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Abstract

We consider a Bose gas on the unit torus at zero temperature in the Gross-Pitaevskii regime,
known to perform Bose-Einstein condensation: a macroscopic fraction of the bosons occupy
the same quantum state, called condensate. We study the Bose gas’ quantum depletion, that
is the number of bosons outside the condensate, and derive an explicit asymptotic formula
of its generating function. Moreover, we prove an upper bound for the tails of the quantum
depletion.

1 Introduction and Results
1.1 Introduction

As predicted by Bose [6] and Einstein [12], and later also observed experimentally [1,
13], trapped Bose gases show a peculiar phase transition at extremely low temperatures:
a macroscopic fraction of the particle condense into the same one-particle quantum state,
called Bose-Einstein condensate. This paper is dedicated to the mathematical description of
Bose-Einstein condensates.

For this, we consider N bosons on the unit torus 7 = T° in three dimensions described
on L?(nN ), the symmetric subspace of L%(x™) through the Hamiltonian

N

1 N
Hy =) (=80 + 5 > Vi = x)) (1.1)

i=1 i=1

where in the following, we assume that the two-body interaction V is an element of L3(71),
non-negative, compactly supported and spherically symmetric. The two-body interaction
Vn(x) = N3V(Nx) depends on the distance of the i-th and j-th particle on the torus
T3 only, and scales with the total number of particles N and models approximate delta-
interaction in the large particle limit and corresponds to the Gross-Pitaevskii regime. At zero
temperature, the Bose gas relaxes to the ground state. In fact under the conditions on V
formulated above, the Hamiltonian Hy is on the domain of smooth functions well defined,
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bounded by below and, by Friedrich’s method, extendable to a self-adjoint operator (that,
in abuse of notation, we call Hy in the following, too). The unique (up to complex phase)
ground state {r of Hy is well known to exhibit Bose-Einstein condensation: a macroscopic
fraction of the particles condense into the same (one-particle) quantum state, the so-called
Bose-Einstein condensate, in our setting given by ¢ = 1, € L*(;r). Mathematically, the
property of Bose-Einstein condensation is formulated in terms of the quantum depletion, that
is the operator

N
Ny=) 0, with 0=1—]p)gl| (1.2)

i=1

and where Q; is the operator that acts as the projection Q on the i-th particle. Thus, by defi-
nition (1.2), the quantum depletion counts the number of particles outside of the condensate.
Then, the ground state ¢y of (1.1) is said to satisfy Bose-Einstein condensation, if

Eyy[N+] (v, Npvw)
N N

—-0 as N —> 0. (1.3)

The property of Bose-Einstein condensation was first proven by [17]. Later, the rate of
convergence of (1.3) was studied in great detail since then [2—4, 14, 15] and showed to be
O(1/N). In the past decades, the property of Bose-Einstein condensation and excitations
beyond the condensate have been studied in various settings: we refer to [9, 10, 18, 21, 23,
24] for generalizations for Bose gases on R trapped through an external potential.

The analysis of the number of excitations beyond the condensate, counted by the operator
N, is based on a mathematical verification of Bogoliubov’s theory [5] on the Bose gas’
excitation spectrum given in [3]. To be more precise [3] proves an asymptotic formula ofthe
expectation of A in the large particle limit given in terms of the interaction potential V’s
scattering length, defined through the solution f of the potential’s scattering equation by

a=/V(x)f(x)dx where (—A—l—%V)f:O, and f(x)Ml. (1.4)

To be more precise, [3] shows that the expectation of the quantum depletion is asymptotically

po= lim By [N ] = sinh?(vy) (1.5)
peny
with
v :=110g p72 , and 7t =(27‘[Z)3\{0} (1.6)
Py p?+ 167a +

and thus, in particular, in the large particle limit O(1). Note that the mean A in (1.5) is
defined in momentum space 7 *, as in our setting it turns out to be more convenient to work
in momentum instead of position space.

1.2 Results

We further improve the characterization of the Bose gas’ quantum depletion and compute an
asymptotic formula for the generating function.
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Theorem 1.1 Let V € L3(xr) be non-negative, compactly supported and spherically sym-
metric and Yy denote the ground state of Hy defined in (1.1). Then there exists A9 > 0
(depending on 'V only), for all |A| < kg, we have

lim Ey, [¢*] = *®) (1.7

N—oo
where A : [—Ao, Ag] = R is a convex function given by
2cosh?(v,)(cosh(2k) — 1) — e + 1
K
- 2cosh2(vp) sinhz(vp)(cosh(Zlc) -1

2
_ 2 P2
A(A) _/ E cosh”(v,) sinh (v,,)1

pemy

+2 ) sinh®(vp) . (1.8)

*
pemy

Moreover, for k € N, we have

k
A ) (1.9)

im B M= g )

Remark 1.1 We collect some remarks on Theorem 1.1.

(i) First we note that the r.h.s. of (1.11) is finite for sufficiently small A9 > 0, since
sinh(v,) € Kz(ni) by definition of v, in (1.6).

(ii) Inthe proof of Theorem 1.1 we establish a rate of convergence of (1.7) thatis O(N~ 174y
(see (4.6)).

(iii) In Theorem 1.1, more precisely (1.9), we prove that the asymptotics of Ey, [¢*+] can
indeed be understood as a generating function of the asymptotic number of excitations.
Through (1.9) computations of any moment of the number of excitations Ny reduces
to taking derivatives of the function A defined in (1.11).

(iv) Inthe proof, we embed the problem in the bosonic Fock space (see Section 3 and Section
4 for more details) where we can write the operator NV in terms of the creation and
annihilation operators as Ny = Y pent a;‘,a p with ¥ = 2773 \ {0} . It turns out

that Theorem 1.1 then easily generalizes to operators of the form ) pent tpa,ap for
sequences T, € Zz(njﬁ) such that cosh(2At,) — 1 < 1/(2 sinhz(vp) coshz(vp)) for
all p € 7} and all |\ | < Ao. Then, the corresponding moment generating function

satisfies
. LD pent Tpdpdp AQ)
lim Ey,|e =<+ 77 =e (1.10)
N—oo
where

2cosh?(v,)(cosh(2kT,) — 1) — e 2% 4 |
K
1-— 2COSh2(vp) sinhz(vp)(cosh(2/crp) -1

A
K(A) :/ Z T coshz(vp) sinhz(v,,)
0

peTy

+21 ) 1psinh*(v,) . (1.11)

peny
Exponential and Moment Bounds

Theorem 1.1 provides a detailed description of the number of excitations through an asymp-
totic formula of the generating function. As an immediate consequence, we recover back (1.5)
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and, moreover, any moment of the number of excitation is bounded by a constant independent
in the total number of particles N, i.e.

E[M] < G (1.12)
for C; > 0 and, moreover
E[eM+] < Cre . (1.13)

for small A > 0 and Cy, C> > 0. With (1.12) and (1.13) we recover back earlier results (see
[3] for (1.12) resp. [22] for (1.13)). Note, however, that the proof of Theorem 1.1 relies on
the apriori bound exponential of the form (3.28) from [22].

Limiting Distribution

The existence of an asymptotic formula for the characteristic function E[ei)‘N + ] where L € R
and i denotes the imaginary unit, implies, by Levy’s continuity theorem, that the random
variable NV has in distribution an asymptotic limit. We note that Theorem 1.1 establishes
an asymptotic formula for the moment generating function E[e”\/ +] only for real values of
A, since its proof relies on the solution of an ordinary differential equation defined over the
real numbers. Nonetheless, we conjecture that the asymptotic behavior also holds for purely
imaginary values of A, and thus that the random variable A/, has in distribution an asymptotic
limit for N — oo.

Characterization of Tails

As a consequence of Theorem 1.1 (more specifically (1.9)), the deviation of Ny from its
asymptotic expectation value u, defined in (1.5), is in the large particle limit

Eyy [(NVs — u)z] ——— o with =2 Z sinh?(v,) cosh?(v,,) (1.14)
pET

(see Section 2 for the proof of (1.14)). In particular, the deviation does not vanish in the limit

N — oo. Related to that we show in the following Corollary that A does not converge

in probability to its asymptotic expectation value u = limy_ ]E[N+] This statement is

complemented by an asymptotic upper bound for the tails of the number of excitations.

Corollary 1.2 Under the same assumptions as in Theorem 1.1, assume that a # 0. Then,
there exists n, &, > 0 such that

liminf Py, [[V: — u| > n] > &, , (1.15)
N—o00
where | is defined by (1.5), and

lim sup Py, [NV} — p = n] < ™00l [~o-wiram] (1.16)

N—oo

We remark that Corollary 1.2 provides through (1.16) an upper bound for the upper tails
of ;. Related to (1.15), we can, however, not prove a matching lower bound for the upper
tails.
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Corollary 1.2 illustrates correlations among excitations of the BEC. To be more precise,
Corollary 1.2 characterizes the behavior of the sum N} = ZIN:I Q;, where, in abuse of
notation, we call Q; the random variables with law

P[Qi € B] = (Y, 15(Qi)¥y) forany BCR. (1.17)

The random variables are identically distributed (as ¥y € L?(n)) and, due to quantum
correlation, dependent.

Quadratic Exponential Bounds

Expanding the r.h.s. of (1.16) for small A > 0, we find that
. 2
lim sup Py, [N+ S n] < e Mre.g] [—nk+%02+0(k3)] (1.18)
N—oo

with 2 > 0 given by (1.14), and we recover back quadratic bounds for the upper tails of
N proven earlier in [22] through an expansion of the generating function Ey,, [e’\N+] for
small A > 0 together with the exponential bounds (1.13).

General One-Particle Observables

We further generalize Theorem 1.1 resp. Corollary 1.2 to self-adjoint one-particle operators'
0 on £2(*) satisfying O = QO Q for Q = 1 — |¢)(¢|, i.e. to one-particle operators O that
are orthogonal to the condensate. We then define the N-particle operator

0;=1®--- 9101 ---®1 (1.19)

acting as identity on all but the i-th particle on which it acts as the operator O. With this
notation we define, in abuse of notation, the random variables O; through its law

IP’[O,- € B] = (YN, 1p(0)Yy), forany BCR. (1.20)

The next theorem proves an asymptotic upper bound for an exponential decay rate of the sum
of the random variables O;. To state our result we introduce the short-hand notation

sp :=sinh(vp), c¢p =cosh(v,), and 7, =tanh(v,) (1.21)
that we use to formulate the asymptotic expectation value of O;
o=y Op,sp. (1.22)
peETY

Theorem 1.3 Let V € L3(r) be non-negative, compactly supported and spherically sym-
metric and let Wy denote the ground state of Hy defined in (1.1).

Furthermore, let O be a self-adjoint operator on £2(n*) with kernel Opg € ZZ(H_T_) X
Kz(nj_) satisfying 0= QOQ where Q is defined in (1.2). Then, there exists Ay > O such
that the random variables O; fori € {1, ..., } defined by (1.20) satisfy

lim By, [e* X151 0] = eho® (1.23)

N—oo

! Here we introduced the notation O as the inverse Fourier transform of the operator O defined in 22 (r*) x
£2(7*) since in our setting it is more convenient to formulate the following statement in momentum space 7 *. If

O haskernel Op 4 € £2(*) x 2 (7r*), then the operator O has kernel O (x, y) = Zp,qen* OI,,qeip'Xe_iq'y.
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Sfor all |\| < Lo and, moreover,

N
lim PwN |: Z 0 — o > ni| < einfo<k<ko [(Vl—MO)K—AO(X)] (1.24)
N—oo P

for all n € (0, N] where o is defined in (1.22) and A : [0, Ag] — R denotes a convex
function given by

A o .
AQY) :/ > 5pcg0pg Y (Dpgai() Arelyde +1 Y 0p psn (1.25)
0 p,q,k,[en_’{_ j=0 peni

where the j-th power of the kernel D, 4 i ¢ is recursively defined by

4 -
D) k) =8pi8qe, and D) )= Y DI ()Dp e k()  (1.26)

Keent
and

_ R KkO_ kO, —k0_ -k O,
Ap (k) = —cpsgbp g +cpcglce =P, se"7a )Zz(ﬂi) + 5psq(se P, ce q>82(nj;)

— spcq(se™O0-r, se’(O*fJ)Zg(ﬂi) — cpsq(se™ 0, se’(op)[z(ﬁ) (1.27)

with the notation O := O.,p, O = O_. 4 and

Dp,q,k,l(K)
= CpCkCqSiTe <eKO,kV,peK0(Vq _'_e—KOk',pe—KO,(Vq _ e—KOkfpeKOL,q _ e—KOk,peKOLq) )

(1.28)

Remark 1.2 We collect some remarks on Theorem 1.3.

(1) In the proof of the Theorem in Section 4 we establish the rate of convergence of (4.5)
that is O(N /) (see (4.11)).

(ii) Furthermore, in the proof we show that the asymptotic generating function A o is well
defined, i.e. that the r.h.s. of (1.25) is finite (see the discussion before (4.90)).

Normal vs. Anomalous Random Variables

Corollary 1.2 and Theorem 1.3 characterize tails for the sum of correlated random variables
O' resp. Q' with non-vanishing deviation in the large particle limit; they show anomalous
scaling properties. These results embed in a series of recent results [7, 11, 16, 26-30] on a
new probabilistic interpretation of Bose-Einstein condensates studying random variables A;
defined similarly to (1.20) with A # QA Q. These random variables A;, thus, measure the
correlation between the condensate and the excitations. Similarly to the random variables
Q;, the random variables A; are identically distributed and dependent. In contrast to (1.14),
the random variables cluster around their asymptotic mean

N
1
Bo| 5 > i — (1.29)
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with a deviation

[( ZA - ¢,A¢>]—>O (1.30)

that vanishes in the large particle limit. Consequently, Bose-Einstein condensation is asso-
ciated with a weak law of large numbers of the random variables A; (see [7]). In fact, the
deviation (1.30) of the random variable A; from its mean turns out to be O(N "), and thus
agrees with the scaling of normal distributed random variables. In past years, the random
variables were indeed proven to satisfy central limit theorems [29], also recently in the dynam-
ical setting [11]. In the mean-field regime (corresponding to the case Vy := V in (1.1)) the
large deviation regime for A; is characterized through quadratic upper and (matching) lower
bounds both for the ground state [28] and the dynamics [16, 30]. Note that, for the random
variables O; resp. Q;, we can prove an upper bounds in Corollary 1.2, 1.3 on their tails only.

1.3 Idea of the Proof

The novelty this paper is the derivation of an explicit asymptotic formula for the generating
function for the number of excitations A4 in Theorem 1.1 resp. the sum of random variables
ZlN: 1 Oi (as defined in 1.20) in Theorem 1.3. The idea for establishing explicit formulas for

Eyy [ ], resp. By [er Zim O] (1.31)

in the large particle limit N — o0, is to combine an approximation of the ground state iy
in L2(™N)-norm (proven in [3]) with exponential bounds on N recently proven in [22]. To
be more precise, we show that thanks to [3] and [22], the computation of (1.31) reduces in
the large particle limit N — oo to the computation of the generating function of Ny in a
quasi-free state, namely

Eyy [V ] ~ (eFvq, MV ekrg) (1.32)

where €2 denote the vacuum vector of the bosonic Fock space, equipped with standard creation

and annihilation operators aj,, a,, and eXv denotes a Bogoliubov transformation given by

& with K, = Z vp(aipap —apa_p) (1.33)

*
peny

with v;, defined in (1.6). A peculiar property of a Bogoliubov transformation of the form
(1.33) is that one has explicit formulas for its action on creation and annihilation operators
(for more details see Section 3) that, in particular lead to the validity of Wick’s rule for quasi-
free states (see for example [32] and [33, Theorem 10.2]). Based on these, we explicitly
compute the right-hand side of (1.32) by solving an ordinary differential equation. To the
best of the author’s knowledge, this yields a novel formula for the moment generating function
of N not previously reported in the literature. The computation of the asymptotic formula
for the generating function of Ey, [e* Pl 1] works with similar ideas. Both proofs are
given in Section 4.

@ Springer



108 Page8of34 S. Rademacher

1.4 Structure of the Paper

The rest of this paper is structured as follows: In Section 2 we use Theorem 1.1 to prove
Corollary 1.2 on the tails of the distribution of Ay and formulas (1.14), (1.30) on the devi-
ations from their mean. In Section 3 we collect preliminary results, in particular on the
approximation of the ground state and prove additional properties of its approximating state
that we need to prove Theorems 1.1 and 1.3 in Section 4.

2 Characterization of Deviations and Tails

In this Section we derive Corollary 1.2 on the characterization of the tails (Section 2.1) for
N from the asymptotic generating function in Theorem 1.1. We furthermore show that
Theorem 1.1 allows to draw conclusion on the deviations of Ay from its mean u (Section
2.2).

These proofs are based on explicit asymptotic formulas of moments of the number of
excitations. In fact from Theorem 1.1 (more specifically (1.9)) we find

lim Ey,[Wy —w)?] =02 2.1
N—o00
recovering back (1.14). We recall definition
o2=2 Z coshz(vp) sinhz(vp) 2.2)
peT}

and the sequence v, is given by (1.6). A straight forward computation, based on 1.9 of
Theorem 1.1, shows furthermore

lim By, [(Wy —w)*] = 120% + 807 +48 > cosh(v,)* sinh(v,)* . (2.3)
N—o00

peny

2.1 Characterization of Tails

In this Section we prove Corollary 1.2.

Proof The proof of both statements of Corollary 1.2, namely (1.16) and (1.15), are both
based on Theorem 1.1. We start with the proof of (1.16) that is an immediate consequence
of Markov’s inequality.

Proof of (1.16):

For all A > 0 we have

Pyy [Ny — > n] = P[e}‘NJr*}‘“ > e}‘"] 2.4)
and, thus we find with Markov’s inequality

Py [Ny — i > n] < e HHWE[H] 2.5)
Since this holds true for any A > 0, we conclude with Theorem 1.1 that

limsuplogPyy [Ny —pn >n] < inf [—A(n4+p) +AR)]. (2.6)
N—o00 re(0,x

0l
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Proof of (1.15):

The proof of (1.15) uses that the asymptotic generating function A defined in (1.11) allows
to explicitly compute any moment of Ay asymptotically.
First we observe that for arbitrary n, m > 0, that we will choose later,

Pyy[[Ny = 1| > n] = Py, [INg — ul € (r,n+m)]. 2.7)

We proceed with estimating the r.h.s. from above. To this end, we introduce the notation

Ny =Ny —ul
Py [ING =l € (n.n+m)] =Eyy [Lnnpm (V)]
=By [Lnm (N ) NN 2.8)

Since MZ > (n +m)~2 on the support of 1 (. n+m) (K/+) we find

1 o~
IP,,,N[|N+ —ul € (m,n +m)] F )Z]E,I,N [ n ) (N )Nﬁ] . (2.9)

We define the new probability distribution

- Eyy [N xa (N
By [Ny e A] = W (2.10)
YN [V +

that is for sufficiently large N well defined as Ey,, []\V/i] > 0 from (2.1). Thus with (2.10)
we can write the r.h.s. of (2.9) as

_Eyy [/V2 15
(n+m)?

E M o Srv
@.11)

IP’wN[|N+— | € (n, n-l-m)] [N € (n, n-l-m)]

where we used that by definition 2.10, it follows By, [N — | = 0] = 0. Next, we apply
once more Markov’s inequality for the probability measure P and arrive at

E[A?
IP’W,[L/\/Jr — u| € (n, n+m)] (E_]z [./\/; € (n, n—l—m)]
_E[F] U(al e
SR (e ).
(2.12)
Now we choose n, m such that
S B 1 1ER]
n? = 41&:[/\&], = R 2.13)
yielding
E[N E[N. ]
P[INy — pul € (n,n+m)] > %] = V] (2.14)

“2(n+m)? SE[M] ’
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From (2.3) we find using the assumption a > O, that in particular implies ¢ > O, that
}E[/Y/i] > 120* so that we finally arrive with (2.1) at

P[INy —pul € n,n+m)] 25673 > 0 (2.15)
o
that is the desired statement. ]
2.2 Characterization of Deviations from the Mean
In this section we show that the deviation of ;. from its mean u does not vanish in the large
particle limit (i.e. formula (1.14)) while, contrarily, the deviation of the random variables A;

with A # QAQ as defined in (1.20) does vanish as N — oo (see formula (1.30)).

Proof of (1.14)

From (2.1), we immediately find

Jim By, (W~ w’l=o. (2.16)
Proof of (1.30)
We compute
2
(52 )|
1 N 1 N 2 N
= 3B [ZA,-A,} - NzEva[ZA} -5 A¢>EV,N[ZA,-] + (. Ap)?
i#j i=1 i=1
(2.17)

and use the k-particle reduced density associated to ¥y

Voo = Tri v I¥n ) Uy ] (2.18)

defined as the partial trace starting from the k + 1 to the N-th particle of the orthogonal
projection onto vy to express the r.h.s. of (2.17) as

ol (3 3= onae) |

N(N —1
- % Vi (A® A) + Try(l)A 2(p. Ap) Try ) A+ (g, Ap)?. (2.19)
Since, as proven in for example in [17], for fixed k € N, we have
: (k) ®k
lim T — =0 2.20
Jim Trlyy, [ — 1) (@l (2:20)

we get

N 2
ngnooE,,,N[( Z ¢,A¢)] 0. (2.21)
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3 Preliminaries

In this section, we recall basic notation and results from the literature on the many-body
problem that we use for the proof of Theorem 1.1 in Section 4 later. For more details on
Bogoliubov theory in the context of Bose gases, see for example the introductory lecture
notes [33] or recent review articles [20, 25, 31].

3.1 Approximation of the Ground State

For our analysis it is convenient to embed the N-body Hamiltonian (1.1) into the bosonic
Fock space given by

F=@ b . 3.1)
k=1

The bosonic Fock space F is equipped with standard creation and annihilation operators
a*(f) resp. a(g) with f, g € L?(rr) that satisfy the canonical commutation relations

[a(g).a*(N] =g, ), [a"()),a* @] =[a(f), al@]=0. (3.2)

For our analysis in the translation invariant setting on 7, it is convenient to work in momentum
space 7 = (27 Z)3 where we define

ay=a*(gp), ap,=alp,), ¢p(x)=eP"* eL’(). (3.3)

In momentum space, the number of particles operator can then be written as
N= " ata, (34)

pem*
and decomposed, recalling that the condensate wave function ¢ corresponds to the zero mode
p=0,as
N=Ni+ajap. with Ny =Y asa, (3.5)
pETY

the number of excitations and the notation 7} = 7* \ {0}. We recall some bounds of creation
and annihilation operators in terms of the number of particles operator, that we use in the
proof later. For ¥ € Fand f € L*(r) we have

la(HWI < NFI2IN2 ), lla*(HY < 1 FIl2 IV + DYy, (3.6)
and for any operator H on £2(7r*) with kernel H p,q and &1, & € F, we have
(€1, Y Hpgahagea)l < [ Hllop N8I N 28], (3.7)
p,qen*
and furthermore,
(€ Y Hpgahag@)l < 1Hl g INEITNV+ D8] (38)
p,qen*
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With this notation, the second quantization of the Hamiltonian (1.1) in momentum space
reads

1 ~
Hy= Y + > V@ /Ny, atapag, (3.9)
pEA* r,p,qeA*

where we used the convention \7(p) = ng dx e” PV (x) for p € R3.
To study the quantum fluctuations around the condensate’s behavior, we factor out any
contribution of the condensate ¢ = 1, through the unitary

N
N
Uy : L (x") > 750 = @ L1, ™ (3.10)
=0

that maps v, which can be uniquely decomposed as

N
yn =y e® V@ g™ with ™ e L], (m)®", (3.11)
n=0

onto the excitation vector £ = {€@ ... £} ie. Uyyn = &. The unitary Uy, first
introduced in [19], acts for p, g € 7} on products of creation and annihilation operators as
L{Na;aql/{f\, = a;aq, Unagaoldy = N — Ny, (3.12)

resp.
Uyaaolly = N'?b%. Uyaga Uy = N'/?b, (3.13)

where we introduced modified creation and annihilation operators b, b, givenfor p, g € 7}
by

b = a%y/T—Ny/N, b,:=1-N;/Na, . (3.14)

Contrarily to standard creation and annihilation operators, the modified ones, first introduced
in [8], leave the truncated Fock space ffg invariant, however, that comes with the price of
modified commutation relations

N 1
[by, by] = (1 - W*)ap,q — ~aap. [bp.bgl =[b;b;1=0 (3.15)

having, compared to (3.2), a correction term of order N ~!. Similarly to be standard creation
and annihilation operators in (3.6)-(3.8), the modified ones are bounded w.r.t. powers of the
number of excitations. We have for ¢ € ]-"ff;/ and f € L2(r) we have

(AN < CUFN2 N WL 65O < CIFI IV + D2yl (3.16)

for C > 0 and for any operator H on £2(mr*) with kernel H pqand 1,8 € .7-]5_2’, we have

(€1 Y Hpgbhbeta)l < CllHpIINY 8111 INVY 2l (3.17)
p.qen*
and furthermore,
(&1 D0 Hpgbb? £2)1 < CllH pay sy INEI TN + D820 (318)

p.qen*
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We remark that on the truncated Fock space, the number of excitations equals the number of
particles operator, i.e. N4 = Ny for any ¥ € ff_g .

To study the quantum fluctuations, the so-called excitation Hamiltonian Ly = Uy HU},
needs to be regularized, through a modified Bogoliubov transformation that is a unitary map
on }'fy given by

1
Br = exp [5 S npbiet, —b,,b,,,)] : (3.19)

PEAT

The choice of the sequence 1 € Kz(n_”;) is such that it implements the particle’s correlation
structure and formulated in terms of the solution f to the scattering equation with Neumann
boundary conditions. To be more precise, for fixed, sufficiently large £ > 0, let f; denote the
ground state solution to the Neumann problem

1
[—A—FEV}fz = uefe (3.20)

on the ball |[x| < N¢, where the normalization is such that fy(x) = 1 of |x] = N¢ and
fe(x) = 1forall |[x| > N£. Then, we set
7w — L*(7), 7(x) = —Nwe(Nx) (3.21)

for the definition of the regularizing modified Bogoliubov transformation (3.29). We remark
that the sequence 7 by definition (3.21) satisfies (see for example [3, Lemma 3.1])

Iyl < Clp|~2 (3.22)

and thus, in particular 1 is an element of 62(711).
To prove the L%(nN )-norm approximation of the ground state in [3], the Hamiltonian

is further regularized using a unitary map on ff_fl that is exponentially cubic in modified
creation and annihilation operators and given by

e, A, =exp |:N—1/2 Z nr(sinh(ny)bk, b*,.b*  + coshy, b, b* b, — h.c.)]

rePy,vePy,

(3.23)

with 1 defined through (3.21) and
Po={pent:|pl<NY?* and Py=ni\PL (3.24)

and a second modified Bogoliubov transform on ffg given by
1
B = exp [5 DA —bpb,,,)] (3.25)
peETy
where the sequence t is given by
1 -

vy = = log [1 +20pI ZVep/N)] =y . (3.26)

and thus, in particular (see for example [3, Lemma 5.1]) |z,| < Clp|™* forall p € my. It
was proven in [3, Eq. (6.7)] that the ground state iy of Hy then satisfies

Yy — e@e Bre=4e B < CN~/4 (3.27)
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for an appropriate choice € [0, 27 ]. While it is well known that the number of excitations is
bounded in the ground state, recently it was proven [22, Theorem 1] that also the exponential
of the number of particles is bounded, i.e. that there exists C > 0 such that

Wy, Nryy) < C (3.28)

for sufficiently small |A| > O (depending on V only).

3.2 Modified Bogoliubov Transformation

In this section we study properties of general Bogoliubov transformations defined for any
o€ £2(7r_’;‘_) by
1
eBa, with B, = 5 > ap(bybt, —byb_y) . (3.29)
pen;

In particular, the results then apply for n defined in (3.21) and t defined in (3.26) and thus
for the two modified Bogoliubov transformation eB eBn from (3.19),(3.25) that are relevant
the for norm approximation of the ground state ¥y of (1.1).

We remark that the action of the modified Bogoliubov transform on modified creation and
annihilation operators is approximately known in the large particle limit. As proven in [3,
Lemma 2.3], we have

e PabyeP* =cosh(ap)b, + sinh(p)b* , +dp,
e Pebrele =cosh(ap)b’ + sinh(ap)b_, + d, (3.30)

where the error d), d; satisfy for any y € ]-'fg andn € Z
C
IVs + D"2doyll < IV + D2y

C” n n
MM+W%M§W@MWﬁM”MMHMM+Nm%Hmn

for a constant C,, > 0.
Moreover, modified Bogoliubov transformations as in (3.29) are proven to approximately
preserve powers of the number of excitations (see [3, Lemma 2.1]), i.e.

e B (N 4+ DFeB < O (V4 + DF . (3.32)

We improve that result and show that the modified Bogoliubov transform also approximately
preserves the exponential of the number of excitations:

Lemma3.1 Fora € Kz(n_";) the modified Bogoliubov transformation e®« defined in (3.19)
satisfies for sufficiently small k > 0

o~ B ok N+ ,Ba < eCrWN+1) (3.33)
for a constant C > 0 as an operator inequality on }'fg.

Proof The proof is based on a Gronwall argument. To this end we define for s € [0, 1] and
arbitrary ¥ € ]—f_(}:

g = N/ 28 By (3.34)
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for a monotone decreasing function ¢; : [0, 1] — R with ¢; = 1 that we choose later. Then
1617 = (v, e BeeNreBay), and &l)” = (v, e Moy) (3.35)
Thus in order to prove Lemma 3.1, it is enough to control the derivative
Os I 1> =2Re (&, d,&s)
=2Re(&;, (Csk N + e Nt Bye=eNe)g ) (3.36)

and the idea is to control the second term of the r.h.s. through the first, choosing ¢, appropri-
ately. Since

Nibp=bp(Ny —1) and Nybl =b5(Ny + 1) (3.37)
we have
Re(£,, N Bo—ekNig )
=Re Y ap (&, (e72“bsb* , — e™byb_)E)

pen;
:%Re D ap (e ((e72 — e )bib® , — (2 — e 2 )byb_,)E)
peny
=sinh(2kcs) Y apE (Bb%, +bpb_p)Es) . (3.38)

pETY

Now, using that o € £2(7rj_), it thus follows for sufficiently small csx > 0 that sinh(2kc¢y) <
C cgk for some C > 0 and therefore

0555 1> < k(s (¢ + 2llall2Ces) N3 &) +2C skl 2 11 - (3.39)
Now we choose
cs = eClelzti=s) (3.40)
with C > 2C. Then ¢; = 1 and ¢o = €1l and ¢, = —Cllallp2¢s, and in particular
¢s + 2C||la]lp2cs < 0 leading with (3.39) to
AslIEI1* < 2cokllerl 215 12 (3.41)
that by Gronwall’s inequality yields the desired bound of Lemma 3.1. O

3.3 Properties of the Cubic Unitary e

Here we discuss properties of the cubic unitary e?7 defined in (3.23). As proven in [3, Lemma
5.1], the cubic unitary approximately preserves powers of the number of excitations, i.e.

MWL + DFen < CuN4 + DF (3.42)

for fixed k € N. Similarly as in the previous section we show that e4n approximately preserves
the exponential of the number of particles.

Lemma3.2 Forn € Ez(nj_), the cubic transformation e defined in (3.23) satisfies for
sufficiently small k > 0

e—AneKN+eA,7 < eCK(N++1) (343)
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. . <N
for a constant C > 0 as an operator inequality on F7 pe

Proof Similarly as in the proof of Lemma 3.1, we use a Gronwall type argument for the Fock
space vector

& = N 28 Ay, (3.44)
where we choose the monotone decreasing function ¢ : [0, 1] — Ry with ¢; = 1 later.
Since

1€ = (p, e MeNrehry), and g0l = (£, Ny (3.45)

we need to control
A5 NIEs 112 = 2Re (&, (¢sk Ny + e Ne AgemesiNe) gy (3.46)
With (3.37) we find
Re sk N 4 o=criNs

=2N""2 3" p.(sinh(3csk) sinh(y,)b}, b*, b*

vVo—r-—v
rePy,vePy,

+ sinh(kcy) cosh(nv)bH_v * by +hec. ) . (3.47)
N
On the one hand we have for any ¥ € ]-'f 0

(v, Z Ny sinh )by, b* bY )|
VEPH,UEPL
1/2 1/2
5( D lbrb vl ) ( > Pl sinh(nv)|2||b7m||2> (3.48)
rEPH,UEPL rEPH,UEPL

Since |n,| < Cr~2and | sinh(r],))l2 < |Im| < Cv~2 from (3.22), it follows
(W, > mesinh(p)b b7 0% )| < CHIN YL IV + D2yl (349)

rePy,vePr,

for a constant C; > 0. On the other hand, we have

[, > nrcoshmu)bly b*, bur)|

rePy,vePy,
1/2 12
5( D lbrb rwn) ( > |nr|2|cosh(nv>|2||bvw||2) (3.50)
rePH,vePL I‘€PH,U€PL

and since | cosh(n,)| < C with (3.22) , it follows

(W, D mrcoshMmu)bly b )| < CoIN [V + D2yl (3.51)

rePy,vePy,

for some constant C > 0. With (3.49) and (3.51), we thus find for sufficiently small k¢; > 0
that

Re(yr, e“N* Age Moy | < Caco (¥, Ny + DY) (3.52)
for some C3 > 0 that yields with the choice ¢y = e“30=9) from (3.46) in

WNEG? < k(EG), (= C3+ CHNLES)) + C3kllEG)I? < CaxllEG)I* . (3.53)
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Then Lemma 3.2 follows with Gronwalls argument. O

3.4 Properties of the Asymptotic Bogoliubov Transformation

In the proof of Theorem, we will show that the action of the three unitaries eBnefneBr g
asymptotically given through a (standard) Bogoliubov transformation w.r.t. standard creation
and annihilation operators that is a unitary map on the full bosonic Fock space F and given
for o € €2(%) by

X, with Ky= Y ay(a*,ap —apa_p), for aet’(r}). (3.54)
peny

In contrast to the modified Bogoliubov transform (see (3.30)), the action of the standard
Bogoliubov transform on creation and annihilation operators is exactly known to be

e*K“apeK“ = cosh(ap)a, + sinh(ap)afp
e_K“a;eK“ = cosh(oz,,)a;‘; + sinh(ap)a—, . (3.55)
We remark that as an immediate consequence of (3.55) we have for any & € 2(*) from
e Keg(h)eXe =¢ cosh(a)h) + a*( sinh(a)F)
e Keake e =a*(cosh(a)h) + a(sinh(a)h™) (3.56)
where we used for any & € Ez(nj’;)
hy =h_p . (3.57)

It is well known that the standard Bogoliubov transform approximately preserves powers
of the number of excitations, i.e.

e Ke (W + DFeXe < LNy + DF . (3.58)

We prove that it approximately preserves the exponential of the number of excitations, sim-
ilarly as the modified Bogoliubov transform (see Lemma 3.1).

Lemma3.3 Fora € (> (7rY), the standard Bogoliubov transform eXe defined in (3.54) sat-
isfies fork > 0

e—KaeKN+eKu < eCK(N++1) (359)
for a constant C > 0 as an operator inequality on F.

Proof The proof of Lemma 3.3 follows with similar arguments as in the proof of Lemma 3.1,
using instead of the estimates (3.16) for the modified creation and annihilation operators, the
similar estimates (3.6) for the standard ones. ]

3.5 Baker-Campbell-Hausdorff Formulas

In this section we prove specific Baker-Campbell-Hausdorff formulas for non-commuting
operators, that allow to explicitly compute the conjugation e4"(Q)g pe_dr(o) for p € *.
For this we introduce for an operator O on Ez(nj) the notation

0,:=0., (3.60)
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in particular leading to ¢%r = ¢%».

Lemma3.4 Let h € £%(n*) and O be a bounded operator on £*(n*). Then, we have with
the notation (3.60)

Mgt e MO = q*(e%), and " Pane™ " =a(e%r) (3.61)

Proof The proof is based on the identity
> ‘
edr(o)a;efdr(o) = Z 7adfl]13(0)(a;) (3.62)
j=0""
where we introduced the notation of the j-th nested commutator, defined recursively by

ad() o) (@) = ab.  ad§¥ ) (@h) = [dT(0). ad$ o, @] . (3.63)

We claim that the j-th nested commutator is given by

adi o) (a3) = a*(0}) (364
with the notation
0,:=0.,, and 0;; = 0.{,; . (3.65)

In fact (3.64) follows by induction: Assuming (3.64) to hold true for fixed j € N, we find
ad(p) (a* () =[dT(0), ad} ) (@})]
= > OwcOnplaiac.ay))

k,lemx*
= > OwpOupak =a* (0™ (3.66)

k,tem*

and (3.64) follows for all j € N. Then the first equality of Lemma 3.4 follows from (3.64)
and (3.62). The second equality of Lemma 3.4 then follows by taking the hermitian conjugate
of the first and replacing O with —O. O

4 Proof of Theorems

The proof of Theorem 1.1 and Theorem 1.3 use the same strategy thus we present them
together.

4.1 Proof of Theorem 1.1 and Theorem 1.3

The proofs are split in three steps:

We first show, based on the norm-approximation of the ground state and the exponential
bounds (3.28), that the generating function of dT"(0) resp. N} w.r.t. to the ground state vy
is well approximated by

(Q, e Kv M0 Koy rosp (@, e Kv N Ko 4.1
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for Theorem 1.1 resp. Theorem 1.3 that is the generating function of Ay resp. dT'(O) w.r.t.
to the quasi-free state ¢Xv 2 where

X with K, = Z vp(afpap—apa_p), for v, givenby (1.6). “4.2)
pen’

This is summarized in the following Lemma:

Lemma 4.1 Under the same assumption as in Theorem 1.1, assume that O is a bounded
operator on 62(711). Then, for k € N, there exists Cy > 0 such that

[(Yn, ML D) —(Q, e KM DK < N4 (4.3)
where K, is defined by (4.2).

We remark that Lemma 4.1 in particular holds for the choice O = 1 and thus fordI"'(1) =
N;. We prove Lemma 4.1 in Section 4.2 below and proceed with the proof of the theorems.

The second step of the proofs of Theorem 1.1 resp. Theorem 1.3, are the explicit computa-
tion of the generating functions (4.1) w.r.t to the quasi-free state X Q given by the following
Lemma:

Lemma 4.2 Under the same assumptions as in Theorem 1.1 and Theorem 1.3, we have for
sufficiently small |\| > 0

«Q, e—Kye)\.N+eK|lQ) — eA(A) 4.4)
where A is given by (1.11) resp.
@, g_K"g)‘dr(O)eK”Q) PN 4.5)

where A o is defined in (1.25).

Again we postpone the proof of Lemma 4.2 to Section 4.3 below and continue with the
theorems’ proofs.

As alast, third step, it remains to combine Lemma 4.1 and Lemma 4.2 to prove Theorem
1.1 and Theorem 1.3.

Proof of Theorem 1.1 The proof of (1.7) now follows immediately from Lemma 4.1 and
Lemma 4.2. For sufficiently small A > 0, we find

By, [¢V+] — 2P| < N4 (4.6)
From Lemma 4.2 we furthermore get for A with sufficiently small |A|
AQ) = loge®® =log(Q, e Kr MVt eKv Q) A.7)
and since
’ & —Ky ANy K
ﬁ[\(}\.) zﬁlog(ﬂ,e vette lQ)

_@ BNt (@ Nt
Qe KveNieKvQ) (Q, e KvelNieKo)2 = '

by Cauchy Schwarz, and thus, we conclude that A is convex.
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Similarly, for the proof of (1.9), we find from Lemma 4.1 for sufficiently small A > 0 and
fixedk e N

By [N ] — (@, e KM MNrekra)| < N4 4.9)
and with Lemma 4.2
d* —Ky, ANy K d*
W(Q,e verNtefv Q) = WexP(A(A)) (4.10)

we arrive at (1.9). O

(Q, e KNk N4 Kr ) =

Proof of Theorem 1.3 The proof of (4.5) follows from a combination of Lemma 4.1 and
Lemma 4.2 that show

|y [+ Zim1 0] — eho®| < cN=1/4 @.11)

for sufficiently small A > 0. Then (1.24) follows by Markov’s inequality (similarly as in the
proof of Corollary 1.2 in Section 2.1). O

4.2 Step 1: Approximation by Quasi-Free State

In this section we prove Lemma 4.1.

Proof of Lemma 4.1 We split the proof in three steps: We first use show that, using the approx-
imation (3.27), we can replace ¢y with eBreneBnQ. Second we show that the action of the
cubic transform e4n on ¢*¥T(?) is negligible in the large particle limit. In the last step, we
then show that we can replace the action of the two modified Bogoliubov transformations
eBreBn on 191 (0) by the action of an effective standard Bogoliubov transformation.

Step 1.1 (Norm approximation): First we use the norm approximation (3.27) and find

(. N Oy — (@, e Ko NE AT K )
=((yn — el ® e BnpAnp—Br Q), '/\/iexdr(mwm
+ (e Brete™Brq NE AT (yy — i@ BretnemBrQ)) 4.12)
and thus, with (3.27) we find
(W, NPT O ) — (@, e KNk PAT(0) K )

< CN*1/4<||/\/ie*d“0>wN|| + ||A&ekdr(0>e*3neAne*Brsz||) . (4.13)

Since dT'(0) < N4 on ff_f;’ and the operators dI"(0) and Ny commute, we have

IN ATy < 1 Mryy | < € (4.14)

for sufficiently small A1 > |A| > 0 as a consequence of the exponential bound (3.28) (resp.
[22, Theorem 1.1]). For the second term we find similarly

INK 40O =BngAne=Br Q|| < ||MiN+ e~ Breie =B < € (4.15)

where the last estimate is a consequence of Lemmas 3.1 and 3.2 and A, Q = 0.
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Step 1.2 (Action of e”7): In order to show that the action of the cubic transformation e

on the operator ¢*?T(?) is negligible in the large particle limit, we write

<Q’e—B,e—A,,e—B,,.A/i;eAdI‘(O)eBneA,]eB,Q) (@, e—B,e—B,,MeAdF(O)eBneB,Q)

b d
/ dsd— (Q, e_BTe_sA”e_B”/\/ﬁeMF(O)eB”eSA”eB’Q)
0 N

1
=— / ds(Q, e Bre™s4 [A,,, e_B”./\/ieMF(O)eB”]eSA”eBTQ) (4.16)
0
With (3.37) we write
(Q, e~ Bre=sAn {An’ B eAdF(O)eBU:|esAner Q)

=2Re(Q, ¢ Bres4n A,,e_B”./\/ﬁ_e)‘dF(O)eB” &S AneBr @y

=2N"'2 37 e sinh(m)
rEPH,UEPL

x Re(Q, e_BTe_‘SA”Nyzbf+vbi,b*_v(N+ +3) V2N 2T (0) B 54 o Br )

+2N7Y2 N sinh(p)
rePy,vePy

x Re(Q, e~ B eiSA”Ni/zerrvbfrbfv(NJr + 1)71./\/if|re)‘dr(0)e3” &S eBr Q)

+2N2 Ny cosh(n)
rePpy,vePy,

x Re(Q, e Bre ™A1 (W 4+ 4)b,  b* by (W + 1) 712K HT(0) By o5 o Br
+2N2 Ny cosh(n)

rePy,vePy,
x Re(Q, e Bre ™A (W 4 2)b3byqyb—p (N4 + 1) TINE AT(O) By psAn By
4.17)
With similar computations as in (3.49)-(3.51), we find
|<Q, e*BrefAn |:14r]7 e*Bne)\dF(O)eBﬂ]eSAﬂeBr Q)l
<CN7'2| (N4 + D3 2eBrefnq AR 2T D) eBrestne B (4.18)

For the first term, the estimates (3.32) and (3.42) imply ||(Vy + 1)3/2eBretQ| < C.
For the second term, we estimate for A; > |A| > O that IIA/’fFeMF(O)eB”esA"eBTQll <
Cr IIeC’\lN+eB'7e5A'ier Q|| and then find with Lemmas 3.1, 3.2

IINif‘_e’\dr(o)eB’ieSA”eB’Szll < Cy (4.19)
for sufficiently small A; > O that finally yield
e, e—B,e—Ane—B,,/\/i_c'_e,\dr(O)eBneAneB,Q) —(@, e—B,e—Banj_eAdr(O)eBneB,QH
<CN'? (4.20)

m}

Step 1.3 (Asymptotic standard Bogoliubov transformation): In the last step, we show
that the action of the two modified Bogoliubov transformations w.r.t. the kernels 7, and 7,
defined in (3.21) resp. (3.26) on the operator Nﬁ_e*dr(o) are asymptotically equivalent to
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the action of one effective standard Bogoliubov transformation w.r.t. the kernel v,, defined
in (1.14). This observation is based on the observation that

Inp +7p —vpl <CN7! 4.21)
whose proof is given in [29, Section 3].
Lemma 4.3 Under the same assumptions as in Theorem 1.1, there exists C > 0 such that
(Q, e Bre Bink 2T (D eBieBrQy —(Q, e KM D Kvy < CNTH L (422)
Proof The goal is to compare the operator
A:=e Kvdr(0)eXr
= Z Opq |:cosh(vp)a;‘7 + sinh(vp)a_p][cosh(vq)a:]k + sinh(vq)a_q] (4.23)

P.gET

with B = e~ Bre=B1dT" (0)eBreBr that we compute using (3.30) and properties of the hyper-
bolic functions

B:=e Bt e_B”dF(O)eB'ieBT

= Z Op.q[ cosh(np + rp)bf, + sinh(np + )b |[ cosh(ng + rq)b; + sinh(ng + 74)b—q]

*
P.qETy

o Begy o ey, (4.24)

where the errors £, are for o € ¢2(7*) given by

€, = Y (0p.g[coshiep)b} + sinh(e,p)b_p]dy, +h.c) + Y Op.qdy, da,

p.gent p.gert
(4.25)
and satisfy by (3.31) since sup,, , |0p 4| = C
(&1, €, )] < CNT'2ING + D281 1] (4.26)
for any &1, & € ]-"fg. Furthermore, we introduce the notation
A= BN K and By = e Brem BiN eBreBr 4.27)

We remark that while A, 4; are operators on the full bosonic Fock space (the domain of
the standard Bogoliubov transform), the operator B acts on the truncated Fock space only (the
domain of the modified Bogoliubov transform). Thus, in order to compare A, A; and B, B;
we split an element ¥ € F of the full bosonic Fock space into ¢ = Ty, <y ¥ + Ipn sV
and then write

(2,B12Q) — (2, A1eQ)
=(Q, B1e%Q) — (Q, eV Ly n Al L=y e’ Q)
—(Q, eM? A T A Ny e?Q) — (Q, VP I pe N A Ty e Q) (4.28)
We bound the third term of the r.h.s. of (4.28), using 1~ x < N, /N on F and find

R, eV2 A Ipe ve Q)| <CNTH A2

N
N1N>Ne/“/zsz . (4.29)
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From the definition of A4; in (4.27) and (3.58) we find
U, A2 A e ne2Q) | <CN 7YV + Det2Q) (4.30)
Recalling the definition of A in (4.23), we find with (3.58) and Lemma 3.3
(R, A2 AT ye2Q) | <CNTHW + De Kt T O Ko 2
<CN YWy + DT D Kvgy? 4.31)
For some A; > |A| we continue with
U, M2 A Ly ve2Q)| <CN MV eKv Q2 < oNTT . (4.32)

where we concluded by Lemma 3.3. The forth term of the r.h.s. of (4.28) can be estimated
similarly.
Next we show that the difference of the first two terms of the r.h.s. of (4.28) vanishes in
the large particle limit, too. To this end, we write
(2,528,152 Q) — (Q, e ey A1 <y e Q)
=(Q, é52B1eB2Q) — (Q, e Uy Bi Ln<ne? Q)
+ (2, EA/ZﬂNgN(Al - 31)1/\/§N6’A/29)
_ /S dei Q. esA/Z]lNSNe(lfs)B/ZB]e(lfs)B/Z]leNesA/ZQ)
0 N
+(Q, eV L yan (A1 — Br)In=neV?Q)
1
= Re/0 ds(Q, A2 ([A, IL/\/SN] + 1y, <n(A— B))e“”)lg/zBle(lf‘”B/zILNSNeSA/ZSZ)
+(Q, e ey (A1 = Bi)Ly=ye??Q) . (4.33)

On the one hand, we have by definition of A, A; and B, B; in (4.23), (4.27) resp. (4.24),
recalling that b, = /1 — N /N from (3.14), the estimates (4.26) and (4.21)

(AL = BDY L I(A=Byl < CNWL + D)2y (4.34)
On the other hand, since
[A Ty<n]
= Y 0pgcosh(vy)sinh(vg)aha* , (An<y — Larpa<n)
p,qeni

+ > Opgsinh(vp)cosh(vg)a—pag(In<y — In—2<n)
p.qeny

= Z 0p,q(cosh(vp) sinh(vy Japal Uy 1<nyp<n — sinh(vp) cosh(vg)a—pag Ly 1<nr; <N+2)

p.gent
(4.35)
With Ly_1<p,<y < CN7'Ni and Tys1<n, <n+2 < CN™IN, we find that
I[A. Ta=n ]l < CNTHIWNG + Dyl (4.36)
Summarizing (4.34) and (4.36), we arrive again with (3.32) and Lemma 3.1 at
1(Q.B15Q) — (2, eV Ty AT n<yeV?Q)| < CN7! (4.37)
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leading with (4.32) to
HRQ, A1e?Q) — (2, BieBQ) < cN! (4.38)

that concludes the last step for the proof of Lemma 4.1. O

4.3 Step 2: Asymptotic Generating Function

In this section, we prove Lemma 4.2, i.e. we explicitly compute the asymptotic generating
function that is a generating of a quasi-free state.

Proofof Lemma 4.2 Since N =dT'(1) = pent a,ap, the calculations for the first formula
(4.4) will turn out the be a special case of the second one (4.5). For this reason we formulate
the beginning of the proof for general operators O on Kz(nj_) and later restrict to the special
(easier) case Op 4 = 8p 4 (referring to (4.4)) first, to use the special cases’s ideas to prove
the general case (i.e. (4.5)).

The proof’s goal is to show that the function
G: =20, kol = R, G() = (Q, Kvetdl(0) Ky (4.39)

for sufficiently small 19 € R is the unique solution of a differential equation. To this end, we
observe that G(0) = 1 and compute

G’ =(Q.e Kdr0)r TV Q) = N 0,4 (@ e Fata Tk Q)
p.qemy

(4.40)

In the following, we aim for an explicit expression of the r.h.s. of (4.40) in terms of G(}).
We base the calculations on the explicit formulas (3.55) and (3.4) for the conjugation of
creation and annihilation operators with eXv resp. ¢*?T(?) and the fact that the vacuum is
an eigenstate of the annihilation operator with eigenvalue zero. In fact, with the short-hand
notation

sp :=sinh(v,), and cp :=cosh(vp), (4.41)
we find from (3.55)
e_K“a*aeK =S, a +ccaa+sca +sca ag + 555,06
p%a =SpSqa q—P rtaq q qCpdpd pLqt—ptq r2q°p.q -
(4.42)

Thus, on the one hand, by commuting a;aq in the scalar product on the r.h.s. of (4.43) to the
left, we get with a, Q2 = O forall p € A%

Z Opq Kva a eAdF(O) K”Q)

p.qgeTy

Z spchp,q(Q,a,paqe_K”e’\dr(O)eK”Q)+ Z OP,pslz,

P.qeT] pET]
Y OpaspqFpg)+ Y Opps, (4.43)
p.geny pen’
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where we introduced the notation
Fpg) = (R, a_paze KT Koy (4.44)

On the other hand, commuting the operator dT"(O) in the scalar product on the r.h.s. of (4.40)
to the right, we find

Z 0pq(R2, e K”apa T (0), K"Q)

p.geni
Z Op.qcpsq(Q, e Kre MO ekog )+ Z Op, ps
p.qET] pert
> 0pgcpsqFapG)+ Y 0p,p0p st (4.45)
p.qeny pen

Comparing (4.43) with (4.45), we observe that

_— T .
cgSpFpg(\) = cpsqFy p(h) < Fq,,,(x):TiF,,,q(x), with 7, = tanh(v))
p

(4.46)

for all p, g € supp(0) =: {p,q € n} : Op 4 # 0}. Otherwise, i.e. for all p,q € 7} such
that O, , = 0, we have

SpCqFpq(V) = (L, eiK”a;aqe’\dr(o)eK“Q)

=(Q,e X! Dara, ek Q) = cps, Fy (). (4.47)

and thus, (4.46) holds for all p, g € 7} . This identity will be useful later when we aim for an
explicit expression of the operator F (A) in terms of G (A). The idea is to show that the kernel
F_p 4(A) is a the unique fixed point of a linear operator that we can construct explicitly. The
calculations are again based on the properties of the Bogoliubov transform (3.55). We start
with the observation that withc_, =c),s_, = s, forall p € n'j_ we can write

_ —K _ * _ * * ok rdr(0) K
Fp,q()»)—(Q,e ”(c,,cqa_paq SpCqlndg cpsqa_pa7q+spsqapa7q)e e ”Q)

= (Q, e K (cpcqa_paq + sqspa;afq — spcqa;aq — cpsqafqa_p)e’\dr(o)ek”gz)
—CpSq8p,qG(A)
ST+ I+ 1V — 5,8, GOV . (4.48)

Next, we compute all the four terms I — IV of the r.h.s. of (4.48) separately. We start with the
first term for which we commute the pair of creation and annihilation operators to the right
and use that a; Q = 0 for all k € . We find with Lemma 3.4

I:cpcq(Q,e_K a_pay M0, K"Q>
=cpcq(Q, e Kr T Qg 0-r)a(e*01)eX Q) (4.49)

and furthermore with (3.56) using that s, ¢, € R, s, = s_), forall p € 7w} and the notations
(3.60), (3.57)
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I= cpcq<52, e Ky HdT(0) Ky [a(cekofl’)a(ce’\o") + a(ce)‘ofl’)a*(se)‘(o‘/)_)]Q)

+ cpcq(Q, e Kvetdl(0) Ky [a*(sek(ofp)f)a(ce)‘%) + a*(se)‘ofp)i)a* (se’\(Oq)f)]Q)

20k, —p 2O_
=Cpey Z crspe”kretY ke G (L)

kem’
+cpey Z skslge’w*"~*l’e)‘0“~‘i<52,e_K”e)‘dr(O)eK"a,faf[Q)
k,temy
=Cpey (ce)‘o‘l’, se*¥a 1i2G(A) + cpey Z spspeO—k-rehOty For(A) (4.50)

k.tem

Now with the property (4.46), we can express the r.h.s. in terms of F ¢(A) and find

I =c,c (ce’w‘l’, se)‘a;) 2G(A) + ¢cpe s—kslgrge)ﬁ*"’*ﬁe)”m«‘i Fre(M) 4.51)
rCq ¢ rCq . ,

k.tem’

Next, we compute the second term of the r.h.s. of (4.48) with similar ideas as the first one,
and find with Lemma 3.4

I =spsq(52, e_K"afpa;e)‘dr(O)eK" Q)

=5psy(Q2, e—Kvexdr(O)a*(e—w,,,)a*(e—xo,,)emQ)

:spsq(Q, e Ky Hdl(0) Ky [a*(ce_kofp)a*(ce_}‘o") + a*(ce_}‘O*”)a(se_MOq)f)] Q)

+ 5p84(S2, e K IO K |:a (se_}‘O:l’)a*(cef)‘Oq) + a(se_’\O:P)a(sef)‘(oq)f)] Q)
=SpSq (sef)‘a:l', cef}‘o‘l)G()u) + 5psg Z ckczef)‘o’“‘l’e*’m—“i Fo (D)
ktem}

5 ¢
=Spsq (sef)‘o—l', cef}‘o‘l)G()u) + 5pSq Z —kcz tpe MOk-re=*0-tg Fie(A) 4.52)
T

ktem’
Similarly, we find for the third term of the r.h.s. of (4.48)

Il = — s5,cq (22, eiK”af[,a_qe)‘dr(O)eK"Q)

= — 5p¢q(Q2, e Kv O g* (e740-1) g (2 0-1) K )

= —5pcy(Q, e Kt (0) Ky |:a* (ce™9-r)a(ce*O1) + a*(ce *O-r)a* (se 0= )i| Q)
— Spcq {2, e Kv rdT(O) Ky [a (sef)‘(ofl’)_)a(ce)‘o"’) + a(sef)‘(of”)_)a* (se)‘(of‘l)_)]ﬂ)

= —spcylse” 01, 5e*0-0)G (L) — spc4 Z crspeHOk-r rOt=aF, (3)
k.ter’

- c _
= —spcylse” 01, 5e*0-0)G (M) — 5,04 Z T—ksztze_wkfﬁe)‘wv*‘l Fre()) (4.53)

k.ter’
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and for the forth term of the r.h.s. of (4.48) (be replacing p, ¢ with —g, —p in the previous
formula)

- B _
IV = —sgep(se 00,52 0n)G() —sqcp > “sere *OnitOrFy()  (4.54)
T

k,lemy

Summarizing (4.51),(4.52), (4.53) and (4.54), we thus find from (4.48)

Fpg) =Ap00G) + Y Dpgie®) Fie() (4.55)
k.tem’
with
Apg(A) =—cpsgbpq +cpcy (ce)‘O*P, se)‘a;)@z + 8$pSq (sef)‘aiﬁ, ceikoq)
— SpCq (se=9-r, 5e20-a) — CpSq (se= %4, 5¢*Op) (4.56)
and
Dp,q,k,é()\)

20 —k—prOty 4 o=Ok—po=2O0-tq _ g=4Ok—p 3Ot~ _ e—wk_,,exm,q)

= CpCkCqSeTy (e .
4.57)

Next, we show that (4.55) has a unique solution both, for the special choice O ; = 8, 4
(referring to the special case dT'(O) = N in (4.4)) and the case for general O such that
Opq € €2(ni) X Zz(nj_) (referring to (4.5)). We treat both cases separately.

Proof of (4.4):

We start with the easier case N = dI'(1), i.e. Op.q = 8p,q- Then (4.55) reduces to

Fp(A) = cpsp(2cy(cosh(22) — 1) — e + 1)G(A) + 2s5¢7 (cosh(21) — 1) F, (1)
(4.58)

that we can write as
(1= 2s7c2 (cosh(24) — 1)) Fp(A) = cpsp (25 (cosh(24) — 1) — e +1)G(2) . (4.59)

For A sufficiently small such that
1

cosh(2h) — 1 < (4.60)
2( SUP per sl%)(supqeni 6[21)
(note that the r.h.s. is bounded by (1.6)), we have
CpS
Fy(h) = PP 2¢2(cosh(2r) — 1) —e 2 + 1)G() . 4.61
p() I~ 2523 (cosh(22) — 1)( cp(cosh(2h) — 1) —e ™ + 1)G (1) (4.61)
Plugging this back into (4.43), we find
35 2 21 2
G = 2 h(2L) — 1) —e™ 1)G(x
A Z* =253 (cosh (@) — 1)( c¢p(cosh(2h) — 1) —e ™ + 1)G (1) + Z* s,
PETL pemy
(4.62)

and thus conclude with the observation G(0) = 1 at (4.4).
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Proof of (4.5):

Now consider general operators O such that O, , € Zz(nj';) X Ez(ni). The goal is to prove
that (4.55) has a unique solution

Fpqa() € () x 3(n}) . (4.63)

We remark that (4.63) ensures that the sum of the r.h.s. of (4.45) is finite (since Op 4 €
Zz(nj_) X Ez(ni) by assumption and s, € Zz(nj_), cp € £°°(x}) by definition of v, in
(1.14)).
To this end, we first use a fixed point argument to show that (4.55) has a unique solution
and second, construct an explicit solution (that, thus, is the unique solution to (4.55)).
Uniqueness: We observe that we can write (4.55) as

Fpg) =(TFR)pgq (4.64)
where the operator
T: 03 (nk) x C(nf) — (k) x () (4.65)
acts as
(TEM)pg=ApgMGQR) + Z Dp gk e(A) Fr () (4.66)
ktent

and the coefficients D), 4 ¢ (1) are given by (4.57). The operator T is well-defined since, on
the one hand

G| = [(Q, X7 dT (0)e™T (@~ Kv Q)| < (Q, MNTDQY < ¢ (4.67)
from Lemma 3.3, and, on the other hand

ApgM). Y Dpgre()Frp € £2(}) x E(x3), (4.68)

k,temy

forany F) , € 22 (m}) x Ez(n_’;) as we prove in the following:
We start with the properties of A, ;(A) defined in (4.56) and observe that due to some
cancellations with the first term of the r.h.s. of (4.56), we have

Apqg () =cpeqsp(eOrs —8p )

+cpqle(H0r = 6.-p) s( % = 8- ) + CpCqsq (00 =8y )
+sps{s(e 0 e = 8.)) 4+ spsgeg (00 =6y y)

— speglse™ 0. 5(* 00 — 8. _g)) = spegsg (e — 5 )

— cpsglse™01, 5(e20r — 5. ,)) — cpsgsy(e P =8, 4) - (4.69)

By Taylor’s theorem, we have ¢* %> = §,, , + 10y, ,e?*%¢.~» for some 6 € R and it follows
for the first term of the r.h.s. of (4.69)

Z |cicqsp(e)‘5p.q—(Sp’q)|2§}\2 Z c Sp0,2;q < 00 (4.70)

p.qen p.qemy
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since sup, , 10p gl =C and | O ||£2(ni)xe2(ﬂi) < 00. The third, fifth, seventh and ninth term
of the r.h.s. of (4.69) can be bounded similarly. With the same arguments, we find for the
second term of the r.h.s. of (4.69)

o 2
Z lepegle(e™Or =58, p), s(e™ —8—.q))e|
p.qeny

2 2.2 2 2
<Cx ) istlOk—pl 10kl

p.q.kemy
< C sup spci § | Ok I § |0 4|* < 00 4.71)
*
kenl peny k.gen’

where we substituted p, ¢ with — p resp. —q and used that, by definition, sy = s_x, cx = c—.
The forth, sixth and eight term of the r.h.s. of (4.69) are bounded by the same arguments.
Hence, we arrive hat

AG) Nl 2esyx 20ty < CA (4.72)
and thus, Ap (1) € £2(%) x €(n}).
Next we show that Zk,(eni Dy gre(A)Fr o € ZZ(H_T_) X Zz(nj_) forany F), , € Zz(nj_) X

Zz(ni). For this, we observe that by a cancellation between the first and the forth, as well as
between the second and the third term of the sum , we have

Dp.g.k,e(2)
= CpCkCySeTy ((em*k-*l’ — (Sk,,,)(e"avq —80,q) + Sk.p (em“f —8eq) + (exﬁ,k,,,, — 8k.p)80.
+ (0= — 8 _p) (70t — 8 4) + 8k —p(eTHO —5_4 )
+ (€70 =8 )y — (€M = 8. p) (M0 — 8y
- ‘Sk-—p(eka”’ —8eq) = (€7 =8t )t
— (€70 = &) (1000 = 81.q) — b p (P00 — 3“1)) — (7% —8.p)S.q
4.73)
and thus
Z Dp g.k.e(A) Fye
klemy

=C17S§ Z Cr |:(6)L57k.—p _ 5k,p) _ (e—)»Ok.p _ Sk,p)] Fk,q

kem}
+ CPS; Z Ck|:(g—)~0kfp — 5k,—p) — (e—)vokfp — (Sk’_p)j|Fk’_q
kem’
+epeq Y SW[(‘?@’“ —beg) = (P00 — 564))}%1
temy
+ cf,cq Z SeTe |:(e_’\0*‘5~‘1 —8_0q) — (e}‘affq - Sg,q)]F,p,e
temy
+ cpcq Z cksztg[(e)‘a"‘"l’ — Bk,,,)(e)‘m"f — 85’51)
ktem}
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o 5k»ﬁ)(e)\6£"q - ‘SM)] Pt

+ cpcq Z cksztg[(ef)‘ak"!’ — Sk’,p)(ef}‘o“"/ — 84,4)

ktem}
N R
4.74)

whose terms we now estimate separately. For the first term of the r.h.s. of (4.74) we find with
Cauchy Schwarz

Z S;} Z [(exbfkﬁp — 8,p) — (e7HOkr _Skyp)]Fk»q

P.qET kemy

B 2
S DD Dl [ USRI SLIUE] ) o PRPEE

p.qeny  kiem} koer

2

By Taylor’s theorem, we have e*0-k-r — & , = A0 _y _,e1O-k—r resp. e *Okr — & |, =
A Ok pe?2%%r for some 0y, 6, € R, and since || O le2(atyxe2(rs) < O by assumption yielding
1Ol x e < 00, we find

Z 53 Z |:(e)\6—k,—[, — 8k.p) — (7O _‘Sk.p)}Fkﬂq

* *
p.qeTy kerm}

2
< CA||F|I}

(T)x 2 (t)
(4.76)

where we used that sup, ent s§ < oo from (1.14). The second, third and forth term of the
r.h.s. of (4.74) can be estimated similarly arriving at a similar bound as (4.76). For the fifth
term of the r.h.s. of (4.74) we recall that with the same arguments as before

oy O S SR

* *
p.gemy klemy

2

_ _ —_ 2
=4 Z Z CrSeTye [a_k’_l,bg’qeel)LO*kﬁI’eeﬂ‘O(v‘I + Ok,pag’qeeylok-lj694)”05111]Fk,[
p.qeny klen

4.77)

for some constants 6; € R and we conclude using that sup, ¢+ ¢, = 1 by Cauchy Schwarz
and similar arguments as before

Z Z [Cksﬂl[(ex@k.fp _ Sk,,,)(e*@# —S0q) — (e—wk,p _ 5k‘p)(exm,q — 5M)}pu

p.qeny klemy

<CAYIFII3

2

(4.78)

Trx2y)

The estimate for the remaining term of the r.h.s. of (4.74) follows in the same way. We thus
arrive for sufficiently small || at

2

P.qemy

2
Y DpgitWFee| < CRNFIR s e 4.79)

k.tery
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leading to the desired conclusion that Zk,kni Dpgi e Fre € Zz(nj’;) X Zz(nj’;) for

Fre € Zz(ni) X Zz(ni), and in particular that the operator 7' defined in (4.65) is well
defined.

Next, we aim to show that the operator T defined in (4.65) has a unique fix point, and, thus,
consequently that (4.55) has a unique solution in Kz(nj) X Zz(nj‘r). For this, by Banach’s
fixed point theorem, it suffices to show that the operator T is a contraction. In fact, as an
immediate consequence of (4.79) we have for F M FO ¢ Ez(nj_) X Ez(ni)

”(TF(I))()‘) - (TF(Z))()‘)”%2(7@)%2(7:3;) = Z |DP»CIJ<7Z()‘)[F1¢(,]€) - Fk(ze)
P.qemi

<CMIIFD - F (4.80)

(2)”2
()< (k)

and we finally conclude that for sufficiently small |A|, the operator T is a contraction and,
therefore (4.55) has a unique solution in ¢2 (}) x Ez(nj*r).
Explicit solution: We claim that

Fog®m = 3 3 (Dpgie®) Are()GH) (4.81)

ket j=0

solves (4.55) where we introduced the notation (D Pq.k,L (A))j for the operator that is recur-
sively defined through

(Dpg it )’ =8, 1840 (4.82)
and
(Pp.gic) ™ = 3" DpgmnC)(Dmnie®)’ . (4.83)
m, n€7T+

The claim follows by standard arguments for solution to integral equations, that we present
here for consistency:

First, note that the series on the r.h.s. of (4.81) converges: By definition (4.83), we have
forj > 1

2
1D (Dpgue®) A
p.qen} klem}
2
= ‘ > Dpgman®) Y (Punke @) ™ A (4.84)
p.qeETY  m,nemy k.temy

and thus from (4.79)

2

Yo > (Dpgie®) Are)

p.qeny ke

<ClA D Y (D)) Are

* *
m,nenwy  klemy

2
(4.85)
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Iterating this step we thus arrive at

Z Z (Dp,q,k,l(}\))j

p.qeny klemy

2
< CIA Al < Ittt (4.86)

(@EPxexy) =

where we concluded by (4.72). Thus, from (4.81) we find

IE Ol 2y x2aty < Coli Z(CW (4.87)
j=0

for some constants Cy, C > 9 that is a finite series for sufficiently small |X|.
It remains to show, that F, ,(A) given by (4.81) indeed solves (4.55). For this we write
using (4.83) and (4.87)

Fogm =Y Y (Dpgie®) Are()GR)

k.ten® j=0

= Y lim > (Dpgre®) AreIGR)

k.temt j=0

=lm | > > Dpgu, zz(x)z Dy ey ke ()’ Ak,Ax)G(A)JrAp.q(x)G(x)]
k[Eﬂi ki, (]E?‘[+

= nll)n;o Z Z Dl’vqfkllz *) Z (Dkl.ll,k,l()"))j Ak,(()")GO") + Ap,q ()")G()\.)]
k,len_’{_ k],élerrj_ j=0

n—1

= Y Dpgke® lim 3 (Die ko) AcOIGR) + Ap (MG (R

k,[éﬂjk[,[]éﬂi j=0
=Y > DpgksMFpyens + ApgWGR) (4.88)

k,temy ky,Lyemy

and it follows that F, p,q(A) solves (4. 55)
Summarizing, we have proven that F pg(A) € 2 +) x 02(x +) given by (4.81) denotes
the unique solution to (4.55). Then, it follows from (4.40) together with (4.45) that

G'(\) = Z 5pCq0p.aFpg) + Z 520p.p

p.qemy peEA’
= Y 5pqO0pg(Dpgie®) AeIGO) + Y 520,,  (489)
p.q.k.Ler’ peEAY

Therefore noticing that G(0) = 1 we have

G(k)—exp(/ > speg ,,,,Z (Dp.gbe@) Aceydr+2 Y 520, p)
p.q.kter’ pEA
(4.90)

and the integral is finite for sufficiently small |A| following from (4.87). O
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