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Abstract
We consider a Bose gas on the unit torus at zero temperature in the Gross-Pitaevskii regime,
known to perform Bose-Einstein condensation: a macroscopic fraction of the bosons occupy
the same quantum state, called condensate. We study the Bose gas’ quantum depletion, that
is the number of bosons outside the condensate, and derive an explicit asymptotic formula
of its generating function. Moreover, we prove an upper bound for the tails of the quantum
depletion.

1 Introduction and Results

1.1 Introduction

As predicted by Bose [6] and Einstein [12], and later also observed experimentally [1,
13], trapped Bose gases show a peculiar phase transition at extremely low temperatures:
a macroscopic fraction of the particle condense into the same one-particle quantum state,
called Bose-Einstein condensate. This paper is dedicated to the mathematical description of
Bose-Einstein condensates.

For this, we consider N bosons on the unit torus π = T
3 in three dimensions described

on L2
s (π

N ), the symmetric subspace of L2(πN ) through the Hamiltonian

HN =
N∑

i=1

(−�i ) + 1

N

N∑

i=1

VN (xi − x j ) (1.1)

where in the following, we assume that the two-body interaction V is an element of L3(π),
non-negative, compactly supported and spherically symmetric. The two-body interaction
VN (x) = N 3V (Nx) depends on the distance of the i-th and j-th particle on the torus
T
3 only, and scales with the total number of particles N and models approximate delta-

interaction in the large particle limit and corresponds to the Gross-Pitaevskii regime. At zero
temperature, the Bose gas relaxes to the ground state. In fact under the conditions on V
formulated above, the Hamiltonian HN is on the domain of smooth functions well defined,
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bounded by below and, by Friedrich’s method, extendable to a self-adjoint operator (that,
in abuse of notation, we call HN in the following, too). The unique (up to complex phase)
ground state ψN of HN is well known to exhibit Bose-Einstein condensation: a macroscopic
fraction of the particles condense into the same (one-particle) quantum state, the so-called
Bose-Einstein condensate, in our setting given by ϕ = 1π ∈ L2(π). Mathematically, the
property of Bose-Einstein condensation is formulated in terms of the quantum depletion, that
is the operator

N+ =
N∑

i=1

Qi , with Q = 1 − |ϕ〉〈ϕ| (1.2)

and where Qi is the operator that acts as the projection Q on the i-th particle. Thus, by defi-
nition (1.2), the quantum depletion counts the number of particles outside of the condensate.
Then, the ground state ψN of (1.1) is said to satisfy Bose-Einstein condensation, if

EψN

[N+
]

N
=〈ψN ,N+ψN 〉

N
→ 0 as N → ∞ . (1.3)

The property of Bose-Einstein condensation was first proven by [17]. Later, the rate of
convergence of (1.3) was studied in great detail since then [2–4, 14, 15] and showed to be
O(1/N ). In the past decades, the property of Bose-Einstein condensation and excitations
beyond the condensate have been studied in various settings: we refer to [9, 10, 18, 21, 23,
24] for generalizations for Bose gases on R

3 trapped through an external potential.
The analysis of the number of excitations beyond the condensate, counted by the operator

N+, is based on a mathematical verification of Bogoliubov’s theory [5] on the Bose gas’
excitation spectrum given in [3]. To be more precise [3] proves an asymptotic formula ofthe
expectation of N+ in the large particle limit given in terms of the interaction potential V ’s
scattering length, defined through the solution f of the potential’s scattering equation by

a =
ˆ

V (x) f (x)dx where

(
− � + 1

2
V

)
f = 0, and f (x)

|x |→∞−−−−→ 1 . (1.4)

To be more precise, [3] shows that the expectation of the quantum depletion is asymptotically

μ := lim
N→∞ EψN

[N+
] =

∑

p∈π∗+

sinh2(νp) (1.5)

with

νp := 1

4
log

(
p2

p2 + 16πa

)
, and π∗+ = (2πZ)3 \ {0} (1.6)

and thus, in particular, in the large particle limit O(1). Note that the mean λ in (1.5) is
defined in momentum space π∗, as in our setting it turns out to be more convenient to work
in momentum instead of position space.

1.2 Results

We further improve the characterization of the Bose gas’ quantum depletion and compute an
asymptotic formula for the generating function.
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Theorem 1.1 Let V ∈ L3(π) be non-negative, compactly supported and spherically sym-
metric and ψN denote the ground state of HN defined in (1.1). Then there exists λ0 > 0
(depending on V only), for all |λ| ≤ λ0, we have

lim
N→∞ EψN

[
eλN+] = e�(λ) (1.7)

where � : [−λ0, λ0] → R is a convex function given by

�(λ) =
ˆ λ

0

∑

p∈π∗+

cosh2(νp) sinh
2(νp)

2 cosh2(νp)(cosh(2κ) − 1) − e−2κ + 1

1 − 2 cosh2(νp) sinh2(νp)(cosh(2κ) − 1)
dκ

+ λ
∑

p∈π∗+

sinh2(νp) . (1.8)

Moreover, for k ∈ N, we have

lim
N→∞ EψN

[Nk+
] = dk

dλk
e�(λ)

∣∣∣∣
λ=0

. (1.9)

Remark 1.1 We collect some remarks on Theorem 1.1.

(i) First we note that the r.h.s. of (1.11) is finite for sufficiently small λ0 > 0, since
sinh(νp) ∈ 
2(π∗+) by definition of νp in (1.6).

(ii) In the proof of Theorem1.1we establish a rate of convergence of (1.7) that isO(N−1/4)

(see (4.6)).
(iii) In Theorem 1.1, more precisely (1.9), we prove that the asymptotics ofEψN

[
eλN+]

can
indeed be understood as a generating function of the asymptotic number of excitations.
Through (1.9) computations of any moment of the number of excitations N+ reduces
to taking derivatives of the function � defined in (1.11).

(iv) In the proof,we embed the problem in the bosonic Fock space (see Section 3 andSection
4 for more details) where we can write the operator N+ in terms of the creation and
annihilation operators as N+ = ∑

p∈π∗+ a∗
pap with π∗+ = 2πZ

3 \ {0} . It turns out
that Theorem 1.1 then easily generalizes to operators of the form

∑
p∈π∗+ τpa∗

pap for

sequences τp ∈ 
2(π∗+) such that cosh(2λτp) − 1 < 1/(2 sinh2(νp) cosh2(νp)) for
all p ∈ π∗+ and all |λ | ≤ λ0. Then, the corresponding moment generating function
satisfies

lim
N→∞ EψN

[
e
λ

∑
p∈π∗+ τpa∗

pap
]

= e�̃(λ) (1.10)

where

�̃(λ) =
ˆ λ

0

∑

p∈π∗+

τp cosh
2(νp) sinh

2(νp)
2 cosh2(νp)(cosh(2κτp) − 1) − e−2κτp + 1

1 − 2 cosh2(νp) sinh2(νp)(cosh(2κτp) − 1)
dκ

+ λ
∑

p∈π∗+

τp sinh
2(νp) . (1.11)

Exponential and Moment Bounds

Theorem 1.1 provides a detailed description of the number of excitations through an asymp-
totic formula of the generating function. As an immediate consequence, we recover back (1.5)
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and, moreover, anymoment of the number of excitation is bounded by a constant independent
in the total number of particles N , i.e.

E
[Nk+

] ≤ Ck (1.12)

for Ck > 0 and, moreover

E
[
eλN+] ≤ C1e

C2λ . (1.13)

for small λ > 0 and C1,C2 > 0. With (1.12) and (1.13) we recover back earlier results (see
[3] for (1.12) resp. [22] for (1.13)). Note, however, that the proof of Theorem 1.1 relies on
the apriori bound exponential of the form (3.28) from [22].

Limiting Distribution

The existence of an asymptotic formula for the characteristic functionE
[
eiλN+]

, where λ ∈ R

and i denotes the imaginary unit, implies, by Levy’s continuity theorem, that the random
variable N+ has in distribution an asymptotic limit. We note that Theorem 1.1 establishes
an asymptotic formula for the moment generating function E

[
eλN+]

only for real values of
λ, since its proof relies on the solution of an ordinary differential equation defined over the
real numbers. Nonetheless, we conjecture that the asymptotic behavior also holds for purely
imaginary values of λ, and thus that the random variableN+ has in distribution an asymptotic
limit for N → ∞.

Characterization of Tails

As a consequence of Theorem 1.1 (more specifically (1.9)), the deviation of N+ from its
asymptotic expectation value μ, defined in (1.5), is in the large particle limit

√
EψN

[(N+ − μ
)2] −−−−→

N→∞ σ, with σ 2 := 2
∑

p∈π∗+

sinh2(νp) cosh
2(νp) (1.14)

(see Section 2 for the proof of (1.14)). In particular, the deviation does not vanish in the limit
N → ∞. Related to that we show in the following Corollary that N+ does not converge
in probability to its asymptotic expectation value μ = limN→∞ E

[N+
]
. This statement is

complemented by an asymptotic upper bound for the tails of the number of excitations.

Corollary 1.2 Under the same assumptions as in Theorem 1.1, assume that a 	= 0. Then,
there exists n, εn > 0 such that

lim inf
N→∞ PψN

[∣∣N+ − μ
∣∣ > n

]
> εn , (1.15)

where μ is defined by (1.5), and

lim sup
N→∞

PψN

[N+ − μ ≥ n
] ≤ einfλ∈(0,λ0]

[
−(n−μ)λ+�(λ)

]
. (1.16)

We remark that Corollary 1.2 provides through (1.16) an upper bound for the upper tails
of N+. Related to (1.15), we can, however, not prove a matching lower bound for the upper
tails.
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Corollary 1.2 illustrates correlations among excitations of the BEC. To be more precise,
Corollary 1.2 characterizes the behavior of the sum N+ = ∑N

i=1 Qi , where, in abuse of
notation, we call Qi the random variables with law

P
[
Qi ∈ B

] = 〈ψN ,1B(Qi )ψN 〉 for any B ⊂ R . (1.17)

The random variables are identically distributed (as ψN ∈ L2
s (π)) and, due to quantum

correlation, dependent.

Quadratic Exponential Bounds

Expanding the r.h.s. of (1.16) for small λ > 0, we find that

lim sup
N→∞

PψN

[N+ − μ ≥ n
] ≤ einfλ∈(0,λ0]

[
−nλ+ λ2

2 σ 2+O(λ3)
]

(1.18)

with σ 2 > 0 given by (1.14), and we recover back quadratic bounds for the upper tails of
N+ proven earlier in [22] through an expansion of the generating function EψN

[
eλN+]

for
small λ > 0 together with the exponential bounds (1.13).

General One-Particle Observables

We further generalize Theorem 1.1 resp. Corollary 1.2 to self-adjoint one-particle operators1

O on 
2(π∗) satisfying Ǒ = QǑQ for Q = 1− |ϕ〉〈ϕ|, i.e. to one-particle operators O that
are orthogonal to the condensate. We then define the N -particle operator

Oi = 1 ⊗ · · · ⊗ 1 ⊗ O ⊗ 1 ⊗ · · · ⊗ 1 (1.19)

acting as identity on all but the i-th particle on which it acts as the operator O . With this
notation we define, in abuse of notation, the random variables Oi through its law

P
[
Oi ∈ B

] = 〈ψN ,1B(Oi )ψN 〉, for any B ⊂ R . (1.20)

The next theorem proves an asymptotic upper bound for an exponential decay rate of the sum
of the random variables Oi . To state our result we introduce the short-hand notation

sp := sinh(νp), cp = cosh(νp) , and τp = tanh(νp) (1.21)

that we use to formulate the asymptotic expectation value of Oi

μO :=
∑

p∈π∗+

Op,ps
2
p . (1.22)

Theorem 1.3 Let V ∈ L3(π) be non-negative, compactly supported and spherically sym-
metric and let ψN denote the ground state of HN defined in (1.1).

Furthermore, let O be a self-adjoint operator on 
2(π∗) with kernel Op,q ∈ 
2(π∗+) ×

2(π∗+) satisfying Ǒ = QǑQ where Q is defined in (1.2). Then, there exists λ0 > 0 such
that the random variables Oi for i ∈ {1, . . . , } defined by (1.20) satisfy

lim
N→∞ EψN

[
eλ

∑N
i=1 Oi

] = e�O (λ) (1.23)

1 Here we introduced the notation O as the inverse Fourier transform of the operator O defined in 
2(π∗) ×

2(π∗) since in our setting it ismore convenient to formulate the following statement inmomentum spaceπ∗ . If
O has kernel Op,q ∈ 
2(π∗)×
2(π∗), then the operator Ǒ has kernel Ǒ(x, y) = ∑

p,q∈π∗ Op,qeip·x e−iq·y .
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for all |λ| ≤ λ0 and, moreover,

lim
N→∞ PψN

[ N∑

i=1

Oi − μO ≥ n

]
≤ einf0<λ<λ0

[
(n−μ0)λ−�O (λ)

]
(1.24)

for all n ∈ (0, N ] where μO is defined in (1.22) and � : [0, λ0] → R denotes a convex
function given by

�(λ) =
ˆ λ

0

∑

p,q,k,
∈π∗+

spcq Op,q

∞∑

j=0

(
Dp,q,k,
(κ)

) j
Ak,
(κ)dκ + λ

∑

p∈π∗+

Op,ps
2
p (1.25)

where the j-th power of the kernel Dp,q,k,
 is recursively defined by

D0
p,q,k,
(κ) = δp,kδq,
, and D j

p,q,k,
(κ) =
∑

k′,
′∈π∗+

D j−1
p,q,k′,
′(κ)Dk′,
′,k,
(κ) (1.26)

and

Ap,q(κ) = − cpsqδp,q + cpcq〈ceκO−p , seκO
−
q 〉
2(π∗+) + spsq〈se−κO

−
−p , ce−κOq 〉
2(π∗+)

− spcq〈se−κO−p , seκO−q 〉
2(π∗+) − cpsq〈se−κOq , seκOp 〉
2(π∗+) (1.27)

with the notation Op := O·,p, O−
q = O−·,q and

Dp,q,k,
(κ)

= cpckcqs
τ


(
eκO−k,−p eκO
,q + e−κOk,−p e−κO−
,q − e−κOk,−p eκO
,−q − e−κOk,p eκO
,q

)
.

(1.28)

Remark 1.2 We collect some remarks on Theorem 1.3.

(i) In the proof of the Theorem in Section 4 we establish the rate of convergence of (4.5)
that is O(N−1/4) (see (4.11)).

(ii) Furthermore, in the proof we show that the asymptotic generating function �O is well
defined, i.e. that the r.h.s. of (1.25) is finite (see the discussion before (4.90)).

Normal vs. Anomalous Random Variables

Corollary 1.2 and Theorem 1.3 characterize tails for the sum of correlated random variables
Oi resp. Qi with non-vanishing deviation in the large particle limit; they show anomalous
scaling properties. These results embed in a series of recent results [7, 11, 16, 26–30] on a
new probabilistic interpretation of Bose-Einstein condensates studying random variables Ai

defined similarly to (1.20) with A 	= QAQ. These random variables Ai , thus, measure the
correlation between the condensate and the excitations. Similarly to the random variables
Qi , the random variables Ai are identically distributed and dependent. In contrast to (1.14),
the random variables cluster around their asymptotic mean

EψN

[
1

N

N∑

i=1

Ai

]
−−−−→
N→∞ 〈ϕ, Aϕ〉 (1.29)
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with a deviation

√√√√
EψN

[(
1

N

N∑

i=1

Ai − 〈ϕ, Aϕ〉
)2]

−−−−→
N→∞ 0 (1.30)

that vanishes in the large particle limit. Consequently, Bose-Einstein condensation is asso-
ciated with a weak law of large numbers of the random variables Ai (see [7]). In fact, the
deviation (1.30) of the random variable Ai from its mean turns out to be O(N−1), and thus
agrees with the scaling of normal distributed random variables. In past years, the random
variableswere indeed proven to satisfy central limit theorems [29], also recently in the dynam-
ical setting [11]. In the mean-field regime (corresponding to the case VN := V in (1.1)) the
large deviation regime for Ai is characterized through quadratic upper and (matching) lower
bounds both for the ground state [28] and the dynamics [16, 30]. Note that, for the random
variables Oi resp. Qi , we can prove an upper bounds in Corollary 1.2, 1.3 on their tails only.

1.3 Idea of the Proof

The novelty this paper is the derivation of an explicit asymptotic formula for the generating
function for the number of excitationsN+ in Theorem 1.1 resp. the sum of random variables∑N

i=1 Oi (as defined in 1.20) in Theorem 1.3. The idea for establishing explicit formulas for

EψN

[
eλN+]

, resp. EψN

[
eλ

∑N
i=1 Oi

]
(1.31)

in the large particle limit N → ∞, is to combine an approximation of the ground state ψN

in L2(πN )-norm (proven in [3]) with exponential bounds onN+ recently proven in [22]. To
be more precise, we show that thanks to [3] and [22], the computation of (1.31) reduces in
the large particle limit N → ∞ to the computation of the generating function of N+ in a
quasi-free state, namely

EψN

[
eλN+] ≈ 〈eKν �, eλN+eKν �〉 (1.32)

where� denote the vacuumvector of the bosonic Fock space, equippedwith standard creation
and annihilation operators a∗

p, ap , and e
Kν denotes a Bogoliubov transformation given by

eKν , with Kν =
∑

p∈π∗+

νp
(
a∗−pap − apa−p

)
(1.33)

with νp defined in (1.6). A peculiar property of a Bogoliubov transformation of the form
(1.33) is that one has explicit formulas for its action on creation and annihilation operators
(for more details see Section 3) that, in particular lead to the validity of Wick’s rule for quasi-
free states (see for example [32] and [33, Theorem 10.2]). Based on these, we explicitly
compute the right-hand side of (1.32) by solving an ordinary differential equation. To the
best of the author’s knowledge, this yields a novel formula for themoment generating function
of N+ not previously reported in the literature. The computation of the asymptotic formula

for the generating function of EψN

[
eλ

∑N
i=1 Oi

]
works with similar ideas. Both proofs are

given in Section 4.
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1.4 Structure of the Paper

The rest of this paper is structured as follows: In Section 2 we use Theorem 1.1 to prove
Corollary 1.2 on the tails of the distribution of N+ and formulas (1.14), (1.30) on the devi-
ations from their mean. In Section 3 we collect preliminary results, in particular on the
approximation of the ground state and prove additional properties of its approximating state
that we need to prove Theorems 1.1 and 1.3 in Section 4.

2 Characterization of Deviations and Tails

In this Section we derive Corollary 1.2 on the characterization of the tails (Section 2.1) for
N+ from the asymptotic generating function in Theorem 1.1. We furthermore show that
Theorem 1.1 allows to draw conclusion on the deviations of N+ from its mean μ (Section
2.2).

These proofs are based on explicit asymptotic formulas of moments of the number of
excitations. In fact from Theorem 1.1 (more specifically (1.9)) we find

lim
N→∞ EψN

[
(N+ − μ)2

] = σ 2 (2.1)

recovering back (1.14). We recall definition

σ 2 = 2
∑

p∈π∗+

cosh2(νp) sinh
2(νp) (2.2)

and the sequence νp is given by (1.6). A straight forward computation, based on 1.9 of
Theorem 1.1, shows furthermore

lim
N→∞ EψN

[
(N+ − μ)4

] = 12σ 4 + 8σ 2 + 48
∑

p∈π∗+

cosh(νp)
4 sinh(νp)

4 . (2.3)

2.1 Characterization of Tails

In this Section we prove Corollary 1.2.

Proof The proof of both statements of Corollary 1.2, namely (1.16) and (1.15), are both
based on Theorem 1.1. We start with the proof of (1.16) that is an immediate consequence
of Markov’s inequality.

Proof of (1.16):

For all λ > 0 we have

PψN

[N+ − μ > n
] = P

[
eλN+−λμ > eλn] (2.4)

and, thus we find with Markov’s inequality

PψN

[N+ − μ > n
] ≤ e−λ(n+μ)

E
[
eλN+]

(2.5)

Since this holds true for any λ > 0, we conclude with Theorem 1.1 that

lim sup
N→∞

logPψN

[N+ − μ > n
] ≤ inf

λ∈(0,λ0]
[ − λ(n + μ) + �(λ)

]
. (2.6)
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Proof of (1.15):

The proof of (1.15) uses that the asymptotic generating function � defined in (1.11) allows
to explicitly compute any moment of N+ asymptotically.

First we observe that for arbitrary n,m > 0, that we will choose later,

PψN

[∣∣N+ − μ
∣∣ > n

] ≥ PψN

[|N+ − μ| ∈ (n, n + m)
]

. (2.7)

We proceed with estimating the r.h.s. from above. To this end, we introduce the notation
Ñ+ = |N+ − μ|

PψN

[|N+ − μ| ∈ (n, n + m)
] =EψN

[
1(n,n+m)

(Ñ+
)]

=EψN

[
1(n,n+m)

(Ñ+
)Ñ2

+Ñ−2
+

]
. (2.8)

Since Ñ−2
+ ≥ (n + m)−2 on the support of 1(n,n+m)

(Ñ+
)
, we find

PψN

[
|N+ − μ| ∈ (n, n + m)

]
≥ 1

(n + m)2
EψN

[
1(n,n+m)

(Ñ+
)Ñ2

+
]

. (2.9)

We define the new probability distribution

P̃ψN

[Ñ+ ∈ A
] = EψN

[Ñ2
+χA(Ñ+)

]

EψN

[Ñ2
+
] (2.10)

that is for sufficiently large N well defined as EψN

[Ñ2
+
]

> 0 from (2.1). Thus with (2.10)
we can write the r.h.s. of (2.9) as

PψN

[|N+ − μ| ∈ (n, n + m)
] ≥EψN

[Ñ2
+
]

(n + m)2
P̃
[Ñ+ ∈ (n, n + m)

]

=EψN

[Ñ2
+
]

(n + m)2

(
1 − P̃

[Ñ+ ∈ (0, n]] − P̃
[Ñ+ ∈ [n + m,∞)

])
.

(2.11)

where we used that by definition 2.10, it follows P̃ψN

[|N+ − μ| = 0
] = 0. Next, we apply

once more Markov’s inequality for the probability measure P̃ and arrive at

PψN

[|N+ − μ| ∈ (n, n + m)
] ≥ E

[Ñ2
+
]

(n + m)2
P̃
[Ñ+ ∈ (n, n + m)

]

= E
[Ñ2

+
]

(n + m)2

(
1 − 1

E
[Ñ2

+
]
(
n2 + 1

(n + m)2
E

[Ñ4]
))

.

(2.12)

Now we choose n,m such that

n2 = 1

4
E

[Ñ2
+
]
,

1

(n + m)2
= 1

4

E
[Ñ2

+
]

E
[Ñ4

+
] (2.13)

yielding

P
[|N+ − μ| ∈ (n, n + m)

] ≥ E
[Ñ2

+
]

2(n + m)2
= E

[Ñ2
+
]2

8E
[Ñ4

+
] . (2.14)
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From (2.3) we find using the assumption a > 0, that in particular implies σ > 0, that

E
[Ñ4

+
] ≥ 12σ 4 so that we finally arrive with (2.1) at

P
[|N+ − μ| ∈ (n, n + m)

] ≥ σ 4

96σ 4 > 0 (2.15)

that is the desired statement. ��

2.2 Characterization of Deviations from theMean

In this section we show that the deviation ofN+ from its mean μ does not vanish in the large
particle limit (i.e. formula (1.14)) while, contrarily, the deviation of the random variables Ai

with A 	= QAQ as defined in (1.20) does vanish as N → ∞ (see formula (1.30)).

Proof of (1.14)

From (2.1), we immediately find

lim
N→∞

√
EψN

[(N+ − μ
)2] = σ . (2.16)

Proof of (1.30)

We compute

EψN

[(
1

N

N∑

i=1

Ai − 〈ϕ, Aϕ〉
)2]

= 1

N 2 EψN

[ N∑

i 	= j

Ai A j

]
+ 1

N 2 EψN

[ N∑

i=1

Ai

]
− 2

N
〈ϕ, Aϕ〉EψN

[ N∑

i=1

Ai

]
+ 〈ϕ, Aϕ〉2

(2.17)

and use the k-particle reduced density associated to ψN

γ
(k)
ψN

= Trk+1,...,N |ψN 〉〈ψN | (2.18)

defined as the partial trace starting from the k + 1 to the N -th particle of the orthogonal
projection onto ψN to express the r.h.s. of (2.17) as

EψN

[(
1

N

N∑

i=1

Ai − 〈ϕ, Aϕ〉
)2]

= N (N − 1)

N 2 Trγ (2)
ψN

(A ⊗ A) + 1

N
Trγ (1)

ψN
A − 2〈ϕ, Aϕ〉 Trγ (1)

ψN
A + 〈ϕ, Aϕ〉2. (2.19)

Since, as proven in for example in [17], for fixed k ∈ N, we have

lim
N→∞Tr

∣∣γ (k)
ψN

− |ϕ〉〈ϕ|⊗k
∣∣ = 0 (2.20)

we get

lim
N→∞ EψN

[(
1

N

N∑

i=1

Ai − 〈ϕ, Aϕ〉
)2]

= 0 . (2.21)
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3 Preliminaries

In this section, we recall basic notation and results from the literature on the many-body
problem that we use for the proof of Theorem 1.1 in Section 4 later. For more details on
Bogoliubov theory in the context of Bose gases, see for example the introductory lecture
notes [33] or recent review articles [20, 25, 31].

3.1 Approximation of the Ground State

For our analysis it is convenient to embed the N -body Hamiltonian (1.1) into the bosonic
Fock space given by

F =
∞⊕

k=1

L2
s (π

k) . (3.1)

The bosonic Fock space F is equipped with standard creation and annihilation operators
a∗( f ) resp. a(g) with f , g ∈ L2(π) that satisfy the canonical commutation relations

[
a(g), a∗( f )

] = 〈g, f 〉, [
a∗( f ), a∗(g)

] = [
a( f ), a(g)

] = 0 . (3.2)

For our analysis in the translation invariant setting onπ , it is convenient towork inmomentum
space π∗ = (2πZ)3 where we define

a∗
p = a∗(ϕp), ap = a(ϕp), ϕp(x) = eip·x ∈ L2(π) . (3.3)

In momentum space, the number of particles operator can then be written as

N =
∑

p∈π∗
a∗
pap (3.4)

and decomposed, recalling that the condensate wave function ϕ corresponds to the zero mode
p = 0, as

N = N+ + a∗
0a0, with N+ =

∑

p∈π∗+

a∗
pap (3.5)

the number of excitations and the notation π∗+ = π∗ \ {0}. We recall some bounds of creation
and annihilation operators in terms of the number of particles operator, that we use in the
proof later. For ψ ∈ F and f ∈ L2(π) we have

‖a( f )ψ‖ ≤ ‖ f ‖L2‖N1/2ψ‖, ‖a∗( f )ψ ≤ ‖ f ‖L2‖(N + 1)1/2ψ‖, (3.6)

and for any operator H on 
2(π∗) with kernel Hp,q and ξ1, ξ2 ∈ F, we have
∣∣〈ξ1,

∑

p,q∈π∗
Hp,qa

∗
paqξ2〉| ≤ ‖H‖op‖N1/2ξ1‖ ‖N1/2ξ2‖, (3.7)

and furthermore,
∣∣〈ξ1,

∑

p,q∈π∗
Hp,qa

∗
pa−qξ2〉| ≤ ‖H‖
2(π×π)‖N1/2ξ1‖ ‖(N + 1)1/2ξ2‖ . (3.8)
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With this notation, the second quantization of the Hamiltonian (1.1) in momentum space
reads

HN =
∑

p∈�∗
+ 1

N

∑

r ,p,q∈�∗
V̂ (r/N )a∗

p+r a
∗
qapaq+r (3.9)

where we used the convention V̂ (p) = ´
R3 dx e−i p·x V (x) for p ∈ R

3.
To study the quantum fluctuations around the condensate’s behavior, we factor out any

contribution of the condensate ϕ = 1π through the unitary

UN : L2
s (π

N ) → F≤N
⊥ϕ :=

N⊕

n=0

L2⊥ϕ(π)⊗N
s (3.10)

that maps ψN , which can be uniquely decomposed as

ψN :=
N∑

n=0

ϕ⊗(N−n) ⊗s ξ (n), with ξ (n) ∈ L2⊥ϕ(π)⊗sn , (3.11)

onto the excitation vector ξ := {ξ (0), . . . , ξ (n)}, i.e. UNψN = ξ . The unitary UN , first
introduced in [19], acts for p, q ∈ π∗+ on products of creation and annihilation operators as

UNa
∗
paqU∗

N = a∗
paq , UNa

∗
0a0U∗

N = N − N+, (3.12)

resp.

UNa
∗
pa0U∗

N = N 1/2b∗
p, UNa

∗
0aqU∗

N = N 1/2bq (3.13)

where we introducedmodified creation and annihilation operators b∗
p, bq given for p, q ∈ π∗+

by

b∗
p := a∗

p

√
1 − N+/N , bp := √

1 − N+/Naq . (3.14)

Contrarily to standard creation and annihilation operators, the modified ones, first introduced
in [8], leave the truncated Fock space F≤N

⊥ϕ invariant, however, that comes with the price of
modified commutation relations

[bp, bq ] =
(
1 − N+

N

)
δp,q − 1

N
a∗
qap, [bp, bq ] = [b∗

pb
∗
q ] = 0 (3.15)

having, compared to (3.2), a correction term of order N−1. Similarly to be standard creation
and annihilation operators in (3.6)-(3.8), the modified ones are bounded w.r.t. powers of the
number of excitations. We have for ψ ∈ F≤N

⊥ϕ and f ∈ L2(π) we have

‖b( f )ψ‖ ≤ C‖ f ‖L2‖N1/2
+ ψ‖, ‖b∗( f )ψ ≤ C‖ f ‖L2‖(N+ + 1)1/2ψ‖, (3.16)

for C > 0 and for any operator H on 
2(π∗) with kernel Hp,q and ξ1, ξ2 ∈ F≤N
⊥ϕ , we have

∣∣〈ξ1,
∑

p,q∈π∗
Hp,qb

∗
pbqξ2〉| ≤ C‖H‖op‖N1/2

+ ξ1‖ ‖N1/2
+ ξ2‖, (3.17)

and furthermore,
∣∣〈ξ1,

∑

p,q∈π∗
Hp,qb

∗
pb

∗−qξ2〉| ≤ C‖H‖
2(π∗+×π∗+)‖N1/2
+ ξ1‖ ‖(N+ + 1)1/2ξ2‖ . (3.18)
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We remark that on the truncated Fock space, the number of excitations equals the number of
particles operator, i.e. N+ψ = Nψ for any ψ ∈ F≤N

⊥ϕ .
To study the quantum fluctuations, the so-called excitation Hamiltonian LN = UN HU∗

N
needs to be regularized, through a modified Bogoliubov transformation that is a unitary map
on F≤N

⊥ϕ given by

eBη = exp

[
1

2

∑

p∈�∗+

ηp
(
b∗
pb

∗−p − bpb−p
)]

. (3.19)

The choice of the sequence η ∈ 
2(π∗+) is such that it implements the particle’s correlation
structure and formulated in terms of the solution f to the scattering equation with Neumann
boundary conditions. To be more precise, for fixed, sufficiently large 
 > 0, let f
 denote the
ground state solution to the Neumann problem

[
− � + 1

2
V

]
f
 = μ
 f
 (3.20)

on the ball |x | ≤ N
, where the normalization is such that f
(x) = 1 of |x | = N
 and
f
(x) = 1 for all |x | > N
. Then, we set

η̌ : π → L2(π), η̌(x) = −Nω
(Nx) (3.21)

for the definition of the regularizing modified Bogoliubov transformation (3.29). We remark
that the sequence η by definition (3.21) satisfies (see for example [3, Lemma 3.1])

|ηp| ≤ C |p|−2 (3.22)

and thus, in particular η is an element of 
2(π∗+).
To prove the L2

s (π
N )-norm approximation of the ground state in [3], the Hamiltonian

is further regularized using a unitary map on F≤N
⊥ϕ that is exponentially cubic in modified

creation and annihilation operators and given by

eAη , Aη = exp

[
N−1/2

∑

r∈PH ,v∈PL

ηr
(
sinh(ηv)b

∗
r+vb

∗−r b
∗−v + coshηv b

∗
r+vb

∗−r bv − h.c.
)]

(3.23)

with η defined through (3.21) and

PL = {p ∈ π∗+ : |p| ≤ N 1/2} and PH = π∗+ \ PL (3.24)

and a second modified Bogoliubov transform on F≤N
⊥ϕ given by

eBτ = exp

[
1

2

∑

p∈π∗+

τp
(
b∗
pb

∗−p − bpb−p
)]

(3.25)

where the sequence τ is given by

τp = −1

4
log

[
1 + 2|p|−2̂V f
(p/N )

] − ηp , (3.26)

and thus, in particular (see for example [3, Lemma 5.1]) |τp| ≤ C |p|−4 for all p ∈ π∗+. It
was proven in [3, Eq. (6.7)] that the ground state ψN of HN then satisfies

‖ψN − eiωe−Bηe−Ae−Bτ �‖ ≤ CN−1/4 (3.27)
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for an appropriate choiceω ∈ [0, 2π ].While it is well known that the number of excitations is
bounded in the ground state, recently it was proven [22, Theorem 1] that also the exponential
of the number of particles is bounded, i.e. that there exists C > 0 such that

〈ψN , eλN+ψN 〉 ≤ C (3.28)

for sufficiently small |λ| > 0 (depending on V only).

3.2 Modified Bogoliubov Transformation

In this section we study properties of general Bogoliubov transformations defined for any
α ∈ 
2(π∗+) by

eBα , with Bα = 1

2

∑

p∈π∗+

αp
(
b∗
pb

∗−p − bpb−p
)

. (3.29)

In particular, the results then apply for η defined in (3.21) and τ defined in (3.26) and thus
for the two modified Bogoliubov transformation eBτ , eBη from (3.19),(3.25) that are relevant
the for norm approximation of the ground state ψN of (1.1).

We remark that the action of the modified Bogoliubov transform on modified creation and
annihilation operators is approximately known in the large particle limit. As proven in [3,
Lemma 2.3], we have

e−Bαbpe
Bα = cosh(αp)bp + sinh(αp)b

∗−p + dp,

e−Bαb∗
pe

Bα = cosh(αp)b
∗
p + sinh(αp)b−p + d∗

p, (3.30)

where the error dp, d∗
p satisfy for any ψ ∈ F≤N

⊥ϕ and n ∈ Z

‖(N+ + 1)n/2d∗
pψ‖ ≤ Cn

N
‖(N+ + 1)(n+3)/2ψ‖ ,

‖(N+ + 1)n/2dpψ‖ ≤ Cn

N

(
|ηp| ‖(N+ + 1)(n+3)/2ψ‖ + ‖bp(N+ + 1)(n+2)/2ψ‖ (3.31)

for a constant Cn > 0.
Moreover, modified Bogoliubov transformations as in (3.29) are proven to approximately

preserve powers of the number of excitations (see [3, Lemma 2.1]), i.e.

e−Bα (N+ + 1)keBα ≤ Ck(N+ + 1)k . (3.32)

We improve that result and show that the modified Bogoliubov transform also approximately
preserves the exponential of the number of excitations:

Lemma 3.1 For α ∈ 
2(π∗+) the modified Bogoliubov transformation eBα defined in (3.19)
satisfies for sufficiently small κ > 0

e−BαeκN+eBα ≤ eCκ(N++1) (3.33)

for a constant C > 0 as an operator inequality on F≤N
⊥ϕ .

Proof The proof is based on a Gronwall argument. To this end we define for s ∈ [0, 1] and
arbitrary ψ ∈ F≤N

⊥ϕ

ξs = ecsκN+/2esBαψ (3.34)
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for a monotone decreasing function cs : [0, 1] → R+ with c1 = 1 that we choose later. Then

‖ξ1‖2 = 〈ψ, e−BαeκN+eBαψ〉, and ‖ξ0‖2 = 〈ψ, ec0κN+ψ〉 . (3.35)

Thus in order to prove Lemma 3.1, it is enough to control the derivative

∂s‖ξs‖2 =2Re〈ξs, ∂sξs〉
=2Re〈ξs,

(
ċsκN+ + ecsκN+ Bαe

−csκN+)
ξs〉 (3.36)

and the idea is to control the second term of the r.h.s. through the first, choosing cs appropri-
ately. Since

N+bp = bp(N+ − 1) and N+b∗
p = b∗

p(N+ + 1) (3.37)

we have

Re〈ξs, ecsκN+ Bαe
−csκN+ξs〉

=Re
∑

p∈π∗+

αp 〈ξs,
(
e−2κcs b∗

pb
∗−p − e2κcs bpb−p

)
ξs〉

=1

2
Re

∑

p∈π∗+

αp 〈ξs,
((
e−2κcs − e2κcs

)
b∗
pb

∗−p − (
e2κcs − e−2κcs

)
bpb−p

)
ξs〉

= sinh(2κcs)
∑

p∈π∗+

αp〈ξs,
(
b∗
pb

∗−p + bpb−p
)
ξs〉 . (3.38)

Now, using that α ∈ 
2(π∗+), it thus follows for sufficiently small csκ > 0 that sinh(2κcs) ≤
C̃csκ for some C̃ > 0 and therefore

∂s‖ξs‖2 ≤ κ〈ξs,
(
ċs + 2‖α‖
2 C̃cs

)N+ξs〉 + 2C̃csκ‖α‖
2‖ξs‖2 . (3.39)

Now we choose

cs = eC‖α‖2(1−s) (3.40)

with C > 2C̃ . Then c1 = 1 and c0 = eC‖α‖

2 and ċs = −C‖α‖
2cs , and in particular

ċs + 2C̃‖α‖
2cs < 0 leading with (3.39) to

∂s‖ξs‖2 ≤ 2csκ‖α‖
2‖ξs‖2 (3.41)

that by Gronwall’s inequality yields the desired bound of Lemma 3.1. ��

3.3 Properties of the Cubic Unitary eA�

Here we discuss properties of the cubic unitary eAη defined in (3.23). As proven in [3, Lemma
5.1], the cubic unitary approximately preserves powers of the number of excitations, i.e.

e−Aη (N+ + 1)keAη ≤ Ck(N+ + 1)k (3.42)

for fixed k ∈ N. Similarly as in the previous sectionwe show that eAη approximately preserves
the exponential of the number of particles.

Lemma 3.2 For η ∈ 
2(π∗+), the cubic transformation eAη defined in (3.23) satisfies for
sufficiently small κ > 0

e−AηeκN+eAη ≤ eCκ(N++1) (3.43)
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for a constant C > 0 as an operator inequality on F≤N
⊥ϕ .

Proof Similarly as in the proof of Lemma 3.1, we use a Gronwall type argument for the Fock
space vector

ξs = ecsκN+/2esAηψ, (3.44)

where we choose the monotone decreasing function cs : [0, 1] → R+ with c1 = 1 later.
Since

‖ξ1‖2 = 〈ψ, e−AηeκN+eAηψ〉, and ‖ξ0‖2 = 〈ξ, ec0κN+ψ〉 . (3.45)

we need to control

∂s‖ξs‖2 = 2Re〈ξs,
(
ċsκN+ + ecsκN+ Aαe

−csκN+)
ξs〉 . (3.46)

With (3.37) we find

Re ecsκN+ Aαe
−csκN+

= 2N−1/2
∑

r∈PH ,v∈PL

ηr
(
sinh(3csκ) sinh(ηv)b

∗
r+vb

∗−r b
∗−v

+ sinh(κcs) cosh(ηv)b
∗
r+vb

∗−r bv + h.c.
)

. (3.47)

On the one hand we have for any ψ ∈ F≤N
⊥ϕ

|〈ψ,
∑

r∈PH ,v∈PL

ηr sinh(ηv)b
∗
r+vb

∗−r b
∗−vψ〉|

≤
( ∑

r∈PH ,v∈PL

‖br+vb−rψ‖2
)1/2( ∑

r∈PH ,v∈PL

|ηr |2| sinh(ηv)|2‖b−vψ‖2
)1/2

(3.48)

Since |ηr | ≤ Cr−2 and | sinh(ηv)|2 ≤ |ηv| ≤ Cv−2 from (3.22), it follows

|〈ψ,
∑

r∈PH ,v∈PL

ηr sinh(ηv)b
∗
r+vb

∗−r b
∗−vψ〉| ≤ C1‖N+ψ‖ ‖(N+ + 1)1/2ψ‖ . (3.49)

for a constant C1 > 0. On the other hand, we have

|〈ψ,
∑

r∈PH ,v∈PL

ηr cosh(ηv)b
∗
r+vb

∗−r bvψ〉|

≤
( ∑

r∈PH ,v∈PL

‖br+vb−rψ‖2
)1/2( ∑

r∈PH ,v∈PL

|ηr |2| cosh(ηv)|2‖bvψ‖2
)1/2

(3.50)

and since | cosh(ηv)| ≤ C with (3.22) , it follows

|〈ψ,
∑

r∈PH ,v∈PL

ηr cosh(ηv)b
∗
r+vb

∗−r bvψ〉| ≤ C2‖N+ψ‖ ‖(N+ + 1)1/2ψ‖ . (3.51)

for some constantC2 > 0.With (3.49) and (3.51), we thus find for sufficiently small κcs > 0
that

|Re〈ψ, ecsN+ Aαe
−csN+ψ〉| ≤ C3csκ〈ψ, (N+ + 1)ψ〉 (3.52)

for some C3 > 0 that yields with the choice cs = eC3(1−s) from (3.46) in

∂s‖ξ(s)‖2 ≤ κ〈ξ(s),
( − C3 + C3)N+ξ(s)〉 + C3κ‖ξ(s)‖2 ≤ C3κ‖ξ(s)‖2 . (3.53)

123



Generating Function for Quantum… Page 17 of 34 108

Then Lemma 3.2 follows with Gronwalls argument. ��

3.4 Properties of the Asymptotic Bogoliubov Transformation

In the proof of Theorem, we will show that the action of the three unitaries eBηeAηeBτ is
asymptotically given through a (standard) Bogoliubov transformation w.r.t. standard creation
and annihilation operators that is a unitary map on the full bosonic Fock space F and given
for α ∈ 
2(π∗+) by

eKα , with Kα =
∑

p∈π∗+

αp
(
a∗−pap − apa−p

)
, for α ∈ 
2(π∗+) . (3.54)

In contrast to the modified Bogoliubov transform (see (3.30)), the action of the standard
Bogoliubov transform on creation and annihilation operators is exactly known to be

e−Kαape
Kα = cosh(αp)ap + sinh(αp)a

∗−p

e−Kαa∗
pe

Kα = cosh(αp)a
∗
p + sinh(αp)a−p . (3.55)

We remark that as an immediate consequence of (3.55) we have for any h ∈ 
2(π∗) from

e−Kαa(h)eKα =a
(
cosh(α)h

) + a∗( sinh(α)h−)

e−Kαa∗
pe

Kα =a∗(cosh(α)h
) + a

(
sinh(α)h−)

(3.56)

where we used for any h ∈ 
2(π∗+)

h−
p = h−p . (3.57)

It is well known that the standard Bogoliubov transform approximately preserves powers
of the number of excitations, i.e.

e−Kα (N+ + 1)keKα ≤ Ck(N+ + 1)k . (3.58)

We prove that it approximately preserves the exponential of the number of excitations, sim-
ilarly as the modified Bogoliubov transform (see Lemma 3.1).

Lemma 3.3 For α ∈ 
2(π∗+), the standard Bogoliubov transform eKα defined in (3.54) sat-
isfies for κ > 0

e−KαeκN+eKα ≤ eCκ(N++1) (3.59)

for a constant C > 0 as an operator inequality on F.
Proof The proof of Lemma 3.3 follows with similar arguments as in the proof of Lemma 3.1,
using instead of the estimates (3.16) for the modified creation and annihilation operators, the
similar estimates (3.6) for the standard ones. ��

3.5 Baker-Campbell-Hausdorff Formulas

In this section we prove specific Baker-Campbell-Hausdorff formulas for non-commuting
operators, that allow to explicitly compute the conjugation ed�(O)ape−d�(O) for p ∈ π∗.
For this we introduce for an operator O on 
2(π∗+) the notation

Op := O·,p (3.60)
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in particular leading to eOp = eO·,p .

Lemma 3.4 Let h ∈ 
2(π∗) and O be a bounded operator on 
2(π∗). Then, we have with
the notation (3.60)

ed�(O)a∗
pe

−d�(O) = a∗(eOp ), and ed�(O)ape
−d�(O) = a(e−Op ) (3.61)

Proof The proof is based on the identity

ed�(O)a∗
pe

−d�(O) =
∞∑

j=0

1

j !ad
( j)
d�(O)

(
a∗
p

)
(3.62)

where we introduced the notation of the j-th nested commutator, defined recursively by

ad(0)
d�(O)(a

∗
p) = a∗

p, ad( j+1)
d�(O)(a

∗
p) = [

d�(O), ad( j)
d�(O)(a

∗
p)

]
. (3.63)

We claim that the j-th nested commutator is given by

ad( j)
d�(O)

(
a∗
p

) = a∗(O j
p) (3.64)

with the notation

Op := O·,p, and O j
p = O j·,p . (3.65)

In fact (3.64) follows by induction: Assuming (3.64) to hold true for fixed j ∈ N, we find

ad( j+1)
d�(O)

(
a∗(h)

) =[
d�(O), ad( j)

d�(O)(a
∗
p)

]

=
∑

k,
∈π∗
Ok,
O

j
m,p

[
a∗
k a
, a

∗
m

]
)

=
∑

k,
∈π∗
Ok,pO
,pa

∗k = a∗(O j+1
p ) (3.66)

and (3.64) follows for all j ∈ N. Then the first equality of Lemma 3.4 follows from (3.64)
and (3.62). The second equality of Lemma 3.4 then follows by taking the hermitian conjugate
of the first and replacing O with −O . ��

4 Proof of Theorems

The proof of Theorem 1.1 and Theorem 1.3 use the same strategy thus we present them
together.

4.1 Proof of Theorem 1.1 and Theorem 1.3

The proofs are split in three steps:
We first show, based on the norm-approximation of the ground state and the exponential

bounds (3.28), that the generating function of d�(O) resp.N+ w.r.t. to the ground state ψN

is well approximated by

〈�, e−Kν eλd�(O)eKν �〉, resp. 〈�, e−Kν eλN+eKν �〉 (4.1)
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for Theorem 1.1 resp. Theorem 1.3 that is the generating function of N+ resp. d�(O) w.r.t.
to the quasi-free state eKν � where

eKν , with Kν =
∑

p∈π∗+

νp
(
a∗−pap − apa−p

)
, for νp given by (1.6) . (4.2)

This is summarized in the following Lemma:

Lemma 4.1 Under the same assumption as in Theorem 1.1, assume that O is a bounded
operator on 
2(π∗+). Then, for k ∈ N, there exists Ck > 0 such that

∣∣〈ψN ,Nk+eλd�(O)ψN 〉 − 〈�, e−KνNk+eλd�(O)eKν �〉∣∣ ≤ CkN
−1/4 . (4.3)

where Kν is defined by (4.2).

We remark that Lemma 4.1 in particular holds for the choice O = 1 and thus for d�(1) =
N+. We prove Lemma 4.1 in Section 4.2 below and proceed with the proof of the theorems.

The second step of the proofs of Theorem 1.1 resp. Theorem 1.3, are the explicit computa-
tion of the generating functions (4.1) w.r.t to the quasi-free state eKν � given by the following
Lemma:

Lemma 4.2 Under the same assumptions as in Theorem 1.1 and Theorem 1.3, we have for
sufficiently small |λ| ≥ 0

〈�, e−Kν eλN+eKν �〉 = e�(λ) (4.4)

where � is given by (1.11) resp.

〈�, e−Kν eλd�(O)eKν �〉 = e�O (λ) (4.5)

where �O is defined in (1.25).

Again we postpone the proof of Lemma 4.2 to Section 4.3 below and continue with the
theorems’ proofs.

As a last, third step, it remains to combine Lemma 4.1 and Lemma 4.2 to prove Theorem
1.1 and Theorem 1.3.

Proof of Theorem 1.1 The proof of (1.7) now follows immediately from Lemma 4.1 and
Lemma 4.2. For sufficiently small λ > 0, we find

∣∣EψN

[
eλN+] − e�(λ)

∣∣ ≤ CN−1/4 . (4.6)

From Lemma 4.2 we furthermore get for λ with sufficiently small |λ|
�(λ) = log e�(λ) = log〈�, e−Kν eλN+eKν �〉 (4.7)

and since

d2

dλ2
�(λ) = d2

dλ2
log〈�, e−Kν eλN+eKν �〉

=〈�, e−KνN2+eλN+eKν �〉
〈�, e−Kν eλN+eKν �〉 − 〈�, e−KνN+eλN+eKν �〉2

〈�, e−Kν eλN+eKν �〉2 ≥ 0 (4.8)

by Cauchy Schwarz, and thus, we conclude that � is convex.

123



108 Page 20 of 34 S. Rademacher

Similarly, for the proof of (1.9), we find from Lemma 4.1 for sufficiently small λ > 0 and
fixed k ∈ N

∣∣EψN

[Nk+eλN+] − 〈�, e−KνNk+eλN+eKν �〉∣∣ ≤ CkN
−1/4 (4.9)

and with Lemma 4.2

〈�, e−KνNk+eλN+eKν �〉 = dk

dλk
〈�, e−Kν eλN+eKν �〉 = dk

dλk
exp(�(λ)) (4.10)

we arrive at (1.9). ��
Proof of Theorem 1.3 The proof of (4.5) follows from a combination of Lemma 4.1 and
Lemma 4.2 that show

∣∣EψN

[
eλ

∑N
i=1 Oi

] − e�O (λ)
∣∣ ≤ CN−1/4 (4.11)

for sufficiently small λ > 0. Then (1.24) follows by Markov’s inequality (similarly as in the
proof of Corollary 1.2 in Section 2.1). ��

4.2 Step 1: Approximation by Quasi-Free State

In this section we prove Lemma 4.1.

Proof of Lemma 4.1 We split the proof in three steps:We first use show that, using the approx-
imation (3.27), we can replace ψN with eBτ eAηeBη�. Second we show that the action of the
cubic transform eAη on eλd�(O) is negligible in the large particle limit. In the last step, we
then show that we can replace the action of the two modified Bogoliubov transformations
eBτ eBη on eλd�(O) by the action of an effective standard Bogoliubov transformation.

Step 1.1 (Norm approximation): First we use the norm approximation (3.27) and find

〈ψN ,Nk+eλd�(O)ψN 〉 − 〈�, e−KνNk+eλd�(O)eKν �〉
=〈(ψN − eiωe−BηeAηe−Bτ �

)
, Nk+eλd�(O)ψN 〉

+ 〈eiωe−BηeAηe−Bτ �, Nk+eλd�(O)
(
ψN − eiωe−BηeAηe−Bτ �

)〉 (4.12)

and thus, with (3.27) we find
∣∣〈ψN ,Nk+eλd�(O)ψN 〉 − 〈�, e−KνNk+eλd�(O)eKν �〉∣∣

≤ ‖ψN − eiωe−BηeAηe−Bτ �‖
(

‖Nk+eλd�(O)ψN‖ + ‖Nk+eλd�(O)e−BηeAηe−Bτ �‖
)

≤ CN−1/4
(

‖Nk+eλd�(O)ψN‖ + ‖Nk+eλd�(O)e−BηeAηe−Bτ �‖
)

. (4.13)

Since d�(O) ≤ N+ on F≤N
⊥ϕ and the operators d�(O) and N+ commute, we have

‖Nk+eλd�(O)ψN‖ ≤ ‖eλ1N+ψN‖ ≤ C (4.14)

for sufficiently small λ1 > |λ| > 0 as a consequence of the exponential bound (3.28) (resp.
[22, Theorem 1.1]). For the second term we find similarly

‖Nk+eλd�(O)e−BηeAηe−Bτ �‖ ≤ ‖eλ1N+e−BηeAηe−Bτ �‖ ≤ C (4.15)

where the last estimate is a consequence of Lemmas 3.1 and 3.2 and N+� = 0.
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Step 1.2 (Action of eAη ): In order to show that the action of the cubic transformation eAη

on the operator eλd�(O) is negligible in the large particle limit, we write

〈�,e−Bτ e−Aηe−BηNk+eλd�(O)eBηeAηeBτ �〉 − 〈�, e−Bτ e−BηNk+eλd�(O)eBηeBτ �〉

=
ˆ 1

0
ds

d

ds
〈�, e−Bτ e−s Aηe−BηNk+eλd�(O)eBηesAηeBτ �〉

= −
ˆ 1

0
ds〈�, e−Bτ e−s Aη

[
Aη, e−BηNk+eλd�(O)eBη

]
esAηeBτ �〉 (4.16)

With (3.37) we write

〈�, e−Bτ e−s Aη

[
Aη, e−Bη eλd�(O)eBη

]
esAη eBτ �〉

=2Re〈�, e−Bτ e−s Aη Aηe
−BηNk+eλd�(O)eBη esAη eBτ �〉

=2N−1/2
∑

r∈PH ,v∈PL

ηr sinh(ηv)

× Re〈�, e−Bτ e−s AηN1/2
+ b∗

r+vb
∗−r b

∗−v(N+ + 3)−1/2Nk+eλd�(O)eBη esAη eBτ �〉
+ 2N−1/2

∑

r∈PH ,v∈PL

ηr sinh(ηv)

× Re〈�, e−Bτ e−s AηN1/2
+ br+vb−r b−v(N+ + 1)−1Nk+eλd�(O)eBη esAη eBτ �〉

+ 2N−1/2
∑

r∈PH ,v∈PL

ηr cosh(ηv)

× Re〈�, e−Bτ e−s Aη (N+ + 4)b∗
r+vb

∗−r bv(N+ + 1)−1/2Nk+eλd�(O)eBη esAη eBτ �〉
+ 2N−1/2

∑

r∈PH ,v∈PL

ηr cosh(ηv)

× Re〈�, e−Bτ e−s Aη (N+ + 2)b∗
vbr+vb−r (N+ + 1)−1Nk+eλd�(O)eBη esAη eBτ �〉 .

(4.17)

With similar computations as in (3.49)-(3.51), we find

|〈�, e−Bτ e−Aη

[
Aη, e−Bηeλd�(O)eBη

]
esAηeBτ �〉|

≤CN−1/2‖(N+ + 1)3/2eBτ eAη�‖ ‖Nk+eλd�(O)eBηesAηeBτ �‖ . (4.18)

For the first term, the estimates (3.32) and (3.42) imply ‖(N+ + 1)3/2eBτ eAη�‖ ≤ C .
For the second term, we estimate for λ1 > |λ| > 0 that ‖Nk+eλd�(O)eBηesAηeBτ �‖ ≤
Ck‖eCλ1N+eBηesAηeBτ �‖ and then find with Lemmas 3.1, 3.2

‖Nk+eλd�(O)eBηesAηeBτ �‖ ≤ Ck (4.19)

for sufficiently small λ1 > 0 that finally yield

|〈�, e−Bτ e−Aηe−BηNk+eλd�(O)eBηeAηeBτ �〉 − 〈�, e−Bτ e−BηNk+eλd�(O)eBηeBτ �〉|
≤ CN−1/2 (4.20)

��
Step 1.3 (Asymptotic standard Bogoliubov transformation): In the last step, we show

that the action of the two modified Bogoliubov transformations w.r.t. the kernels ηp and τp
defined in (3.21) resp. (3.26) on the operator Nk+eλd�(O) are asymptotically equivalent to
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the action of one effective standard Bogoliubov transformation w.r.t. the kernel νp defined
in (1.14). This observation is based on the observation that

|ηp + τp − νp| ≤ CN−1 (4.21)

whose proof is given in [29, Section 3].

Lemma 4.3 Under the same assumptions as in Theorem 1.1, there exists C > 0 such that

|〈�, e−Bτ e−BηNk+eλd�(O)eBηeBτ �〉 − 〈�, e−KνNk+eλd�(O)eKν �〉| ≤ CN−1 . (4.22)

Proof The goal is to compare the operator

A :=e−Kνd�(O)eKν

=
∑

p,q∈π∗+

Op,q
[
cosh(νp)a

∗
p + sinh(νp)a−p

][
cosh(νq)a

∗
q + sinh(νq)a−q

]
(4.23)

with B = e−Bτ e−Bηd�(O)eBηeBτ that we compute using (3.30) and properties of the hyper-
bolic functions

B := e−Bτ e−Bηd�(O)eBη eBτ

=
∑

p,q∈π∗+
Op,q

[
cosh(ηp + τp)b

∗
p + sinh(ηp + τp)b−p

][
cosh(ηq + τq )b∗

q + sinh(ηq + τq )b−q
]

+ e−Bτ EBη e
Bτ + EBτ (4.24)

where the errors EBα are for α ∈ 
2(π∗+) given by

EBα =
∑

p,q∈π∗+

(
Op,q

[
cosh(αp)b

∗
p + sinh(αp)b−p

]
dαq + h.c

) +
∑

p,q∈π∗+

Op,qd
∗
αp
dαq

(4.25)

and satisfy by (3.31) since supp,q |Op,q | ≤ C

|〈ξ1, EBα ξ2〉| ≤ CN−1/2‖(N+ + 1)3/2ξ1‖ ‖ξ2‖ (4.26)

for any ξ1, ξ2 ∈ F≤N
⊥ϕ . Furthermore, we introduce the notation

A1 := e−KνN+eKν , and B1 := e−Bτ e−BηN+eBηeBτ . (4.27)

We remark that while A,A1 are operators on the full bosonic Fock space (the domain of
the standard Bogoliubov transform), the operatorB acts on the truncated Fock space only (the
domain of the modified Bogoliubov transform). Thus, in order to compare A,A1 and B,B1

we split an element ψ ∈ F of the full bosonic Fock space into ψ = 1N+≤Nψ + 1N+>Nψ

and then write

〈�,B1e
B�〉 − 〈�,A1e

A�〉
=〈�,B1e

B�〉 − 〈�, eA/21N≤NA11N≤Ne
A/2�〉

− 〈�, eA/2A11N>Ne
A/2�〉 − 〈�, eA/21N>NA11N<Ne

A/2�〉 . (4.28)

We bound the third term of the r.h.s. of (4.28), using 1N>N ≤ N+/N on F and find

|〈�, eA/2A11N>Ne
A/2�〉| ≤CN−1‖A1e

A/2�‖
∥∥∥∥
N
N
1N>Ne

A/2�

∥∥∥∥ . (4.29)
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From the definition of A1 in (4.27) and (3.58) we find

|〈�, eA/2A11N>Ne
A/2�〉| ≤CN−1‖(N + 1)eA/2�‖ (4.30)

Recalling the definition of A in (4.23), we find with (3.58) and Lemma 3.3

|〈�, eA/2A11N>Ne
A/2�〉| ≤CN−1‖(N + 1)e−Kν eλd�(O)eKν �‖2

≤CN−1‖(N+ + 1)eλd�(O)eKν �‖2 . (4.31)

For some λ1 > |λ| we continue with
|〈�, eA/2A11N>Ne

A/2�〉| ≤CN−1‖eλ1N+eKν �‖2 ≤ CN−1 . (4.32)

where we concluded by Lemma 3.3. The forth term of the r.h.s. of (4.28) can be estimated
similarly.

Next we show that the difference of the first two terms of the r.h.s. of (4.28) vanishes in
the large particle limit, too. To this end, we write

〈�,eB/2B1e
B/2�〉 − 〈�, eA/21N≤NA11N≤N e

A/2�〉
= 〈�, eB/2B1e

B/2�〉 − 〈�, eA/21N≤NB11N≤N e
A/2�〉

+ 〈�, eA/21N≤N
(A1 − B1

)
1N≤N e

A/2�〉
=

ˆ s

0
ds

d

ds
〈�, esA/21N≤N e

(1−s)B/2B1e
(1−s)B/21N≤N e

sA/2�〉
+ 〈�, eA/21N≤N

(A1 − B1
)
1N≤N e

A/2�〉

= Re
ˆ 1

0
ds〈�, esA/2

([A,1N≤N
] + 1N+≤N (A − B)

)
e(1−s)B/2B1e

(1−s)B/21N≤N e
sA/2�〉

+ 〈�, eA/21N≤N
(A1 − B1

)
1N≤N e

A/2�〉 . (4.33)

On the one hand, we have by definition of A,A1 and B,B1 in (4.23), (4.27) resp. (4.24),
recalling that bp = √

1 − N+/N from (3.14), the estimates (4.26) and (4.21)

‖(A1 − B1)ψ‖, ‖(A − B)ψ‖ ≤ CN−1‖(N+ + 1)5/2ψ‖ . (4.34)

On the other hand, since
[A,1N≤N

]

=
∑

p,q∈π∗+
Op,q cosh(νp) sinh(νq )a∗

pa
∗−q (1N≤N − 1N+2≤N )

+
∑

p,q∈π∗+
Op,q sinh(νp) cosh(νq )a−paq (1N≤N − 1N−2≤N )

=
∑

p,q∈π∗+
Op,q

(
cosh(νp) sinh(νq )a∗

pa
∗−q1N−1≤N+≤N − sinh(νp) cosh(νq )a−paq1N+1≤N+≤N+2

)

(4.35)

With 1N−1≤N+≤N ≤ CN−1N+ and 1N+1≤N+≤N+2 ≤ CN−1N, we find that

‖[A,1N≤N
]
ψ‖ ≤ CN−1‖(N+ + 1)ψ‖ . (4.36)

Summarizing (4.34) and (4.36), we arrive again with (3.32) and Lemma 3.1 at

|〈�,B1e
B�〉 − 〈�, eA/21N≤NA11N≤Ne

A/2�〉| ≤ CN−1 (4.37)
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leading with (4.32) to

|〈�,A1e
A�〉 − 〈�,B1e

B�〉| ≤ CN−1 (4.38)

that concludes the last step for the proof of Lemma 4.1. ��

4.3 Step 2: Asymptotic Generating Function

In this section, we prove Lemma 4.2, i.e. we explicitly compute the asymptotic generating
function that is a generating of a quasi-free state.

Proof of Lemma 4.2 SinceN = d�(1) = ∑
p∈π∗+ a∗

pap , the calculations for the first formula
(4.4) will turn out the be a special case of the second one (4.5). For this reason we formulate
the beginning of the proof for general operators O on 
2(π∗+) and later restrict to the special
(easier) case Op,q = δp,q (referring to (4.4)) first, to use the special cases’s ideas to prove
the general case (i.e. (4.5)).

The proof’s goal is to show that the function

G : [−λ0, λ0] → R, G(λ) = 〈�, eKν eλd�(O)eKν �〉 (4.39)

for sufficiently small λ0 ∈ R is the unique solution of a differential equation. To this end, we
observe that G(0) = 1 and compute

G ′(λ) = 〈�, e−Kνd�(O)eλd�(O)eKν �〉 =
∑

p,q∈π∗+

Op,q 〈�, e−Kνa∗
paqe

λd�(O)eKν �〉 .

(4.40)

In the following, we aim for an explicit expression of the r.h.s. of (4.40) in terms of G(λ).
We base the calculations on the explicit formulas (3.55) and (3.4) for the conjugation of
creation and annihilation operators with eKν resp. eλd�(O) and the fact that the vacuum is
an eigenstate of the annihilation operator with eigenvalue zero. In fact, with the short-hand
notation

sp := sinh(νp), and cp := cosh(νp), (4.41)

we find from (3.55)

e−Kνa∗
paqe

Kν =spsqa
∗−qa−p + cpcqa

∗
paq + sqcpa

∗
pa

∗−q + spcqa−paq + spsqδp,q .

(4.42)

Thus, on the one hand, by commuting a∗
paq in the scalar product on the r.h.s. of (4.43) to the

left, we get with ap� = 0 for all p ∈ �∗+
∑

p,q∈π∗+

Op,q〈�, e−Kνa∗
paqe

λd�(O)eKν �〉

=
∑

p,q∈π∗+

spcq Op,q〈�, a−paqe
−Kν eλd�(O)eKν �〉 +

∑

p∈π∗+

Op,ps
2
p

=
∑

p,q∈π∗+

Op,qspcq Fp,q(λ) +
∑

p∈π∗+

Op,ps
2
p (4.43)
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where we introduced the notation

Fp,q(λ) = 〈�, a−paqe
−Kν eλd�(O)eKν �〉 . (4.44)

On the other hand, commuting the operator d�(O) in the scalar product on the r.h.s. of (4.40)
to the right, we find

∑

p,q∈π∗+

Op,q〈�, e−Kνa∗
paqe

λd�(O)eKν �〉

=
∑

p,q∈π∗+

Op,qcpsq〈�, e−Kν eλd�(O)eKνa∗
pa

∗−q�〉 +
∑

p∈π∗+

Op,ps
2
p

=
∑

p,q∈π∗+

Op,qcpsq Fq,p(λ) +
∑

p∈π∗+

Op,pOp,ps
2
p . (4.45)

Comparing (4.43) with (4.45), we observe that

cqspFp,q(λ) = cpsq Fq,p(λ) ⇐⇒ Fq,p(λ) = τq

τp
Fp,q(λ), with τp = tanh(νp)

(4.46)

for all p, q ∈ supp(O) =: {p, q ∈ π∗+ : Op,q 	= 0}. Otherwise, i.e. for all p, q ∈ π∗+ such
that Op,q = 0, we have

spcq Fp,q(λ) = 〈�, e−Kνa∗
paqe

λd�(O)eKν �〉
= 〈�, e−Kν eλd�(O)a∗

paqe
Kν �〉 = cpsq Fq,p(λ), (4.47)

and thus, (4.46) holds for all p, q ∈ π∗+. This identity will be useful later when we aim for an
explicit expression of the operator F(λ) in terms of G(λ). The idea is to show that the kernel
F−p,q(λ) is a the unique fixed point of a linear operator that we can construct explicitly. The
calculations are again based on the properties of the Bogoliubov transform (3.55). We start
with the observation that with c−p = cp, s−p = sp for all p ∈ π∗+ we can write

Fp,q(λ) = 〈
�, e−Kν

(
cpcqa−paq − spcqa

∗
paq − cpsqa−pa

∗−q + spsqa
∗
pa

∗−q

)
eλd�(O)eKν �

〉

= 〈
�, e−Kν

(
cpcqa−paq + sqspa

∗
pa

∗−q − spcqa
∗
paq − cpsqa

∗−qa−p
)
eλd�(O)eKν �

〉

− cpsqδp,qG(λ)

= I + II + III + IV − cpsqδp,qG(λ) . (4.48)

Next, we compute all the four terms I− IV of the r.h.s. of (4.48) separately. We start with the
first term for which we commute the pair of creation and annihilation operators to the right
and use that ak� = 0 for all k ∈ π∗+. We find with Lemma 3.4

I =cpcq
〈
�, e−Kνa−paqe

λd�(O)eKν �
〉

=cpcq
〈
�, e−Kν eλd�(O)a(eλO−p )a(eλOq )eKν �

〉
(4.49)

and furthermore with (3.56) using that sp, cp ∈ R, sp = s−p for all p ∈ π∗+ and the notations
(3.60), (3.57)
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I = cpcq
〈
�, e−Kν eλd�(O)eKν

[
a
(
ceλO−p

)
a
(
ceλOq

) + a
(
ceλO−p

)
a∗(seλ(Oq )−)]

�
〉

+ cpcq
〈
�, e−Kν eλd�(O)eKν

[
a∗(seλ(O−p)−)

a
(
ceλOq

) + a∗(seλO−p)−)
a∗(seλ(Oq )−)]

�
〉

= cpcq
∑

k∈π∗+

ckske
λOk,−p eλO−k,q G(λ)

+ cpcq
∑

k,
∈π∗+

sks
e
λO−k,−p eλO
,q

〈
�, e−Kν eλd�(O)eKνa∗

k a
∗−
�

〉

= cpcq〈ceλO−p , seλO
−
q 〉
2G(λ) + cpcq

∑

k,
∈π∗+

sks
e
λO−k,−p eλO
,q F
,k(λ) (4.50)

Now with the property (4.46), we can express the r.h.s. in terms of Fk,
(λ) and find

I =cpcq〈ceλO−p , seλO
−
q 〉
2G(λ) + cpcq

∑

k,
∈π∗+

sk
τk
s
τ
e

λO−k,−p eλO
,q Fk,
(λ) (4.51)

Next, we compute the second term of the r.h.s. of (4.48) with similar ideas as the first one,
and find with Lemma 3.4

II =spsq
〈
�, e−Kνa∗−pa

∗
qe

λd�(O)eKν �
〉

=spsq
〈
�, e−Kν eλd�(O)a∗(e−λO−p

)
a∗(e−λOq

)
eKν �

〉

=spsq
〈
�, e−Kν eλd�(O)eKν

[
a∗(ce−λO−p

)
a∗(ce−λOq

) + a∗(ce−λO−p
)
a
(
se−λ(Oq )−)]

�
〉

+ spsq
〈
�, e−Kν eλd�(O)eKν

[
a
(
se−λO−−p

)
a∗(ce−λOq

) + a
(
se−λO−−p

)
a
(
se−λ(Oq )−)]

�
〉

=spsq〈se−λO
−
−p , ce−λOq 〉G(λ) + spsq

∑

k,
∈π∗+

ckc
e
−λOk,−p e−λO−
,q F
,k(λ)

=spsq〈se−λO
−
−p , ce−λOq 〉G(λ) + spsq

∑

k,
∈π∗+

ck
τk

c
τ
e
−λOk,−p e−λO−
,q Fk,
(λ) (4.52)

Similarly, we find for the third term of the r.h.s. of (4.48)

III = − spcq 〈�, e−Kν a∗−pa−qe
λd�(O)eKν �〉

= − spcq 〈�, e−Kν eλd�(O)a∗(e−λO−p
)
a
(
eλO−q

)
eKν �〉

= − spcq 〈�, e−Kν eλd�(O)eKν

[
a∗(ce−λO−p

)
a
(
ceλO−q

) + a∗(ce−λO−p
)
a∗(seλ(O−q )−)]

�〉

− spcq 〈�, e−Kν eλd�(O)eKν

[
a
(
se−λ(O−p)−)

a
(
ceλO−q

) + a
(
se−λ(O−p)−)

a∗(seλ(O−q )−)]
�〉

= −spcq 〈se−O−p , seλO−q 〉G(λ) − spcq
∑

k,
∈π∗+

cks
e
−λOk,−p eλO
,−q F
,k(λ)

= −spcq 〈se−O−p , seλO−q 〉G(λ) − spcq
∑

k,
∈π∗+

ck
τk

s
τ
e
−λOk,−p eλO
,−q Fk,
(λ) (4.53)
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and for the forth term of the r.h.s. of (4.48) (be replacing p, q with −q,−p in the previous
formula)

IV = −sqcp〈se−Oq , seλOp 〉G(λ) − sqcp
∑

k,
∈π∗+

ck
τk

s
τ
e
−λOk,q eλO
,p Fk,
(λ) (4.54)

Summarizing (4.51),(4.52), (4.53) and (4.54), we thus find from (4.48)

Fp,q(λ) =Ap,q(λ)G(λ) +
∑

k,
∈π∗+

Dp,q,k,
(λ) Fk,
(λ) (4.55)

with

Ap,q(λ) = − cpsqδp,q + cpcq〈ceλO−p , seλO
−
q 〉
2 + spsq〈se−λO

−
−p , ce−λOq 〉

− spcq〈se−O−p , seλO−q 〉 − cpsq〈se−Oq , seλOp 〉 (4.56)

and

Dp,q,k,
(λ)

= cpckcqs
τ


(
eλO−k,−p eλO
,q + e−λOk,−p e−λO−
,q − e−λOk,−p eλO
,−q − e−λOk,p eλO
,q

)
.

(4.57)

Next, we show that (4.55) has a unique solution both, for the special choice Op,q = δp,q
(referring to the special case d�(O) = N+ in (4.4)) and the case for general O such that
Op,q ∈ 
2(π∗+) × 
2(π∗+) (referring to (4.5)). We treat both cases separately.

Proof of (4.4):

We start with the easier case N = d�(1), i.e. Op,q = δp,q . Then (4.55) reduces to

Fp(λ) = cpsp
(
2c2p(cosh(2λ) − 1) − e−2λ + 1

)
G(λ) + 2s2pc

2
p(cosh(2λ) − 1)Fp(λ)

(4.58)

that we can write as
(
1 − 2s2pc

2
p(cosh(2λ) − 1)

)
Fp(λ) = cpsp

(
2c2p(cosh(2λ) − 1) − e−2λ + 1

)
G(λ) . (4.59)

For λ sufficiently small such that

cosh(2λ) − 1 <
1

2
(
supp∈π∗+ s2p

)(
supq∈π∗+ c2q

) (4.60)

(note that the r.h.s. is bounded by (1.6)), we have

Fp(λ) = cpsp
1 − 2s2pc2p(cosh(2λ) − 1)

(
2c2p(cosh(2λ) − 1) − e−2λ + 1

)
G(λ) . (4.61)

Plugging this back into (4.43), we find

G ′(λ) =
∑

p∈π∗+

c2ps
2
p

1 − 2s2pc
2
p(cosh(2λ) − 1)

(
2c2p(cosh(2λ) − 1) − e−2λ + 1

)
G(λ) +

∑

p∈π∗+

s2p

(4.62)

and thus conclude with the observation G(0) = 1 at (4.4).
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Proof of (4.5):

Now consider general operators O such that Op,q ∈ 
2(π∗+) × 
2(π∗+). The goal is to prove
that (4.55) has a unique solution

Fp,q(λ) ∈ 
2(π∗+) × 
2(π∗+) . (4.63)

We remark that (4.63) ensures that the sum of the r.h.s. of (4.45) is finite (since Op,q ∈

2(π∗+) × 
2(π∗+) by assumption and sp ∈ 
2(π∗+), cp ∈ 
∞(π∗+) by definition of νp in
(1.14)).

To this end, we first use a fixed point argument to show that (4.55) has a unique solution
and second, construct an explicit solution (that, thus, is the unique solution to (4.55)).

Uniqueness:We observe that we can write (4.55) as

Fp,q(λ) = (T F(λ))p,q (4.64)

where the operator

T : 
2(π∗+) × 
2(π∗+) → 
2(π∗+) × 
2(π∗+) (4.65)

acts as

(T F(λ))p,q = Ap,q(λ)G(λ) +
∑

k,
∈π∗+

Dp,q,k,
(λ)Fk,
(λ) . (4.66)

and the coefficients Dp,q,k,
(λ) are given by (4.57). The operator T is well-defined since, on
the one hand

|G(λ)| = |〈�, eKνd�(O)eλd�(O)e−Kν �〉| ≤ 〈�, eλ1(N+1)�〉 ≤ C (4.67)

from Lemma 3.3, and, on the other hand

Ap,q(λ),
∑

k,
∈π∗+

Dp,q,k,
(λ)Fk,
 ∈ 
2(π∗+) × 
2(π∗+), (4.68)

for any Fp,q ∈ 
2(π∗+) × 
2(π∗+) as we prove in the following:
We start with the properties of Ap,q(λ) defined in (4.56) and observe that due to some

cancellations with the first term of the r.h.s. of (4.56), we have

Ap,q(λ) =c2pcqsp
(
eλO p,q − δp,q

)

+ cpcq
〈
c
(
eλO−p − δ·,−p

)
, s

(
eλO

−
q − δ−·,q

)〉

2

+ cpc
2
qsq(e

λO−q,−p − δ−p,−q)

+ spsq
〈
s(e−λO

−
−p , c

(
e−λOq − δ·,q

)〉 + sps
2
qcq

(
e−λO−q,−p − δ−p,−q

)

− spcq
〈
se−λO−p , s

(
eλO−q − δ·,−q

)〉 − spcqs
2
q

(
e−λO−q,−p − δ−p,−q

)

− cpsq
〈
se−λOq , s

(
eλOp − δ·,p

)〉 − cpsqs
2
p

(
e−λOp,q − δp,q

)
. (4.69)

By Taylor’s theorem, we have eλOq,p = δp,q +λOq,peθλOq,−p for some θ ∈ R and it follows
for the first term of the r.h.s. of (4.69)

∑

p,q∈π∗+

∣∣c2pcqsp
(
eλO p,q − δp,q

)∣∣2 ≤ λ2
∑

p,q∈π∗+

c4pc
2
qs

2
pO

2
p,q < ∞ (4.70)
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since supp,q |Op,q | ≤ C and ‖O‖
2(π∗+)×
2(π∗+) < ∞. The third, fifth, seventh and ninth term
of the r.h.s. of (4.69) can be bounded similarly. With the same arguments, we find for the
second term of the r.h.s. of (4.69)

∑

p,q∈π∗+

∣∣cpcq
〈
c
(
eλO−p − δ·,−p

)
, s

(
eλO

−
q − δ−·,q

)〉

2

∣∣2

≤ Cλ2
∑

p,q,k∈π∗+

c2k s
2
k |Ok,−p|2 |Ok,−q |2

≤ C sup
k∈π∗+

s2k c
2
k

∑

p∈π∗+

|Ok,p|2
∑

k,q∈π∗+

|Ok,q |2 < ∞ (4.71)

where we substituted p, q with−p resp.−q and used that, by definition, sk = s−k, ck = c−k .
The forth, sixth and eight term of the r.h.s. of (4.69) are bounded by the same arguments.
Hence, we arrive hat

‖A(λ)‖
2(π∗+)×
2(π∗+) ≤ Cλ (4.72)

and thus, Ap,q(λ) ∈ 
2(π∗+) × 
2(π∗+).
Next we show that

∑
k,
∈π∗+ Dp,q,k,
(λ)Fk,
 ∈ 
2(π∗+)×
2(π∗+) for any Fp,q ∈ 
2(π∗+)×


2(π∗+). For this, we observe that by a cancellation between the first and the forth, as well as
between the second and the third term of the sum , we have

Dp,q,k,
(λ)

= cpckcq s
τ


((
eλO−k,−p − δk,p

)(
eλO
,q − δ
,q

) + δk,p
(
eλO
,q − δ
,q

) + (
eλO−k,−p − δk,p)δ
,q

+ (
e−λOk,−p − δk,−p

)(
e−λO−
,q − δ−
,q

) + δk,−p
(
e−λO−
,q − δ−
,q

)

+ (
e−λOk,−p − δk,−p

)
δ−
,q − (

e−λOk,−p − δk,−p
)(
eλO
,−q − δ
,−q

)

− δk,−p
(
eλO
,−q − δ
,q

) − (
e−λOk,−p − δk,−p

)
δ−
,q

− (
e−λOk,p − δk,p

)(
eλO
,q − δ
,q

) − δk,p
(
eλO
,q − δ
,q

)) − (
e−λOk,p − δk,p

)
δ
,q

)

(4.73)

and thus
∑

k,
∈π∗+

Dp,q,k,
(λ)Fk,


=cps
2
q

∑

k∈π∗+

ck

[(
eλO−k,−p − δk,p) − (

e−λOk,p − δk,p
)]

Fk,q

+ cps
2
q

∑

k∈π∗+

ck

[(
e−λOk,−p − δk,−p

) − (
e−λOk,−p − δk,−p

)]
Fk,−q

+ c2pcq
∑


∈π∗+

s
τ


[(
eλO
,q − δ
,q

) − (
eλO
,q − δ
,q

))]
Fp,


+ c2pcq
∑


∈π∗+

s
τ


[(
e−λO−
,q − δ−
,q

) − (
eλO
,−q − δ
,q

)]
F−p,


+ cpcq
∑

k,
∈π∗+

cks
τ


[(
eλO−k,−p − δk,p

)(
eλO
,q − δ
,q

)
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− (
e−λOk,p − δk,p

)(
eλO
,q − δ
,q

)]
Fk,


+ cpcq
∑

k,
∈π∗+

cks
τ


[(
e−λOk,−p − δk,−p

)(
e−λO−
,q − δ−
,q

)

− (
e−λOk,−p − δk,−p

)(
eλO
,−q − δ
,−q

)]
Fk,


(4.74)

whose terms we now estimate separately. For the first term of the r.h.s. of (4.74) we find with
Cauchy Schwarz

∑

p,q∈π∗+

s4q

∣∣∣∣
∑

k∈π∗+

[(
eλO−k,−p − δk,p) − (

e−λOk,p − δk,p
)]

Fk,q

∣∣∣∣
2

≤
∑

p,q∈π∗+

s4q
∑

k1∈π∗+

[(
eλO−k1,−p − δk1,p) − (

e−λOk1,p − δk1,p
)]2 ∑

k2∈π∗+

F2
k2,q (4.75)

By Taylor’s theorem, we have eλO−k,−p − δk,p = λO−k,−peθ1O−k,−p resp. e−λOk,p − δk,p =
λOk,peθ2Ok,p for some θ1, θ2 ∈ R, and since ‖O‖
2(π∗+)×
2(π∗+) < ∞ by assumption yielding
‖O‖
∞×
∞ < ∞, we find

∑

p,q∈π∗+

s4q

∣∣∣∣
∑

k∈π∗+

[(
eλO−k,−p − δk,p) − (

e−λOk,p − δk,p
)]

Fk,q

∣∣∣∣
2

≤ Cλ2‖F‖2

2(π∗+)×
2(π∗+)

(4.76)

where we used that supq∈π∗+ s2q < ∞ from (1.14). The second, third and forth term of the
r.h.s. of (4.74) can be estimated similarly arriving at a similar bound as (4.76). For the fifth
term of the r.h.s. of (4.74) we recall that with the same arguments as before

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

[
cks
τ


[(
eλO−k,−p − δk,p

)(
eλO
,q − δ
,q

) − (
e−λOk,p − δk,p

)(
eλO
,q − δ
,q

)]
Fk,


∣∣∣∣
2

=λ4
∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+
cks
τ


[
O−k,−pO
,qe

θ1λO−k,−p eθ2λO
,q + Ok,pO
,qe
θ3λOk,p eθ4λO
,q

]
Fk,


∣∣∣∣
2

(4.77)

for some constants θi ∈ R and we conclude using that supq∈π∗+ cq ≥ 1 by Cauchy Schwarz
and similar arguments as before

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

[
cks
τ


[(
eλO−k,−p − δk,p

)(
eλO
,q − δ
,q

) − (
e−λOk,p − δk,p

)(
eλO
,q − δ
,q

)]
Fk,


∣∣∣∣
2

≤Cλ4‖F‖2

2(π∗+)×
2(π∗+)

. (4.78)

The estimate for the remaining term of the r.h.s. of (4.74) follows in the same way. We thus
arrive for sufficiently small |λ| at

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

Dp,q,k,
(λ)Fk,


∣∣∣∣
2

≤ Cλ2‖F‖2

2(π∗+)×
2(π∗+)

(4.79)
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leading to the desired conclusion that
∑

k,
∈π∗+ Dp,q,k,
(λ)Fk,
 ∈ 
2(π∗+) × 
2(π∗+) for

Fk,
 ∈ 
2(π∗+) × 
2(π∗+), and in particular that the operator T defined in (4.65) is well
defined.

Next, we aim to show that the operator T defined in (4.65) has a unique fix point, and, thus,
consequently that (4.55) has a unique solution in 
2(π∗+) × 
2(π∗+). For this, by Banach’s
fixed point theorem, it suffices to show that the operator T is a contraction. In fact, as an
immediate consequence of (4.79) we have for F (1), F (2) ∈ 
2(π∗+) × 
2(π∗+)

‖(T F (1))(λ) − (
T F (2))(λ)‖2


2(π∗+)×
2(π∗+)
=

∑

p,q∈π∗+

∣∣Dp,q,k,
(λ)
[
F (1)
k,
 − F (2)

k,


]∣∣∣∣
2

≤C |λ|‖F (1) − F (2)‖2

2(π∗+)×
2(π∗+)

(4.80)

and we finally conclude that for sufficiently small |λ|, the operator T is a contraction and,
therefore (4.55) has a unique solution in 
2(π∗+) × 
2(π∗+).

Explicit solution: We claim that

F̃p,q(λ) =
∑

k,
∈π∗+

∞∑

j=0

(
Dp,q,k,
(λ)

) j
Ak,
(λ)G(λ) (4.81)

solves (4.55) where we introduced the notation
(
Dp,q,k,
(λ)

) j for the operator that is recur-
sively defined through

(
Dp,q,k,
(λ)

)0 = δp,kδq,
 (4.82)

and
(
Dp,q,k,
(λ)

) j+1 =
∑

m,n∈π∗+

Dp,q,m,n(λ)
(
Dm,n,k,
(λ)

) j
. (4.83)

The claim follows by standard arguments for solution to integral equations, that we present
here for consistency:

First, note that the series on the r.h.s. of (4.81) converges: By definition (4.83), we have
for j ≥ 1

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

(
Dp,q,k,
(λ)

) j
Ak,
(λ)

∣∣∣∣
2

=
∑

p,q∈π∗+

∣∣∣∣
∑

m,n∈π∗+

Dp,q,m,n(λ)
∑

k,
∈π∗+

(
Dm,n,k,
(λ)

) j−1
Ak,
(λ)

∣∣∣∣
2

(4.84)

and thus from (4.79)

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

(
Dp,q,k,
(λ)

) j
Ak,
(λ)

∣∣∣∣
2

≤C |λ|
∑

m,n∈π∗+

∣∣∣∣
∑

k,
∈π∗+

(
Dm,n,k,
(λ)

) j−1
Ak,


∣∣∣∣
2

. (4.85)
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Iterating this step we thus arrive at

∑

p,q∈π∗+

∣∣∣∣
∑

k,
∈π∗+

(
Dp,q,k,
(λ)

) j
Ak,
(λ)

∣∣∣∣
2

≤ C j |λ| j‖A‖2

2(π∗+)×
2(π∗+)

≤ C j |λ| j+1 (4.86)

where we concluded by (4.72). Thus, from (4.81) we find

‖F̃(λ)‖
2(π∗+)×
2(π∗+) ≤ C0|λ|
∞∑

j=0

(C |λ|) j (4.87)

for some constants C0,C > 0 that is a finite series for sufficiently small |λ|.
It remains to show, that F̃p,q(λ) given by (4.81) indeed solves (4.55). For this we write

using (4.83) and (4.87)

F̃p,q (λ) =
∑

k,
∈π∗+

∞∑

j=0

(
Dp,q,k,
(λ)

) j
Ak,
(λ)G(λ)

=
∑

k,
∈π∗+

lim
n→∞

n∑

j=0

(
Dp,q,k,
(λ)

) j
Ak,
(λ)G(λ)

= lim
n→∞

[ ∑

k,
∈π∗+

∑

k1,
1∈π∗+

Dp,q,k1,
2 (λ)

n∑

j=1

(
Dk1,
1,k,
(λ)

) j−1
Ak,
(λ)G(λ) + Ap,q (λ)G(λ)

]

= lim
n→∞

[ ∑

k,
∈π∗+

∑

k1,
1∈π∗+

Dp,q,k1,
2 (λ)

n−1∑

j=0

(
Dk1,
1,k,
(λ)

) j
Ak,
(λ)G(λ) + Ap,q (λ)G(λ)

]

=
∑

k,
∈π∗+

∑

k1,
1∈π∗+

Dp,q,k1,
2 (λ) lim
n→∞

n−1∑

j=0

(
Dk1,
1,k,
(λ)

) j
Ak,
(λ)G(λ) + Ap,q (λ)G(λ)

=
∑

k,
∈π∗+

∑

k1,
1∈π∗+

Dp,q,k1,
2 (λ)F̃k1,
1∈π∗+ + Ap,q (λ)G(λ) (4.88)

and it follows that F̃p,q(λ) solves (4.55).
Summarizing, we have proven that F̃p,q(λ) ∈ 
2(π∗+) × 
2(π∗+) given by (4.81) denotes

the unique solution to (4.55). Then, it follows from (4.40) together with (4.45) that

G ′(λ) =
∑

p,q∈π∗+

spcq Op,q F̃p,q(λ) +
∑

p∈�∗+

s2pOp,p

=
∑

p,q,k,
∈π∗+

spcq Op,q
(
Dp,q,k,
(λ)

) j
Ak,
(λ)G(λ) +

∑

p∈�∗+

s2pOp,p (4.89)

Therefore noticing that G(0) = 1 we have

G(λ) = exp

(ˆ λ

0

∑

p,q,k
∈π∗+

spcq Op,q

∞∑

j=0

(
Dp,q,k,
(λ)

) j
Ak,
(λ)dλ + λ

∑

p∈�∗+

s2pOp,p

)

(4.90)

and the integral is finite for sufficiently small |λ| following from (4.87). ��
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