier for the given verification task based on the extracted features, i.e., the verifier that is
most likely to solve the task. The last step is to execute only the verifier that was selected (for
example, execute verifier1, do not execute verifier2). This construction can be generalized
to create algorithm selections of arbitrary sizes. For our experiments, we created algorithm
selections of 2, 3, 4, and 8 verifiers.

Feature Encoder. The first component of our construction is the feature encoder. The goal of
the feature encoder is to encode the verification task into a meaningful feature-vector (F'V)
representation that can later be used to select a verification tool. Typically, the representation
encodes certain features of a program which might correlate with the performance of a verifier
such as the occurrence of specific loop patterns [30] or variable types [39, 40].

In this study, we encode verification tasks via a learning-based feature encoder by employ-
ing a pre-trained CSTTransformer [28]. The CSTTransformer first parses a given program
P into a simplified abstract syntax tree (AST) representation. Afterward, a graph-based
neural network processes the AST structure and produces a vector representation. The
encoding step is learned by pre-training the neural network on selecting various verifica-
tion tools. While this approach was originally developed to learn a vector representation
optimized for a specific verifier combination, the authors have shown that the learned
encoder can be effectively reused across many new selection tasks, often outperforming
other hand-crafted feature encoders.
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Selection of Verifiers Based on the Individual Difficulty of the Tasks. One verification
tool might be able to solve a given verification task quickly, whereas another tool might fail
to solve it even using all given resources. Therefore, to avoid wasting resources on tools
that are not well suited for a given task, the algorithm selector aims to predict the
difficulty of a task before executing a tool. Then, the tool that is predicted to be the best-suited
tool for the task is executed.

Similar to previous work [28], we learn to predict the difficulty of a task with hardness
models [41]. A hardness model learns to predict the difficulty, also called hardness, of a
given task for a specific tool based on the previously computed vector representation of the
task. In our case, we define the hardness of a task for a given tool similar to the PAR10
score [42]: It is either the consumed CPU time if the task is solved correctly or ten
times the maximal runtime. A low hardness score means that a verifier solves a task cor-
rectly in a short amount of time.

Since our hardness score is based on the CPU time consumed by the verifier, the problem
of training our hardness model reduces to a regression problem. We address this problem
with regression by classification [43] by training multinomial logistic-regression classifiers.

Given a set of hardness models—each assessing the hardness of a verification task for a
specific tool—a verification tool is selected for which the task is likely easy, i.e., the respective
model outputs the lowest hardness score.

3.5 Extensibility

To facilitate future research and the design of novel combinations, we implemented all com-
bination types such that they can be easily configured and extended. Extending a combination
with a new verifier requires only an actor definition for that verifier in COVERITEAM. After-
wards, this verifier can be easily added to a sequential or parallel portfolio.

While our algorithm selector can be easily used with all tools employed during our exper-
iments, extending a combination based on algorithm selection with a new verifier requires a
bit more effort. However, the task of configuring algorithm selection has been simplified by
using hardness models together with a common feature representation.

One can modify the set of verifiers to select from by simply adding or removing individual
hardness models. While previous approaches to verifier selection often require training the
complete selector from scratch, our combination can be extended by training a single hardness
model. A single hardness model can be trained within a few minutes on a modern CPU. The
accompanying artifact contains all the training scripts that we used for training our hardness
models, a pre-computed dataset of vector representations for SV-COMP 2022, and instructions
to train a new model. It is also possible to train and employ custom hardness models based on
a custom vector representation. In this case, one needs to replace the feature encoder, which
can easily be done as it is a COVERITEAM actor in our construction.

Finally, to integrate a new tool in our algorithm selector, one is only required to
run the respective verifier once on (a subset of) the benchmark set. The results then
act as training examples.
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[CPAchecker [39] ESBMC [45]] Symbiotic [34] UAutomizer [46]

CBMC [58] Pinaka [35]  Utaipan [43] 2LS [62]

Fig.5 Subsets of 2, 3, 4, and 8 verification tools as used in our combinations

4 Experiment Setup

Our goal is to investigate if combinations can yield better results than standalone tools. To
achieve this goal, we have chosen the following measures for comparison: number of solved
verification tasks, normalized score!, and resource consumption. For each combination, we
compared the best-performing standalone verifier against the combination using these mea-
sures. We derived the following three research questions from our research goal:

RQ 1. CanaCoOVERITEAM-based sequential portfolio of verifiers perform significantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

RQ 2. Can a COVERITEAM-based parallel portfolio of verifiers perform significantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

RQ 3. CanaCOVERITEAM-based algorithm selection of verifiers perform significantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

To address the above research questions, we performed an extensive experimental evalu-
ation. This section explains the setup of our experiment.

4.1 Selection of Existing Verifiers

We considered the results of the Competition on Software Verification 2022 [5] for selecting
the verification tools for our combinations. We chose the 8 best tools from the REACHSAFETY
category, and sorted them according to their scores in SV-COMP 2022. Then we took the top
n tools for a combination of size n. Figure5 illustrates the sets of verifiers that we used in
different types of combinations.

!' The benchmark set is partitioned into categories of different sizes. The number of solved verification tasks
is biased towards performance in large benchmark sets. Using a normalized score mitigates this bias.
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Exclusions. We excluded the following verification tools from consideration: VERIABS [49],
because its license does not allow us to use it for scientific evaluation, PESCo [50],
because it would not contribute to the diversity of technologies in the combinations as
it is based on CPACHECKER configurations, GRAVES- CPA [51], for the same reason as
PESCO, and COVERITEAM- VERIFIER- PARALLELPORTFOLIO and COVERITEAM- VERIFIER-
ALGOSELECTION, because they are themselves combinations of verifiers similar to the ones
we evaluate in this paper.

4.2 Selection of Existing Validators

We chose the validators also based on the results of the competition on software verifi-
cation 2022 [5]. We took the validators that were most effective in validating witnesses
in the competition as reported in a case study [52]. We took four validators for viola-
tion witnesses (alarm validation): CPACHECKER-based violation-witness validator [32],
FSHELL-WITNESS2TEST [34], SYMBIOTIC- WITCH [53], and NITWIT [54]; and two valida-
tors for correctness witnesses (proof validation): CPACHECKER- and UAUTOMIZER-based
correctness-witness validators [33]. We have excluded METAVAL [55], because it was not
adopted to a new rule of SV-COMP 2022 [52].

4.3 Construction of VERIFIER"?' Combinations

Figure 6 shows the construction that validates the results of a verifier. We have used portfolios
of validators of different sizes: 2 for validating proofs, and 4 for validating alarms.

The combination first executes the verifier. Then, if the produced verdict is true, it executes
the portfolio of proof validators. If the produced verdict is false, it executes the portfo-
lio of alarm validators. If the produced verdict is neither frue nor false, i.e., the verifier
did not succeed in its verification effort, then the verdict error or unknown is simply for-
warded. The proof and alarm validators are combined in parallel portfolios, respectively.
(The figure shows a simplified presentation of the combination, using a verdict check with

¥ CPAcHECKER-Proof-Validator

true
» UAuromizer-Proof-Validator

M verifier > verdict? ¥

¥ CPAcHECKER-Alarm-Validator
> FSHELL-WITNESS2TEST

false
> SymBloTic-WITCH
> NiTWit

Fig.6 Construction of our VERIFIER ' ' combination
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three outcomes instead of two ite operators, and omitting the check of success conditions
in parallel portfolios.)

We instantiated the VERIFIER """ combination for all eight selected verifiers and refer to
them as single verifiers because they are combined only with validators. We executed the
resulting combinations on the chosen benchmark set. The obtained results were also used to
train the hardness models used by the algorithm selector.

4.4 Training of the Algorithm Selector

Our selection mechanism is based on the use of hardness models. We trained several hardness
models that predict the difficulty of a given verification task for a specific verifier. The
algorithm selector then selects the verifier that is most likely to solve a given task, i.e.,
for which the task is the easiest. In the following, we describe the process for training the
individual hardness models used in our evaluation in detail.

Construction of Training Datasets. Hardness models learn from prior observations of the
verifier’s performance to predict the difficulty of future tasks. Therefore, we trained the hard-
ness models on a dataset of verification tasks labeled with the results of the individual verifiers.

We employed a random subset of the benchmark set used in SV-COMP 2022 [5] as the
training dataset of verification tasks. Therefore, the training dataset partly overlapped with
the benchmark set (up to 90 %) used in our evaluation. We maintain a fair comparison
between algorithm selectors by training them on the same train/test split. To obtain the
results of the individual verifiers on the verification tasks, we executed all the single verifiers
on the benchmark set. We recorded whether the verifier solves the task correctly
and the execution time in CPU seconds.

Finally, since our hardness models operate on feature-vector representations, we employ
our feature encoder to map each verification task to a feature vector. As a result, we obtain n
datasets (n is the number of verifiers) where each entry maps a feature-vector representation
of a verification task to the correctness and execution time of a verifier on that task.
Training Hardness Models. The hardness models are trained to predict the hardness of a
task for a given verifier. Similar to the PAR10 score, we define the hardness score (h-score)
of a given task for a specific verifier as the CPU time if the task can be solved within a certain
time limit, or ten times the time limit if the task cannot be solved. For the prediction, we split
the range of our h-scores into four intervals?: [0, 10), [10, 100), [100, 900), [900, 9000]. If
the verifier solves the task correctly, the hardness model predicts whether solving the task was
easy ([0, 10)), intermediate ([10, 100)) or difficult ([100, 900)). In the case that the verifier
fails, the hardness model should predict that the task was too hard ([900, 9000]).

Motivated by the idea of regression by classification [43], we address this problem by
training a multinomial-logistic-regression classifier. Then, for each interval, the classifier
predicts the probability that it contains the h-score of the verifier for the given task. Finally,
to obtain a predicted hardness score which we can use to select a verifier, we make the
following observation for the hardness score:

k

h-score(x) < Zp(h-score(x) € [li, ui)) * uj,
i=0

where x is the given verification task, k is the number of disjoint intervals [/;, ;). In other
words, if we can correctly estimate the probability p of a hardness score to be included in an

2 The verification timeout is typically set to 900 s and we found splitting intervals logarithmically works best.
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interval [/;, u;), we can compute an upper bound to the hardness score. We train the logistic-
regression classifier to estimate the probability and use the upper bound as the predicted
hardness score to select a verifier, i.e., we select the verifier whose hardness score is likely
bounded by the smallest constant. We compared our approach with alternative approaches that
predict the likelihood of solving an instance [28], solvability and runtime independently [30],
or the hardness score via linear-regression models. However, in our experiments, we found
that predicting hardness-score intervals leads to the best algorithm-selection performance.
Selecting a Verifier. After training, the hardness models predict the difficulty of a given
task for a specific verifier. Given a new verification task, the feature encoder is executed
followed by the classifiers (hardness models). As a result, we obtain a hardness score for
each verifier in our combination. Then, the verifier obtaining the smallest hardness score
is selected and executed.

Since the predictions are made independently, our algorithm-selection framework is mod-
ular. In other words, we can simply extend or shrink the size of the combination by adding
or removing verifiers and their respective hardness models.

4.5 Construction of Portfolio and Selection Combinations

We evaluated twelve verifier combinations. For each sequential portfolio, parallel port-
folio, and algorithm selection, we constructed a combination of 2, 3, 4, and 8 verifiers.
This gave us four combinations for each combination type. These variants of combinations
with different numbers of verifiers allowed us to quantify the influence of the number
of verifiers on the performance.

4.6 Resource Allocation

Resource Allocation for Actors inside VERIFIER '"". Fig.7 shows the resource limits
for the actors inside a VERIFIER '*' composition. Given the resource limits T (time) and M
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Fig.7 Resource allocation for the VERIFIER '*' combination
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(memory) for the complete VERIFIER '*', we define the resource limits for the actors in the
VERIFIER '*' composition as follows:

e Verifier <T, M>: We give the same resource limits to the verifier. It is the first actor to
be executed in the combination. As no other tool executes when the verifier is executing,
it is fair to allow the verifier to use as much memory as is available. Moreover, as the
validation can only start after the verifier finishes execution and produces a result, we
give it all the available time.

e Proof-Validator <T, M/2>: We divide the available memory but pass on the same time
limit to the proof-validator. During the validation stage, two proof-validators are running
simultaneously. To allow fair distribution of memory we divide the memory limit equally
among the two proof-validators. We do not divide the CPU time because this combination
is a parallel portfolio of validators and we do not limit CPU time in parallel portfolios.

e Alarm-Validator <T, M/4>: Analogous to the proof-validators, we divide the available
memory but pass on the same time limit to the alarm-validators.

Resource Allocation for the Combinations of VERIFIER '*". The resource limits of the
combinations of single verifiers (of the form VERIFIER ') to a sequential portfolio, parallel
portfolio, or algorithm selection are as follows:

e Sequential portfolio: We divide the available CPU time equally among all actors in a
sequential portfolio, but allow them to use all the available memory.>

e Parallel portfolio: We divide the available memory equally among all actors in a parallel
portfolio, but allow them to use all the available CPU time.

e Algorithm selection: We pass on the available resource limits to the feature encoder and
the verifier. For classifiers, we divide the memory limit equally and give them a constant
time limit of 20s. We enforce resource limits on the classifiers because classifiers in our
experiments take just a couple of seconds to execute. If one of them behaves unexpectedly
and consumes too much time, we proceed without waiting for its execution to finish. We
select the verifier to execute based on the results of the remaining classifiers.

4.7 Benchmark Selection

We evaluated the tool combinations on a benchmark set from the open-source collection of
verification tasks [56]. The benchmark sets for SV-COMP are also selected from this collection.
Our benchmark set consisted of all the verification tasks in the category REACHSAFETY used
in SV-COMP 2022. 1t is the largest category, contains 5400 verification tasks, and is the
most popular one with 21 participants in SV-COMP 2022. Each verification task consists of a
program written in C and a specification. The specification is a safety property describing
that an error function should never be called. Thus, we had a total of 5400 verification tasks
in our benchmark set. We evaluated our combinations on the version of the benchmark set
that was used in SV-COMP 2022 (tag svcomp22) [57].

3 Technical detail: We assign a little bit less memory to the actors of the sequential portfolio because otherwise,
if one of them starts consuming more memory than the provided memory limit, then it would make the complete
sequential portfolio exceed the memory limit. This would in turn trigger BENCHEXEC to terminate the complete
sequential portfolio.
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4.8 Execution Environment

Our experiments were executed on machines with the following configuration: one 3.4 GHz
CPU (IntelXeon E3-1230 v5) with 8 processing units (virtual cores), 33 GB RAM, and
operating system Ubuntu 20.04. Each verification run (execution of one tool or combination
on one verification task) was limited to 8 processing units, 15 min of CPU time, and 15 GB
memory. This configuration is the same as the configuration used in SV-COMP 2022 allowing
us to use the competition results of the standalone tools for comparison.

4.9 Scoring Schema

We report three measures of success for each combination. First, we count the number of
results of each kind, i.e., either claims of program correctness or alarms of specification
violations for the verification tasks.

Second, we report the scores as per the scoring scheme used in the competition SV-
COMP [5]. A verifier is rewarded with score points as follows: 2 score points for each
correct proof, 1 score point for each correct alarm, -32 score points for each wrong proof,
and -16 score points for each wrong alarm. We have used this scoring scheme because it is
accepted in the community as a model of quality. The benchmark set is partitioned into several
sub-categories, and we calculate the score for each sub-category and apply normalization as
in SV-COMP based on the size of the sub-category. The normalization of scores has been
used in SV-COMP [58] for many years and has been established as a standard for judging the
quality of results by the verification community.

Although the inclusion of a validation step alleviates the issue of using an unsound verifier
to a large extent, it does not eliminate it, because validators could also be unsound and could
validate incorrect witnesses. Due to this reason, we still need to use negative scores as well.

The scoring scheme used in our previous work [21] employed the same reward scheme
but it did not consider normalization. This resulted in scores being biased towards tools
that perform well in the larger sub-categories of the benchmarks. In this article, we
report the normalized scores addressing the issue of bias towards the results of the large
sub-categories of the benchmarks. We have used the same scripts that were used in SV-COMP to
calculate these scores.

4.10 Resource Measurement and Benchmark Execution

We used the state-of-the-art benchmarking framework BENCHEXEC [37] for executing our
benchmarks. It executes tools in isolation, reports the resource consumption, and enforces
the resource limitations. It provides measurements of the consumption of CPU time, wall
time, memory, and CPU energy during the execution of a tool.

4.11 Reporting Results: Tables and Plots

We present a table and two plots for each set of experiments.

Tables. We report the normalized score, correctly solved instances of both proofs and alarms,
total resource consumption, median resource consumption, and resource consumption per
score point for each executed combination.

@ Springer



Formal Methods in System Design (2025) 66:99-130 113

The tables report the resource consumption only for the correctly solved tasks. It is similar

to how the results are presented in the competition reports [5, 59]. Using this approach encour-
ages verifiers to try as hard as possible to solve a verification task without worrying about
how it affects the resource consumption. Otherwise, one could, in principle, considerably
improve this measure by simply terminating early with the output UNKNOWN.
Score-Based Quantile Plots. For each set of experiments, we also present quantile plots
based on the normalized score. Each point (x, y) in these plots represents the score x
accumulated for the executions that finished below the CPU time y. The CPU time con-
sumption of only those executions that produce a correct result is considered. The time
consumption of executions producing incorrect and inconclusive verdicts are not considered.
These plots use a linear scale for the CPU time range between 0 and 1s, and a logarithmic
scale for 1sto 1000s.

Interpretation: The higher the score of a tool, the farther on the right its plot goes. As our

scoring scheme penalizes incorrect results, the abscissa of the starting point of each plot line
is the total penalty a tool has received. The more unsound a tool is, the farther on the left its
plot graph starts. The length of the projection of the plot graph on the horizontal axis loosely
corresponds to the total number of correctly solved tasks (because 2 points are awarded for a
correct proof, and 1 point for a correct alarm). The height of a plot represents the maximum
time required by the corresponding tool to correctly solve a verification task. The area under
the graph loosely corresponds to the total time taken by the tool for the executions that
resulted in correct results. In essence: the plot graph of a sound, effective, and efficient tool
would start at zero on the x-axis, go far towards the right, and remain low. More details about
these plots are given in [58].
Parallel-Coordinates Plots. In addition to the tables and quantile plots, we present parallel-
coordinates plots for showing the resources consumed per score point. Parallel-coordinates
plots are used to display multivariate data points, where each variable gets its own axis and
each graph represents one data point. They provide a visual aid to compare many variables
and see the relation between them.

Another possibility to show the resource consumption per score point was to use spider
charts (also known as radar or web charts). In a spider chart, linear differences in values of a
variable scale to a quadratic change in the area, which may give an incorrect impression to
a viewer. Therefore, we chose to use parallel-coordinate plots instead of spider charts.

The plots show resource consumption per score point, as well as the number of unsolved
tasks per score point. The lower the plot graph remains the better it is.

5 Evaluation Results
5.1 Results for VERIFIER'®' Standalone Compositions

Table 1 shows the summary of results for executing the VERIFIER '* compositions, that is,
combinations of an existing verifier with a validator portfolio as a standalone composition
(referred to as single verifiers). The scores and ranking are roughly comparable to the results of
SV-COMP 2022.* Introducing the validation step decreased the scores by about 10 %. Figure 8
shows the score-based quantile plot of the results, and Fig. 9 shows the parallel-coordinates
plot for unsolved tasks and resource consumption per score point.

4 https://sv-comp.sosy-lab.org/2022/results/results- verified.
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Fig.8 Single verifiers: Score-based quantile plot for results of VERIFIER '*' combinations
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Fig.9 Single verifiers: Unsolved tasks and resource consumption per score point of VERIFIER '*' combinations

5.2 RQ 1: Evaluation of Sequential-Portfolio Verifiers

We now present the results of the sequential-portfolio verifiers against the standalone VERI-
FIER '*' combination with the highest score: CPACHECKER

Table 2 shows the summary of results for the sequential portfolio. Three of our sequential
portfolios achieve a better score than CPACHECKER '*'. The portfolio with 8 tools performs
worst, which is expected because the amount of time allocated to each verifier decreases
as we increase the size of the portfolio. As a result, verifiers cannot solve hard tasks that
take long to solve. The table also shows that the portfolios require more resources to solve
the tasks. This is a side effect of the sequential portfolio, as all the resources consumed by
unsuccessful attempts by the verifiers in a sequence are still counted towards the overall
resource consumption.’

Figure 10 shows the quantile plot of normalized scores for the best and worst performing
sequential portfolios, and CPACHECKER '*'. All graphs start from the same abscissa because
all of them have the same number of incorrect results (a negligible value of 2). The sequential
portfolio of 4 tools goes farthest to the right because it has the highest score. Figure 11 shows

5 This may change with a change in the order of tools in the sequence. One could try to come up with an
optimum order by analyzing the results of the standalone CPACHECKER '*'. But we kept our approach simple
and put the tools in the order of the SV-COMP scores.
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Table 2 Sequential portfolios: comparison different sizes with CPACHECKER

Verifier CPACHECKER Sequential Portfolio of
2 3 4 8
Score, normalized 5016 5224 5230 5265 4984
Correct results 3129 3239 3298 3292 3048
Correct proofs 1574 1621 1587 1601 1385
Correct alarms 1555 1618 1711 1691 1663
Wrong results 2 2 2 2 2
Wrong proofs 0 0 0 0 0
Wrong alarms 2 2 2 2 2
Total resource consumption for correct results
CPU time(h) 170 190 190 190 120
Wall time (h) 110 130 130 130 88
Memory (GB) 4900 5400 5600 5300 4400
CPU Energy (KJ) 6200 7000 7200 7300 4900
Median resource consumption for correct results
CPU time(s) 150 160 170 160 120
Wall time (s) 86 96 110 110 77
Memory (MB) 1100 1100 1100 1000 950
CPU Energy (J) 1500 1600 1800 1700 1300
Resource consumption of correct results per score point
CPU time (s/sp) 120 130 130 130 90
Wall time (s/sp) 78 88 93 92 64
Memory (MB/sp) 980 1000 1100 1000 890
CPU Energy (J/sp) 1200 1300 1400 1400 980
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Fig. 10 Sequential portfolios: Score-based quantile plot comparing CPACHECKER ', the best and the worst-
performing sequential portfolios (SeqPortfolio-4 and SeqPortfolio-8, respectively)

that sequential portfolios can be less resource-efficient in comparison to CPACHECKER ' In
general, as we increase the size of the sequential portfolio and thereby increase its effective-
ness, we also decrease its resource efficiency. The trend of increased effectiveness is visible
for all sequential portfolios, except for the sequential portfolio of 8 tools. In this case, the
verifiers in the portfolio of 8 tools are not provided with enough resources to solve some of
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Fig. 11 Sequential portfolios: Unsolved tasks and resource consumption per score point of CPACHECKER ',
the best and the worst-performing sequential portfolios (SeqPortfolio-4 and SeqPortfolio-8, respectively)

the given tasks, which reduces the effectiveness of the portfolio but also increases its resource
efficiency for computing correct results.

This is also visible in the plot graph for the sequential portfolio of 8 tools in Fig. 10.
Here the plot graph goes most toward the right in three steps and after that its slope
increases considerably, showing that the later verifiers did not contribute much to the number
of correctly solved tasks.

Difference to previous results [21]. A key observation of our previous work [21] is that
portfolios are negatively affected by wrong results produced by unsound tools. As a conse-
quence, sequential portfolios often perform worse overall even though they can achieve a
higher number of correct results. In this work, we mitigate the impact of wrong results by
employing validating verifiers. As a consequence, our sequential portfolios do not produce
more incorrect results than the best standalone VERIFIER '*' composition CPACHECKER
As a side effect, sequential portfolios are now able to achieve a higher score.

5.3 RQ 2: Evaluation of Parallel-Portfolio Verifiers

We now present the results for the parallel portfolio. Table 3 shows the summary of results
for the parallel portfolios. Similar to the sequential portfolio, the parallel portfolio solves
a higher number of verification tasks in comparison to CPACHECKER '*' and thereby also
achieves a higher score. Initially, the score increases with the size of a parallel portfolio.
However, as the size becomes too large to give each verifier reasonable resources,
the performance starts to decrease.

Figure 12 shows the quantile plot of normalized scores for the best and worst-performing
parallel portfolios, and CPACHECKER '*'. All graphs start from nearly the same abscissa
because all of them have the very low number of incorrect results. The portfolio of size 4
goes farthest to the right because it has the highest score.

Figure 13 shows that the best-performing parallel portfolio performs better than
CPACHECKER ' in terms of resource efficiency except for memory consumption. Higher
memory consumption is expected as several tools are running in parallel. A lower
wall-time is expected for the same reason. The reduction in CPU time is interesting,
which we attribute to the diversity of the benchmark set: some tasks are simple for one
tool but harder for another, and vice versa.

The resource consumption of the worst-performing parallel portfolio is worse than for
CPACHECKER "*'. Portfolios of large sizes do not provide enough resources for any verifier
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Table 3 Parallel portfolios: Comparison of different size with CPACHECKER

Verifier CPACHECKER Parallel Portfolio of
2 3 4 8
Score, normalized 5016 5300 5309 5334 4849
Correct results 3129 3311 3384 3351 2977
Correct proofs 1574 1620 1596 1614 1322
Correct alarms 1555 1691 1788 1737 1655
Wrong results 2 2 2 2 1
Wrong proofs 0 0 0 0 0
Wrong alarms 2 2 2 2 1
Total resource consumption for correct results
CPU time(h) 170 150 160 180 230
Wall time (h) 110 56 43 36 32
Memory (GB) 4900 7200 8400 9500 11000
CPU Energy (KJ) 6200 4500 4100 4000 4000
Median resource consumption for correct results
CPU time(s) 150 91 83 130 200
Wall time (s) 86 17 16 21 27
Memory (MB) 1100 1400 1500 1800 3100
CPU Energy (J) 1500 550 530 740 1000
Resource consumption of correct results per score point
CPU time (s/sp) 120 100 110 120 170
Wall time (s/sp) 78 38 29 24 24
Memory (MB/sp) 980 1400 1600 1800 2200
CPU Energy (J/sp) 1200 840 770 750 830
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Fig. 12 Parallel portfolios: score-based quantile plot comparing CPACHECKER ', the best and the worst-
performing parallel portfolios (ParPortfolio-4 and ParPortfolio-8, respectively)

to compute a result. As a result, only those verification tasks get solved that are easy for at
least one verifier in the portfolio. Nonetheless, since several tools are running in parallel, the
CPU time and memory are still accounted for even this short execution time. We can see that
the wall time for the parallel portfolio of size 8 is the least.

Difference to previous results [21]. In addition to producing a high number of wrong results,
unsound tools often produce wrong results quickly [21]. For parallel portfolios, this impacts
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Fig. 13 Parallel portfolios: Unsolved tasks and resource consumption per score point of CPACHECKER ', the
best and the worst-performing parallel portfolios (ParPortfolio-4 and ParPortfolio-8, respectively)

the performance negatively as wrong results that are produced quickly are selected before a
correct result can be computed. Therefore, similar to sequential portfolios, parallel portfolios
based on validating verifiers did not produce a higher number of wrong results than the single
best tool CPACHECKER ' . (Interestingly, the parallel portfolio of size 8 produces even fewer
incorrect results. This was due to timeout.)

5.4 RQ 3: Evaluation of Algorithm-Selection Verifiers

Table 4 shows the summary of results for algorithm selection: There is a clear trend towards
better results with more verifiers. This is expected because our selector has more options
to choose from, including verifiers that are more effective for some tasks. Also, algorithm-
selection-based verifiers do not need to share resources between verifiers. Therefore, they
can benefit from multiple verifiers without wasting resources on unsuccessful verification
attempts. The number of wrong results is, as expected, relatively low.

In Fig. 14, all plots start from around similar scores but at different times. Algorithm-
selection-based verifiers have a higher startup time than the standalone CPACHECKER
because of the overhead of the selection process. This difference in CPU time consumption
is much more pronounced for the verification tasks that were solved quickly by the chosen
verifier, but as the verifier starts dominating the CPU time consumption on more difficult
tasks, this overhead of selection starts to pay off. We can observe that CPACHECKER
performs initially better with respect to CPU time, but after around the midpoint, algorithm
selection starts to be more efficient.

Figure 15 shows that algorithm selection is also more resource-efficient than CPACHECKER
except for peak memory consumption. By design, the algorithm selector aims to predict the
fastest verifier that solves the given task successfully.

There is a linear increase in CPU time and memory overhead with the number of choices
the algorithm selector is given. We attribute this to using an off-the-shelf combination (see
Fig. 4c) instead of an integrated one for the selection algorithm. Our construction allows
adding a verifier just by adding the classifier based on hardness models. Increasing the
number of tools for selection also increases the number of classifiers called. And since each
of them is used as an off-the-shelf tool, the overhead of starting the classifier is added to
the resource consumption. This explains the relatively high startup time for the algorithm
selection with size 8. The quantile plot for peak memory consumption (Fig. 16) also shows
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Table 4 Algorithm Selections: Comparison of different sizes with CPACHECKER

Verifier CPACHECKER Algorithm Selection of
2 3 4 8

Score, normalized 5016 5268 5420 5563 5577
Correct results 3129 3399 3511 3596 3604
Correct proofs 1574 1632 1647 1716 1726
Correct alarms 1555 1767 1864 1880 1878
Wrong results 2 2 1 1 1
Wrong proofs 0 0 0 0 0
Wrong alarms 2 2 1 1 1
Total resource consumption for correct results

CPU time(h) 170 140 140 150 170

Wall time (h) 110 94 92 92 86

Memory (GB) 4900 4500 4600 5000 6000

CPU Energy (KJ) 6200 5200 5200 5500 5400
Median resource consumption for correct results

CPU time(s) 150 77 74 83 110

Wall time (s) 86 30 33 33 32

Memory (MB) 1100 920 850 850 1200

CPU Energy (J) 1500 640 630 690 770
Resource consumption of correct results per score point

CPU time (s/sp) 120 97 94 99 110

Wall time (s/sp) 78 64 61 60 56

Memory (MB/sp) 980 860 840 890 1100

CPU Energy (J/sp) 1200 1000 960 980 980

1000

—©~ CPAchecker
—>¢ AlgoSelection-8
-+ AlgoSelection-2

Min time in s
—
o
S
T

,d
=)
T

T T T T T
0 1000 2000 3000 4000 5000 6000
Cumulative Score

Fig. 14 Algorithm selections: Score-based quantile plot comparing CPACHECKER ', the best and the worst
performing algorithm selection based VERIFIER '™ (AlgoSelection-8 and AlgoSelection-2, respectively)

this: it starts with higher memory consumption relative to CPACHECKER ' but then the line
remains horizontal for most of the graph.®

6 The version of COVERITEAM used in our previous work [21] did not execute the classifiers concurrently so
the peak memory consumption was not high. The (conceptually) parallel composition was implemented by
executing the tools one after another and then combining the results. The newer version of COVERITEAM exe-
cutes tools concurrently. Due to this reason, we did not notice the increase in memory consumption in the
results for algorithm selection of size 8 in our previous work [21].
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Fig.15 Algorithm selections: Unsolved tasks and resource consumption per score point CPACHECKER ', the
best and the worst performing algorithm selection based VERIFIER ' (AlgoSelection-8 and AlgoSelection-2,
respectively)
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Fig. 16 Algorithm selections: Score-based quantile plot for memory consumption comparing
CPACHECKER ', the best and the worst performing algorithm selection based VERIFIER "' (AlgoSelection-8
and AlgoSelection-2, respectively)

Difference to Previous Results. [21] . The main results for the algorithm-selection-based
verifiers confirm the results presented in our previous work [21]. There is one improve-
ment though: In our previous work, we employed a simpler algorithm selector that did
not consider the resource consumption of individual verifiers during selection. In contrast,
our new algorithm selector prioritizes verifiers that solve a verification task not only cor-
rectly but also quickly. This change in design is visible in our experimental results. The
algorithm-selection-based verifiers consume significantly fewer resources, which is visible
for both CPU and wall time.

5.5 Discussion

Our experiments show that each combination can on average perform
better than any standalone VERIFIER'" in terms of correctly solved tasks. This is
also true for the normalized scores.

We were expecting that portfolios would be less effective in comparison to the standalone
tools because of higher resource consumption. In particular, we were expecting that they
would be unable to solve hard tasks as less resources would be allocated to each partici-
pating tool. However, the experimental data demonstrate the opposite. A portfolio would be
unable to solve tasks that are hard for each tool in the portfolio. Our benchmark set had few
such tasks. But for most of the tasks that were hard for one tool, there was some
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other tool in the portfolio that could solve it in the allocated time. This was especially
pronounced in the parallel portfolio.

The outcome regarding resource consumption is in agreement with our expectations. In
comparison to the best performing standalone VERIFIER ', sequential portfolios require more
time but perform better with respect to memory consumption. Whereas, parallel portfolios
perform better with respect to wall-time but have higher memory consumption. It seems that
the portfolios are more energy-efficient when more cores are being used.

Our algorithm selection is based on a model trained using machine learning. The train-
ing penalizes the tools that produce more incorrect results and also considers the resource
consumption in terms of CPU time. In comparison to both portfolios, the verifier based on
algorithm selection solved more tasks.

Our verifier combinations can be constructed by simply selecting tools that perform well
in a comparative evaluation, such as the Competition on Software Verification. We found
that it leads to successful combinations for all evaluated combination types. Nevertheless,
the combinations can be further fine-tuned to achieve even better results.

The portfolio combinations are easy to construct and can perform well if the set of tools
to combine is diverse (different strengths). Also, the portfolios should not be too large
unless we are willing to increase the resources. Training the algorithm selector requires
more preliminary work, but with limited resources and enough choices (number of tools),
the selection-based verifier becomes more effective.

Difference to Previous Results [21]. A key observation of our previous work [21] is that
portfolios prefer fast results and unsound tools may produce wrong results quickly. Therefore,
the soundness of portfolios can be affected by fast unsound tools. Since this could partially
be addressed by the execution order in sequential portfolios, this effect was more pronounced
in parallel portfolios than in sequential portfolios. To mitigate this problem in general, we
suggested to introduce a validation step. In this work, we adopted the proposed mitigation
strategy and updated our experiment setup to include validation. Our results show that it
achieves the intended effect as the number of incorrect results decreases significantly.
Correct vs. Wrong Results. Interestingly, and in line with our previous work [21], we
can observe a tradeoff between correct results and wrong results. By combining tools,
we can easily increase the number of solved tasks but we also risk increasing the num-
ber of wrong results. The validation step introduced in this work effectively reduces the
number of wrong results but also limits the number of tasks that can be correctly verified by
the individual verifiers.

In the end, our works present three types of easy-to-deploy combinations of software

verifiers, both with and without validation. A user can choose to include validation if the user
prefers to ensure correct results, otherwise, the user can choose to omit the validation step.
Furthermore, we are convinced that investigating combination types with a better tradeoff of
correct vs. wrong results is an exciting research direction.
Type of Verification Tools. COVERITEAM supports only automated verification tools, there-
fore, all the tools in a combination must be automated. For our combinations, we have
considered tools based on their performance in SV-COMP. These happen to be model check-
ers, instead of deductive software verifiers like DAFNY [60], FRAMA- C [61], KEY [62],
VERCORS [63], VERIFAST [64], etc.

Any automated verifier that runs on a Linux system can be integrated in COVERITEAM.
To integrate a new tool, one needs to create a self-contained archive that is available online,
write a tool-info module to assemble the command line and process the output, an actor
definition for COVERITEAM to orchestrate the execution of the tool and process artifacts,
and have a corresponding actor in COVERITEAM. COVERITEAM already contains a library of
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verification actors and actor definitions for many publicly available verification tools. More
details on how to integrate a new tool are available in the article on COVERITEAM [18].
Comparison Between Different Types of Combinations. Our evaluation compares different
types of combinations with the best-performing standalone tool. Although it is enticing,
interesting, and valuable to investigate how different combinations perform in comparison
to each other, this paper focuses only on how they compare to standalone tools.

A comparative evaluation of different combinations would require a different experiment
setup. Different factors influence the performance of each of these combinations, e.g., the
position of a verifier in a sequential portfolio, the training set for the learning-based selector,
set of chosen verifiers in portfolios. Our experiment setup uses the top n verifiers based on
a list and used them in these combinations. This setup is inadequate to conclude how these
combinations would perform against each other. We leave the optimal configuration of our
combination types and the comparison between combinations open for future work.

6 Threats to Validity
6.1 External Validity

Selection of verifiers. The effectivity of a combination of tools depends on the effectivity of
its parts. Therefore, the performance of a concrete instantiation of our tool combinations is
influenced by the selected tools and their configuration, and our results might not generalize
to other selections of tools. We have selected the eight most powerful verification tools of
the category REACHSAFETY based on the results of the competition SV-COMP and executed
them in their original configuration as submitted to the competition. Our procedure to select
the verifiers to include in the combination is described in Sect. 4.1.

Applicability to other verification tasks. Our evaluation results are based on experiments
with a given benchmark set. While we have evaluated our tool combinations on programs
taken from the largest and most diverse set of publicly available verification tasks for C pro-
grams, the performance of the evaluated combinations may be different on other sets of
verification tasks. The selection of the benchmark set is described in Sect. 4.7.

Training of the algorithm selector The choice of the benchmark set also impacts the training
of our algorithm selector. Training a learning-based selector requires a large and diverse set of
verification tasks. Each task has to be labeled with the execution results of each verifier used
in our combinations. The used benchmarks repository [56, 57] was created and improved by
the verification community over many years. We are not aware of any other benchmark set
of verification tasks that is as diverse and of the same quality as this one. As a result, we had
to train our algorithm selector on the same dataset that we later used for benchmarking the
tool combinations. Therefore, our evaluation shows that algorithm selection improves the
performance of verification on the given benchmark set and the selector might generalize
only to benchmark sets with similarly distributed verification tasks. For a fair comparison,
we (1) restricted the training to linear models, which are known to generalize well, (2) trained
only on arandom subset of the benchmark set, and (3) cross-validated our model over multiple
benchmark splits. The variance of selection performance between different splits was less
than 1 %. Therefore, the performance of our trained algorithm selector is likely independent
of the random subset selected for training.

Design of the algorithm selector The evaluation of algorithm selection is also dependent on
the chosen selection technique. Choosing alternative selection methods, e.g., based on hand-
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crafted rules, might impact the evaluation. However, the design of hand-crafted methods is
not straightforward, it might require expert knowledge about the tool implementations of
the components. This design process might in addition be biased in favor of certain tool
combinations, which could also impact the experimental results.

Experiment environment. The setup of our experiments is influenced by SV-COMP: bench-
mark set, tool selection, the configuration in which tools are used, execution environment,
and resource limitations. On the one hand, it gives us the benefit that our results could be
compared with the evaluation of many publicly available well-known verification tools, on
the other hand, it affects the generalizability of our results. However, over the last decade, the
setup used by SV-COMP has become standard in the verification community for the evaluation
of verification tools and this was the best choice available to us. Also, using the SV-COMP
setup allows us to compare the results of our combinations with the results of the standalone
tools from SV-COMP 2022.

Sequential portfolios. The order of the verifiers in sequential portfolios may impact its
performance. We ordered the verifiers in sequence according to their performance in SV-
COMP 2022, that is, the best performing tool is executed first, and so on. Changing the order of
the tools might change the results concerning resource consumption. We noted in our previous
work [21] that changing the order of verifiers can impact the soundness of the combination.
This was happening if an unsound and fast verifier was put early in the sequence. We now
mitigate this issue by validating the results produced by the verifiers.

Validation step. The results of our evaluation are dependent on the quality of employed
validators and witnesses produced by the verifiers. We have used the validators participating
in SV-COMP 2022. The selection of the validators to include in the combination is described in
Sect. 4.2. We used a portfolio of validators because no standalone validator could effectively
validate the results produced by most of the verifiers. Each validator was more effective for
some subset of verifiers. Our results could change with a different selection of validators or
a different quality of witnesses produced by the verifiers.

6.2 Internal Validity

Experiment setup. We have used the same verifier archives, benchmark set, benchmark-
ing framework, resource limits, and infrastructure to execute our experiments as was used
for SV-COMP 2022. The unchanged execution setup ensures that there are no unintended
side effects in our experiments. Also, since we did not change any component of the
verifiers and executed them with the same parameters inside the combination and when
executed as a standalone verifier, we exclude the possibility that we could have used the
verifiers in a sub-optimal way.

Memory and time overhead. COVERITEAM induces an overhead of about 0.8 s for each
actor in the combination and around 44 MB memory overhead [18]. It is possible to reduce
this overhead by using shell scripts, but we decided in favor of using COVERITEAM for
composing tools because it supports modular design. This is especially pronounced in our
algorithm-selector combination. We could have saved a few seconds if we were using a
monolithic algorithm selector instead of composing one.

Measurement and control of resources. We have used BENCHEXEC [37] to measure CPU
time and memory consumption, and to enforce the resource limits. Since BENCHEXEC is
based on the modern features of the Linux kernel and thus the most accurate measurement
technology, we eliminate the measurement-related confounding factors in our evaluation
according to the state of the art.
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Distribution of CPU cores. We rely on the operating system for a fair distribution of CPU
usage during the execution of parallel portfolios. In general, there might be a tool that uses
multi-processing and as a result would consume more CPU time as compared to a tool using
only one process. In such a portfolio, where some tools heavily use multi-processing and
others use only one process, the actors using multi-processing would unfairly consume more
CPU time and deliver more results. COVERITEAM can only control the limits. A user of a
portfolio can limit the CPU time available to each tool, resulting in the termination of tools
that consumed the allocated CPU time, but whether CPU time is consumed sooner or later
by a process is decided by the operating system. In our experiments with parallel portfolios,
we allow tools to use the CPU time left by tools that terminated earlier.

6.3 Construct Validity

Our experiments are designed to assess whether combinations of verifiers can improve effec-
tivity and efficiency compared to standalone verifiers. The measures that we use to quantify
the quality are the community-agreed scoring schema, the number of solved tasks, and the
resource measures memory, CPU time, wall time, and CPU energy. These measures are all
standards accepted by the verification community and have also been used in the competition
on software verification for many years.

7 Related work

Combination Types Used in Software Verification. Combining verifiers to increase
the verification performance is a well-established technique in the domain of software
verification [14, 23, 24, 27, 29, 50, 51, 65-68]. The top three winning entries of the software-
verification competition SV-COMP 2022 all combine various verification techniques to achieve
their performance [5]. CPACHECKER [29] combines up to six different verification approaches
into three sequential portfolios that are task-dependently selected with an algorithm selector.
VERIABS [49] employs up to nine different verification approaches that are combined into four
verification strategies and task-dependently selected by an algorithm selector. PESCO [50]
ranks individual verification algorithms according to their predicted likelihood of solving a
given task and then executes them sequentially in descending order. PREDATORHP [65] and
UFo [66] demonstrate that parallel portfolios can also be a promising strategy when running
multiple specialized algorithms at the same time. Even though previous work showed that
internal combinations can be successfully applied to improve the effectiveness of a single tool,
we show that similar combinations can be effectively employed to combine ‘off-the-shelf’
verifiers. This gives us the unique opportunity to further increase the number of verifiable
programs by simply combining state-of-the-art verification tools.

Cooperative methods [67] distribute the workload of a single verification task among mul-
tiple algorithms to combine their strengths. For example, conditional model checking [69-72]
runs two or more verifiers in sequence, while the program is reduced after every step to the
state space of the program that is left unexplored by the previous algorithm. COVERITEST [73,
74], a tool for test-case generation based on verification, interleaves multiple verifiers, while
(partially) sharing the analysis state between algorithms. METAVAL [55] integrates verifica-
tion tools for witness validation (i.e., to check whether a verifier had produced a valid result)
by instrumenting the produced witness into the verified program. While cooperative methods
are effective for reducing the workload of a verification task, employing cooperative methods

@ Springer



126 Formal Methods in System Design (2025) 66:99-130

at the tool level requires the exchange of analysis information between tools. In general, exist-
ing verification tools are not well suited for this type of combination, which leads us to explore
off-the-shelf verifier combinations. In addition, we showed that non-cooperative methods can
improve the verification effectiveness without the need to adapt the employed tools.
Combining Algorithms Beyond Software Verification. The idea of combining algorithms
to improve performance has been successfully applied in many research areas including SAT
solving [75-77], constraint-satisfaction programs [78-80], and combinatorial-search prob-
lems [81]. The employed approaches traditionally focused on portfolio-based approaches [75,
76, 79], but recent techniques started to integrate algorithm selectors for either select-
ing single algorithms [77, 78] or portfolios of algorithms [80, 82]. For example, earlier
works in SAT solving [75, 76] focused on parallel-portfolio solvers, while later works
such as SATZILLA [77] further improve the solving process by selecting a task-dependent
solver. However, existing techniques often employ hybrid strategies between portfolios
and algorithm selection to achieve state-of-the-art performance. Therefore, Kashgarani and
Kothoff [83] have recently shown that parallel portfolios are generally bottlenecked by the
available resources and that a pure algorithm selector that selects a single algorithm performs
better. While we observed that portfolios of software verifiers are also restricted by available
resources (i.e., the performance generally stops to improve after a certain portfolio size), we
found that all evaluated combination types can yield performance gains.

8 Conclusion

This paper describes a method to construct combinations of verification and validation tools
in a systematic and modular way. The method does not require any changes to the tools that
are used to construct the combinations. Given the large number of freely available verifiers
and validators for C programs, there is a huge potential for improvement in effectivity and
efficiency (a total of 50 verifiers and 13 validators were evaluated in SV-COMP 2024 [84]).
Our experimental evaluation shows that all three considered combinations—sequential port-
folio, parallel portfolio, and algorithm selection—can lead to performance improvements.
The improvements can be significant although the construction does not require significant
development effort, because we use COVERITEAM for the combination and execution of
verification tools. Our contribution is to offer an easy way for practitioners to benefit from
the available verification tools and leverage better performance from the latest research and
development efforts in software verification.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded in part by
Deutsche Forschungsgesellschaft (DFG)—378803395 (ConVeY) and 418257054 (Coop).

Data availability A reproduction package including all our results is available at Zenodo [22]. Additionally,
the result tables are also available on a supplementary web page for convenient browsing: https://www.sosy-
lab.org/research/coveriteam-combinations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/418257054
https://www.sosy-lab.org/research/coveriteam-combinations
https://www.sosy-lab.org/research/coveriteam-combinations
http://creativecommons.org/licenses/by/4.0/

Formal Methods in System Design (2025) 66:99-130 127

References

20.

21.

22.

23.

24.

Beyer D, Podelski A (2022) Software model checking: 20 years and beyond. In: Principles of systems
design. LNCS, vol 13660. Springer, pp 554-582. https://doi.org/10.1007/978-3-031-22337-2_27
Hoare CAR (2003) The verifying compiler: a grand challenge for computing research. J. ACM 50(1):63—
69. https://doi.org/10.1145/602382.602403

Clarke EM, Henzinger TA, Veith H, Bloem R (2018) Handbook of model checking. Springer, Berlin.
https://doi.org/10.1007/978-3-319-10575-8

Jhala R, Majumdar R (2009) Software model checking. ACM Comput Surv. doi
10(1145/1592434):1592438

Beyer D (2022) Progress on software verification: SV-COMP 2022. In: Proceedings of TACAS (2), LNCS,
vol 13244. Springer, pp 375-402. https://doi.org/10.1007/978-3-030-99527-0_20

Beckert B, Hidhnle R (2014) Reasoning and verification: state of the art and current trends. IEEE Intell
Syst 29(1):20-29. https://doi.org/10.1109/MIS.2014.3

Beyer D, Gulwani S, Schmidt D (2018) Combining model checking and data-flow analysis. In: Handbook
of model checking. Springer, pp 493-540. https://doi.org/10.1007/978-3-319-10575-8_16

Garavel H, ter Beek MH, van de Pol J (2020) The 2020 expert survey on formal methods. In: Proceedings
of FMICS. LNCS, vol 12327. Springer, pp 3—69.https://doi.org/10.1007/978-3-030-58298-2_1

Ball T, Rajamani SK (2002) The SLAM project: debugging system software via static analysis. In: Pro-
ceedings of POPL. ACM, pp 1-3.https://doi.org/10.1145/503272.503274

Khoroshilov AV, Mutilin VS, Petrenko AK, Zakharov V (2009) Establishing Linux driver verification
process. In: Proceedings of Ershov memorial conference. LNCS, vol 5947. Springer, pp 165-176. https://
doi.org/10.1007/978-3-642-11486-1_14

. Chong N, Cook B, Eidelman J, Kallas K, Khazem K, Monteiro FR, Schwartz-Narbonne D, Tasiran S,

Tautschnig M, Tuttle MR (2021) Code-level model checking in the software development workflow at
Amazon Web Services. Softw Pract Exp 51(4):772—797. https://doi.org/10.1002/spe.2949

Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M, O’Hearn PW, Papakonstantinou I,
Purbrick J, Rodriguez D (2015) Moving fast with software verification. In: Proceedings of NFM. LNCS,
vol 9058. Springer, pp 3—11. https://doi.org/10.1007/978-3-319-17524-9_1

Beyer D, Keremoglu ME (2011) CPACHECKER: a tool for configurable software verification. In:
Proceedings of CAV. LNCS, vol 6806. Springer, pp 184—190.https://doi.org/10.1007/978-3-642-22110-
1_16

Dangl M, Lowe S, Wendler P (2015) CPACHECKER with support for recursive programs and floating-
point arithmetic (competition contribution). In: Proceedings of TACAS. LNCS, vol 9035. Springer,
pp 423-425 https://doi.org/10.1007/978-3-662-46681-0_34

Gadelha MYR, Monteiro FR, Cordeiro LC, Nicole DA (2019) ESBMC v6.0: verifying C programs using
k-induction and invariant inference (competition contribution). In: Proceedings of TACAS (3). LNCS,
vol 11429. Springer, pp 209-213.https://doi.org/10.1007/978-3-030-17502-3_15

Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard computational problems.
Science 275(7):51-54. https://doi.org/10.1126/science.275.5296.51

Rice JR (1976) The algorithm selection problem. Adv Comput 15:65—118. https://doi.org/10.1016/S0065-
2458(08)60520-3

Beyer D, Kanav S (2022) COVERITEAM: on-demand composition of cooperative verifi-
cation systems. In: Proceedings of TACAS. LNCS, vol 13243. Springer, pp 561-579.
https://doi.org/10.1007/978-3-030-99524-9_31

Beyer D, Kanav S, Wachowitz H. Source-code repository of COVERITEAM. https://gitlab.com/sosy-lab/
software/coveriteam. Accessed 09 Feb 2023

Beyer D, Kanav S, Wachowitz H (2023) COVERITEAM service: verification as a service. In: Proceedings
of ICSE, companion. IEEE, pp 21-25.https://doi.org/10.1109/ICSE-Companion58688.2023.00017
Beyer D, Kanav S, Richter C (2022) Construction of verifier combinations based on off-the-shelf verifiers.
In: Proceedings of FASE. Springer, pp 49-70. https://doi.org/10.1007/978-3-030-99429-7_3

Beyer D, Kanav S, Kleinert T, Richter C (2023) Reproduction package for FMSD article ‘Construction of
verifier combinations from off-the-shelf components’. Zenodo. https://doi.org/10.5281/zenodo.7838348
Wendler P (2013) CPACHECKER with sequential combination of explicit-state analysis and predicate
analysis (competition contribution). In: Proceedings of TACAS. LNCS, vol 7795. Springer, pp 613-615.
https://doi.org/10.1007/978-3-642-36742-7_45

Heizmann M, Chen YF, Dietsch D, Greitschus M, Hoenicke J, Li Y, Nutz A, Musa B, Schilling
C, Schindler T, Podelski A (2018) ULTIMATE AUTOMIZER and the search for perfect interpolants
(competition contribution). In: Proceedings of TACAS (2). LNCS, vol 10806. Springer, pp 447-451.
https://doi.org/10.1007/978-3-319-89963-3_30

@ Springer


https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1145/602382.602403
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-030-99524-9_31
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.5281/zenodo.7838348
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-319-89963-3_30

128 Formal Methods in System Design (2025) 66:99-130

25. Kotoun M, Peringer P, Sokové V, Vojnar T (2016) Optimized PREDATORHP and the SV-COMP heap
and memory safety benchmark (competition contribution). In: Proceedings of TACAS. LNCS, vol 9636.
Springer, pp 942-945 .https://doi.org/10.1007/978-3-662-49674-9_66

26. Holik L, Kotoun M, Peringer P, Sokovd V, Trtik M, Vojnar T (2016) Predator shape analysis tool suite.
Proceedings of HVC. LNCS 10028:202-209. https://doi.org/10.1007/978-3-319-49052-6_13

27. Richter C, Hiillermeier E, Jakobs MC, Wehrheim H (2020) Algorithm selection for software validation
based on graph kernels. Autom Softw Eng 27(1):153—186. https://doi.org/10.1007/s10515-020-00270-x

28. Richter C, Wehrheim H (2020) Attend and represent: a novel view on algorithm selection for software
verification. In: Proceedings of ASE, pp 1016—1028. https://doi.org/10.1145/3324884.3416633

29. Beyer D, Dangl M (2018) Strategy selection for software verification based on boolean features: a simple
but effective approach. In: Proceedings of ISoLA. LNCS, vol 11245. Springer, pp 144—-159. https://doi.
org/10.1007/978-3-030-03421-4_11

30. Demyanova Y, Pani T, Veith H, Zuleger F (2017) Empirical software metrics for benchmarking of veri-
fication tools. Formal Methods Syst Des 50(2—-3):289-316. https://doi.org/10.1007/s10703-016-0264-5

31. Beyer D, Dangl M, Dietsch D, Heizmann M, Lemberger T, Tautschnig M (2022) Verification witnesses.
ACM Trans Softw Eng Methodol 31(4):57:1-57:69. https://doi.org/10.1145/3477579

32. Beyer D, Dangl M, Dietsch D, Heizmann M, Stahlbauer A (2015) Witness validation and
stepwise testification across software verifiers. In: Proceedings of FSE. ACM, pp 721-733.
https://doi.org/10.1145/2786805.2786867

33. Beyer D, Dangl M, Dietsch D, Heizmann M (2016) Correctness witnesses: exchanging verification results
between verifiers. In: Proceedings of FSE. ACM, pp 326-337. https://doi.org/10.1145/2950290.2950351

34. Beyer D, Dangl M, Lemberger T, Tautschnig M (2018) Tests from witnesses: execution-based
validation of verification results. In: Proceedings of TAP. LNCS, vol 10889. Springer, pp 3-23.
https://doi.org/10.1007/978-3-319-92994-1_1

35. Beyer D, Dangl M (2016) Verification-aided debugging: an interactive web-service for exploring error
witnesses. In: Proceedings of CAV (2). LNCS, vol 9780. Springer, pp 502-509.https://doi.org/10.1007/
978-3-319-41540-6_28

36. Beyer D (2015) Software verification and verifiable witnesses (Report on SV-COMP 2015). In: Proceed-
ings of TACAS. LNCS, vol 9035. Springer, pp 401-416.https://doi.org/10.1007/978-3-662-46681-0_31

37. Beyer D, Lowe S, Wendler P (2019) Reliable benchmarking: requirements and solutions. Int J Softw
Tools Technol Transf 21(1):1-29. https://doi.org/10.1007/s10009-017-0469-y

38. Kleinert T (2022) Developing a verifier based on parallel portfolio with COVERITEAM. Bachelor’s Thesis,
LMU Munich, Software Systems Lab

39. Demyanova Y, Veith H, Zuleger F (2013) On the concept of variable roles and its use in software analysis.
In: Proceedings of FMCAD. IEEE, pp 226-230. https://doi.org/10.1109/FMCAD.2013.6679414

40. Apel S, Beyer D, Friedberger K, Raimondi F, Rhein A (2013) Domain types: abstract-domain selec-
tion based on variable usage. In: Proceedings of HVC. LNCS, vol 8244. Springer, pp 262-278.
https://doi.org/10.1007/978-3-319-03077-7

41. Xu L, Hoos HH, Leyton-Brown K (2007) Hierarchical hardness models for SAT. In: Interna-
tional conference on principles and practice of constraint programming. Springer, pp 696-711.
https://doi.org/10.1007/978-3-540-74970-7_49

42. Kadioglu S, Malitsky Y, Sabharwal A, Samulowitz H, Sellmann M (2011) Algorithm selection and
scheduling. In: Proceedings of CP. Springer, pp 454-469.https://doi.org/10.1007/978-3-642-23786-7_35

43. Torgo L, Gama J (1996) Regression by classification. In: Brazilian symposium on artificial intelligence.
Springer, pp 51-60.https://doi.org/10.1007/3-540-61859-7_6

44. Chalupa M, Rechtitkova A, Mihalkovi¢ V, Zaoral L, Strejéek J (2022) SYMBIOTIC 9: string analysis and
backward symbolic execution with loop folding (competition contribution). In: Proceedings of TACAS (2).
LNCS, vol 13244. Springer, pp 462—467.https://doi.org/10.1007/978-3-030-99527-0_32

45. Kroning D, Tautschnig M (2014) CBMC: C bounded model checker (competition contribution). In:
Proceed-
ings of TACAS. LNCS, vol 8413. Springer, pp 389-391.https://doi.org/10.1007/978-3-642-54862-8_26

46. Chaudhary E, Joshi S (2019) PINAKA: symbolic execution meets incremental solving (compe-
tition contribution). In: Proceedings of TACAS (3). LNCS, vol 11429. Springer, pp 234-238.
https://doi.org/10.1007/978-3-030-17502-3_20

47. Dietsch D, Heizmann M, Nutz A, Schitzle C, Schiissele F (2020) ULTIMATE TAIPAN with symbolic
interpretation and fluid abstractions (competition contribution). In: Proceedings of TACAS (2). LNCS,
vol 12079. Springer, pp 418-422.https://doi.org/10.1007/978-3-030-45237-7_32

48. Malik V, Schrammel P, Vojnar T (2020) 2LS: Heap analysis and memory safety (competi-
tion contribution). In: Proceedings of TACAS (2). LNCS, vol 12079. Springer, pp 368-372.
https://doi.org/10.1007/978-3-030-45237-7_22

@ Springer


https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.1145/3477579
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1109/FMCAD.2013.6679414
https://doi.org/10.1007/978-3-319-03077-7
https://doi.org/10.1007/978-3-540-74970-7_49
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/3-540-61859-7_6
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_22

Formal Methods in System Design (2025) 66:99-130 129

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Darke P, Agrawal S, Venkatesh R (2021) VERIABS: a tool for scalable verification by abstraction (com-
petition contribution). In: Proceedings of TACAS (2). LNCS, vol 12652. Springer, pp 458—462.https://
doi.org/10.1007/978-3-030-72013-1_32

Richter C, Wehrheim H (2019) PESCo: predicting sequential combinations of verifiers (competition
contribution). In: Proceedings of TACAS (3). LNCS, vol 11429. Springer, pp 229-233.https://doi.org/10.
1007/978-3-030-17502-3_19

Leeson W, Dwyer, M (2022) GRAVES-CPA: a graph-attention verifier selector (competi-
tion contribution). In: Proceedings of TACAS (2). LNCS, vol 13244. Springer, pp 440-445.
https://doi.org/10.1007/978-3-030-99527-0_28

Beyer D, Strejéek J (2022) Case study on verification-witness validators: where we are
and where we go. In: Proceedings of SAS. LNCS, vol 13790. Springer, pp 160-174.
https://doi.org/10.1007/978-3-031-22308-2_8

Ayaziova P, Chalupa M, Strejéek J (2022) SYMBIOTIC- WITCH: a Klee-based violation witness checker
(competition contribution). In: Proceedings of TACAS (2). LNCS, vol 13244. Springer, pp 468-
473 .https://doi.org/10.1007/978-3-030-99527-0_33

Svejda J, Berger P, Katoen JP (2020) Interpretation-based violation witness validation
for C: NITWIT. In: Proceedings of TACAS. LNCS, vol 12078. Springer, pp 40-57.
https://doi.org/10.1007/978-3-030-45190-5_3

Beyer D, Spiess] M (2020) METAV AL: witness validation via verification. In: Proceedings of CAV. LNCS,
vol 12225. Springer, pp 165-177.https://doi.org/10.1007/978-3-030-53291-8_10

Collection of verification tasks. https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks. Accessed 01
Apr 2023

Beyer D (2022) SV-benchmarks: benchmark set for software verification and testing (SV-COMP 2022
and Test-Comp 2022). Zenodo. https://doi.org/10.5281/zenodo.5831003

Beyer D (2013) Second competition on software verification (Summary of SV-COMP 2013). In: Proceed-
ings of TACAS. LNCS, vol 7795. Springer, pp 594—6009. https://doi.org/10.1007/978-3-642-36742-7_43
Beyer D (2012) Competition on software verification (SV-COMP). In: Proceedings of TACAS. LNCS,
vol 7214. Springer, pp 504-524.https://doi.org/10.1007/978-3-642-28756-5_38

Leino KRM (2010) Dafny: an automatic program verifier for functional correctness. In: Proceedings of
LPAR. LNCS, vol 6355. Springer, pp 348—370.https://doi.org/10.1007/978-3-642-17511-4_20

Cuoq P, Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2012) Frama-C. In: Proceedings
of SEFM. Springer, pp 233-247.https://doi.org/10.1007/978-3-642-33826-7_16

Ahrendt W, Baar T, Beckert B, Bubel R, Giese M, Hihnle R, Menzel W, Mostowski
W, Roth A, Schlager S, Schmitt PH (2005) The key tool. Softw Syst Model 4(1):32-54.
https://doi.org/10.1007/s10270-004-0058-x

Blom S, Huisman M (2014) The VerCors tool for verification of concurrent programs. In: Proceedings of
FM. LNCS, vol 8442. Springer, pp 127-131. https://doi.org/10.1007/978-3-319-06410-9_9

Jacobs B, Smans J, Philippaerts P, Vogels F, Penninckx W, Piessens F (2011) VeriFast: a powerful,
sound, predictable, fast verifier for C and Java. In: Proceedings of NFM. LNCS, vol 6617. Springer, pp
41-55.https://doi.org/10.1007/978-3-642-20398-5_4

Peringer P, Sokové V, Vojnar T (2020) PREDATORHP revamped (not only) for interval-sized memory
regions and memory reallocation (competition contribution). In: Proceedings of TACAS (2). LNCS,
vol 12079. Springer, pp 408—412.https://doi.org/10.1007/978-3-030-45237-7_30

Albarghouthi A, Li Y, Gurfinkel A, Chechik M (2012) UFO: a framework for abstraction- and
interpolation-based software verification. In: Proceedings of CAV. LNCS, vol 7358. Springer, pp 672-678.
https://doi.org/10.1007/978-3-642-31424-7_48

Beyer D, Wehrheim H (2020) Verification artifacts in cooperative verification: Survey and unifying
component framework. In: Proceedings of ISoLA (1). LNCS, vol 12476. Springer, pp 143-167.https:/
doi.org/10.1007/978-3-030-61362-4_8

Filliatre JC, Paskevich A (2013) Why3: where programs meet provers. In: Programming languages and
systems. Springer, pp 125-128.https://doi.org/10.1007/978-3-642-37036-6_8

Beyer D, Henzinger TA, Keremoglu ME, Wendler P (2012) Conditional model check-
ing: a technique to pass information between verifiers. In: Proceedings of FSE. ACM.
https://doi.org/10.1145/2393596.2393664

Beyer D, Jakobs MC, Lemberger T, Wehrheim H (2018) Reducer-based construction of conditional
verifiers. In: Proceedings of ICSE. ACM, pp 1182-1193. https://doi.org/10.1145/3180155.3180259
Beyer D, Jakobs MC (2020) Fred: conditional model checking via reducers and folders. In: Proceedings
of SEFM. LNCS, vol 12310. Springer, pp 113-132. https://doi.org/10.1007/978-3-030-58768-0_7
Beyer D, Jakobs MC, Lemberger T (2020) Difference verification with conditions. In: Proceedings of
SEFM. LNCS, vol 12310. Springer, pp 133-154.https://doi.org/10.1007/978-3-030-58768-0_8

@ Springer


https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-031-22308-2_8
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1007/978-3-030-53291-8_10
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_8

130 Formal Methods in System Design (2025) 66:99-130

73. Beyer D, Jakobs MC (2019) COVERITEST: cooperative verifier-based testing. In: Proceedings of FASE.
LNCS, vol 11424. Springer, pp 389—408.https://doi.org/10.1007/978-3-030-16722-6_23

74. Beyer D, Jakobs MC (2021) Cooperative verifier-based testing with CoVeriTest. Int J Softw Tools Technol
Transf 23(3):313-333. https://doi.org/10.1007/s10009-020-00587-8

75. Wotzlaw A, van der Grinten A, Speckenmeyer E, Porschen S (2012) pfolioUZK: solver description. In:
Proceedings of SAT challenge p 45. https://helda.helsinki.fi/handle/10138/34218

76. Roussel O (2011) Description of portfolio. In: Proceedings of SAT challenge, p 46.
https://helda.helsinki.fi/handle/10138/34218

77. XuL, Hutter F, Hoos HH, Leyton-Brown K (2008) SATzilla: Portfolio-based algorithm selection for SAT.
JAIR 32:565-606. https://doi.org/10.1613/jair.2490

78. Minton S (1996) Automatically configuring constraint satisfaction programs: a case study. Constraints
1(1-2):7-43. https://doi.org/10.1007/BF00143877

79. Bordeaux L, Hamadi Y, Samulowitz H (2009) Experiments with massively parallel constraint solving.
In: Proceedings of IJCAL https://www.ijcai.org/Proceedings/09/Papers/081.pdf

80. Yun X, Epstein SL (2012) Learning algorithm portfolios for parallel execution. In: Proceedings of LION.
Springer, pp 323-338. https://doi.org/10.1007/978-3-642-34413-8_23

81. Kotthoff L (2016) Algorithm selection for combinatorial search problems: a survey. In: Data mining
and constraint programming—foundations of a cross-disciplinary approach. LNCS, vol 10101. Springer,
pp 149-190.https://doi.org/10.1007/978-3-319-50137-6_7

82. Lindauer M, Hoos H, Hutter F (2015) From sequential algorithm selection to parallel portfolio selection.
In: Proceedings of LION. Springer, pp 1-16.https://doi.org/10.1007/978-3-319-19084-6_1

83. Kashgarani H, Kotthoff L (2021) Is algorithm selection worth it? Comparing selecting single algorithms
and parallel execution. In: AAAI workshop on meta-learning and MetaDL challenge. PMLR, pp 58-64.
https://proceedings.mlr.press/v140/kashgarani21a.html

84. Beyer D (2024) State of the art in software verification and witness validation: SV-
COMP 2024. In: Proceedings of TACAS (3). LNCS, vol 14572. Springer, pp 299-329.
https://doi.org/10.1007/978-3-031-57256-2_15

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/s10009-020-00587-8
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/BF00143877
https://www.ijcai.org/Proceedings/09/Papers/081.pdf
https://doi.org/10.1007/978-3-642-34413-8_23
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-19084-6_1
https://proceedings.mlr.press/v140/kashgarani21a.html
https://doi.org/10.1007/978-3-031-57256-2_15

	Construction of verifier combinations from off-the-shelf components
	Abstract
	1 Introduction
	2 Overview of Combination Types for Off-the-Shelf Verifiers
	3 Constructing Combinations with CoVeriTeam
	3.1 Validating Verifier
	3.2 Verifier Based on Sequential Portfolio
	3.3 Verifier Based on Parallel Portfolio
	3.4 Verifier Based on Algorithm Selection
	3.5 Extensibility

	4 Experiment Setup
	4.1 Selection of Existing Verifiers
	4.2 Selection of Existing Validators
	4.3 Construction of verifierVal Combinations
	4.4 Training of the Algorithm Selector
	4.5 Construction of Portfolio and Selection Combinations
	4.6 Resource Allocation
	4.7 Benchmark Selection
	4.8 Execution Environment
	4.9 Scoring Schema
	4.10 Resource Measurement and Benchmark Execution
	4.11 Reporting Results: Tables and Plots

	5 Evaluation Results
	5.1 Results for verifierVal Standalone Compositions
	5.2 RQ 1: Evaluation of Sequential-Portfolio Verifiers
	5.3 RQ 2: Evaluation of Parallel-Portfolio Verifiers
	5.4 RQ 3: Evaluation of Algorithm-Selection Verifiers
	5.5 Discussion

	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity

	7 Related work
	8 Conclusion
	References




