
Selecta Mathematica (2025) 31:38
https://doi.org/10.1007/s00029-025-01024-x

SelectaMathematica
New Series

Eleven-dimensional supergravity as a Calabi–Yau twofold

Fabian Hahner1 · Ingmar Saberi2

Accepted: 18 December 2024 / Published online: 27 March 2025
© The Author(s) 2025

Abstract
We construct a generalization of Poisson–Chern–Simons theory, defined on any
supermanifold equipped with an appropriate filtration of the tangent bundle. Our
construction recovers interacting eleven-dimensional supergravity in Cederwall’s for-
mulation, as well as all possible twists of the theory, and does so in a uniform and
geometric fashion. Among other things, this proves that Costello’s description of
the maximal twist is the twist of eleven-dimensional supergravity in its pure spinor
description. It also provides a pure spinor lift of the interactions in the minimally
twisted theory. Our techniques enhance the BV formulation of the interactions of each
theory to a homotopy Poisson structure by defining a compatible graded-commutative
product; this suggests interpretations in terms of deformations of geometric structures
on superspace, and provides some concrete evidence for a first-quantized origin of the
theories.
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1 Introduction

Since the first supersymmetric field theories were constructed, it has been a goal to
understand their properties and simplify their construction using superspace tech-
niques. This motivation has perhaps been largest in the case of supergravity theories.
The geometric nature of the theory of Einstein gravity, which is constructed using a
covariant least-action principle on the space of metrics of Lorentzian signature, has
motivated much research that tries to give an equally pithy formulation of supergravity
theories as governing moduli problems of (deformations of) particular natural geo-
metric structures on superspace. (The set of appropriate references is dense in the
literature, so we will refrain.)

Among all supergravity theories of physical interest, perhaps the most exceptional
is eleven-dimensional supergravity, which was first constructed by Cremmer, Julia,
and Scherk in 1978 [20], and which is expected to be the low energy limit of M-
theory [52]. M-theory has yet to be constructed, although expectations exist that a
worldsheet construction as a theory of fundamental membranes might be possible.
While the component-field formulation of this theory is relatively streamlined—in
addition to the metric, the theory contains only a gravitino and an abelian three-form
gauge field with Chern–Simons term—it proved difficult to even formulate the theory
in superspace, and a superspace least action principle remained out of reach. Part of
the difficulty can be attributed to attempts to find sets of auxiliary fields that could be
used to represent supersymmetry off shell, which was seen as a necessary prerequisite.

A major leap forward was taken in work of Cederwall, who applied the pure spinor
superfield formalism to construct a superspace description of perturbative eleven-
dimensional supergravity using the BV formalism. The relation of eleven-dimensional
pure spinors to supergravity dates back at least to [33]. The connection had been
sharpened in [15], which observed that a particular eleven-dimensional pure spinor
superfield reproduced the BV supergravity multiplet. In [11], a candidate cubic inter-
action term for this multiplet was constructed; in [10], Cederwall went on to extend
this by a somewhat subtle quartic term in the BV action functional, and to prove that
the result satisfies the BV master equation, thus giving a consistent, manifestly super-
symmetric interacting theory that—since the theory is expected to be unique—must be
eleven-dimensional supergravity itself. (Pure spinor techniques were also used from a
first-quantized perspective to give new models of the supermembrane; see Berkovits’
work in [5], generalizing his formulation of the superstring.) The pure spinor descrip-
tion thus not only formulates the theory on superspace, but also dramatically simplifies
the structure of its interactions: a non-polynomial action for the component fields is
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replaced by a quartic polynomial. (Such simplifications are typical of interacting pure
spinor theories.) Nonetheless, it does not provide a geometric origin for the quartic
polynomial in question. Neither does it give an interpretation of the moduli problem
it describes in terms of deformations of the superspace geometry itself.

Later, and in disjoint fashion, further progress was made on twisted versions of
eleven-dimensional supergravity. Twists of supergravity theories were defined by
Costello and Li in [19], generalizing the standard notion of a twist of a supersymmetric
field theory. Using worldsheet techniques from topological string theory, they gave
a proposed description of the holomorphic twist of type IIB supergravity. Costello
and Li’s theory is a version of BCOV theory [7], for which the moduli-theoretic
interpretation is clear; it is related to the Kodaira–Spencer theory of deformations
of Calabi–Yau structure. In [17], Costello went on to investigate eleven-dimensional
supergravity in the omega background; his proposed description links the maximal
twist of eleven-dimensional supergravity to a non-commutative Chern–Simons theory
called Poisson–Chern–Simons theory.

Poisson–Chern–Simons theory is simple to describe in the BV formalism. Its fields
are given by the Dolbeault complex of (0, •)-forms on a Calabi–Yau twofold, tensored
with the de Rham complex on R

7 (or, more generally, a G2-manifold; for nonper-
turbative issues related to G2-manifolds, see [21, 23] and references therein). The
interactions are determined by an L∞ structure on the fields, which is in fact strict: the
Lie bracket is the Poisson bracket of holomorphic functions induced by theCalabi–Yau
form, whose inverse is a holomorphic Poisson bivector. This theory has two essential
features. Firstly, it also has a moduli-theoretic interpretation. The Lie algebra of holo-
morphic functions with the Poisson bracket is a one-dimensional central extension of
holomorphic Hamiltonian vector fields. Since the symplectic structure is the holomor-
phic volume form, these are also divergence-free vector fields, and can thus be also
thought of as related to the moduli space of deformations of Calabi–Yau structures.
Secondly, the central extension equips thefields of Poisson–Chern–Simons theorywith
a commutative structure; the interactions define not just a dg Lie structure, but a dg
Poisson algebra structure. Recalling that the observables of a three-dimensional TQFT
are equipped with an E3-algebra structure, which is equivalent to an even-shifted Pois-
son structure, we see that this formulation is at least suggestive of a first-quantized
origin. (Note, though, that there are subtleties in defining E3 algebra structures on
theories of this type; see [51].)

Recent work has pushed our understanding of twisted eleven-dimensional super-
gravity further; all approaches have either used dualities or target-space techniques,
since no worldsheet description is available. Pure spinor techniques were applied
in [46] to give concise and computationally straightforward descriptions of the twists
of supergravity multiplets. This led to the first direct computations of the minimally
twisted eleven-dimensional and type IIB supergravity multiplets, the latter confirming
Costello andLi’s proposal at the free level.Working directlywith the component fields,
it was also shown that the maximally twisted eleven-dimensional multiplet reduces
to Poisson–Chern–Simons theory in the free limit [24]. In [42], a consistent interact-
ing Z/2-graded BV theory was defined on the minimally twisted eleven-dimensional
supergravity multiplet. Surprisingly, the cohomology of this theory on flat space is a
one-dimensional L∞ central extension of the exceptional infinite-dimensional simple
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super Lie algebra E(5|10) [34]. Other exceptional simple super Lie algebras also play
fundamental roles in holomorphic M-theory [43, 47].

In this paper, we take a step towards bringing some of these lines ofwork together by
exploiting a powerful and seemingly underappreciated analogy between the geometric
structures in play on each case. Thinking of Poisson–Chern–Simons theory (after
localizing six directions with omega backgrounds) as a theory in five dimensions, we
note that the theory must be equipped with a transversely holomorphic foliation (or
THF structure) that lets us think of the geometry as locally isomorphic to C

2 × R.
The THF structure is an (involutive) three-dimensional subbundle of the complexified
tangent bundle. Similarly, the minimally twisted theory is most generally defined on
eleven-dimensional manifolds equipped with a six-dimensional complex distribution.

Flat superspace itself is also canonically equipped with a distribution, spanned by
the leftâe“invariant odd vector fields. However, since all bosonic translations are in
the image of brackets of supersymmetry transformations, this distribution is as far
from being integrable as possible. It is thus not possible to naively draw a connection
between these two structures. A clue to the resolution is provided by the theory of
Dolbeault cohomology for almost complexmanifolds, recently developed in [16]. This
theory uses the distribution T (0,1) to define a filtration of the de Rham complex. The
differential on the associated graded measures the nonintegrability of the distribution;
passing to its cohomology and transferring the D∞ structure defined by the remaining
terms in the de Rham differential provides a new filtered complex, which they use as
a replacement for the Hodge filtration. Passing to the associated graded of this new
filtration defines their analogue of the Dolbeault complex.

If we apply the same construction to the de Rham complex on superspace, we can
identify the term in the differential encoding the nonintegrability of the odd distri-
bution with the Chevalley–Eilenberg differential of the supertranslation algebra. The
“generalizedDolbeault complex” that appears is nothing other than the sum of the pure
spinor multiplets associated to the cohomology groups of the supertranslation alge-
bra; the cohomology in degree −k plays the role of the Dolbeault complex resolving
holomorphic (k, 0)-forms. In particular, the canonical supermultiplet of [14] appears
playing the role of the holomorphic functions, and we think of it—equipped with its
commutative structure—as the appropriate structure sheaf with which to equip the
spacetime. In eleven dimensions, this is eleven-dimensional supergravity.

The analogy with complex geometry allows one to find ready generalizations of
many interesting notions: the complex dimension is the degree of the highest Lie alge-
bra cohomology of the supertranslations; a Calabi–Yau structure is a trivialization of
(themultiplet of) top cohomology as amodule over the structure sheaf. In this analogy,
eleven-dimensional supergravity, and all of its twists, are Calabi–Yau twofolds. We
use this to construct a family of theories we call homotopy Poisson–Chern–Simons
theories. The construction uses the derived bracket technique of [35], as generalized
by [50], and is entirely analogous to the standard construction of the Poisson bracket.
However, because we work in a derived setting, the corresponding L∞ structure is in
general not strict. Applying our construction recovers Cederwall’s quartic interaction
functional in geometric fashion, as well as Costello’s maximal twist. Furthermore, it
gives a pure spinor lift of the interactions of the minimal twist. It then follows from
the results of [46], which state that the twist of a canonical multiplet is the canonical
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multiplet of the twisted supersymmetry algebra, that these theories are all related by
twisting, proving Costello’s conjecture on the maximal twist at the full interacting
level.

Structural overview

Here is a brief sketch of the structure of the paper. We begin in Section 2 by recall-
ing how a filtration of the tangent bundle by subbundles gives rise to a filtration of
the sheaf of de Rham forms with certain additional properties. We abstract these
properties into a notion of (weighted) flag structure on a cdga, and study an abstract
version of Cirici and Wilson’s generalization of the Frölicher spectral sequence. This
lets us define sheaves W −k,• of “Dolbeault-resolved holomorphic k-forms” on any
(super)manifold equipped with such a structure. Section3 reviews the construction
of Poisson–Chern–Simons theory on products of Calabi–Yau twofolds and odd-
dimensional real manifolds, as used in Costello’s descriptions of maximally twisted
eleven-dimensional supergravity, and then constructs a generalization to a “homo-
topy” version, defined for any appropriate weighted flag structure. Section4 begins
with a quick review of the pure spinor formalism; we rediscover this formalism here in
terms of generalized Dolbeault complexes, but the reader who is unfamiliar with the
standard story should start here for a few basic definitions. We then proceed to make
some comments on its application to twisted theories and to characterize examples that
give rise to “Calabi–Yau twofolds.” Finally, Sect. 5.1 constructs eleven-dimensional
supergravity and its twists as examples of homotopy Poisson–Chern–Simons theories.

2 Flag structures and generalized Dolbeault complexes

Conventions Throughout, we work in a category of complex super vector spaces
equipped with an action of a semisimple Lie group of the form C

× × G. Here, G
will depend on context, may be trivial, and will often be left implicit. The action of
C

× is equivalent to a grading by the integers. We refer to this grading as weight, to
emphasize that it is not a cohomological grading. The monoidal structure on this cat-
egory is the one on super vector spaces; signs are thus determined by the Z/2 grading
and are independent of the weight.

We will also consider cochain complexes of objects in this category. These are then
equipped with two integer gradings (by cohomological degree and weight), as well
as a Z/2-grading by intrinsic parity. The Koszul sign is determined by the sum of
cohomological degree and intrinsic parity, modulo two. Our conventions are always
cohomological.

2.1 Weighted flag structures

We begin with some very general considerations, related to the type of geometric intu-
ition we will draw on in the sequel. The essential point is to notice that certain (super
or graded generalizations of) filtered structures, as studied by Tanaka, are present both
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on (almost) complex manifolds and on the superspaces of interest in physics. The
resulting analogy between superspaces and almost complex manifolds will let us con-
struct a sheaf of commutative differential graded algebras on such a manifold, which
reproduces Dolbeault cohomology for complex manifolds, as well as its generaliza-
tion to almost complex manifolds as defined in [16]. When we apply our techniques
to superspaces, the construction naturally reproduces a particular multiplet in the pure
spinor formalism.1 This is the multiplet assigned to the structure sheaf of the nilpo-
tence variety, termed the canonical multiplet in [14] (and the tautological filtered
cdgsa in [46]).

Geometrically, we will be interested in manifolds (including supermanifolds or
graded manifolds) that are equipped with distributions. The definitions we give here
are generalizations to the graded setting of standard definitions in the theory of Tanaka
structures [48].2 We will not delve more deeply into connections to the theory of
Tanaka prolongation, or to parabolic geometry more broadly, here, though these are
certainly of great interest.Wewill return to them in future work; for now, the interested
reader is referred to [2, 9, 48, 54].

Recall [37, chapter 19] that a distribution on amanifold M is a subbundle D ⊂ T M
of the tangent bundle. A distribution is said to be involutive if the space of vector fields
lying in D is a subalgebra of vector fields on M with respect to the Lie bracket. A
distribution is integrable if there exists a regular foliation of M such that the tangent
spaces to the leaves agree with D at each point. By Frobenius’ theorem [37, Theorem
19.12], involutive distributions and integrable distributions coincide, and we will use
the terms interchangeably.

More generally, we can consider a flag of distributions, which is defined to be a
finite sequence

0 ⊂ D1 ⊂ · · · ⊂ Dk = T M (2.1)

of subbundles of the tangent bundle, each contained in the next. In other words, D• is
a filtration of the tangent bundle. Our conventions for filtrations follow [22, §1], with
the exception that we will write all filtrations as increasing.

We further require that D• is compatible with the Lie bracket of vector fields, in
the sense that

[
�(Di ), �(D j )

] ⊂ �(Di+ j ). (2.2)

Thus the sections of D• give Vect(M) the structure of a filtered Lie algebra.3 When
k = 2, this condition is vacuous, so that we need only specify a single arbitrary
distribution D1. All of our examples here will be of this type.

The associated graded vector bundle Gr T M , with Gr p T M = Dp/Dp−1, acquires
the structure of a weight-graded Lie algebra in the category of vector bundles over M .

1 The unfamiliar reader is referred forward to Sect. 4.1 for terminology.
2 We owe deep thanks to John Huerta for calling our attention to the relevance of Tanaka’s work.
3 We emphasize that a filtered Lie algebra is not filtered by sub Lie algebras: it is a filtered vector space
with the compatibility (2.2) between the filtration and the Lie bracket.
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For X ∈ �(Di ) and Y ∈ �(D j ), one observes that

[X , f Y ] = X( f )Y + (−)| f |·|X | f [X , Y ]. (2.3)

The first term is a section of D j , and is thus equivalent to zero in �(Gri+ j T M). It
follows that the Lie bracket on the associated graded is linear over functions. The fiber
of this bundle of Lie algebras at p ∈ M is called the symbol algebra at p; it is a finite-
dimensional, strictly positively graded real Lie algebra. We will call the filtration of
the tangent bundle regular if the symbol algebras are isomorphic at every point of M .

A filtration of the tangent bundle determines a dual filtration of the cotangent bun-
dle [22, §1.1.6], according to the rule

FnT ∗ = (T /D−1−n)∨. (2.4)

This convention ensures that Gr p T ∗ = (Gr−p T )∨. We can extend this multi-
plicatively to a nonpositive filtration F•�•(M) of the de Rham forms. Since D• is
compatible with the Lie bracket, F• is preserved by the de Rham differential.

As an example, consider the flag of distributions in the complexified tangent bundle
of an almost complex manifold defined by taking

D0 = 0 ⊂ D1 = T (0,1) ⊂ D2 = TC. (2.5)

Applying (2.4), we see that the dual filtration takes the form

F−3T ∗ = 0 ⊂ F−2T ∗ = (TC/T (0,1))∨ ⊂ F−1T ∗M = T ∗
C
. (2.6)

It is compatible with the de Rham differential for any almost complex structure. This
filtration is called the “shifted Hodge filtration” F̃ in [16, Definition 3.5].

Compatible weight gradings Matters are simplified when the filtration of the tangent
bundle arises from a grading. A compatible weight grading is an isomorphism

φ : Gr T M → T M (2.7)

of filtered vector bundles, where Gr T M is filtered by weight. In other words,

φ

⎛

⎝
⊕

1≤ j≤k

Gr j T M

⎞

⎠ = Dk . (2.8)

Wewill sometimeswrite Tj M for the summandφ(Gr j T M). For both almost complex
manifolds and superspaces, there is a canonical choice of such a splitting: in the first
case by the eigenspaces of J , and in the second by the tangent space of the body of M .

A compatible weight grading defines a compatible weight grading (in strictly neg-
ative degrees) on the cotangent bundle, and thus also on the de Rham complex of M .
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In the example of an almost complex manifold, the grading assigns weight −1 to dz̄
and weight −2 to dz.

We draw a diagram of the weight grading in this example in Fig. 1. The cohomo-
logical degree is on the vertical axis, and the weight is on the horizontal axis. The
filtration F• is the column filtration: F−k consists of all summands with weight ≤ −k.
The dashed arrow represents the Nijenhuis tensor, and the dotted arrow its conjugate;
see (2.18) below.We remark that the standardHodge filtration, which is not compatible
with the differential in the almost-complex case, appears diagonally in the diagram.

Motivated by the previous considerations, we now give definitions which are meant
to abstractlymodel the structures that are present on thedeRhamcomplexof amanifold
equipped with a flag of distributions (and perhaps with a compatible weight grading).

Definition 2.1 Let (�•, d) be a cdga concentrated in nonnegative homological degree.
A flag structure on �• is an (ascending) filtration F•�k of each homogeneous sum-
mand, compatible both with the differential and the product, such that F0�

• = �•,
F−1�

• = �≥1, and F•�k is a filtration of finite length in each homological degree k.
A weighted flag structure on �• consists of a weight grading in non-positive degrees,
such that the column filtration associated to the weight grading is a flag structure.

Fromour perspective, there are two essential and natural examples of flag structures.
The first of these, as we have already seen, is the “shifted” Hodge filtration on the de
Rham complex of an (almost) complex manifold, as in Fig. 1. The second is related to
the examples in supersymmetric field theory that we have in mind as applications: any
flat superspace is equipped with a canonical distribution, defined by considering the
span of all translation-invariant odd vector fields. More generally, the supermanifolds
that are valid backgrounds for supersymmetric field theories or supergravity theories
are equipped with a regular non-involutive odd distribution of maximal dimension,
modelling the local supersymmetry transformations. (This is well-known; consider,
for example, the definition of a super Riemann surface [29, 44, 53]. The idea goes back
at least to Manin in [39, 40], where such a datum is thought of as a superconformal
structure.)

In some sense, the usefulness of the definition lies in the fact that it brings these two
examples under one roof. In particular, our main application—to eleven-dimensional

Fig. 1 The weight grading arising from an almost-complex structure
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supergravity—will rely on exploiting the analogy between the two. To get to these
examples, we need to construct the generalization of Dolbeault cohomology to this
more general setting. This will be done in the next section.We then move on to discuss
examples in 2.3.

2.2 D∞ algebras fromweighted flag structures

Given a weighted flag structure, the differential d decomposes as a sum of terms

d = d1 + d0 + d−1 + · · · , (2.9)

where di has bidegree (1, i − 1). The subscript labels the totalized grading, which is
the sum of the cohomological degree and the weight..

The differential on Gr F•(�•) can be identified with d1, which is a differential of
square zero and bidegree (1, 0) on �•. We will now choose to regard this differential
as “internal,” and the additional terms d0 + d−1 + · · · as defining a further structure
on Gr F•(�•).

Recall that a square-zero endomorphism of degree one can be thought of as the
defining data of an algebra structure over the operad D governing square-zero differ-
entials. (See, for example, [49].) This operad has a single operation d0 of arity one
and degree one, subject to the relation that its concatenation with itself vanishes.

A D-algebra structure on a cochain complex (V , d1) is given by a single square-zero
endomorphism d0 of degree one. Since d0 is a cochain map, d0 and d1 anticommute.
Thus a cochain complex with a D-algebra structure is almost the same thing as a
bicomplex, except for the fact that the second grading has been forgotten. To restore
it, we specify an action of C× on the operad D with respect to which the nontrivial
operation has weight one, and ask for an equivariant D-algebra structure on aweighted
cochain complex.

Due to the relation d20 = 0, the operad D is not free, and does not play well with
quasi-isomorphisms. As is standard in homotopical algebra, we must replace D by a
freely generated (weighted) dg operad that resolves it. This operad D∞ is generated
by operations di for each nonpositive i , all of which have arity one, cohomological
degree one, and weight i − 1. The conditions defining a D∞ algebra structure in
cochain complexes amount to the condition that the total differential

d = d1 + d0 + d−1 + · · · (2.10)

is of square zero. Here, d1 again denotes the internal (weight-zero) differential of the
cochain complex and di for i ≤ 0 encode the D∞ algebra structure. It is clear that a
weighted flag structure defines a D∞ algebra structure on Gr F•(�•).
Homotopy transfer Since D∞ is a good homotopy replacement for D, one can
use homotopy transfer of D∞ algebra structures to pass between different quasi-
isomorphic models.4 We consider a model of�• defined on the E1 page of the spectral

4 Our presentation is ahistorical; this technique, better known as the “homological perturbation lemma,”
dates back to [8] and was probably the first example of homotopy transfer.
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sequence associated to F•:

W • := H• (
Gr F•(�•)

) = H• (
�•, d1

)
. (2.11)

Since d1 is homogeneous of bidegree (1, 0), W • is again bigraded by cohomological
degree and by weight. We can apply the homotopy transfer theorem for D∞ alge-
bras [38] in order to obtain a new D∞ algebra structure on W •. In concrete terms, this
is done by fixing a retraction

(�• , d1) (W •, 0) .h
p

i
(2.12)

Although the transfer data depends on the choice of i, p and h, we note that the
transferred D∞ structure is unique up to isomorphism [38, Theorem 10.3.15].

The output of the above construction is a cdga W • with zero internal differential,
equipped with a weighted D∞ structure. Alternatively, it is a weighted flag structure
on W • with the property that the differential on Gr F•(W •) vanishes. We will denote
the terms of the D∞ structure by d′

i for i ≤ 0; the term d′
i has cohomological degree

one and weight i − 1, and is thus of totalized degree i . d′ = ∑
d′

i is a square-zero
differential of cohomological degree one and strictly positive weight.

Reweighting Since the differential on W • contains only terms of strictly positive
weight, we are free to modify the C

× action on W •, shearing it by the cohomo-
logical degree. The sheared weight acts on summands of cohomological degree i and
weight j with weight i + j ; it is thus just the totalized degree. Since d′ contained only
terms of weight ≤ −1, it is of nonpositive sheared weight.

We note that the same procedure goes through for flag structures, without the choice
of a weighting. We are guaranteed that the differential on W • decreases the filtration,
in the sense that d′(Fk W •) ⊆ Fk−1W •. Thus the sheared filtration F+• , defined by

F+
k (W j ) := Fk− j (W j ), (2.13)

makes (W •, d′) into a filtered cdga that is quasi-isomorphic to (�•, d).
The sheared filtration does not define a flag structure on W •, since the condition

that Gr0 F+• W • = W 0 does not hold. (In complex geometry, this is just saying that
the Dolbeault complex of (0, •)-forms is no longer supported in homological degree
zero.) Nevertheless, Gr0 F+• W • will become the central character in our story.

The structure sheaf A•; geometric interpretation. We have seen above that, for an
integrable complex structure, F+• is nothing other than the Hodge filtration. As was
worked out in [16], F+• W • is the correct object to replace the standard Hodge filtration
(and thus the standard Dolbeault cohomology) for non-integrable complex structures.
Building on this philosophy, we will regard Gr F+• W • = (W •, d′

0) as the fundamental
object associated to a weighted flag structure.

For weighted flag structures arising from regular filtrations of the tangent bundle,
§2.1.1 guarantees that W • arises as the smooth sections of a graded vector bundle
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on the underlying manifold, so that it is a cochain complex of locally free sheaves
on the underlying manifold. We will allow ourselves to refer to it as the generalized
Dolbeault complex.

The complex geometry of a complex manifold is governed by its sheaf of holomor-
phic functions; a good derived replacement for this sheaf is the sheaf�0,• of Dolbeault
forms that smoothly resolves it. There is an obvious generalization of this structure
sheaf in our setting as well: it is just the sheaf of cdgas A• := Gr0 F+• W •. (In Fig. 1
above, A• appears along the main diagonal in totalized degree zero, after passing to
the cokernel of d1, depicted by dashed arrows.)

Our central point is that any supermanifold with a regular filtration of the tangent
bundle can (and should) be equipped with the structure sheaf A•. As we will see
in the next section, applying this construction to examples arising from superspaces
produces the canonical supermultiplet—and therefore, among other physically impor-
tant examples, the eleven-dimensional supergravity multiplet. Pursuing this analogy
with complex geometry further will allow us to produce the interactions of eleven-
dimensional supergravity from a holomorphic Poisson structure on this ringed space,
reproducing and generalizing work of Cederwall [10, 11].

2.3 Examples of weighted flag structures

Complex manifolds
Let X be a complex manifold; locally, we can equip X with corresponding coordi-

nates (zi , z̄i ). We consider the de Rham complex on X ,

(
�•(X) , d = ∂ + ∂̄

)
. (2.14)

The de Rham differential d splits into holomorphic and antiholomorphic pieces, the
operators ∂ and ∂ . The cohomological grading is by form degree; to define the weight
grading, we assign dz̄ weight zero and dz weight−1. This corresponds to the filtration

0 ⊂ D1 = T (0,1) X ⊂ D2 = TCX (2.15)

of the complexified tangent bundle, which we have refined to give a weighted flag
structure by choosing

T1X = T (0,1) X , T2X = T (1,0) X . (2.16)

In this example, it is clear that the terms of the decomposition of the differential are

d1 = 0, d0 = ∂, d−1 = ∂, (2.17)

with all higher terms vanishing. As a result, W • can be identified with �•, and A• is
the Dolbeault complex �0,•(X).

Almost complex manifolds Nothing in the construction of the weighted flag structure
above depended on the integrability of the complex structure. In fact, the construction
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generalizes immediately to almost complex manifolds, with the difference that D1 is
no longer involutive. Correspondingly, the internal differential d1 no longer vanishes.
We recover the theory of Dolbeault cohomology for almost complex manifolds, as
worked out in [16].

On an almost complex manifold, the de Rham differential decomposes as

d = μ + ∂ + ∂ + μ, (2.18)

where μ and its complex conjugate μ are related to the Nijenhuis tensor. No other
terms are present. Defining the weighted flag structure considered above, we see that

d1 = μ, d0 = ∂, d−1 = ∂, d−2 = μ. (2.19)

Crucially, the Dolbeault differential ∂ no longer squares to zero, such that standard
Dolbeault cohomology is no longer well defined. But we can nevertheless construct
W • by first passing to the cohomology of μ̄:

W • = H•(�•(X), μ̄). (2.20)

This reproduces the construction of the Dolbeault cohomology of an almost complex
manifold, as defined in [16]. Homotopy transfer as D∞ algebras then produces a D∞
structure on W •, which plays the role of the Hodge-to-de-Rham spectral sequence in
this case.

We note that the first term in the differential, d1 = μ, can be thought of as encoding
the failure of the corresponding flag of distributions to be integrable. (In the theory of
filtered structures, one would say that the symbol of the flag of distributions fails to
be abelian.) This is further illustrated by the next examples.

Superspaces and the canonical supermultiplet Let n be a supertranslation algebra in
the sense of [25]: a super Lie algebra with a consistent weight grading supported in
degrees one and two. “Consistent” means that parity equals weight modulo two: thus
n = n1 ⊕ n2, where n1 has weight one and odd internal parity and n2 has weight two
and even internal parity. Let N = exp(n) be the corresponding flat superspace. The
de Rham complex

(
�•(N ), ddR

) =
(

C∞(N+)[θ, dθ, dx] , dx
∂

∂x
+ dθ

∂

∂θ

)
(2.21)

is then a cdga equipped with a weight grading.5

We can define a flag of distributions in T N by choosing D1 to be spanned by the odd
left-invariant vector fields

(
Vect(N )N

)
−, and D2 to be just T N . In physical examples

in three or more dimensions, D1 is always bracket-generating, since every translation

5 We will sometimes think in terms of the totalized grading when discussing n; when doing this, n is a
cohomologically graded Lie algebra in degrees one and two. But we will emphasize such usage wherever
it appears.



Eleven-dimensional supergravity as a Calabi–Yau twofold Page 13 of 34 38

is the square of some supercharge. Thus the distribution we consider is maximally
noninvolutive.

This flag of distributions defines a weighted flag structure on �•(N ). Concretely,
we can express the de Rham complex in a left-invariant basis

λ = dθ, v = dx + λθ. (2.22)

λ carries weight −1 and v weight −2 (just as in §2.1.3). The de Rham differential is

ddR = λ2
∂

∂v
+ λ

(
∂

∂θ
− θ

∂

∂x

)
+ v

∂

∂x
. (2.23)

Note that we suppress the contractions in the notation when there is no ambiguity.6

The totalized grading on the de Rham complex is just given by the polynomial degree
in v. The differential decomposes by weight into the terms

d1 = λ2
∂

∂v
,

d0 = λ
∂

∂θ
− λθ

∂

∂x
,

d−1 = v
∂

∂x
.

(2.24)

As we will see explicitly in 4.1, the generalized Dolbeault complex W • has a natural
interpretation within the pure spinor superfield formalism. In particular, the degree
zero piece W 0,• coincides with the canonical multiplet of n [14]; the analogue of the
Dolbeault resolution of holomorphic p-forms is given by the multiplet associated to
the (−p)-th Lie algebra cohomology of the supertranslation algebra n, with respect to
the totalized degree. These multiplets were discussed in detail in physical examples
in [25]; the acyclic deformation of the differential arising from the strictly negative
terms in d was defined, and worked out concretely in examples, in [28].

Further examples; (flat) distributions of constant symbol In the previous sections, we
have already gone through the examples thatwill interest us in detail in the remainder of
the paper.Ourmain aimhere is to set up the analogy between almost complex geometry
and superspace by viewing them both as weighted flag structures, and to exploit this to
give a geometric construction of interacting eleven-dimensional supergravity and its
twists. However, numerous other structures could be viewed through this lens, and we
feel it would be profitable to do so. We give a partial list of such examples, to which
we hope to return in future work.

– Any contact manifold has a flag structure.
– Anymanifold equippedwith aTanaka structure [1,Definition 1] has a flag structure
on its de Rham complex.

6 For example, in terms of the structure constants f μ
αβ of n, we have λ2 = λα f μ

αβλβ and λθ = λα f μ
αβθβ .

Here α, β label a basis of n1 and μ a basis of n2.
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– Let n be a super Lie algebra equipped with a positive weight grading. Follow-
ing [54], we can consider the flat Tanaka structure with constant symbol n. By
definition, this is the simply connected super Lie group N = exp(n), equipped
with the flag of distributions spanned by the left-invariant vector fields in n≤ j . We
observe that flat superspace is a particular example of such a flat Tanaka structure,
with symbol the supertranslation algebra. It should be possible to consider non-
strict examples (super L∞ algebras with positive weight gradings), using results
of Getzler [30].

– Any Lie algebra equipped with a finite-length positive filtration gives rise to a flag
structure on its Chevalley–Eilenberg cochains.

– AnyfilteredLie algebroid gives rise to a flag structure on its Lie algebroid cochains.
This is a clear generalization, both of the previous example and of a flag of dis-
tributions in the tangent bundle of a manifold. It should be possible to extend this
definition to Courant algebroids, following [45], and then to understand poten-
tial connections to exceptional generalized geometry. In particular, connections
of Tanaka prolongation to tensor hierarchy algebras [41] should be interesting to
explore.

3 Poisson–Chern–Simons theories via derived brackets

3.1 Holomorphic Poisson–Chern–Simons theory

In this section, we briefly review the construction of the standard Poisson–Chern–
Simons theory, defined on a product of a Calabi–Yau twofold and an odd-dimensional
smooth manifold. The theory is Z-graded only when the smooth manifold is one-
dimensional. Poisson–Chern–Simons theory was related to the maximal twist of
eleven-dimensional supergravity in a particular omega background byCostello in [17].

Let X be a Calabi–Yau twofold with holomorphic volume form �. In complex
dimension two, � is also a holomorphic symplectic structure. We denote the corre-
sponding holomorphic Poisson bivector by π = �−1.

Recall from Sect. 2.3.1 above that the totalized grading places dz in degree −1 and
dz in degree zero. Our construction above recovers the standard Dolbeault complex
(equipped with a nonstandard grading):

W • = �•(X), d0 = ∂, d−1 = ∂. (3.1)

Contracting with π defines an isomorphism of �0,•(X)-modules

π :
(
�2,•(X) , ∂̄

)
−→

(
�0,•(X) , ∂̄

)
, α 
→ π ∨ α. (3.2)

One cannowuse this data to equip theDolbeault complex�0,•(X)with the structure
of a cyclic L∞ algebra. This can be done in two steps:

1. Turn �•(X) into a BV algebra.
2. Define the Poisson bracket on �0,•(X) as a derived bracket of the BV bracket.
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For the first step, note that the commutator � = [π, ∂] defines a second-order differ-
ential operator acting on �•(X), satisfying �2 = 0 and �(1) = 0. Hence, we can
define the Koszul bracket on �•(X) by

{α, β} = (−1)|α|(�(αβ) − �(α)β) − α�(β) , (3.3)

making (�•(X), 1,�, {−,−}) into a BV algebra. This construction is due to
Koszul [36].

For the second step, we employ the derived bracket construction with respect to the
differential ∂ , as described by [35]. The derived bracket is defined by

[−,−]∂ := {∂(−),−}. (3.4)

Crucially, this bracket does not turn all of�•(X) into a Lie algebra; only after restrict-
ing to an abelian subalgebra (with respect to the underived bracket {−,−}) does
[−,−]∂ have the right symmetry properties. It is easy to check that the Dolbeault
complex �0,•(X) is indeed such a subalgebra; from this, it follows that

(
�0,•(X) , ∂̄ , [−,−]∂

)
(3.5)

is a dg Lie algebra.
Evaluating [−,−]∂ on α, β ∈ �0,•(X), we find

[α, β]∂ = {∂α, β} = π(∂α ∧ ∂β) , (3.6)

recovering the well known formula for the Poisson bracket. Together with the pairing
induced by wedging with the holomorphic volume form� and integration, this makes
(�0,•(X), ∂̄, [−,−]∂ ) into a cyclic L∞ algebra—indeed, a local L∞ algebra [18,
Definition 3.1.3.1] with a cyclic structure of degree −2. Tensoring with the de Rham
forms of an odd-dimensional smooth manifold gives a local L∞ algebra with an
odd-shifted cyclic structure on the product manifold. The corresponding Z/2-graded
BV theory is called holomorphic Poisson–Chern–Simons theory. Denoting the odd
dimensional smooth manifold by M , the BV action of the theory evaluated on an
element α ∈ �(0,•)(X) ⊗ �•(M) reads

SBV (α) =
∫

X×M
� ∧ α

(
1

2
(∂̄X + dM )α + 1

6
[α, α]∂

)
. (3.7)

3.2 Homotopy Poisson–Chern–Simons theory

We now generalize the above setting to the context of 2 in order to construct a “homo-
topy” version of Poisson–Chern–Simons theory.

Let (�•, d) be a cdga equipped with a weighted flag structure, and let (W •, d′) be
the corresponding generalized Dolbeault complex. Let us assume that, with respect
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to the totalized grading, W • is concentrated in degrees 0, −1, and −2. For degree
reasons, the differential then splits into three pieces

d′ = d′
0 + d′−1 + d′−2 . (3.8)

Explicitly, these terms arise via homotopy transfer along the diagram (2.12).

d′
0 = i ◦ d0 ◦ p

d′−1 = i ◦ (d0hd0 + d−1) ◦ p

d′−2 = i ◦
(
(d0h)2d0 + d0hd−1 + d−1hd0

)
◦ p

(3.9)

Note that the square zero condition for d′ implies the following identities:

(d′
0)

2 = 0

[d′−1, d
′
0] = 0

(d′−1)
2 + [d′

0, d
′−2] = 0

[d′−1, d
′−2] = 0

(d′−2)
2 = 0.

(3.10)

Here, the bracket [−,−] denotes the commutator of endomorphisms. As all terms are
of cohomological degree one, these are all symmetric. We further assume that there is
an isomorphism

π : (W −2,• , d′
0) −→ (W 0,• , d′

0) (3.11)

of W 0,•-modules.
In summary, the D∞ structure and the pairing π act on W •,• as indicated by the

following diagram.

W 0,• W −1,• W −2,•

d′−2

d′
0

d′−1 d′−1

d′
0 d′

0

π

(3.12)

From this data, we now construct an L∞ structure on W 0,•. For this purpose we
perform the appropriate generalizations of the steps described in 3.1.

1. Turn W • into a BV∞ algebra.
2. Define an L∞ structure on A• = W 0,• using a derived bracket construction.

We will see that both steps can be viewed as instances of the derived bracket construc-
tion described by [4, 50].

We begin by recalling the definition of a BV∞ algebra.
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Definition 3.1 A BV∞ algebra (A,�, 1) is a unital graded commutative algebra over
C together with a degree one linear map � : A −→ A[[t]] which can be expanded as

� = 1

t

∞∑

k=1

tk�k, (3.13)

such that �k is a differential operator of order at most k and

�2 = 0 and �(1) = 0. (3.14)

One can equip both A[[t]] and A with L∞ structures in the following way. By iden-
tifying an element a ∈ A by the endomorphism given by left multiplication with a, we
can embed A as an abelian subalgebra into its graded Lie algebra of endomorphisms,
(End(A), [−,−]). The other way round, evaluating an endomorphism at the unit gives
a right inverse to this embedding. One can define a series a series of brackets on A[[t]]
by the following formulas [50].

{a1, . . . , an}t = [. . . [�, a1], . . . , an](1). (3.15)

This makes A[[t]] into an L∞ algebra. Note that the unary bracket is just given by �,
while the binary bracket is then given by the well known formula for BV algebras

{a1, a2} = �(a1a2) − �(a1)a2 − (−1)|a1|a1�(a2). (3.16)

In general, the n-ary bracket can be thought of as measuring the failure of the (n − 1)-
ary bracket to be a multiderivation with respect to the algebra structure.

Further, we can extract an L∞ algebra structure on A by taking an appropriate limit
for the parameter t . We define

{a1, . . . , an} = lim
t→0

1

tn−1 {a1, . . . , an}t . (3.17)

The limit makes sense because �k is a differential operator of order at most k. Note
that, for this L∞ structure, the n-ary operation is generated by �n , i.e.

{a1, . . . , an} = [. . . [�n, a1], . . . , an](1) . (3.18)

Coming back to our setting, we define the operator

� = �1 + t�2 + t2�3 = d′
0 + t[π, d′−1] + t2[π, [π, d′−2]] (3.19)

on W •[[t]]. A direct calculation shows the following proposition.

Proposition 3.2 (W •,�, 1) is a BV∞ algebra. Furthermore, W 0,• is an abelian sub-
algebra, and W <0,• is a subalgebra with respect to the bracket {−,−}.



38 Page 18 of 34 F. Hahner and I. Saberi

Proof These statements can be shown by direct calculations. For example, we can
examine �2 = 0 order by order in t . Recall the identities (3.10) for the D∞-algebra
structure on W •. At order t0, �2 = 0 is just the square-zero condition for d′

0, while
the t1-term vanishes since d′−1 and d′

0 anti-commute. For the t2-piece we find

[
π, d′−1

]2 + [d′
0, πd

′−2π ]. (3.20)

Recall that (d′−1)
2 = −[d′

0, d
′−2]. For degree reasons, the only term contributing to

the first summand is π(d′−1)
2π , for which we find

π(d′−1)
2π = −π [d′

0, d
′−2]π = −[d′

0, πd
′−2π ], (3.21)

using compatibility between the the pairing and d′
0. All higher order pieces vanish

for degree reasons. The other claims are verified by similar calculations and degree
arguments. ��

Proposition 3.2 sets the stage for the second step. We now apply the derived bracket
construction to the differential

dt = d′
0 + td′−1 + t2d′−2. (3.22)

Again, this first endows W 0,•[[t]] with an L∞ structure

μt
n(a1, . . . , an) = {. . . {dt , a1}, . . . an} (3.23)

and then finally W 0,• by taking the limit

μn = lim
t→0

1

tn−1μt
n (3.24)

The L∞ structure then takes the following form

μ1(α) = d′
0α

μ2(α, β) = {d′−1α, β}
μ3(α, β, γ ) = {{d′−2α, β}, γ }.

(3.25)

It is useful to express this L∞ structure in terms of the pairing π .

Proposition 3.3 For α, β, γ ∈ W 0,• we have

μ2(α, β) = π(d′−1α · d′−1β)

μ3(α, β, γ ) = π(d′−2α · π(d′−1β · d′−1γ )).
(3.26)

Proof For μ2 we have

{d′−1α, β} = (−1)|α| (πd′−1(d
′−1α · β) − (π(d′−1)

2α) · β
)

, (3.27)
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where we already used that [π, d′−1]β = 0 by degree reasons. Using that d′−1 is a
derivation for the multiplication, we find the desired result.

For μ3, note that

{d′−2α, β} = (−1)|α| (d′−1π(d′−2α · β) − (d′−1πd
′−2α) · β

)

= (πd′−2α) · d′−1β ∈ W −1,•,
(3.28)

where we used that π is an isomorphism of W 0,•-modules in the second step. Thus,
we find

{{d′−2α, β}, γ } = {(πd′−2α)d′−1β, γ }
= (−1)|α|+|β| [πd′−1

(
(πd′−2α)(d′−1β)γ

)

−πd′−1

(
(πd′−2α)(d′−1β)

) · γ
]

= π
(
(πd′−2α) d′−1β · d′−1γ

)

(3.29)

Again, using that π is a map of W 0,•-modules, we find the desired result.

In the exampleswe are interested in andwhichwewill discuss in the following sections,
W 0,• is local, i.e. arising as a sheaf of L∞ algebras on some manifold, and equipped
with a pairing making it a cyclic L∞ algebra. In these instances, (W 0,•, d′

0, μ2, μ3)

defines a perturbative interacting BV theory, perhaps after tensoring with the de Rham
complex of a smoothmanifold to correct for the parity of the cyclic structure. Since the
L∞ structure describing the interactions is no longer strict, we refer to such a theory
as a homotopy Poisson–Chern–Simons theory.

4 Calabi–Yau twofolds from certain Gorenstein rings

The construction of interactions in homotopy Poisson–Chern–Simons theory can be
applied to supersymmetric field theories and their twists just by working with the
example of §2.3.3—that is, with the standard odd distribution on superspace. As we
will showmore explicitly below, this automatically places us in the context of the pure
spinor superfield formalism, as presented in [25, 26, 28]. (For the broader literature on
pure spinor superfield techniques in field theory, we refer to the review [12] and to ref-
erences therein.) It remains only to check which superspaces give rise to weighted flag
structures satisfying the conditions of Sect. 3. Of the standard superspaces that appear
in physics, there are precisely three examples, corresponding to eleven-dimensional
minimal supersymmetry and its two distinct twists.

We begin with a very brief reminder on the pure spinor superfield formalism, as
well as its relation to twisting worked out in [46]. Then we remark on the algebraic
conditions required for the generalized Dolbeault complex (W •, d′

0) of a superspace
to have the properties of the Dolbeault complex of a Calabi–Yau twofold, and thus to
give rise to a homotopy Poisson–Chern–Simons theory using the techniques of Sect. 3.
In Sect. 5 below, we will show that the resulting theories are eleven-dimensional
supergravity and its maximal and minimal twists.
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4.1 Pure spinor superfields for twisted field theories

In the standard pure spinor superfield formalism, one begins with the data of §2.3.3:
a weight-graded super Lie algebra of the form

n = 
n1 ⊕ n2, (4.1)

which one thinks of as a supertranslation algebra. Choosing a subalgebra p0 of the
degree-zero derivations of n defines an extension of the form

0 → n → p → p0 → 0, (4.2)

which plays the role of the super Poincaré algebra. In the standard examples, p0 is a
direct sum p0 = so(d) ⊕ gR ⊕ gl(1) of an orthogonal Lie algebra and another Lie
algebra called R-symmetry, together with the abelian factor that defines the weight.
n1 is required to be a spin representation of so(d), while the degree-two piece n2 = V
is isomorphic to the vector representation.

There is a correspondence between supertranslation algebras and generating sets of
quadratic ideals in polynomial rings. Let R = Sym•(n∨

1 ) denote the ring of polynomial
functions of n1, graded by weight. For Q ∈ n1, the equations [Q, Q] = 0 define a
homogeneous quadratic ideal I ⊂ R. The quotient ring R/I is the ring of functions
of the space (more properly, scheme) of square-zero odd elements in n,

Y = Spec(R/I ), (4.3)

which is called the nilpotence variety of n [26]. Conversely, we can produce a super
Lie algebra of supertranslation type from any finite sequence of quadratic equations.
Let R = C[λ1, . . . , λn] be the polynomial ring in n variables and I an ideal generated
by the equations,

I = (λα f μ
αβλβ), μ = 1 . . . d, α, β = 1 . . . n. (4.4)

We define n to be the two-step nilpotent super Lie algebra

n = 
S(−1) ⊕ V (−2), (4.5)

equipped with the indicated weight grading. Here S ∼= C
n , V ∼= C

d , and the only
non-trivial bracket is the map

[−,−] : Sym2(S) −→ V , (4.6)

generated by the equations (4.4)—in other words, with structure constants f μ
αβ .

The pure spinor superfield formalism is a functor

A•
R/I : Modp0R/I −→ Multp (4.7)
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from p0-equivariant modules over the quotient ring R/I—in other words, from equiv-
ariant sheaves on Y—to the category of p-multiplets. A p-multiplet is a cochain
complex of super vector bundles, equivariant for the natural action of p+ by affine
transformations, and equipped with a homotopy action of the super PoincarÃ© alge-
bra p that extends this equivariance. (More details are given in [25].)

The functor A•
R/I is easy to understand. One recalls that the smooth functions

C∞(N ) on superspace admit two commuting actions of n, by the left- and right-
invariant vector fields Qα and Dα , where the index α refers to a basis in n1. Then one
constructs the cdga

A• := (
C∞(N ) ⊗C R/I , λα Dα

)
, (4.8)

graded by placing the generators of R/I in cohomological degree one. In coordinates,
the right-invariant vector fields take the explicit form

D = ∂

∂θ
− θ

∂

∂x
, (4.9)

with the structure constants of n appearing in the second term. This cdga acquires
the structure of a multiplet through the left-invariant fields Qα; it is also an algebra
over R/I . The functor A•

R/I is just the tensor product over R/I with A•:

A•
R/I (�) := A• ⊗R/I �, (4.10)

where � is any p0-equivariant R/I -module. A• was called the “canonical multiplet”
in [14] and “the tautological filtered cdgsa” in [46]; in the prior literature, it is often
just called the (scalar) pure spinor superfield. We note that A• = A•

R/I (R/I ).
While this functor can be used to produce many multiplets of physical interest and

freely resolve them over C∞(N ), it is not an equivalence of categories. As explained
in [28], this can be remedied by extending the formalism using ideas from derived
geometry. The extension replaces Y by the cdga C•(n) placing A•

R/I in the following
diagram.

Modp0R/I Multp

Modp0C•(n)

A•
R/I

C•
Â•

(4.11)

Here C• = C•(n,−) denotes the functor of Chevalley–Eilenberg cochains, which
models the derived n-invariants of a multiplet. The functors Â• and C• establish an
equivalence of dg-categories between C•(n)-modules and p-multiplets.

The derived uplift is a version of Koszul duality, which is easiest to see by thinking
about the sheaf �• of de Rham forms on superspace. The cdga of global sections is
acyclic, and the left-invariant de Rham forms (which are isomorphic to the cochains
of n with trivial coefficients) clearly map to it:

C•(n) ∼= �•(N )N ⊂ �•(N ). (4.12)
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Furthermore, n acts on �•(N ) by left-invariant vector fields, preserving this subalge-
bra. As such, �•(N ) is a resolution of the ground field in (C•(n), U (n))-bimodules.
Tensoring on either side gives a correspondence between the two module categories
which witnesses the equivalence.
The explicit connection between the pure spinor superfield formalism and our discus-
sion above is now clear. Applying the pure spinor superfield functor to C•(n) itself
recovers �•(N ), expressed in the left-invariant frame discussed in §2.3.3 (see [28,
Lemma 3.8] for the proof):

Â•(C•(n)) ∼= (�•(N ), ddR). (4.13)

Recall that the differential splits according to (2.24); the internal differential d1 now
coincides with the Chevalley–Eilenberg differential dC E on C•(n). Taking cohomol-
ogy with respect to d1, we thus recover that

Gr F+• W • = A•
R/I (H•(n)) (4.14)

via an isomorphism of sheaves of cdga’s. The differential d0 is the standard pure
spinor superfield differential, so that the generalized Dolbeault complex in totalized
degree−k—the analogue of the holomorphic k-forms—consists of the supermultiplet
associated by A•

R/I to theLie algebra cohomology group H−k(n), again in the totalized
grading. In particular, we recover the canonicalmultiplet as described in (4.8) in degree
zero,

(W 0,•, d′
0) = A•

R/I (R/I ), (4.15)

such that the canonical multiplet is identified with the structure sheaf of superspace.
This justifies our notation A• = A•

R/I (R/I ) = (W 0,•, d′
0) from above.

The nilpotence variety also classifies the possible twists of theories with p supersym-
metry; these are obtained by taking invariants of a square-zero odd symmetry. Fixing
such an element Q ∈ Y , we can twist the algebra itself by defining a dg Lie algebra
(p , [Q,−]). Its cohomology pQ = H•(p, [Q,−]) is again a graded Lie algebra in
degrees zero to two and should be viewed as the residual symmetry algebra of any
theory twisted by Q; we denote its nilpotence variety (which encodes the possible
further twists of the Q-twisted theory) by YQ .

We call the positively graded piece of the cohomology

nQ = H>0(p, [Q,−]) (4.16)

the twisted supertranslation algebra. Sometimes it is convenient to work with a quasi-
isomorphic dg model for nQ which keeps all the even translations in degree two. To
this end we define a dg Lie algebra ñQ by throwing away the degree zero piece of
(p, [Q,−])while simultaneously replacing its degree one piece by the cokernel of the
adjoint action of Q,

ñQ =
(
p1/Im([Q,−])(−1) ⊕ p2(−2) , [Q,−]

)
. (4.17)
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Importantly,we can apply the pure spinor superfield formalismnot only top, but also
to any of its twists. The results of [46] indicate that the twisting procedure commutes
with the pure spinor superfield construction. In concrete terms, this means that

A•(OY )Q ∼= A•(OYQ ), (4.18)

such that the twist of the canonical multiplet is isomorphic to the canonical multiplet
of the twisted algebra.

This means that the operation of twisting is, in a sense, fully internal to the super-
space: any construction which relies only on the “(almost) complex geometry” of the
weighted flag structure of a superspace, as encoded in its generalized Dolbeault com-
plex, should behave in exactly the same way in any twist. (Recall, for example, that the
full Dolbeault complex can be reconstructed algebraically from �0,• by considering
the module of Kähler differentials. We can thus think of the acyclic D∞ structure we
construct on W • as related, at least loosely, to the algebraic de Rham cohomology of
the dg space Spec A•.)

Any theory admits a maximal twist in which A• reduces to a mixed Dolbeault–
de Rham complex of the standard type.7 If n is the number of surviving translations
in this maximal twist for a theory in d dimensions, then

A•(OY )Q = �0,•(Cn) ⊗ �•(Rd−2n). (4.19)

In light of the above considerations, we can bootstrap information about this maximal
twist: if we have a description of an interacting theory that uses only information about
the complex geometry of Cn (or, more precisely, the THF structure on Cn × R

d−2n),
then exactly the same construction should give a pure spinor model for the untwisted
interacting theory—or for any other twist—when applied to the corresponding gener-
alized Dolbeault complex.

4.2 The defect, the effective dimension, and themaximal twist

To apply the construction of 3.2 in the pure spinor superfield formalism, we thus
need to specify conditions that guarantee the existence and appropriate properties of
the pairing π . In particular, we would like the generalized Dolbeault complex W • to
exhibit the properties of the Dolbeault complex of a Calabi–Yau twofold.
Let us fix a supertranslation algebra n with corresponding polynomial ring R =
Sym•(n∨

1 ) together with dim(n2) generators for the quadratic ideal I and nilpotence
variety Y . We call the number

def(n) = dim(Y ) − (dim(n1) − dim(n2)) = dim(n2) − codim(Y ) (4.20)

7 Maximal twists are characterized by being smooth points of Y ; the deformation problem governed by
nQ is trivial, and no further twists are possible. Maximal twists are not unique; we are here interested in
the maximal twist corresponding to the highest-dimensional smooth orbit in Y .



38 Page 24 of 34 F. Hahner and I. Saberi

the defect of n.8 Roughly, it measures how far the generators of the ideal I are from
forming a regular sequence. The following proposition shows that the defect governs
the support of the Chevalley–Eilenberg cohomology of n, and thus the “complex
dimension” of Spec A•.

Proposition 4.1 Let R/I be a Cohen–Macaulay ring. Then, def(n) is the smallest
non-negative number such that H−i (n) �= 0 for all i ≥ def(n).

Proof Recall that the Chevalley–Eilenberg complex of n is the Koszul complex on our
set of generators for the ideal I . Let H−n(n) be the top cohomology group. By depth
sensitivity (see for example [27, Theorem 17.4]) of the Koszul complex one has

depth(I , R) = dim(V ) − n. (4.21)

The Cohen–Macaulay condition implies depth(I , R) = codim(Y ) implies the claim.
��

We can further define a local version of the defect for any orbit in the nilpotence
variety. For Q ∈ Y we set

def(Q) = dim(V ) − codim(P0 · Q). (4.22)

The following lemma shows that the defect of Q is equal to the number of surviving
translations in a twist by Q.

Lemma 4.2 def(Q) = dim(H2(n, [Q,−])).
Proof Recall that

H2(n, [Q,−]) ∼= V /Im([Q,−]) . (4.23)

The map [Q,−] induces an isomorphism

n1/ ker([Q,−]) −→ Im([Q,−]) ⊆ V . (4.24)

Let P0 · Q denote the orbit of Q inside Y . We use the inclusion i : (P0 · Q) ↪→ n1 to
pull back the tangent space of n1 at Q. The pullback splits as a direct sum:

i∗TQn1 ∼= TQ(P0 · Q) ⊕ NQ(P0 · Q). (4.25)

We can identify the tangent space with ker([Q,−]) and the normal space with the
quotient n1/ ker([Q,−]). Thus, we find in particular

codim(P0 · Q) = dim(NQ(P0 · Q)) = dim(n1/ ker([Q,−])). (4.26)

8 If Y is not equidimensional, we take dim(Y ) to denote the maximum of the dimensions of its irreducible
pieces.
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and therefore

def(Q) = dim(V ) − dim(n1/ ker([Q,−]))
= dim(V /Im([Q,−])) = dim(H2(n, [Q,−])), (4.27)

proving the claim.

It follows from the proposition that the defect of n is the local defect evaluated at a
maximal twist lying in an orbit of maximal dimension. (Note that this is neither the
maximum, nor the minimum, value of the local defect; Y need not be—and often is
not—equidimensional.)

Gorenstein rings of defect two Let us fix a supertranslation algebra n of defect two
such that the quotient ring R/I is both Gorenstein and strongly Cohen–Macaualay.9

By construction, the zeroth Chevalley–Eilenberg cohomology of n yields,

H0(n) = R/I . (4.28)

Further, H•(n) is concentrated in degrees 0,−1 and−2. Since R/I is strongly Cohen–
Macaulay, H•(n) is a Poincaré duality algebra [3, 31]. In particular, we have

H−2(n) ∼= Extcodim(Y )
R (R/I , R) ∼= R/I , (4.29)

where we used the Gorenstein property for the last identification. Thus, there is an
isomorphism of A•(H0(n))-modules

π :
(

A•(H−2(n)) , d′
0

)
−→

(
A•(H0(n)) , d′

0

)
. (4.30)

As we assumed that the defect of the supertranslation algebra equals two, transfer of
the D∞ along (2.12) yields an induced D∞ structure given by (3.9).

Hence, we are in the situation described in 3.2 and can construct an L∞ structure on
A•(H0(n)). Furthermore, the Gorenstein property implies that there is another pairing
on A•(H0(n)), (see [25]), making it a cyclic L∞ algebra and hence an interacting BV
theory (after taking the product with an odd-dimensional smooth manifold to adjust
the parity of the cyclic structure, if necessary).

5 Eleven-dimensional supergravity, both twisted and not

As mentioned above, there are three significant examples of “Calabi–Yau twofolds”
that arise from superspaces relevant to physics. They are all connected to eleven-
dimensional supergravity: either the full theory, or one of its two twists. In this section,
we review the construction of these Gorenstein rings of defect two, and then con-
struct the corresponding homotopy Poisson–Chern–Simons theories. These recover

9 A quotient ring R/I is called strongly Cohen–Macaulay, when all Koszul homology groups (for R/I
viewed as an R-module) are Cohen–Macaulay [31].
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Cederwall’s pure spinor formulation of eleven-dimensional supergravity, Costello’s
description of the maximal twist in terms of holomorphic Poisson–Chern–Simons the-
ory, and a pure spinor lift of the interactions of minimally twisted eleven-dimensional
supergravity described in [42]. We also recall how the rings are related to one another
by twists of the corresponding super Poincaré algebras, which shows (following [46])
that the three interacting theories are also related by twisting.

5.1 Eleven-dimensional supersymmetry and its twists

Let V denote the vector representation for Spin(11) and S the unique spinor repre-
sentation of dimension 32. The super Poincaré algebra in eleven dimensions is of the
form

p = so(V ) ⊕ S(−1) ⊕ V (−2). (5.1)

The nilpotence variety Y ⊂ S is of dimension 23, so that def(Y ) = 2. Furthermore, its
coordinate ring, which is the quotient of polynomial functions on S by the quadratic
ideal generated by the eleven gamma matrices, is a Gorenstein ring. In this sense,
the generalized Dolbeault cohomology of eleven-dimensional superspace describes a
Calabi–Yau twofold. Furthermore, the structure sheaf of this space is nothing other than
the eleven-dimensional supergravity multiplet, described with a pure spinor superfield
in the BV formalism [15, 33]. As was emphasized in [14, 46], eleven-dimensional
supergravity is a canonical supermultiplet, and is thus equipped with a commutative
structure on the space of fields.

Twists The nilpotence variety decomposes into two orbits for Spin(V ), as such, there
are two distinct twists available. The maximal twist is holomorphic in four direc-
tions and topological in the remaining seven, the minimal twist is holomorphic in ten
directions and topological in the remaining one. The maximal twist is a smooth point
of Y , whereas the minimal twist corresponds to a singular point. As is well-known [6],
the singularities take the form of the cone over the projective variety Gr(2, 5). The
stabilizer of a minimal supercharge is SU(5), whereas the stabilizer of a maximal
supercharge is G2 × SU(2). (For more details on the geometry, see [26] and the
references therein.)

Applying the pure spinor functor to the coordinate rings of the twisted nilpotence
varieties YQ , one obtains the BV complexes of the free twisted theories. We can
now apply our results to construct interactions for these theories in all these cases in
a uniform way, realizing them as homotopy Poisson–Chern–Simons theories. By the
results of [46], the resulting theories are then obtained from one another—in particular,
from eleven-dimensional supergravity—by taking the corresponding twist.

We will begin by describing the maximal twist, and work up to the full theory.

5.2 Themaximal twist

In [17] a description of the maximal twist in terms of Poisson–Chern–Simons theory
was proposed. The twist was computed in the free limit using a component field
description in [24], and realized as a further twist of the minimal twist in [42].
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Table 1 Decomposition under
the stabilizer

Decomposition under the stabilizer The maximal twist on flat spacetime is defined on
R
7 × C

2. We begin by decomposing all relevant Spin(11)-representations to G2 ×
SU(2) × U(1). It is useful to remember the inclusions of subgroups,

Spin(11) ⊃ Spin(7)×Spin(4) ⊃ G2 ×SU(2)+ ×SU(2)− ⊃ G2 ×SU(2)+ ×U(1),
(5.2)

where we identified Spin(4) ∼= SU(2)+ × SU(2)− and the U(1) appearing in the
last step is the Cartan of SU(2)−. Under this subgroup, the vector representation of
Spin(11) decomposes as

V = V7 ⊕ L ⊕ L∨, (5.3)

where V7 is the seven-dimensional irreducible representation of G2 and L ∼= 21 (as
well as L∨ ∼= 2−1) as SU(2) × U(1)-representations. The spin representation gives

S = (1G2 ⊕ V7) ⊗ (20 ⊕ 11 ⊕ 1−1). (5.4)

We immediately see that S contains two copies of the trivial representation of G2 ×
SU(2), coming with U(1) weights ±1. These correspond to the maximal square-zero
supercharges. For definiteness, we choose

Q ∈ 1G2 ⊗ 1−1. (5.5)

Twisting the supersymmetry algebra Remembering that so(V ) ∼= ∧2V and that, as
G2-representations,

∧2 V7 ∼= V7 ⊕ g2, (5.6)

we can decompose the dg Lie algebra (p, [Q,−]) as shown in Table 1.
Here, the arrows represent the map [Q,−]. By Schur’s lemma, all non-vanishing

arrows are multiples of the identity; thus it is immediate to compute the cohomology.
Identifying the holomorphic translations as 21 = L , we find a purely even Lie algebra
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of the form

pQ = H•(p, [Q,−]) =
(
g2 ⊕ sl(L) ⊕ V7 ⊗ 2−1 ⊕ 1−2

)
⊕ L(−2). (5.7)

We note that the positively graded piece nQ is just the abelian even algebra L . The dg
model ñQ is of the form Correspondingly,OYQ = C, and the nilpotence variety is just
a point. Note that both the dimension as well as the codimension are zero. As there
are two surviving translations, the defect is thus def(nQ) = 2.
We can now apply the formalism of §2.3.3 to the twisted supertranslation algebra
nQ . The weighted flag structure takes D1 to be the zero section and D2 to be the full
(holomorphic) tangent bundle. Doing so, we recover the negatively graded algebraic
de Rham complex of C2:

�• = C[z1, z2][dz1, dz2], (5.8)

with dzi in totalized degree −1. The differential d1 is trivial, and W • = �•; the
“structure sheaf,” which is the canonical multiplet of nQ , just consists of holomorphic
functions on C2.

In order to give a representation as a multiplet living on V = R
7 × C

2, we can
resolve in smooth functions over V ; this recovers the Dolbeault complex of (0, •)

forms on C
2. We note that this can be obtained directly by considering the canonical

multiplet of the dg model nQ :

A•(OYQ ) �
(
�0,•(C2) ⊗ �•(R7), ∂̄C2 + dR7

)
(5.9)

In either case, this corresponds to the field content of the maximal twist of eleven-
dimensional supergravity [24].

We thus find ourselves in the setting of Z/2-graded holomorphic Poisson–Chern–
Simons theory. Constructing the L∞ structure recovers the interactions of Poisson–
Chern–Simons described in 3.1.

We note that the vanishing of the Chevalley–Eilenberg differential on the twisted
supertranslation algebra (which directly follows frommaximality of the twist) ensures
that we end up with Poisson–Chern–Simons theory instead of its homotopy version.
This is a general feature of maximal twists. Nonetheless, applying our construction
to a non-integrable complex structure would have given rise to a non-strict Poisson–
Chern–Simons theory with nonvanishing 3-ary bracket.

5.3 Theminimal twist

The minimal twist was computed in the free limit at the pure spinor cochain level
in [46]. Interactions for the component fields were proposed (and numerous consis-
tency checks perfomed) in [42].

Twisting the supersymmetry algebra The stabilizer of a minimal square-zero super-
charge Q ∈ Y is isomorphic to SU(5). Choosing such a Q is equivalent to the choice
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of a maximal isotropic subspace L ⊂ V . The vector representation then decomposes
as

V = L ⊕ L∨ ⊕ C. (5.10)

The twisted super Poincaré algebra (p, [Q,−]) and its cohomology pQ were analyzed
in [46]. The positively graded piece of the cohomology is found to be

nQ ∼= 
 ∧2 L(−1) ⊕ ∧4L(−2), (5.11)

where the bracket of two odd elements is given by thewedge product. (The parentheses
refer to shifts in the weight grading.) The nilpotence variety YQ is isomorphic to the
affine cone over the theGrassmannianGr(2, 5) of two-planes inside a five-dimensional
vector space. One can equivalently think of this as the space of bilinear skew forms of
rank two on L∨. As an affine variety, we have dim(YQ) = 7, and therefore

def(nQ) = 7 − (10 − 5) = 2. (5.12)

OYQ is also Gorenstein, so that we can apply our procedure to construct interactions
for A•(OYQ ). By [46], the pure spinor multiplet A•(OYQ ) is equivalent to the min-
imal twist of the supergravity multiplet. Our procedure thus constructs interactions
for minimally twisted supergravity on the pure spinor cochain level, corresponding
to a suggestion in [13]. We expect that the interacting theory with this field content
constructed in [42] can be obtained from this cochain-level description via homotopy
transfer, thus rigorously proving that the twisted eleven-dimensional supergravity the-
ory of [42]—which is intimately related to the exceptional simple linearly compact
super Lie algebra E(5|10)—is in fact the twist of eleven-dimensional supergravity.
This computation will appear in forthcoming work [32].
From above, we know that W • can be constructed by considering the pure spinor
multiplets associated to the Lie algebra cohomology groups of nQ . The cochains are
given by

C•(nQ) ∼= ∧•L∨ ⊗ R, (5.13)

where we identified
Sym•(n∨

1 ) = R = C[λab]. (5.14)

We think of λab as a basis on (nQ)∨1 = (∧2 L)∨ for a, b = 1, . . . , 5, and make use
of the isomorphism ∧4L ∼= L∨. Further, we can think of L∨ as constant holomorphic
one-forms on L = C

5 with basis {dza}. The Chevalley–Eilenberg differential is of the
form

dC E = λabλcdεabcde
∂

∂(dze)
. (5.15)

As expected for a Gorenstein ring of defect two, the cohomology is concentrated in
degrees 0,−1 and −2:

Hk(nQ) ∼=

⎧
⎪⎨

⎪⎩

R/I k ∈ {0,−2}
M k = −1

0 else,

(5.16)
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where M is the cokernel of the map

φ : R ⊗ ∧2L −→ R ⊗ L ea ∧ eb 
→ εabcdeλcdee. (5.17)

Here {ea} is a basis of L . As R/I -modules, H0(nQ) is freely generated by the unit 1,
while H−2(nQ) is freely generated by λabdzadzb.
After tensoring with de Rham forms on R in order to resolve freely over C5 × R, we
can describe �• with the quasi-isomorphic complex

(
�•

dR(C5) ⊗ C[λab, θab] , ∂C5 + ∂̄C5 + R + dC E

)
⊗ (

�•(R) , dR
)
, (5.18)

where

R = λ

(
∂

∂θ
− θ

∂

∂x

)
(5.19)

is the standard pure spinor differential. Here, the spatial coordinate x is one of (z, z).
Note that, with respect to the description in §2.3.3, θ is an odd function on the super-
space N , whereas the one-forms are λ, dz, and dz. The weighted flag structure places
dz in totalized degree −1 and everything else in degree zero. We can identify

d1 = dC E , d0 = R + ∂̄ + dR, d−1 = ∂. (5.20)

We construct the generalized Dolbeault complex W • according to the standard pro-
cedure, using the formulas for the transferred D∞ structure above (3.9). The weighted
pieces of the generalized Dolbeault complex are the pure spinor multiplets associated
to the modules of §5.3.3. In contrast to the maximal twist, a piece of degree −2 arises,
such that there is a non-vanishing map

d′−2 : A•(H0(nQ)) −→ A•(H−2(nQ)), (5.21)

signaling that the induced L∞ structure will not be strict.
The Gorenstein property guarantees that there is an isomorphism

π :
(

W −2,•, d′
0

)
−→

(
W 0,•, d′

0

)
. (5.22)

Explicitly, π is induced from the isomorphism between H−2(nQ) and H0(nQ); thus,
in terms of representatives, we have

π(λabdzadzb) = 1. (5.23)

Hence, we obtain an L∞ algebra structure on A•(H0(nQ)) by the formulas in Propo-
sition 3.3.
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5.4 Eleven-dimensional supergravity

Recall that the canonical multiplet associated to the eleven-dimensional supertrans-
lation algebra is the supergravity multiplet. In [11] and [10], Cederwall constructed
a consistent quartic BV action functional, recovering interacting eleven-dimensional
supergravity in the pure spinor superfield formalism. We now recover these interac-
tions as an instance of homotopy Poisson–Chern–Simons theory.

Lie algebra cohomology and W •. The Chevalley–Eilenberg cochains of the untwisted
supertranslation algebra take the form

C•(n) = (∧•V ∨ ⊗ R , dC E
)
, (5.24)

where R = Sym•(S∨) = C[λα] is the polynomial ring in {λα} with α = 1, . . . , 32.
Fixing a basis {vμ} of V ∨, the Chevalley–Eilenberg differential takes the form

dC E = λα�
μ
αβλβ ∂

∂vμ
. (5.25)

Again, Chevalley–Eilenberg cohomology is concentrated in degrees 0,−1 and −2,
with H0(n) and H−2(n) both being isomorphic to the ring of functions on the nilpo-
tence variety OY = R/I . The cohomology in degree −2 is spanned by the class

(λα�
μν
αβ λβ)vμvν. (5.26)

Eleven-dimensional interactions Applying the pure spinor superfield construction, we
construct the generalized Dolbeault complex as the sum of the multiplets associated to
the modules from the previous section. (We note that the multiplet W −1,• physically
corresponds to a field-strength multiplet for W 0,•; this fact was already appreciated
in [15].)

As always, the weighted flag structure on the de Rham complex of superspace
induces a D∞-module structure onW •,where d′

0 is the standard pure spinor differential
and d′−1 and d′−2 are both nontrivial. Restricting these differentials to W 0,• recovers
Cederwall’s differential operators constructed in [10, 11], where

d′−1 : W 0,• −→ W −1,•, (5.27)

corresponds to “R” and
d′−2 : W 0,• −→ W −2,• (5.28)

corresponds to “T ”. Together with π induced from

π(λα�
μν
αβ λβvμvν) = 1, (5.29)

this yields an L∞-structure on W 0,•.
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Batalin–Vilkovisky actions? We have constructed the L∞ structure underlying the
interactions of eleven-dimensional supergravity as a homotopy Poisson–Chern–
Simons theory, working at the pure spinor cochain level. It is also known that the
complexes we work with admit (−1)-shifted (or at least odd-shifted) symplectic struc-
tures.Nevertheless,writingBVaction functionalswould require a theory of integration
or Verdier duality on the dg ringed spaces we construct. This has not yet been worked
out concretely in our examples, and so we refrain from writing such functionals here
(although we note that it can be done using an analytic approach to constructing singu-
lar Calabi–Yau forms on the nilpotence variety; see [10], where the action functional
in the untwisted case is written). We look forward to studying the theory of integration
on pure spinor superspace in future work.
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