Theoretical Computer Science 1057 (2025) 115550

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Check for

The Grothendieck computability model

Luis Gambarte ®*, Iosif Petrakis®

a Mathematisches Institut der Universitdt Miinchen, Theresienstr. 39, D-80333 Miinchen, Deutschland
b Universita degli studi di Verona, Strada Le Grazie 15, 37134, Verona, Italia

ARTICLE INFO ABSTRACT
Section Editor: Pinyan Lu Translating notions and results from category theory to the theory of computability models of
Handling Editor: Katie Harris Longley and Normann, we introduce the Grothendieck computability model. We define the first-

projection-simulation and prove its basic properties. With the Grothendieck computability model,
Higher-order computability the cat(.egory of computa‘?ilit)./ models is .shown tobea type—catego.ry, in the sense of Pitts, a re.51.11t
Computability models that bridges the categorical interpretation of dependent types with the theory of computability
Category theory models. We also show that the category of computability models is a category with 2-family
Grothendieck construction arrows and a corresponding structure of Sigma-objects. Finally, we introduce the notion of a
fibration and opfibration-simulation, and we prove that the first-projection-simulation is a split
opfibration-simulation.

Keywords:

1. Introduction

The important role of category theory in computability theory has been emphasised by Cockett and Hofstra in [1-3], who influ-
enced the work of Longley on computability models and simulations between them in [9-11]. The categorical notion of equivalence
between computability models studied by Longley and Normann in [12] allowed a better way to “identify” seemingly different com-
putability structures. By associating to a computability model C its category of assemblies .4sm(C), Longley and Normann established
an equivalence of Morita-type between them. We can summarize the work of Longley and Normann by the phrase “from computability
models to categories”.

In the previous work [13-15] of the second author, the converse direction is followed, i.e., “from categories to computability
models”. Given a category C and a copresheaf S on C, i.e., a covariant presheaf on C, the total computability model CM'*(C; S) is
introduced, and if C is a category with pullbacks and .S preserves pullbacks, the partial computability model CM?"(C; .S) is studied.
In our work in progress [5] the notion of a computability model over a category C with a computability base, a notion close to
Rosolini’s concept of dominion in [19], and a pullback-preserving copresheaf on C, is elaborated. In this way, both constructions,
that of CM'(C;.S) and of CM”"(C; S), are generalized. Strict computability models are very close to categories of sets and partial
functions, but avoiding the equality rules for composition of partial functions (as it is mentioned by Cockett in [1], p. 16, “program
equality itself is not well-understood”), they possess a more expressive power than categories. Consequently, simulations, the arrows
between computability models, avoid equality, too, involving certain forcing and tracking relations instead.

Working within the direction “from categories to computability models” in this paper, too, we “translate” the categorical
Grothendieck construction and the categorical notion of split (op)fibration to the partial and without equality, or relational frame-
work of computability models. The Grothendieck computability models then become the Sigma objects, in the sense of Pitts [18], in
the category of computability models. We structure this paper as follows.

* Corresponding author.
E-mail addresses: gambarte@math.lmu.de (L. Gambarte), iosif.petrakis@univr.it (I. Petrakis).

https://doi.org/10.1016/j.tcs.2025.115550

Received 27 February 2025; Received in revised form 29 July 2025; Accepted 8 September 2025

Available online 12 September 2025

0304-3975/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/tcs
https://www.elsevier.com/locate/tcs

$\infty $


$\B C$


$\Assemblies (\B C)$


$\C C$


$S$


$\C C$


$\C C$


$\CM ^{\total }(\C C;S)$


$\C C$


$S$


$\CM ^{\prt }(\C C;S)$


$\C C$


$\C C$


$\CM ^{\total }(\C C;S)$


$\CM ^{\prt }(\C C;S)$


$\SetsB $


$\Grothendieck {\B C}{\pmb {\gamma }}$


$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$


$\big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big ]$


$[\B C,\Sets ]/\pmb {\gamma }$


$\pmb {\gamma } \colon \B C \simto \Sets $


$\Sigma $


$\Sigma $


$\Sigma $


$\CompMod $


$\Sigma $


$\CompMod $


$2$


$\Sigma $


$\CompMod $


$\Sigma $


$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$


$($


$)$


$\mathbf {C}$


$T$


$t \in T$


$\mathbf {C}(t)$


$s,t \in T$


$\mathbf {C}[s,t]$


$\mathbf {C}(s)$


$\mathbf {C}(t)$


$r, s, t\in T$


$1_{\mathbf {C}(t)}$


$\mathbf {C}[t,t]$


$f \in \mathbf {C}[r,s]$


$g \in \mathbf {C}[s,t]$


$g \circ f \in \mathbf {C}[r,t]$


$\SetsB $


$\Sets $


$\SetsB $


$U$


$U$


$U, V$


$U$


$V$


$U$


$V$


$(i,f) \colon a \rightharpoonup b$


$\C C$


$i \colon \dom (i) \to a$


$f \colon \dom (i) \to b$


$\C C$


$S \colon \C {C} \to \Sets $


$S(i,f)$


$\big ( S(i),S(f)\big )$


$\C C$


$S \colon \C C \to \Sets $


$\C C$


$\CM ^{\total }(\C {C};S)$


$\C C$


$S$


$\C C_0$


$\C {C}$


$S(c)$


$c \in \C {C}_0$


$c_1, c_2 \in \C C_0$


$S(c_1)$


$S(c_2)$


$\{ S(f) ~\vert ~ f \in \Hom (c_1, c_2)\}$


$\CM ^{\prt }(\C {C};S)$


$\C C$


$S$


$\C C$


$S(c_1)$


$S(c_2)$


$\{ S(i,f) ~\vert ~ (i,f) \colon c_1 \rightharpoonup c_2\}$


$S$


$\CM ^{\prt }(\C {C};S)$


$\Sets ^{\prt }$


$\CM ^{\total }(\Sets ^{\prt }, \id _{\Sets ^{\prt }})$


$\SetsB $


$\CompMod $


$\pmb {\gamma }$


$\mathbf {C}$


$($


$T)$


$\mathbf {D}$


$($


$U)$


$\gamma \colon T \to U$


$\Vdash _t^\gamma \subseteq \B D\big (\gamma (t)\big ) \times \B C(t)$


$t \in T$


$x \in \mathbf {C}(t)$


$y \in \B D(\gamma (t))$


$y \Vdash _t^\gamma x$


$f \in \mathbf {C}[s,t]$


$f' \in \mathbf {D}\big [\gamma (s),\gamma (t)\big ]$


\begin {equation*}\forall _{x \in \mathbf {C}(s)} \forall _{y \in \mathbf {D}(\gamma (s))} \big (x \in \dom (f) \wedge y \Vdash _s^\gamma x \Rightarrow y \in \dom (f') \wedge f'(y) \Vdash _t^\gamma f(x)\big ).\end {equation*}


$f'$


$f$


$f' \Vdash _{(s,t)}^\gamma f$


$\pmb {\gamma } \colon \mathbf {C \simto D}$


$\pmb {\gamma }$


$\mathbf {C}$


$\mathbf {D}$


$\pmb {\gamma } \colon \mathbf {C} \simto \SetsB $


$\B 1_{\B C} \colon \B C \simto \B C$


$\big (\id _T, (\Vdash ^{\B \iota _{\B C}}_{t})_{t \in T}\big )$


$x{'} \Vdash ^{\B \iota _{\B C}}_{t} x :\Leftrightarrow x{'} = x$


$x{'}, x \in \B C(t)$


$\pmb \delta \colon \B D \simto \B E$


$\pmb \delta \circ \pmb \gamma \colon \B C \simto \B E$


$\pmb \delta \circ \pmb \gamma = \pmb \delta {'} \circ \pmb \gamma {'}$


$\delta \circ \gamma = \delta {'} \circ \gamma {'}$


$\Vdash ^{\B \delta \circ \B \gamma }_t = \ \Vdash ^{\B \delta {'} \circ \B \gamma {'}}_t$


$t \in T$


$\big (\delta \circ \gamma , (\Vdash ^{\B \delta \circ \B \gamma }_t)_{t \in T}\big )$


$\Vdash ^{\B \delta \circ \B \gamma }_{t} \subseteq \B E\big (\delta (\gamma (t))\big ) \times \B C(t)$


\begin {equation*}z \Vdash ^{\B \delta \circ \B \gamma }_{t} x :\Leftrightarrow \exists _{y \in \B D(\gamma (t))}\big (z \Vdash ^{\B \delta }_{\gamma (t)} y \ \wedge \ y \Vdash ^{\B \gamma }_{t} x\big ).\end {equation*}


$\B C$


$\Hom (a, -)$


$a$


$\C C$


$\B C$


$T$


$\B C[s,t]$


$\B C(s)$


$\B C(t)$


$s, t \in T$


$t_0 \in T$


$\pmb {\gamma }_{t_0} \colon \mathbf {C} \simto \SetsB $


$\gamma _{t_0} \colon T \to \Sets $


$\gamma _{t_0}(t) := \B C[t_0, t]$


$t \in T$


$\Vdash _{t}^{\gamma _{t_0}} \subseteq \B C[t_0, t] \times \B C(t)$


\begin {equation*}f \Vdash _{t}^{\gamma _{t_0}} x : \Leftrightarrow \exists _{y \in \dom (f)}\big (f(y) = x\big ).\end {equation*}


$\pmb {\gamma }_{t_0}$


$\B C$


\begin {equation*}\forall _{t \in T}\forall _{x \in \B C(t)}\exists _{f \in \B C[t_0, t]}\exists _{y \in \dom (f)}\big (f(y) = x\big ).\end {equation*}


$K_1$


$T = \{0\}$


$\B C(0) = \D N$


$\B C[0, 0]$


$\D N$


$\D N$


$f \in \B C[s,t]$


$f^* \Vdash _{(s,t)}^{\gamma _{t_0}} f$


$f^*$


$\B C[t_0, s]$


$\B C[t_0, t]$


$f^*(g) := f \circ g$


$g \in \B C[t_0, s]$


$\B {\delta }_{t_0} \colon \B C \simto \SetsB $


${\delta }_{t_0} \colon \B C \to \Sets $


$\delta _{t_0}(t) := \B C[t, t_0]$


$t \in T$


$\B \gamma , \B \delta \colon \B C \simto \B D$


$\B \gamma $


$\B \delta $


$\B \gamma \preceq \B \delta $


$t \in T$


$f \in \B D[\gamma (t), \delta (t)]$


\begin {equation*}\forall _{x \in \B C(t)}\forall _{x{'}\in \B D(\gamma (t))}\big (x{'} \Vdash ^{\gamma }_{t}x \Rightarrow x{'} \in \dom (f) \ \wedge \ f(x{'}) \Vdash ^{\B \delta }_{t} x\big ).\end {equation*}


$\C C$


$\B C$


$S \colon \C C \to \Sets $


$\pmb {\gamma }\colon \mathbf {C} \simto \SetsB $


$\mathbf {C}$


$T$


$\pmb {\gamma }\colon \mathbf {C} \simto \SetsB $


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}$


\begin {equation*}\Grothendieck {t \in T}{\pmb {\gamma }(t)} := \big \{(t,b) ~\vert ~ t \in T \hbox { and }b \in \gamma (t) \big \},\end {equation*}


$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$


\begin {equation*}\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(t,b) := \big \{y \in \mathbf {C}(t) ~\vert ~ b \Vdash _t^\gamma y\big \},\end {equation*}


$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(s,a)$


$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(t,b)$


\begin {equation*}\Big \{ f \in \mathbf {C}[s,t] ~\vert ~ \forall _{x \in \dom (f)}\Big ( x \in \Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(s,a) \Rightarrow f(x) \in \Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(t,b)\Big )\Big \},\end {equation*}


$\pr _1 \colon \Grothendieck {t \in T}{\pmb {\gamma }(t)} \to T$


$(t,b) \mapsto t$


$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$


\begin {equation*}y{'} \Vdash _{(t,b)}^{\pr _1} y :\Leftrightarrow y{'} = y,\end {equation*}


$\prbold _1 \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \mathbf {C}$


$a \Vdash _s^\gamma x \Rightarrow b \Vdash _t^\gamma f(x)$


$x \in \dom (f)$


$(t,b) \in \Grothendieck {t \in T}{\pmb {\gamma }(t)}$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$


$\mathbf {C}(t)$


$1_{\mathbf {C}(t)}$


$\Big (\Grothendieck {\mathbf {C}}{\pmb {\gamma }}\Big )(t,b)$


$x \in \mathbf {C}(t)$


$b \Vdash _t^\gamma x \Rightarrow b \Vdash _t^\gamma x$


$g$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(u,c)$


$f$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$


$g \circ f$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(u,c)$


$x \in \dom (f)$


$f(x) \in \dom (g)$


$a \Vdash _s^\gamma x$


$b \Vdash _t^\gamma f(x)$


$c \Vdash _u^\gamma g(f(x))$


$\prbold _1$


$y \in \Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$


$x \Vdash _{(t,b)}^{\pr _1} x$


$f$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(s,a)$


$\Grothendieck {\mathbf {C}}{\pmb {\gamma }}(t,b)$


$f \Vdash _{((s,a),(t,b))}^{\pr _1}f$


$\mathcal {C}$


$S \colon \mathcal {C} \to \Sets $


$\C C$


$\gamma ^S \colon \mathcal {C}_0 \simto \SetsB $


$\gamma ^S(c) = S(c)$


$\Vdash _c^{\gamma ^S}$


$\{\pr _2\} \colon \Grothendieck {\mathcal {C}}{S} \to \Sets $


$\{\pr _2\}(c,x) := \{x\}$


$f \colon (c,x) \to (d,y)$


$\Grothendieck {\mathcal {C}}{S}$


$[S(f)](x) := y$


\begin {equation*}\Grothendieck {\CM ^{\prt }(\mathcal {C};S)}{\pmb {\gamma }^S} = \CM ^{\prt }\Big ( \Grothendieck {\mathcal {C}}{S};\{\pr _2\}\Big ).\end {equation*}


$\B C \mapsto \Assemblies (\B C)$


$\B 1$


$\{\emptyset \}$


$\B 1(\emptyset ) = \{\emptyset \}$


$\id _{\B 1} \colon \B 1 \simto \SetsB $


\begin {equation*}\Assemblies \bigg (\Grothendieck {\B 1}{\id _{\B 1}}\bigg ) \neq \Grothendieck {\Assemblies {(\B 1)}}{\Assemblies (\id _{\B 1})}.\end {equation*}


$\pmb {\gamma } \colon \B C \simto \Sets $


\begin {equation*}\Big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \Big ] \cong [\B C,\Sets ]/\pmb {\gamma }.\end {equation*}


\begin {equation*}I \colon \Big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \Big ] \to [\B C,\Sets ]/\pmb {\gamma }.\end {equation*}


$[\B C, \Sets ]/\pmb {\gamma }$


$\pmb {\delta } \colon \B C \simto \Sets $


$\pmb {\delta } \preceq \pmb {\gamma }$


$\pmb {\gamma } \colon \B C \simto \Sets $


$t \in T$


$\gamma (t)$


$\Vdash _t^\gamma $


$\gamma (t)$


$a \in \gamma (t)$


$a \Vdash _t^\gamma b$


$b \in \B C(t)$


$\B C(t)$


$\B C$


$T$


$\pmb {\gamma } \colon \B C \simto \Sets $


$I \colon \big [\Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big ] \to [\B C,\Sets ]/\pmb {\gamma }$


$\pmb {\beta } \colon \Grothendieck {\B C}{\pmb {\gamma }} \simto \Sets $


$I(\pmb {\beta })$


$I(\beta ) \colon T \to \Sets $


$t \in T$


\begin {equation*}I(\beta )(t) = \bigcup _{x \in \gamma (t)}\beta (t,x).\end {equation*}


$\Vdash _t^{I(\beta )} \subseteq \big (\bigcup _{x \in \gamma (t)}\beta (t,x)\big ) \times \B C(t)$


$:$


\begin {equation*}a \Vdash _t^{I(\beta )} b :\Leftrightarrow \exists _{x \in \gamma (t)}\big (a \Vdash _{(t,x)}^\beta b\big ).\end {equation*}


$I$


$I$


$\pmb {\beta } \in \big [ \Grothendieck {\B C}{\pmb {\gamma }}, \Sets \big ]$


$I(\pmb {\beta })$


$I(\pmb {\beta }) \preceq \pmb {\gamma }$


$I(\beta )(t)$


$t \in T$


$t\in T$


$x \in \gamma (t)$


$\bigcup _{x \in \gamma (t)} \beta (t,x)$


$b \in \B C(t)$


$\pmb {\gamma }$


$x \in \gamma (t)$


$x \Vdash _t^\gamma b$


$\pmb {\beta }$


$a \in \beta (t,x)$


$a \Vdash _{(t,x)}^\beta b$


$\Vdash _t^{I(\beta )}$


$a \Vdash _t^{I(\beta )} b$


$I(\pmb {\beta })$


$f \in \B C[t,t']$


$f'$


$f' \Vdash _{(t,t')}^{I(\beta )} f$


\begin {equation*}\forall x \in \dom (f) \forall y \in I(\beta )(t) : \big ( y \Vdash _t^{I(\beta )} x \Rightarrow y \in \dom (f') \wedge f'(y) \Vdash _{t'}^{I(\beta )} f(x)\big ).\end {equation*}


$x$


$y$


$y \Vdash _t^{I(\beta )} x$


$r \in \gamma (t)$


$y \Vdash _{(t,r)}^{\beta } x$


$r \Vdash _t^\gamma x$


$x$


$\big (\Grothendieck {\B C}{\pmb \gamma }\big )(t,r)$


$\pmb {\gamma }$


$\tilde {f} \colon \gamma (t) \to \gamma (t')$


$\tilde f \Vdash _{(t,t')}^\gamma f$


$\tilde f(r) \Vdash _{t'}^\gamma f(x)$


\begin {equation*}f \in \Big ( \Grothendieck {\B C}{\pmb \gamma }\Big )\Big [\big (t,r\big ),\big (t',\tilde f(r)\big )\Big ],\end {equation*}


$z$


$r \Vdash _t^\gamma z$


$\tilde f(r) \Vdash _{t'}^\gamma f(z)$


$\tilde f$


$\pmb \beta $


$\hat f \colon \beta (t,r) \to \beta \big (t',\tilde f(r)\big )$


$\hat f \Vdash _{((t,r),(t',\tilde f(r)))}^\beta f$


$\hat f(y) \Vdash _{t'}^\beta f(x)$


$f'$


$\beta (t,r)$


$\bigcup _{r \in \gamma (t)} \beta (t,r)$


$\hat f$


$f'$


$I(\pmb \beta ) \preceq \pmb \gamma $


$t \in T$


$g_t \colon I(\beta )(t) \to \gamma (t)$


$y \Vdash _t^{I(\beta )} x$


$g_t(y) \Vdash _t^\gamma x$


$g_t$


$\beta (t,r)$


$I(\beta )(t) = \bigcup _{r \in \gamma (t)}\beta (t,r)$


$\beta (t,r)$


$g_t(y) = r$


$y \Vdash _t^{I(\beta )} x$


$y \Vdash _{(t,r)}^\beta x$


$r \Vdash _t^\gamma x$


$x \in \big (\Grothendieck {\B C}{\pmb \gamma }\big )(t,r)$


$I$


$\pmb \alpha \preceq \pmb \beta $


$I(\pmb \alpha ) \preceq I(\pmb \beta )$


$(t,r) \in \Grothendieck {\B C}{T}$


$g_{(t,r)} \colon \alpha (t,r) \to \beta (t,r)$


$y \Vdash _{(t,r)}^\alpha x$


$g_{(t,r)}(y) \Vdash _{(t,r)}^\beta x$


$I(\beta )(t)$


$g_t$


$\beta (t,r)$


$g_t(y) := g_{(t,r)}(y)$


$y \in \alpha (t,r)$


$g_t$


$I(\pmb \alpha ) \preceq I(\pmb \beta )$


$I(\pmb \alpha ) \preceq I(\pmb \beta ) \Rightarrow \pmb \alpha \preceq \pmb \beta $


$g_{(t,r)}(y) := g_t(y)$


$g_{(t,r)}, g_t$


$\pmb \beta \colon \B C \simto \Sets $


$\pmb \beta \preceq \pmb \gamma $


$I(\pmb \alpha )$


$\pmb \alpha \colon \Grothendieck {\B C}{\pmb \gamma }\rightarrowtriangle \Sets $


$\pmb \beta $


$(t,r) \in \Grothendieck {\B C}{T}$


$\alpha (t,r) := \beta (t)$


$x \Vdash _{(t,r)}^\alpha a :\Leftrightarrow x \Vdash _t^\beta a.$


$\pmb \alpha $


$\alpha \colon \Grothendieck {\B C}{T} \to \Sets $


$\Vdash _{(t,r)}^\alpha $


$a \in \big (\Grothendieck {\B C}{\pmb \gamma }\big )(t,r)$


$x \in \alpha (t,r)$


$x \Vdash _{(t,r)}^\alpha a$


$x\in \beta (t) = \alpha (t,r)$


$x \Vdash _t^\beta a$


$f' \Vdash _{((t,r),(t',r'))}^\alpha f$


$f' \Vdash _{(t,t')}^\beta f$


$\pmb \alpha $


$I(\pmb \alpha ) = \pmb \beta $


$\bigcup _{r \in \gamma (t)}\alpha (t,r) = \bigcup _{r \in \gamma (t)}\beta (t) = \beta (t)$


\begin {equation*}x \Vdash _t^{I(\alpha )} a \Leftrightarrow \exists _r x \Vdash _{(t,r)}^\alpha a \Leftrightarrow \exists _r x\Vdash _t^\beta a \Leftrightarrow x \Vdash _t^\beta a.\end {equation*}


$I$


$I(\pmb \alpha ) = \pmb \beta $


$I(\pmb \alpha ) \sim \pmb \beta $


$\Sigma $


$\Sigma $


$\C C$


$\fHom (c)$


$c$


$\C C$


$\lambda , \delta ,\ldots $


$c$


$c,d \in \C C$


$\circ \colon \fHom (d) \times \Hom (c,d) \to \fHom (c), (\lambda ,f) \mapsto \lambda \circ f$


$(F_1)$


$c \in \C C$


$\lambda \in \fHom (c)$


$\lambda \circ 1_c = \lambda $


$(F_2)$


$c,d,e \in \C C$


$\lambda \in \fHom (e), g \in \Hom (d,e),f \in \Hom (c,d)$


$\lambda \circ (g \circ f) = (\lambda \circ g) \circ f$


$\fHom (c) = \C C_0$


$c \in \C C$


$c \circ f = c$


$c$


$f$


$\C C$


$\Cat $


$\fHom (\C C) = \Fun (\C C\opp , \Sets )$


$\C C$


$(\top , \Omega )$


$a \in \C C$


\begin {equation*}\fHom (a) := \bigcup _{b \in \C C}\Hom (a \times b, \Omega ).\end {equation*}


$\big ((b,e),g) \mapsto \big (b,e \times (g \times 1_b)\big )$


$A$


$\C U$


$A$


$P \colon A \to \C U$


$\CompMod $


$\fHom (\B C)$


$\pmb \gamma \colon \B C \simto \SetsB $


$\C C$


$\Sigma $


$\Sigma $


$a, b \in \C C$


$\lambda \in \fHom (a)$


$f \in \Hom (b,a)$


$\Sigma $


$\sum _a \lambda \in \C C$


$\pr _1^{a, \lambda } \in \Hom \big (\sum _a \lambda , a\big )$


$\Sigma _{\lambda }f \in \Hom \big (\sum _b (\lambda \circ f), \sum _a \lambda \big )$


$(\Sigma _1)$


$\Sigma _{\lambda }1_a = 1_{{ \sum _a \lambda }}$


$(\Sigma _2)$


$\ \Sigma _{\lambda }(f \circ g) = \big (\Sigma _{\lambda }f\big ) \circ \Sigma _{(\lambda \circ f)}g$


$f \in \Hom (b, a)$


$g \in \Hom (c, b)$


$\Sigma )$


$\Sigma $


$\Sigma )$


$\C C$


$\fHom (c) = \C C_0$


$c \in \C C$


$\Grothendieck {c}{d} := c$


$\pr _1^{c,d} = 1_c$


$\Cat $


$P \in \fHom (\C C) = \Fun (\C C\opp ,\Sets )$


$\Sigma $


$P$


$\Grothendieck {\C C}{P}$


$\Sigma $


$\Sigma $


$\C U$


$A$


$\C U$


$P \colon A \to \C U$


$\sum _{x \colon A}P(x)$


$\Sigma )$


$\C C$


$\di $


$a$


$\C C$


$\lambda \in \fHom (a)$


$\dHom (a, \lambda )$


$(a, \lambda )$


$\dHom (a, \lambda )$


$\Phi , \Psi $


$a$


$\lambda $


$\Phi \in \dHom (a, \lambda )$


$a, b \in \C C$


$\lambda \colon \fHom (a)$


$\left (\circ _f \colon \dHom (a, \lambda ) \to \dHom (b, \lambda \circ f)\right )_{f \in \Hom (b,a)}$


$\dHom (a, \lambda ) \ni \Phi \mapsto \Phi \circ f \in \dHom (b, \lambda \circ f)$


$\circ $


$\circ _f$


$\C C$


$(fam, \Sigma )$


$a \in \C C$


$\lambda \in \dHom (a)$


$\lambda $


\begin {equation*}\Di _{a}\lambda := \bigg \{\phi \in \Hom \bigg (a, \sum _a \lambda \bigg ) \mid \pr _1^{a, \lambda } \circ \phi = 1_a\bigg \}\end {equation*}


$\dHom (a, \lambda ) := \Di _a \lambda $


$\C C$


$\di $


$\phi \in \Di _{a}\lambda $


$f \in \Hom (b, a)$


$\phi (f) \in \Di _{b}(\lambda \circ f)$


$\pr _1^{a, \lambda } \circ (\phi \circ f) = (\pr _1^{a, \lambda } \circ \phi ) = 1_a \circ f = f = f \circ 1_b$


$\phi (f) \in \Hom \big (b, \sum _b (\lambda \circ f)\big )$


$\CompMod $


$\CompMod $


$($


$\Sigma )$


$\pmb \gamma \colon \B C \simto \SetsB $


$\Grothendieck {\B C}{\pmb \gamma }$


$\pr _1^{\B C,\pmb \gamma }$


$\B D \in \CompMod $


$\pmb \gamma \colon \B {C \simto D}$


$\Grothendieck {\pmb \delta }{\pmb \gamma } \colon \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma } \simto \Grothendieck {\B D}{\pmb \delta }$


$\Grothendieck {{\delta }}{{\gamma }} \colon \Grothendieck {t \in T}{\pmb {\gamma }(t)} \to \Grothendieck {u \in U}{\pmb {\delta }(u)}$


$(t,b) \mapsto \big (\gamma (t), b)$


$x' \Vdash _{(t,b)}^{\Grothendieck {{\delta }}{{\gamma }}} x :\Leftrightarrow x' \Vdash _t^\gamma x.$


$\Grothendieck {\pmb {\delta }}{\pmb {\gamma }}$


$\pr _1\big (\Grothendieck {{\delta }}{{\gamma }}(t,b)\big ) = \pr _1\big (\gamma (t)\big ) = \gamma \big (\pr _1(t,b)\big )$


$x' \Vdash _{(t,b)}^{\pr _1 \circ \Grothendieck {{\delta }}{{\gamma }}} x$


$x' \Vdash _{(t,b)}^{\Grothendieck {{\delta }}{{\gamma }}} x$


$x' \Vdash _t^{\gamma } x$


$x'\Vdash _{(t,b)}^{\gamma \circ \pr _1} x$


$\mathbf {E} \in \CompMod $


$V$


$\pmb {\alpha },\pmb {\beta }$


\begin {equation}\begin {imageonly} \centerline {\includegraphics {fx13}} \end {imageonly} \label {PullbackGroth::eq::1}\end {equation}


$\pmb {\zeta } \colon \mathbf {E} \simto \Grothendieck {\mathbf {C}}{(\pmb {\delta } \circ \pmb {\gamma })}$


\begin {equation}\begin {imageonly} \centerline {\includegraphics {fx14}} \end {imageonly} \label {PullbackGroth::eq::2}\end {equation}


$\zeta $


$v \in V$


$\zeta (v) = \big ( \alpha (v), c\big )$


$c \in \delta (\gamma (v))$


$c$


$\beta (v) = (u,c)$


$u$


$\zeta $


\begin {equation*}x' \Vdash _v^{\zeta } x :\Leftrightarrow x' \Vdash _v^\alpha x.\end {equation*}


$x' \Vdash _v^\alpha x$


$x' \in \big (\Grothendieck {\B C}{(\pmb \delta \circ \pmb \gamma )}\big )(u,c)$


$b \Vdash _{\alpha (v)}^{\delta \circ \gamma } x'$


$x'$


$\pmb \gamma $


$z \in \B D\big (\gamma (\alpha (v))\big )$


$z \Vdash _{\alpha (v)}^\gamma x'$


$z \Vdash _v^{\gamma \circ \alpha } x$


$z \Vdash _v^{\prbold _1^{\B D,\pmb \delta } \circ \beta } x$


$y \in (\Grothendieck {\B D}{\pmb \delta }\big )(u,c)$


$\beta (v) = (u,c)$


$z \Vdash _{(u,c)}^{\prbold _1^{\B D,\pmb \delta }} y \Vdash _v^\beta x.$


$\prbold _1^{\B D,\pmb \delta }$


$y = z$


$z \in \big (\Grothendieck {\B D}{\pmb \delta }\big )(u,c)$


$c \Vdash _u^\delta z$


$b \Vdash _u^\delta z \Vdash _{\alpha (v)}^\gamma x' \Vdash _v^\alpha x$


$b \Vdash _{\alpha (v)}^{\delta \circ \gamma } x'$


$f \in \B E[v,v']$


$f' \in \B C\big [\alpha (v),\alpha (v')\big ]$


$f' \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big [(\alpha (v),c),(\alpha (v'),c')\big ]$


$f''$


$f'$


$\pmb \gamma $


$f''$


$f$


$\pmb \gamma \circ \pmb \alpha $


$\prbold _1^{\B D, \pmb \delta } \circ \pmb \beta $


$f''$


$f$


$\pmb \beta $


$x \in \B E(v)$


$z \in \B D(u)$


$z \Vdash _v^{\beta } x$


$c \Vdash _{u}^\delta z$


$z \Vdash _{(u,c)}^{\prbold _1^{\B D,\pmb \delta }} z$


$f''(z) \Vdash _{u'}^{\prbold _1^{\B D,\pmb \delta } \circ \beta } f(x)$


$\prbold _1^{\B D,\pmb \delta }$


$f''(z) \Vdash _{(u',c')}^\beta f(x)$


$f''$


$f$


$\beta $


$y \in \big (\Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big )(\alpha (v),c)$


$z \in \B D(u)$


$z \Vdash _u^\gamma y$


$c \Vdash _{\gamma (u)}^\delta z$


$f''(z) \Vdash _{u'} f'(y)$


$f''(z) \in \Grothendieck {\B D}{\pmb \delta }$


$f'(y) \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }$


$f' \in \Grothendieck {\B C}{\pmb \delta \circ \pmb \gamma }\big [(\alpha (v),c),(\alpha (v'),c')\big ]$


$\pmb \zeta $


$v \in V$


$x'' \in \mathbf {E}(v), x' \in \Big (\Grothendieck {\mathbf {D}}{\pmb {\delta }}\Big )\big (\beta (v)\big )$


$x \in \mathbf {C}\big (\alpha (v)\big )$


\begin {equation*}x' \Vdash _v^{\beta } x'' \hbox { and } x \Vdash _v^\alpha x''.\end {equation*}


$y_1,y_2$


\begin {equation*}x' \Vdash _{\zeta (v)}^{\Grothendieck {{\delta }}{{\gamma }}} y_1 \hbox { and } y_1 \Vdash _v^\zeta x'', \hbox { and } x \Vdash _{\zeta (v)}^{\pr _1} y_2 \hbox { and } y_2 \Vdash _v^{\zeta } x''.\end {equation*}


$x' \Vdash _{(\Grothendieck {{\delta }}{{\gamma }})(\zeta (v))}^{\pr _1} x'$


$x'\Vdash _v^\beta x''$


$x' \Vdash _v^{\gamma \circ \alpha } x''$


$y$


$x' \Vdash _{\alpha (v)}^\gamma y$


$y \Vdash _v^\alpha x''$


$\Grothendieck {{\delta }}{{\gamma }}$


$x'\Vdash _{\alpha (v)}^{\Grothendieck {{\delta }}{{\gamma }}} y$


$y$


$y_1$


$y_2$


$x$


$\pmb {\zeta }$


$(\Sigma _1)$


$\Grothendieck {\pmb {\epsilon }}{\B 1_{\B E}}$


$(t,u)$


$(\mathbf {1}_{\mathbf {E}}(t),u) = (t,u)$


$\Sigma _2$


\begin {equation*}\Grothendieck {\pmb \epsilon }{(\pmb \delta \circ \pmb \gamma )}(t,b) = \big (t, (\delta \circ \gamma )(b)\big )= \Grothendieck {\pmb \epsilon }{\pmb \delta }\big ( t,\gamma (b)\big ) = \Grothendieck {\pmb \epsilon }{\pmb \delta }\Big (\Big (\Grothendieck {\pmb {\epsilon }\circ \pmb \delta }{\pmb \gamma }\Big )(t,b)\Big ).\end {equation*}


$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta \circ \gamma }} y$


$x \Vdash _t^{\delta \circ \gamma } y$


$dash_{(t,b)}^{\sum _{\epsilon }{\delta }} y$


$x \Vdash _t^{\delta } y$


$x \Vdash _{(t,b)}^{\sum _{\epsilon \circ \delta }{ \gamma }} y$


$x \Vdash _t^{\gamma } y$


$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta } \circ \sum _{\epsilon \circ \delta }\gamma } y$


$x \Vdash _t^{\delta \circ \gamma }z$


$x \Vdash _{(t,b)}^{\sum _{\epsilon }{\delta \circ \gamma }} z$


$\CompMod $


$\CompMod $


$\CompMod $


$\B C$


$\pmb {\gamma } \colon \B C \simto \Sets $


$\pmb {\phi } \colon \B C \simto \Grothendieck {\B C}{\pmb \gamma }$


$\pmb \pr _1^{\B C, \pmb {\gamma }} \circ \pmb {\phi } = \B 1_{\B C}$


$\Sigma $


$\C U$


$P, Q \colon A \to \C U$


$A$


$\C U$


$P$


$Q$


\begin {equation*}H \colon \prod _{x \colon A}\big (P(x) \to Q(x)\big ).\end {equation*}


$\C C$


$c \in \C C$


$\fHom (c)$


$\eta \in \Hom (\lambda , \mu )$


$c,c' \in \C C,\lambda ,\mu \in \fHom (c')$


$\bullet _{c,c'}$


$\eta \in \Hom (\lambda ,\mu )$


$f \colon c \to c'$


$\eta \bullet _{c,c'} f \in \Hom (\lambda \circ f, \mu \circ f)$


$c,c',c'' \in \C C$


$\lambda ,\mu \in \fHom (c'')$


$\eta \in \Hom (\lambda ,\mu )$


$f \in \Hom (c,c'), g \in \Hom (c',c'')$


$c,c' \in \C C$


$\lambda ,\delta ,\gamma \in \fHom (c')$


$\eta \in \Hom (\delta ,\gamma ), \eta ' \in \Hom (\gamma ,\lambda )$


$f \in \Hom (c,c')$


$\bullet _{c,c'}$


$\bullet $


$\bullet $


$M$


$\C C$


$\C C$


$\Hom (\lambda , \mu ) := M$


$\lambda ,\mu \in \fHom (c)$


$c \in \C C_0$


$\bullet $


$m \bullet f := m$


$\S $


$\Sigma $


$\C C$


$\Sigma $


$\Sigma $


$c \in \C C$


$\lambda ,\mu \in \fHom (c)$


$\eta \in \Hom (\lambda ,\mu )$


\begin {equation*}\sum _{\lambda ,\mu } \eta \colon \sum _{c} \lambda \to \sum _{c} \mu ,\end {equation*}


\begin {equation*}\sum _{\lambda ,\lambda } 1_\lambda = 1_{\sum _{c} \lambda } \qquad \hbox {and}\qquad \sum _{\lambda ,\mu } \eta \circ \sum _{\nu ,\lambda } \eta ' = \sum _{\nu ,\mu } (\eta \circ \eta ').\end {equation*}


$\Sigma $


$\S $


$\S $


$\CompMod $


$\Sigma $


$\CompMod $


$\B C \in \CompMod $


$U$


$\fHom (\B C)$


$\pmb \gamma \colon \B C \simto \SetsB $


\begin {equation*}\bbmu = (\mu _t)_{t \in T} \colon \pmb \gamma \Rightarrow \pmb \delta ,\end {equation*}


$\mu _t \colon \gamma (t) \rightharpoonup \delta (t)$


$c \in \B C(t)$


$d \in \gamma (t)$


$d \Vdash _t^\gamma c \Rightarrow \mu _t(d) \Vdash _t^\delta c$


$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $


$\bbnu \colon \pmb \delta \Rightarrow \pmb \lambda $


$\bbnu \circ \bbmu $


$( \nu _t \circ \mu _t)_{t \in T}$


\begin {equation*}d \Vdash _t^\gamma c \Rightarrow \mu _t(d) \Vdash _t^\delta c \Rightarrow \nu _t\big (\mu _t(d)\big ) \Vdash _t c.\end {equation*}


$\pmb \gamma \in \fHom (\B C)$


$\B 1_{\B C(t)} \in \B C [\gamma (t),\gamma (t)]$


$\B C$


$\fHom (\B C)$


$\bullet _{\B C,\B D}$


$\B C, \B D \in \CompMod $


$\bbmu = (\mu _u)_{u \in U}$


$\pmb \gamma \colon \B C \simto \B D$


$\bbmu \bullet _{\B C, \B D} \pmb \gamma := (\mu _{\gamma (t)})_{t \in T}.$


\begin {align*}(\bbnu \circ \bbmu ) \bullet \pmb \lambda &= (\nu _u \circ \mu _u)_{u \in U} \bullet \pmb \lambda = (\nu _{\lambda (t)} \circ \mu _{\lambda (t)})_{t\in T} \\ &= (\nu _{\lambda (t)})_{t\in T} \circ (\mu _{\lambda (t)})_{t\in T} = (\bbnu \bullet \pmb \lambda ) \circ (\bbmu \bullet \pmb \lambda ).\qedhere \end {align*}


$\pmb \gamma \colon \B C \simto \B D$


$\B C(t) = \B D(\gamma (t))$


$t \in T$


$\Vdash _t^\gamma $


$\B C(t)$


$\Grothendieck {\pmb \delta }{\pmb \gamma }$


$\Grothendieck {\pmb \gamma ,\pmb \delta }{\bbmu }$


$\CompMod $


$($


$\Sigma $


$)$


$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $


$\pmb \gamma , \pmb \delta \colon \B C \simto \SetsB $


$\sum _{\pmb \gamma ,\pmb \delta } \bbmu $


$(t,b) \mapsto (t,\mu _t(b))$


\begin {equation*}\Vdash _{(t,b)}^{\sum _{\gamma ,\delta }} = \Big \{(x,x) ~\Big \vert ~ x \in \Big (\sum _c \pmb \lambda \Big ) (t,b)\Big \}.\end {equation*}


\begin {align*}x \in \Big (\sum _\B C \pmb \gamma \Big )(t,b) &\Leftrightarrow b \Vdash _t^\gamma x \Rightarrow \mu _t(b) \Vdash _t^\delta x \\ &\Rightarrow x \in \Big ( \sum _\B C \pmb \delta \Big )\big (t,\mu _t(b)\big ) \Rightarrow x \in \Big ( \sum _\B C \pmb \delta \Big )\big ( \textstyle \sum _{\pmb \lambda ,\pmb \delta } \bbmu (t,b)\big ).\end {align*}


$\pmb \alpha \colon \B C \simto \B D$


$\B C$


$T$


$\B D$


$U$


$\pmb \gamma , \pmb \delta \colon \B D \simto \SetsB $


$\bbmu \colon \pmb \gamma \Rightarrow \pmb \delta $


\begin {align*}\sum _{\pmb \gamma ,\pmb \delta }\bbmu \circ \sum _{\pmb \gamma }\pmb \alpha &= \sum _{\pmb \delta } \pmb \alpha \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha , \\ \prbold _1 &= \prbold _1 \circ \sum _{\pmb \gamma ,\pmb \delta }\bbmu ,\\ \prbold _1 &= \prbold _1 \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha .\end {align*}


\begin {align*}\Big (\sum _{\pmb \gamma ,\pmb \delta }\bbmu \circ \sum _{\pmb \gamma }\pmb \alpha \Big )(t,b) &= \sum _{\pmb \gamma ,\pmb \delta }\bbmu (\gamma (t),b) = (\alpha (t), \mu _{\alpha (t)}(b)) \\ &= \sum _{\pmb \delta }\pmb \alpha (t,\mu _{\alpha (t)}(b)) = \Big ( \sum _{\pmb \delta } \pmb \alpha \circ \sum _{\pmb \gamma \circ \pmb \alpha ,\pmb \delta \circ \pmb \alpha } \bbmu \bullet \pmb \alpha \Big )(t,b)\end {align*}


\begin {equation*}\prbold _1(t,b) = t = \prbold _1(t,\mu _{\alpha (t)}(b)) = \prbold _1 \circ \Big (\sum _{\pmb \gamma ,\pmb \delta }\bbmu \bullet \pmb \alpha \Big )(t,b),\end {equation*}


\begin {equation*}\prbold _1(u,b) = u = \prbold _1(u,\mu _{u}(b)) = \prbold _1 \circ \sum _{\pmb \gamma ,\pmb \delta }\bbmu (u,b).\end {equation*}


$\Sigma )$


$\CompMod $


$\pr _1 \colon \Grothendieck {\C C}{P} \to \C C$


$P$


$P$


$\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C$


$\B E$


$T$


$\B B$


$U$


\begin {equation*}\pmb {\varpi } := \bigg (\varpi \colon T \to U, \ \left (\Vdash ^{\varpi }_t\right )_{t \in T}\bigg )\end {equation*}


$\B E \simto \B B$


$\pmb {\gamma } \colon \mathbf {E \rightarrowtriangle B}$


$f$


$\mathbf {E}$


$f'$


$\mathbf {B}$


$f'$


$f$


$g'$


$g$


$f' \in \B B[s,s']$


$t' \in T$


$\varpi (t') = s'$


$f \in \mathbf {E}[t,t']$


$f'$


$t'$


$f' \Vdash _{(t,t')}^{\varpi } f$


$g \in \mathbf {E}[t'',t'], g' \in \B B[\varpi (t''),\varpi (t')]$


$h \in \mathbf {B}[\varpi (t''), \varpi (t)]$


$g'$


$g$


$k \in \mathbf {E}[t'',t]$


$h \Vdash _{(t'',t)}^\varpi k$


$x \in \B E(t''), y \in \mathbf {B}(\varpi (t''))$


$y \Vdash _{t''}^\varpi x$


$y \in \dom (f' \circ h) \cap \dom (g'),$


$f'(h(y)) = g'(y)$


$x \in \dom (f \circ k) \cap \dom (g)$


$g(x) = f(k(x))$


$f' \in \B B[s',s]$


$t' \in T$


$\varpi (t') = s'$


$f \in \mathbf {E}[t',t]$


$f'$


$t'$


$f' \Vdash _{(t',t')}^\varpi f$


$g \in \mathbf {E}[t',t''],g' \in \B B[\varpi (t'),\varpi (t'')]$


$h \in \mathbf {B}[\varpi (t),\varpi (t'')]$


$g'$


$g$


$l \in \mathbf {E}[t,t'']$


$h$


$l$


$x \in \mathbf {E}(t'),y \in \mathbf {B}(\varpi (t'))$


$y \Vdash _{t'}^\varpi x$


$y \in \dom (h \circ f') \cap \dom (g')$


$f'(h(y)) = g'(y)$


$x \in \dom (l \circ f) \cap \dom (g)$


$g(x) = l(f(x))$


$k \in \mathbf {E}[t'',t]$


$l \in \mathbf {E}[t, t'']$


$\pmb {\varpi } \colon \mathbf {E \rightarrowtriangle B}$


$f \in \mathbf {B}\big [u, \varpi (t)\big ]$


$g \in \mathbf {E}[t',t]$


$f$


$t$


$g$


$f$


$\pmb {\varpi } \colon \mathbf {E \to B}$


$f \in \mathbf {B}\big [ \varpi (t),u\big ]$


$g \in \mathbf {E}[t,t']$


$f$


$t$


$g$


$f$


$\mathcal {E,B}$


$S,S'$


$F \colon \mathcal {E \to B}$


$S' \circ F = S$


$\pmb {\gamma }^F \colon \CM ^{\total }(\mathcal {E};S) \simto \CM ^{\total }(\mathcal {B};S')$


$\CM ^{\total }(\mathcal {B};S')$


$S'(f) \colon S'(b) \to S'(b')$


$e \in \mathcal {E}$


$F(e') = b'$


$F$


$g \colon e \to e'$


$f$


$b'$


$S(g)$


$S'(f)$


$S(b')$


$S(h),S(h_2),S(g_2)$


$\CM ^{\prt }(\mathcal {E};S)(e) = S(e)$


$\CM ^{\prt }(\mathcal {B};S')(b) = S(b)$


$e$


$b$


$g$


$f$


$b'$


$k \colon e'' \to e$


$g \circ k = g_2$


$F(k) = h_2$


$S(k)$


$S(g)$


$S'(f)$


$S(b')$


$\mathbf {C} \in \CompMod $


$\gamma \colon \mathbf {C} \simto \SetsB $


$\prbold _1 \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \mathbf {C}$


$f \in \mathbf {C}[t,t']$


$\pr _1(t,b) = t$


$b \in \mathbf {C}(t')$


$\pr _1(t',b') = t'$


$f' \in \Big (\Grothendieck {\mathbf {C}}{\pmb \gamma }\Big )\big [(t,b),(t',b')\big ]$


$f \Vdash _{((t,b),(t',b'))}^{\pr _1} f'$


$f \Vdash _{((t,b),(t',b'))}^{\pr _1} f'$


$f = f'$


$y \in \mathbf {C}(t')$


$f(b) = b'$


$b' := f(b)$


$f$


$f$


$b$


$h$


$f = h \circ g$


$f(b) = h\big (g(b)\big )$


$b' = h(b'')$


$h$


$\Big (\Grothendieck {\B C}{\pmb \gamma }\Big )(t'',b'')$


$\Big (\Grothendieck {\B C}{\pmb \gamma }\Big )(t',b')$


$\pmb {\varpi } \colon \mathbf {E \simto B}$


$\varpi ^\triangle $


$(f,u)$


$f\in \mathbf {B}[t_1,t_2]$


$\varpi (u) = t_2$


$f' \in \mathbf {E}[u,u']$


$f$


$u$


$(S_1)$


$f \in \mathbf {B}[t_1,t_2]$


$g \in \mathbf {B}[t_2,t_3]$


\begin {equation*}\varpi ^\triangle (g \circ f, u_1) = \varpi ^\triangle (g,u_1) \circ \varpi ^\triangle (f,u_2).\end {equation*}


$(S_2)$


$t \in T$


$\varpi ^\triangle (1_{\mathbf {B}(t)},u) = (1_{\mathbf {E}(u)},u)$


$\pmb {\varpi } \colon \mathbf {E \simto B}$


$\varpi ^\triangle $


$(f,u)$


$f\in \mathbf {B}[t_1,t_2]$


$\varpi (u) = t_1$


$f' \in \mathbf {E}[u,u']$


$f$


$u$


$(S_1{'})$


$f \in \mathbf {B}[t_1,t_2]$


$g \in \mathbf {B}[t_2,t_3]$


\begin {equation*}\varpi ^\triangle (g \circ f, u_1) = \varpi ^\triangle (g,u_2) \circ \varpi ^\triangle (f,u_1).\end {equation*}


$(S_2{'})$


$t \in T$


$\varpi ^\triangle (1_{\mathbf {B}(t)},u) = (1_{\mathbf {E}(u)},u)$


$($


$)$


$\pmb {\varpi }$


$\varpi ^\triangle $


$\prbold _1 \colon \Grothendieck {\B C}{\pmb \gamma } \simto \mathbf {C}$


$\prbold _1^\triangle $


$\prbold _1^\triangle (f,u) := f$


\begin {equation*}\pr _1 \colon \Grothendieck {\C C}{P} \to \C C\end {equation*}


\begin {equation*}\B {\pr _1} \colon \Grothendieck {\mathbf {C}}{\pmb {\gamma }} \simto \B C\end {equation*}


$2$


$2$


$\CompMod $


$\Sigma $


$\Sigma $


$\CompMod $


$\C C$


$\C C$


$\S 5$


$\B C \in \CompMod $


$\pmb {\gamma } \colon \B C \simto \Sets $


\begin {equation*}\B {\prbold }_2^{\B C, \pmb {\gamma }} \colon \Grothendieck {\B C}{\pmb \gamma } \simto \sum _{\sum _{\B C}\pmb {\gamma }} \big (\pmb {\gamma } \circ {\prbold }_1^{\B C, \pmb {\gamma }}\big )\end {equation*}


$\Grothendieck {\B C}{\pmb \gamma }$


$\pmb \gamma \circ \prbold _1^{\B C, \pmb \gamma }$


$\Th $


$\Th $


$\CompMod $


$\CompMod $

mailto:gambarte@math.lmu.de
mailto:iosif.petrakis@univr.it
https://doi.org/10.1016/j.tcs.2025.115550
https://doi.org/10.1016/j.tcs.2025.115550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115550&domain=pdf
http://creativecommons.org/licenses/by/4.0/

L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

¢ In Section 2, we include all basic definitions within the theory of computability models necessary to the rest of this paper. Crucial to

the definition of the Grothendieck model is our introduction of the computability model Sets, the computability model counterpart

to the category of sets and functions (Definition 2). The introduced representable simulations correspond to the representable

presheaves (Example 1).

In Section 3, we define the Grothendieck computability model .y and the first-projection-simulation pry : Yy — C (Proposi-

tion 1). We prove basic properties of the Grothendieck computability model, such as the existence of a full, faithful, and essentially

surjective functor from the category of simulations [Zc 7, Sets] to the slice category [C, Sets]/y, wherey : C — Sets is a simulation

(Proposition 3).

e In Section 4, and following [16,17], we define categories with family arrows and Sigma objects, or (fam, X)-categories. The
type-categories of Pitts in [18] are (fam, X)-categories with a terminal object. Every (fam, X)-category has dependent arrows
(Theorem 1), a new categorical formulation of Martin-L6f’s notion of dependent function.

e In Section 5, we show that the category CompMod is a (fam, X)-category (Theorem 2), and a type-category (Corollary 1). With

these results, the categorical semantics of dependent type theory are connected with the theory of computability models. For

example, due to Theorem 1, the category CompMod has dependent arrows (Corollary 2).

In Section 6, and following [4], we define categories with 2-family arrows and the corresponding Sigma-objects, or (2-fam, X)-

categories.

In Section 7, we show that the category CompMod is a (2-fam, X¥)-category (Proposition 4).

In Section 8, we introduce (split) fibrations and opfibration-simulations, and show that the first-projection-simulation pry : Yoy —

C is a (split) opfibration-simulation (Proposition 5 and Corollary 3).

For all notions and results from category theory that are used here without explanation or proof we refer to [21]. For various examples
of computability models and simulations from higher-order computability theory we refer to [12]. This paper is an extension' of [6].

2. Basic definitions

Definition 1. A (strict) computability model C consists of the following data: a class T, whose members are called type names; for each
t € T a set C(r) of data types; for each s,t € T a class C[s, t] of computable functions, i.e., partial functions from C(s) to C(r). Moreover,
for every r,s,t € T the following hold:

1. The identity 1, is in C[t,1].
2. For every f € C[r,s] and g € C[s, ] we have that gof € C[r,1].

Next, we describe the computability model of sets and partial functions Sets, as the computability model-analogue to the category
of sets and functions Sets.

Definition 2. The computability model Sets has as type names the class of sets and as data types the set U itself, for every type name
U.If U,V are sets, then a computable function from U to V is a partial function from U to V.

A partial arrow (i, f): a = b in a category C consists of a monomorphism i : dom(i) — a and an arrow f : dom(i) — b in C. Given
a copresheaf S : C — Sets, we write S(i, f) instead of (S(i), S(f )). In [15] computability models over categories and copresheaves on
them are studied.

Definition 3. Let C be a category and S : C — Sets a copresheaf on C. The total computability model CM'”(C; S) over C and S has as
type names the class of objects C, of C and data types the sets S(c), for every ¢ € C. If ¢|, ¢, € Cy, a (total) function from S(c,) to
S(c,) is an element of the class {S(f) | f € Hom(c,, ¢;)}. The partial computability model CM”"(C; S) over C and a pullback-preserving
copresheaf .S on C has the same type names and data types, while a partial function from S(c,) to S(c,) is an element of the class

{SGH1EN: e =l

The fact that .S preserves pullbacks is necessary to prove that CM”"(C; S) is a computability model. If Sets”” is the category of
sets and partial functions, then the computability model CM'” (Sets””, idg.,n) is the computability model Sets of Definition 2. Next,
we describe the arrows in the category of computability models CompMod. A notion of contravariant simulation can also be defined,
allowing the contravariant version of the Grothendieck construction for computability models.

Definition 4. A simulation y from C (over T') to D (over U) consists of a class-function y : T — U and a relation Il—fg D(y(t)) x C(1),
for each 1 € T, a so-called forcing relation, subject to the following conditions:

1. For each x € C(¢) there exists some y € D(y(?)), such that y Il—f x.
2. For each f € Cls,1] there exists some f’ € D[y(s), ()], such that

Yeecis) Vyeni sy (X € dom(f) Ay IH! x = y € dom(f) A £/ (») IH] f(x)).

In this case, we say f’ tracks f, and we write f’ II—(yY e

1 Sections 4, 6, 7, the proof of Proposition 3, and Corollary 2 are added.

2



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

We also write y : C — D for a simulation y from C to D. We call a simulation y : C — Sets a copresheaf-simulation. The identity
simulation 1¢ : C — C is the pair (sz, (II— ),GT) where x’ II—;C x e x' =x, forevery x’,x € C(¢).If 6 : D — E, the composite simulation

Soy : C — E is the pair? (soy, (I °7),ET), where the relation II—5°Yg E(5(y(1))) x C(t) is defined by

doy v
21 x 19 Ayepg (2 1F),) ¥ A yIF] x).

The following copresheaf-simulations on a computability model C correspond to the representable functors Hom(a, —) over a in a
category C.
Example 1. Let C be a locally-small computability model over T, i.e., the class C[s, t] of computable functions from C(s) to C(¢) is
a set, for every s,t € T. If 1, € T, the representable-simulation Yy C — Sets consists of the class-function Yo 0 T — Sets, defined by

Y, 1= C[t,,1], for every ¢t € T, and the forcing relations Il—ty'[’ C C[ty, 1] x C(1), defined by

Vi
f ||_th X e E!yedr)m(f)(f(Y) = X).

To show that y, is a simulation, we suppose that C is left-regular i.e.,

VtGTVXGC(t)EIfGC[IO,t]ayedom(f) (f(J’) = x)-
All computability models that include the constant functions are left-regular (such as Kleene’s first model K, over T = {0} with
C(0) = N, and C[0, 0] the Turing-computable partial functions from N to N). If f € C[s, 1], it is easy to show that f/* I+ ('” f, where f*
is the total function from Clz, s] to Cl[t,?], defined by f*(g) := fog, for every g € Clt,, s]. A right-regularity cond1t10n on a locally-
small computability model is needed, in order to define the contravariant representable-simulations §, : C — Sets, where §, : C — Sets
is defined by NGRS C[t,1,], forevery r € T.

Next follows the notion of arrow between simulations.
Definition 5. If y,8: C — D, then y is transformable to §, in symbols y < §, if for every r € T there is f € D[y(¢), 5(1)] such that

YeecnVarenpey (X IH x = X' € dom(f) A f(x) IF? x).
3. The Grothendieck computability model

In this section, we introduce the Grothendieck computability model, the computability model counterpart to the category of
elements, a special case of the general categorical Grothendieck construction. A category C is replaced by a computability model
C, a copresheaf S : C — Sets is replaced by a copresheaf-simulation y : C — Sets, and the first-projection functor is replaced by the
first-projection-simulation.

Proposition 1. Let C be a computability model over the class T and lety : C — Sets. The structure Y, y with type names the class
Yy :={tb|teT andbey®},
teT

with data types, for every (1,b) € Y, ¥(1), the sets

( Zy)(t, b = {yeCw b y},
C
and computable functions from ( >c y)(s, a) to ( >c y)(t, b) the classes

{7 et Vcimp(xe (Zr)oo=rwe(Tr)en)}

is a computability model. The class-function pry : Y. y(t) = T, defined by the rule (t,b) ~ t, and the forcing relations, defined, for every
(t.b) € Xyer y(®), by

/=P
Yy v ey =y,
determine the first-projection-simulation pr, : Y.y — C.

Proof. We show that the computable functions include the identities and are closed under composition. Notice that the defining
property of the computable functions in the Grothendieck model is equivalent to the condition a IF} x = b I-/ f(x), for every x €

dom(f). If (t,b) € ¥, v(1), then the identity on Y y(#, b) is the identity on C(?), i.e., 1, is a computable function from ( >c y)(t, b)

to itself: if x € C(7), then the implication b I/ x = b I x holds trivially. If g is a computable function from Y, ¥(1, b) to ¥ ¥(u,c) and
f is a computable function from Y y(s,a) to Y 7(t,b), then gof is a computable function from ) y(s,a) to Y, y(u, c). For that, let
x € dom(f) and f(x) € dom(g). If a -] x, then b II—V f(x), and hence c I/, g(f(x)). To show that pr, is a simulation, let y € Yy b).

Pri Pri
Then x II—( by and if f is a computable function from Ycr(s,a)to Y y(t, b), then f II—((S’a)’(Lb» f. O

Boy_

2 Notice that if §oy = §'oy’, then by the definition of equality on simulations we get §oy = §'oy’ and I II—5 or , for every t € T. See also [12,

§3.4.1]



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

The following proposition expresses that the Grothendieck construction on a computability model obtained from a category with
a copresheaf can be presented as the canonical partial computability model associated with the category of elements. The proof is
omitted, since it is straightforward.

Proposition 2. Let C be a category and S : C — Sets a pullback-preserving copresheaf on C. Let 75 C, — Sets be defined via yS(c) = S(c),

let the relations II—’ be the diagonals, and let {pr,}: Y. .S — Sets be defined by {pr,}(c,x) : yandif f: (e,x) > (d,y)in Y. S, let
[S(NIX) :=y. Then

s =CM””(2S;{pr2}).
C

CMPT(C;S)

Remark 1. The functor C — Asm(C), studied in [12], does not “preserve” the Grothendieck construction. E.g., if 1 is a terminal
computability model with type names {#}, data type 1(#) = {#}, and as only computable function the identity, then one can define a
presheaf id; : 1 — Sets, and show that

Asm<21d1> # Y Asm(idy).

Asm(1)

Next, we show a result analogous to [8, Proposition 1.1.7], i.e., for any copresheaf-simulation y : C — Sets there is an equivalence
[Zy,Sets] = [C, Sets] /y.
C
For that, we define a full, faithful and essentially surjective functor

I: [Zr,Sets] — [C, Sets] /7.
C

Notice that for both categories the morphism-structure is thin and thus a preorder, thus we only need to define our functor on
morphisms and show that it preserves this preorder. The objects of [C, Sets]/y themselves are simulations 6 : C — Sets, such that
6<y.

For every y : C — Sets we have that for every ¢ € T the set y(¢) is non-empty. This follows from the fact that, otherwise, Il—ty could
not satisfy the first condition on simulations, as y(r) is empty, hence there is no a € y(¢) with a Il—f b for any b € C(¢). (There is the
possibility that C(¢) is empty, but we shall exclude this from now on).

Proposition 3. Let C be a computability model over T and lety : C — Sets be a copresheaf-simulation. There is a functor I : [ Y,c v, Sets] —
[C, Sets]/y, defined as follows: if B: Y,y — Sets, let 1(B) be the underlying class function I(f) : T — Sets, where, for every t € T, we have
that

1po=J se».

x€y(1)
The tracking relation II—I B¢ ( Uxey(t) B, x)) X C(¢) is defined as follows:
Ip) 4 . s
al= " b o3 o (a L b).
The functor I is full, faithful, and essentially surjective.

Proof. First we show that I is well-defined, i.e., for every g € [ >t Sets] the rule I(p) defines a simulation and I(f) < y. We observe
that I(p)(t) is well-defined and it is a set, for every r € T. To show the first property of simulations, we observe that for every t € T
there exists x € y(¢), such that Uxey(t) B(t, x) is non-empty. If b € C(¢), then, as y is a simulation, there is x € y(¢) with x Il—f b. Since g

is a simulation, there is a € f(t, x), such that a - b, By the definition of II—II B we geta Il—,’ ® . To show the second condition on

(1,x)
I(B), let f € C[t,']. We find f, such that f’ u—(’r(f,)) f,ie.,
Vx € dom(f)¥y € 1)) : (yIHD x = y € dom(s) A f' () 1= f(x)).

16

Let such x and y be given. By definition, y I-,"" x if and only if there exists r € y(1), such that y Il—ﬁ X This entails that r Il—ty X, as x

has to be in ( Y, 7)(#, r). Since y is a copresheaf-simulation, there is f : y(r) — y(¢'), such that f I, f, and hence f(r) Il—ty, f(x),ie.,

re( X)) .fm)].

C

(1)

as for all z, such that r I/ z, we have f(r) Il—ry, f(z) by definition of f. Since g is a simulation, there is 7 : (t,r) > (¢, f(r)), such
that f | f(; DT f. Hence, f(») Il—f, f(x). We can thus define f’ to be on each subset f(t,r) of U,Ey(,) B(t,r) equal to f. It is then
immediate to see that f’ fulfils the required equality. Next we show that I(8) <y. For that, we define, for every ¢t € T, a function

. I(p)(1) — y(1), such that y II—I ® « entails 2 II—V x. We do this again by defining g, on each subset f(z, r) of I(f)(t) = Urem) p(t,r)
separately On f(t,r) we define g,(y) = r. Then by definition, if y I, I 5 ie., y II— x, then r II—’ X, as x € (ch)(t r). Hence the
functor I is indeed well-defined. It remains to show the three requlred propertles If a=<p, then we show that I(a) < I(B). From

4



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

the hypothesis we obtain, for every (¢,r) € Y T, a function &ur - ®(t,r) — p(t,r), such that, if y Il—g "X then g, () Il—fm x. Hence,
for I(f)(r) we can define g, piecewise on the individual f(z, ) by setting g,(y) := g, (), if y € a(t, 7). It is immediate to see that the
functions g, prove that I(e) < I(f). For the converse direction I(a) < I(f) = a < , we work as above, i.e., we define g, ,,() := &),
where g, ), g have the same roles as above. To show essential surjectivity, that is, every f: C — Sets with § <y is equivalent to I(@),

forsomea: Yy — Sets. If f is given, then for every (t,r) € Y, T let a(t,r) := p(r). Let also x II—’(’I @S x Il—f2 a. Next we show that
is a simulation. Asa : YT — Sets is clearly well-defined and II—Z ) 38 well, it remains to prove the two conditions on simulations. For
the first, let a € ( >c y)(t, r). We show that there is x € a(t,r), such that x II—‘(” . @ This follows from the existence of x € (t) = a(t,r),

such that x Il—f a. The second condition is shown similarly, since f’ II—Z' D) f if and only if f’ Il—ft " f. Hence, a is a simulation.
Clearly, I(a) = B, since Urey(,) alt,r) = U,Ey(,) p(t) = p(t) and

xHYae3x aedxH aexIH a

Thus, I is essentially surjective, since if I(@) = g, then I(a) ~ . O

4. Fam-categories with a X-structure

In this section, we present the notion of a category with a family structure and X-objects, introduced in [16] and directly linked
to the notion of type-category, introduced by Pitts in [18]. The Sigma-objects generalise the Grothendieck construction in a general
categorical framework.

Definition 6. A fam-category is a category C together with a collection of family arrows fHom(c), for every object ¢ in C. We use Greek
letters 4,4, ... for them, and we denote them by an arrow starting from ¢

For every c,d € C there is a composition operation o : fHom(d) x Hom(c, d) — fHom(c), (4, f) — Aof, subject to the following condi-
tions:

(F)) For every ¢ € C and A € fHom(c) we have Aol, = A.

(F,) For every ¢,d,e € C and A € fHom(e), g € Hom(d, e), f € Hom(c, d) we have that Ao(gof) = (dog)o f
(Aog)of

Aog
fdge/\

gof

Ao(gof)

Example 2. (i) Constant families: Every category is turned into a fam-category by setting fHom(c) = C,, the class of objects, for every
¢ € C. The composition is defined by cof = ¢ for all ¢ and f in C.

(ii) Families in categories: If Cat is the category of locally small categories, let tHom(C) = Fun(C®, Sets) with composition the composition
of functors.

(iii) (Pitts) Families in a topos C with subobject classifier (T,Q): If a € C,

fHom(a) := U Hom(a X b, Q).
beC

The composition is defined by the rule ((b,e),g) ~ (b,e X (g X 1))

5



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

f N
cXb
|
c gx1y b
g i 1y
\‘/
—— _—
a o axb o b
|
Q. =
(b,e)og

(iv) If A is a type in a universe U" (see [23]), a family arrow on A is a type-family P: A - V.

Example 3. It is immediate to show that the category CompMod can be endowed with a family arrow-structure by letting fHom(C)
for each computability model be the class of simulations y : C — Sets.

Definition 7. A fam-category C has Z-objects, or is a (fam, X)-category, if for every a,b € C, for every i € fHom(a), and for every

f € Hom(b, a) there is a Z-object Y, A € C and arrows pr‘]’”1 € Hom( Y, 4,a) and £, f € Hom( X, (4of), ¥, ), such that the following
rectangle is a pullback,

S0 f) 225 50

_|
prl{’kofl Jpr‘f’/\
b———«a
f

and the following conditions hold:
(Z) 21, = 12,,/1:
(Z2) Z,(fog) = (Z1f)o%s0p)8, for every f € Hom(b, a) and g € Hom(c, b)

S (Mol 22155 )

a

-
a, olg a,\
Pry pry

_—
a 1, a

Zx(fog)

S.hofog =0T S o) 2 S5y

- |
) bAof
priv(XOf)Ogl pry° J/ Jpr‘f’/\

c 7 b 7 a.

A type-category (Pitts [18]) is a (fam, I)-category with a terminal object.>

Example 4. (i) If C is a category with constant families fHom(c) = C, for every ¢ € C, then let ) d :=c and pr?d = 1,. The square
/
cC —
|
1{
C

AN

R—
£

3 In the definition of a type-category in [18], pp. 110-111, Pitts does not study the family-structure of a type-category separately from its Z-
structure. In [16] examples of (fam, X)-categories without a terminal object are given.

6



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

is a pullback and the two conditions are trivially satisfied.
(ii) In Cat, if P € fHom(C) = Fun(C*, Sets), the Z-object over P is the category of elements Y. P.
(iii) For the definition of the canonical Z-objects in a topos, see [18], p. 113.
(iv) The Z-object in the category of small types U" over a type A in U and a type family P: A — U is the dependent pair-type

.. 4 P(x) (see [23]).

As we show in the end of this section, (fam, X)-categories induce in a canonical way dependent arrows, i.e., objects that are
introduced in [16] and generalise categorically Martin-L6f’s dependent functions (see [22,23]).

Definition 8. A fam-category C has dependent arrows, or is a dep-category, if to every object a in C and A € fHom(a) corresponds a
collection dHom(a, 1) of dependent arrows over (a, 1). We denote the elements of dHom(a, 1) by capital Greek letters @, ¥, etc., and we
use a double-arrow over a and 4 to picture some ® € dHom(a, A).

Pof
(2
N @
A

a — b—— a——

N

dof

For every a,b € C and A: fHom(a) there is a family of composition-functions (of: dHom(a, 1) — dHom(b, Ao f )) JHon(b.a)’ with
dHom(a, 1) @ = ®of € dHom(b, Ao f), where for simplicity we write o instead of o, such that the following conditions hold:

dol,
P
(D1) @01, =@, a&aﬁ
Aolg
(@of)og
Pof
(D2) ®o(fog)=(Roflog. ¢ —=b—ra—>
v >
fog
®o(fog)

In the next theorem, we employ global sections (see [18], p. 114), or dependent objects (see [7], pp. 91-92).

Theorem 1. If C is a (fam, Z)-category, let for every a € C and A € dHom(a) the class of dependent objects of A

D,4 = {d) [S Hom(a,ZA) | pr‘:"lody = 1a}

a

D= {¢ € Hom <a,2)\> \ pr‘ll’)‘ o = 1a}
a a,\
a ¢ Doa A il a.

If dHom(a, 4) := D, A, then C becomes a dep-category.

Proof. If ¢ € D,4 and f € Hom(b, a), we define a global section ¢(f) € Dy(4of) as follows. As pr‘l’"o(g_';of) = (pr‘l"'loqb) =l,0f=f=
fol,, the following outer diagram commutes, and let ¢(f) € Hom(b, ¥, (Ao f)) be determined by the universal property of a pullback.

7



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

b pof
) l
N
>af
1, Sp(hof) T LA
_l
prll))\ofl J/pr‘ll)‘
b a

For the rest of the proof, see [16]. O
5. CompMod is a type-category

Theorem 2. The category CompMod is a (fam, X)-category.

Proof. To each simulation y : C — Sets we correspond the Grothendieck model Yy and the first-projection-simulation prlc". If
D € CompMod and y : C — D, we define sy : Y 8oy = X 6.

D6
> c(do9) =% > pd
pr(l_'J,SO'yl lprllD,é

C 7 D

Let Y57 Y,er ¥(®) = X,cp 6(w) be defined by the rule (7, 5) — (y(t), b). The forcing relations are defined by x’ II—EZ)Y

It is straightforward to show that ) 5y is a simulation. The above rectangle commutes. For the underlying classes, this is immediate

prioXsv DY
I—(t’b) x, then x Il—(t,b) X,

and thus x’ IF/ x, which is equivalent to x’ II—:’::;‘ x. To show that it is a pullback, let E € CompMod over a class V and simulations
a, f, such that the following rectangle commutes

x 1o x IH x.

to show, since pr;( X 7(t, b)) = pr, (y(1)) = y(pr,(1,b)). For the forcing relations, we observe that, if x|

E- .56
|
c—"-D.
M
We find unique ¢ : E — Y (60y), such that both triangles in
E B
~ |
a >cldoy) ED >pd
pr?,ﬁo'yl lpr?,s
> C T _.D
(2)

commute. First, we define ¢ on the level of the underlying classes. If v € V, let {(v) = (a(u), c), where ¢ € 6(y(v)) is the unique ¢ such
that f(v) = (u, ¢) for some u. Clearly, ¢ is well-defined. We define the forcing relations by

x' Il—g x:ex IF x.
To show that these relations are well-defined, we need to show that if x’ IF% x, then x’ € ( Zc(éoy))(u, ¢), i.e., we have to show that

b II—ZZ’:) x'. For this, let such x’ be given. As y is a simulation we find z € D(y(a(v))), such that z II—Z(U) x'. Hence, z IF°* x, and using
D6

the commutativity of (1) we get z H—Er‘ ° x. This yields a y € (3 6 )(u,c) (we recall that f(v) = (u, c), as defined above), such that
D6
z Il—:’:i) y Hf x. By definition of prll)”S this yields y = z, and thus z € ( X, 8)(u, ¢), which means that ¢ Il—i z. Gathering everything

we see that this yields b IF z II—Z(U) x" IF% x, and thus b Il—iz) x', as required. This immediately shows that the first condition on

8



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

computability models is fulfilled, and the second follows, as we can take for any f € E[v, v'] the tracking function f’ € C[a(u), a(v )].
To show that /' € Y 6oy [(a(v), ), (a(v)),c’ )] we first note that we obtain f” that tracks this f’ with respect to y. Thus, f” tracks f
with respect to yoa, so it also tracks it with respect to pr?’5 of. To see that '’ also tracks f with respect to 8, let x € E(v) and z € D(u)
be given, such that z Il—f, xand ¢ IF? z. Then z II—:):’E);s z and thus ' (z) |l—:/'ll)'5°ﬁ f(x), and by definition of pr'l)«s also f"(z) “_fu’,c') fx).
Thus, f”' tracks f with respect to g.

Using this, let y € ( Y 807 )(a(v), ¢) be given. Thus, we obtain z € D(u), such that z I, y and ¢ Il—f(u) z. Then f"(z) Ik, f'(y), and
by the above we get f'(z) € X 8, thus f/(y) € Y 6oy. This shows that /" € Y oy [(a(v),c), (a(v"), c’)]. Hence, ¢ is a simulation.

It remains to show the commutativity of the triangles in (2). Observe that the two triangles already commute on the level of
the underlying class-functions, so it remains to check the forcing relations. Assume that we are given v € V and x” € E(v),x’ €

( ZD6> (B(v)) and x € C(a(v)), such that
X IF8 X" and x IF* x".
By definition we have to show that there exist y,, y, such that

r s [ pry &
X =20 and y; IF; x”, and x =2 2 and y, IF; x".

P

(X5 NEW)
y, such that x’ Il—(yx(u) yand y % x”. By the definition of ) ; y we then have x’ ”_aZ(Z)r », and thus y is our desired y,. For y, we simply
choose x and it is easy to see that this satisfies the requirements. The above implications also work in the opposite direction. It is
immediate to show that ¢ is the unique simulation that makes the triangles commutative. To show condition (X,), we observe that by
its definition the simulation Y, 1y on the level of the underlying class takes a pair (7, u) to (1g(?),u) = (#,u), hence on the level of the
underlying class-functions the two simulations agree. For the forcing relations, we see that both simulations are the corresponding
diagonals. To show (Z,) on the level of underlying classes, we observe that

Y 6ont.b) = (1. Gon®) = X, 8(t.r®) = X 8(( X r)a.b).

€ )

We know that (1) commutes and x’ I+ x', thus from x’ Il—f, x"" we conclude that x’ IF°* x". This in turn ensures that there is

5;:07 y if and only if x I+

X0 Xeos ¥
X ”_(t,b)

Soy
t
Soy
1

For the forcing relations, we simply remark that x I+ y. Similarly, we have d ash(Z“f

~if and only if x -y,

X doy O

Teos 7 : ¥
and x I+ yif and only if x I} y. Hence, “p)

) yif and only if x I+

z, which by the above is equivalent to x I+
Corollary 1. The category CompMod is a type-category.

Proof. From Theorem 2 and Definition 7 it suffices to show that CompMod has a terminal object. Such an object is described in
Remark 1. O

Corollary 2. The category CompMod has dependent arrows.

Proof. By Theorems 1 and 2 the canonical dependent arrows over a computability model C and a presheaf-simulation y : C — Sets
are the simulations ¢: C — Y 7, such that prlc”' op=1c. O

Corollary 2 bridges the theory of computability models with the categorical interpretation of dependent type theory.

6. 2-fam-categories with a X-structure

In [4] notions and results from [16] are extended to categories with 2-family arrows. The motivation for such a 2-categorical
generalisation is the 2-family structure of a universe of types V. If P,Q: A — U are type-families over the type A in U, a 2-family
arrow from P to Q is a dependent function

H: HA (P(x) = 0O(x)).

Definition 9. A fam-category C is a 2-fam-category, if for each ¢ € C the collection fHom(c) is a category whose morphisms are called
2-family arrows. A 2-family arrow n € Hom(4, u) is pictured as follows:

T

m

Moreover, for each ¢,¢’ € C, 4, u € fHom(c') there is an operation ./ assigning to # € Hom(4, u) and f : ¢ — ¢’ the 2-family-arrow
fecor f €Hom(dof, o f), such that the following conditions hold:

Compatibility: For each ¢, c’, ¢ € C, each A, u € fHom(c""), each € Hom(4, u) and each f € Hom(c, '), g € Hom(c’, ¢”’) we have that

9



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

[—

Necele=n nec.cle £1*>C@1
]
\ )

[

( Aogo f N 1
necel(gof) ¢ LS, no. ner (gof)
= (T/ O o g) O c f

L pegof 3 j
Q

Distributivity: For each ¢,c’ € C, each 4,5,y € fHom(c’) and n € Hom(8, ), 5’ € Hom(y, 4) as well as f € Hom(c, ¢’) we have that

(77,077)°c,c’f:(77,°c,c’f)o(77°c,c'f) CHC/ — 56— .

Remark 2. Usually, we omit the indices in «, ., and only write «. The operation « will be called “horizontal composition” from now
on.

Example 5. (i) If M is a monoid, and C is a fam-category, we can define a 2-fam-structure on C by letting Hom(4, u) := M for

A, u € fHom(c) and ¢ € C,,. The compositions « are defined by the rule m« f := m. The compatibility and distributivity properties are
immediate to show.

(ii) All fam-categories in Example 2 have their 2-analogue (see [4], § 3.1).

Next we define the X-structure that corresponds to a 2-fam-category.

Definition 10. A 2-fam-category C is a (2-fam, X)-category if the underlying fam-category has a (fam,X)-structure and for every
¢ € C, every A, u € fHom(c) and every 5 € Hom(4, u) there is an arrow

Z n: Z A= Z H,
A c c
such that the following diagrams commute

chof%zc,/\

Z)\of,pof n.fl lzk,uf

pri ot Ydhof —=—F— D1 pre’ A
>uf

/
pr?MOfJ lpri Y22

I\ c c Y,

Moreover, the following strictness conditions hold:
Z 1= 1ZCA and z no z n'= Z(VIOVI’)
AA A v,A Vi

For various examples of (2-fam, X)-categories we refer to [4], § 3.2. 2-dep-categories are defined in [4], § 3.4, and the 2-analogue
to Theorem 1 is also shown in [4] (Theorem 3.4.6).

10



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550
7. CompMod is a 2-fam-category with a X-structure

Proposition 4. CompMod is a 2-fam-category.

Proof. If C € CompMod over the class U, the category fHom(C) has objects copresheaf-simulations y : C — Sets and arrows witnesses
of transformability

= (/”r)reT Ly =6,

where g, 1 y(1) = 6(1), such that, for every ¢ € C(r) and every d € y(1), the implication d I+ ¢ = yu,(d) Il—f ¢ holds. If : y = é and
: 6 = A, then the composition o is defined to be (v,ou,),cr. This is well defined because

d - ¢ = p(d) I ¢ = v (D) Ik c.

The identity for y € fHom(C) is simply 1¢, € Cly(?), y(1)], which exists because C is a computability model. Thus fHom(C) is a category.
Next, we define the horizontal composition «cp, where C,D € CompMod. If = (4,),ey and y: C— D, let scpy 1= (4y())er- The
compatibility conditions are immediate to show. For the distributivity we have that

(©) ¢4 = (v,ot)ueu * A = (Vi) OHaw)er
= (V/l(t))teTo(”A(r))teT = (eA)o(s4).d

Definition 11. An equality simulation* y : C — D is a simulation such that C(t) = D(y(¢)) for all r € T and the tracking relations II—,’
are the equality relations on the respective set C(z).

Remark 3. In [15] it is shown that computability models together with equality simulations form a category. We will use this fact
(namely the closure under composition) in the following proof. It is immediate from their definition, that the simulations ) sy and
2,5 are equality simulations.

Theorem 3. CompMod is a (2-fam, X)-category.

Proof. Given : y = §, wherey,6: C — Sets, let 27’5 be the simulation with underlying class function (z, b) ~ (¢, u,(b)) and tracking
relations

”‘532‘)’2 {(x,x) ) x € (Zl)(l,b)}.

This is well-defined due to the following implications:
xe(Dr)wb s bl x> ud) I x
C
>xe (Z&)(r,y,(b)) >xe ( 25)( Y5 0)).
C C
The two defining conditions on simulations follow from the definition of the tracking relations. Let a simulation @ : C — D, where C

is over T and D is over U, and simulations y,é : D — Sets with a witness of transformability : y = §. We show the commutativity of
the following diagram

o
dcreoa : >D7
Z’yoa,éoa I}J.al lz'y,& H
C, D,
pry 7 d.cdoa o 2.pd pr; 7

C,doa D,s

pry pry

- > C = > C < ~

by showing the following equalities:

SeSe=Fe 3

7.6 yoa,50a
pry=prio ),
Y.6
pri=pro Y a
yoa,boa

4 Equality simulations are elaborated in [15].

11



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

On the underlying classes we have for the first equation that

(XoXa)en=Y 00 =@, umw®)
¥.6 Y ré
= Za(l, lla(;)(b)) = ( Z ao Z .a)(l’ b
3 é

yoa,5oa

and for the second and third equality we have that

PI{(1.6) = 1= Pr (. o (0) = Py Y ) 1.,

v.6

pr(u, b) = u = pry(u, u, (b)) = prio ) u,b).
y.6

For the tracking relations we only note that the composition of equality simulations is an equality simulation itself. O

Remark 4. In analogy to Corollary 2, and using the fact that a (2-fam, X) category has 2-dependent arrows (Theorem 3.4.6 in [4]),
one shows that the category CompMod has also 2-dependent arrows.

8. Fibration-simulations and opfibration-simulations

The (covariant) Grothendieck construction allows the generation of fibrations (opfibrations), since the first-projection functor
pri: Y P — C is a (split) opfibration, if P is a copresheaf, and a (split) fibration, if P is a presheaf. In this section we intro-
duce fibration- and opfibration-simulations, and we show that the first-projection-simulation pry : Y,y — C is a (split) opfibration-
simulation, as we work with copresheaf-simulations. The dual result is shown similarly. Throughout this section, E is a computability
model over T and B is a computability model over U. Moreover, the pair

@ = <w: T-U, (u—;f’)tg>

is a simulation of type E — B.
In contrast to what it holds for functors, for simulations y : E - B each computable function f in E is tracked, in general, by a
multitude of maps f’ in B. Thus, for each opspan

E(t1) —5— E(t2) «+—— E(%)

we have a whole class, in general, of opspans

B(y(t1)) —— B(y(t2)) <= B(y(ts))

such that f’ tracks f and g’ tracks g.

Definition 12 (Cartesian computable function). Let f’ € B[s,s'] and ¢ € T, such that w(’) = s’ be given. We call a computable
function f € E[t,1'] cartesian for f' and ¢, if f' II—E7 " f, and given computable functions g € E[t’,{'], g’ € Blw(”), w ()], and h €
B[w ("), w(?)] as in the following diagram

/ E(t) W/B(w(t))
k h
B(t") | B(w(t")) r
g f 4
~ N
E(t) e B(w(t))

that is g’ tracks g, there is some k € E[1”, ] satisfying the following property: & I+, o k, and for every x € E(t"),y € B(w(1")),
such that y II—I,, x, y € dom(f'oh) ndom(g'), and f'(h(y)) = g’(y), then x € dom(fok) N dom(g) and g(x) = f(k(x)).

Definition 13 (Opcartesian computable function). Let f’ € B[s',s] and ' € T, such that w(r') = s’ be given We call a computable
function f € E[¢,7] opcartesian for f' and ¢, if f’ ”_an/ " f, and given computable functions g € E[¢',1"], g’ € Bl[w(¢'), w(t"")] and
h € Blw(r), w("")] as in the following diagram

12



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

[
L I B(w (1))
/ f e /
E(t") -------------*--—- B(w(t")) 5
X = Yg/\
D B(w(t'))

that is g’ tracks g, there is some / € E[t,7"’] satisfying the following property: 4 tracks /, and for every x € E(t'), y € B(w (")), such
that yI=7 x, y € dom(ho f'Yndom(g"), and f'(h(y)) = g'(y), then x € dom(lof) N dom(g) and g(x) = I(f(x)).

Note that the computable functions k € E[#”,¢] and I € E[t,7"] in the above two definitions, respectively, are not unique.

Definition 14 (Fibration-simulation). We call w : E — B a fibration-simula tion, if for every computable function f € B[u, w(t)] there
is g € E[', 1] cartesian for f and ¢. In this case, we call g a lift of f.

Definition 15 (Opfibration-simulation). We call @ : E — B an opfibration-simulation, if for every computable function f € B[w(t), u],
there is g € E[7,1'] opcartesian for f and . In this case, we call g a lift of f.

Example 6. Let £, B be categories with copresheaves S,5’ and F: £ — B a fibration with S’oF = S. Then, y* : CM"/(€;5) —
CM'(3;S") is a fibration-simulation. To see this, assume we are given a computable function in CM'”(53;S’), i.e., a function
S'(f): S'(b) - S'(V'), and e € € such that F(e’) =b'. As F is a fibration, we find an arrow g: e — ¢’ cartesian over f and b’ .
We show that S(g) is the desired cartesian function over S’(f) and S('). For this, let functions S(h), S(h,), S(g,) as in the following
diagram,

Y ,
S(e) —mmmmmmm S S'(b)
S(k) S’(h)
S(e") - o= SV S'(f)
S5(92) |S(g) S (hy)
\ |’Y/ \
S(ef) ~mmmmme O S'()

be given, where we used that CM?"(&; S)(e) = S(e) and CM?"(B; S")(b) = S(b), for every e and b, respectively. As g is cartesian
over f and b/, we obtain an arrow k: ¢” — e, such that gok = g, and F(k) = h,. Obviously, S(k) is the function needed, and hence
S(g) is cartesian over S’(f) and S(¥').

Proposition 5. If C € CompMod and y : C — Sets a copresheaf-simulation, then pr, : Y-y — C is an opfibration-simulation.

Proof. Assume we are given a computable function f € Cl[t,#'] and pr,(z, b) = t. We need to find some b € C('), such that pr, (¢, b') =7/,
and a computable function f’ € (Zc y) [¢.b).(,b")], such that f Il—f(rt{ p.ry /- BY definition we know that f Il—f('t" warsy | if and
only if f = f’, so we have to find y € C(¢'), such that f(b) = b’. For this, we simply take »’ := f(b). To show that f is opcartesian for
f and b, we consider the following diagram

[

(t” ’bll)

pPri
e )

Since # fills the triangle on the left, as f = hog whenever these functions are defined, hence, in particular, f(b) = h(g(b)), and
thus »’ = h(b""). Hence, h is a computable function from ( >c y)(t”, ") to ( >c y)(t’, ). O

Next we define split fibration-simulations and split opfibration-simulations.

13



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

Table 1

The correspondence between category theory and theory of computablity models.
Category theory Theory of computablity models
category C computability model C
functor F: C - D simulationy : C - D
category of Sets computability model of Sets
copresheaf P: C — Sets copresheaf-simulation y : C — Sets
representable functor Hom(a, —) representable simulation v,
representable functor Hom(—, a) representable-simulation §,
Grothendieck category Y. P Grothendieck comp. model Y.y
first-projection functor first-projection-simulation

pr,:ZP—»C prl:Zy»C
C C

(op)cartesian arrow (op)cartesian computable function
(op)fibration 7 : € —» B (op)fibration-simulation w : E — B
split (op)fibration split (op)fibration-simulation

Definition 16. A splitting for a fibration-simulation w : E — B is a rule @l that corresponds a pair (f,u), where f € B[7,1,] and
w(u) = t,, to some f' € E[u,u’] cartesian for f and u, such that the following conditions hold:

(S)) For every f € B[1,,1,] and every g € B[1,,1;] we have that
@B (gof.uy) = w2 (g.u)ow(f.uy).
(S,) For every t € T we have that wA(lB(,),u) = (Igg, W)

A splitting for an opfibration-simulation @ : E — B is a rule w? that corresponds a pair (f,u), where f € B[#,,1,] and w(u) =1, to
some f’ € E[u,u'] opcartesian over f and u, such that the following conditions hold:

(S,) For every f € B[t,,1,] and every g € BJ[t,,1;] we have that
@B (gof up) = @ (g w)owm B (fLuy).

(S,") For every t € T we have that wA(lB(,), u) = (1gg,, ).

A (op)fibration-simulation @ is split, if it admits a splitting w2 .
Corollary 3. pr,: Y.y — Cis a split opfibration-simulation.

Proof. Let p]['lA be defined by the rule prlA( fow:=f. O

9. Conclusions and future work

In [12] many concepts and results from category theory are translated into the theory of computability models, where equalities
between arrows are replaced by certain relations between type names and (partial) computable functions. Here we extend the work
initiated in [14,15] by translating the Grothendieck construction and the notions of fibration and opfibration into the theory of
computability models.

Table 1 includes the correspondences between categorical and computability model theory-notions presented here.

It is natural to ask whether the category of presheaves, or more generally of all functors between two categories, can be translated
within computability models. As a consequence, a Yoneda-type embedding and a corresponding Yoneda lemma for computability
models and appropriate presheaf-simulations can be formulated. In such a framework, the Grothendieck computability model is
expected to have the same crucial role in the proof of a corresponding density theorem with that of the Grothendieck category in the
proof of the categorical density theorem. For that, we need to introduce forcing and tracking-moduli in the definition of a simulation
i.e., realisers for the forcing and tracking relations. We plan to develop these concepts further in the future.

Our approach to (op)fibration-simulations and (op)cartesian functions is different from the 2-categorical approach to fibrations
in [20,24]. In future work, we plan to explain the exact relation between our approach and the 2-categorical one in detail. Namely,
our approach to cartesian arrows yields a different notion from the 2-categorical one. Nonetheless, we can prove that by adding the
weak assumption that all computability models include all constant functions, every fibration in our sense is a 2-categorical fibration.

The category CompMod is shown to be a (fam, X)-category with a terminal object, or a type-category, and also a (2-fam, X) category.
These results allow the transport of concepts and facts from the theory of categories with family arrows and Sigma-objects into the
theory of computability models. For example, through Corollary 2 the category CompMod has dependent arrows. The presence of
dependence arrows in a category C allows the translation of the second-projection associated to the dependent pair-type in Martin-
Lof type theory into C as a dependent arrow (see [16], §5). Consequently, if C € CompMod and y : C — Sets is a copresheaf-simulation,
there is a simulation

pry”: Yy = Y (vopri”)

c Xcr

14



L. Gambarte and 1. Petrakis Theoretical Computer Science 1057 (2025) 115550

prS”: ny—» Z (fyopr?"y)

C >c
C
pI‘2 Y
prS Kot y
>cY——C——
C
yoprSY

representing the second-projection as a dependent arrow over the Grothendieck computability model )y and the copresheaf-
simulation yoprlc".

In [18], Proposition 6.11, it is shown that the classifying category of a dependently typed algebraic theory T4 i.e., the category that
contains the most general model of this theory, is a type-category. Moreover, a model of T4 in any type-category is defined in [18],
pp. 117-118. Corollary 1 allows the seemingly unexpected connection between dependently type algebraic theories and the theory
of computability models. It is a result that bridges dependent type theory with computability models, where the theory of the latter
was introduced by Longley and Normann independently from type-theoretic system with dependent features.® In subsequent work
we plan to study models of various dependently typed algebraic theories within CompMod. In [18] it is defined when a type-category
has dependent products (Definition 6.23). We need to examine whether the type-category CompMod has dependent objects, in the
sense of Pitts, and, if yes, to relate them to the canonical dependent arrows of a type-category.

CRediT authorship contribution statement

Luis Gambarte: Writing — review & editing, Writing — original draft, Conceptualization; Iosif Petrakis: Writing — review & editing,
Writing — original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] R. Cockett, Categories and Computability, manuscript, 2010. https://cs.ioc.ee/ewscs/2010/cockett/estonia-notes.pdf.
[2] R. Cockett, P. Hofstra, Introduction to Turing categories, Ann. Pure Appl. Log. 156 (2-3) (2008) 183-209.
[3] R. Cockett, P. Hofstra, Categorical simulations, J. Pure Appl. Algebra 214 (10) (2010) 1835-1853.
[4] Y. Ehrhardt, 2-dep-Categories, Bachelor’s Thesis, LMU Munich, 2024. https://www.math.Ilmu.de/~petrakis/Ehrhardt.pdf.
[5] L. Gambarte, I. Petrakis, Categories with a Base of Computability, 2025. In preparation.
[6] L. Gambarte, I. Petrakis, The Grothendieck Computability Model, CEUR Workshop Proceedings 3811 (CEUR-WS.org 2024) (2024) 16-28. Proceedings of the
25th Italian Conference on Theoretical Computer Science.
[7] M. Hofmann, T. Streicher, The Groupoid Interpretation of Type Theory, in [22] 83-111.
[8] P. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Oxford University Press, 2002.
[9] J. Longley, Realizability Toposes and Language Semantics, PhD Thesis ECS-LFCS-95-332, University of Edinburgh, 1995.
[10] J. Longley, On the ubiquity of certain total type structures, Math. Struct. Comput. Sci. 17 (5) (2007) 841-953.
[11] J. Longley, Computability structures, simulations and realizability, Math. Struct. Comput. Sci. 24 (2) (2014) 1-49.
[12] J. Longley, D. Normann, Higher-Order Computability, Springer, (2015) 1-49.
[13] I Petrakis, Computability Models Over Categories, 2021. https://arxiv.org/abs/2105.06933v1.
[14] I Petrakis, Computability Models over Categories and Presheaves, Logical Foundations of Computer Science, 13137, Springer, 2022. Available on ArXiV.
[15] I Petrakis, Strict computability models over categories and presheaves, J. Log. Comput. 077 (2022). https://doi.org/10.1093/logcom/exac077.
[16] I. Petrakis, Categories with Dependent Arrows, 2023. https://arxiv.org/abs/2303.14754v1.
[17] 1. Petrakis, Y. Ehrhardt, Categories with Dependent and Codependent Arrows, 2025. Submitted, Preprint, avaliable on arxiv via http://arxiv.org/abs/2303.14754.
[18] A.M. Pitts, Categorical logic, Handbook of Logic in Computer Science Volume 5: Logic and Algebraic Methods, Clarendon Press, Oxford, 2000.
[19] G. Rosolini, Continuity and Effectiveness in Topoi, PhD Thesis, University of Oxford, 1986.
[20] E. Riehl, Two-Sided Discrete Fibrations in 2-Categories and Bicategories, manuscript, 2010. https://math.jhu.edu/~eriehl/fibrations.pdf.
[21] E. Riehl, Category Theory in Context, Dover Publications Inc, 2016.
[22] G. Sambin, J.M. Smith (Eds.), Twenty-Five Years of Constructive Type Theory, Oxford University Press, 1998.
[23] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study, Princeton, 2013.
[24] L.Z. Wong, The Grothendieck Construction in Enriched, Internal and co-Category Theory, PhD Thesis, University of Washington, 2019.

5 As Longley and Normann remark in [12], p. 544, “there is unexplored territory here, e.g. in combining constructive type theory and set theory
with classical approaches to functional algorithms”.

15


http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0001
https://cs.ioc.ee/ewscs/2010/cockett/estonia-notes.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0002
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0003
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0004
https://www.math.lmu.de/~petrakis/Ehrhardt.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0005
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0006
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0006
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0007
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0008
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0009
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0010
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0011
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0012
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0013
https://arxiv.org/abs/2105.06933v1
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0014
https://doi.org/10.1093/logcom/exac077
https://doi.org/10.1093/logcom/exac077
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0016
https://arxiv.org/abs/2303.14754v1
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0017
http://arxiv.org/abs/2303.14754
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0018
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0019
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0020
https://math.jhu.edu/~eriehl/fibrations.pdf
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0021
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0022
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0023
http://refhub.elsevier.com/S0304-3975(25)00488-8/sbref0024

	The Grothendieck computability model
	1 Introduction
	2 Basic definitions
	3 The Grothendieck computability model
	4 Fam-categories with a -structure
	5 CompMod is a type-category
	6 2-fam-categories with a -structure
	7 CompMod is a 2-fam-category with a -structure
	8 Fibration-simulations and opfibration-simulations
	9 Conclusions and future work


