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Abstract: We propose a simple definition of a Born geometry in the framework of
Künneth geometry. While superficially different, this new definition is equivalent to the
known definitions in terms of para-quaternionic or generalized geometries. We discuss
integrability of Born structures and their associated connections. In particular we find that
for integrable Born geometries the Born connection is obtained by a simple averaging
under a conjugation from the Künneth connection. We also give examples of integrable
Born geometries on nilmanifolds.

1. Introduction

Born geometry was introduced by Freidel, Leigh and Minic in [10] in the context of
T-duality in string theory. These authors proposed to describe T-duality by replacing
the target space of a theory by a manifold of twice the dimension, carrying a geometric
structure which they call a Born structure or a Born geometry. The name was chosen
because Max Born [4] had suggested a long time ago that, in order to unify quantum
mechanics and general relativity, the momentum space should be allowed to have curva-
ture too. Born geometry and its application in high-energy physics have been developed
further in many papers, see e.g. [11–14,25,26].

The mathematical definition of a Born geometry that appears for example in the paper
of Freidel et al. [14] was in terms of para-quaternionic and para-hermitian structures,
and was influenced by the setup of generalized geometry in the sense of Hitchin. An
equivalent description of Born structures which is purely in the language of generalized
geometry is discussed in [21].

In this paper we propose a streamlined definition of a Born geometry as a diagram
g

ω h ,

A B

−J
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where g and h are pseudo-Riemannian metrics and ω is a non-degenerate 2-form, such
that the intertwining operators or tensor fields satisfy A2 = B2 = −J 2 = Id. (Recall that
given two non-degenerate bilinear forms on the tangent bundle of a smooth manifold,
there is a unique field of invertible endomorphisms intertwining them, see Sect. 2.2
below.) We do not assume that the operators define any kind of (para-)quaternionic
structure, since this turns out to be automatically true. Further, we make no assumption
about the signatures of the pseudo-Riemannian metrics g and h. It turns out that g is
automatically of neutral signature, but the signature of h is arbitrary as long as it is of
the form (2p, 2q).

This definition of a Born structure is motivated by the definition of a hypersymplectic
structure in [3]. This structure was originally defined by Hitchin [20] using a neutral
metric and certain symplectic forms that are parallel for its Levi–Civita connection. It
was shown in [3], see also [17, Chapter 8], that Hitchin’s definition is equivalent to
giving only a diagram of symplectic forms

ω

α β

A B

J

such that the intertwining operators satisfy A2 = B2 = −J 2 = Id. All other relations
between the operators and the existence of a neutral metric defined in terms of these
symplectic forms are a consequence of the diagram.

In our definition of a Born geometry it turns out that the (±1)-eigenbundles of the
involution A are Lagrangian for the form ω, and so constitute an almost bi-Lagrangian
[9] or almost para-Kähler [7] or almost Künneth structure [17]. As usual, the use of the
almost qualification means that no integrability has been assumed. Conversely, we will
see that every Born geometry is just an almost Künneth structure together with a choice
of an isomorphism between the two Lagrangian subbundles.

The existence of such almost structures is purely a matter of algebraic topology and
bundle theory. However, once one imposes integrability, it turns out that these structures
are geometrically interesting, and their existence can be quite subtle. We will discuss the
(partial) integrability of Born structures, and exhibit some consequences. For example,
every almost Künneth structure on a manifold gives rise to a preferred affine connec-
tion, the Künneth connection, with respect to which the whole structure is parallel. The
Künneth connection is torsion-free if and only if the structure is integrable. Now Freidel
et al. [14] proved that every Born structure gives rise to a unique connection for which
the structure is parallel, and which satisfies a variation of torsion-freeness suggested
by generalized geometry. The expressions given for the Born connection in [14] are
very complicated, and are difficult to work with. We will prove that in the integrable
case the Born connection arises in a very simple way from the Künneth connection of
the underlying Künneth structure, although in general it does not equal the Künneth
connection.

Structure of the paper. In Sect. 2 we recall some known facts, mostly about Künneth
geometry, which we need for our discussion of Born geometry. In Sect. 3 we discuss
our definition of Born geometry, and we develop simple properties. We also discuss
integrability and the relationship to hypersymplectic geometry. In Sect. 4 we compare the
different connections that arise from a Born geometry, and we prove that in the integrable
case the Born connection can be recovered directly from the Künneth connection. Finally
in Sect. 5 we give examples of integrable Born geometries on some nilmanifolds.
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2. Preliminaries

In this section we recall some definitions we need for our formulation of Born geometry.
All the missing details are contained in [17].

2.1. Künneth structures. The following is our basic structure.

Definition 1. An almost Künneth structure on a smooth manifold M consists of a non-
degenerate 2-form ω together with two complementary ω-isotropic subbundles F and
G. An almost Künneth structure is Künneth if it is integrable, meaning that ω is closed
and therefore symplectic, and F and G are integrable to Lagrangian foliations F and G.

These structures are also known under several other names, the most common of which
is that of a para-Kähler structure, cf. [7]. It is proved in [17, Section 6.3] that an almost
Künneth structure is equivalent to an almost para-Hermitian structure. Moreover, in the
integrable case, a Künneth structure is equivalent to a para-Kähler structure.

One can think of Definition 1 as a metric-free definition of para-Kähler structures.
The metric is recovered by the following construction. The splitting of the tangent bundle
T M = F ⊕ G defines an almost product structure

I : T M −→ T M

X F + XG �−→ X F − XG ,

which, together with ω, yields:

Proposition 2. [17, Proposition 5.9] For an almost Künneth structure (ω, F, G) the
map

g : T M × T M −→ R

(X, Y ) �−→ ω(I X, Y )

defines a pseudo-Riemannian metric of neutral signature.

Note that, while in the definition of an almost Künneth structure the two subbundles
are treated symmetrically, after defining the almost product structure, this symmetry is
broken, and the subbundles are distinguished by the property of being either the (+1)-
or the (−1)-eigenbundles of I . Therefore, the almost product structure and the neutral
metric associated with an almost Künneth structure are well-defined only up to an overall
sign.

There is a canonical connection associated with an almost Künneth structure, the
Künneth connection, whose definition goes back to Hess [18,19].

Theorem 3. [17, Theorem 6.6] Let (ω, F, G) be an almost Künneth structure on a
smooth manifold M. There exists a unique affine connection ∇K on M, the Künneth
connection, that preserves both F and G, is compatible with ω, and whose mixed torsion
vanishes identically, i.e. T K (X, Y ) = 0 for X ∈ F and Y ∈ G or vice versa, where T K

is the torsion tensor of ∇K .

The Künneth connection can be expressed as follows. Let

D : X(M) × X(M) −→ X(M)
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be the map defined by iD(X,Y )ω = L X iY ω. Then for X ∈ X(M) and Y ∈ �(F) the
formula

∇K
X Y = D(X F , Y )F + [XG, Y ]F

defines a connection on F . Similarly, for X ∈ X(M) and Y ∈ �(G)

∇K
X Y = D(XG, Y )G + [X F , Y ]G

defines a connection on G. Here, for X ∈ X(M), X F and XG denote the projections to
F and G, respectively. The Künneth connection is then given by

∇K
X Y = ∇K

X YF + ∇K
X YG

for X, Y ∈ X(M). In other words, it is the direct sum of the connections defined sepa-
rately on F and G.

The torsion of the Künneth connection is related to the integrability of the almost
Künneth structure:

Theorem 4. [17, Theorem 6.8] An almost Künneth structure is Künneth if and only if its
Künneth connection is torsion-free.

Since the Künneth connection is compatible with ω and commutes with the almost
product structure I defined by the subbundles F and G, it is also compatible with the
corresponding pseudo-Riemannian metric g. Therefore, we obtain the following:

Theorem 5. [17, Theorem 6.10] If (ω, F, G) is a Künneth structure, then the Levi–
Civita connection of the associated neutral metric g is the Künneth connection.

2.2. Recursion operators. The almost product structure I is a particular instance of
what we call a recursion operator. These will play a central role in our definition of
Born structures. The terminology of recursion operators originates from the theory of
bi-Hamiltonian systems, and was developed in a way that is relevant to this paper in
[3,17].

Given two non-degenerate bilinear forms a and b on the tangent bundle of a smooth
manifold M , there is a unique field of invertible endomorphisms A, such that a(A·, ·) =
b(·, ·). Then, A is called the recursion operator from a to b and we will depict the situation

as a
A−→ b. In this case, A−1 is the recursion operator from b to a, i.e. b

A−1−→ a. Given

a third bilinear form c, such that b
B−→ c, it follows that a

AB−→ c.
In the special case where a recursion operator satisfies A2 = Id and A �= ± Id,

the tangent bundle T M splits as the direct sum of the (±1)-eigenbundles of A, see the
discussion in Subsection 3.1 of [3].

3. Born Geometry

We can now formulate our definition of Born geometry.

Definition 6. Let M be a smooth manifold. A Born structure on M is a triple (g, h, ω),
where g and h are pseudo-Riemannian metrics and ω is a non-degenerate 2-form, such
that the recursion operators specified in the diagram
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g

ω h

A B

−J

satisfy A2 = B2 = −J 2 = Id.

Note that the existence of a non-degenerate 2-form implies that M must be even-
dimensional.

A diagram of recursion operators as in this definition always commutes, because of
the uniqueness of recursion operators. For example, A ◦ (−J ) is a recursion operator
from g to h, and so is B. Therefore, −AJ = B.

3.1. Algebraic identities. We will now discuss basic properties of Born structures that
can be deduced immediately from the definition. In the following, let M be a smooth
manifold of dimension 2n with a Born structure (g, h, ω) with recursion operators A, B
and J as in Definition 6.

Lemma 7. The recursion operators A, B and J pairwise anti-commute and AB J = Id.

Proof. The second assertion follows immediately from AB = −J and J 2 = − Id.
Moreover,

AB = −J = J−1 = −B−1 A−1 = −B A .

This implies

AJ = −A2 B = AB A = −J A

and

J B = −AB2 = B AB = −B J .

	

An immediate consequence of Lemma 7 is the following:

Lemma 8. The almost complex structure J interchanges the (±1)-eigenbundles of A.
Similarly, it interchanges the (±1)-eigenbundles of B. Furthermore, A interchanges the
eigenbundles of B and vice versa.

Proof. Let X ∈ X(M) such that AX = ±X . Then

A(J X) = −J AX = ∓J X .

Hence, J X is in the (∓1)-eigen-subbundle of A. The same argument applies to the
eigen-subbundles of B and to the second statement. 	


The (±1)-eigenbundles of A play a special role in the Born structure, which will
become apparent in Proposition 12. From now on, we will denote them by L±. By
Lemma 8, the endomorphism field J defines isomorphisms

J : L± −→ L∓ .

In particular, L+ and L− both have rank equal to n = 1
2 dim(M).

We will now study the transformation properties of ω, h and g under the three recur-
sion operators.
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Lemma 9. The 2-form ω transforms under the fields of endomorphisms A, B and J as

ω(J X, JY ) = ω(X, Y ) = −ω(AX, AY ) = −ω(B X, BY ) .

Proof. For the first equality, we use the symmetry of h and the anti-symmetry of ω to
obtain

ω(J X, JY ) = −h(X, JY ) = −h(JY, X) = −ω(Y, X) = ω(X, Y ) .

Similarly, using the anti-symmetry of ω and the symmetry of g we find

ω(AX, AY ) = g(X, AY ) = g(AY, X) = ω(A2Y, X) = ω(Y, X) = −ω(X, Y ) .

Finally, B = −AJ , and the first two equalities yield

ω(B X, BY ) = ω(AJ X, AJY ) = −ω(J X, JY ) = −ω(X, Y ) .

This completes the proof. 	

Lemma 10. The pseudo-Riemannian metric g satisfies

g(B X, BY ) = g(X, Y ) = −g(AX, AY ) = −g(J X, JY ) .

Proof. We apply Lemma 9 several times and employ the fact that the recursion operators
anti-commute. For the first equality, we have

g(B X, BY ) = ω(AB X, BY ) = −ω(B AX, BY ) = ω(AX, Y ) = g(X, Y ) .

Similarly, we proceed for A, obtaining

g(AX, AY ) = ω(X, AY ) = −ω(AX, Y ) = −g(X, Y ) .

For J , it follows that

g(J X, JY ) = ω(AJ X, JY ) = −ω(J AX, JY ) = −ω(AX, Y ) = −g(X, Y ) .

	

Proceeding analogously for h, we find that it is invariant under all three recursion

operators:

Lemma 11. The pseudo-Riemannian metric h is invariant under the three recursion
operators, i.e.

h(AX, AY ) = h(X, Y ) = h(B X, BY ) = h(J X, JY ).

In particular this shows that the pair (h, J ) forms an almost pseudo-Hermitian structure
with fundamental 2-form ω. This explains the choice of sign for J in Definition 6.

The transformation properties of the three bilinear forms are summarized in Table 1.
We will now prove further properties of the eigenbundles of A and B and the bilinear

forms.

Proposition 12. The (±1)-eigenbundles of A are Lagrangian for ω. In particular,
(ω, L+, L−) is an almost Künneth structure. The pseudo-Riemannian metric g of the
Born structure is the neutral metric associated with this almost Künneth structure.
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Table 1. Transformation properties of g, h and ω under A, B and J .

g(AX, AY ) = −g(X, Y ) h(AX, AY ) = h(X, Y ) ω(AX, AY ) = −ω(X, Y )

g(AX, Y ) = −g(X, AY ) h(AX, Y ) = h(X, AY ) ω(AX, Y ) = −ω(X, AY )

g(B X, BY ) = g(X, Y ) h(B X, BY ) = h(X, Y ) ω(B X, BY ) = −ω(X, Y )

g(B X, Y ) = g(X, BY ) h(B X, Y ) = h(X, BY ) ω(B X, Y ) = −ω(X, BY )

g(J X, JY ) = −g(X, Y ) h(J X, JY ) = h(X, Y ) ω(J X, JY ) = ω(X, Y )

g(J X, Y ) = g(X, JY ) h(J X, Y ) = −h(X, JY ) ω(J X, Y ) = −ω(X, JY )

Proof. Let X, Y ∈ X(M) such that X and Y are both in L+ or both in L−. Then by
Lemma 9, we have

ω(X, Y ) = ω(AX, AY ) = −ω(X, Y ).

Hence, the (±1)-eigenbundles of A are isotropic for ω. Since they are complementary,
they are also Lagrangian.

Note that the almost product structure A agrees (up to sign) with the almost product
structure I associated to the almost Künneth structure that we defined in Sect. 2.1. Since
the neutral metric associated with the almost Künneth structure was defined by plugging
I into ω, it follows that it is the same as the pseudo-Riemannian metric g of the Born
structure. 	


The relation between almost Künneth structures and Born structures will be explored
further in Sect. 3.3.

Corollary 13. The signature of g is neutral and the subbundles L± are null for g.

Proof. This is a reformulation of Proposition 2. The fact that the L± are null for g can
either be deduced from the transformation property of g under A or by observing that
g|L± = ±ω|L± . Note that this holds for any neutral metric associated with an almost
Künneth structure. 	

Proposition 14. The (±1)-eigenbundles of B are g-orthogonal.

Proof. Let X, Y ∈ X(M) such that B X = X , BY = −Y . Then

g(X, Y ) = g(B X, BY ) = −g(X, Y ),

and hence g(X, Y ) = 0. 	

Similarly, using Lemma 11, we find

Proposition 15. The (±1)-eigenbundles of A and B are h-orthogonal.

With the help of Proposition 15, we can also say something about the signature of h:

Proposition 16. The signature of h is of the form (2p, 2q), where p + q = n.

Proof. As the subbundles L± are h-orthogonal, the signature of h is the sum of the
signatures of the restrictions h|L+ and h|L− . Since J : L+ → L− is an isometry for h,
both restricted metrics have the same signature (p, q) and the assertion follows. 	


We have now established the most basic properties of Born structures and are ready
to construct first examples.
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Example 17. Consider Cn with the standard Hermitian metric h and the standard Kähler
form ω. The recursion operator J from h to ω is the standard complex structure on C

n .
Furthermore, thinking of Cn as R2n , let L± be the Lagrangian subbundles defined by the
foliations given by the copies Rn × {y} and {x} × R

n of the two factors in the product
decomposition R

2n = R
n × R

n . Then we define A to be the almost product structure
determined by L±. We denote by g the neutral metric defined by ω and A. Then (g, h, ω)

is a Born structure on C
n .

Example 18. Since the Born structure described in Example 17 is invariant under trans-
lations, it descends to tori Cn/�, where � ⊂ C

n is a lattice.

In view of Proposition 16 we can slightly modify Example 18 to show that on tori
T 2n , the signature of h can take any form (2p, 2q) with p + q = n:

Example 19. Think of T 2n as the product T 2p × T 2q and define ω and g as in Example
18. However, for the almost complex structure, we choose now J = Jp ⊕−Jq , where Jp

and Jq are the complex structures on the factors T 2p and T 2q coming from the standard
complex structure on C

p and C
q , respectively. The pseudo-Hermitian metric defined by

ω and J is now of signature (2p, 2q).

3.2. Integrability of Born structures. For integrability of a Born structure, there are
several conditions that can be imposed. First of all, there is the condition of closedness
of the 2-form. Second of all, we could ask for integrability of the recursion operators.
Since these all square to ± Id, a necessary and sufficient condition for their integrability
is the vanishing of the Nijenhuis tensor.

Definition 20. The Nijenhuis tensor of an endomorphism field T is the (1, 2)-tensor
field defined by

NT (X, Y ) = [T X, T Y ] + T 2[X, Y ] − T [T X, Y ] − T [X, T Y ] .

That the vanishing of the Nijenhuis tensor is equivalent to the integrability of an almost
complex structure is just the Newlander–Nirenberg theorem. For an almost product
structure T , the statement follows by observing that for X, Y ∈ T M , we have

NT (X, Y ) = 2 · ([X+, Y+]− + [X−, Y−]+) ,

where the subscripts ± denote the projections to the (±1)-eigenbundles of T . Therefore,
the vanishing of the Nijenhuis tensor is equivalent to the Frobenius integrability of the
eigen-subbundles of T and hence, to the integrability of T .

The recursion operators of a Born structure have the special feature that the integra-
bility of any two of them implies the integrability of the third one.

Proposition 21. If two out of the three recursion operators in a Born structure are
integrable, then so is the third one.

Proof. For the Nijenhuis tensors of A, B and J a straightforward calculation leads to

NJ (X, Y ) + NJ (AX, AY )

= NA(B X, BY ) − NA(X, Y ) − A (NB(AX, Y ) + NB(X, AY )) .



Born Geometry via Künneth Structures Page 9 of 25 123

If we assume NA ≡ NB ≡ 0, then this formula proves the vanishing of NJ (X, Y ) if X
and Y are in the same eigenbundle of A. For X ∈ L+, Y ∈ L−, we find

NJ (X, Y ) =[J X, JY ] − [X, Y ] − J [J X, Y ] − J [X, JY ]
= − [B X, BY ] − [X, Y ] − B A[B X, Y ] + B A[X, BY ]
= − NB(X, Y ) = 0 .

Here, we used for the third equality that since B interchanges the subbundles L± and A
is integrable, we have [B X, Y ] ∈ L− and [X, BY ] ∈ L+. In the same way, one shows
that NJ ≡ NA ≡ 0 implies that NB vanishes identically.

If we assume NJ ≡ NB ≡ 0, then we obtain NA(X, Y ) = NA(B X, BY ). It follows
that NA(X, Y ) vanishes if X and Y are in different eigenbundles for B. If X and Y are
both in the (+1)-eigenbundle of B, we compute

NA(X, Y ) = [AX, AY ] + [X, Y ] − A[AX, Y ] − A[X, AY ]
= −B[J X, JY ] + B[X, Y ] + B J [J X, Y ] + B J [X, JY ]
= −B NJ (X, Y ) = 0 ,

where we used A = −J B = B J , and that the eigenbundles of B are closed under com-
mutators. In the same way one proves that if X and Y are both in the (−1)-eigenbundle
of B, then

NA(X, Y ) = B NJ (X, Y ) = 0 .

This completes the proof. 	

A statement equivalent to Proposition 21 appeared in [29] with a different proof.

Remark 22. In the situation of Proposition 21 the pair (J, A) forms a complex product
structure in the sense of Andrada and Salamon [2], cf. Lemma 7. This is sometimes
useful in order to exclude existence of integrable Born structures in the sense of the
following definition, see Example 41 below.

Definition 23. A Born structure is integrable, if the two-form ω is closed and at least
two, and therefore all, recursion operators are integrable.

We have already encountered first examples of integrable Born structures. The Born
structures constructed onCn in Example 17 and on tori in Examples 18 and 19 are clearly
integrable.

Integrability of a Born structure implies that (h, J ) is a pseudo-Kähler structure with
Kähler form ω and (ω, L+, L−) is a Künneth structure.

3.3. Born structures as enhanced almost Künneth structures. We have seen in Proposi-
tion 12 that every Born structure induces an almost Künneth structure. It turns out that
the converse is also true and every almost Künneth structure can be realized as part of a
Born structure. Indeed, given an almost Künneth structure (ω, F, G), we can choose an
isomorphism

J̃ : F → G ,

satisfying

ω( J̃ X, Y ) = −ω(X, J̃ Y ), X, Y ∈ F .
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Locally, this can be realized as follows. Choose a local frame { fi , g j }n
i, j=1 such that the

{ fi } and {gi } are a local frame for F and G, respectively, and ω( fi , g j ) = δi j . Then set
J̃ ( fi ) = gi .

Using J̃ , we can define an endomorphism field J on T M by setting

J |F := J̃ , J |G := − J̃−1.

By construction, J is an almost complex structure which interchanges the Lagrangian
subbundles of the almost Künneth structure and such that h(X, Y ) = ω(X, JY ) defines
a pseudo-Riemannian metric h. Then we obtain a Born structure (g, h, ω), where g is
the neutral metric associated with the almost Künneth structure. This makes sense even
though g is only well-defined up to sign. Choosing the neutral metric with a different
sign still yields a Born structure (−g, h, ω), where the recursion operators A and B are
replaced by −A and −B.

It follows that a Born structure is an almost Künneth structure, together with a choice
of an almost complex structure J , which is compatible with the almost Künneth structure
in the sense that it interchanges the Lagrangian subbundles and it satisfies ω(J ·, ·) =
−ω(·, J ·). In particular, an integrable Born structure is a Künneth structure together
with a compatible complex structure.

Remark 24. Note that if J is defined by an isomorphism J̃ , which is locally of the form
described above, the resulting h will always be positive definite. The reason is that the
condition ω( fi , g j ) = δi j implies that { fi } is a local orthonormal frame of L+ with
respect to the h so constructed. To obtain a Born structure with an indefinite h in an
analogous construction, we need a local frame { fi , gi }n

i=1 such that ω( fi , g j ) = εiδi j ,
where εi = ±1. However, in general this will not lead to a globally defined pseudo-
Riemannian metric.

3.4. Relation to hypersymplectic geometry. According to [3], hypersymplectic struc-
tures in the sense of Hitchin [20] can be defined by a diagram of symplectic forms

ω

α β

A B

J

such that the recursion operators satisfy −J 2 = A2 = B2 = Id. This looks very similar
to our definition of a Born structure, the only difference being that the symplectic forms
α and β are replaced by pseudo-Riemannian metrics.

It was proved in [17, Section 8.3] that every hypersymplectic structure induces an
S1-family of Künneth structures. The hypersymplectic metric from Hitchin’s definition
is in fact the neutral metric g associated with any one of these Künneth structures. By
Sect. 3.3 above, every Künneth structure in this family gives rise to a Born structure. In
some situations, this even yields an S1-family of integrable Born structures:

Theorem 25. Let M be a smooth manifold admitting a hypersymplectic structure (ω, α, β)

with hypersymplectic metric g. Assume that there is an almost complex structure J̃ on
M, which anti-commutes with A and B and such that g( J̃ X, J̃ Y ) = −g(X, Y ) for all
X, Y in T M. Then

g

βθ hθ

Iθ B̃θ

− J̃
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defines an S1-family of Born structures, where

βθ = − sin(θ)α + cos(θ)β, Iθ = cos(θ)A + sin(θ)B,

and B̃θ = J̃ Iθ . In particular, if J̃ is integrable, then every Born structure in this family
is integrable.

Proof. Recall from [17, Section 8.3] the S1-family of Künneth structures (αθ+π/2,Fθ ,Gθ )

that arises from the hypersymplectic structure, where

αθ = cos(θ)α + sin(θ)β,

and Fθ ,Gθ are the eigen-foliations of the product structure

Iθ = cos(θ)A + sin(θ)B.

Since J̃ anti-commutes with A and B, it anti-commutes with Iθ for each θ and since
every hypersymplectic structure in the family has the same associated neutral metric g
and g( J̃ X, Y ) = g(X, J̃ Y ) by assumption, it follows that αθ ( J̃ X, Y ) = −αθ (X, J̃ Y )

for each θ . Therefore, every Künneth structure in the S1-family is compatible with J̃ in
the sense of Sect. 3.3 and we obtain an S1-family of Born structures

g

βθ hθ

Iθ B̃θ

− J̃

,

where βθ := αθ+π/2 and B̃θ = J̃ Iθ .

If J̃ is integrable, then, since βθ is closed and Iθ is integrable for each θ , every Born
structure in this family is completely integrable because of Proposition 21. 	


We will discuss an example of this construction on Nil3 × R in Sect. 5 below.

3.5. Comparison to the previous literature. In [14] a Born structure was defined as an
almost para-Hermitian structure (g, I ) with corresponding 2-form ω, together with a
pseudo-Riemannian metric h such that the recursion operator from g to h squares to
Id and the one from ω to h squares to − Id. From Proposition 12 it follows that this is
equivalent to our Definition 6.

However, our notation differs from the notation that has been used in the physics
literature. In [14,26,27], the metric h is denoted by H and the metric g is called η.
Moreover, the almost product structures A and B are denoted by K and J , while the
almost complex structure J is called I .

The structure formed by A, B and J is called an almost para-quaternionic structure
and was first introduced in [24] and later studied in [22,28,29], and in many other papers.
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4. Connections Associated with a Born Structure

A Born structure on a smooth manifold M determines the following affine connections:

• ∇g , the Levi–Civita connection of the pseudo-Riemannian metric g,
• ∇h , the Levi–Civita connection of the pseudo-Riemannian metric h,
• ∇K , the Künneth connection of the almost Künneth structure (ω, L+, L−),
• ∇c, the canonical connection of the almost Künneth structure (ω, L+, L−),
• ∇B , the Born connection, which is compatible with ω, g and h and has vanishing

generalized torsion.

We already discussed the Künneth connection in Sect. 2.1. We will now define the
canonical connection and the Born connection and discuss their properties. Furthermore,
we will explain the relations between the different connections.

Since the so-called Bismut connection is more relevant to the approach via generalized
geometry [21], which is different from our approach via Künneth geometry, we do not
discuss it here.

4.1. The canonical connection. Given an almost Künneth structure (ω, L+, L−) with
almost product structure A, whose eigenbundles are L±, we have the associated neutral
Riemannian metric g defined in Proposition 2. Its Levi–Civita connection ∇g does not
necessarily commute with A, meaning that ∇g

X (AY ) and A(∇g
X Y ) do not always agree.

This failure motivates the definition of the canonical connection.
For X, Y ∈ X(M) the canonical connection ∇c is defined by averaging ∇g under

conjugation with A:

∇c
X Y = 1

2

(∇g
X Y + A∇g

X AY
)

. (1)

This does indeed define a connection which commutes with A. Furthermore, this new
connection is still compatible with g, but may have non-trivial torsion. Since the canon-
ical connection is compatible with g and commutes with A, it is also compatible with
ω. This means that the whole almost Künneth structure is parallel with respect to ∇c.

One can rewrite the definition of the canonical connection as

∇c
X Y = (∇g

X Y+
)

+ +
(∇g

X Y−
)
− ,

where the subscripts ± denote the projections to the subbundles L±.
It follows immediately from this and the fact that the subbundles L± are null for g

that

g
(∇c

X Y+, Z−
)

+ g
(
Y+,∇c

X Z−
) = g

(∇g
X Y+, Z−

)
+ g

(
Y+,∇g

X Z−
) = L X (g(Y+, Z−)) .

Moreover, using again that the L± are null for g, we find

g
(∇c

X Y±, Z±
)

+ g
(
Y±,∇c

X Z±
) = 0

and

L X (g (Y±, Z±)) = 0 .

We have seen in Sect. 2.1, that for the Künneth connection, just like the for canonical
connection, the whole almost Künneth structure is parallel. Therefore, the question arises
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whether there are conditions under which these connections coincide with each other,
and how they are related in general. By the uniqueness of the Künneth connection, it is
clear that a necessary and sufficient condition for both connections to agree with each
other is the vanishing of the mixed torsion of the canonical connection. For the purpose of
stating the relation between the connections more precisely, we will need the following
lemma:

Lemma 26. The following equalities hold for X, Y, Z ∈ X(M):

i) ∇g
Xω (Y±, Z∓) = 0,

ii) ∇g
Xω (Y±, Z±) = −2ω

(∇g
X Y±, Z±

) = −2ω
(
Y±,∇g

X Z±
)
.

Proof. The first statement follows from

∇g
Zω(X+, Y−) = L Z (ω(X+, Y−)) − ω(∇g

Z X+, Y−) − ω(X+,∇g
Z Y−)

= L Z (ω(X+, Y−)) − ω(∇c
Z X+, Y−) − ω(X+,∇c

Z Y−)

= 0,

where in the second line we used the definition of ∇c and in the last step that ω is parallel
for ∇c.

For the second statement, we observe

ω
(
Y±,∇g

X Z±
) = ±g

(
Y±,∇g

X Z±
) = ∓g

(∇g
X Y±, Z±

) = ω
(∇g

X Y±, Z±
)
,

where we used for the second equality that the L± are null for g. This yields

∇g
Xω (Y±, Z±) = −ω

(∇g
X Y±, Z±

) − ω
(
Y±,∇g

X Z±
) = −2ω

(∇g
X Y±, Z±

)
.

	

With the help of Lemma 26, we obtain the following result:

Proposition 27. The Künneth connection and the canonical connection are related by

ω
(
∇K

X Y, Z
)

= ω
(∇c

X Y, Z
) − �K (X, Y, AZ),

where

�K (X, Y, AZ) = 1

2
{dω(X, Y+, Z−) + dω(X, Y−, Z+)} .

Proof. Using the definition of the Künneth connection, we write

ω
(
∇K

X Y+, Z−
)

= L X+ω (Y+, Z−) − ω (Y+, [X+, Z−]) + ω ([X−, Y+], Z−)

= ω
(∇c

X+
Y+, Z−

)
+ ω

(
Y+,∇c

X+
Z−

) − ω (Y+, [X+, Z−]) + ω ([X−, Y+], Z−) ,

where we used for the second equality that the canonical connection is compatible with
ω. Using the definition of ∇c and that ∇g is torsion-free, we observe that

ω
(
Y+,∇c

X+
Z− − [X+, Z−]) = ω

(
Y+,∇g

X+
Z− − [X+, Z−]

)
= ω

(
Y+,∇g

Z− X+

)
,

and similarly,

ω ([X−, Y+], Z−) = ω
(
∇g

X−Y+ − ∇g
Y+

X−, Z−
)

= ω
(
∇c

X−Y+, Z−
)

− ω
(
∇g

Y+
X−, Z−

)
.
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It follows that

ω
(
∇K

X Y+, Z
)

= ω
(∇c

X Y+, Z
)

+ ω
(

Y+,∇g
Z− X+

)
− ω

(
∇g

Y+
X−, Z−

)
.

By analogous arguments we obtain

ω
(
∇K

X Y−, Z
)

= ω
(∇c

X Y−, Z
)

+ ω
(

Y−,∇g
Z+

X−
)

− ω
(
∇g

Y− X+, Z+

)
.

Therefore, we have

ω
(
∇K

X Y, Z
)

= ω
(∇c

X Y, Z
) − �K (X, Y, AZ),

where

�K (X, Y, AZ) = − ω
(

Y+,∇g
Z− X+

)
+ ω

(
∇g

Y+
X−, Z−

)

− ω
(

Y−,∇g
Z+

X−
)

+ ω
(
∇g

Y− X+, Z+

)
.

Using Lemma 26 twice, we find

ω
(

Y+,∇g
Z− X+

)
= 1

2
∇g

Z−ω (X+, Y+)

= 1

2

{
∇g

X+
ω (Y+, Z−) − ∇g

Y+
ω (Z−, X+) + ∇g

Z−ω (X+, Y+)
}

= 1

2
dω(X+, Y+, Z−).

Proceeding similarly with the other terms, it follows that

�K (X, Y, AZ) =1

2
dω(X+, Y+, Z−) +

1

2
dω(X−, Y+, Z−)

+
1

2
dω(X−, Y−, Z+) +

1

2
dω(X+, Y−, Z+)

=1

2
dω(X, Y+, Z−) +

1

2
dω(X, Y−, Z+).

	

The subbundles L± induce a bigrading on the differential forms of M . In particular,

if the subbundles are integrable, then the exterior derivative splits as d = d+ + d−,
where d+ and d− are of bidegree (1, 0) and (0, 1), respectively. By Proposition 12, the
2-form ω is of type (1, 1). Using this bigrading, we obtain the following necessary and
sufficient conditions for the vanishing of the difference of the Künneth connection and
the canonical connection:

Corollary 28. The Künneth connection and the canonical connection agree with each
other if and only if

dω(1,2) = 0 = dω(2,1) .

In particular, if ω is closed, then ∇c = ∇K . If A is integrable, then ∇c = ∇K if and
only if ω is closed.

Using Theorem 5, see also [9, Theorem 3], this implies:

Corollary 29. If (ω, L+, L−) is Künneth, then ∇c = ∇K = ∇g.
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4.2. The Born connection. We will now discuss connections compatible with the full
Born structure.

Definition 30. A connection ∇ is compatible with the Born structure (g, h, ω) if

∇h = ∇ω = ∇g = 0.

First we show that compatible connections exist, using again the averaging mecha-
nism used in the definition of the canonical connection.

Proposition 31. Let (g, h, ω) be a Born structure, and ∇K the Künneth connection of
the underlying almost Künneth structure. Then

∇X Y = 1

2

(
∇K

X Y + B∇K
X BY

)
= 1

2

(
∇K

X Y − J∇K
X JY

)

defines a connection that is compatible with the Born structure.

Proof. We first check that the two expressions involving B and J respectively agree. For
this we use that B = J A, that J and A anti-commute, and the fact that ∇K commutes
with A. Together, these identities imply

B∇K
X BY = J A∇K

X J AY = J A∇K
X (−AJY ) = −J A2∇K

X JY = −J∇K
X JY .

Thus the two expressions do indeed agree. They define an affine connection ∇, for which
we want to show that it is compatible with the Born structure.

Recall that the Künneth connection ∇K is compatible with g and ω. It commutes
with A, but not necessarily with B. However, ∇ does commute with B:

∇X BY = 1

2

(
∇K

X BY + B∇K
X B2Y

)

= 1

2

(
∇K

X BY + B∇K
X Y

)

= B

(
1

2

(
B∇K

X BY + ∇K
X Y

))

= B∇X Y .

Moreover, ∇ is still compatible with g and ω, and commutes with A. Since it also
commutes with B it commutes with J as well, and is also compatible with h. 	


In general there are many connections compatible with a Born structure, but from our
point of view, the connection constructed above is the most natural, and would deserve
to be called the Born connection. However, this name is already in use for a connection
that does not always agree with this ∇.

Freidel et al. [14] used a condition analogous to torsion-freeness in the case of the
Levi–Civita connection of a pseudo-Riemannian metric in order to single out a preferred
connection in the space of all connections compatible with a Born structure. Their
condition is the following:

Definition 32. Let ∇c be the canonical connection for an almost Künneth structure with
associated neutral metric g on a smooth manifold M . Then an affine connection ∇ on
T M has vanishing generalized torsion if

g(∇X Y − ∇Y X, Z) + g(∇Z X, Y ) = g(∇c
X Y − ∇c

Y X, Z) + g(∇c
Z X, Y ) (2)

for all X, Y, Z ∈ X(M).
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This definition does not arise naturally in our setup, and we refer to [14] for its motivation.
The following was proved in [14]:

Theorem 33. [14, Theorem 1] Given a Born structure (g, h, ω), there is a unique con-
nection, the Born connection ∇B, that is compatible with the Born structure and has
vanishing generalized torsion.

In the case of an integrable Born structure the Born connection does agree with our
candidate ∇ constructed by averaging the Künneth connection under the conjugation
with B or J , although this is far from obvious.

Theorem 34. Let (g, h, ω) be an integrable Born structure. Then the connection ∇
defined in Proposition 31 agrees with the Born connection ∇B.

Proof. By Proposition 31, ∇ is compatible with the Born structure. Therefore, by The-
orem 33, it suffices to show that ∇ has vanishing generalized torsion, and for this we
use integrability.

From Corollary 29 we know that in the integrable case the canonical and Künneth
connections coincide. Therefore, on the right-hand side of (2) we can use the Künneth
connection. Thus, using the definition of ∇ in terms of ∇K , the condition (2) is equivalent
to

g(∇K
X Y − ∇K

Y X, Z) + g(∇K
Z X, Y ) = g(B∇K

X BY − B∇K
Y B X, Z) + g(B∇K

Z B X, Y ).

(3)

Since in the integrable case ∇K is torsion-free in the usual sense, the first summand on
the left-hand side of (3) simplifies to g([X, Y ], Z). Now the integrability of B implies

[X, Y ] = B[B X, Y ] + B[X, BY ] − [B X, BY ] ,

where on the right-hand side we can rewrite commutators in terms of ∇K since this is
torsion-free:

[X, Y ] = B∇K
B X Y − B∇K

Y B X + B∇K
X BY − B∇K

BY X − [B X, BY ] .

Substituting this into the left-hand side of (3) we see that certain summands on the two
sides agree and therefore drop out. We are left with the condition

g(B∇K
B X Y − B∇K

BY X − [B X, BY ], Z) + g(∇K
Z X, Y ) = g(B∇K

Z B X, Y ) . (4)

Lemma 35. The identity (4) holds if X and Y are in the same eigenbundle for B.

Proof. Suppose B X = X and BY = Y . Then (4) becomes

g(B∇K
X Y − B∇K

Y X − [X, Y ], Z) + g(∇K
Z X, Y ) = g(B∇K

Z X, Y ) . (5)

Since the eigenbundles of B are integrable, we have [X, Y ] = B[X, Y ], and so the first
summand on the left-hand side vanishes by the torsion-freeness of ∇K . For the second
summand we have:

g(∇K
Z X, Y ) = g(B∇K

Z X, BY ) = g(B∇K
Z X, Y ) .

This show that (4) holds if B X = X and BY = Y . The proof also works if B X = −X
and BY = −Y . 	
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Lemma 36. The identity (4) holds if X and Y are in different eigenbundles for B.

Proof. Suppose B X = X and BY = −Y . Then (4) becomes

g(B∇K
X Y + B∇K

Y X + [X, Y ], Z) + g(∇K
Z X, Y ) = g(B∇K

Z X, Y ) . (6)

The right-hand side is

g(B∇K
Z X, Y ) = g(∇K

Z X, BY ) = −g(∇K
Z X, Y ) ,

which is the negative of the second summand on the left-hand side. The first summand
there can be rewritten using once more the torsion-freeness of ∇K :

g(B∇K
X Y + B∇K

Y X + [X, Y ], Z) = g(B∇K
X Y + B∇K

Y X + ∇K
X Y − ∇K

Y X, Z)

= g((B∇K
X Y + ∇K

X Y ) + (B∇K
Y X − ∇K

Y X), Z) .
(7)

Note that B∇K
X Y + ∇K

X Y is in the (+1)-eigenbundle of B, and B∇K
Y X − ∇K

Y X is in
the (−1)-eigenbundle. These eigenbundles are g-orthogonal by Proposition 14, and
therefore we now consider separately the two cases where Z is in one of them.

If B Z = Z , then using (7) the first summand on the left-hand side of (6) is

2g(∇K
X Y, Z) = 2L X g(Y, Z) − 2g(Y,∇K

X Z)

= −2g(Y,∇K
Z X + [X, Z ])

= −2g(Y,∇K
Z X) ,

which shows that (6) holds in this case. In this calculation we used that ∇K is compatible
with g, that [X, Z ] is in the (+1)-eigenbundle of B by the integrability of this subbundle,
and that this is g-orthogonal to the (−1)-eigenbundle containing Y .

If B Z = −Z , then using (7) the first summand on the left-hand side of (6) is

−2g(∇K
Y X, Z) = −2LY g(X, Z) + 2g(X,∇K

Y Z)

= 2g(X,∇K
Z Y + [Y, Z ])

= 2g(X,∇K
Z Y )

= 2L Z g(X, Y ) − 2g(∇K
Z X, Y )

= −2g(∇K
Z X, Y ) ,

where we use the same arguments as before. This shows that (6) holds in the case
B Z = −Z . By linearity it holds for all Z .

In exactly the same way one proves the case when B X = −X and BY = Y . 	

Combining the two lemmas with linearity, we see that the condition (4) holds for all X ,
Y and Z . This finally completes the proof of the theorem. 	

Example 37. Consider the situation of Theorem 25, where an S1-family of Born struc-
tures is constructed from a hypersymplectic structure. In that case, the underlying Kün-
neth structures all have for their Künneth connection ∇K the Levi–Civita connection ∇g

of the hypersymplectic metric. Moreover, the almost complex structure J̃ is independent
of the parameter θ ∈ S1. Therefore, the connection ∇ constructed in Proposition 31 by
averaging ∇K under the conjugation with the almost complex structure is also indepen-
dent of θ . Whenever J̃ is integrable, this is the Born connection ∇B , which is then the
same for all Born structures in the S1-family.
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Finally we note that in the special case where the Künneth connection ∇K com-
mutes with B, the connection ∇ we defined equals the Künneth connection. Therefore,
Theorem 34 has the following consequence.

Corollary 38. For an integrable Born structure with B or, equivalently, J , parallel with
respect to ∇K , we have ∇c = ∇g = ∇K = ∇B.

In this special situation ∇B is torsion-free in the usual sense. In general, the torsion of
∇B measures the failure of ∇K to commute with B. This is the content of the following
proposition.

Proposition 39. Let (g, h, ω) be an integrable Born structure, and T B the torsion ten-
sor of the Born connection ∇B. Then T B(X, Y ) vanishes if X and Y are in the same
eigenbundle of B.

If B X = X and BY = −Y , then

T B(X, Y ) = −1

2

(
∇K

X Y + B∇K
X Y

)
+

1

2

(
∇K

Y X − B∇K
Y X

)

= −π+(∇K
X Y ) + π−(∇K

Y X) ,

where π± are the projections to the (±1)-eigenbundles of B.
In particular, T B vanishes identically if and only if ∇K commutes with B.

Proof. Using Theorem 34, we shall calculate with the formula from Proposition 31.
Assume first that B X = X and BY = Y . Then

T B(X, Y ) = ∇B
X Y − ∇B

Y X − [X, Y ]
= 1

2

(
∇K

X Y + B∇K
X BY

)
− 1

2

(
∇K

Y X + B∇K
Y B X

)
− [X, Y ]

= 1

2

(
∇K

X Y + B∇K
X Y

)
− 1

2

(
∇K

Y X + B∇K
Y X

)
− [X, Y ]

= π+(∇K
X Y ) − π+(∇K

Y X) − π+([X, Y ])
= π+(∇K

X Y − ∇K
Y X − [X, Y ])

= π+(0) = 0 ,

where we have used B[X, Y ] = [X, Y ] by the assumptions on X and Y and the integra-
bility of B, and the torsion-freeness of ∇K in the integrable case. The same argument
works if B X = −X and BY = −Y .

Next assume that B X = X and BY = −Y . The torsion-freeness of ∇K implies

T B(X, Y ) = 1

2

(
∇K

X Y + B∇K
X BY

)
− 1

2

(
∇K

Y X + B∇K
Y B X

)
− [X, Y ]

= 1

2

(
∇K

X Y − B∇K
X Y

)
− 1

2

(
∇K

Y X + B∇K
Y X

)
− ∇K

X Y + ∇K
Y X

= −1

2

(
∇K

X Y + B∇K
X Y

)
+

1

2

(
∇K

Y X − B∇K
Y X

)

= −π+(∇K
X Y ) + π−(∇K

Y X) ,

as claimed. 	
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5. Examples of Integrable Born Structures

In this section we want to provide some examples of integrable Born structures on closed
manifolds that go beyond the rather obvious ones we have seen in Examples 18 and 19.

Given an integrable Born structure
g

ω h ,

A B

−J

we know that (h, J ) is a pseudo-Kähler structure with Kähler form ω, and (ω, L+, L−)

is a Künneth structure. Therefore, we will look for examples in classes of manifolds for
which it is known that one or both of these structures occur.

A very tractable class of manifolds consists of nilmanifolds. Note that for a simply
connected nilpotent Lie group G admitting a lattice � any left-invariant integrable Born
structure descends to the compact nilmanifold � \ G. Therefore, to investigate whether
a nilmanifold is left-invariant Born, it suffices to work at the level of the Lie algebra.

The definition of a Born structure can be transcribed to Lie algebras in the obvious
way. We will call a Born structure on a Lie algebra g integrable, if its 2-form is closed
under the Chevalley–Eilenberg differential, the endomorphism J has vanishing Nijen-
huis tensor and the eigenspaces of A are subalgebras of g. Furthermore, a Lie algebra
admitting an integrable Born structure will be called Born.

Integrable Born structures on a Lie algebra yield left-invariant integrable Born struc-
tures on the corresponding Lie group. Since all of the nilpotent Lie algebras that we
consider have a basis with rational structure constants, the corresponding Lie groups
admit lattices and therefore, the integrable Born structures we find give rise to examples
of compact Born manifolds.

A compatible pair on a Lie algebra g is a symplectic form � on g together with a
complex structure J on g, such that �(J X, JY ) = �(X, Y ) and, therefore, h(·, ·) :=
�(·, J ·) defines a pseudo-Kähler metric on g. By Sect. 3.2, the existence of a compatible
pair on a Lie algebra is necessary for the existence of an integrable Born structure on
the respective Lie algebra.

5.1. Dimension 4. According to [17, Section 9.4], the only non-Abelian 4-dimensional
Lie algebra admitting a Künneth structure is nil3 ⊕R, the Lie algebra of Nil3 ×R. This
has a basis {e1, e2, e3, e4} with the only non-zero bracket relation [e1, e2] = e3.

This Lie algebra not only has Künneth structures, it even has a hypersymplectic
structure, so that we can apply the construction of Sect. 3.4 to it.

Theorem 40. There is an S1-family of integrable Born structures on nil3 ⊕ R.

Proof. It is proved in [17, Section 9.5] that the symplectic forms

α =α14 − α23

β = − α13 − α24

ω = − α13 + α24

define a hypersymplectic structure

ω

α β

A B

J
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on nil3 ⊕ R. Here, the {αi } denote the dual basis of {ei } and we use the abbreviation
αi j = αi ∧α j . The recursion operators of the hypersymplectic structure act on the basis
{ei } by

Ae1 = e2, Ae2 = e1, Ae3 = −e4, Ae4 = −e3

Be1 = e1, Be2 = −e2, Be3 = e3, Be4 = −e4,

Je1 = e2, Je2 = −e1, Je3 = −e4, Je4 = −e3.

It follows that

B∗α1 = α1, B∗α2 = −α2, B∗α3 = α3, B∗α4 = −α4.

Therefore, the hypersymplectic metric g(·, ·) = α(·, B·) can be expressed in terms of
the dual basis {αi } as

g = (
α1 ⊗ B∗α4 − α4 ⊗ B∗α1

) − (
α2 ⊗ B∗α3 − α3 ⊗ B∗α2

)

= − (α1 ⊗ α4 + α4 ⊗ α1 + α2 ⊗ α3 + α3 ⊗ α2) .

Let J̃ be the endomorphism defined by

J̃ e1 = e2, J̃ e2 = −e1, J̃ e3 = e4, J̃ e4 = −e3.

Then J̃ 2 = − Id by construction and J̃ anti-commutes with A and B. Since the only
non-vanishing bracket relation of nil3 ⊕ R is [e1, e2] = e3 and e1 and e2 are mapped
to each other under J̃ , the only component of the Nijenhuis tensor of J̃ that does not
vanish trivially is NJ̃ (e1, e2). For this, we observe

NJ̃ (e1, e2) = [ J̃ e1, J̃ e2] − [e1, e2] − J̃
(
[ J̃ e1, e2] + [e1, J̃ e2]

)

= −[e2, e1] − [e1, e2] − J̃ ([e2, e2] − [e1, e1])
= 0.

Moreover, we have

J̃ ∗α1 = −α2, J̃ ∗α2 = α1, J̃ ∗α3 = −α4, J̃ ∗α4 = α3

and it follows that

J̃ ∗g = −
{

J̃ ∗α1 ⊗ J̃ ∗α4 + J̃ ∗α4 ⊗ J̃ ∗α1 + J̃ ∗α2 ⊗ J̃ ∗α3 + J̃ ∗α3 ⊗ J̃ ∗α2

}

= −{−α2 ⊗ α3 + α3 ⊗ (−α2) + α1 ⊗ (−α4) − α4 ⊗ α1}
= −g.

Therefore, by Theorem 25 we obtain an S1-family of integrable Born structures

g

βθ hθ

Iθ B̃θ

− J̃

,
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where

βθ = − sin(θ)α + cos(θ)β, Iθ = cos(θ)A + sin(θ)B

and B̃θ = J̃ Iθ . 	

Thus the Lie group Nil3×R carries left-invariant integrable Born structures that descend
to all the associated nilmanifolds. These nilmanfolds are exactly the non-trivial principal
T 2-bundles over T 2.

It was shown in [17, Theorem 10.27] that the infra-nilmanifolds of Nil3 × R also
carry Künneth structures, although they are not hypersymplectic since the hypersym-
plectic structure does not descend. These infra-nilmanifolds cannot carry integrable Born
structures since they are not complex manifolds. The genuine infra-nilmanifolds of type
Nil3 × R have even first Betti number b1 = 2. It is a fact that was first known from
Kodaira’s classification of compact complex surfaces and later proved directly by Buch-
dahl [5] and Lamari [23] that compact complex surfaces with even first Betti number are
Kähler. However, since infra-nilmanifolds are finitely covered by nilmanifolds, such a
Kähler structure would lift to these nilmanifolds, which is impossible, since they have
first Betti number 3 and so cannot be Kähler.

It was shown in [17, Example 9.46] that the Lie group Sol3 × R, where Sol3 is
the solvable non-nilpotent Thurston geometry, admits left-invariant Künneth structures.
These cannot be upgraded to integrable Born structures because again the closed man-
ifolds � \ (Sol3 × R) carrying such a geometry have even first Betti number, and so
would be Kähler by the result mentioned above. The lattice � would then be a solvable
Kähler group that is not virtually nilpotent. Such Kähler groups cannot exist be a result
of Delzant [8].

5.2. Dimension 6. The 6-dimensional nilpotent Lie algebras carrying Künneth struc-
tures were classified in [16], see also the summary in [17, Section 9.4.3]. The upshot is
that there are 15 different non-Abelian Lie algebras that do have this structure. Similarly,
the 6-dimensional nilpotent Lie algebras carrying pseudo-Kähler structures were classi-
fied by Cordero, Fernández and Ugarte [6], who found 13 non-Abelian cases. These 13
Lie algebras all have Künneth structures by the result of [16], and so they are candidates
for having integrable Born structures. The two examples from [16] which have Künneth
structures but do not have pseudo-Kähler structures do not have to be considered.

We will show now that some of the pseudo-Kähler Lie algebras from [6] actually
have integrable Born structures, whereas at least one of them does not. We do not decide
this question in all cases, leaving the completion of the classification for future research,
cf. the subsequent paper [15].

Example 41. The Lie algebra denoted h15 in [6] cannot have an integrable Born structure,
since it was shown by Andrada [1] that it does not admit a complex product structure;
cf. Remark 22.

Example 42. The Lie algebra denoted by h8 in [6] is the direct sum nil3 ⊕R
3. Since we

have seen that nil3 ⊕R has integrable Born structures, the same is true in this case, since
we can just sum the structures with the standard Born structure on R

2 from Example 17.

For more complicated examples we use the following:

Lemma 43. Let J be an almost complex structure with Nijenhuis tensor NJ . If NJ (X, Y )

vanishes, so do NJ (J X, JY ), NJ (J X, Y ) and NJ (X, JY ).



123 Page 22 of 25 M. J. D. Hamilton, D. Kotschick, P. N. Pilatus

Proof. This follows from

NJ (J X, JY ) =[J 2 X, J 2Y ] − [J X, JY ] − J
(
[J 2 X, JY ] + [J X, J 2Y ]

)

= − NJ (X, Y )

NJ (J X, Y ) =[J 2 X, Y ] − [J X, Y ] − J
(
[J 2 X, Y ] + [J X, JY ]

)

= − J · NJ (X, Y ).

	

Example 44. The Lie algebra denoted by h4 in [6] is not a direct sum of Lie algebras of
lower dimension. It has a basis e1, . . . , e6 for which the only non-zero commutators are
[e1, e2] = −e5 and [e1, e4] = [e2, e3] = −e6. We shall work with the dual 1-forms αi .
They are closed for i ≤ 4 and satisfy dα5 = α1 ∧ α2 and dα6 = α1 ∧ α4 + α2 ∧ α3. We
will abbreviate αi j = αi ∧ α j and αi jk = αi ∧ α j ∧ αk .

The 2-form ω = α13 + α26 + α45 on h4 is non-degenerate and since

dω = −α214 − α223 − α412 = 0

it is also closed and therefore symplectic.
The complementary subspaces

g+ := 〈e1, e2, e5〉, g− := 〈e3, e4, e6〉
of h4 are Lagrangian for ω. Moreover, since [e1, e2] = −e5, they are also integrable.
Therefore, (ω, g+, g−) is a Künneth structure.

The endomorphism J defined by

Je1 = −2e3, Je2 = −e4, Je3 = 1

2
e1, Je4 = e2, Je5 = e6, Je6 = −e5.

squares to −I d. To see that it is integrable, we compute

NJ (e1, e2) =[−2e3,−e4] − [e1, e2] − J ([−2e3, e2] + [e1,−e4])
=e5 + Je6 = 0 .

By Lemma 43 this implies that also NJ (e1, e4) = NJ (e2, e3) = NJ (e3, e4) = 0. More-
over, since NJ (e1, Je1) = 0 = NJ (e2, Je2), we find NJ (e1, e3) = 0 = NJ (e2, e4).
Furthermore, since brackets with e5 and e6 vanish in h4, the remaining components of
the Nijenhuis tensor vanish trivially.

We will now show that J is compatible with the Künneth structure (ω, g+, g−). The
subalgebras g± are clearly interchanged by J . It remains to show that ω is compatible
with J . For this, we observe that J acts on the dual basis as

J∗α1 = 1

2
α3, J∗α2 = α4, J∗α3 = −2α1, J∗α4 = −α2, J∗α5 = −α6, J∗α6 = α5.

It follows that

J ∗ω = −α31 + α45 + α26 = ω

and, hence, (ω, J ) is a compatible pair. We conclude that (ω, g+, g−) is a Künneth
structure compatible with the complex structure J and by the discussion in Sect. 3.3 this
defines an integrable Born structure.
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Example 45. The Lie algebra h9 in [6] is three step nilpotent and again, cannot be written
as a direct sum of Lie algebras of lower dimension. It has a basis e1, . . . , e6 for which
the only non-zero commutators are [e1, e2] = −e4, [e1, e4] = −e6 and [e2, e5] = −e6.
As before, we are working with the dual 1-forms αi which satisfy dαi = 0 for i ≤ 4,
dα5 = α12 and dα6 = α14 + α25.

The non-degenerate 2-form ω = α13 + 4α26 − 4α45 on h9 is closed:

dω = −4α214 − 4α223 + 4α412 = 0

and hence symplectic.
Moreover, the abelian subalgebras

g+ = 〈e1, e5, e6〉, g− = 〈e2, e3, e4〉
of h9 are Lagrangian for ω and therefore, (ω, g+, g−) is a Künneth structure.

Furthermore, we consider the endomorphism J of h9 defined by

Je1 = −e2, Je2 = e1, Je3 = −1

4
e6, Je4 = −e5, Je5 = e4, Je6 = 4e3.

Clearly, J 2 = − Id. Moreover, we find

NJ (e1, e3) =[−e2,−1

4
e6] − [e1, e3] − J

(
[−e2, e3] + [e1,−1

4
e6]

)
= 0

NJ (e1, e4) =[−e2,−e5] − [e1, e4] − J ([−e2, e4] + [e1,−e5])
= − e6 + e6 = 0

NJ (e3, e4) =[−1

4
e6,−e5] − [e3, e4] − J

(
[e3,−e5] + [−1

4
e6, e4]

)
= 0.

Using Lemma 43 it follows that the remaining components of the Nijenhuis tensor also
vanish and, hence, J is integrable.

The complex structure J clearly interchanges the subalgebras g±. To see that J is
compatible with ω we observe that

J∗α1 = α2, J∗α2 = −α1, J∗α3 = 4α6, J∗α4 = α5, J∗α5 = −α4, J∗α6 = −1

4
α3.

This yields

J ∗ω = 4α26 + α13 + 4α54 = ω.

Hence, the Künneth structure (ω, g+, g−) is compatible with the complex structure J
and following the discussion in Sect. 3.3 this defines an integrable Born structure on h9.
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