
Vision Research 237 (2025) 108683 

A
0

 

Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier.com/locate/visres  

Origins and objectives of computational diversity in sensory populations
Wiktor F. Młynarski ∗
LMU Munich, Germany
Bernstein Center for Computational Neuroscience Munich, Germany

A R T I C L E  I N F O

Keywords:
Efficient coding
Sensory coding
Retina
Normative theories
Scene statistics

 A B S T R A C T

Populations of sensory neurons are not homogeneous. Even neighboring neurons located in the same brain 
area can process identical stimuli in significantly different ways. Retinal ganglion cells (RGCs) are a prominent 
example of such heterogeneity — they exhibit diverse properties whose computational role and purpose remain 
mysterious. In this review, we explore normative theories of neural computation that attempt to explain the 
origins and role of functional variability in the retina. We first express a general mathematical formulation 
of normative theories of neural computation and identify components of these theories that can explain the 
heterogeneity of sensory populations. We then organize existing theoretical studies of retinal coding according 
to the factors they highlight as explanations of the computational diversity in the retina — the beginning of 
the visual hierarchy.
1. Introduction

Natural intuition may suggest that, in order to accurately register 
signals such as images or videos, one may just need to distribute 
identical sensing units at a desired resolution across the area of an 
image. Engineered systems are often designed in such a manner; for 
example, standard digital cameras register images using an array of 
identical light sensors that uniformly tile the field of view (Ohta, 2020). 
This design principle aligns with early views on the function of sensory 
systems when it has been assumed that neurons can be approximated 
as nearly-identical signal processing devices (e.g. McCullogh & Pitts, 
1943). The remarkable capabilities of the brain are, in this view, an 
emerging property of an intricate network of connections that links 
approximately identical computational units (Rumelhart et al., 1986).

As has often been the case, this simplified theoretical perspec-
tive was challenged by rich and counterintuitive experimental find-
ings. It is now well established that sensory neurons can strongly 
differ among themselves, even when they belong to the same pop-
ulation and process identical sensory input. This diversity is appar-
ent not only at the higher levels of sensory hierarchies but begins 
already at the sensory epithelium where the nervous system first regis-
ters signals coming in from the external environment. This variability
seems to be universal and does not depend on the sensory modality. 
Neurons that exhibit different functional properties can be found in
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visual (Vlasits, Euler, & Franke, 2019), auditory (Rhode & Greenberg, 
1992), and olfactory (Fleischer, Breer, & Strotmann, 2009) systems, 
suggesting that the inhomogeneity of sensory populations could be a 
universal design principle of neural coding.

Retinal ganglion cells (RGCs) are a particularly prominent example 
of a diverse sensory population that has been extensively studied (Vla-
sits et al., 2019). Certain properties of RGCs seem to cluster them into 
distinct groups. For example, it has been suggested that RGCs can be 
classified into approximately thirty different functional types (Baden 
et al., 2016) depending on their responses to test stimuli. Other RGC 
features, such as the shape of the spatial receptive field, vary continu-
ously and cannot be easily discretized (Gupta et al., 2023). Regardless 
of whether RGCs belong to isolated groups or span continua of encoding 
properties, their inhomogeneity seems crucial to the organism. The RGC 
outputs are conveyed further into the brain along the visual hierarchy, 
ultimately supporting the behavior.

The variability in RGC populations presents a challenge to our desire 
to understand the nervous system from simple theoretical principles. In 
order to account for this diversity, sensory coding theories have been 
developing along with experimental studies. Here, we take a unified 
mathematical perspective that enables the classification of different 
sources of diversity in sensory populations. We then review the theo-
retical literature in an attempt to distill key factors that can contribute 
to the variability of RGCs and the computational diversity of the retina.
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2. Normative theories of computational diversity in neural popu-
lations

In order to gain a quantitative understanding of different functions 
implemented by a biological system, one needs to solve a hard inverse 
problem: inferring the evolutionary selection pressures that acted on 
the studied system, while having access only to its current state. Norma-
tive theories of biological function are a class of methods that attempt 
to solve difficult problems of this kind in a sequence of steps. First, a 
normative theory postulates what may be the hypothetical objective of 
the analyzed system. Second, it identifies the parameters relevant for 
this objective. Third, it derives ‘‘ab initio’’, via mathematical analysis 
or numerical optimization, parameter values that generate good (some-
times even optimal) performance. In a final step of the analysis, the 
real parameters of the system studied are compared to the theoretical 
predictions. If a close match is found, this can be taken as evidence 
that the evolution and development have guided the analyzed system 
to implement the postulated objective and achieve a good performance.

To characterize each of the steps described above mathematically, 
let us consider the example of an individual RGC. Here, the aim of 
the normative analysis is to understand the computation performed by 
the neuron when mapping stimuli 𝑠 (e.g. natural images) on responses 
𝑟 (e.g. firing rates). Each neuron can be characterized by a vector of 
parameters 𝜃𝑛. These parameters may determine the spatial receptive 
field, the nonlinear response function, or other properties, depending 
on the focus of the analysis. We note that 𝜃𝑛 is, in principle, a vector 
of multiple parameters; however, for simplicity, we use the vector 
notation 𝜃 only to describe the parameters of a neural population. 
The crucial component of a normative theory is the utility function 
𝑈 (𝜃𝑛; 𝑟, 𝑠) that specifies the putative objective of the neuron. Frequently, 
the utility function incorporates a constraint term that expresses limi-
tations of resources or energy faced by the sensory system. In such a 
scenario, the utility function can take the form 𝑈 (𝜃; 𝑟, 𝑠) = 𝑈𝑜𝑏𝑗 (𝜃; 𝑟, 𝑠)−
𝜆𝐶(𝜃; 𝑟, 𝑠), where 𝑈𝑜𝑏𝑗 is the utility related only to the computational 
objective, the function 𝐶 determines the type of the constraint and the 
parameter 𝜆 its strength.

Because the utility function embodies a hypothesis about the func-
tion of the studied system, its choice and design are critical. His-
torically, two broad conceptual approaches for generating hypotheses 
about the computational objectives of sensory neurons and related 
utility functions have developed (Turner, Sanchez Giraldo, Schwartz, 
& Rieke, 2019). The first approach focuses on encoding stimulus fea-
tures that support specific behavioral goals, such as the detection of 
prey (Lettvin, Maturana, McCulloch, & Pitts, 2007). The second ap-
proach accentuates the importance of more general objectives of neural 
computation, such as the amount of information that neurons convey 
about stimuli (Barlow et al., 1961). Both approaches are closely related 
and can generate utility functions for parameters of sensory systems. 
The higher value of utility implies a better performance of the neuron.

The final component of our setting is the joint distribution of stimuli 
and responses 𝑝(𝑠, 𝑟). This distribution fully characterizes the statistics 
of stimuli processed by the neuron in the natural environment as 
well as the input and output noise. Example factors that shape the 
stimulus distribution can include the level of contrast in the animal’s 
surrounding or the position of the receptive field within the visual 
field. Noise statistics can, in one example, depend on the strength of 
the stimulus (e.g. the light level) relative to the strength of the noise 
intrinsic to the biophysical properties of the neuron.

The resulting general form of normative analyses of neural systems 
can be therefore summarized in a compact, mathematical form: 

𝜃∗𝑛 = argmax
𝜃𝑛

⟨

𝑈 (𝜃; 𝑟, 𝑠)
⟩

𝑝(𝑟,𝑠)
(1)

where 𝜃∗𝑛 is the normative prediction (e.g. optimal receptive field) that 
maximizes the utility function (e.g. information transmitted in bits) 
averaged across all possible stimulus response pairs.
2 
Differences between neurons in a sensory population such as the 
RGCs can be explained by changes in different components of the 
normative framework in Eq. (1): objectives represented by different 
utility functions 𝑈 (Fig.  1a, left), stimulus and noise statistics 𝑝(𝑟, 𝑠)
(Fig.  1a, middle) or collective optimization of a population of cells 
described by parameters 𝜃 to solve the same task (Fig.  1a, right). In 
the following sections, we review normative studies of sensory coding 
in the retina and classify them according to which of the components of 
the normative framework they rely on to explain a diversity of retinal 
neurons.

3. Diverse objectives of sensory coding

Perhaps the most intuitive explanation of the neural heterogeneity 
in the retina is that different cells encode different features of the 
stimulus. In the normative view, these encoded stimulus characteristics 
determine the utility functions 𝑈𝑛 of each neuron (we index individual 
neurons with 𝑛). If neurons within the population encode different 
stimulus features, the optimal parameters 𝜃𝑛 will also vary from cell 
to cell, even if stimulus statistics and noise levels remain fixed (Fig. 
1b, top row, left and middle panels).

This view goes back to early research on retinal coding, when it was 
suggested that neurons in the frog’s retina detect stimulus features of 
immediate behavioral relevance such as the position of insects in the 
field of view (Lettvin et al., 2007). This early intuition is apparently 
supported by more recent findings that identified numerous functional 
RGC types (Baden et al., 2016; Koch et al., 2004). Each of these types 
could, in principle, correspond to a different behaviorally relevant 
feature that is extracted from the image and sent for further processing. 
In one example, a recently discovered RGC type encodes transitions 
from green-dominated to UV-dominated visual contexts, which may be 
elicited by head movements from ground to sky (Höfling et al., 2024).

The view that RGCs encode stimulus features of immediate behav-
ioral relevance can be contrasted with a more ‘‘generalist’’ view of 
retinal coding — the efficient coding theory (Barlow et al., 1961). In 
its basic form, the theory postulates that sensory neurons maximize the 
sheer amount of stimulus information transmitted, subject to metabolic 
constraints. These two views can be easily reconciled by observing that 
in order to encode and transmit any behaviorally relevant stimulus 
feature, a minimal number of specific bits must be encoded (Bialek, Van 
Steveninck, & Tishby, 2006). For example, to predict future states of the 
environment that may be important to the organism, the retina should 
extract only the most predictive bits of the stimulus. In fact, RGCs have 
been shown to efficiently encode predictive information about features 
of simple experimental stimuli, such as moving bars (Palmer, Marre, 
Berry, & Bialek, 2015). In natural environments, this computation 
would require adaptation to specific features of sensory signals (Sal-
isbury & Palmer, 2016). A coding objective conceptually related to 
predictive information maximization is encoding surprise, i.e. how 
much does any given stimulus violate an expected temporal regularity. 
A particularly strong form of surprise coding is known as the omitted 
stimulus response, where the cell spikes when the stimulus did not oc-
cur but was expected given prior experience (Schwartz, Harris, Shrom, 
& Berry, 2007). RGCs exhibit a diversity of surprise-related responses, 
and it has recently been suggested that this diversity may be due to 
differences in prior expectations of the stimulus sequences that each 
cell represents (Despotović, Joffrois, Marre, & Chalk, 2024). In general, 
efficient coding, coding predictive information and related objectives 
can be coherently expressed as a rich family of utility functions for 
neural computations (Chalk, Marre, & Tkačik, 2018). It remains to be 
understood whether the variability of the RGCs could be explained by 
differences in the predictive computations they perform.

Stimuli processed by the retina are not stationary; they originate 
from dynamically changing natural environments. To perform any 
encoding task efficiently, regardless of what stimulus features are en-
coded, neurons must adapt to such changes (Laughlin, 1989). Inter-
estingly, adaptation dynamics reveal another type of diversity in the 
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Fig. 1. Theories of functional diversity in sensory populations (a) Three proposed sources of diversity in sensory populations. Left: Individual cells (circles) can 
belong to different functional types (circle colors) due to differences in coding objectives (denoted by color of rectangles surrounding each cell). Middle: statistics of 
stimuli and input and output noise (summarized by the color of the triangular arrows) can lead to differentiation of cells that implement the same objective. Right: 
A population of cells (left; circles belonging to the same population are drawn within the same gray rectangle) that is collectively optimized to encode stimuli can 
differentiate cell types in scenarios where independent neurons could be identical (right; independently optimized cells are within separate gray rectangles). (b) 
Sources of cell-type diversity and mathematical formulation of optimization objectives. Top: cell types that implement different computations on identical inputs 
(left) are defined by objective specific utility functions (right, utility function 𝑈𝑛 marked with dark gray). Middle: cells with the same objective but different 
stimulus and noise statistics (left) are optimized to maximize the same utility 𝑈 but averaged across cell-specific distribution of stimuli and responses 𝑝𝑛(𝑠, 𝑟) (right, 
dark gray). Bottom: populations of neurons are collectively optimized to encode the same ensemble of stimuli (left). This corresponds to joint optimization of a 
vector of parameters 𝜃 (right, dark gray). (c) Examples of studies where different sources of computational diversity in the retina where reported. Top: variance 
(contrast) adaptation responses of simulated neurons that maximize adaptation speed or minimize encoding error (Młynarski & Hermundstad, 2021) reproduce 
adaptive and sensitizing response dynamics of retinal ganglion cells (Kastner & Baccus, 2011). Middle: shapes of receptive fields of retinal RGCs adapt to the 
change of signal-to-noise ratio across the visual field (Gupta et al., 2023). Bottom: joint optimization of a neural population predicts emergence and coordinated 
anti-alignment of mosaics of on and off RGCs (Roy, Jun, Davis, Pearson, & Field, 2021).
retina. Depending on the trajectory of their firing after a change in 
stimulus contrast, RGCs can be classified as ‘‘adapting’’ or ‘‘sensi-
tizing’’ (Kastner & Baccus, 2011, 2013). Responses to a change in 
luminance also reveal a rich phenomenology that may be context-
dependent (Tikidji-Hamburyan et al., 2015). Importantly, these vari-
able responses are often triggered by identical stimuli, suggesting that 
neurons may implement different computations. From the computa-
tional perspective, adaptation itself posits a nontrivial problem, where 
cells need to differentiate changes in the stimulus caused by their 
stochasticity from shifts in the underlying distribution (DeWeese & 
Zador, 1998). Recent theoretical work has suggested that, in a general 
case, cells can minimize the error of encoding individual stimuli or 
detect changes in the underlying distribution (Młynarski & Hermund-
stad, 2021). These often mutually exclusive objectives can be satisfied 
to a different degree giving rise to a continuum of utility functions 
for neural computation in dynamic environments. Model neurons that 
optimize different utilities along this continuum reproduce adaptive 
phenomena observed in the retina, such as sensitization or adapta-
tion (Młynarski & Hermundstad, 2021) (Fig.  1c, top). These results 
suggest that at least some of the RGC diversity can be understood 
as a solution to navigate the trade-offs between competing sources of 
encoding error that arise in dynamic, natural environments.

4. Diversity of stimulus and noise statistics

Regardless of which stimulus features are encoded by retinal pop-
ulations, to do so efficiently, neurons need to adapt to the statistics of 
signals they process (Atick & Redlich, 1992; van Hateren, 1992). At 
the same time, to transmit information reliably, they need to correct 
3 
for the input noise that distorts the incoming signals and the output 
noise that corrupts messages conveyed downstream. The statistical 
relationship between stimulus and noise is specified by the joint distri-
bution 𝑝(𝑟, 𝑠) (Fig.  1a, middle panel). Within the normative perspective, 
this distribution determines the optimal solution 𝜃∗ to any encoding 
objective specified by a utility function 𝑈 . An important implication 
for neuronal diversity is that even cells that implement exactly the 
same computation (e.g. detect the same stimulus feature) can exhibit 
different properties, if the statistics of their inputs and noise vary (Fig. 
1b, middle panel).

The relevance of these theoretical principles for retinal coding has 
been highlighted multiple times. A now-classical study demonstrated 
that center–surround receptive fields can instantiate predictive coding, 
a form of increasing coding efficiency. Predictive coding reduces the 
dynamic range of the input signal by removing spatially redundant 
bits of the stimulus and encoding only the spatial change in luminance 
computed as the difference between the center and surround compo-
nents of the receptive field (Srinivasan, Laughlin, & Dubs, 1982). Center 
surround-receptive fields have also been derived from related principles 
of sensory coding such as redundancy reduction (Atick & Redlich, 1990) 
and whitening (Bell & Sejnowski, 1997).

This theoretically optimal shape of the spatial receptive fields is 
a well-known source of diversity in the retina that separates RGCs 
into two distinct classes. The so-called ‘‘on’’ cells respond to local 
increases in light intensity, while ‘‘off’’ cells encode a decrease in 
brightness (Hartline, 1938; Kuffler, 1953). Interestingly, the number of 
off cells typically exceeds the number of on cells and this asymmetry 
has been suggested to be a consequence of the ‘‘excess of darkness’’ in 
natural scenes, where local contrast is more likely to decrease rather 
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than increase (Ratliff, Borghuis, Kao, Sterling, & Balasubramanian, 
2010).

According to the spatial predictive coding model, optimal receptive 
fields are determined by the spatial autocorrelation function, which 
measures how correlated are activities of neighboring photoreceptors, 
and the strength of the input noise. These two factors have a similar 
impact on the shape of the optimal receptive field. When the processed 
images are smooth and the autocorrelation is long — surrounds of the 
optimal RGC receptive fields become broad and diffuse to exploit this 
redundancy. If photoreceptor noise dominates the signal, which is often 
the case in low-light conditions, the surround also needs to expand 
spatially to ‘‘average out’’ this variability and to better estimate the 
underlying image.

Although these theoretical predictions were known for a long time, 
it was unclear whether the RGCs exploit subtle changes in signal 
autocorrelation or noise to increase coding efficiency. Such adaptation 
could happen in time, when the receptive field of a single neuron 
changes shape in response to e.g. increased noise strength, or in space, 
where receptive fields vary across the retina driven by spatial inhomo-
geneities in the statistics of the natural visual field (Abballe & Asari, 
2022; Qiu et al., 2021). A recent experimental study was able to si-
multaneously record activity of thousands of RGCs covering significant 
fraction of the retinal surface (Gupta et al., 2023). This large-scale 
recording revealed variation of RGC receptive fields across the visual 
field. In close agreement with the predictive coding model, receptive 
fields processing inputs from the bottom of the visual field where the 
light intensity is low and the RGC input is dominated by noise, had 
diffuse and shallow surrounds. In contrast, neurons processing input 
from the upper visual field, where the relative noise strength is much 
weaker, had sharp, well-defined surrounds (Fig.  1c, middle). Receptive 
fields varied continuously from upper to lower visual field following 
a smooth gradient of change with a rapid transition a the horizon 
line. These results indicate that retinal populations exploit even subtle 
fluctuations of stimulus and noise statistics giving rise to continuous 
variability of their functional properties.

5. Diversity as a consequence of collective effects

The theories described above either consider sensory neurons indi-
vidually or approximate neural populations as collections of indepen-
dent signal processing units. Although this may be a useful approxi-
mation, retinal neurons are not independent; they form networks and 
encode natural stimuli together. Population coding can be easily ex-
pressed within the general normative framework. Instead of optimizing 
the parameters 𝜃𝑛 of each neuron one by one, one can simultaneously 
optimize a set of parameters 𝜃 that describe an entire population. In 
such jointly optimized populations, individual cells can complement 
each other and devote their capacity to encode stimulus features not 
encoded by their neighbors. Due to such "division of labor’’ neural het-
erogeneity can arise even if all neurons share a common computational 
objective and process stimuli with identical statistics (Fig.  1a, right 
panel).

Perhaps the simplest form of coordination between RGCs is their 
spatial arrangement. Too densely placed neurons would sample the vi-
sual field in a redundant and inefficient way, while neurons that are far 
apart from each other could omit relevant parts of the scene. The spac-
ing of the RGC receptive fields appears to match the autocorrelation 
structure of natural scenes and is optimized to tile the field of view in 
a way that maximizes the amount of information transmitted (Borghuis, 
Ratliff, Smith, Sterling, & Balasubramanian, 2008). Collective opti-
mization can also explain the benefits of the separation of RGCs into 
on- and off-channels. Pairs of simple units that respond to increases 
(‘‘on’’) and decreases (‘‘off’’) of one-dimensional stimuli can transmit 
the same amount of bits as pairs of units of the same type, but at a 
lower metabolic cost (Gjorgjieva, Sompolinsky, & Meister, 2014). This 
principle also generalizes to larger populations of units (Gjorgjieva, 
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Meister, & Sompolinsky, 2019). Going beyond one-dimensional stimuli, 
an elegant model of population coding demonstrated that on- and off-
center receptive fields emerge from statistics of natural images (Karklin 
& Simoncelli, 2011). These optimal receptive fields tile the image area 
in a way closely resembling the RGC mosaics. The same efficient pop-
ulation coding model (Karklin & Simoncelli, 2011) reveals surprising 
emergent properties that are consistent with the intricate architectural 
characteristics of the RGC populations. Retinal mosaics of on-center and 
off-center RGCs are anti-aligned to minimize spatial overlap between 
cells across types (Roy et al., 2021). This property emerges as an 
optimal solution to information transmission about natural images in 
certain input and output noise regimes (Jun, Field, & Pearson, 2021; 
Roy et al., 2021) (Fig.  1c, bottom). In addition to efficiently trans-
mitting natural stimuli, anti-alignment of retinal mosaics can support 
tasks such as the formation of functional maps in the primary visual 
cortex (Jang & Paik, 2017). A recent extension of the noisy population 
model has found that increasing the size of the neural population 
that encodes natural videos leads to the emergence of novel cell types 
with distinct temporal and spatial receptive field features (Jun, Field, 
& Pearson, 2022). A similar result has been obtained using simpler 
naturalistic pink-noise stimuli (Ocko, Lindsey, Ganguli, & Deny, 2018). 
These intriguing results suggest that perhaps the diversity of retinal cell 
types serves the purpose of maximizing information transmission and 
encoding as many bits of information as permitted by metabolic and 
anatomical constraints.

A possible source of diversity in neuronal populations originates 
from changes in metabolic and anatomical constraints and their strength
in different parts of the brain. For example, the receptive fields of 
sensory neurons can be influenced by the activity and connectivity 
limitations faced by the population. Depending on the type of con-
straint, such as the sparsity of neuronal connections or spatial locality, 
receptive fields optimized to accurately encode natural images can take 
different forms — from Gabor filters reminiscent of the primary visual 
cortex to features similar to the center surrounding the retina (Doi & 
Lewicki, 2014). In the primate retina, the receptive field structure is 
consistent with an information-maximizing neuronal population that is 
subject to spatial locality constraints and pools inputs from neighboring 
photoreceptors (Doi et al., 2012).

When considering populations of sensory neurons, one should sep-
arate two types of population effects: joint optimization and collective 
behavior. In the first case, neurons are optimized together, but then 
they act independently without communicating between themselves. 
In the second case, neurons actively interact and exchange information 
when encoding stimuli. Neuronal populations have been shown to act 
collectively (Ganmor, Segev, & Schneidman, 2015; Schneidman, Berry, 
Segev, & Bialek, 2006; Tkačik, Marre, Amodei, Schneidman, Bialek, 
& Berry, 2014), and that they may even exploit neuron-to-neuron 
interactions as means of encoding natural stimuli (Hoshal et al., 2024). 
The type of interaction that optimizes information transmission by 
populations that collectively encode stimuli is strongly dependent on 
the level of noise (Tkačik, Prentice, Balasubramanian, & Schneidman, 
2010) - at high noise levels, populations form "basins of attraction" 
to correct for random distortions. These theoretical considerations and 
empirical findings have led to suggestions that populations of retinal 
neurons form optimal error-correcting codes (Berry & Tkačik, 2020; 
Prentice et al., 2016). An important feature of population codes is their 
easy decodability and learnability by downstream circuits (Ganmor, 
Segev, & Schneidman, 2011). Even though encoding mechanisms may 
be complex and implemented by heterogeneous neural populations, 
downstream areas should be able to rapidly decode relevant informa-
tion and detect changes in the neural representation, which may be an 
important normative objective. The theoretical principles of collective 
coding in neural populations and how they can explain neuronal di-
versity remain an active area of research (Berry, Lebois, Ziskind, & da 
Silveira, 2019; Schneidman, 2016).
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6. Towards reconciliation of parsimonious theories and biological 
diversity

In our attempts to understand the diversity of sensory populations, 
we are trying to reconcile the desire for conceptual simplicity with 
the overwhelming complexity of biological systems. Sensory coding 
in the retina is a perfect model system for developing a principled 
theoretical understanding of biological diversity. Retinal neurons play 
a key role in transmitting sensory information, yet they vary in many 
ways, simultaneously forming seemingly discrete types and continua of 
properties.

We outlined three key components that may contribute to hetero-
geneity of neural populations: the computational objective specified by 
a utility function, statistics of stimulus and noise, as well as popula-
tion effects. To better reflect the complexity of the real world, these 
factors can of course be considered simultaneously. In one example the 
strength of input and output noise determines properties of receptive 
fields in jointly optimized neuronal populations (Doi et al., 2012; 
Karklin & Simoncelli, 2011).

Retinal codes are certainly also shaped by evolutionary selection 
pressures that are not captured by relatively simple objective functions 
that have been studied to date. For example, to consider behavior, eyes 
are not passive devices and are actively moved by the organism to sam-
ple the visual space (Samonds, Geisler, & Priebe, 2018). Optimization of 
sensory arrays for systems that sample the environment in ‘‘glimpses’’ 
that resemble saccadic movements, results in emergence of fovea-like 
structures reminiscent of organization of the primate retina (Cheung, 
Weiss, & Olshausen, 2016). At small spatial scales, eye movements can 
reformat sensory information into a more efficient form (Anderson, 
Ratnam, Roorda, & Olshausen, 2020; Rucci & Victor, 2015; Wu et al., 
2024), and perhaps should be considered jointly with properties of 
the retinal code. Recent experimental evidence demonstrates that the 
behavioral state of the animal such as arousal or locomotion can 
affect the output of the retina by modulating its gain (Schröder et al., 
2020). Active behavior and sensor movements should be therefore 
incorporated into normative theories of sensory processing already at 
the earliest stages of the visual pathway.

A particularly promising path to reconcile the richness of biological 
data and the desired theoretical simplicity is the synthesis of normative 
theories of neural computation with statistical analysis tools. Normative 
theories can be incorporated into statistical analyzes as very rich and 
structured priors or inductive biases (Gonçalves et al., 2020; Młynarski, 
Hledík, Sokolowski, & Tkačik, 2021). This approach can dramatically 
reduce the amount of data required to fit parameters of biological 
systems such as receptive fields of an entire population (Qiu et al., 
2023). Inductive biases such as the network architecture can also 
enable predictions about diverse and non-trivial response properties of 
sensory neurons simply by fitting experimental data (Maheswaranathan 
et al., 2023). The majority of normative models and theories of sen-
sory coding in the retina rely on relatively simple linear–nonlinear 
architectures. Although these models generated enormous progress, 
they do not fully capture the input–output relationship in sensory neu-
rons (Goris, Movshon, & Simoncelli, 2014), in particular in behaving 
animals (Fu et al., 2024). The synthesis of modern statistical approaches 
and normative theories can open a way to resolve this important 
conceptual challenge in the study of sensory coding. At the same time, 
synthesis of normative theories and statistics permits rigorous tests 
of the proposed normative explanations that go beyond qualitative 
comparison of features of computational models and experimental 
observations (Młynarski et al., 2021).

The diversity and heterogeneity of the nervous system may seem 
overwhelming even at its earliest stages, such as the retina. Nor-
mative theories of neural computation offer a path to taming this 
apparent diversity by explaining it as a manifestation of relatively few 
well-interpretable principles.
5 
Data availability

No data was used for the research described in the article.
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