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Abstract Elastic electron scattering from deformed nuclei
is described within the distorted-wave Born approxima-
tion (DWBA) by employing charge densities which reflect,
respectively, the prolate and oblate shapes of the target
nucleus. Clear evidence for the shape dependence of the dif-
ferential cross section and of the electronic spin asymmetry
is found at scattering angles in the vicinity of the first diffrac-
tive cross section minimum. As an example, results for the
27Al nucleus at collision energies between 150 and 500 MeV
are provided.

1 Introduction

The study of nuclear deformation provides information on
the nature and the forces of the nuclear many-body system
[1]. In particular, it serves to understand the spectra of a
deformed nucleus or its decay if it is unstable.

In a recent paper [2] the elastic scattering of unpolarized
electrons from a series of polarized nuclei with a quadrupole
deformed ground state was considered. Within the frame-
work of the plane-wave Born approximation (PWBA), where
the differential cross section for unpolarized targets is
expressed in terms of an incoherent sum over charge and
magnetic form factors of different multipolarities, the use of
a polarized target results in coherent sums of these form fac-
tors. It was demonstrated that the corresponding interference
terms lead to a significant difference between the prolate and
oblate shapes of the nuclei.

In the present work it is shown within the DWBA formal-
ism that the prolate-oblate difference manifests itself, even
for unpolarized collision partners, in the differential scatter-
ing cross section. It is also visible in the spin asymmetry of
electrons polarized perpendicular to the scattering plane. In
the forward hemisphere the L = 0 form factor (correspond-

a e-mail: dj@mathematik.uni-muenchen.de (corresponding author)

ing to the spherical part of the nuclear charge distribution)
is dominant, while at large scattering angles the magnetic
form factors become important. Therefore the influence of
the L = 2 form factor which is sensitive to the quadrupole
deformation of the nuclear charge distribution will only be
visible at intermediate angles when the cross section result-
ing from potential scattering has a diffraction minimum. The
27Al nucleus has been chosen since the first excited (oblate)
state is in energy close to the (prolate) ground state, such that
the two respective transition densities, as provided in [2],
can to a good approximation be used to distinguish between
prolate and oblate ground states.

The paper is organized as follows. Section 2 gives an out-
line of the theory for polarized electron-nucleus scattering,
where it is also shown that the differential cross section sep-
arates into its multipole constituents in case of unpolarized
nuclei. The transition densities are discussed in Sect. 3, and
Sect. 4 provides the nuclear shape studies, including the influ-
ence of additional nuclear polarization. The conclusion is
drawn in Sect. 5. Atomic units (h̄ = m = e = 1) are used
unless indicated otherwise.

2 Theory

A detailed description of elastic electron scattering within
the partial-wave approach, using the phase-shift analysis for
potential (L = 0) scattering and the distorted-wave Born
approximation (DWBA) for the higher multipole transitions,
is provided in [3,4]. In short, the differential cross section for
scattering an electron with momentum ki , total energy Ei and
spin polarization vector ζ i from an unpolarized nucleus with
spin Ji into the solid angle d� is given by (see, e.g. [5])
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where k f , E f and ζ f are, respectively, momentum, total
energy and spin polarization of the scattered electron. A sum
over the final polarization M f and an average over the ini-
tial polarization Mi of the nucleus is included. Recoil is
accounted for by the prefactor frec [6] and by employing

a reduced collision energy E =
√

(Ei − c2)(E f − c2) for

the Coulombic scattering amplitude Acoul
f i . This scattering

amplitude is identified with the amplitude fe(ζ i , ζ f , ki , θ)

for potential scattering from the spherical part of the nuclear
charge distribution, where θ is the scattering angle. The mul-
tipole decomposition of the nuclear charge distribution � is
commonly defined by

�(rN ) =
∑

L≥0

�L(rN ) YL0(r̂N )

=
∑

L≥0

√
2L + 1

4π
�L(rN ) PL(cos θ), (2.2)

where YLM is a spherical harmonic function and PL a Leg-
endre polynomial [7]. A similar decomposition holds for the
nuclear current distribution j [6]. The density distributions
� and j are determined from nuclear models.

The charge scattering amplitude is defined by

Ach
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c
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(2.3)

where ψ
(σi )
i and ψ

(σ f )

f denote the initial, respectively final,
electronic scattering states with spin projection σi and σ f .
The nuclear charge transition amplitude � f i is represented
in terms of the charge densities �L for each contributing mul-
tipole.

The magnetic scattering amplitude Amag
f i is obtained from

Amag
f i (Mi , M f ) = 1

c
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×
↔
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where α is a vector of Dirac matrices and
↔
I is the dyadic unit

matrix. The nuclear current transition amplitude j f i is like-
wise multipole expanded in terms of the magnetic densities
JLL ,

j f i (rN ) = −i
∑

L>0
odd,M

(Ji Mi LM |Ji M f )JLL(rN )YM
LL(r̂N ),

(2.5)

where YM
LL is a vector spherical harmonic. The restriction

of the angular momentum sums in (2.3) and (2.5) is dictated
by parity conservation and time reversal invariance [3,6].
Details of the evaluation of (2.3) and (2.4) can be found in
[4,5]. In particular, the electronic radial integrals are per-
formed numerically with the help of the complex-plane rota-
tion method [8,9].

The densities �L and JLL enter incoherently into the cross
section (2.1), due to the sum over the nuclear magnetic quan-
tum numbers Mi and M f . For the charge multipoles L = 0
and L = 2 this was already predicted in early work [1]. Here
we consider the general case and derive the respective for-
mulas. The sum over Mi and M f is written in the following
way,

S f i = (2Ji + 1) |Acoul
f i |2 + 2 Re

{
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f i

∑
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[
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+ Ã
mag
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,

(2.6)

where the tilde abbreviates the multiplication of Ach
f i and

Amag
f i with the prefactor

(
4π3 Ei E f

c2

) 1
2
.

We start by showing that the interference terms between
Acoul

f i , Ach
f i and Amag

f i vanish. Suppressing Mi−independent
factors, one has
∑

Mi

Ãch
f i (Mi , Mi ) ∼

∑

Mi

� f i (rN )

=
∑

L>0
even

∑
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(Ji Mi L 0 | Ji Mi ) �L(rN ) YL0(r̂N ). (2.7)

Upon multiplying by a Clebsch-Gordan coefficient which
is unity, the sum over Mi is found to be [7]

∑

Mi

(Ji Mi L 0 |Ji Mi )(Ji Mi0 0| Ji Mi ) = 2Ji + 1√
2L + 1

δL0,

(2.8)

singling out L = 0.
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From (2.5) it follows that the factor (2.8) also occurs in∑
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for the latter two terms.
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It remains to treat the quadratic terms with L > 0 in (2.6).
However, they contain the same product of Clebsch-Gordan
coefficients as appears in (2.9), such that
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Therefore the cross section (2.1) reduces to
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The first summand in (2.12) defines the Coulombic cross
section dσcoul

d�
. Although (2.12) manifests the incoherent sum-

mation of the three contributions to the cross section (such
that the signs of Ach

f i and Amag
f i play no role), neither Wch

L

nor Wmag
L can be expressed in terms of squared form factors

unless the electron is described by plane waves.
However, the PWBA is not suited for a quantitative study

of the deformation effects. The reason is that the scattering
eigenstates ψi and ψ f (in contrast to the plane waves in
PWBA) do not allow for a separate treatment of the electronic
and nuclear matrix elements inherent in Wch

L or Wmag
L . Hence

relative phases become important, and the zeros of the form
factors are smeared out in DWBA. Since the prolate-oblate
difference is basically observable in the diffraction minima
where nevertheless the L = 0 contribution is contained in the
measurements, PWBA will enhance this shape difference by
up to a factor of two as compared to DWBA, even for a target
as light as aluminum.

3 Transition densities

The nucleus 27Al has spin Ji = 5
2 , such that from 0 ≤ L ≤

2Ji = 5 one has L = 2 and 4 for the charge transitions
and L = 1, 3, 5 for the magnetic transitions. The ground-
state charge density �0, from which the nuclear potential is
generated in order to obtain Acoul

f i or the electronic scattering
states ψi and ψ f , is taken in the form of a Fourier-Bessel
expansion as tabulated in [10]. The states ψi and ψ f are
solutions to the Dirac equation. They are obtained with the
help of the Fortran code RADIAL by Salvat et al. [11]. The
densities �L and JLL are calculated from the respective form
factors Fc

L and Ftm
L , provided in [12], with the help of the

transformation formula

(
�L(r)

JLL(r)

)
= 2

π

∫ ∞

0
q2dq jL(qr)

(
Fc
L(q)

Ftm
L (q)

)
(3.1)

where jL is a spherical Bessel function. In particular, the
asymptotic properties of the charge and transverse magnetic
form factors, FL ∼ qL for q → 0 and FL ∼ e−b2q2/4 for
q → ∞ with the oscillator length b = 1.784 fm for 27Al,
were used (after transforming from the effective momentum
transfer qeff [12] to q).

Figure 1a displays the charge densities �0, �2 and �4 as a
function of the nuclear coordinate. In Fig. 1b the magnetic
density distributions are shown. It is seen that for rN � 2 fm,
J55 is largely dominating.

For obtaining the differential scattering cross section for
unpolarized collision partners, an average over the initial (σi )
and a sum over the final (σ f ) spin projections of the electron
has to be performed,
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Fig. 1 Density distributions for the 27Al ground state as a function of
the nuclear coordinate rN . a Charge densities �L for L = 0 (——-),
L = 2 (− · − · −) and L = 4 (− · · · − · · · −) as obtained from [12].
Included are the L = 2 density distributions from [2], multiplied by the
factor

√
4π/5 (due to the omission [2] of the respective factor in (2.2)):

− − −−, �2 (prolate), · · · · · · , �2 (oblate). b Magnetic densities J11
(——-), J33 (− − −−) and J55 (− · − · −) as obtained from [12]

dσ

d�
= 1

2

∑

σi ,σ f

dσ

d�
(ζ i , ζ f ). (3.2)

Figure 2 presents a comparison of the cross section with
available experimental data on elastic electron scattering
from 27Al [13–15]. For the small-angle scattering at 500
MeV (Fig. 2a) the Coulombic (L = 0) contribution dσcoul

d�

is mostly the dominant one. However, in the vicinity of the
diffraction minima at 31◦ and 59◦ also the L = 2 constituent
comes into play. Near the second minimum even magnetic
scattering is not negligible, while the L = 4 contribution is
small in the whole angular region, in concord with its tiny
charge density (see Fig. 1a).

The results for large-angle scattering are shown in Fig. 2b
in the energy region between 30 and 280 MeV. The experi-
ments are performed at an angle of 180◦, and the contribution
from the L = 0 potential scattering has been subtracted from
the data. Therefore comparison is made with purely mag-
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Fig. 2 Differential cross section dσ
d�

for unpolarized electrons scatter-
ing from 27Al a at 500 MeV as a function of scattering angle θ and b for
backward scattering as a function of collision energy Ei,kin = Ei − c2.
In a the experimental data (•) from Li et al. [14] are compared with the-
ory (——–, including all L ≤ 5). Separately shown is the Coulombic
phase-shift result (· · · · · · ) and the contributions from L = 2 (−−−−)

and L = 4 (− · · · − · · · −). Included is the summed magnetic con-
tribution for L ≤ 5 (− · − · −). b Experimental data for magnetic
scattering at 180◦ from Lapikás et al. (� [15]), from Li et al. (� [13])
and from Hicks et al. (� as cited in [6]). Theoretical magnetic cross
section at 178◦ including L=1,3,5 (——-), as well as its constituents
M1 (− − −−), M3 (· · · · · · ) and M5 (− · − · −) corresponding,
respectively, to L = 1, 3 and 5

netic scattering (at θ = 178◦ where theory hardly changes
with angle). While the low-energy data are well described
by the L = 1 constituent M1, the cross section at high ener-
gies results basically from the L = 5 contribution in con-
cord with its dominant magnetic density (Fig. 1b). However,
experiment is underpredicted by a factor of 2–3 for collision
energies above 150 MeV.

4 Nuclear shape studies

In order to investigate the influence of the shape of deformed
nuclei on the differential cross section and on the spin polar-
ization of electron or nucleus, calculations are performed
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Fig. 3 Differential cross section dσ
d�

for 250 MeV electrons scattering
from 27Al as a function of angle θ . Shown is the result, summed over L ,
in case of a prolate quadrupole density distribution (——–) and for the
oblate one (−−−−). Also shown is the result from potential scattering,
i.e. L = 0 (· · · · · · ). The experimental data (�) are from Li et al. [14]

using, respectively, the prolate and oblate quadrupole den-
sity distributions as provided by Sarriguren [2] which are
included in Fig. 1a. The ground state of 27Al has a prolate
shape, and �2(prolate) compares well with the L = 2 den-
sity distribution from [12]. The oblate density distribution
corresponds to an excited state of the 27Al nucleus at a very
low energy (0.843 MeV), but for the sake of comparison this
excitation energy is neglected and a spin Ji = 5

2 is assigned
like for the prolate ground state (as done in [2]). The evident
difference between �2(prolate) and �2(oblate) is a difference
in sign which plays no role in the cross section as long as
the nucleus is unpolarized (see Sect. 2). However, there are
also deviations in absolute value and in the position of the
extremum which are perceptible in the cross section. As con-
cerns the spherical density distribution �0, there exist tiny
shape dependencies too [2] which, however, are not consid-
ered in the present calculations.

In the following, the angular distribution of the scattered
electrons and their spin asymmetry are investigated, and sub-
sequently the energy distribution at the cross section minima
is examined. Finally the influence of an additional nuclear
polarization is considered.

4.1 Angular distribution

Figure 3 shows the angular distribution of the scattered elec-
trons at 250 MeV impact energy. According to Fig. 2a, the
quadrupole contribution is only perceptible in the region of
the diffraction minima, where the difference between the pro-
late and oblate shapes can be observed. For unpolarized colli-
sion partners the prolate-oblate difference near the scattering
angle of θ = 64◦ is around 20%. Experiment [14] clearly
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Fig. 4 Angular distribution of the Sherman function S for 250 MeV
electrons polarized perpendicular to the beam axis and impinging on
27Al. a shows the result when summed over all L (——–, using Fc

2 from
Radhi et al. [12]), when summed over even L > 0 (− − −−), when
summed over odd L > 0 (− · − · −) and for L = 0 (· · · · · · ). b shows
the result when summed over all L , using for Fc

2 the prolate density
distribution (——-), respectively the oblate density distribution (− −
−−) from Sarriguren [2]. The angular region covers the first diffraction
minimum of dσcoul

d�
, with a large excursion of the corresponding Sherman

function (· · · · · · )

favours the prolate shape. Note that the error bars are within
the size of the symbols.

This shape difference is slightly more pronounced in the
case of polarized electrons. The perpendicular spin asymme-
try S, also known as Sherman function, is a particularly sen-
sitive parameter. It is the relative difference in intensity when
the beam-normal spin of the incoming electron is flipped,

S =
∑

σ f
dσ(ζ i , ζ f )/d� − ∑

σ f
dσ(−ζ i , ζ f )/d�

∑
σ f

dσ(ζ i , ζ f )/d� + ∑
σ f

dσ(−ζ i , ζ f )/d�
.

(4.3)

The final spin polarization remains unobserved, implying a
sum over the respective spin projection σ f . The advantage
of such a polarization measurement is that the experimental
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Fig. 5 Position θmin of the first (——-) and the second (− · − · −)

diffraction minima as a function of collision energy Ei,kin for electrons
scattering elastically from 27Al

determination of the cross section on an absolute scale is not
required.

In Fig. 4a, the angular dependence of the Sherman func-
tion is shown for 250 MeV electron impact. When only the
spherical part of the nuclear density distribution is consid-
ered, S displays resonance structures in the vicinity of the
cross section minima, which are particularly pronounced
near the second minimum at 146◦ (where S increases up
to 2.3 × 10−3). These structures are considerably damped
when the higher multipoles (both charge and magnetic) are
added. The spin asymmetry corresponding to the cross sec-
tion where all L ≤ 5 constituents are included, exhibits only
flat extrema at the cross section minima.

Figure 4b displays the spin asymmetry for the case of a
prolate, respectively oblate, quadrupole contribution in the
region of the first diffraction minimum as compared to the
L = 0 result. It is seen that the prolate configuration leads to
a larger asymmetry than the oblate one.

4.2 Energy distribution at the diffraction minima

Figure 5 displays the location of the first and second diffrac-
tion minima of the differential cross section for potential
scattering as a function of collision energy, Ei,kin = Ei −c2.
The second minimum is only clearly visible for energies
beyond 240 MeV. Since the momentum transfer q to the
nucleus is basically fixed at the diffraction minima, their
position decreases with energy, corresponding to the formula
q ≈ 2Ei/c sin(θ/2).

The energy dependence of the cross section in the two
diffraction minima is depicted in Fig. 6. It is seen that dσ/d�

increases monotonously with energy. In its first minimum
(Fig. 6a) the main contribution is due to the even multipoles
with L > 0, while the magnetic scattering is unimportant.
The cross section at the second minimum (Fig. 6b) is only
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Fig. 6 Differential cross section dσ
d�

in a the first and b the second
diffraction minimum as a function of collision energy Ei,kin . Shown is
the sum over all L (——–), the phase-shift contribution L = 0 (· · · · · · ),
the charge contribution L = 2, 4 (− − −−) and the summed magnetic
contribution L = 1, 3, 5 (− · − · −)

for energies above 300 MeV dominated by the L = 2 (and to
a lesser extent L = 4) contribution, whereas at low energies
the magnetic contribution prevails, basically because of the
much larger scattering angles involved (see Fig. 5).

Figure 7 displays the results in the first minimum for
the prolate and oblate cases, showing that their difference
is approximately constant, irrespective of the beam energy.

In the second minimum this difference is very small at all
energies, ranging from 2% at 250 MeV to 7% at 500 MeV, due
to the minor importance of the quadrupole charge scattering.

The energy dependence of the spin asymmetry in the
diffraction minima is displayed in Fig. 8. Like for the cross
section, the deviation between the prolate and the oblate
shapes is much larger in the first diffraction minimum than
in the second one. And again, for a given minimum, i.e. for
a fixed momentum transfer, the prolate-oblate difference is
nearly constant in energy. Explicitly (in the first minimum),
at 150 MeV, the spin asymmetry is 25% higher for the prolate
shape, which decreases to 90% of this value at 400 MeV.
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Fig. 8 Sherman function S in the first and second diffraction minima
as a function of collision energy. Shown are the results, summed over
all L , for the prolate shape in the first (——–) and second (− · − · −)

minimum, and for the oblate shape in the first (− − −−) and second
(− · · · −) minimum. Included is the L = 0 result in the first (· · · · · · ,
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4.3 Influence of nuclear polarization

Until now only electron polarization was considered. Here
the case is discussed where the target nucleus is in a fixed
magnetic substate Mi prior to the collision. This reflects
the situation investigated by Sarriguren [2] who considered
unpolarized electrons colliding with a target aligned with
respect to the direction of momentum transfer. This align-
ment destroys the incoherence between the contributions
from the densities pertaining to a given angular momentum
L . In fact, in the above formalism, 1

2Ji+1

∑
Mi

has to be elim-
inated from (2.1), such that S f i has to be evaluated from the
so modified (2.1) with (2.3) and (2.4) without any further
simplification. Since (2.8) and (2.9) are no longer applica-
ble, one has no more any restriction on angular momentum
L in the interference terms, making all of them nonvanish.
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Fig. 9 a Differential cross section at 250 MeV for unpolarized elec-
trons and b Sherman function for polarized electrons, additionally
fixing the nuclear magnetic substate Mi , as a function of scattering
angle θ . Mi = 5/2: ——-, prolate shape; − − −−, oblate shape.
Mi = 1/2 : − · −, prolate shape; · · · · · · , oblate shape

This sensitivity to the relative phases between the various
angular momentum components enhances the prolate-oblate
effect, particularly at large angles. This is demonstrated in
Fig. 9a where again a collision energy of 250 MeV has been
chosen. Two cases, Mi = 1

2 and the maximum value Mi = 5
2 ,

are selected. Whereas the respective shape difference varies
between 10 and 40% at angles below 100◦, it increases mostly

by a factor of 2 (Mi = 1
2 ), respectively 3

(
Mi = 5

2

)
for

θ � 110◦.
Figure 9b shows the effect on the electronic spin asym-

metry when both electron and nucleus are polarized. The
Sherman function is displayed for Mi = 1

2 and 5
2 in case

of the prolate and oblate nuclear shapes. In contrast to the
Mi = 1

2 state, considerable shape differences are predicted
for the Mi = 5

2 state even near the first diffraction minimum
at 64.1◦ (of a factor of 2 or more). Above 120◦ where the
vicinity of the second diffraction minimum (at 146◦) induces
large resonance structures in S, there exist extreme prolate-
oblate differences for both Mi .
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Fig. 10 a Differential cross section at 150 MeV for unpolarized elec-
trons and b Sherman function for polarized electrons as a function of
scattering angle θ . Results are shown for unpolarized nuclei (——, pro-
late shape; −−−−, oblate shape) and for polarized nuclei with Mi = 3

2
(−·−·−, prolate shape; · · · · · · , oblate shape). Also shown is the result
from (L = 0) potential scattering (− · · · − · · · −)

Figure 10 compares both cross section and Sherman func-
tion for polarized and unpolarized nuclei at a lower impact
energy of 150 MeV. Here the diffraction minimum is very
shallow, and the total cross section decreases monotonously.
Clearly, the prolate-oblate difference in the cross section is
enhanced when the nuclear polarization is fixed, particularly
below and above the diffraction minimum at 119.5◦, reach-
ing up to 50% (as compared to the maximum value of 20%
for unpolarized nuclei). For the spin asymmetry (Fig. 10b),
this enhancement by the polarization of the nucleus is par-
ticularly visible at the lower angles, whereas a noticeable
prolate-oblate difference exists even for unpolarized nuclei
above 130◦.

5 Conclusion

Within the DWBA theory we have investigated how the
nuclear quadrupole deformation influences the differential

scattering cross section for unpolarized electrons and the spin
asymmetry for perpendicularly polarized electrons colliding
with an 27Al nucleus. The difference between prolate and
oblate configurations is basically visible in the first diffrac-
tion minimum (i.e. for a momentum transfer q ≈ 1.35 fm)
and amounts, hardly dependent on collision energy, to 20%
in the cross section and about 25% in the spin asymmetry.
The second diffraction minimum is to a good extent filled by
magnetic scattering, such that quadrupole effects, and hence
prolate-oblate differences, are suppressed (cross-section dif-
ferences are around 5%, while spin-asymmetry differences
vary between 1 and 10%).

If the spin asymmetry is considered experimentally, a
rather low collision energy (say, between 150 and 300 MeV)
should be preferred. In this way one can profit from the strong
increase of the spin asymmetry with angle at fixed momen-
tum transfer as well as from the near constancy of the prolate-
oblate difference when the energy is varied.

An initial spin polarization of the nucleus strongly
enhances the prolate-oblate distinction, both in the cross sec-
tion, as well as in the spin asymmetry of additionally polar-
ized electrons. In particular, there is no longer any correlation
between the visibility of the shape differences and the loca-
tion of the diffraction minima.

The present results, obtained for an aluminum target, are
supposed to hold qualitatively also for other nuclei with spin
Ji ≥ 3

2 . Even in the experimentally simplest case of unpolar-
ized collision partners we have demonstrated that a compari-
son with the measured cross section can differentiate between
nuclear models favouring a prolate or oblate nuclear shape.
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