
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The Grothendieck computability model
Luis Gambarte a,∗, Iosif Petrakis b
aMathematisches Institut der Universität München, Theresienstr. 39, D-80333 München, Deutschland
bUniversità degli studi di Verona, Strada Le Grazie 15, 37134, Verona, Italia

a r t i c l e i n f o

Section Editor: Pinyan Lu
Handling Editor: Katie Harris
Keywords:
Higher-order computability
Computability models
Category theory
Grothendieck construction

 a b s t r a c t

Translating notions and results from category theory to the theory of computability models of
Longley and Normann, we introduce the Grothendieck computability model. We define the first-
projection-simulation and prove its basic properties. With the Grothendieck computability model,
the category of computability models is shown to be a type-category, in the sense of Pitts, a result
that bridges the categorical interpretation of dependent types with the theory of computability
models. We also show that the category of computability models is a category with 2-family
arrows and a corresponding structure of Sigma-objects. Finally, we introduce the notion of a
fibration and opfibration-simulation, and we prove that the first-projection-simulation is a split
opfibration-simulation.

1. Introduction

The important role of category theory in computability theory has been emphasised by Cockett and Hofstra in [1–3], who influ-
enced the work of Longley on computability models and simulations between them in [9–11]. The categorical notion of equivalence
between computability models studied by Longley and Normann in [12] allowed a better way to “identify” seemingly different com-
putability structures. By associating to a computability model 𝐂 its category of assemblies 𝑠𝑚(𝐂), Longley and Normann established
an equivalence of Morita-type between them. We can summarize the work of Longley and Normann by the phrase “from computability
models to categories”.

In the previous work [13–15] of the second author, the converse direction is followed, i.e., “from categories to computability
models”. Given a category  and a copresheaf 𝑆 on , i.e., a covariant presheaf on , the total computability model 𝐂𝐌𝑡𝑜𝑡(;𝑆) is
introduced, and if  is a category with pullbacks and 𝑆 preserves pullbacks, the partial computability model 𝐂𝐌𝑝𝑟𝑡(;𝑆) is studied.
In our work in progress [5] the notion of a computability model over a category  with a computability base, a notion close to
Rosolini’s concept of dominion in [19], and a pullback-preserving copresheaf on , is elaborated. In this way, both constructions,
that of 𝐂𝐌𝑡𝑜𝑡(;𝑆) and of 𝐂𝐌𝑝𝑟𝑡(;𝑆), are generalized. Strict computability models are very close to categories of sets and partial
functions, but avoiding the equality rules for composition of partial functions (as it is mentioned by Cockett in [1], p. 16, “program
equality itself is not well-understood”), they possess a more expressive power than categories. Consequently, simulations, the arrows
between computability models, avoid equality, too, involving certain forcing and tracking relations instead.

Working within the direction “from categories to computability models” in this paper, too, we “translate” the categorical
Grothendieck construction and the categorical notion of split (op)fibration to the partial and without equality, or relational frame-
work of computability models. The Grothendieck computability models then become the Sigma objects, in the sense of Pitts [18], in
the category of computability models. We structure this paper as follows.

∗ Corresponding author.
 E-mail addresses: gambarte@math.lmu.de (L. Gambarte), iosif.petrakis@univr.it (I. Petrakis).

https://doi.org/10.1016/j.tcs.2025.115550
Received 27 February 2025; Received in revised form 29 July 2025; Accepted 8 September 2025

Theoretical Computer Science 1057 (2025) 115550

Available online 12 September 2025
0304-3975/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/tcs
https://www.elsevier.com/locate/tcs

$\infty $

$\B C$

$\Assemblies (\B C)$

$\C C$

S

$\C C$

$\C C$

$\CM ^{\total }(\C C;S)$

$\C C$

S

$\CM ^{\prt }(\C C;S)$

$\C C$

$\C C$

$\CM ^{\total }(\C C;S)$

$\CM ^{\prt }(\C C;S)$

$\SetsB $

$\Grothendieck {\B C}{\pmb {\gamma }}$

$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$

$\big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big]$

$[\B C,\Sets]/\pmb {\gamma }$

$\pmb {\gamma } \colon \B C \simto \Sets $

$\Sigma $

$\Sigma $

$\Sigma $

$\CompMod $

$\Sigma $

$\CompMod $

2

$\Sigma $

$\CompMod $

$\Sigma $

$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$

$($

$)$

$\mathbf {C}$

T

$t \in T$

$\mathbf {C}(t)$

$s,t \in T$

$\mathbf {C}[s,t]$

$\mathbf {C}(s)$

$\mathbf {C}(t)$

$r, s, t\in T$

$1_{\mathbf {C}(t)}$

$\mathbf {C}[t,t]$

$f \in \mathbf {C}[r,s]$

$g \in \mathbf {C}[s,t]$

$g \circ f \in \mathbf {C}[r,t]$

$\SetsB $

$\Sets $

$\SetsB $

U

U

U, V

U

V

U

V

$(i,f) \colon a \rightharpoonup b$

$\C C$

$i \colon \dom (i) \to a$

$f \colon \dom (i) \to b$

$\C C$

$S \colon \C {C} \to \Sets $

$S(i,f)$

$\big (S(i),S(f)\big)$

$\C C$

$S \colon \C C \to \Sets $

$\C C$

$\CM ^{\total }(\C {C};S)$

$\C C$

S

$\C C_0$

$\C {C}$

$S(c)$

$c \in \C {C}_0$

$c_1, c_2 \in \C C_0$

$S(c_1)$

$S(c_2)$

$\{ S(f) ~\vert ~ f \in \Hom (c_1, c_2)\}$

$\CM ^{\prt }(\C {C};S)$

$\C C$

S

$\C C$

$S(c_1)$

$S(c_2)$

$\{ S(i,f) ~\vert ~ (i,f) \colon c_1 \rightharpoonup c_2\}$

S

$\CM ^{\prt }(\C {C};S)$

$\Sets ^{\prt }$

$\CM ^{\total }(\Sets ^{\prt }, \id _{\Sets ^{\prt }})$

$\SetsB $

$\CompMod $

$\pmb {\gamma }$

$\mathbf {C}$

$($

$T)$

$\mathbf {D}$

$($

$U)$

$\gamma \colon T \to U$

$\Vdash _t^\gamma \subseteq \B D\big (\gamma (t)\big) \times \B C(t)$

$t \in T$

$x \in \mathbf {C}(t)$

$y \in \B D(\gamma (t))$

$y \Vdash _t^\gamma x$

$f \in \mathbf {C}[s,t]$

$f' \in \mathbf {D}\big [\gamma (s),\gamma (t)\big]$

\begin {equation*}\forall _{x \in \mathbf {C}(s)} \forall _{y \in \mathbf {D}(\gamma (s))} \big (x \in \dom (f) \wedge y \Vdash _s^\gamma x \Rightarrow y \in \dom (f') \wedge f'(y) \Vdash _t^\gamma f(x)\big).\end {equation*}

f'

f

$f' \Vdash _{(s,t)}^\gamma f$

$\pmb {\gamma } \colon \mathbf {C \simto D}$

$\pmb {\gamma }$

$\mathbf {C}$

$\mathbf {D}$

$\pmb {\gamma } \colon \mathbf {C} \simto \SetsB $

$\B 1_{\B C} \colon \B C \simto \B C$

$\big (\id _T, (\Vdash ^{\B \iota _{\B C}}_{t})_{t \in T}\big)$

$x{'} \Vdash ^{\B \iota _{\B C}}_{t} x :\Leftrightarrow x{'} = x$

$x{'}, x \in \B C(t)$

$\pmb \delta \colon \B D \simto \B E$

$\pmb \delta \circ \pmb \gamma \colon \B C \simto \B E$

$\pmb \delta \circ \pmb \gamma = \pmb \delta {'} \circ \pmb \gamma {'}$

$\delta \circ \gamma = \delta {'} \circ \gamma {'}$

$\Vdash ^{\B \delta \circ \B \gamma }_t = \ \Vdash ^{\B \delta {'} \circ \B \gamma {'}}_t$

$t \in T$

$\big (\delta \circ \gamma , (\Vdash ^{\B \delta \circ \B \gamma }_t)_{t \in T}\big)$

$\Vdash ^{\B \delta \circ \B \gamma }_{t} \subseteq \B E\big (\delta (\gamma (t))\big) \times \B C(t)$

\begin {equation*}z \Vdash ^{\B \delta \circ \B \gamma }_{t} x :\Leftrightarrow \exists _{y \in \B D(\gamma (t))}\big (z \Vdash ^{\B \delta }_{\gamma (t)} y \ \wedge \ y \Vdash ^{\B \gamma }_{t} x\big).\end {equation*}

$\B C$

$\Hom (a, -)$

a

$\C C$

$\B C$

T

$\B C[s,t]$

$\B C(s)$

$\B C(t)$

$s, t \in T$

$t_0 \in T$

$\pmb {\gamma }_{t_0} \colon \mathbf {C} \simto \SetsB $

$\gamma _{t_0} \colon T \to \Sets $

$\gamma _{t_0}(t) := \B C[t_0, t]$

$t \in T$

$\Vdash _{t}^{\gamma _{t_0}} \subseteq \B C[t_0, t] \times \B C(t)$

\begin {equation*}f \Vdash _{t}^{\gamma _{t_0}} x : \Leftrightarrow \exists _{y \in \dom (f)}\big (f(y) = x\big).\end {equation*}

$\pmb {\gamma }_{t_0}$

$\B C$

\begin {equation*}\forall _{t \in T}\forall _{x \in \B C(t)}\exists _{f \in \B C[t_0, t]}\exists _{y \in \dom (f)}\big (f(y) = x\big).\end {equation*}

K_1

$T = \{0\}$

$\B C(0) = \D N$

$\B C[0, 0]$

$\D N$

$\D N$

$f \in \B C[s,t]$

$f^* \Vdash _{(s,t)}^{\gamma _{t_0}} f$

f^*

$\B C[t_0, s]$

$\B C[t_0, t]$

$f^*(g) := f \circ g$

$g \in \B C[t_0, s]$

$\B {\delta }_{t_0} \colon \B C \simto \SetsB $

${\delta }_{t_0} \colon \B C \to \Sets $

$\delta _{t_0}(t) := \B C[t, t_0]$

$t \in T$

$\B \gamma , \B \delta \colon \B C \simto \B D$

$\B \gamma $

$\B \delta $

$\B \gamma \preceq \B \delta $

$t \in T$

$f \in \B D[\gamma (t), \delta (t)]$

\begin {equation*}\forall _{x \in \B C(t)}\forall _{x{'}\in \B D(\gamma (t))}\big (x{'} \Vdash ^{\gamma }_{t}x \Rightarrow x{'} \in \dom (f) \ \wedge \ f(x{'}) \Vdash ^{\B \delta }_{t} x\big).\end {equation*}

$\C C$

$\B C$

$S \colon \C C \to \Sets $

$\pmb {\gamma }\colon \mathbf {C} \simto \SetsB $

$\mathbf {C}$

T

$\pmb {\gamma }\colon \mathbf {C} \simto \SetsB $

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}$

\begin {equation*}\Grothendieck {t \in T}{\pmb {\gamma }(t)} := \big \{(t,b) ~\vert ~ t \in T \hbox { and }b \in \gamma (t) \big \},\end {equation*}

$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$

\begin {equation*}\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(t,b) := \big \{y \in \mathbf {C}(t) ~\vert ~ b \Vdash _t^\gamma y\big \},\end {equation*}

$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(s,a)$

$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(t,b)$

\begin {equation*}\Big \{ f \in \mathbf {C}[s,t] ~\vert ~ \forall _{x \in \dom (f)}\Big (x \in \Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(s,a) \Rightarrow f(x) \in \Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(t,b)\Big)\Big \},\end {equation*}

$\pr _1 \colon \Grothendieck {t \in T}{\pmb {\gamma }(t)} \to T$

$(t,b) \mapsto t$

$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$

\begin {equation*}y{'} \Vdash _{(t,b)}^{\pr _1} y :\Leftrightarrow y{'} = y,\end {equation*}

$\prbold _1 \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \mathbf {C}$

$a \Vdash _s^\gamma x \Rightarrow b \Vdash _t^\gamma f(x)$

$x \in \dom (f)$

$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$

$\mathbf {C}(t)$

$1_{\mathbf {C}(t)}$

$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big)(t,b)$

$x \in \mathbf {C}(t)$

$b \Vdash _t^\gamma x \Rightarrow b \Vdash _t^\gamma x$

g

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(u,c)$

f

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$

$g \circ f$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(u,c)$

$x \in \dom (f)$

$f(x) \in \dom (g)$

$a \Vdash _s^\gamma x$

$b \Vdash _t^\gamma f(x)$

$c \Vdash _u^\gamma g(f(x))$

$\prbold _1$

$y \in \Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$

$x \Vdash _{(t,b)}^{\pr _1} x$

f

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$

$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$

$f \Vdash _{((s,a),(t,b))}^{\pr _1}f$

$\mathcal {C}$

$S \colon \mathcal {C} \to \Sets $

$\C C$

$\gamma ^S \colon \mathcal {C}_0 \simto \SetsB $

$\gamma ^S(c) = S(c)$

$\Vdash _c^{\gamma ^S}$

$\{\pr _2\} \colon \Grothendieck {\mathcal {C}}{S} \to \Sets $

$\{\pr _2\}(c,x) := \{x\}$

$f \colon (c,x) \to (d,y)$

$\Grothendieck {\mathcal {C}}{S}$

$[S(f)](x) := y$

\begin {equation*}\Grothendieck {\CM ^{\prt }(\mathcal {C};S)}{\pmb {\gamma }^S} = \CM ^{\prt }\Big (\Grothendieck {\mathcal {C}}{S};\{\pr _2\}\Big).\end {equation*}

$\B C \mapsto \Assemblies (\B C)$

$\B 1$

$\{\emptyset \}$

$\B 1(\emptyset) = \{\emptyset \}$

$\id _{\B 1} \colon \B 1 \simto \SetsB $

\begin {equation*}\Assemblies \bigg (\Grothendieck {\B 1}{\id _{\B 1}}\bigg) \neq \Grothendieck {\Assemblies {(\B 1)}}{\Assemblies (\id _{\B 1})}.\end {equation*}

$\pmb {\gamma } \colon \B C \simto \Sets $

\begin {equation*}\Big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \Big] \cong [\B C,\Sets]/\pmb {\gamma }.\end {equation*}

\begin {equation*}I \colon \Big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \Big] \to [\B C,\Sets]/\pmb {\gamma }.\end {equation*}

$[\B C, \Sets]/\pmb {\gamma }$

$\pmb {\delta } \colon \B C \simto \Sets $

$\pmb {\delta } \preceq \pmb {\gamma }$

$\pmb {\gamma } \colon \B C \simto \Sets $

$t \in T$

$\gamma (t)$

$\Vdash _t^\gamma $

$\gamma (t)$

$a \in \gamma (t)$

$a \Vdash _t^\gamma b$

$b \in \B C(t)$

$\B C(t)$

$\B C$

T

$\pmb {\gamma } \colon \B C \simto \Sets $

$I \colon \big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big] \to [\B C,\Sets]/\pmb {\gamma }$

$\pmb {\beta } \colon \Grothendieck {\B C}{\pmb {\gamma }} \simto \Sets $

$I(\pmb {\beta })$

$I(\beta) \colon T \to \Sets $

$t \in T$

\begin {equation*}I(\beta)(t) = \bigcup _{x \in \gamma (t)}\beta (t,x).\end {equation*}

$\Vdash _t^{I(\beta)} \subseteq \big (\bigcup _{x \in \gamma (t)}\beta (t,x)\big) \times \B C(t)$

$:$

\begin {equation*}a \Vdash _t^{I(\beta)} b :\Leftrightarrow \exists _{x \in \gamma (t)}\big (a \Vdash _{(t,x)}^\beta b\big).\end {equation*}

I

I

$\pmb {\beta } \in \big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big]$

$I(\pmb {\beta })$

$I(\pmb {\beta }) \preceq \pmb {\gamma }$

$I(\beta)(t)$

$t \in T$

$t\in T$

$x \in \gamma (t)$

$\bigcup _{x \in \gamma (t)} \beta (t,x)$

$b \in \B C(t)$

$\pmb {\gamma }$

$x \in \gamma (t)$

$x \Vdash _t^\gamma b$

$\pmb {\beta }$

$a \in \beta (t,x)$

$a \Vdash _{(t,x)}^\beta b$

$\Vdash _t^{I(\beta)}$

$a \Vdash _t^{I(\beta)} b$

$I(\pmb {\beta })$

$f \in \B C[t,t']$

f'

$f' \Vdash _{(t,t')}^{I(\beta)} f$

\begin {equation*}\forall x \in \dom (f) \forall y \in I(\beta)(t) : \big (y \Vdash _t^{I(\beta)} x \Rightarrow y \in \dom (f') \wedge f'(y) \Vdash _{t'}^{I(\beta)} f(x)\big).\end {equation*}

x

y

$y \Vdash _t^{I(\beta)} x$

$r \in \gamma (t)$

$y \Vdash _{(t,r)}^{\beta } x$

$r \Vdash _t^\gamma x$

x

$\big (\Grothendieck {\B C}{\pmb \gamma }\big)(t,r)$

$\pmb {\gamma }$

$\tilde {f} \colon \gamma (t) \to \gamma (t')$

$\tilde f \Vdash _{(t,t')}^\gamma f$

$\tilde f(r) \Vdash _{t'}^\gamma f(x)$

\begin {equation*}f \in \Big (\Grothendieck {\B C}{\pmb \gamma }\Big)\Big [\big (t,r\big),\big (t',\tilde f(r)\big)\Big],\end {equation*}

z

$r \Vdash _t^\gamma z$

$\tilde f(r) \Vdash _{t'}^\gamma f(z)$

$\tilde f$

$\pmb \beta $

$\hat f \colon \beta (t,r) \to \beta \big (t',\tilde f(r)\big)$

$\hat f \Vdash _{((t,r),(t',\tilde f(r)))}^\beta f$

$\hat f(y) \Vdash _{t'}^\beta f(x)$

f'

$\beta (t,r)$

$\bigcup _{r \in \gamma (t)} \beta (t,r)$

$\hat f$

f'

$I(\pmb \beta) \preceq \pmb \gamma $

$t \in T$

$g_t \colon I(\beta)(t) \to \gamma (t)$

$y \Vdash _t^{I(\beta)} x$

$g_t(y) \Vdash _t^\gamma x$

g_t

$\beta (t,r)$

$I(\beta)(t) = \bigcup _{r \in \gamma (t)}\beta (t,r)$

$\beta (t,r)$

$g_t(y) = r$

$y \Vdash _t^{I(\beta)} x$

$y \Vdash _{(t,r)}^\beta x$

$r \Vdash _t^\gamma x$

$x \in \big (\Grothendieck {\B C}{\pmb \gamma }\big)(t,r)$

I

$\pmb \alpha \preceq \pmb \beta $

$I(\pmb \alpha) \preceq I(\pmb \beta)$

$(t,r) \in \Grothendieck {\B C}{T}$

$g_{(t,r)} \colon \alpha (t,r) \to \beta (t,r)$

$y \Vdash _{(t,r)}^\alpha x$

$g_{(t,r)}(y) \Vdash _{(t,r)}^\beta x$

$I(\beta)(t)$

g_t

$\beta (t,r)$

$g_t(y) := g_{(t,r)}(y)$

$y \in \alpha (t,r)$

g_t

$I(\pmb \alpha) \preceq I(\pmb \beta)$

$I(\pmb \alpha) \preceq I(\pmb \beta) \Rightarrow \pmb \alpha \preceq \pmb \beta $

$g_{(t,r)}(y) := g_t(y)$

$g_{(t,r)}, g_t$

$\pmb \beta \colon \B C \simto \Sets $

$\pmb \beta \preceq \pmb \gamma $

$I(\pmb \alpha)$

$\pmb \alpha \colon \Grothendieck {\B C}{\pmb \gamma }\rightarrowtriangle \Sets $

$\pmb \beta $

$(t,r) \in \Grothendieck {\B C}{T}$

$\alpha (t,r) := \beta (t)$

$x \Vdash _{(t,r)}^\alpha a :\Leftrightarrow x \Vdash _t^\beta a.$

$\pmb \alpha $

$\alpha \colon \Grothendieck {\B C}{T} \to \Sets $

$\Vdash _{(t,r)}^\alpha $

$a \in \big (\Grothendieck {\B C}{\pmb \gamma }\big)(t,r)$

$x \in \alpha (t,r)$

$x \Vdash _{(t,r)}^\alpha a$

$x\in \beta (t) = \alpha (t,r)$

$x \Vdash _t^\beta a$

$f' \Vdash _{((t,r),(t',r'))}^\alpha f$

$f' \Vdash _{(t,t')}^\beta f$

$\pmb \alpha $

$I(\pmb \alpha) = \pmb \beta $

$\bigcup _{r \in \gamma (t)}\alpha (t,r) = \bigcup _{r \in \gamma (t)}\beta (t) = \beta (t)$

\begin {equation*}x \Vdash _t^{I(\alpha)} a \Leftrightarrow \exists _r x \Vdash _{(t,r)}^\alpha a \Leftrightarrow \exists _r x\Vdash _t^\beta a \Leftrightarrow x \Vdash _t^\beta a.\end {equation*}

I

$I(\pmb \alpha) = \pmb \beta $

$I(\pmb \alpha) \sim \pmb \beta $

$\Sigma $

$\Sigma $

$\C C$

$\fHom (c)$

c

$\C C$

$\lambda , \delta ,\ldots $

c

$c,d \in \C C$

$\circ \colon \fHom (d) \times \Hom (c,d) \to \fHom (c), (\lambda ,f) \mapsto \lambda \circ f$

(F_1)

$c \in \C C$

$\lambda \in \fHom (c)$

$\lambda \circ 1_c = \lambda $

(F_2)

$c,d,e \in \C C$

$\lambda \in \fHom (e), g \in \Hom (d,e),f \in \Hom (c,d)$

$\lambda \circ (g \circ f) = (\lambda \circ g) \circ f$

$\fHom (c) = \C C_0$

$c \in \C C$

$c \circ f = c$

c

f

$\C C$

$\Cat $

$\fHom (\C C) = \Fun (\C C\opp , \Sets)$

$\C C$

(\top , Ω)

$a \in \C C$

\begin {equation*}\fHom (a) := \bigcup _{b \in \C C}\Hom (a \times b, \Omega).\end {equation*}

$\big ((b,e),g) \mapsto \big (b,e \times (g \times 1_b)\big)$

A

$\C U$

A

$P \colon A \to \C U$

$\CompMod $

$\fHom (\B C)$

$\pmb \gamma \colon \B C \simto \SetsB $

$\C C$

$\Sigma $

$\Sigma $

$a, b \in \C C$

$\lambda \in \fHom (a)$

$f \in \Hom (b,a)$

$\Sigma $

$\sum _a \lambda \in \C C$

$\pr _1^{a, \lambda } \in \Hom \big (\sum _a \lambda , a\big)$

$\Sigma _{\lambda }f \in \Hom \big (\sum _b (\lambda \circ f), \sum _a \lambda \big)$

$(\Sigma _1)$

$\Sigma _{\lambda }1_a = 1_{{ \sum _a \lambda }}$

$(\Sigma _2)$

$\ \Sigma _{\lambda }(f \circ g) = \big (\Sigma _{\lambda }f\big) \circ \Sigma _{(\lambda \circ f)}g$

$f \in \Hom (b, a)$

$g \in \Hom (c, b)$

$\Sigma)$

$\Sigma $

$\Sigma)$

$\C C$

$\fHom (c) = \C C_0$

$c \in \C C$

$\Grothendieck {c}{d} := c$

$\pr _1^{c,d} = 1_c$

$\Cat $

$P \in \fHom (\C C) = \Fun (\C C\opp ,\Sets)$

$\Sigma $

P

$\Grothendieck {\C C}{P}$

$\Sigma $

$\Sigma $

$\C U$

A

$\C U$

$P \colon A \to \C U$

$\sum _{x \colon A}P(x)$

$\Sigma)$

$\C C$

$\di $

a

$\C C$

$\lambda \in \fHom (a)$

$\dHom (a, \lambda)$

(a, λ)

$\dHom (a, \lambda)$

$\Phi , \Psi $

a

$\lambda $

$\Phi \in \dHom (a, \lambda)$

$a, b \in \C C$

$\lambda \colon \fHom (a)$

$\left (\circ _f \colon \dHom (a, \lambda) \to \dHom (b, \lambda \circ f)\right)_{f \in \Hom (b,a)}$

$\dHom (a, \lambda) \ni \Phi \mapsto \Phi \circ f \in \dHom (b, \lambda \circ f)$

$\circ $

$\circ _f$

$\C C$

(fam, Σ)

$a \in \C C$

$\lambda \in \dHom (a)$

$\lambda $

\begin {equation*}\Di _{a}\lambda := \bigg \{\phi \in \Hom \bigg (a, \sum _a \lambda \bigg) \mid \pr _1^{a, \lambda } \circ \phi = 1_a\bigg \}\end {equation*}

$\dHom (a, \lambda) := \Di _a \lambda $

$\C C$

$\di $

$\phi \in \Di _{a}\lambda $

$f \in \Hom (b, a)$

$\phi (f) \in \Di _{b}(\lambda \circ f)$

$\pr _1^{a, \lambda } \circ (\phi \circ f) = (\pr _1^{a, \lambda } \circ \phi) = 1_a \circ f = f = f \circ 1_b$

$\phi (f) \in \Hom \big (b, \sum _b (\lambda \circ f)\big)$

$\CompMod $

$\CompMod $

$($

$\Sigma)$

$\pmb \gamma \colon \B C \simto \SetsB $

$\Grothendieck {\B C}{\pmb \gamma }$

$\pr _1^{\B C,\pmb \gamma }$

$\B D \in \CompMod $

$\pmb \gamma \colon \B {C \simto D}$

$\Grothendieck {\pmb \delta }{\pmb \gamma } \colon \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma } \simto \Grothendieck {\B D}{\pmb \delta }$

$\Grothendieck {{\delta }}{{\gamma }} \colon \Grothendieck {t \in T}{\pmb {\gamma }(t)} \to \Grothendieck {u \in U}{\pmb {\delta }(u)}$

$(t,b) \mapsto \big (\gamma (t), b)$

$x' \Vdash _{(t,b)}^{\Grothendieck {{\delta }}{{\gamma }}} x :\Leftrightarrow x' \Vdash _t^\gamma x.$

$\Grothendieck {\pmb {\delta }}{\pmb {\gamma }}$

$\pr _1\big (\Grothendieck {{\delta }}{{\gamma }}(t,b)\big) = \pr _1\big (\gamma (t)\big) = \gamma \big (\pr _1(t,b)\big)$

$x' \Vdash _{(t,b)}^{\pr _1 \circ \Grothendieck {{\delta }}{{\gamma }}} x$

$x' \Vdash _{(t,b)}^{\Grothendieck {{\delta }}{{\gamma }}} x$

$x' \Vdash _t^{\gamma } x$

$x'\Vdash _{(t,b)}^{\gamma \circ \pr _1} x$

$\mathbf {E} \in \CompMod $

V

$\pmb {\alpha },\pmb {\beta }$

\begin {equation}\begin {imageonly} \centerline {\includegraphics {fx13}} \end {imageonly} \label {PullbackGroth::eq::1}\end {equation}

$\pmb {\zeta } \colon \mathbf {E} \simto \Grothendieck {\mathbf {C}}{(\pmb {\delta } \circ \pmb {\gamma })}$

\begin {equation}\begin {imageonly} \centerline {\includegraphics {fx14}} \end {imageonly} \label {PullbackGroth::eq::2}\end {equation}

$\zeta $

$v \in V$

$\zeta (v) = \big (\alpha (v), c\big)$

$c \in \delta (\gamma (v))$

c

$\beta (v) = (u,c)$

u

$\zeta $

\begin {equation*}x' \Vdash _v^{\zeta } x :\Leftrightarrow x' \Vdash _v^\alpha x.\end {equation*}

$x' \Vdash _v^\alpha x$

$x' \in \big (\Grothendieck {\B C}{(\pmb \delta \circ \pmb \gamma)}\big)(u,c)$

$b \Vdash _{\alpha (v)}^{\delta \circ \gamma } x'$

x'

$\pmb \gamma $

$z \in \B D\big (\gamma (\alpha (v))\big)$

$z \Vdash _{\alpha (v)}^\gamma x'$

$z \Vdash _v^{\gamma \circ \alpha } x$

$z \Vdash _v^{\prbold _1^{\B D,\pmb \delta } \circ \beta } x$

$y \in (\Grothendieck {\B D}{\pmb \delta }\big)(u,c)$

$\beta (v) = (u,c)$

$z \Vdash _{(u,c)}^{\prbold _1^{\B D,\pmb \delta }} y \Vdash _v^\beta x.$

$\prbold _1^{\B D,\pmb \delta }$

$y = z$

$z \in \big (\Grothendieck {\B D}{\pmb \delta }\big)(u,c)$

$c \Vdash _u^\delta z$

$b \Vdash _u^\delta z \Vdash _{\alpha (v)}^\gamma x' \Vdash _v^\alpha x$

$b \Vdash _{\alpha (v)}^{\delta \circ \gamma } x'$

$f \in \B E[v,v']$

$f' \in \B C\big [\alpha (v),\alpha (v')\big]$

$f' \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big [(\alpha (v),c),(\alpha (v'),c')\big]$

f''

f'

$\pmb \gamma $

f''

f

$\pmb \gamma \circ \pmb \alpha $

$\prbold _1^{\B D, \pmb \delta } \circ \pmb \beta $

f''

f

$\pmb \beta $

$x \in \B E(v)$

$z \in \B D(u)$

$z \Vdash _v^{\beta } x$

$c \Vdash _{u}^\delta z$

$z \Vdash _{(u,c)}^{\prbold _1^{\B D,\pmb \delta }} z$

$f''(z) \Vdash _{u'}^{\prbold _1^{\B D,\pmb \delta } \circ \beta } f(x)$

$\prbold _1^{\B D,\pmb \delta }$

$f''(z) \Vdash _{(u',c')}^\beta f(x)$

f''

f

$\beta $

$y \in \big (\Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big)(\alpha (v),c)$

$z \in \B D(u)$

$z \Vdash _u^\gamma y$

$c \Vdash _{\gamma (u)}^\delta z$

$f''(z) \Vdash _{u'} f'(y)$

$f''(z) \in \Grothendieck {\B D}{\pmb \delta }$

$f'(y) \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }$

$f' \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big [(\alpha (v),c),(\alpha (v'),c')\big]$

$\pmb \zeta $

$v \in V$

$x'' \in \mathbf {E}(v), x' \in \Big (\Grothendieck {\mathbf {D}}{\pmb {\delta }}\Big)\big (\beta (v)\big)$

$x \in \mathbf {C}\big (\alpha (v)\big)$

\begin {equation*}x' \Vdash _v^{\beta } x'' \hbox { and } x \Vdash _v^\alpha x''.\end {equation*}

y_1,y_2

\begin {equation*}x' \Vdash _{\zeta (v)}^{\Grothendieck {{\delta }}{{\gamma }}} y_1 \hbox { and } y_1 \Vdash _v^\zeta x'', \hbox { and } x \Vdash _{\zeta (v)}^{\pr _1} y_2 \hbox { and } y_2 \Vdash _v^{\zeta } x''.\end {equation*}

$x' \Vdash _{(\Grothendieck {{\delta }}{{\gamma }})(\zeta (v))}^{\pr _1} x'$

$x'\Vdash _v^\beta x''$

$x' \Vdash _v^{\gamma \circ \alpha } x''$

y

$x' \Vdash _{\alpha (v)}^\gamma y$

$y \Vdash _v^\alpha x''$

$\Grothendieck {{\delta }}{{\gamma }}$

$x'\Vdash _{\alpha (v)}^{\Grothendieck {{\delta }}{{\gamma }}} y$

y

y_1

y_2

x

$\pmb {\zeta }$

$(\Sigma _1)$

$\Grothendieck {\pmb {\epsilon }}{\B 1_{\B E}}$

(t,u)

$(\mathbf {1}_{\mathbf {E}}(t),u) = (t,u)$

$\Sigma _2$

\begin {equation*}\Grothendieck {\pmb \epsilon }{(\pmb \delta \circ \pmb \gamma)}(t,b) = \big (t, (\delta \circ \gamma)(b)\big)= \Grothendieck {\pmb \epsilon }{\pmb \delta }\big (t,\gamma (b)\big) = \Grothendieck {\pmb \epsilon }{\pmb \delta }\Big (\Big (\Grothendieck {\pmb {\epsilon }\circ \pmb \delta }{\pmb \gamma }\Big)(t,b)\Big).\end {equation*}

$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta \circ \gamma }} y$

$x \Vdash _t^{\delta \circ \gamma } y$

$dash_{(t,b)}^{\sum _{\epsilon }{\delta }} y$

$x \Vdash _t^{\delta } y$

$x \Vdash _{(t,b)}^{\sum _{\epsilon \circ \delta }{ \gamma }} y$

$x \Vdash _t^{\gamma } y$

$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta } \circ \sum _{\epsilon \circ \delta }\gamma } y$

$x \Vdash _t^{\delta \circ \gamma }z$

$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta \circ \gamma }} z$

$\CompMod $

$\CompMod $

$\CompMod $

$\B C$

$\pmb {\gamma } \colon \B C \simto \Sets $

$\pmb {\phi } \colon \B C \simto \Grothendieck {\B C}{\pmb \gamma }$

$\pmb \pr _1^{\B C, \pmb {\gamma }} \circ \pmb {\phi } = \B 1_{\B C}$

$\Sigma $

$\C U$

$P, Q \colon A \to \C U$

A

$\C U$

P

Q

\begin {equation*}H \colon \prod _{x \colon A}\big (P(x) \to Q(x)\big).\end {equation*}

$\C C$

$c \in \C C$

$\fHom (c)$

$\eta \in \Hom (\lambda , \mu)$

$c,c' \in \C C,\lambda ,\mu \in \fHom (c')$

$\bullet _{c,c'}$

$\eta \in \Hom (\lambda ,\mu)$

$f \colon c \to c'$

$\eta \bullet _{c,c'} f \in \Hom (\lambda \circ f, \mu \circ f)$

$c,c',c'' \in \C C$

$\lambda ,\mu \in \fHom (c'')$

$\eta \in \Hom (\lambda ,\mu)$

$f \in \Hom (c,c'), g \in \Hom (c',c'')$

$c,c' \in \C C$

$\lambda ,\delta ,\gamma \in \fHom (c')$

$\eta \in \Hom (\delta ,\gamma), \eta ' \in \Hom (\gamma ,\lambda)$

$f \in \Hom (c,c')$

$\bullet _{c,c'}$

$\bullet $

$\bullet $

M

$\C C$

$\C C$

$\Hom (\lambda , \mu) := M$

$\lambda ,\mu \in \fHom (c)$

$c \in \C C_0$

$\bullet $

$m \bullet f := m$

$\S $

$\Sigma $

$\C C$

$\Sigma $

$\Sigma $

$c \in \C C$

$\lambda ,\mu \in \fHom (c)$

$\eta \in \Hom (\lambda ,\mu)$

\begin {equation*}\sum _{\lambda ,\mu } \eta \colon \sum _{c} \lambda \to \sum _{c} \mu ,\end {equation*}

\begin {equation*}\sum _{\lambda ,\lambda } 1_\lambda = 1_{\sum _{c} \lambda } \qquad \hbox {and}\qquad \sum _{\lambda ,\mu } \eta \circ \sum _{\nu ,\lambda } \eta ' = \sum _{\nu ,\mu } (\eta \circ \eta ').\end {equation*}

$\Sigma $

$\S $

$\S $

$\CompMod $

$\Sigma $

$\CompMod $

$\B C \in \CompMod $

U

$\fHom (\B C)$

$\pmb \gamma \colon \B C \simto \SetsB $

\begin {equation*}\bbmu = (\mu _t)_{t \in T} \colon \pmb \gamma \Rightarrow \pmb \delta ,\end {equation*}

$\mu _t \colon \gamma (t) \rightharpoonup \delta (t)$

$c \in \B C(t)$

$d \in \gamma (t)$

$d \Vdash _t^\gamma c \Rightarrow \mu _t(d) \Vdash _t^\delta c$

$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $

$\bbnu \colon \pmb \delta \Rightarrow \pmb \lambda $

$\bbnu \circ \bbmu $

$(\nu _t \circ \mu _t)_{t \in T}$

\begin {equation*}d \Vdash _t^\gamma c \Rightarrow \mu _t(d) \Vdash _t^\delta c \Rightarrow \nu _t\big (\mu _t(d)\big) \Vdash _t c.\end {equation*}

$\pmb \gamma \in \fHom (\B C)$

$\B 1_{\B C(t)} \in \B C [\gamma (t),\gamma (t)]$

$\B C$

$\fHom (\B C)$

$\bullet _{\B C,\B D}$

$\B C, \B D \in \CompMod $

$\bbmu = (\mu _u)_{u \in U}$

$\pmb \gamma \colon \B C \simto \B D$

$\bbmu \bullet _{\B C, \B D} \pmb \gamma := (\mu _{\gamma (t)})_{t \in T}.$

\begin {align*}(\bbnu \circ \bbmu) \bullet \pmb \lambda &= (\nu _u \circ \mu _u)_{u \in U} \bullet \pmb \lambda = (\nu _{\lambda (t)} \circ \mu _{\lambda (t)})_{t\in T} \\ &= (\nu _{\lambda (t)})_{t\in T} \circ (\mu _{\lambda (t)})_{t\in T} = (\bbnu \bullet \pmb \lambda) \circ (\bbmu \bullet \pmb \lambda).\qedhere \end {align*}

$\pmb \gamma \colon \B C \simto \B D$

$\B C(t) = \B D(\gamma (t))$

$t \in T$

$\Vdash _t^\gamma $

$\B C(t)$

$\Grothendieck {\pmb \delta }{\pmb \gamma }$

$\Grothendieck {\pmb \gamma ,\pmb \delta }{\bbmu }$

$\CompMod $

$($

$\Sigma $

$)$

$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $

$\pmb \gamma , \pmb \delta \colon \B C \simto \SetsB $

$\sum _{\pmb \gamma ,\pmb \delta } \bbmu $

$(t,b) \mapsto (t,\mu _t(b))$

\begin {equation*}\Vdash _{(t,b)}^{\sum _{\gamma ,\delta }} = \Big \{(x,x) ~\Big \vert ~ x \in \Big (\sum _c \pmb \lambda \Big) (t,b)\Big \}.\end {equation*}

\begin {align*}x \in \Big (\sum _\B C \pmb \gamma \Big)(t,b) &\Leftrightarrow b \Vdash _t^\gamma x \Rightarrow \mu _t(b) \Vdash _t^\delta x \\ &\Rightarrow x \in \Big (\sum _\B C \pmb \delta \Big)\big (t,\mu _t(b)\big) \Rightarrow x \in \Big (\sum _\B C \pmb \delta \Big)\big (\textstyle \sum _{\pmb \lambda ,\pmb \delta } \bbmu (t,b)\big).\end {align*}

$\pmb \alpha \colon \B C \simto \B D$

$\B C$

T

$\B D$

U

$\pmb \gamma , \pmb \delta \colon \B D \simto \SetsB $

$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $

\begin {align*}\sum _{\pmb \gamma ,\pmb \delta }\bbmu \circ \sum _{\pmb \gamma }\pmb \alpha &= \sum _{\pmb \delta } \pmb \alpha \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha , \\ \prbold _1 &= \prbold _1 \circ \sum _{\pmb \gamma ,\pmb \delta }\bbmu ,\\ \prbold _1 &= \prbold _1 \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha .\end {align*}

\begin {align*}\Big (\sum _{\pmb \gamma ,\pmb \delta }\bbmu \circ \sum _{\pmb \gamma }\pmb \alpha \Big)(t,b) &= \sum _{\pmb \gamma ,\pmb \delta }\bbmu (\gamma (t),b) = (\alpha (t), \mu _{\alpha (t)}(b)) \\ &= \sum _{\pmb \delta }\pmb \alpha (t,\mu _{\alpha (t)}(b)) = \Big (\sum _{\pmb \delta } \pmb \alpha \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha \Big)(t,b)\end {align*}

\begin {equation*}\prbold _1(t,b) = t = \prbold _1(t,\mu _{\alpha (t)}(b)) = \prbold _1 \circ \Big (\sum _{\pmb \gamma ,\pmb \delta }\bbmu \bullet \pmb \alpha \Big)(t,b),\end {equation*}

\begin {equation*}\prbold _1(u,b) = u = \prbold _1(u,\mu _{u}(b)) = \prbold _1 \circ \sum _{\pmb \gamma ,\pmb \delta }\bbmu (u,b).\end {equation*}

$\Sigma)$

$\CompMod $

$\pr _1 \colon \Grothendieck {\C C}{P} \to \C C$

P

P

$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$

$\B E$

T

$\B B$

U

\begin {equation*}\pmb {\varpi } := \bigg (\varpi \colon T \to U, \ \left (\Vdash ^{\varpi }_t\right)_{t \in T}\bigg)\end {equation*}

$\B E \simto \B B$

$\pmb {\gamma } \colon \mathbf {E \rightarrowtriangle B}$

f

$\mathbf {E}$

f'

$\mathbf {B}$

f'

f

g'

g

$f' \in \B B[s,s']$

$t' \in T$

$\varpi (t') = s'$

$f \in \mathbf {E}[t,t']$

f'

t'

$f' \Vdash _{(t,t')}^{\varpi } f$

$g \in \mathbf {E}[t'',t'], g' \in \B B[\varpi (t''),\varpi (t')]$

$h \in \mathbf {B}[\varpi (t''), \varpi (t)]$

g'

g

$k \in \mathbf {E}[t'',t]$

$h \Vdash _{(t'',t)}^\varpi k$

$x \in \B E(t''), y \in \mathbf {B}(\varpi (t''))$

$y \Vdash _{t''}^\varpi x$

$y \in \dom (f' \circ h) \cap \dom (g'),$

$f'(h(y)) = g'(y)$

$x \in \dom (f \circ k) \cap \dom (g)$

$g(x) = f(k(x))$

$f' \in \B B[s',s]$

$t' \in T$

$\varpi (t') = s'$

$f \in \mathbf {E}[t',t]$

f'

t'

$f' \Vdash _{(t',t')}^\varpi f$

$g \in \mathbf {E}[t',t''],g' \in \B B[\varpi (t'),\varpi (t'')]$

$h \in \mathbf {B}[\varpi (t),\varpi (t'')]$

g'

g

$l \in \mathbf {E}[t,t'']$

h

l

$x \in \mathbf {E}(t'),y \in \mathbf {B}(\varpi (t'))$

$y \Vdash _{t'}^\varpi x$

$y \in \dom (h \circ f') \cap \dom (g')$

$f'(h(y)) = g'(y)$

$x \in \dom (l \circ f) \cap \dom (g)$

$g(x) = l(f(x))$

$k \in \mathbf {E}[t'',t]$

$l \in \mathbf {E}[t, t'']$

$\pmb {\varpi } \colon \mathbf {E \rightarrowtriangle B}$

$f \in \mathbf {B}\big [u, \varpi (t)\big]$

$g \in \mathbf {E}[t',t]$

f

t

g

f

$\pmb {\varpi } \colon \mathbf {E \to B}$

$f \in \mathbf {B}\big [\varpi (t),u\big]$

$g \in \mathbf {E}[t,t']$

f

t

g

f

$\mathcal {E,B}$

S,S'

$F \colon \mathcal {E \to B}$

$S' \circ F = S$

$\pmb {\gamma }^F \colon \CM ^{\total }(\mathcal {E};S) \simto \CM ^{\total }(\mathcal {B};S')$

$\CM ^{\total }(\mathcal {B};S')$

$S'(f) \colon S'(b) \to S'(b')$

$e \in \mathcal {E}$

$F(e') = b'$

F

$g \colon e \to e'$

f

b'

$S(g)$

$S'(f)$

$S(b')$

$S(h),S(h_2),S(g_2)$

$\CM ^{\prt }(\mathcal {E};S)(e) = S(e)$

$\CM ^{\prt }(\mathcal {B};S')(b) = S(b)$

e

b

g

f

b'

$k \colon e'' \to e$

$g \circ k = g_2$

$F(k) = h_2$

$S(k)$

$S(g)$

$S'(f)$

$S(b')$

$\mathbf {C} \in \CompMod $

$\gamma \colon \mathbf {C} \simto \SetsB $

$\prbold _1 \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \mathbf {C}$

$f \in \mathbf {C}[t,t']$

$\pr _1(t,b) = t$

$b \in \mathbf {C}(t')$

$\pr _1(t',b') = t'$

$f' \in \Big (\Grothendieck {\mathbf {C}}{\pmb \gamma }\Big)\big [(t,b),(t',b')\big]$

$f \Vdash _{((t,b),(t',b'))}^{\pr _1} f'$

$f \Vdash _{((t,b),(t',b'))}^{\pr _1} f'$

$f = f'$

$y \in \mathbf {C}(t')$

$f(b) = b'$

$b' := f(b)$

f

f

b

h

$f = h \circ g$

$f(b) = h\big (g(b)\big)$

$b' = h(b'')$

h

$\Big (\Grothendieck {\B C}{\pmb \gamma }\Big)(t'',b'')$

$\Big (\Grothendieck {\B C}{\pmb \gamma }\Big)(t',b')$

$\pmb {\varpi } \colon \mathbf {E \simto B}$

$\varpi ^\triangle $

(f,u)

$f\in \mathbf {B}[t_1,t_2]$

$\varpi (u) = t_2$

$f' \in \mathbf {E}[u,u']$

f

u

(S_1)

$f \in \mathbf {B}[t_1,t_2]$

$g \in \mathbf {B}[t_2,t_3]$

\begin {equation*}\varpi ^\triangle (g \circ f, u_1) = \varpi ^\triangle (g,u_1) \circ \varpi ^\triangle (f,u_2).\end {equation*}

(S_2)

$t \in T$

$\varpi ^\triangle (1_{\mathbf {B}(t)},u) = (1_{\mathbf {E}(u)},u)$

$\pmb {\varpi } \colon \mathbf {E \simto B}$

$\varpi ^\triangle $

(f,u)

$f\in \mathbf {B}[t_1,t_2]$

$\varpi (u) = t_1$

$f' \in \mathbf {E}[u,u']$

f

u

$(S_1{'})$

$f \in \mathbf {B}[t_1,t_2]$

$g \in \mathbf {B}[t_2,t_3]$

\begin {equation*}\varpi ^\triangle (g \circ f, u_1) = \varpi ^\triangle (g,u_2) \circ \varpi ^\triangle (f,u_1).\end {equation*}

$(S_2{'})$

$t \in T$

$\varpi ^\triangle (1_{\mathbf {B}(t)},u) = (1_{\mathbf {E}(u)},u)$

$($

$)$

$\pmb {\varpi }$

$\varpi ^\triangle $

$\prbold _1 \colon \Grothendieck {\B C}{\pmb \gamma } \simto \mathbf {C}$

$\prbold _1^\triangle $

$\prbold _1^\triangle (f,u) := f$

\begin {equation*}\pr _1 \colon \Grothendieck {\C C}{P} \to \C C\end {equation*}

\begin {equation*}\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C\end {equation*}

2

2

$\CompMod $

$\Sigma $

$\Sigma $

$\CompMod $

$\C C$

$\C C$

$\S 5$

$\B C \in \CompMod $

$\pmb {\gamma } \colon \B C \simto \Sets $

\begin {equation*}\B {\prbold }_2^{\B C, \pmb {\gamma }} \colon \Grothendieck {\B C}{\pmb \gamma } \simto \sum _{\sum _{\B C}\pmb {\gamma }} \big (\pmb {\gamma } \circ {\prbold }_1^{\B C, \pmb {\gamma }}\big)\end {equation*}

$\Grothendieck {\B C}{\pmb \gamma }$

$\pmb \gamma \circ \prbold _1^{\B C, \pmb \gamma }$

$\Th $

$\Th $

$\CompMod $

$\CompMod $

mailto:gambarte@math.lmu.de
mailto:iosif.petrakis@univr.it
https://doi.org/10.1016/j.tcs.2025.115550
https://doi.org/10.1016/j.tcs.2025.115550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115550&domain=pdf
http://creativecommons.org/licenses/by/4.0/

L. Gambarte and I. Petrakis

• In Section 2, we include all basic definitions within the theory of computability models necessary to the rest of this paper. Crucial to
the definition of the Grothendieck model is our introduction of the computability model 𝐒𝐞𝐭𝐬, the computability model counterpart
to the category of sets and functions (Definition 2). The introduced representable simulations correspond to the representable
presheaves (Example 1).

• In Section 3, we define the Grothendieck computability model ∑𝐂 𝛾𝛾𝛾 and the first-projection-simulation 𝗉𝗋𝟏 ∶
∑

𝐂 𝛾𝛾𝛾 ⇾ 𝐂 (Proposi-
tion 1). We prove basic properties of the Grothendieck computability model, such as the existence of a full, faithful, and essentially
surjective functor from the category of simulations [∑𝐂 𝛾𝛾𝛾, 𝖲𝖾𝗍𝗌

] to the slice category [𝐂, 𝖲𝖾𝗍𝗌]∕𝛾𝛾𝛾, where 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 is a simulation
(Proposition 3).

• In Section 4, and following [16,17], we define categories with family arrows and Sigma objects, or (fam, Σ)-categories. The
type-categories of Pitts in [18] are (fam, Σ)-categories with a terminal object. Every (fam, Σ)-category has dependent arrows
(Theorem 1), a new categorical formulation of Martin-Löf’s notion of dependent function.

• In Section 5, we show that the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a (fam, Σ)-category (Theorem 2), and a type-category (Corollary 1). With
these results, the categorical semantics of dependent type theory are connected with the theory of computability models. For
example, due to Theorem 1, the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has dependent arrows (Corollary 2).

• In Section 6, and following [4], we define categories with 2-family arrows and the corresponding Sigma-objects, or (2-fam, Σ)-
categories.

• In Section 7, we show that the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a (2-fam, Σ)-category (Proposition 4).
• In Section 8, we introduce (split) fibrations and opfibration-simulations, and show that the first-projection-simulation 𝗉𝗋𝟏 ∶

∑

𝐂 𝛾𝛾𝛾 ⇾
𝐂 is a (split) opfibration-simulation (Proposition 5 and Corollary 3).

For all notions and results from category theory that are used here without explanation or proof we refer to [21]. For various examples
of computability models and simulations from higher-order computability theory we refer to [12]. This paper is an extension1 of [6].

2. Basic definitions

Definition 1. A (strict) computability model 𝐂 consists of the following data: a class 𝑇 , whose members are called type names; for each
𝑡 ∈ 𝑇 a set 𝐂(𝑡) of data types; for each 𝑠, 𝑡 ∈ 𝑇 a class 𝐂[𝑠, 𝑡] of computable functions, i.e., partial functions from 𝐂(𝑠) to 𝐂(𝑡). Moreover,
for every 𝑟, 𝑠, 𝑡 ∈ 𝑇 the following hold:

1. The identity 1𝐂(𝑡) is in 𝐂[𝑡, 𝑡].
2. For every 𝑓 ∈ 𝐂[𝑟, 𝑠] and 𝑔 ∈ 𝐂[𝑠, 𝑡] we have that 𝑔◦𝑓 ∈ 𝐂[𝑟, 𝑡].

Next, we describe the computability model of sets and partial functions 𝐒𝐞𝐭𝐬, as the computability model-analogue to the category
of sets and functions 𝖲𝖾𝗍𝗌.
Definition 2. The computability model 𝐒𝐞𝐭𝐬 has as type names the class of sets and as data types the set 𝑈 itself, for every type name
𝑈 . If 𝑈, 𝑉 are sets, then a computable function from 𝑈 to 𝑉 is a partial function from 𝑈 to 𝑉 .

A partial arrow (𝑖, 𝑓)∶ 𝑎 ⇀ 𝑏 in a category  consists of a monomorphism 𝑖∶ 𝑑𝑜𝑚(𝑖) → 𝑎 and an arrow 𝑓 ∶ 𝑑𝑜𝑚(𝑖) → 𝑏 in . Given
a copresheaf 𝑆 ∶  → 𝖲𝖾𝗍𝗌, we write 𝑆(𝑖, 𝑓) instead of (𝑆(𝑖), 𝑆(𝑓)). In [15] computability models over categories and copresheaves on
them are studied.
Definition 3. Let  be a category and 𝑆 ∶  → 𝖲𝖾𝗍𝗌 a copresheaf on . The total computability model 𝐂𝐌𝑡𝑜𝑡(;𝑆) over  and 𝑆 has as
type names the class of objects 0 of  and data types the sets 𝑆(𝑐), for every 𝑐 ∈ 0. If 𝑐1, 𝑐2 ∈ 0, a (total) function from 𝑆(𝑐1) to
𝑆(𝑐2) is an element of the class {𝑆(𝑓) | 𝑓 ∈ 𝙷𝚘𝚖(𝑐1, 𝑐2)}. The partial computability model 𝐂𝐌𝑝𝑟𝑡(;𝑆) over  and a pullback-preserving
copresheaf 𝑆 on  has the same type names and data types, while a partial function from 𝑆(𝑐1) to 𝑆(𝑐2) is an element of the class
{𝑆(𝑖, 𝑓) | (𝑖, 𝑓)∶ 𝑐1 ⇀ 𝑐2}.

The fact that 𝑆 preserves pullbacks is necessary to prove that 𝐂𝐌𝑝𝑟𝑡(;𝑆) is a computability model. If 𝖲𝖾𝗍𝗌𝑝𝑟𝑡 is the category of
sets and partial functions, then the computability model 𝐂𝐌𝑡𝑜𝑡(𝖲𝖾𝗍𝗌𝑝𝑟𝑡, 𝑖𝑑𝖲𝖾𝗍𝗌𝑝𝑟𝑡) is the computability model 𝐒𝐞𝐭𝐬 of Definition 2. Next,
we describe the arrows in the category of computability models 𝖢𝗈𝗆𝗉𝖬𝗈𝖽. A notion of contravariant simulation can also be defined,
allowing the contravariant version of the Grothendieck construction for computability models.
Definition 4. A simulation 𝛾𝛾𝛾 from 𝐂 (over 𝑇) to 𝐃 (over 𝑈) consists of a class-function 𝛾 ∶ 𝑇 → 𝑈 and a relation ⊩𝛾

𝑡 ⊆ 𝐃
(

𝛾(𝑡)
)

× 𝐂(𝑡),
for each 𝑡 ∈ 𝑇 , a so-called forcing relation, subject to the following conditions:

1. For each 𝑥 ∈ 𝐂(𝑡) there exists some 𝑦 ∈ 𝐃(𝛾(𝑡)), such that 𝑦 ⊩𝛾
𝑡 𝑥.

2. For each 𝑓 ∈ 𝐂[𝑠, 𝑡] there exists some 𝑓 ′ ∈ 𝐃
[

𝛾(𝑠), 𝛾(𝑡)
]

, such that
∀𝑥∈𝐂(𝑠)∀𝑦∈𝐃(𝛾(𝑠))

(

𝑥 ∈ 𝑑𝑜𝑚(𝑓) ∧ 𝑦 ⊩𝛾
𝑠 𝑥 ⇒ 𝑦 ∈ 𝑑𝑜𝑚(𝑓 ′) ∧ 𝑓 ′(𝑦) ⊩𝛾

𝑡 𝑓 (𝑥)
)

.

In this case, we say 𝑓 ′ tracks 𝑓 , and we write 𝑓 ′ ⊩𝛾
(𝑠,𝑡) 𝑓 .

1 Sections 4, 6, 7, the proof of Proposition 3, and Corollary 2 are added.

Theoretical Computer Science 1057 (2025) 115550

2

L. Gambarte and I. Petrakis

We also write 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐃 for a simulation 𝛾𝛾𝛾 from 𝐂 to 𝐃. We call a simulation 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬 a copresheaf-simulation. The identity
simulation 𝟏𝐂 ∶ 𝐂 ⇾ 𝐂 is the pair (𝑖𝑑𝑇 , (⊩𝛊𝐂

𝑡)𝑡∈𝑇
)

, where 𝑥′ ⊩𝛊𝐂
𝑡 𝑥 ∶⇔ 𝑥′ = 𝑥, for every 𝑥′, 𝑥 ∈ 𝐂(𝑡). If 𝛿𝛿𝛿∶ 𝐃 ⇾ 𝐄, the composite simulation

𝛿𝛿𝛿◦𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐄 is the pair2 (

𝛿◦𝛾, (⊩𝛅◦𝛄
𝑡)𝑡∈𝑇

)

, where the relation ⊩𝛅◦𝛄
𝑡 ⊆ 𝐄

(

𝛿(𝛾(𝑡))
)

× 𝐂(𝑡) is defined by
𝑧 ⊩𝛅◦𝛄

𝑡 𝑥 ∶⇔ ∃𝑦∈𝐃(𝛾(𝑡))
(

𝑧 ⊩𝛅
𝛾(𝑡) 𝑦 ∧ 𝑦 ⊩𝛄

𝑡 𝑥
)

.

The following copresheaf-simulations on a computability model 𝐂 correspond to the representable functors 𝙷𝚘𝚖(𝑎,−) over 𝑎 in a
category .
Example 1. Let 𝐂 be a locally-small computability model over 𝑇 , i.e., the class 𝐂[𝑠, 𝑡] of computable functions from 𝐂(𝑠) to 𝐂(𝑡) is
a set, for every 𝑠, 𝑡 ∈ 𝑇 . If 𝑡0 ∈ 𝑇 , the representable-simulation 𝛾𝛾𝛾 𝑡0 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬 consists of the class-function 𝛾𝑡0 ∶ 𝑇 → 𝖲𝖾𝗍𝗌, defined by
𝛾𝑡0 (𝑡) ∶= 𝐂[𝑡0, 𝑡], for every 𝑡 ∈ 𝑇 , and the forcing relations ⊩𝛾𝑡0

𝑡 ⊆ 𝐂[𝑡0, 𝑡] × 𝐂(𝑡), defined by

𝑓 ⊩
𝛾𝑡0
𝑡 𝑥 ∶⇔ ∃𝑦∈𝑑𝑜𝑚(𝑓)

(

𝑓 (𝑦) = 𝑥
)

.

To show that 𝛾𝛾𝛾 𝑡0 is a simulation, we suppose that 𝐂 is left-regular i.e.,
∀𝑡∈𝑇 ∀𝑥∈𝐂(𝑡)∃𝑓∈𝐂[𝑡0 ,𝑡]∃𝑦∈𝑑𝑜𝑚(𝑓)

(

𝑓 (𝑦) = 𝑥
)

.

All computability models that include the constant functions are left-regular (such as Kleene’s first model 𝐾1 over 𝑇 = {0} with
𝐂(0) = ℕ, and 𝐂[0, 0] the Turing-computable partial functions from ℕ to ℕ). If 𝑓 ∈ 𝐂[𝑠, 𝑡], it is easy to show that 𝑓 ∗ ⊩

𝛾𝑡0
(𝑠,𝑡) 𝑓 , where 𝑓 ∗

is the total function from 𝐂[𝑡0, 𝑠] to 𝐂[𝑡0, 𝑡], defined by 𝑓 ∗(𝑔) ∶= 𝑓◦𝑔, for every 𝑔 ∈ 𝐂[𝑡0, 𝑠]. A right-regularity condition on a locally-
small computability model is needed, in order to define the contravariant representable-simulations 𝛅𝑡0 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬, where 𝛿𝑡0 ∶ 𝐂 → 𝖲𝖾𝗍𝗌
is defined by 𝛿𝑡0 (𝑡) ∶= 𝐂[𝑡, 𝑡0], for every 𝑡 ∈ 𝑇 .

Next follows the notion of arrow between simulations.
Definition 5. If 𝛄, 𝛅∶ 𝐂 ⇾ 𝐃, then 𝛄 is transformable to 𝛅, in symbols 𝛄 ⪯ 𝛅, if for every 𝑡 ∈ 𝑇 there is 𝑓 ∈ 𝐃[𝛾(𝑡), 𝛿(𝑡)] such that

∀𝑥∈𝐂(𝑡)∀𝑥′∈𝐃(𝛾(𝑡))
(

𝑥′ ⊩𝛾
𝑡 𝑥 ⇒ 𝑥′ ∈ 𝑑𝑜𝑚(𝑓) ∧ 𝑓 (𝑥′) ⊩𝛅

𝑡 𝑥
)

.

3. The Grothendieck computability model

In this section, we introduce the Grothendieck computability model, the computability model counterpart to the category of
elements, a special case of the general categorical Grothendieck construction. A category  is replaced by a computability model
𝐂, a copresheaf 𝑆 ∶  → 𝖲𝖾𝗍𝗌 is replaced by a copresheaf-simulation 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬, and the first-projection functor is replaced by the
first-projection-simulation.

Proposition 1. Let 𝐂 be a computability model over the class 𝑇 and let 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬. The structure ∑𝐂 𝛾𝛾𝛾 with type names the class
∑

𝑡∈𝑇
𝛾𝛾𝛾(𝑡) ∶=

{

(𝑡, 𝑏) | 𝑡 ∈ 𝑇 and 𝑏 ∈ 𝛾(𝑡)
}

,

with data types, for every (𝑡, 𝑏) ∈ ∑

𝑡∈𝑇 𝛾𝛾𝛾(𝑡), the sets
(

∑

𝐂
𝛾𝛾𝛾
)

(𝑡, 𝑏) ∶=
{

𝑦 ∈ 𝐂(𝑡) | 𝑏 ⊩𝛾
𝑡 𝑦

}

,

and computable functions from
(

∑

𝐂 𝛾𝛾𝛾
)

(𝑠, 𝑎) to
(

∑

𝐂 𝛾𝛾𝛾
)

(𝑡, 𝑏) the classes
{

𝑓 ∈ 𝐂[𝑠, 𝑡] | ∀𝑥∈𝑑𝑜𝑚(𝑓)
(

𝑥 ∈
(

∑

𝐂
𝛾𝛾𝛾
)

(𝑠, 𝑎) ⇒ 𝑓 (𝑥) ∈
(

∑

𝐂
𝛾𝛾𝛾
)

(𝑡, 𝑏)
)}

,

is a computability model. The class-function 𝗉𝗋1 ∶
∑

𝑡∈𝑇 𝛾𝛾𝛾(𝑡) → 𝑇 , defined by the rule (𝑡, 𝑏) ↦ 𝑡, and the forcing relations, defined, for every
(𝑡, 𝑏) ∈

∑

𝑡∈𝑇 𝛾𝛾𝛾(𝑡), by
𝑦′ ⊩𝗉𝗋1

(𝑡,𝑏) 𝑦 ∶⇔ 𝑦′ = 𝑦,

determine the first-projection-simulation 𝐩𝐫1 ∶
∑

𝐂 𝛾𝛾𝛾 ⇾ 𝐂.

Proof. We show that the computable functions include the identities and are closed under composition. Notice that the defining
property of the computable functions in the Grothendieck model is equivalent to the condition 𝑎 ⊩𝛾

𝑠 𝑥 ⇒ 𝑏 ⊩𝛾
𝑡 𝑓 (𝑥), for every 𝑥 ∈

𝑑𝑜𝑚(𝑓). If (𝑡, 𝑏) ∈ ∑

𝑡∈𝑇 𝛾𝛾𝛾(𝑡), then the identity on
∑

𝐂 𝛾𝛾𝛾(𝑡, 𝑏) is the identity on 𝐂(𝑡), i.e., 1𝐂(𝑡) is a computable function from
(

∑

𝐂 𝛾𝛾𝛾
)

(𝑡, 𝑏)
to itself: if 𝑥 ∈ 𝐂(𝑡), then the implication 𝑏 ⊩𝛾

𝑡 𝑥 ⇒ 𝑏 ⊩𝛾
𝑡 𝑥 holds trivially. If 𝑔 is a computable function from ∑𝐂 𝛾𝛾𝛾(𝑡, 𝑏) to ∑𝐂 𝛾𝛾𝛾(𝑢, 𝑐) and

𝑓 is a computable function from ∑𝐂 𝛾𝛾𝛾(𝑠, 𝑎) to ∑𝐂 𝛾𝛾𝛾(𝑡, 𝑏), then 𝑔◦𝑓 is a computable function from ∑𝐂 𝛾𝛾𝛾(𝑠, 𝑎) to ∑𝐂 𝛾𝛾𝛾(𝑢, 𝑐). For that, let
𝑥 ∈ 𝑑𝑜𝑚(𝑓) and 𝑓 (𝑥) ∈ 𝑑𝑜𝑚(𝑔). If 𝑎 ⊩𝛾

𝑠 𝑥, then 𝑏 ⊩𝛾
𝑡 𝑓 (𝑥), and hence 𝑐 ⊩𝛾

𝑢 𝑔(𝑓 (𝑥)). To show that 𝐩𝐫1 is a simulation, let 𝑦 ∈
∑

𝐂 𝛾𝛾𝛾(𝑡, 𝑏).
Then 𝑥 ⊩𝗉𝗋1

(𝑡,𝑏) 𝑥, and if 𝑓 is a computable function from ∑𝐂 𝛾𝛾𝛾(𝑠, 𝑎) to ∑𝐂 𝛾𝛾𝛾(𝑡, 𝑏), then 𝑓 ⊩𝗉𝗋1
((𝑠,𝑎),(𝑡,𝑏)) 𝑓 . ∎

2 Notice that if 𝛿𝛿𝛿◦𝛾𝛾𝛾 = 𝛿𝛿𝛿′◦𝛾𝛾𝛾 ′, then by the definition of equality on simulations we get 𝛿◦𝛾 = 𝛿′◦𝛾 ′ and ⊩𝛅◦𝛄
𝑡 = ⊩𝛅′◦𝛄′

𝑡 , for every 𝑡 ∈ 𝑇 . See also [12,
§3.4.1]

Theoretical Computer Science 1057 (2025) 115550

3

L. Gambarte and I. Petrakis

The following proposition expresses that the Grothendieck construction on a computability model obtained from a category with
a copresheaf can be presented as the canonical partial computability model associated with the category of elements. The proof is
omitted, since it is straightforward.
Proposition 2. Let  be a category and 𝑆 ∶  → 𝖲𝖾𝗍𝗌 a pullback-preserving copresheaf on . Let 𝛾𝑆 ∶ 0 ⇾ 𝐒𝐞𝐭𝐬 be defined via 𝛾𝑆 (𝑐) = 𝑆(𝑐),
let the relations ⊩𝛾𝑆

𝑐 be the diagonals, and let {𝗉𝗋2}∶
∑

 𝑆 → 𝖲𝖾𝗍𝗌 be defined by {𝗉𝗋2}(𝑐, 𝑥) ∶= {𝑥} and if 𝑓 ∶ (𝑐, 𝑥) → (𝑑, 𝑦) in ∑ 𝑆, let
[𝑆(𝑓)](𝑥) ∶= 𝑦. Then

∑

𝐂𝐌𝑝𝑟𝑡(;𝑆)

𝛾𝛾𝛾𝑆 = 𝐂𝐌𝑝𝑟𝑡
(

∑


𝑆; {𝗉𝗋2}

)

.

Remark 1. The functor 𝐂 ↦ 𝑠𝑚(𝐂), studied in [12], does not “preserve” the Grothendieck construction. E.g., if 𝟏 is a terminal
computability model with type names {∅}, data type 𝟏(∅) = {∅}, and as only computable function the identity, then one can define a
presheaf 𝑖𝑑𝟏 ∶ 𝟏 ⇾ 𝐒𝐞𝐭𝐬, and show that

𝑠𝑚
(

∑

𝟏
𝑖𝑑𝟏

)

≠
∑

𝑠𝑚(𝟏)
𝑠𝑚(𝑖𝑑𝟏).

Next, we show a result analogous to [8, Proposition 1.1.7], i.e., for any copresheaf-simulation 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 there is an equivalence
[

∑

𝐂
𝛾𝛾𝛾, 𝖲𝖾𝗍𝗌

]

≅ [𝐂, 𝖲𝖾𝗍𝗌]∕𝛾𝛾𝛾.

For that, we define a full, faithful and essentially surjective functor

𝐼 ∶
[

∑

𝐂
𝛾𝛾𝛾, 𝖲𝖾𝗍𝗌

]

→ [𝐂, 𝖲𝖾𝗍𝗌]∕𝛾𝛾𝛾.

Notice that for both categories the morphism-structure is thin and thus a preorder, thus we only need to define our functor on
morphisms and show that it preserves this preorder. The objects of [𝐂, 𝖲𝖾𝗍𝗌]∕𝛾𝛾𝛾 themselves are simulations 𝛿𝛿𝛿∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌, such that
𝛿𝛿𝛿 ⪯ 𝛾𝛾𝛾.

For every 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 we have that for every 𝑡 ∈ 𝑇 the set 𝛾(𝑡) is non-empty. This follows from the fact that, otherwise, ⊩𝛾
𝑡 could

not satisfy the first condition on simulations, as 𝛾(𝑡) is empty, hence there is no 𝑎 ∈ 𝛾(𝑡) with 𝑎 ⊩𝛾
𝑡 𝑏 for any 𝑏 ∈ 𝐂(𝑡). (There is the

possibility that 𝐂(𝑡) is empty, but we shall exclude this from now on).
Proposition 3. Let 𝐂 be a computability model over 𝑇 and let 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 be a copresheaf-simulation. There is a functor 𝐼 ∶ [

∑

𝐂 𝛾𝛾𝛾, 𝖲𝖾𝗍𝗌
]

→
[𝐂, 𝖲𝖾𝗍𝗌]∕𝛾𝛾𝛾, defined as follows: if 𝛽𝛽𝛽 ∶ ∑

𝐂 𝛾𝛾𝛾 ⇾ 𝖲𝖾𝗍𝗌, let 𝐼(𝛽𝛽𝛽) be the underlying class function 𝐼(𝛽)∶ 𝑇 → 𝖲𝖾𝗍𝗌, where, for every 𝑡 ∈ 𝑇 , we have
that

𝐼(𝛽)(𝑡) =
⋃

𝑥∈𝛾(𝑡)
𝛽(𝑡, 𝑥).

The tracking relation ⊩𝐼(𝛽)
𝑡 ⊆

(
⋃

𝑥∈𝛾(𝑡) 𝛽(𝑡, 𝑥)
)

× 𝐂(𝑡) is defined as follows∶

𝑎 ⊩𝐼(𝛽)
𝑡 𝑏 ∶⇔ ∃𝑥∈𝛾(𝑡)

(

𝑎 ⊩𝛽
(𝑡,𝑥) 𝑏

)

.

The functor 𝐼 is full, faithful, and essentially surjective.
Proof. First we show that 𝐼 is well-defined, i.e., for every 𝛽𝛽𝛽 ∈

[
∑

𝐂 𝛾𝛾𝛾, 𝖲𝖾𝗍𝗌
] the rule 𝐼(𝛽𝛽𝛽) defines a simulation and 𝐼(𝛽𝛽𝛽) ⪯ 𝛾𝛾𝛾. We observe

that 𝐼(𝛽)(𝑡) is well-defined and it is a set, for every 𝑡 ∈ 𝑇 . To show the first property of simulations, we observe that for every 𝑡 ∈ 𝑇
there exists 𝑥 ∈ 𝛾(𝑡), such that ⋃𝑥∈𝛾(𝑡) 𝛽(𝑡, 𝑥) is non-empty. If 𝑏 ∈ 𝐂(𝑡), then, as 𝛾𝛾𝛾 is a simulation, there is 𝑥 ∈ 𝛾(𝑡) with 𝑥 ⊩𝛾

𝑡 𝑏. Since 𝛽𝛽𝛽
is a simulation, there is 𝑎 ∈ 𝛽(𝑡, 𝑥), such that 𝑎 ⊩𝛽

(𝑡,𝑥) 𝑏. By the definition of ⊩
𝐼(𝛽)
𝑡 we get 𝑎 ⊩𝐼(𝛽)

𝑡 𝑏. To show the second condition on
𝐼(𝛽𝛽𝛽), let 𝑓 ∈ 𝐂[𝑡, 𝑡′]. We find 𝑓 ′, such that 𝑓 ′ ⊩𝐼(𝛽)

(𝑡,𝑡′) 𝑓 , i.e.,

∀𝑥 ∈ 𝑑𝑜𝑚(𝑓)∀𝑦 ∈ 𝐼(𝛽)(𝑡) ∶
(

𝑦 ⊩𝐼(𝛽)
𝑡 𝑥 ⇒ 𝑦 ∈ 𝑑𝑜𝑚(𝑓 ′) ∧ 𝑓 ′(𝑦) ⊩𝐼(𝛽)

𝑡′ 𝑓 (𝑥)
)

.

Let such 𝑥 and 𝑦 be given. By definition, 𝑦 ⊩𝐼(𝛽)
𝑡 𝑥 if and only if there exists 𝑟 ∈ 𝛾(𝑡), such that 𝑦 ⊩𝛽

(𝑡,𝑟) 𝑥. This entails that 𝑟 ⊩
𝛾
𝑡 𝑥, as 𝑥

has to be in (∑𝐂 𝛾𝛾𝛾
)

(𝑡, 𝑟). Since 𝛾𝛾𝛾 is a copresheaf-simulation, there is 𝑓 ∶ 𝛾(𝑡) → 𝛾(𝑡′), such that 𝑓 ⊩𝛾
(𝑡,𝑡′) 𝑓 , and hence 𝑓 (𝑟) ⊩

𝛾
𝑡′ 𝑓 (𝑥), i.e.,

𝑓 ∈
(

∑

𝐂
𝛾𝛾𝛾
)[

(

𝑡, 𝑟
)

,
(

𝑡′, 𝑓 (𝑟)
)

]

,

as for all 𝑧, such that 𝑟 ⊩𝛾
𝑡 𝑧, we have 𝑓 (𝑟) ⊩𝛾

𝑡′ 𝑓 (𝑧) by definition of 𝑓 . Since 𝛽𝛽𝛽 is a simulation, there is 𝑓 ∶ 𝛽(𝑡, 𝑟) → 𝛽
(

𝑡′, 𝑓 (𝑟)
)

, such
that 𝑓 ⊩𝛽

((𝑡,𝑟),(𝑡′ ,𝑓 (𝑟)))
𝑓 . Hence, 𝑓 (𝑦) ⊩𝛽

𝑡′ 𝑓 (𝑥). We can thus define 𝑓 ′ to be on each subset 𝛽(𝑡, 𝑟) of ⋃𝑟∈𝛾(𝑡) 𝛽(𝑡, 𝑟) equal to 𝑓 . It is then
immediate to see that 𝑓 ′ fulfils the required equality. Next we show that 𝐼(𝛽𝛽𝛽) ⪯ 𝛾𝛾𝛾. For that, we define, for every 𝑡 ∈ 𝑇 , a function
𝑔𝑡 ∶ 𝐼(𝛽)(𝑡) → 𝛾(𝑡), such that 𝑦 ⊩𝐼(𝛽)

𝑡 𝑥 entails 𝑔𝑡(𝑦) ⊩𝛾
𝑡 𝑥. We do this again by defining 𝑔𝑡 on each subset 𝛽(𝑡, 𝑟) of 𝐼(𝛽)(𝑡) =

⋃

𝑟∈𝛾(𝑡) 𝛽(𝑡, 𝑟)
separately. On 𝛽(𝑡, 𝑟) we define 𝑔𝑡(𝑦) = 𝑟. Then by definition, if 𝑦 ⊩𝐼(𝛽)

𝑡 𝑥, i.e., 𝑦 ⊩𝛽
(𝑡,𝑟) 𝑥, then 𝑟 ⊩

𝛾
𝑡 𝑥, as 𝑥 ∈

(
∑

𝐂 𝛾𝛾𝛾
)

(𝑡, 𝑟). Hence the
functor 𝐼 is indeed well-defined. It remains to show the three required properties. If 𝛼𝛼𝛼 ⪯ 𝛽𝛽𝛽, then we show that 𝐼(𝛼𝛼𝛼) ⪯ 𝐼(𝛽𝛽𝛽). From

Theoretical Computer Science 1057 (2025) 115550

4

L. Gambarte and I. Petrakis

the hypothesis we obtain, for every (𝑡, 𝑟) ∈ ∑

𝐂 𝑇 , a function 𝑔(𝑡,𝑟) ∶ 𝛼(𝑡, 𝑟) → 𝛽(𝑡, 𝑟), such that, if 𝑦 ⊩𝛼
(𝑡,𝑟) 𝑥, then 𝑔(𝑡,𝑟)(𝑦) ⊩

𝛽
(𝑡,𝑟) 𝑥. Hence,

for 𝐼(𝛽)(𝑡) we can define 𝑔𝑡 piecewise on the individual 𝛽(𝑡, 𝑟) by setting 𝑔𝑡(𝑦) ∶= 𝑔(𝑡,𝑟)(𝑦), if 𝑦 ∈ 𝛼(𝑡, 𝑟). It is immediate to see that the
functions 𝑔𝑡 prove that 𝐼(𝛼𝛼𝛼) ⪯ 𝐼(𝛽𝛽𝛽). For the converse direction 𝐼(𝛼𝛼𝛼) ⪯ 𝐼(𝛽𝛽𝛽) ⇒ 𝛼𝛼𝛼 ⪯ 𝛽𝛽𝛽, we work as above, i.e., we define 𝑔(𝑡,𝑟)(𝑦) ∶= 𝑔𝑡(𝑦),
where 𝑔(𝑡,𝑟), 𝑔𝑡 have the same roles as above. To show essential surjectivity, that is, every 𝛽𝛽𝛽 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 with 𝛽𝛽𝛽 ⪯ 𝛾𝛾𝛾 is equivalent to 𝐼(𝛼𝛼𝛼),
for some 𝛼𝛼𝛼∶ ∑

𝐂 𝛾𝛾𝛾 ⇾ 𝖲𝖾𝗍𝗌. If 𝛽𝛽𝛽 is given, then for every (𝑡, 𝑟) ∈ ∑

𝐂 𝑇 let 𝛼(𝑡, 𝑟) ∶= 𝛽(𝑡). Let also 𝑥 ⊩𝛼
(𝑡,𝑟) 𝑎 ∶⇔ 𝑥 ⊩𝛽

𝑡 𝑎. Next we show that 𝛼𝛼𝛼
is a simulation. As 𝛼∶ ∑

𝐂 𝑇 → 𝖲𝖾𝗍𝗌 is clearly well-defined and ⊩𝛼
(𝑡,𝑟) as well, it remains to prove the two conditions on simulations. For

the first, let 𝑎 ∈
(
∑

𝐂 𝛾𝛾𝛾
)

(𝑡, 𝑟). We show that there is 𝑥 ∈ 𝛼(𝑡, 𝑟), such that 𝑥 ⊩𝛼
(𝑡,𝑟) 𝑎. This follows from the existence of 𝑥 ∈ 𝛽(𝑡) = 𝛼(𝑡, 𝑟),

such that 𝑥 ⊩𝛽
𝑡 𝑎. The second condition is shown similarly, since 𝑓 ′ ⊩𝛼

((𝑡,𝑟),(𝑡′ ,𝑟′)) 𝑓 if and only if 𝑓 ′ ⊩𝛽
(𝑡,𝑡′) 𝑓 . Hence, 𝛼𝛼𝛼 is a simulation.

Clearly, 𝐼(𝛼𝛼𝛼) = 𝛽𝛽𝛽, since ⋃𝑟∈𝛾(𝑡) 𝛼(𝑡, 𝑟) =
⋃

𝑟∈𝛾(𝑡) 𝛽(𝑡) = 𝛽(𝑡) and

𝑥 ⊩𝐼(𝛼)
𝑡 𝑎 ⇔ ∃𝑟𝑥 ⊩𝛼

(𝑡,𝑟) 𝑎 ⇔ ∃𝑟𝑥 ⊩𝛽
𝑡 𝑎 ⇔ 𝑥 ⊩𝛽

𝑡 𝑎.

Thus, 𝐼 is essentially surjective, since if 𝐼(𝛼𝛼𝛼) = 𝛽𝛽𝛽, then 𝐼(𝛼𝛼𝛼) ∼ 𝛽𝛽𝛽. ∎

4. Fam-categories with a 𝚺-structure

In this section, we present the notion of a category with a family structure and Σ-objects, introduced in [16] and directly linked
to the notion of type-category, introduced by Pitts in [18]. The Sigma-objects generalise the Grothendieck construction in a general
categorical framework.

Definition 6. A fam-category is a category  together with a collection of family arrows 𝚏𝙷𝚘𝚖(𝑐), for every object 𝑐 in . We use Greek
letters 𝜆, 𝛿,… for them, and we denote them by an arrow starting from 𝑐

:
For every 𝑐, 𝑑 ∈  there is a composition operation ◦∶ 𝚏𝙷𝚘𝚖(𝑑) × 𝙷𝚘𝚖(𝑐, 𝑑) → 𝚏𝙷𝚘𝚖(𝑐), (𝜆, 𝑓) ↦ 𝜆◦𝑓 , subject to the following condi-

tions:
(𝐹1) For every 𝑐 ∈  and 𝜆 ∈ 𝚏𝙷𝚘𝚖(𝑐) we have 𝜆◦1𝑐 = 𝜆.

(𝐹2) For every 𝑐, 𝑑, 𝑒 ∈  and 𝜆 ∈ 𝚏𝙷𝚘𝚖(𝑒), 𝑔 ∈ 𝙷𝚘𝚖(𝑑, 𝑒), 𝑓 ∈ 𝙷𝚘𝚖(𝑐, 𝑑) we have that 𝜆◦(𝑔◦𝑓) = (𝜆◦𝑔)◦𝑓

Example 2. (i) Constant families: Every category is turned into a fam-category by setting 𝚏𝙷𝚘𝚖(𝑐) = 0, the class of objects, for every
𝑐 ∈ . The composition is defined by 𝑐◦𝑓 = 𝑐 for all 𝑐 and 𝑓 in .
(ii) Families in categories: If 𝐂𝐚𝐭 is the category of locally small categories, let 𝚏𝙷𝚘𝚖() = 𝐹𝑢𝑛(op, 𝖲𝖾𝗍𝗌) with composition the composition
of functors.
(iii) (Pitts) Families in a topos  with subobject classifier (⊤,Ω): If 𝑎 ∈ ,

𝚏𝙷𝚘𝚖(𝑎) ∶=
⋃

𝑏∈
𝙷𝚘𝚖(𝑎 × 𝑏,Ω).

The composition is defined by the rule ((𝑏, 𝑒), 𝑔) ↦ (

𝑏, 𝑒 × (𝑔 × 1𝑏)
)

Theoretical Computer Science 1057 (2025) 115550

5

L. Gambarte and I. Petrakis

(iv) If 𝐴 is a type in a universe  (see [23]), a family arrow on 𝐴 is a type-family 𝑃 ∶ 𝐴 →  .

Example 3. It is immediate to show that the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 can be endowed with a family arrow-structure by letting 𝚏𝙷𝚘𝚖(𝐂)
for each computability model be the class of simulations 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬.

Definition 7. A fam-category  has Σ-objects, or is a (fam, Σ)-category, if for every 𝑎, 𝑏 ∈ , for every 𝜆 ∈ 𝚏𝙷𝚘𝚖(𝑎), and for every
𝑓 ∈ 𝙷𝚘𝚖(𝑏, 𝑎) there is a Σ-object ∑𝑎 𝜆 ∈  and arrows 𝗉𝗋𝑎,𝜆1 ∈ 𝙷𝚘𝚖

(
∑

𝑎 𝜆, 𝑎
) and Σ𝜆𝑓 ∈ 𝙷𝚘𝚖

(
∑

𝑏(𝜆◦𝑓),
∑

𝑎 𝜆
)

, such that the following
rectangle is a pullback,

and the following conditions hold:
(Σ1) Σ𝜆1𝑎 = 1∑

𝑎 𝜆,
(Σ2) Σ𝜆(𝑓◦𝑔) =

(

Σ𝜆𝑓
)

◦Σ(𝜆◦𝑓)𝑔, for every 𝑓 ∈ 𝙷𝚘𝚖(𝑏, 𝑎) and 𝑔 ∈ 𝙷𝚘𝚖(𝑐, 𝑏)

A type-category (Pitts [18]) is a (fam, Σ)-category with a terminal object.3

Example 4. (i) If  is a category with constant families 𝚏𝙷𝚘𝚖(𝑐) = 0 for every 𝑐 ∈ , then let ∑𝑐 𝑑 ∶= 𝑐 and 𝗉𝗋𝑐,𝑑1 = 1𝑐 . The square

3 In the definition of a type-category in [18], pp. 110-111, Pitts does not study the family-structure of a type-category separately from its Σ-
structure. In [16] examples of (fam, Σ)-categories without a terminal object are given.

Theoretical Computer Science 1057 (2025) 115550

6

L. Gambarte and I. Petrakis

is a pullback and the two conditions are trivially satisfied.
(ii) In 𝐂𝐚𝐭, if 𝑃 ∈ 𝚏𝙷𝚘𝚖() = 𝐹𝑢𝑛(op, 𝖲𝖾𝗍𝗌), the Σ-object over 𝑃 is the category of elements ∑ 𝑃 .
(iii) For the definition of the canonical Σ-objects in a topos, see [18], p. 113.
(iv) The Σ-object in the category of small types  over a type 𝐴 in  and a type family 𝑃 ∶ 𝐴 →  is the dependent pair-type
∑

𝑥∶ 𝐴 𝑃 (𝑥) (see [23]).
As we show in the end of this section, (fam, Σ)-categories induce in a canonical way dependent arrows, i.e., objects that are

introduced in [16] and generalise categorically Martin-Löf’s dependent functions (see [22,23]).

Definition 8. A fam-category  has dependent arrows, or is a dep-category, if to every object 𝑎 in  and 𝜆 ∈ 𝚏𝙷𝚘𝚖(𝑎) corresponds a
collection 𝚍𝙷𝚘𝚖(𝑎, 𝜆) of dependent arrows over (𝑎, 𝜆). We denote the elements of 𝚍𝙷𝚘𝚖(𝑎, 𝜆) by capital Greek letters Φ,Ψ, etc., and we
use a double-arrow over 𝑎 and 𝜆 to picture some Φ ∈ 𝚍𝙷𝚘𝚖(𝑎, 𝜆).

For every 𝑎, 𝑏 ∈  and 𝜆∶ 𝚏𝙷𝚘𝚖(𝑎) there is a family of composition-functions (◦𝑓 ∶ 𝚍𝙷𝚘𝚖(𝑎, 𝜆) → 𝚍𝙷𝚘𝚖(𝑏, 𝜆◦𝑓)
)

𝑓∈𝙷𝚘𝚖(𝑏,𝑎), with
𝚍𝙷𝚘𝚖(𝑎, 𝜆) ∋ Φ ↦ Φ◦𝑓 ∈ 𝚍𝙷𝚘𝚖(𝑏, 𝜆◦𝑓), where for simplicity we write ◦ instead of ◦𝑓 , such that the following conditions hold:

In the next theorem, we employ global sections (see [18], p. 114), or dependent objects (see [7], pp. 91-92).

Theorem 1. If  is a (𝑓𝑎𝑚,Σ)-category, let for every 𝑎 ∈  and 𝜆 ∈ 𝚍𝙷𝚘𝚖(𝑎) the class of dependent objects of 𝜆

𝑎𝜆 ∶=
{

𝜙 ∈ 𝙷𝚘𝚖

(

𝑎,
∑

𝑎
𝜆
)

∣ 𝗉𝗋𝑎,𝜆1 ◦𝜙 = 1𝑎

}

.
If 𝚍𝙷𝚘𝚖(𝑎, 𝜆) ∶= 𝑎𝜆, then  becomes a dep-category.

Proof. If 𝜙 ∈ 𝑎𝜆 and 𝑓 ∈ 𝙷𝚘𝚖(𝑏, 𝑎), we define a global section 𝜙(𝑓) ∈ 𝑏(𝜆◦𝑓) as follows. As 𝗉𝗋𝑎,𝜆1 ◦(𝜙◦𝑓) = (𝗉𝗋𝑎,𝜆1 ◦𝜙) = 1𝑎◦𝑓 = 𝑓 =
𝑓◦1𝑏, the following outer diagram commutes, and let 𝜙(𝑓) ∈ 𝙷𝚘𝚖

(

𝑏,
∑

𝑏(𝜆◦𝑓)
) be determined by the universal property of a pullback.

Theoretical Computer Science 1057 (2025) 115550

7

L. Gambarte and I. Petrakis

For the rest of the proof, see [16]. ∎

5. 𝗖𝗼𝗺𝗽𝗠𝗼𝗱 is a type-category

Theorem 2. The category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a (fam, Σ)-category.
Proof. To each simulation 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬 we correspond the Grothendieck model ∑𝐂 𝛾𝛾𝛾 and the first-projection-simulation 𝗉𝗋𝐂,𝛾𝛾𝛾1 . If
𝐃 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 and 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐃, we define ∑𝛿𝛿𝛿 𝛾𝛾𝛾 ∶

∑

𝐂 𝛿𝛿𝛿◦𝛾𝛾𝛾 ⇾
∑

𝐃 𝛿𝛿𝛿.

Let ∑𝛿 𝛾 ∶
∑

𝑡∈𝑇 𝛾𝛾𝛾(𝑡) →
∑

𝑢∈𝑈 𝛿𝛿𝛿(𝑢) be defined by the rule (𝑡, 𝑏) ↦ (

𝛾(𝑡), 𝑏). The forcing relations are defined by 𝑥′ ⊩
∑

𝛿 𝛾
(𝑡,𝑏) 𝑥 ∶⇔ 𝑥′ ⊩𝛾

𝑡 𝑥.
It is straightforward to show that ∑𝛿𝛿𝛿 𝛾𝛾𝛾 is a simulation. The above rectangle commutes. For the underlying classes, this is immediate
to show, since 𝗉𝗋1

(
∑

𝛿 𝛾(𝑡, 𝑏)
)

= 𝗉𝗋1
(

𝛾(𝑡)
)

= 𝛾
(

𝗉𝗋1(𝑡, 𝑏)
)

. For the forcing relations, we observe that, if 𝑥′ ⊩𝗉𝗋1◦
∑

𝛿 𝛾
(𝑡,𝑏) 𝑥, then 𝑥′ ⊩

∑

𝛿 𝛾
(𝑡,𝑏) 𝑥,

and thus 𝑥′ ⊩𝛾
𝑡 𝑥, which is equivalent to 𝑥′ ⊩𝛾◦𝗉𝗋1

(𝑡,𝑏) 𝑥. To show that it is a pullback, let 𝐄 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 over a class 𝑉 and simulations
𝛼𝛼𝛼,𝛽𝛽𝛽, such that the following rectangle commutes

(1)

We find unique 𝜁𝜁𝜁 ∶ 𝐄 ⇾
∑

𝐂(𝛿𝛿𝛿◦𝛾𝛾𝛾), such that both triangles in

(2)

commute. First, we define 𝜁 on the level of the underlying classes. If 𝑣 ∈ 𝑉 , let 𝜁 (𝑣) = (

𝛼(𝑣), 𝑐
)

, where 𝑐 ∈ 𝛿(𝛾(𝑣)) is the unique 𝑐 such
that 𝛽(𝑣) = (𝑢, 𝑐) for some 𝑢. Clearly, 𝜁 is well-defined. We define the forcing relations by

𝑥′ ⊩𝜁
𝑣 𝑥 ∶⇔ 𝑥′ ⊩𝛼

𝑣 𝑥.

To show that these relations are well-defined, we need to show that if 𝑥′ ⊩𝛼
𝑣 𝑥, then 𝑥′ ∈ (

∑

𝐂(𝛿𝛿𝛿◦𝛾𝛾𝛾)
)

(𝑢, 𝑐), i.e., we have to show that
𝑏 ⊩𝛿◦𝛾

𝛼(𝑣) 𝑥
′. For this, let such 𝑥′ be given. As 𝛾𝛾𝛾 is a simulation we find 𝑧 ∈ 𝐃

(

𝛾(𝛼(𝑣))
)

, such that 𝑧 ⊩𝛾
𝛼(𝑣) 𝑥

′. Hence, 𝑧 ⊩𝛾◦𝛼
𝑣 𝑥, and using

the commutativity of (1) we get 𝑧 ⊩
𝐩𝐫𝐃,𝛿𝛿𝛿1 ◦𝛽
𝑣 𝑥. This yields a 𝑦 ∈ (

∑

𝐃 𝛿𝛿𝛿
)

(𝑢, 𝑐) (we recall that 𝛽(𝑣) = (𝑢, 𝑐), as defined above), such that
𝑧 ⊩

𝐩𝐫𝐃,𝛿𝛿𝛿1
(𝑢,𝑐) 𝑦 ⊩𝛽

𝑣 𝑥. By definition of 𝐩𝐫𝐃,𝛿𝛿𝛿1 this yields 𝑦 = 𝑧, and thus 𝑧 ∈
(
∑

𝐃 𝛿𝛿𝛿
)

(𝑢, 𝑐), which means that 𝑐 ⊩𝛿
𝑢 𝑧. Gathering everything

we see that this yields 𝑏 ⊩𝛿
𝑢 𝑧 ⊩𝛾

𝛼(𝑣) 𝑥
′ ⊩𝛼

𝑣 𝑥, and thus 𝑏 ⊩𝛿◦𝛾
𝛼(𝑣) 𝑥

′, as required. This immediately shows that the first condition on

Theoretical Computer Science 1057 (2025) 115550

8

L. Gambarte and I. Petrakis

computability models is fulfilled, and the second follows, as we can take for any 𝑓 ∈ 𝐄[𝑣, 𝑣′] the tracking function 𝑓 ′ ∈ 𝐂
[

𝛼(𝑣), 𝛼(𝑣′)
]

.
To show that 𝑓 ′ ∈

∑

𝐂 𝛿𝛿𝛿◦𝛾𝛾𝛾
[

(𝛼(𝑣), 𝑐), (𝛼(𝑣′), 𝑐′)
] we first note that we obtain 𝑓 ′′ that tracks this 𝑓 ′ with respect to 𝛾𝛾𝛾. Thus, 𝑓 ′′ tracks 𝑓

with respect to 𝛾𝛾𝛾◦𝛼𝛼𝛼, so it also tracks it with respect to 𝐩𝐫𝐃,𝛿𝛿𝛿1 ◦𝛽𝛽𝛽. To see that 𝑓 ′′ also tracks 𝑓 with respect to 𝛽𝛽𝛽, let 𝑥 ∈ 𝐄(𝑣) and 𝑧 ∈ 𝐃(𝑢)

be given, such that 𝑧 ⊩𝛽
𝑣 𝑥 and 𝑐 ⊩𝛿

𝑢 𝑧. Then 𝑧 ⊩
𝐩𝐫𝐃,𝛿𝛿𝛿1
(𝑢,𝑐) 𝑧 and thus 𝑓 ′′(𝑧) ⊩

𝐩𝐫𝐃,𝛿𝛿𝛿1 ◦𝛽
𝑢′ 𝑓 (𝑥), and by definition of 𝐩𝐫𝐃,𝛿𝛿𝛿1 also 𝑓 ′′(𝑧) ⊩𝛽

(𝑢′ ,𝑐′) 𝑓 (𝑥).
Thus, 𝑓 ′′ tracks 𝑓 with respect to 𝛽.

Using this, let 𝑦 ∈
(
∑

𝐂 𝛿𝛿𝛿◦𝛾𝛾𝛾
)

(𝛼(𝑣), 𝑐) be given. Thus, we obtain 𝑧 ∈ 𝐃(𝑢), such that 𝑧 ⊩𝛾
𝑢 𝑦 and 𝑐 ⊩𝛿

𝛾(𝑢) 𝑧. Then 𝑓 ′′(𝑧) ⊩𝑢′ 𝑓 ′(𝑦), and
by the above we get 𝑓 ′′(𝑧) ∈

∑

𝐃 𝛿𝛿𝛿, thus 𝑓 ′(𝑦) ∈
∑

𝐂 𝛿𝛿𝛿◦𝛾𝛾𝛾. This shows that 𝑓 ′ ∈
∑

𝐂 𝛿𝛿𝛿◦𝛾𝛾𝛾
[

(𝛼(𝑣), 𝑐), (𝛼(𝑣′), 𝑐′)
]

. Hence, 𝜁𝜁𝜁 is a simulation.
It remains to show the commutativity of the triangles in (2). Observe that the two triangles already commute on the level of

the underlying class-functions, so it remains to check the forcing relations. Assume that we are given 𝑣 ∈ 𝑉 and 𝑥′′ ∈ 𝐄(𝑣), 𝑥′ ∈
(

∑

𝐃 𝛿𝛿𝛿
)

(

𝛽(𝑣)
) and 𝑥 ∈ 𝐂

(

𝛼(𝑣)
)

, such that

𝑥′ ⊩𝛽
𝑣 𝑥′′ and 𝑥 ⊩𝛼

𝑣 𝑥′′.

By definition we have to show that there exist 𝑦1, 𝑦2 such that

𝑥′ ⊩
∑

𝛿 𝛾
𝜁 (𝑣) 𝑦1 and 𝑦1 ⊩𝜁

𝑣 𝑥′′, and 𝑥 ⊩𝗉𝗋1
𝜁 (𝑣) 𝑦2 and 𝑦2 ⊩𝜁

𝑣 𝑥′′.

We know that (1) commutes and 𝑥′ ⊩𝗉𝗋1
(
∑

𝛿 𝛾)(𝜁 (𝑣))
𝑥′, thus from 𝑥′ ⊩𝛽

𝑣 𝑥′′ we conclude that 𝑥′ ⊩𝛾◦𝛼
𝑣 𝑥′′. This in turn ensures that there is

𝑦, such that 𝑥′ ⊩𝛾
𝛼(𝑣) 𝑦 and 𝑦 ⊩𝛼

𝑣 𝑥′′. By the definition of ∑𝛿 𝛾 we then have 𝑥′ ⊩
∑

𝛿 𝛾
𝛼(𝑣) 𝑦, and thus 𝑦 is our desired 𝑦1. For 𝑦2 we simply

choose 𝑥 and it is easy to see that this satisfies the requirements. The above implications also work in the opposite direction. It is
immediate to show that 𝜁𝜁𝜁 is the unique simulation that makes the triangles commutative. To show condition (Σ1), we observe that by
its definition the simulation ∑𝜖𝜖𝜖 𝟏𝐄 on the level of the underlying class takes a pair (𝑡, 𝑢) to (𝟏𝐄(𝑡), 𝑢) = (𝑡, 𝑢), hence on the level of the
underlying class-functions the two simulations agree. For the forcing relations, we see that both simulations are the corresponding
diagonals. To show (Σ2) on the level of underlying classes, we observe that

∑

𝜖𝜖𝜖
(𝛿𝛿𝛿◦𝛾𝛾𝛾)(𝑡, 𝑏) =

(

𝑡, (𝛿◦𝛾)(𝑏)
)

=
∑

𝜖𝜖𝜖
𝛿𝛿𝛿
(

𝑡, 𝛾(𝑏)
)

=
∑

𝜖𝜖𝜖
𝛿𝛿𝛿
((

∑

𝜖𝜖𝜖◦𝛿𝛿𝛿
𝛾𝛾𝛾
)

(𝑡, 𝑏)
)

.

For the forcing relations, we simply remark that 𝑥 ⊩
∑

𝜖 𝛿◦𝛾
(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿◦𝛾

𝑡 𝑦. Similarly, we have 𝑑𝑎𝑠ℎ
∑

𝜖 𝛿
(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿

𝑡 𝑦,
and 𝑥 ⊩

∑

𝜖◦𝛿 𝛾
(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛾

𝑡 𝑦. Hence, 𝑥 ⊩
∑

𝜖 𝛿◦
∑

𝜖◦𝛿 𝛾
(𝑡,𝑏) 𝑦 if and only if 𝑥 ⊩𝛿◦𝛾

𝑡 𝑧, which by the above is equivalent to 𝑥 ⊩
∑

𝜖 𝛿◦𝛾
(𝑡,𝑏) 𝑧. ∎

Corollary 1. The category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a type-category.
Proof. From Theorem 2 and Definition 7 it suffices to show that 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has a terminal object. Such an object is described in
Remark 1. ∎

Corollary 2. The category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has dependent arrows.
Proof. By Theorems 1 and 2 the canonical dependent arrows over a computability model 𝐂 and a presheaf-simulation 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌
are the simulations 𝜙𝜙𝜙∶ 𝐂 ⇾

∑

𝐂 𝛾𝛾𝛾, such that 𝗉𝗋𝗉𝗋𝗉𝗋𝐂,𝛾𝛾𝛾1 ◦𝜙𝜙𝜙 = 𝟏𝐂. ∎
Corollary 2 bridges the theory of computability models with the categorical interpretation of dependent type theory.

6. 2-fam-categories with a 𝚺-structure

In [4] notions and results from [16] are extended to categories with 2-family arrows. The motivation for such a 2-categorical
generalisation is the 2-family structure of a universe of types  . If 𝑃 ,𝑄∶ 𝐴 →  are type-families over the type 𝐴 in  , a 2-family
arrow from 𝑃 to 𝑄 is a dependent function

𝐻 ∶
∏

𝑥∶ 𝐴

(

𝑃 (𝑥) → 𝑄(𝑥)
)

.

Definition 9. A fam-category  is a 2-fam-category, if for each 𝑐 ∈  the collection 𝚏𝙷𝚘𝚖(𝑐) is a category whose morphisms are called
2-family arrows. A 2-family arrow 𝜂 ∈ 𝙷𝚘𝚖(𝜆, 𝜇) is pictured as follows:

Moreover, for each 𝑐, 𝑐′ ∈ , 𝜆, 𝜇 ∈ 𝚏𝙷𝚘𝚖(𝑐′) there is an operation ∙𝑐,𝑐′ assigning to 𝜂 ∈ 𝙷𝚘𝚖(𝜆, 𝜇) and 𝑓 ∶ 𝑐 → 𝑐′ the 2-family-arrow
𝜂 ∙𝑐,𝑐′ 𝑓 ∈ 𝙷𝚘𝚖(𝜆◦𝑓, 𝜇◦𝑓), such that the following conditions hold:
Compatibility: For each 𝑐, 𝑐′, 𝑐′′ ∈ , each 𝜆, 𝜇 ∈ 𝚏𝙷𝚘𝚖(𝑐′′), each 𝜂 ∈ 𝙷𝚘𝚖(𝜆, 𝜇) and each 𝑓 ∈ 𝙷𝚘𝚖(𝑐, 𝑐′), 𝑔 ∈ 𝙷𝚘𝚖(𝑐′, 𝑐′′) we have that

Theoretical Computer Science 1057 (2025) 115550

9

L. Gambarte and I. Petrakis

Distributivity: For each 𝑐, 𝑐′ ∈ , each 𝜆, 𝛿, 𝛾 ∈ 𝚏𝙷𝚘𝚖(𝑐′) and 𝜂 ∈ 𝙷𝚘𝚖(𝛿, 𝛾), 𝜂′ ∈ 𝙷𝚘𝚖(𝛾, 𝜆) as well as 𝑓 ∈ 𝙷𝚘𝚖(𝑐, 𝑐′) we have that

Remark 2. Usually, we omit the indices in ∙𝑐,𝑐′ and only write ∙. The operation ∙ will be called “horizontal composition” from now
on.

Example 5. (i) If 𝑀 is a monoid, and  is a fam-category, we can define a 2-fam-structure on  by letting 𝙷𝚘𝚖(𝜆, 𝜇) ∶= 𝑀 for
𝜆, 𝜇 ∈ 𝚏𝙷𝚘𝚖(𝑐) and 𝑐 ∈ 0. The compositions ∙ are defined by the rule 𝑚 ∙ 𝑓 ∶= 𝑚. The compatibility and distributivity properties are
immediate to show.
(ii) All fam-categories in Example 2 have their 2-analogue (see [4], § 3.1).

Next we define the Σ-structure that corresponds to a 2-fam-category.

Definition 10. A 2-fam-category  is a (2-fam, Σ)-category if the underlying fam-category has a (fam,Σ)-structure and for every
𝑐 ∈ , every 𝜆, 𝜇 ∈ 𝚏𝙷𝚘𝚖(𝑐) and every 𝜂 ∈ 𝙷𝚘𝚖(𝜆, 𝜇) there is an arrow

∑

𝜆,𝜇
𝜂∶

∑

𝑐
𝜆 →

∑

𝑐
𝜇,

such that the following diagrams commute

Moreover, the following strictness conditions hold:
∑

𝜆,𝜆
1𝜆 = 1∑

𝑐 𝜆 and
∑

𝜆,𝜇
𝜂◦

∑

𝜈,𝜆
𝜂′ =

∑

𝜈,𝜇
(𝜂◦𝜂′).

For various examples of (2-fam, Σ)-categories we refer to [4], § 3.2. 2-dep-categories are defined in [4], § 3.4, and the 2-analogue
to Theorem 1 is also shown in [4] (Theorem 3.4.6).

Theoretical Computer Science 1057 (2025) 115550

10

L. Gambarte and I. Petrakis

7. 𝗖𝗼𝗺𝗽𝗠𝗼𝗱 is a 2-fam-category with a 𝚺-structure

Proposition 4. 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a 2-fam-category.
Proof. If 𝐂 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 over the class 𝑈 , the category 𝚏𝙷𝚘𝚖(𝐂) has objects copresheaf-simulations 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬 and arrows witnesses
of transformability

= (𝜇𝑡)𝑡∈𝑇 ∶ 𝛾𝛾𝛾 ⇒ 𝛿𝛿𝛿,

where 𝜇𝑡 ∶ 𝛾(𝑡) ⇀ 𝛿(𝑡), such that, for every 𝑐 ∈ 𝐂(𝑡) and every 𝑑 ∈ 𝛾(𝑡), the implication 𝑑 ⊩𝛾
𝑡 𝑐 ⇒ 𝜇𝑡(𝑑) ⊩𝛿

𝑡 𝑐 holds. If ∶ 𝛾𝛾𝛾 ⇒ 𝛿𝛿𝛿 and
∶ 𝛿𝛿𝛿 ⇒ 𝜆𝜆𝜆, then the composition ◦ is defined to be (𝜈𝑡◦𝜇𝑡)𝑡∈𝑇 . This is well defined because

𝑑 ⊩𝛾
𝑡 𝑐 ⇒ 𝜇𝑡(𝑑) ⊩𝛿

𝑡 𝑐 ⇒ 𝜈𝑡
(

𝜇𝑡(𝑑)
)

⊩𝑡 𝑐.

The identity for 𝛾𝛾𝛾 ∈ 𝚏𝙷𝚘𝚖(𝐂) is simply 𝟏𝐂(𝑡) ∈ 𝐂[𝛾(𝑡), 𝛾(𝑡)], which exists because 𝐂 is a computability model. Thus 𝚏𝙷𝚘𝚖(𝐂) is a category.
Next, we define the horizontal composition ∙𝐂,𝐃, where 𝐂,𝐃 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽. If = (𝜇𝑢)𝑢∈𝑈 and 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐃, let ∙𝐂,𝐃𝛾𝛾𝛾 ∶= (𝜇𝛾(𝑡))𝑡∈𝑇 . The
compatibility conditions are immediate to show. For the distributivity we have that

(◦) ∙ 𝜆𝜆𝜆 = (𝜈𝑢◦𝜇𝑢)𝑢∈𝑈 ∙ 𝜆𝜆𝜆 = (𝜈𝜆(𝑡)◦𝜇𝜆(𝑡))𝑡∈𝑇
= (𝜈𝜆(𝑡))𝑡∈𝑇 ◦(𝜇𝜆(𝑡))𝑡∈𝑇 = (∙𝜆𝜆𝜆)◦(∙𝜆𝜆𝜆).∎

Definition 11. An equality simulation4 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝐃 is a simulation such that 𝐂(𝑡) = 𝐃(𝛾(𝑡)) for all 𝑡 ∈ 𝑇 and the tracking relations ⊩𝛾
𝑡

are the equality relations on the respective set 𝐂(𝑡).
Remark 3. In [15] it is shown that computability models together with equality simulations form a category. We will use this fact
(namely the closure under composition) in the following proof. It is immediate from their definition, that the simulations ∑𝛿𝛿𝛿 𝛾𝛾𝛾 and
∑

𝛾𝛾𝛾,𝛿𝛿𝛿 are equality simulations.
Theorem 3. 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is a (2-fam, Σ)-category.
Proof. Given ∶ 𝛾𝛾𝛾 ⇒ 𝛿𝛿𝛿, where 𝛾𝛾𝛾, 𝛿𝛿𝛿∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬, let ∑𝛾𝛾𝛾,𝛿𝛿𝛿 be the simulation with underlying class function (𝑡, 𝑏) ↦ (𝑡, 𝜇𝑡(𝑏)) and tracking
relations

⊩
∑

𝛾,𝛿
(𝑡,𝑏) =

{

(𝑥, 𝑥) ||
|

𝑥 ∈
(

∑

𝑐
𝜆𝜆𝜆
)

(𝑡, 𝑏)
}

.

This is well-defined due to the following implications:

𝑥 ∈
(

∑

𝐂
𝛾𝛾𝛾
)

(𝑡, 𝑏) ⇔ 𝑏 ⊩𝛾
𝑡 𝑥 ⇒ 𝜇𝑡(𝑏) ⊩𝛿

𝑡 𝑥

⇒ 𝑥 ∈
(

∑

𝐂
𝛿𝛿𝛿
)

(

𝑡, 𝜇𝑡(𝑏)
)

⇒ 𝑥 ∈
(

∑

𝐂
𝛿𝛿𝛿
)

(
∑

𝜆𝜆𝜆,𝛿𝛿𝛿(𝑡, 𝑏)
)

.

The two defining conditions on simulations follow from the definition of the tracking relations. Let a simulation 𝛼𝛼𝛼∶ 𝐂 ⇾ 𝐃, where 𝐂
is over 𝑇 and 𝐃 is over 𝑈 , and simulations 𝛾𝛾𝛾, 𝛿𝛿𝛿∶ 𝐃 ⇾ 𝐒𝐞𝐭𝐬 with a witness of transformability ∶ 𝛾𝛾𝛾 ⇒ 𝛿𝛿𝛿. We show the commutativity of
the following diagram

by showing the following equalities:
∑

𝛾𝛾𝛾,𝛿𝛿𝛿
◦
∑

𝛾𝛾𝛾
𝛼𝛼𝛼 =

∑

𝛿𝛿𝛿
𝛼𝛼𝛼◦

∑

𝛾𝛾𝛾◦𝛼𝛼𝛼,𝛿𝛿𝛿◦𝛼𝛼𝛼
∙𝛼𝛼𝛼,

𝐩𝐫1 = 𝐩𝐫1◦
∑

𝛾𝛾𝛾,𝛿𝛿𝛿
,

𝐩𝐫1 = 𝐩𝐫1◦
∑

𝛾𝛾𝛾◦𝛼𝛼𝛼,𝛿𝛿𝛿◦𝛼𝛼𝛼
∙𝛼𝛼𝛼.

4 Equality simulations are elaborated in [15].

Theoretical Computer Science 1057 (2025) 115550

11

L. Gambarte and I. Petrakis

On the underlying classes we have for the first equation that
(

∑

𝛾𝛾𝛾,𝛿𝛿𝛿
◦
∑

𝛾𝛾𝛾
𝛼𝛼𝛼
)

(𝑡, 𝑏) =
∑

𝛾𝛾𝛾,𝛿𝛿𝛿
(𝛾(𝑡), 𝑏) = (𝛼(𝑡), 𝜇𝛼(𝑡)(𝑏))

=
∑

𝛿𝛿𝛿
𝛼𝛼𝛼(𝑡, 𝜇𝛼(𝑡)(𝑏)) =

(

∑

𝛿𝛿𝛿
𝛼𝛼𝛼◦

∑

𝛾𝛾𝛾◦𝛼𝛼𝛼,𝛿𝛿𝛿◦𝛼𝛼𝛼
∙𝛼𝛼𝛼
)

(𝑡, 𝑏)

and for the second and third equality we have that

𝐩𝐫1(𝑡, 𝑏) = 𝑡 = 𝐩𝐫1(𝑡, 𝜇𝛼(𝑡)(𝑏)) = 𝐩𝐫1◦
(

∑

𝛾𝛾𝛾,𝛿𝛿𝛿
∙𝛼𝛼𝛼
)

(𝑡, 𝑏),

𝐩𝐫1(𝑢, 𝑏) = 𝑢 = 𝐩𝐫1(𝑢, 𝜇𝑢(𝑏)) = 𝐩𝐫1◦
∑

𝛾𝛾𝛾,𝛿𝛿𝛿
(𝑢, 𝑏).

For the tracking relations we only note that the composition of equality simulations is an equality simulation itself. ∎

Remark 4. In analogy to Corollary 2, and using the fact that a (2-fam, Σ) category has 2-dependent arrows (Theorem 3.4.6 in [4]),
one shows that the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has also 2-dependent arrows.

8. Fibration-simulations and opfibration-simulations

The (covariant) Grothendieck construction allows the generation of fibrations (opfibrations), since the first-projection functor
𝗉𝗋1 ∶

∑

 𝑃 →  is a (split) opfibration, if 𝑃 is a copresheaf, and a (split) fibration, if 𝑃 is a presheaf. In this section we intro-
duce fibration- and opfibration-simulations, and we show that the first-projection-simulation 𝗉𝗋𝟏 ∶

∑

𝐂 𝛾𝛾𝛾 ⇾ 𝐂 is a (split) opfibration-
simulation, as we work with copresheaf-simulations. The dual result is shown similarly. Throughout this section, 𝐄 is a computability
model over 𝑇 and 𝐁 is a computability model over 𝑈 . Moreover, the pair

𝜛𝜛𝜛 ∶=
(

𝜛 ∶ 𝑇 → 𝑈,
(

⊩𝜛
𝑡
)

𝑡∈𝑇

)

is a simulation of type 𝐄 ⇾ 𝐁.
In contrast to what it holds for functors, for simulations 𝛾𝛾𝛾 ∶ 𝐄 ⇾ 𝐁 each computable function 𝑓 in 𝐄 is tracked, in general, by a

multitude of maps 𝑓 ′ in 𝐁. Thus, for each opspan

we have a whole class, in general, of opspans

such that 𝑓 ′ tracks 𝑓 and 𝑔′ tracks 𝑔.

Definition 12 (Cartesian computable function). Let 𝑓 ′ ∈ 𝐁[𝑠, 𝑠′] and 𝑡′ ∈ 𝑇 , such that 𝜛(𝑡′) = 𝑠′ be given. We call a computable
function 𝑓 ∈ 𝐄[𝑡, 𝑡′] cartesian for 𝑓 ′ and 𝑡′, if 𝑓 ′ ⊩𝜛

(𝑡,𝑡′) 𝑓 , and given computable functions 𝑔 ∈ 𝐄[𝑡′′, 𝑡′], 𝑔′ ∈ 𝐁[𝜛(𝑡′′), 𝜛(𝑡′)], and ℎ ∈
𝐁[𝜛(𝑡′′), 𝜛(𝑡)] as in the following diagram

that is 𝑔′ tracks 𝑔, there is some 𝑘 ∈ 𝐄[𝑡′′, 𝑡] satisfying the following property: ℎ ⊩𝜛
(𝑡′′ ,𝑡) 𝑘, and for every 𝑥 ∈ 𝐄(𝑡′′), 𝑦 ∈ 𝐁(𝜛(𝑡′′)),

such that 𝑦 ⊩𝜛
𝑡′′ 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓 ′◦ℎ) ∩ 𝑑𝑜𝑚(𝑔′), and 𝑓 ′(ℎ(𝑦)) = 𝑔′(𝑦), then 𝑥 ∈ 𝑑𝑜𝑚(𝑓◦𝑘) ∩ 𝑑𝑜𝑚(𝑔) and 𝑔(𝑥) = 𝑓 (𝑘(𝑥)).

Definition 13 (Opcartesian computable function). Let 𝑓 ′ ∈ 𝐁[𝑠′, 𝑠] and 𝑡′ ∈ 𝑇 , such that 𝜛(𝑡′) = 𝑠′ be given We call a computable
function 𝑓 ∈ 𝐄[𝑡′, 𝑡] opcartesian for 𝑓 ′ and 𝑡′, if 𝑓 ′ ⊩𝜛

(𝑡′ ,𝑡′) 𝑓 , and given computable functions 𝑔 ∈ 𝐄[𝑡′, 𝑡′′], 𝑔′ ∈ 𝐁[𝜛(𝑡′), 𝜛(𝑡′′)] and
ℎ ∈ 𝐁[𝜛(𝑡), 𝜛(𝑡′′)] as in the following diagram

Theoretical Computer Science 1057 (2025) 115550

12

L. Gambarte and I. Petrakis

that is 𝑔′ tracks 𝑔, there is some 𝑙 ∈ 𝐄[𝑡, 𝑡′′] satisfying the following property: ℎ tracks 𝑙, and for every 𝑥 ∈ 𝐄(𝑡′), 𝑦 ∈ 𝐁(𝜛(𝑡′)), such
that 𝑦 ⊩𝜛

𝑡′ 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(ℎ◦𝑓 ′) ∩ 𝑑𝑜𝑚(𝑔′), and 𝑓 ′(ℎ(𝑦)) = 𝑔′(𝑦), then 𝑥 ∈ 𝑑𝑜𝑚(𝑙◦𝑓) ∩ 𝑑𝑜𝑚(𝑔) and 𝑔(𝑥) = 𝑙(𝑓 (𝑥)).
Note that the computable functions 𝑘 ∈ 𝐄[𝑡′′, 𝑡] and 𝑙 ∈ 𝐄[𝑡, 𝑡′′] in the above two definitions, respectively, are not unique.

Definition 14 (Fibration-simulation). We call 𝜛𝜛𝜛 ∶ 𝐄 ⇾ 𝐁 a fibration-simula tion, if for every computable function 𝑓 ∈ 𝐁
[

𝑢,𝜛(𝑡)
] there

is 𝑔 ∈ 𝐄[𝑡′, 𝑡] cartesian for 𝑓 and 𝑡. In this case, we call 𝑔 a lift of 𝑓 .
Definition 15 (Opfibration-simulation). We call 𝜛𝜛𝜛 ∶ 𝐄 → 𝐁 an opfibration-simulation, if for every computable function 𝑓 ∈ 𝐁

[

𝜛(𝑡), 𝑢
]

,
there is 𝑔 ∈ 𝐄[𝑡, 𝑡′] opcartesian for 𝑓 and 𝑡. In this case, we call 𝑔 a lift of 𝑓 .
Example 6. Let  , be categories with copresheaves 𝑆, 𝑆′ and 𝐹 ∶  →  a fibration with 𝑆′◦𝐹 = 𝑆. Then, 𝛾𝛾𝛾𝐹 ∶ 𝐂𝐌𝑡𝑜𝑡( ;𝑆) ⇾
𝐂𝐌𝑡𝑜𝑡(;𝑆′) is a fibration-simulation. To see this, assume we are given a computable function in 𝐂𝐌𝑡𝑜𝑡(;𝑆′), i.e., a function
𝑆′(𝑓)∶ 𝑆′(𝑏) → 𝑆′(𝑏′), and 𝑒 ∈  such that 𝐹 (𝑒′) = 𝑏′. As 𝐹 is a fibration, we find an arrow 𝑔∶ 𝑒 → 𝑒′ cartesian over 𝑓 and 𝑏′ .
We show that 𝑆(𝑔) is the desired cartesian function over 𝑆′(𝑓) and 𝑆(𝑏′). For this, let functions 𝑆(ℎ), 𝑆(ℎ2), 𝑆(𝑔2) as in the following
diagram,

be given, where we used that 𝐂𝐌𝑝𝑟𝑡( ;𝑆)(𝑒) = 𝑆(𝑒) and 𝐂𝐌𝑝𝑟𝑡(;𝑆′)(𝑏) = 𝑆(𝑏), for every 𝑒 and 𝑏, respectively. As 𝑔 is cartesian
over 𝑓 and 𝑏′, we obtain an arrow 𝑘∶ 𝑒′′ → 𝑒, such that 𝑔◦𝑘 = 𝑔2 and 𝐹 (𝑘) = ℎ2. Obviously, 𝑆(𝑘) is the function needed, and hence
𝑆(𝑔) is cartesian over 𝑆′(𝑓) and 𝑆(𝑏′).
Proposition 5. If 𝐂 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 and 𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬 a copresheaf-simulation, then 𝐩𝐫1 ∶

∑

𝐂 𝛾𝛾𝛾 ⇾ 𝐂 is an opfibration-simulation.
Proof. Assume we are given a computable function 𝑓 ∈ 𝐂[𝑡, 𝑡′] and 𝗉𝗋1(𝑡, 𝑏) = 𝑡. We need to find some 𝑏 ∈ 𝐂(𝑡′), such that 𝗉𝗋1(𝑡′, 𝑏′) = 𝑡′,
and a computable function 𝑓 ′ ∈

(

∑

𝐂 𝛾𝛾𝛾
)

[

(𝑡, 𝑏), (𝑡′, 𝑏′)
]

, such that 𝑓 ⊩𝗉𝗋1
((𝑡,𝑏),(𝑡′ ,𝑏′)) 𝑓

′. By definition we know that 𝑓 ⊩𝗉𝗋1
((𝑡,𝑏),(𝑡′ ,𝑏′)) 𝑓

′ if and
only if 𝑓 = 𝑓 ′, so we have to find 𝑦 ∈ 𝐂(𝑡′), such that 𝑓 (𝑏) = 𝑏′. For this, we simply take 𝑏′ ∶= 𝑓 (𝑏). To show that 𝑓 is opcartesian for
𝑓 and 𝑏, we consider the following diagram

Since ℎ fills the triangle on the left, as 𝑓 = ℎ◦𝑔 whenever these functions are defined, hence, in particular, 𝑓 (𝑏) = ℎ
(

𝑔(𝑏)
)

, and
thus 𝑏′ = ℎ(𝑏′′). Hence, ℎ is a computable function from

(

∑

𝐂 𝛾𝛾𝛾
)

(𝑡′′, 𝑏′′) to
(

∑

𝐂 𝛾𝛾𝛾
)

(𝑡′, 𝑏′). ∎

Next we define split fibration-simulations and split opfibration-simulations.

Theoretical Computer Science 1057 (2025) 115550

13

L. Gambarte and I. Petrakis

Table 1
The correspondence between category theory and theory of computablity models.
Category theory Theory of computablity models
category  computability model 𝐂
functor 𝐹 ∶  →  simulation 𝛾 ∶ 𝐂 ⇾ 𝐃
category of 𝖲𝖾𝗍𝗌 computability model of 𝐒𝐞𝐭𝐬
copresheaf 𝑃 ∶  → 𝖲𝖾𝗍𝗌 copresheaf-simulation 𝛾 ∶ 𝐂 ⇾ 𝐒𝐞𝐭𝐬
representable functor 𝙷𝚘𝚖(𝑎,−) representable simulation 𝛄𝑡0
representable functor 𝙷𝚘𝚖(−, 𝑎) representable-simulation 𝛅𝑡0
Grothendieck category ∑ 𝑃 Grothendieck comp. model ∑𝐂 𝛾𝛾𝛾
first-projection functor

𝗉𝗋1 ∶
∑


𝑃 → 

first-projection-simulation

𝗉𝗋𝟏 ∶
∑

𝐂
𝛾𝛾𝛾 ⇾ 𝐂

(op)cartesian arrow (op)cartesian computable function
(op)fibration 𝜋 ∶  →  (op)fibration-simulation 𝜛𝜛𝜛 ∶ 𝐄 ⇾ 𝐁
split (op)fibration split (op)fibration-simulation

Definition 16. A splitting for a fibration-simulation 𝜛𝜛𝜛 ∶ 𝐄 ⇾ 𝐁 is a rule 𝜛△ that corresponds a pair (𝑓, 𝑢), where 𝑓 ∈ 𝐁[𝑡1, 𝑡2] and
𝜛(𝑢) = 𝑡2, to some 𝑓 ′ ∈ 𝐄[𝑢, 𝑢′] cartesian for 𝑓 and 𝑢, such that the following conditions hold:
(𝑆1) For every 𝑓 ∈ 𝐁[𝑡1, 𝑡2] and every 𝑔 ∈ 𝐁[𝑡2, 𝑡3] we have that

𝜛△(𝑔◦𝑓, 𝑢1) = 𝜛△(𝑔, 𝑢1)◦𝜛△(𝑓, 𝑢2).

(𝑆2) For every 𝑡 ∈ 𝑇 we have that 𝜛△(1𝐁(𝑡), 𝑢) = (1𝐄(𝑢), 𝑢).

A splitting for an opfibration-simulation 𝜛𝜛𝜛 ∶ 𝐄 ⇾ 𝐁 is a rule 𝜛△ that corresponds a pair (𝑓, 𝑢), where 𝑓 ∈ 𝐁[𝑡1, 𝑡2] and 𝜛(𝑢) = 𝑡1, to
some 𝑓 ′ ∈ 𝐄[𝑢, 𝑢′] opcartesian over 𝑓 and 𝑢, such that the following conditions hold:
(𝑆1

′) For every 𝑓 ∈ 𝐁[𝑡1, 𝑡2] and every 𝑔 ∈ 𝐁[𝑡2, 𝑡3] we have that

𝜛△(𝑔◦𝑓, 𝑢1) = 𝜛△(𝑔, 𝑢2)◦𝜛△(𝑓, 𝑢1).

(𝑆2
′) For every 𝑡 ∈ 𝑇 we have that 𝜛△(1𝐁(𝑡), 𝑢) = (1𝐄(𝑢), 𝑢).

A (op)fibration-simulation 𝜛𝜛𝜛 is split, if it admits a splitting 𝜛△.

Corollary 3. 𝐩𝐫1 ∶
∑

𝐂 𝛾𝛾𝛾 ⇾ 𝐂 is a split opfibration-simulation.

Proof. Let 𝐩𝐫△1 be defined by the rule 𝐩𝐫△1 (𝑓, 𝑢) ∶= 𝑓 . ∎

9. Conclusions and future work

In [12] many concepts and results from category theory are translated into the theory of computability models, where equalities
between arrows are replaced by certain relations between type names and (partial) computable functions. Here we extend the work
initiated in [14,15] by translating the Grothendieck construction and the notions of fibration and opfibration into the theory of
computability models.

Table 1 includes the correspondences between categorical and computability model theory-notions presented here.
It is natural to ask whether the category of presheaves, or more generally of all functors between two categories, can be translated

within computability models. As a consequence, a Yoneda-type embedding and a corresponding Yoneda lemma for computability
models and appropriate presheaf-simulations can be formulated. In such a framework, the Grothendieck computability model is
expected to have the same crucial role in the proof of a corresponding density theorem with that of the Grothendieck category in the
proof of the categorical density theorem. For that, we need to introduce forcing and tracking-moduli in the definition of a simulation
i.e., realisers for the forcing and tracking relations. We plan to develop these concepts further in the future.

Our approach to (op)fibration-simulations and (op)cartesian functions is different from the 2-categorical approach to fibrations
in [20,24]. In future work, we plan to explain the exact relation between our approach and the 2-categorical one in detail. Namely,
our approach to cartesian arrows yields a different notion from the 2-categorical one. Nonetheless, we can prove that by adding the
weak assumption that all computability models include all constant functions, every fibration in our sense is a 2-categorical fibration.

The category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 is shown to be a (fam, Σ)-category with a terminal object, or a type-category, and also a (2-fam, Σ) category.
These results allow the transport of concepts and facts from the theory of categories with family arrows and Sigma-objects into the
theory of computability models. For example, through Corollary 2 the category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has dependent arrows. The presence of
dependence arrows in a category  allows the translation of the second-projection associated to the dependent pair-type in Martin-
Löf type theory into  as a dependent arrow (see [16], §5). Consequently, if 𝐂 ∈ 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 and 𝛾𝛾𝛾 ∶ 𝐂 ⇾ 𝖲𝖾𝗍𝗌 is a copresheaf-simulation,
there is a simulation

𝐩𝐫𝐂,𝛾𝛾𝛾2 ∶
∑

𝐂
𝛾𝛾𝛾 ⇾

∑

∑

𝐂 𝛾𝛾𝛾

(

𝛾𝛾𝛾◦𝐩𝐫𝐂,𝛾𝛾𝛾1
)

Theoretical Computer Science 1057 (2025) 115550

14

L. Gambarte and I. Petrakis

representing the second-projection as a dependent arrow over the Grothendieck computability model ∑𝐂 𝛾𝛾𝛾 and the copresheaf-
simulation 𝛾𝛾𝛾◦𝐩𝐫𝐂,𝛾𝛾𝛾1 .

In [18], Proposition 6.11, it is shown that the classifying category of a dependently typed algebraic theory 𝑇ℎ i.e., the category that
contains the most general model of this theory, is a type-category. Moreover, a model of 𝑇ℎ in any type-category is defined in [18],
pp. 117-118. Corollary 1 allows the seemingly unexpected connection between dependently type algebraic theories and the theory
of computability models. It is a result that bridges dependent type theory with computability models, where the theory of the latter
was introduced by Longley and Normann independently from type-theoretic system with dependent features.5 In subsequent work
we plan to study models of various dependently typed algebraic theories within 𝖢𝗈𝗆𝗉𝖬𝗈𝖽. In [18] it is defined when a type-category
has dependent products (Definition 6.23). We need to examine whether the type-category 𝖢𝗈𝗆𝗉𝖬𝗈𝖽 has dependent objects, in the
sense of Pitts, and, if yes, to relate them to the canonical dependent arrows of a type-category.

CRediT authorship contribution statement

Luis Gambarte: Writing – review & editing, Writing – original draft, Conceptualization; Iosif Petrakis: Writing – review & editing,
Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] R. Cockett, Categories and Computability, manuscript, 2010. https://cs.ioc.ee/ewscs/2010/cockett/estonia-notes.pdf.
[2] R. Cockett, P. Hofstra, Introduction to Turing categories, Ann. Pure Appl. Log. 156 (2-3) (2008) 183–209.
[3] R. Cockett, P. Hofstra, Categorical simulations, J. Pure Appl. Algebra 214 (10) (2010) 1835–1853.
[4] Y. Ehrhardt, 2-dep-Categories, Bachelor’s Thesis, LMU Munich, 2024. https://www.math.lmu.de/~petrakis/Ehrhardt.pdf.
[5] L. Gambarte, I. Petrakis, Categories with a Base of Computability, 2025. In preparation.
[6] L. Gambarte, I. Petrakis, The Grothendieck Computability Model, CEUR Workshop Proceedings 3811 (CEUR-WS.org 2024) (2024) 16–28. Proceedings of the

25th Italian Conference on Theoretical Computer Science.
[7] M. Hofmann, T. Streicher, The Groupoid Interpretation of Type Theory, in [22] 83–111.
[8] P. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Oxford University Press, 2002.
[9] J. Longley, Realizability Toposes and Language Semantics, PhD Thesis ECS-LFCS-95-332, University of Edinburgh, 1995.
[10] J. Longley, On the ubiquity of certain total type structures, Math. Struct. Comput. Sci. 17 (5) (2007) 841–953.
[11] J. Longley, Computability structures, simulations and realizability, Math. Struct. Comput. Sci. 24 (2) (2014) 1–49.
[12] J. Longley, D. Normann, Higher-Order Computability, Springer, (2015) 1–49.
[13] I. Petrakis, Computability Models Over Categories, 2021. https://arxiv.org/abs/2105.06933v1.
[14] I. Petrakis, Computability Models over Categories and Presheaves, Logical Foundations of Computer Science, 13137, Springer, 2022. Available on ArXiV.
[15] I. Petrakis, Strict computability models over categories and presheaves, J. Log. Comput. 077 (2022). https://doi.org/10.1093/logcom/exac077.
[16] I. Petrakis, Categories with Dependent Arrows, 2023. https://arxiv.org/abs/2303.14754v1.
[17] I. Petrakis, Y. Ehrhardt, Categories with Dependent and Codependent Arrows, 2025. Submitted, Preprint, avaliable on arxiv via http://arxiv.org/abs/2303.14754.
[18] A.M. Pitts, Categorical logic, Handbook of Logic in Computer Science Volume 5: Logic and Algebraic Methods, Clarendon Press, Oxford, 2000.
[19] G. Rosolini, Continuity and Effectiveness in Topoi, PhD Thesis, University of Oxford, 1986.
[20] E. Riehl, Two-Sided Discrete Fibrations in 2-Categories and Bicategories, manuscript, 2010. https://math.jhu.edu/~eriehl/fibrations.pdf.
[21] E. Riehl, Category Theory in Context, Dover Publications Inc, 2016.
[22] G. Sambin, J.M. Smith (Eds.), Twenty-Five Years of Constructive Type Theory, Oxford University Press, 1998.
[23] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study, Princeton, 2013.
[24] L.Z. Wong, The Grothendieck Construction in Enriched, Internal and ∞-Category Theory, PhD Thesis, University of Washington, 2019.

5 As Longley and Normann remark in [12], p. 544, “there is unexplored territory here, e.g. in combining constructive type theory and set theory
with classical approaches to functional algorithms”.

Theoretical Computer Science 1057 (2025) 115550

15

http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0001
https://cs.ioc.ee/ewscs/2010/cockett/estonia-notes.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0002
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0003
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0004
https://www.math.lmu.de/~petrakis/Ehrhardt.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0005
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0006
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0006
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0007
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0008
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0009
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0010
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0011
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0012
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0013
https://arxiv.org/abs/2105.06933v1
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0014
https://doi.org/10.1093/logcom/exac077
https://doi.org/10.1093/logcom/exac077
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0016
https://arxiv.org/abs/2303.14754v1
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0017
http://arxiv.org/abs/2303.14754
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0018
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0019
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0020
https://math.jhu.edu/~eriehl/fibrations.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0021
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0022
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0023
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0024

	The Grothendieck computability model
	1 Introduction
	2 Basic definitions
	3 The Grothendieck computability model
	4 Fam-categories with a -structure
	5 CompMod is a type-category
	6 2-fam-categories with a -structure
	7 CompMod is a 2-fam-category with a -structure
	8 Fibration-simulations and opfibration-simulations
	9 Conclusions and future work

