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a r t i c l e i n f o

Associate Editor: Rhian Touyz

a b s t r a c t

Transient receptor potential (TRP) channels represent an extensive and diverse protein family fulfilling
salient roles as versatile cellular sensors and effectors. The pivotal role of TRP and related ion channels in
sensory processes has been well documented. Over the last few years, a new concept has emerged that
TRP proteins control an exceptionally broad spectrum of homeostatic physiological functions such as
maintenance of body temperature, blood pressure, transmitter release from neurons, mineral and en-
ergy homeostasis, and reproduction. This notion is further supported by more than 20 hereditary hu-
man diseases in areas as diverse as neurology, cardiology, hematology, pulmonology, nephrology,
dermatology, and urology. Most TRP channel-related human disorders impinge on development,
metabolism, and other homeostatic functions. The remarkable diversity of pathologies caused by TRP
channel dysfunction underscores these proteins' broad spectrum of roles in vivo. Here, we provide a
comprehensive overview of our progress in the identification, characterization, and clinical relevance of
pharmacological agents targeting mammalian TRP channels.

Significance Statement: Accumulating evidence links transient receptor potential (TRP) channels to
various human diseases and highlights TRPs as the most appealing pharmacological targets. The review
provides an overview of this quickly developing research area, focusing on identified pharmacological
modulators of mammalian TRP channels.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of American Society for Pharmacology and
Experimental Therapeutics. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

I. Introduction

The transient receptor potential (TRP) gene superfamily repre-
sents a large, evolutionarily conserved group of ion channels
initially identified in a mutant strain ofDrosophilamelanogaster that
displayed an abnormal response to light illumination.1 The mutant
flies exhibited a rapid decay in the light-induced electroretinogram
response of photoreceptor cells, referred to as transient receptor
potential, to distinguish it from the sustained receptor potential
observed in wild-type (WT) flies.2—4 Subsequent genetic and mo-
lecular investigations unveiled a new type of ion channel, now
known as the TRP channel.5

A systematic search for homologous proteins led to the dis-
covery of TRP channels across a diverse array of eukaryotes,
including algae, fungi, choanoflagellates, invertebrates, and
mammals.6 In humans, 27 TRP proteins are known, which are
subdivided into 6 families (Table 1): canonical TRP channels
(TRPCs), vanilloid receptor and related TRP channels (TRPVs),
melastatin-like TRP channels (TRPMs), ankyrin domain-enriched
TRP channels (TRPAs), mucolipin-related TRP channels (TRPMLs),
and polycystic kidney disease-related TRP proteins (TRPPs).7,8

All TRP channels maintain a notable structural similarity in their
channel-pore forming domains, which include 6 membrane-spanning
helices and a short stretch of hydrophobic residues between the fifth
and sixth transmembrane (TM) segments, often called the pore helix
(PH). After the sixth helix, TRPCs, TRPVs, and TRPMs also feature a
highly conserved segment known as the TRP domain. TRPPs and
TRPMLs exhibit a more distinct topology of the channel segment
because they include a long loop linking the first 2 TM helices and lack
the TRP domain. Besides this, TRP channels display significant struc-
tural heterogeneity in their large N- and C-terminal domains. TRP
proteins are assembled in tetramers, implying that 4 subunits
contribute to a common membrane-spanning channel pore (Fig. 1).

Over the past decade, significant progress has been made in
single-particle cryogenic electron microscopy (cryo-EM) analysis of
TRP channels, resulting in more than 400 structural models that
encompass nearly all vertebrate TRP proteins (Table 1). The struc-
tural data obtained enable a detailed examination of the 3-
dimensional (3D) arrangement of channel subunits at the atomic
level and elucidate the roles of certain amino acids in the tetrameric

assembly of TRP channels (Fig. 1). Undoubtedly, these results pro-
vide a foundation for structure-function analysis of TRP channels,
including insights into regulatory mechanisms, the functional ef-
fects of pathogenic mutations, and structure-based drug design.

Apart from considerable structural variability (Fig. 1), TRP chan-
nels also display fascinating diversity in functional characteristics,
subcellular distribution, expression patterns, and physiological roles
(Table 1).9,10 The pivotal role of TRP and related ion channels in
sensory processes has been highlighted by the 2021 Nobel Prize in
Physiology or Medicine, awarded to David Julius and Ardem Pata-
poutian.11 Clinical studies and experiments on preclinical disease
models revealed the prominent role of TRP proteins in human health
and disease.12 Accordingly, TRP proteins have been identified as the
most appealing pharmacological targets.13,14 This review provides an
up-to-date assessment of TRP channels, emphasizing our progress in
developing pharmacological agents that allow selective modulation
of mammalian TRP channels in diverse pathophysiological settings.

II. TRPCs

A. TRPC gene family

The TRPC gene family in mammals consists of 7 members
(Table 1): TRPC1—7. Notably, TRPC2 is a pseudogene in humans, as
well as in Old World monkeys and apes (Catarrhini).15,16 Based on
amino acid sequence similarity, the TRPC family is divided into 4
subgroups: TRPC1, TRPC2, TRPC3/6/7, and TRPC4/5 (Fig. 2A).

Dysregulation of specific TRPCs has been implicated in various
disease states, including pulmonary and renal diseases, as well as
neurological disorders. Despite recent advances in the development
of potent and selective TRPC modulators, substantial clinical benefits
have yet to be realized. This underscores the need for further research
to fully elucidate the role of TRPCs in health and disease.

B. Domain topology, assembly, and functional characteristics of
individual TRPCs

1. Domain topology of TRPCs
In 2018, the first high-resolution 3D structures of TRPCs were

resolved using single-particle cryo-EM technology. Since then,

V. Chubanov, C. Grimm, K. Hill et al. Pharmacological Reviews 77 (2025) 100089

3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Table 1
Nomenclature, structural data, and expression profiles of TRP channels

Gene Protein and UniProt Entya Structures in PDBb Expression Pattern

TRPCs

TRPC1 TRPC1 (TRP1); P48995 only as TRPC1/4 heteromer: 8WPL, 8WPM ubiquitous
TRPC2 TRPC2 (TRP2) pseudogene in humans and Old-

World monkeys
n.d. VNO of rodents and other macrosmatic mammals

TRPC3 TRPC3 (TRP3); Q13507 7DXB, 7DXC, 7DXD, 7DXE, 6DJR, 6CUD, 5ZBG brain, heart, lung, blood vessels prostate, placenta,
kidney, testis

TRPC4 TRPC4 (TRP4, CCE1); Q9UBN4 7B0J, 6G1K, 7B05, 7B0S, 7B16, 6JZO, 5Z96, 8WPN, 7B1G;
as TRPC1/4 heteromer: 8WPL, 8WPM

high levels in brain and placenta, lower levels in heart,
pancreas, kidney, endothelium

TRPC5 TRPC5 (TRP5, CCE2); Q9UL62 7E4T, 7D4P, 7D4Q, 7WDB, 7X6C, 8GVW, 7X6I, 8GVX,
6AEI, 6YSN

high levels in brain, lower levels in kidney, blood
vessels, liver, stomach

TRPC6 TRPC6 (TRP6); Q9Y210 7DXF, 7DXG, 6UZB, 6UZA, 5YX9, 7A6U placenta, lung, blood vessels, spleen, ovary, small
intestine, neutrophils, podocytes

TRPC7 TRPC7 (TRP7); Q9HCX4 n.d. hypophysis, kidney, heart, lung, blood vessel, eye,
spleen, testis

TRPVs

TRPV1 TRPV1 (VR1, OTRPC1); Q8NER1 5IRX, 5IRZ, 5IS0, 7L2H, 7L2I, 7L2J, 7L2K, 7L2L, 7L2M,
7L2N, 7L2O, 7L2P, 7L2R, 7L2S, 7L2T, 7L2U, 7L2V,
7L2W, 7L2X, 7LP9, 7LPA, 7LPB, 7LPC, 7LPD, 7LPE,
7LQY, 7LQZ, 7LR0, 7MZ5, 7MZ6, 7MZ7, 7MZ9, 7MZA,
7MZB, 7MZC, 7MZD, 7MZE, 7RQU, 7RQV, 7RQW,
7RQX, 7RQY, 7RQZ, 8GF8, 8GF9, 8GFA, 8JQR, 8T0C,
8T0E, 8T0Y, 8T10, 8T3L, 8T3M, 8U2Z, 8U30, 8U3A,
8U3C, 8U3J, 8U3L, 8U43, 8U4D, 8X94

small-to medium diameter DRG and trigeminal
ganglion sensory neurons, brain neurons, astrocytes
and microglia

TRPV2 TRPV2 (VRL-1, OTRPC2); Q9Y5S1 6OO3, 6OO4, 6OO5, 6OO7, 7XEM, 7XEO, 7XER, 7XEU,
7XEV, 7XEW, 7YEP, 6BWJ, 6BWM, 5AN8, 8SLX, 8SLY,
8FFL, 8FFM, 8FFN, 8FFQ, 5HI9, 6BO4, 6BO5, 6U84,
6U86, 6U88, 6U8A, 7N0M, 7N0N, 7T37, 7T38, 7ZJD,
7ZJE, 7ZJG, 7ZJH, 7ZJI, 9B3U, 9B3V, 9B3W, 9B3X,
9B3Y, 9B3Z, 8EKP, 8EKQ, 8EKR, 8EKS

medium-to-large diameter DRG and trigeminal
ganglion sensory neurons, various immune cell
types, red blood cells, neurons, microglial cells,
melanocytes, vascular smooth muscle cells,
urothelium

TRPV3 TRPV3 (VRL3, oTRPC3); Q8NET8 Tetrameric
6DVW, 6DVY, 6DVZ, 6MHO, 6MHS, 6MHV, 6MHW,

6MHX, 6OT2, 6OT5, 6PVL, 6PVM, 6PVN, 6PVO, 6PVP,
6PVQ, 6LGP, 6UW4, 6UW6, 6UW8, 6UW9, 7MIJ,
7MIK, 7MIL, 7MIM, 7MIN, 7MIO, 7RAS, 7RAU, 7UGG,
7XJ0, 7XJ1, 7XJ2, 7XJ3, 8GKA, 8V6K, 8V6L, 8V6M,
8V6N, 8V6O, 9JDM, 9JE5, 9JEE, 9JEF, 9JEG, 9BKU

keratinocytes, oral gingival and epithelial cells,
glandular cells and enterocytes in the small and
large intestine

Pentameric
8GKG, 9DIJ

TRPV4 TRPV4 (TRP12, VRL-2, oTRPC4); Q9HBA0 8T1B, 8T1C, 8T1D, 8T1E, 8T1F, 8FC7, 8FC8, 8FC9, 8FCA,
8FCB, 8J1B, 8J1D, 8J1F, 8J1H, 8JKM, 8JU5, 8JU6, 8JVI,
8JVJ

Ubiquitous in vascular endothelial cells, pancreatic,
tongue and salivary gland exocrine epithelial cells,
epithelial cells in kidney tubules, bronchial, tracheal
and fallopian tube ciliated cells, skin keratinocytes
and melanocytes, macrophages, hepatic Kupffer
cells, placentar trophoblast, and decidual cells

TRPV5 TRPV5 (ECaC, ECaC1, CAT2, OTRPC3); Q9NQA5 6B5V, 6DMR, 6DMU, 6DMW, 6O1N, 6O1P, 6O1U, 6O20,
6PBE, 6PBF, 7T6J, 7T6K, 7T6L, 7T6M, 7T6N, 7T6O,
7T6P, 7T6Q, 7T6R, 8FFO, 8FHH, 8FHI, 8TF2, 8TF3,
8TF4, 8FFL, 8FFM, 8FFN, 8FFQ

DCT and collecting duct of the kidney, pancreas, small
and large intestine, prostate gland, testis, brain, bone
osteoclasts, and placenta

TRPV6 TRPV6 (CaT1, ECaC2, OTRPC3); Q9H1D0 5IWK, 5IWP, 5IWR, 5IWT, 5WO6, 5WO7, 5WO8, 5WO9,
5WOA, 6BO8, 6BO9, 6BOA, 6BOB, 6D7O, 6D7P, 6D7Q,
6D7S, 6D7T, 6D7V, 6D7X, 6E2F, 6E2G, 7D2K, 7K4A,
7K4B, 7K4C, 7K4D, 7K4E, 7K4F, 7S88, 7S89, 7S8B,
7S8C, 8FOA, 8FOB, 8SP8, 9CUH, 9CUI, 9CUJ, 9CUK

Small intestine, glandular cells of the salivary gland,
pancreas, prostate, thyroid, bronchiae, placenta,
testis, epididymis, endometrium, stomach, caecum,
main olfactory epithelium
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TRPMs

TRPM1 TRPM1 (Melastatin, MLSN1, LTRPC1); Q7Z4N2 n.d. melanocytes, retinal ON bipolar cells
TRPM2 TRPM2 (LTRPC2); O94759 6MIX, 6MIZ, 6MJ2, 6PUO, 6PUR, 6PUU, 6PUS, 7VQ1,

8E6Q, 8E6T, 8E6R, 8E6S, 8E6U
ubiquitous; high levels in brain and immune cells

TRPM3 TRPM3 (MLSN2, LTRPC3, TRPM3α2); Q9HCF6 8ED7, 8ED8, 8ED9, 8DDR, 8DDS, 8DDT, 8DDX, 8DDQ,
8DDU, 8DDV, 8DDW, 9B2A, 9B29, 9B28

DRG sensory neurons, brain, kidney, pancreatic ß-cells,
placenta, testis

TRPM4 TRPM4 (LTRPC4, TRPM4B); Q8TD43 9B93, 6BQV, 9B90, 6BCO, 6BCQ, 9B92, 9B94, 6BCL,
5WP6, 6BWI, 8RCR, 8RCU, 8RD9, 9B8W, 9B8Y, 6BCJ,
6BQR

ubiquitous; high levels in brain, heart, immune cells,
and pancreatic ß-cells

TRPM5 TRPM5 (MTR1, LTRPC5); Q9NZQ8 8SLE, 8SL6, 8SL8, 8SLA, 8SLI, 8SLP, 8SLQ, 8SLW type II taste receptor cells, tuft cells, olfactory
epithelium, and pancreatic ß-cells

TRPM6 TRPM6 (ChaK2, Channel-kinase 2); Q9BX84 n.d. kidney, intestine, placenta, lung, testis
TRPM7 TRPM7 (LTRPC7, TRP-PLIK, ChaK1, Channel-kinase

1, MagNum, MIC); Q96QT4
5ZX5, 6BWF, 6BWD, 8SI2, 8SI3, 8SIA, 8SI7, 8SI5, 8SI6,

8SI4, 8SI8, 8W2L; kinase domain: 1IAH, 1IA9, 1IAJ
ubiquitous

TRPM8 TRPM8 (Trp-p8, CMR1, Cold receptor 1); Q7Z2W7 8BDC, 8E4L, 8E4M, 8E4N, 8E4O, 8E4P, 9B6D, 9B6E,
9B6F, 9B6G, 9B6H, 9B6J, 9B6K, 7WRA, 7RWB, 7WRC,
7WRD, 7WRE, 7WRF

DRG and TG sensory neurons, brain, prostate,
pancreatic ß-cells, placenta, testis

TRPAs

TRPA1 TRPA1 (ANKTM1, TRPN1); O75762 3J9P, 6PQO, 6PQP, 6PQQ, 6V9V, 6V9W, 6V9X, 6V9Y,
6X2J, 6WJ5, 7JUP, 7OR0, 7OR1, 9MOE

DRG, trigeminal and vagal ganglia, enterochromaffin
cells, astrocytes, Schwann cells, bronchial, alveolar,
renal and urothelial epithelial cells, keratinocytes,
melanocytes, cardiac fibroblasts, pancreatic ß-cells,
enterochromaffin cells, T-cells, pancreatic and colon
cancer, neuroblastoma, glioblastoma

TRPMLs

TRPML1 TRPML1 (MCOLN1, Mucolipin1); Q9GZU1 7SQ7, 7SQ8, 7SQ9, 5WPQ, 5WPT, 5WPV, 7MGL, 9CBZ,
9CBZ, 9CBZ, 5YDZ, 5YE2, 9CC2, 5YE5, 9EKT, 7SQ6,
9EKS, 9EKU, 6E7P, 6E7Y, 6E7Z, 5YE1, 9EKV, 5WJ5,
5WJ9, 9HJ6, 9HJ8, 9HL3, 9HlL4, 9HL6, 9HL8, 9HLA,
9HLB, 9HLC, 9HLD

ubiquitous

TRPML2 TRPML2 (MCOLN2, Mucolipin2); Q8IZK6 7DYS, 9EKW, 9EKX, 9EKY, 9EKZ, 9EKO, 8EL1, 6HRS,
6HRR

thymus, spleen, kidney, trachea, liver, lung, colon,
testis, thyroid, B- and T-cells, macrophages,
dendritic cells

TRPML3 TRPML3 (MCOLN3, Mucolipin3); Q8TDD5 6AYG, 6AYE, 6AYF hair cells of the inner ear, organ of corti, utricle, stria
vascularis, alveolar macrophages, skin melanocytes,
neonatal enterocytes, kidney, lung, olfactory bulb
(sensory neurons), nasal cavity, thymus, colon,
trachea, several glands (parathyroid, salivary,
adrenal, pituitary), testis, ovary

TRPP channels

PKD2 TRPP2 (polycystin-2, PC2, PKD2); Q13563 8HK7, 8K3S, 6D1W, 9DLI, 9DWQ, 5K47, 5MKE, 5MKF,
5T4D, 6T9N, 6T9O, 6WB8; as PKD1-PKD2 heteromer:
6A70

ubiquitous; high levels in the kidney, brain, heart

PKD2L1 TRPP3 (polycystin L, PKD2L1); Q9P0L9 5Z1W, 6DU8; as PKD1L3-CTD-PKD2L1 heteromer:
7D7E, 7D7F

brain, taste receptor cells, kidney, lung

PKD2L2 TRPP5 (PKD2L2); Q9NZM6 n.d. testis and brain, low levels in the kidney, liver, heart,
lung

n.d., not determined.
aaccession numbers for human proteins in UniProt.
bexperimentally addressed structures for human/rodent/fish (TRPC), human/rodent (TRPV, TRPM, TRPML, TRPP), or human (TRPA) proteins in RCSB PDB (Research Collaboratory for Structural Bioinformatics Protein Data

Bank).
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several 3D structures of TRPC3, TRPC4, TRPC5, and TRPC6 chan-
nels, and TRPC1/4 heteromers have been identified, with resolu-
tions ranging from 2.4 Å to 4.4 Å. These structures were obtained
in the presence and absence of inhibitors, activators, and Ca2+, or
in complex with interacting proteins such as calmodulin (CaM) or
Gαi protein subunits.17—30 Table 1 summarizes the available Pro-
tein Data Bank (PDB) entries. Studies have revealed that all TRPCs
exhibit a tetrameric structure, with each channel subunit adopting
a Y-shaped arrangement, giving the tetramers rotational symme-
try. The 4 monomers collectively form the central channel pore,

which is permeable to both monovalent and divalent cations. Each
channel monomer comprises 6 TM domains (TMDs) (S1—S6),
formed by α-helices, with cytosolic N- and C-termini. The general
structural features of TRPCs are depicted in Fig. 2B.

The N-terminus of TRPCs contains 4 ankyrin-like repeats,
conserved across other TRP channel families such as TRPMs,
TRPVs, and TRPA1.31 These repeats play critical roles in protein or
cytoskeleton interactions32,33 and stabilize the distal cytoplasmic
portions of the C-terminus.29,34,35 The first ankyrin-like repeat
appears crucial for channel homo- or heterotetramerization,36 as it
interacts with a connecting helix — the rib helix — and the C-ter-
minus of the adjacent monomer, potentially stabilizing the
tetramer.20 Notably, the 3D structure of TRPC5 in complex with the
Gαi3 protein subunit has revealed direct interaction between Gαi3
and the ankyrin-like repeat domains 1 and 2.27

TRPC4 and TRPC5 channels feature 7 helices, while TRPC3 and
TRPC6 contain 9 helices of varying lengths, connected by loops
(helix-loop-helix domain) located at the proximal N-terminus.
This domain interacts with the C-terminal TRP domain, a
conserved structure that follows the S6 TMD. Adjacent to this
domain lies the pre-S1 elbow, a membrane-associated structure
consisting of 2 helices. The following pre-S1 helix itself is parallel
to the cytoplasmic membrane surface.

The TM helices S1—S4 form a Y-shaped “shank” and a voltage-
sensing-like domain (VSLD) that harbors binding sites for various
channel modulators. The second Y-shaped "leg" is composed of the
TM helices S5 and S6, connected via the PH and pore loop. The ion-
conducting pathway is primarily formed by S5, S6, and the pore
domain, which includes the PH, turret, and loop. The pore walls are
constructed of 4 pore loops and their corresponding S6 helices,
with the extracellular pore region carrying a negative charge.
TRPC5 has one additional negatively charged amino acid compared
with TRPC4,23 potentially explaining the higher single-channel
conductance of TRPC5.37 Mutations in this extracellular pore re-
gion alter channel properties, underscoring its role in ion selec-
tivity and conductivity.23,38

The leucine-phenylalanine-tryptophan (LFW) motif in the PH,
along with upstream residues, stabilizes the pore domain by
interacting with the S5 domain of the same monomer and the S6
domain of an adjacent monomer. The ion selectivity filter is
formed by phenylalanine and glycine residues, which are located 2

Fig. 2. The relatedness and domain topology of TRPCs. (A) Phylogenetic tree of the
human TRPC1—7 proteins. Since TRPC2 is a pseudogene in humans, mouse TRPC2 is
displayed. (B) Schematic representation of a TRPC monomer using the example of
TRPC6.

Fig. 1. Representative structures of TRP channels. Cryo-EM structures of TRPC4, TRPV1, TRPA1, TRPM4, TRPML3, and TRPP2 channels are shown from extracellularly (top) and
parallel to the plasma membrane (bottom), with the exception that TRPML3 is viewed from the extracytosolic side (top) and the lysosomal membrane plane (bottom). The 4
subunits are colored in blue, pink, green, and brown to outline the tetrameric assembly of the channels. TRPML3 and TRRP2 contain a cap-like structure above a channel pore
entrance.
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amino acids downstream of the LFW motif at the end of the PH and
at the beginning of the pore loop, with their carbonyl oxygens
interacting electrostatically with permeating cations, thereby
forming the ion selectivity filter.28 Below the selectivity filter lies a
central, presumably water-filled, pore cavity formed by the S6
helix, with constriction sites at the cytoplasmic end. The narrow-
est part of the ion-conducting pore, the lower gate, is usually
formed by 3 amino acids. These constriction sites, spaced by 3
amino acids each, consist of valine, histidine, and glutamine in
TRPC130; leucine and isoleucine17 or leucine, isoleucine, and
phenylalanine19 in TRPC3; isoleucine, asparagine, and glutamine
in TRPC422 and TRPC523; and leucine, isoleucine, and phenylala-
nine28 or the adjacent amino acids isoleucine, asparagine, and
glutamine18 in TRPC6. Interestingly, it was suggested that,
depending on the selected inhibitor, the lower gate of TRPC6 is
formed by isoleucine, asparagine, and glutamine.19

Another conserved structure in TRPCs is the helical TRP
domain, located proximally to the intracellular C-terminus. It
includes the TRP box, which contains the amino acid motif
glutamate-tryptophan-lysine-phenylalanine-alanine-arginine
(EWKFAR). This motif stabilizes the cytoplasmic proximal section of
the channel. The tryptophan and phenylalanine residues of the TRP
box, along with tyrosine and lysine residues of the TRP helix,
interact with the N-terminal proximal helices (helix-loop-helix
domain), the intracellular loop between S4 and S5, and the cyto-
plasmic ends of the S1 and S4 helices. Consequently, the TRP
domain forms a stabilizing contact surface between the TM regions
and the proximal cytoplasmic sections of the channel.

Although the precise function of the TRP box remains unclear,
growing evidence suggests that it plays a critical role in channel-
gating regulation. For instance, glycine at position 503 in TRPC4
affects gating, as a substitution for serine results in uncontrolled
channel opening.39 Glycine 503 interacts with tryptophan 635 in
the TRP domain, stabilizing the S6 segment that constitutes the
lower gate.20 Additionally, the TRP domain may interact with
phosphoinositol-4,5-bisphosphate (PIP2), as observed in other TRP
channels like TRPM8.40—42 In TRPC6, PIP2 binding likely occurs
between the distal TRP box and the pre-S1 helix.43 A lysine-to-
alanine substitution at position 771 in the TRP box potentiates
TRPC6 currents, altering the channel state. In TRPC3, PIP2 binds at
the intersection of the pre-S1 helix and the S1 TM helix, inducing
conformational changes via the re-entrant loop and TRP domain.44

Altogether, the TRP domain is highly conserved within the TRP
channel superfamily and is crucial for structural stabilization,
gating regulation, and cofactor interactions.

Following the TRP domain, a loop containing 2 glutamates (in
TRPC4 and TRPC6), 2 aspartates (in TRPC1 and TRPC3), or an
aspartate-glutamate combination (in TRPC5 and TRPC7) extends
into the cytoplasmic membrane layer. This loop interacts with the
pre-S1 elbow of the N-terminus and the cytoplasmic end of the S1
helix. Although not resolved in all 3D structures, it is presumed to
be a common feature of TRPCs.

TRPC4 and TRPC5 possess a unique extracellular disulfide bond
between 2 cysteines near the S5 PH linker, which may play a role in
redox sensing.22,45 Additionally, TRPC3 and TRPC6 differ from
TRPC4 and TRPC5 in the length of their S3 helices on the extra-
cellular side, which are approximately 4 helical turns longer.

A nearly parallel helix, slightly sloping toward the cytoplasmic
membrane, has been variously termed “CH1”,18 “horizontal he-
lix”,29 or “CTD rib helix”.17 In TRPC4 and TRPC5, it is referred to as
the “connecting helix”22,23 or “Rib helix + CaM 1,4,5-trisphosphate
(IP3) receptor binding (CIRB) domain”.20 The CIRB domain, present
in all TRPCs, begins before the horizontal helix and encompasses
most of it. The 3D structure of TRPC4 in complex with CaM reveals
an interaction between 1 channel monomer and 1 CaM protein at

the CIRB domain.21 Interestingly, CaM binding depends on calcium
concentration: at low calcium levels, IP3 receptor binding is
favored, while at high calcium levels, CaM preferentially binds.
CaM stabilizes the inactive channel state, whereas IP3 receptor
binding promotes activation.21,46,47

At the distal end of the C-terminus, a perpendicular helix forms
another conserved feature, variously called “CH2”,18 “CTD pole
helix”,17 “vertical helix”,29 “coiled-coil (CC) domain”,22,23 or “C-
term helix”20 in TRPC4 and TRPC5. This helix exhibits a
heptahedron-like pattern, and 4 such helices assemble to form a
central, vertically extending tunnel in the distal cytoplasmic re-
gion. Together with the ankyrin repeat domains (ARDs), this
structure is critical for tetrameric assembly.

TRPCs can be regulated by lipids, though the precise mecha-
nism of lipid regulation remains incompletely understood.
Recently, 2 distinct lipid-binding sites have been identified. Lipid
binding site 1 is located in the inner leaflet of the VSLD, while lipid
binding site 2 is situated in the pore region between the pore loop
and the S6 helix of an adjacent channel monomer. In the apo states
of TRPC523—25 and TRPC4,20,22 a lipid has been found in the pore
region, interacting with the phenylalanine and tryptophan resi-
dues of the LFW motif. This lipid has been identified as ceramide-
1-phosphate, phosphatidic acid,23,25 or diacylglycerol (DAG).24,48

Mutations in lipid binding site 2 have been shown to affect the
DAG sensitivity of TRPC3 and TRPC6 channels,28,49,50 highlighting
this region’s critical role in regulating channel activity.

In the 3D structure of TRPC6, a lipid identified as phosphati-
dylcholine was found in lipid binding site 2, interacting with the
phenylalanine and tryptophan residues of the LFW motif.28 Inter-
estingly, this lipid was shifted upward toward the extracellular
side and rotated vertically compared with the lipids found in the
TRPC4 and TRPC5 structures.

At lipid binding site 1, cholesterol hemisuccinate―introduced
during protein purification―was detected. However, in the TRPC3
structure, a phospholipid was identified at this site,17 which may
represent an endogenous lipid that binds to the channel. Addi-
tionally, the 3D structures of TRPC4 in both their ligand-bound and
apo states21 suggest the presence of a Ca2+ ion in the VSLD domain.
This ion appears to stabilize ligand binding in the VSLD through a
bridging water molecule. Similar cation densities have been
observed in the TRPC4 and TRPC5 structures.22,23 Deleting the Ca2+

binding site in TRPC5 abolished channel activation by elevated
extracellular Ca2+ concentrations.24

To date, high-resolution structures of TRPCs in their open state
are still lacking, and significant portions of the C-terminal region
remain unresolved. However, comparisons of TRPC6 3D structures
in the apo and activator-bound states suggest that channel open-
ing involves critical movements of the TM helices.28 Upon activa-
tion, the S6 helix of TRPC6 relaxes and moves downward, widening
the restriction point at the lower gate, which is formed by leucine,
isoleucine, and phenylalanine residues. This movement is
accompanied by a downward bending of the S5 helix. Conversely,
Vinayagam et al21 propose a different mechanism, in which
channel activation involves movements of the VSLD and the TRP
box.

2. Assembly of TRPCs
TRPCs can assemble into either homotetrameric or hetero-

tetrameric channel complexes. However, TRPC1 alone may not
form functional homotetrameric channels, at least in over-
expression systems. Instead, it can form heterotetrameric channel
complexes with other TRPC subunits30,51—56 and even with sub-
units from other TRP channel families, such as TRPP2,57 TRPV4,58

and TRPV6.59

V. Chubanov, C. Grimm, K. Hill et al. Pharmacological Reviews 77 (2025) 100089

7



In neurons, TRPC1 can heterotetramerize with TRPC4 and
TRPC5 to form TRPC1/4/5 channels.54,55,60—62 Within these heter-
otetramers, TRPC1 alters the permeation properties and reduces
calcium permeability.51,63—65 Additionally, TRPC1 plays a regula-
tory role as part of a multiprotein complex that includes stromal
interaction molecule 1 (STIM1) and the calcium release-activated
calcium channel protein Orai, both of which are involved in
store-operated calcium entry (SOCE).66—68 Heterotetrameric
complexes can also form between TRPC3, TRPC6, and TRPC7 sub-
units,60,69,70 as well as between TRPC3 and TRPC4.71 TRPC2 chan-
nels, which are highly expressed in the vomeronasal organs
(VNOs) of rodents72 but are pseudogenes in humans, are more
likely to exist as homomeric channels. In the brain, TRPC3, TRPC6,
and TRPC7 preferentially form homomeric channels.62 Assumably,
the expression of TRPCs as homomeric or heteromeric channels
might vary between different cells and tissues.

3. Functional characteristics of individual TRPCs
TRPCs are widely recognized as nonselective, calcium-

permeable, and receptor-operated cation channels. These chan-
nels are activated downstream of phospholipase C (PLC) following
the activation of Gq/11 protein-coupled receptors or receptor
tyrosine kinases.5,73 PLC activation leads to the cleavage of PIP2
into the second messengers, inositol IP3 and DAG. IP3 promotes
calcium release from intracellular stores, increasing the free
intracellular calcium concentration, while DAG directly activates
TRPCs, facilitating sodium and calcium influx and triggering
cellular effects. All TRPCs can be directly activated by DAG,74—78

suggesting that DAG serves as an endogenous activator. However,
the DAG sensitivity of TRPC4 and TRPC5 channels is tightly regu-
lated and requires dephosphorylation of a threonine residue in the
C-terminal postsynaptic density protein, Drosophila disc large tu-
mor suppressor, and zonula occludens-1 protein (PDZ)-binding
motif. This motif is unique to TRPC4 and TRPC5 channels and allows
for the replacement of Na+/H+ exchanger regulatory factor (NHERF)
1 and 2 adapter proteins, which are essential for DAG
sensitivity.77—79

In the case of TRPC3, the use of the photoswitchable DAG de-
rivative, OptoDArG, revealed that DAG might activate the channel
through a fenestration involving a conserved glycine residue
behind the channel's selectivity filter.49 However, the precise
mechanism underlying lipid sensing remains to be fully eluci-
dated. IP3 and IP3 receptors also modulate TRPC function. IP3 can
directly activate TRPC7 channels,80 while IP3 receptors activate
TRPC3 and TRPC5 channels.47,81 This interaction occurs via the C-
terminal CIRB motif of TRPCs, where IP3 receptor binding com-
petes with CaM binding.21,46,47,82,83 The binding of IP3 receptors
establishes an active channel state, while CaM binding promotes
an inactive state.

TRPC activity is further influenced by junctate, a TM protein
expressed in the endoplasmic reticulum (ER) membrane that in-
teracts with IP3 receptors.84—86 Junctate serves as a calcium-
sensing structural component of Orai and STIM1 within the ER
membrane at ER-plasma membrane junctions.87 Notably, junctate
enhances the formation of ER-plasma membrane junctions con-
taining TRPC3 and IP3 receptors,86 which may represent a mech-
anism by which IP3 receptors and TRPCs contribute to SOCE.

A store-operated activation mechanism has been proposed for
TRPCs based on observations that the depletion of intracellular
calcium stores triggers calcium influx through the plasma mem-
brane.88 This phenomenon is associated with the highly Ca2+-se-
lective calcium release-activated current.89 However, this current
does not share the nonselective characteristics of TRPC currents.
Despite this, TRPC1 has been suggested to function as a store-
operated channel, either alone or in complex with Orai.90—93

Additionally, TRPC1 may also be activated via a receptor-
dependent mechanism that involves store depletion, effectively
integrating both activation pathways.94

Currently, it is widely accepted that Orai and STIM proteins are
the primary molecular components of store-operated calcium
influx.95—99 STIM serves as a calcium sensor in the ER membrane
and activates Orai proteins, which form the channel pore. Evidence
suggests that TRPCs, particularly TRPC1, may interact with STIM
and/or Orai, modulating SOCE.100,101 Nevertheless, while Orai is
essential for calcium influx following store depletion, TRPCs are
not strictly required, as demonstrated in studies using mice lack-
ing all 7 TRPC genes.102

The membrane lipid PIP2 also modulates TRPC function. PIP2, as
a substrate of PLC, plays a role in receptor-operated signaling
pathways but can also act as a second messenger that regulates
cellular processes, potentially influencing ion channel activ-
ity.103,104 Interestingly, the effects of PIP2 vary depending on the
patch-clamp configuration used. In inside-out patches, heterolo-
gously expressed TRPC5, TRPC3, TRPC6, and TRPC7 channels are
activated by PIP2,105,106 whereas endogenously expressed TRPC6
channels are inhibited.107—109 Whole-cell patch-clamp recordings
of heterologously overexpressed TRPC5 channels show that PIP2
depletion activates TRPC5,77,106 while PIP2 application through the
patch pipette inhibits the channel. TRPC4 channels are similarly
inhibited by PIP2 in an isoform-specific manner, with PIP2 binding
to the C-terminal region stabilizing the inactive channel state.110

Furthermore, the intracellular application of PIP2 reduces TRPC5
desensitization following receptor activation.111

In overexpression systems, PIP2 depletion induces a confor-
mational change in the TRPC5 C-terminal region, causing the
dissociation of NHERF and conferring direct sensitivity to DAG.77

This NHERF dissociation also occurs following protein kinase C
(PKC) inhibition or threonine mutation in the C-terminal PDZ-
binding motif of TRPC4/5 channels.77 Similar PKC-related modu-
lation of DAG sensitivity has been reported,78,79 suggesting a
regulatory role of PIP2 in TRPC function. Notably, PIP2 application
through the patch pipette enhances DAG-induced TRPC5 currents
after PKC inhibition.78

A PIP2-binding site has been proposed for TRPC5 near the linker
regions between the S2 and S3 helices, the S4 and S5 helices, the
TRP helix, and the helix-loop-helix domain.27 The intracellular
application of PIP2 increases the open probability of TRPC5 chan-
nels.27 Moreover, trivalent cations and DAG allosterically modulate
PIP2 binding to TRPC5, underscoring PIP2 as a critical factor in
channel activation and inactivation.78 Additionally, PIP2 binding to
TRPC5 is enhanced by the interaction with Gαi protein subunits,
making TRPC5 more readily open in the cell membrane.27

Lipid regulation of TRPC3 channels may require an interplay
between PIP2 and DAG.112 Cleavage of PIP2 by PLC generates DAG,
which can bind to lipid-binding site 2 within the channel pore,
while PIP2 interacts with lipid-binding site 1 near the VSLD. This
interaction inhibits TRPC3 channel opening, regulating DAG's ac-
cess to lipid-binding site 2.112 Furthermore, it has been proposed
that PIP2 modulates the ionic selectivity of the TRPC3 pore
following receptor stimulation, and that in PIP2-rich membrane
domains, TRPC3 may be recruited to ER-plasma membrane junc-
tions, suggesting an interaction between TRPC3 and STIM1 to
regulate calcium influx.112

In TRPC6 channels, amino acid substitutions in the PIP2-binding
site at the pre-S1 helix43 reduce receptor- and 1-oleoyl-2-acetyl-
sn-glycerol—induced TRPC6 currents, indicating that PIP2 binding
enhances channel activity. However, substituting lysine with
glutamine in the distal TRP box reverses this effect, potentiating
TRPC6 currents at low PIP2 concentrations.43 This highlights the
critical role of the C-terminus in PIP2-mediated regulation of
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TRPCs. Despite these findings, the lipid regulation of TRPCs,
including the precise roles of PIP2 and DAG in channel activation,
remains incompletely understood.

Cleavage of PIP2 by PLC also produces protons at the cytoplasmic
side of the plasma membrane, causing localized acidification.113 This
acidification may influence TRPC4 channel activity by sensitizing
PLCδ1 to calcium, leading to its activation and the potentiation of
TRPC4 currents.114 The signaling pathway for TRPC activation is
complex, involving multiple components whose interplay is not yet
fully elucidated. Additionally, extracellular protons115 and trivalent
cations, such as lanthanum and gadolinium,38,116 can potentiate
TRPC4 and TRPC5 currents. Interestingly, TRPC4 and TRPC5 channels
can be activated not only downstream of Gq/11 protein but also via Gi/o
protein-coupled receptor activation. For example, Gi/o protein-
coupled receptor activation triggers TRPC4 channel opening
through PLCδ1 activation.114 However, TRPC4 activation by Gi/o
protein-coupled receptors may also occur independently of PLC,
relying instead on a direct interaction with Gαi proteins.117 Similarly,
TRPC5 channels are activated by Gαi proteins.118

Recent structural analyses27 have revealed that Gαi proteins
directly interact with TRPC5 channels via the N-terminal ankyrin-
like repeat domains 1 and 2, leading to channel activation in the
presence of PIP2. Direct interactions between G proteins and ion
channels have so far been well established only for G protein-
activated inwardly rectifying potassium channels, where Gßγ

subunits directly bind to the channel.119 It has also been proposed
that TRPC5 channels are activated downstream of Gs protein-
coupled receptor stimulation through a cAMP-mediated intracel-
lular calcium release.120

The free intracellular calcium concentration also plays a critical
role in regulating TRPC activity. Increasing free intracellular cal-
cium levels above 300 nM activates TRPC4 and TRPC5 chan-
nels.37,121 Consequently, calcium release from the ER following
receptor activation can induce TRPC4 and TRPC5 channel opening,
further elevating free intracellular calcium levels and enhancing
sodium and calcium influx. Simultaneously, depletion of intra-
cellular calcium stores activates Orai channels, contributing to an
additional increase in free intracellular calcium. Free intracellular
calcium concentrations of approximately 1 μM were shown to
potentiate receptor-operated TRPC5 channels.122 Even higher
concentrations, with an EC50 of around 12 μM, are required to
activate the short isoform TRPC4ß.114 However, as noted earlier,
elevated calcium levels also promote CaM binding,21 which re-
stricts the mobility of the TRP helix and locks the channel in its
closed state.21

TRPC4 and TRPC5 currents can also be potentiated by
increasing extracellular calcium concentrations to 10 mM.122

TRPC6 channels are similarly sensitive to free intracellular cal-
cium levels, but their activation is primarily mediated through
CaM-dependent kinase II phosphorylation.80,123 Elevated free
intracellular calcium concentrations can also promote the trans-
location of TRPCs to the plasma membrane.124 Additionally, higher
extracellular calcium levels increase TRPC6 currents.80

However, extracellular calcium concentrations exceeding
physiological levels (≥3 mM) inhibit TRPC6 channel activity, while
TRPC7 currents are inhibited by extracellular calcium even at
micromolar concentrations.80 TRPC3 currents are similarly sup-
pressed by extracellular calcium.125 Altogether, calcium exerts
both stimulatory and inhibitory effects on different TRPCs, allow-
ing for precise fine-tuning and regulation of channel function.

C. Expression pattern and primary physiological roles of TRPCs

An overview of the expression profile of TRPCs is provided in
Table 1. TRPC1 is ubiquitously expressed across various

tissues.126,127 It forms heterotetrameric channels with other TRPC
protein subunits,51—54 and even with other TRP proteins, such as
TRPP2,128 TRPV4,58 and TRPV6.59 These interactions alter bio-
physical properties54 and reduce calcium permeability.51,59,63—65

TRPC1 is highly expressed in neurons, where it plays roles in
axonal chemotaxis,129 mediates the slow excitatory postsynaptic
potential induced by metabotropic glutamate receptors in Purkinje
cells,130 and provides neuroprotection against exogenous neuro-
toxins.131 Additionally, TRPC1 enhances the differentiation of
hippocampal neurons132 and promotes the proliferation of
neuronal progenitor cells in the hippocampus133 and cochlear
spiral ganglion.134 These findings suggest that TRPC1 is involved in
neuronal homeostasis and might play a role in
neurodegeneration.135

In nonneuronal tissues, calcium influx via TRPC1 in mandibular
salivary gland cells enhances salivary secretion.136,137 In the cardio-
vascular system, TRPC1 promotes proliferation,65 influences vascular
tone, and is upregulated in smooth muscle and cardiac myocytes
after stenosis, leading to enhanced proliferation.138,139 This suggests
a potential role for TRPC1 in cardiac dysfunction.140 TRPC1 also reg-
ulates vascular function, inducing vasoconstriction.141—144 However,
endothelial TRPC1 promotes vasodilation.145—147 TRPC1/4 hetero-
mers regulate endothelial permeability in the lungs,148 and TRPC1
contributes to pulmonary hypertension,149,150 immune system
regulation,151 cancer progression,152 and endocrine functions, such
as parathyroid hormone secretion.153

TRPC2 channels75 are functionally expressed in most macro-
smatic species, such as fish and mammals.154 However, in micro-
smatic species, such as hominids and Old World monkeys, TRPC2 is
nonfunctional and has evolved into a pseudogene.15,16 This loss is
associated with the degeneration of the VNO,155 where TRPC2
channels are essential for pheromone perception.72,156

In the VNO, TRPC2 is crucial for pheromone-driven behaviors.
TRPC2 deficiency results in impaired pheromone perception, sex-
typical (sex is defined as the biological classification of individuals
as male or female) brain changes,157 and altered social behaviors,
including reduced aggression and impaired olfactory sex recog-
nition.158,159 TRPC2-deficient males may exhibit male—male mat-
ing behavior,159 which is accompanied by reduced dopamine levels
in dopaminergic neurons.160 Similarly, TRPC2-deficient females
may display male-typical sexual behavior.161

Outside the VNO, TRPC2 channels have diverse functions. In
thyroid cells, TRPC2 may increase thyroid-stimulating hormone
receptor expression, reduce thyroglobulin maturation, influence
free intracellular calcium and iodide homeostasis, and reduce
thyroid cell proliferation.162 In spermatozoa, TRPC2 channels
enhance the acrosome reaction,163 facilitating penetration of the
oocyte.163 In erythrocytes, TRPC2 channels have been implicated in
oxidative stress-induced hemolytic anemia.164 Expression in the
testis was also demonstrated.165

TRPC3 channels are highly expressed in the central nervous
system (CNS),166 with particularly prominent expression in the
pituitary gland and Purkinje cells of the cerebellum.167—169 TRPC3
is also expressed in the cardiovascular system, notably in the
heart170 and lungs of patients with pulmonary arterial
hypertension.171,172

TRPC3 can form heterotetrameric channel complexes with
TRPC6 and TRPC7,60,70 as well as with TRPC151,56 and TRPC471

protein subunits. Mice deficient in the TRPC3 gene exhibit
abnormal extrapyramidal coordination deficits, which are attrib-
uted to the absence of TRPC3-mediated calcium influx in Purkinje
cells.167 A point mutation in the TRPC3 gene (T635A), which leads
to increased channel activity,173 results in an ataxic phenotype.
This mutant mouse line is referred to as "moonwalker."174 In these
mice, increased TRPC3 activity causes impaired differentiation of
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Purkinje cells during early postnatal development and extensive
degeneration during late postnatal development.174

In addition to Purkinje cells, TRPC3 is expressed in unipolar
brush cells, which are excitatory interneurons in the cere-
bellum.175,176 These unipolar brush cells undergo significant
degeneration within the first 4 weeks of postnatal development in
moonwalker mice.177

TRPC3 channels are also expressed in the kidney178 and blood
vessels. They are found in the endothelium of the low-pressure
system, such as umbilical veins179 and pulmonary arteries,180 as
well as in the high-pressure system, including afferent arterioles of
the kidney181 and coronary arteries.182 Notably, TRPC3 channels are
highly expressed in the endothelium of high-pressure arteries,
where they are implicated in hypertension181 and arteriosclerosis.183

TRPC3 channels are also expressed in smooth muscle cells of
resistance arteries184,185 and cardiomyocytes.186—190 They may
promote cardiac hypertrophy188,190 and fibrosis.191 Additionally,
TRPC3 channels have endocrine functions, enhancing insulin
secretion,192 and are involved in cancer, such as ovarian and breast
cancer.193,194 TRPC3 also influences tumor energy metabolism195

by enhancing mitochondrial calcium uptake.196,197 This mito-
chondrial mechanism demonstrates that TRPC3 plays important
roles both in the plasma membrane and intracellularly.198

TRPC4 and TRPC5 channels are expressed in multiple tissues
and organs, including the brain,199 kidney,200,201 and vascular
system.202 TRPC4 is highly expressed in the endothelium,203

where it regulates endothelial calcium homeostasis. In the CNS,
TRPC4 and TRPC5 channels are significantly expressed and
involved in neuroplasticity. TRPC4 is present in corticolimbic re-
gions199 and midbrain dopaminergic neurons in the ventral
tegmental area and substantia nigra.204

In peripheral sensory and spinal cord neurons, TRPC4 and TRPC5
contribute to pain, inflammation, and itch.205—207 TRPC1/4/5 het-
eromers, particularly TRPC4, are implicated in neurodegeneration208

and play a role in morphine tolerance and hyperalgesia.209

TRPC5 is primarily expressed in the brain,168,199,210,211 where it is
associated with neurite growth, neurotransmission, and
learning.61,212—214 In the amygdala, TRPC4 and TRPC5 mediate
strong fear responses to aversive stimuli214,215 and are involved in
peripheral-induced neuropathic pain syndromes.216 Notably, TRPC5
activation reduces mechanically induced neuropathic pain.217

Beyond pain, TRPC5 influences metabolism218,219 and contrib-
utes to epileptic activity. In hippocampal CA1 neurons, TRPC5
causes constant membrane depolarizations, known as plateau
potentials,220 which occur during epileptic seizures.221,222 TRPC5-
deficient mice exhibit fewer epileptic seizures.61 Additionally,
TRPC5 inhibits hippocampal neurite length and growth cone
morphology.213

TRPC5 is expressed in adrenal chromaffin cells and plays a crucial
role in adrenaline secretion, which is essential for preventing hy-
poglycemia.223,224 TRPC5 also contributes to angiogenesis225 and
acts as a cold sensor226 in the heterologous overexpression sys-
tem,227,228 the peripheral nervous system,227 and in odontoblasts.229

TRPC5 and TRPC6 channels exhibit opposing effects on the actin
cytoskeleton of podocytes and fibroblasts. Receptor-operated
TRPC5 activation leads to the loss of actin stress fibers, resulting
in a motile and noncontractile phenotype,230 which characterizes
podocyte damage and contributes to proteinuria and kidney dis-
ease.231—233 In contrast, TRPC6 activation promotes the formation
of actin stress fibers, establishing a contractile and nonmotile
phenotype.230

TRPC5 channels may also play a role in cancer by enhancing
angiogenesis.234,235 Furthermore, TRPC5 contributes to
chemotherapy-induced multidrug resistance in tumor cells by
increasing the expression of ATP-binding cassette subfamily B

member 1 transporters, also known as P-glycoprotein 1 or multi-
drug resistance protein 1.234—236 TRPC5 additionally functions as a
pressure sensor in aortic baroreceptors, stabilizing blood pres-
sure,237 and mediates endothelium-dependent contraction of ca-
rotid arteries.238,239

TRPC6 channels are highly expressed in the vasculature, lungs,
brain, placenta, spleen, ovaries, small intestine, neutrophils, and
podocyte foot processes.240 In neurons, TRPC6 channels increase
endocannabinoid synthesis,241 promote dendrite growth,242,243

and support neuronal plasticity.243 TRPC6 is also expressed in
extrinsic fibers innervating the intrinsic cardiac ganglia,244 olfac-
tory epithelium neurons,245 retinal ganglion cells,246 and various
brain regions, including the cortex, hippocampus, substantia nigra,
and cerebellum.247

In the vascular system, TRPC6 channels mediate vasoconstric-
tion248 and promote vascular smooth muscle cell prolifera-
tion.249,250 TRPC6 was proposed to be a direct mechanosensor251

mediating myogenic vasoconstriction. However, TRPC6 rather
acts as a mechanotransducer with indirect mechanosensi-
tivity.252,253 Nevertheless, TRPC6 may contribute to ultrasound
neuromodulation in the brain254 and is proangiogenic.255,256 Low
extracellular pH activates TRPC6, inhibiting platelet aggrega-
tion,257 while oxidants, like hydrogen peroxide, not only activate
TRPC6 but also increase its membrane expression.258

In the kidney, TRPC6 is expressed in glomeruli, tubular cells,
and podocytes.259 Mutations in the TRPC6 gene result in podocyte
damage and are associated with focal segmental glomerulo-
sclerosis (FSGS), a chronic kidney disease leading to end-stage
renal failure.260,261 Although the pathomechanism remains un-
clear, TRPC6 channels in podocyte foot processes, which form the
slit diaphragm, are crucial for maintaining calcium homeostasis.

Beyond renal functions, TRPC6 has neuronal roles, including
involvement in neurodegeneration and Alzheimer’s disease, and is
highly expressed in several cancers.262 In the lungs, TRPC6 is found
in airway smooth muscle cells,263,264 epithelial cells,264 and endo-
thelial cells.265 TRPC6 contributes to hypoxic pulmonary vasocon-
striction,263 lung ischemia-reperfusion (IR)-induced edema,265 and
lung fibrosis.266 In the heart, TRPC6-mediated zinc influx enhances
myocardial contractility, suggesting its potential as a therapeutic
target for heart failure.267,268 TRPC6, along with TRPC1, TRPC3, and
TRPC5, also plays roles in the immune system and phagocytosis.269

TRPC7 channels are the least studied TRPCs. They are expressed
in the CNS, hypophysis, kidneys,168 heart, lungs,270 endothe-
lium,271 vasculature,108,272,273 eyes, spleen, and testis.76 TRPC7
activation has been linked to an increased breathing rate,274 and
may contribute to enhanced proliferation in autosomal dominant
polycystic kidney disease (ADPKD).275 Cardiac TRPC7 channels are
implicated in arrhythmias276 and myocardial apoptosis.277 TRPC7
may also play a role in the pupillary light reflex,278 although this
remains controversial.279

TRPC7 and TRPC6 channels are both involved in phototransduction
in retinal ganglion cells, where they are activated downstream of the
photosensitive Gq protein-coupled receptor melanopsin, leading to
PLCß4-induced TRPC6/7 activation and cAMP formation.278 High
TRPC7 expression is associated with the progression of hepatocellular
carcinoma280,281 and lung adenocarcinoma.282

In summary, TRPCs play vital roles in the regulation of calcium
homeostasis and are involved in vascular, neuronal, and kidney
functions, sensory transduction, as well as cell migration and
proliferation.

D. Human diseases associated with TRPCs

Surprisingly, the global knockout (KO) of all TRPCs results in
viable mice that are fertile.102,283,284 However, a multitude of
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animal models suggests that TRPCs, in particular but not exclu-
sively, may underlie or aggravate different human diseases
through their excessive activity.

A gain-of-function (GOF) mutation in the TRPC3 gene (R762H)
is associated with a rare case of autosomal dominant adult-onset
spinocerebellar ataxia type 41 (OMIM 616410). Overexpression of
this variant in murine neuroblastoma cells leads to neuronal cell
death, presumably caused by an increased open probability of the
channel,285 thereby resembling the phenotype of the mutated
channel in the so-called “moonwalker” mouse.174

TRPC5 is frequently discussed as a potential therapeutic target
for treating kidney diseases, anxiety, and depression.214,286 In
2014, Mignon-Ravix et al287 described a loss-of-function (LOF)
mutation in the TRPC5 gene associated with X-linked intellectual
disabilities (OMIM 300982). Subsequently, additional missense
variants in TRPC5, resulting in either constitutively open or
nonfunctional channels, were linked to cases of intellectual dis-
abilities, anxiety, and autism.288,289 Moreover, TRPC5 variants are
associated with severe childhood-onset obesity, suggesting a po-
tential role for TRPC5 in the regulation of food intake.288

TRPC6 dysfunction, resulting from gene mutations or
upregulation of its expression, is best understood in the
context of pulmonary and renal diseases. In the kidney, several
GOF mutations in the TRPC6 gene are closely linked to an
autosomal-dominant form of FSGS2 (OMIM 603965),290,291 a
rare progressive disease that ultimately leads to kidney failure
due to progressive scarring of the glomeruli. Notably, LOF
mutations in the TRPC6 channel cause a similar phenotype,
particularly in juvenile forms of the disease.292 Furthermore,
an increased TRPC6 expression compared with healthy in-
dividuals was observed in podocytes of patients with diabetic
kidney disease.293 In the lung, studies using mouse models
suggest that TRPC6 is essential for the regulation of hypoxia-
mediated pulmonary vasoconstriction and pulmonary hyper-
tension.263,294 In humans, a single-nucleotide polymorphism
(SNP) in the TRPC6 promoter region, which leads to elevated
basal TRPC6 expression, is associated with an increased risk of
idiopathic pulmonary hypertension.171,295 Subsequently, Pou-
sada et al296 identified 3 more TRPC6 SNPs in the 5'-un-
translated region of the TRPC6 gene that were significantly
more common in a cohort of patients with idiopathic pulmo-
nary hypertension compared with the control group. Several
mouse models of heart disease suggest an important role for
TRPC3 and TRPC6 channels in the development of cardiac
hypertrophy.297,298 Relating thereto, a study recently demon-
strated an association between elevated TRPC6 expression and
a higher risk of heart failure after chemotherapy with the
cardiotoxic drug doxorubicin.299

For TRPC1, TRPC4, and TRPC7 channels, only weak links be-
tween human pathologies and channel dysfunction have been
reported to date.

E. Pharmacological modulators of TRPCs

In recent years, the availability of pharmacological modulators
of TRPCs has substantially advanced from drugs acting on a range
of TRPC isoforms to compounds acting more selectively on distinct
TRPC isoforms, with some exceptions; most of the published TRPC
blockers still do not sufficiently discriminate between TRPC1/4/5
or TRPC3/6/7. However, combining high-resolution cryo-EM with
mutagenesis approaches has recently led to a much better un-
derstanding of how drugs modulate TRPC activity, which may
facilitate the identification of selective and potent TRPC modula-
tors in the future. Table 218,28,49,201,297,298,300—333 provides an
overview of TRPC modulators.

1. Inhibitors of TRPC1/4/5 channels
The first identified inhibitors of TRPC4 and TRPC5 channels

discriminated poorly between the 2 isoforms and were of low
potency. ML204 inhibits TRPC4 channels (IC50 = 2.9 μM) with a 3-
fold preference over TRPC5 (IC50 = 10 μM) and a 19-fold selectivity
over TRPC6.300 In a transgenic rat model of FSGS with podocyte-
specific overexpression of the angiotensin II AT1 receptor,
intraperitoneal application of ML204 suppressed proteinuria and
prevented podocyte loss.201 AC-1903, which inhibits TRPC5 less
potently (IC50 = 14.7 μM) but does not inhibit TRPC4 or TRPC6
channels, was also effective in the transgenic rat model mentioned
above and in a model of hypertension-induced FSGS (Dahl salt-
sensitive rats), reducing proteinuria and protecting podocytes.201

However, the pathogenic role of TRPC5 in podocytes was
recently called into question.334

The antihistamine clemizole displays a 6-fold preference for
TRPC5 (IC50 = 1—1.3 μM) over TRPC4 (IC50 = 6 μM).301 Cryo-EM has
revealed the binding site of clemizole, which is located within the
VSLD of TRPC5.24 Duloxetine, an antidepressant that is also
effective in the treatment of neuropathic pain, inhibits TRPC5
channels (IC50 = 0.54 μM) by fitting into the same binding
pocket.302

In comparison, the xanthine-based compound Pico145 (HC-
068) is considerably more potent, inhibiting TRPC1/4/5 channels
with an IC50 of 1.3 nM and 0.35 nM for TRPC5 and TRPC4,
respectively.303 Its close analog, HC-070, blocks homo- and het-
eromeric TRPC4/5 channels with IC50 values between 0.3 and 3.4
nM.303,304 The cryo-EM structure of the human homomeric TRPC5
channels in the presence of Pico145 identified the binding of the
drug to lipid binding site 2 between individual TRPC5 subunits,
displacing a lipid upon binding of the drug.25 This binding site,
which is highly conserved within the TRPC family,25 was also
determined for the Pico145-bound TRPC1/4 heteromer,30 and
further confirmed by Song et al24 for the binding of HC-070 to
TRPC5. HC-070 is effective in animal models of neurological dis-
eases, as oral administration in mice allows the compound to cross
the blood-brain barrier, exerting antidepressant and anxiolytic
effects.304 Moreover, intraperitoneal administration of HC-070
reverses cognitive and motor deficits in rat models of Parkin-
son's disease.335,336

Screening of a 400,000-compound library and subsequent hit
optimization led to the discovery of several pyridazinone-based
inhibitors, with GFB-8438 being the most promising regarding
its physicochemical properties. GFB-8438 inhibits TRPC5 (IC50 =

0.18 μM) with a similar potency to TRPC4 channels (IC50 = 0.29
μM).305 Cryo-EM studies performed on TRPC4 homomers
demonstrated the binding of GFB-8438 and closely related com-
pounds, GFB-9289 and GFB-8749, to the VSLD of TRPC4.21 In the
deoxycorticosterone acetate-salt rat model of hypertension and
renal inflammation, GFB-8438 exerts nephroprotective effects,
evident by reduced protein and albumin concentrations in the
urine.305

2. Inhibitors of TRPC3/6/7 channels
TRPC3 is, at least within the TRPC family, selectively inhibited

by pyrazole compounds Pyr3 and Pyr10 (IC50 = ~0.7 μM).312,313

In vivo, Pyr3 reduces cardiac hypertrophy and transition to heart
failure in mice subjected to pressure overload,312 whereas Pyr10-
mediated TRPC3 inhibition alleviates systemic inflammatory re-
sponses in mice after treatment with lipopolysaccharide.197

However, both drugs also inhibit ORAI1 channels, obscuring the
attribution of their beneficial effects to individual channel
blockage.313 Structural optimization of Pyr3 results in the devel-
opment of compound C20 (JW-65), a derivative with increased
metabolic stability and low toxicity, which retains similar potency
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for TRPC3 inhibition (IC50 = 0.37 μM), while exhibiting improved
selectivity over ORAI1 channels.314 Based on the same lead struc-
ture, compound 60a, with a 4-fold improvement in potency, was
later synthesized.315

The aminothiazole GSK2833503A (GSK503A) potently inhibits
TRPC3 and TRPC6 with a higher selectivity for TRPC6 (IC50 = 3 nM)
over TRPC3 (IC50 = 21 nM), whereas GSK2332255B (GSK255B)
inhibits both TRPC3 and TRPC6 with a similar potency (IC50 = 3—4
nM).297,316 Both drugs reduce hypertrophy and fibrosis in a model
of cardiac hypertrophy, possibly by acting on both channels.297

SAR7334 was identified through a pharmacophore-guided
design of aminoindanol derivatives based on the broad TRP
channel blocker SKF96365. SAR7334 predominantly inhibits
TRPC6 but also TRPC3 and TRPC7 channels with IC50 values of 9.5,
282, and 226 nM, respectively, and suppresses hypoxic pulmonary
vasoconstriction in explanted mouse lungs exposed to hypoxic

conditions.317 Based on SAR7334, the most potent and selective
TRPC6 inhibitor to date, AM-1473, was developed (IC50 = 0.2
nM),28 which binds to a pocket formed by the cytoplasmic por-
tions of S1—S4 and the TRP helix.28

Larixyl acetate, a diterpenoid from larch resin, primarily in-
hibits TRPC6 channels with a 10-fold selectivity for TRPC6 (IC50 =

0.6 μM) over TRPC3. It effectively prevents acute hypoxia-induced
vasoconstriction in isolated lungs from mice318 and offers pro-
tection against pressure overload-induced heart failure.337 Sub-
sequent structural optimization yielded the methylcarbamate
derivative SH045 with an improved potency for TRPC6 (IC50 = 62
nM). SH045 reduced edema in an animal model of lung IR319 and
ameliorated renal fibrosis in obese mice after unilateral ureteral
obstruction.338

BI 749327 is an orally bioavailable TRPC6 blocker (IC50 = 13 nM)
with high selectivity.298 Due to its favorable physicochemical

Table 2
Pharmacological modulators of TRPCs.

Name (PubChem CIDa) Effect References

TRPC1,4,5

Inhibitors

ML204 (230710) Inhibition mTRPC4 IC50 = 2.9 μM; mTRPC5 IC50 = 10 μM 300

AC-1903 (667146) Inhibition TRPC5 IC50 = 14.7 μM 201

Clemizole (2782) Inhibition mTRPC5 IC50 = 1—1.3 μM; mTRPC4 IC50 = 6 μM 301

Duloxetine (60835) Inhibition hTRPC5 IC50 = 0.54 μM 302

Pico145 (85473438) Inhibition hTRPC4 IC50 = 0.35 nM; hTRPC5 IC50 = 1.3 nM 303

HC-070 (85473309) Inhibition hTRPC4 and hTRPC5 IC50 = 0.35—3.4 nM 304

GFB-8438 (138471783) Inhibition hTRPC5 IC50 = 0.18 μM; hTRPC4 IC50 = 0.29 μM 305

Activators

Riluzole (5070) Activation mTRPC5 IC50 = 9.2 μM 306

Methylprednisolone (6741) Activation mTRPC5 EC50 = 12 μM 307

BTD (46369355) Activation mTRPC5 EC50 = 1.4 μM 307

(—)-Englerin A (46242512) Activation hTRPC5 EC50 = 7.6 nM; hTRPC4 IC50 = 11.2 nM 308

AM237 (90403462) Activation hTRPC5 EC50 = 15—20 nM 309

GFB-887 (N/A) Inhibition TRPC5, in clinical trials 310

BI 1358894 (N/A) Inhibition TRPC4; TRPC5, in clinical trials 311

TRPC3,6,7

Inhibitors

Pyr3 (56964346) Inhibition mTRPC3 IC50 = 0.7 μM 312

Pyr10 (53475435) Inhibition TRPC3 IC50 = 0.72 μM 313

Compound 20 (C20, JW-65) (162659202) Inhibition hTRPC3 IC50 = 0.37 μM 314

60a (N/A) Inhibition hTRPC3 IC50 = 90 nM 315

GSK2833503A (71818575) Inhibition rTRPC6 IC50 = 3 nM; rTRPC3 IC50 = 21 nM 297,316

GSK2332255B (71818573) Inhibition rTRPC6 IC50 = 4 nM; rTRPC3 IC50 = 5 nM 297,316

SAR7334 (53378752) Inhibition hTRPC6 IC50 = 9.5 nM; hTRPC3 IC50 = 282 nM; TRPC7 IC50 = 226 nM 317

AM-1473 (167993650) Inhibition hTRPC6 IC50 = 0.2 nM 28

Larixyl acetate (11957828) Inhibition hTRPC6 IC50 = 0.58 μM; hTRPC3 IC50 = 6.83 μM 318

SH045 (134611888) Inhibition hTRPC6 IC50 = 62 nM; hTRPC3 IC50 = 0.84 μM 319

BI 749327 (138377580) Inhibition mTRPC6 IC50 = 13 nM; orally bioavailable 298

BTDM (162423070) Inhibition hTRPC6 IC50 = 10 nM 18

DS88790512 (138319685) Inhibition hTRPC6 IC50 = 11 nM; orally bioavailable 320

BI 764198 (138674835) Inhibition hTRPC6, in clinical trials 321

Activators

PPZ1 (6462584), PPZ2 (6465626) Activation mTRPC3/6/7 nonselective 322

GSK1702934A (16376051) activation hTRPC3 EC50 = 80 nM; hTRPC6 EC50 = 440 nM 323

Compound 4n (N/A) Activation hTRPC3 EC50 = 20 nM; mTRPC7 EC50 = 90 nM μM; mTRPC6 EC50 = 1.39 μM 324

Artemisinin (68827) Activation hTRPC3 EC50 = 30—50 μM 325

AM-0883 (145997911) Activation hTRPC6 EC50 = 46 nM 28

M085 (N/A) Activation hTRPC6, mTRPC6 EC50 = 3.8 μM 326

C20 (N/A) Positive allosteric modulator TRPC6 327

PhoDAG-1 (121225613)
PhoDAG-3 (121225610)

Photoswitchable activator hTRPC6, mTRPC6; mTRPC2 328—330

OptoDArG (131954527) Photoswitchable activator hTRPC3; mTRPC6 49,330

OptoBI-1 (146018968) Photoswitchable activator hTRPC3; mTRPC6, hTRPC6, hTRPC7 330,331

BTDAzo (N/A) Photoswitchable activator mTRPC5 332

dfdc-OptoBI-1 (N/A) Photoswitchable activator mTRPC6 333

aPubChem Compound Identification number. N/A — not available.
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properties, the compound has been tested in several animal
models. The administration of BI 749327 improved heart function
and reduced fibrosis in mice subjected to pressure overload, and
reduced renal fibrosis in a renal injury model.298 Moreover, in a
mouse model of severe Duchenne muscular dystrophy, TRPC6 in-
hibition by BI 749327, starting from day P3, improved skeletal and
cardiac muscle function and survival in mice.339

Other highly potent TRPC6 inhibitors include the high-affinity
TRPC6 inhibitor BTDM (IC50 = 10 nM), which binds at the inter-
face between the pore and VSLD,18 and orally bioavailable
DS88790512 (IC50 = 11 nM).320 However, neither of these com-
pounds has been tested in vivo so far.

3. Activators of TRPC4/5 channels
Riluzole, which is the only Food and Drug Administration

(FDA)-approved drug to treat amyotrophic lateral sclerosis,
activates TRPC5 with low potency (EC50 = 9.2 μM) but is, at
least within the TRPC family, specific for TRPC5.306 A
screening approach by Beckmann et al307 identified methyl-
prednisolone (EC50 = 12 μM) and the benzothiadiazine de-
rivative (BTD) (EC50 = 1.4 μM) as novel TRPC5 agonists.
Notably, BTD alleviated mechanical allodynia in diabetic pe-
ripheral neuropathic rats, presumably via the downregulation
of TRPC5 expression and anti-inflammatory and antiapoptotic
effects of BTD.217

(—)-Englerin A, derived from the bark of the Phyllanthus engleri
tree, displays the highest potency and efficacy and activates both
TRPC4 and TRPC5 in low nanomolar concentrations (EC50 = 11.2
nM and 7.6 nM for TRPC4 and TRPC5, respectively).308 However,
(—)-englerin A is lethal in rodents when administered at concen-
trations near those required to activate TRPC4, likely due to
excessive TRPC4 activation leading to pulmonary edema.340

Following up on the structure of the TRPC1/4/5 blocker Pico145,
Minard et al309 recently synthesized the analog AM237, which
potently activates homomeric TRPC5 (EC50 = 15—20 nM) but not
heteromeric TRPC1/5, TRPC4/5, or homomeric TRPC4 channels.

4. Activators of TRPC3/6/7 channels
Small molecules that activate TRPC3 channels include

piperazine-derived compounds322 PPZ1 and PPZ2, which do not
discriminate well between TRPC3/6/7 and GSK1702934A, a potent
TRPC3/6 activator (EC50 = 80 and 440 nM for TRPC3 and 6,
respectively).323 Qu et al324 developed a series of
pyrazolopyrimidine-derived TRPC3/6/7 agonists with a preference
for TRPC3, of which compound 4n was the most potent (EC50 = 20
nM). The antimalarial drug artemisinin activates TRPC3 with low
potency (EC50 = 30—50 μM) but with a high preference for TRPC3
over TRPC6 and TRPC7.325

The TRPC6 activator AM-0883 is highly potent (EC50 = 46 nM)
with a binding site between the PH and the S6 helix of the adjacent
subunit,28 which is similar to that of HC-70 and Pico145 in the
TRPC1/4/5 channels. The same binding site is targeted by struc-
turally distinct TRPC6 activators M-085 (EC50 = 3.8 μM) and
GSK1702934A.326 In addition to TRPC6 channel activators, the
substance C20 was identified, which acts as a positive allosteric
modulator, enabling TRPC6 current increases in the presence of 1-
oleoyl-2-acetyl-sn-glycerol.327

5. Optical control of TRPCs
Recently, compounds have been developed for the precise op-

tical control of TRPCs. These photoswitches are generated by
linking a light-sensitive azobenzene moiety to a known channel
modulator, enabling light of distinct wavelengths to switch the
compound’s activity on and off. Photoswitchable DAGs, such as
PhoDAG328 and OptoDArG,49 are used to rapidly activate DAG-

sensitive TRPCs: photoswitchable DAGs are switched on to their
active cis-isomer upon exposure to 370 nm UVA light and off
through trans-isomerization at 460 nM. In the cis configuration,
PhoDAG1 and the more membrane-permeant PhoDAG3 activate
TRPC2 in mouse vomeronasal sensory neurons.329,341 Cis-Pho-
DAG1 also activates heterologously expressed TRPC6 chan-
nels.329,330,341 Another photoswitchable DAG, OptoDArG, features
2 photoswitchable azobenzene moieties and is active in the cis-
form at 365 nm and inactive at 430 nm. OptoDArG enables optical
control of TRPC2, TRPC3, and TRPC6 channels upon
photoisomerization.49,330,341

Based on the TRPC3/6 agonist GSK1702934A, Opto-BI-1 was
developed to enable optical control of TRPC3 channels in hu-
man vascular endothelial cells and mouse hippocampal neu-
rons,331 as well as the precise control of TRPC6 channel
function.330 More recently, BTD served as a starting point for
the generation of the photoswitchable TRPC5 agonist BTDAzo,
which can control TRPC5 channels in isolated cells and mouse
brain slices (EC50 = 1.5 μM).332 In the future, it will be fasci-
nating to explore whether photoswitchable TRPC modulators
can also be applied in vivo. A crucial step toward the in vivo
application of photopharmaceuticals is the development of red-
light switchable compounds, such as the recently developed
dfdc-OptoBI-1.333 Red light is nonphototoxic and offers greater
tissue penetration, making it particularly suitable for biomedical
applications.

F. Ongoing or completed clinical trials with TRPCs as therapeutic
targets

To date, only a few clinical trials have been initiated that use
small molecules targeting TRPCs. Considering their prominent role
in lung and kidney diseases, TRPC5 and TRPC6 have emerged as the
most promising therapeutic targets. The TRPC5 inhibitor GFB-887
is well tolerated in healthy patients (phase 1 study;
NCT03970122).310 It was further tested in patients with FSGS
(NCT04950114) and those suffering from diabetic nephropathy or
FSGS (NCT04387448) to evaluate the possible beneficial effect of
GFB-887 on kidney function. However, both studies were termi-
nated due to business reasons, and no results have been published
to date.

The TRPC4/5 channel inhibitor BI 1358894 has recently been
explored as a potential treatment for psychiatric disorders,
including depression and anxiety. Its safety, tolerability, and
pharmacokinetics were demonstrated in 2 phase 1 studies
(NCT03210272 and NCT03754959).342 However, phase 2 trials
assessing the efficacy of BI 1358894 in patients with major
depression (NCT04423757), post-traumatic stress
(NCT05103657), and borderline personality disorders
(NCT04566601) did not show efficacy of the drug.343,344 None-
theless, the outcome of another phase 2 trial (NCT04521478)
investigating its efficacy in patients with major depression who
showed an inadequate response to standard antidepressants is
still awaited.

The TRPC6 inhibitor BI 764198 was well tolerated in 4 phase 1
studies (NCT03854552, NCT04102462, NCT04656288, and
NCT04176536) and is currently being investigated in individuals
with FSGS in a phase 2 trial (NCT05213624).345 In another phase 2
trial (NCT04604184), the same drug failed to reduce the risk and/or
severity of acute respiratory distress syndrome during the course
of the COVID-19 disease.321 Additionally, an observational study
(NCT05507879) is currently exploring whether TRPC6 variants can
predict chemotherapy-related cardiomyopathy and heart failure in
breast cancer patients.
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III. TRPVs

A. TRPV gene family

The TRPV gene family consists of 6 distinct members: TRPV1—6
(Table 1), which can be categorized into 2 main subgroups based
on their homology and functional characteristics: the thermo-
sensitive channels TRPV1—4, which are nonselective for mono-
valent cations, and the Ca2+-selective channels TRPV5 and TRPV6
(reviewed in Vennekens et al346) (Fig. 3A).

TRPVs, especially TRPV1, have been extensively studied and
have emerged as promising drug targets for treating various hu-
man diseases. In this chapter, we will provide an overview of the
key advancements in understanding TRPV characteristics and their
roles in health and disease. We will introduce and discuss modu-
lators of TRPVs and their applicability in animal and human dis-
ease models. However, due to their abundance, the focus will be on
compounds that have already been well validated and are char-
acterized by relatively high specificity and potency.

B. Domain topology, assembly, and functional characteristics of
TRPVs

1. Domain topology of TRPVs
Cryo-EM and crystallographic studies have provided structures

for all homotetrameric mammalian TRPV complexes, including
numerous structures in their ligand-bound or CaM-bound states.
Overall, the available homotetrameric TRPV structures display a
rotationally symmetric subunit assembly with protein moieties
mostly extending into the cytoplasmic space and only minor
extracellular bulges formed by short loops that connect the TM-
spanning segments S1—S6 and the pore loop, which is interca-
lated between S5 and S6 (Fig. 3B).

Several expert reviews have elaborated on common or distinct
structural features of specific TRPV isoforms and their contribution
to the regulatory and biophysical properties of the respective
channels.347—357 Table 1 summarizes the available PDB entries for
TRPVs in their apo or ligand-bound states.

The intracellular N- and C-termini of TRPVs are joined by
TMDs that are organized in a similar fashion as in TRPCs. A bundle
composed of the first 4 TM-spanning helices forms a VSLD, which
connects via the α-helical S4—S5 linker to a second fold, con-
sisting of S5, a re-entrant short pore loop, and S6. The N-termini
of TRPVs contain an ARD with 6 consecutive ankyrin repeats that,
in some but not all TRPV isotypes, engage in contact with
neighboring subunits. The ARD is followed by 2 α-helices that are

referred to as the helix-loop-helix linker domain and a pre-S1 α-
helix.

Forming a sharp turn, the S6 of the TMD is connected to the
cytosolic C-terminus by a TRP domain, which contains an α-helix
that is oriented parallel to the plasma membrane, and intimately
contacts the S4—S5 linker as well as the pre-S1 helix, and is sup-
posed to undergo a rotational movement during channel open-
ing.358,359 Following the TRP helix, a ß-sheet—containing domain
engages in additional interactions with the N-terminus of the
same channel subunit.

Structural motifs within the permeation pathway include a
cone-shaped vestibule at the outer mouth of the pore, which ex-
poses negatively charged amino acids and may attract cations,
engage in salt bridges with neighboring subunits, or become
protonated under acidic extracellular conditions, eg, in inflamed
tissues.360,361 Notably, the strong electronegativity of the vestibule
of TRPV6 has been proposed to resemble that of Drosophila Orai,
thereby providing a common mechanism for divalent-selective
permeation.362

The selectivity filter of the TRPV1—4 subgroup shares an I-G-M/
L-G-D/E motif, whereas the Ca2+-selective TRPV5 and TRPV6
channels display a distinct L-T-V/I-I-D amino acid sequence. The
latter is located in the second part of the pore loop, which is
centrally positioned and kinks back from a short PH to form an
outward-pointing vertical stack of amino acids that narrows down
the entry pathway and coordinates influxing cations in 1 or 2 sites
before releasing them to another coordination site located within
an inner cavity that leads to the lower gate.363,364 In all human
TRPVs, the outer vestibule narrows down to the selectivity filter
with an aspartic acid (or glutamic acid in TRPV2), possibly expel-
ling anions, and representing a first landing platform-like coordi-
nation site for influxing cations in the upper part of the selectivity
filter. Since neutralization of this anionic amino acid in TRPV1 or
TRPV4 not only reduces the permeability of divalent cations, but
also lowers the potency of ruthenium red-mediated channel block,
it has been recognized early as part of the binding site of the
polycationic open pore blocker,365,366 a concept that has been
confirmed by structural analyses.367 In the Ca2+-selective isoforms
TRPV5 and TRPV6, the upper coordination site may bind divalent
cations more tightly, thereby causing longer occupancy times and
contributing to repulsive forces between stacked divalent cations
that would allow a “knock-on” mechanism of Ca2+-selective
permeation.364 The second coordination site, formed in the central
and lower parts of the selectivity filter, opens toward an inner
cavity that is flanked by residues and backbone carbonyls within
S6. Owing to their inverted teepee-like helix bundling and

Fig. 3. Phylogenetic tree and domain topology of TRPVs. (A) Phylogenetic tree of the human TRPV1—6 proteins. (B) Domain architecture of TRPV monomers.
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crossing, the S6 segments constrict the pore diameter to form the
inner gate. The opening of the inner gate involves reorientation
within the S6, characterized by a partial α- to π-helical rear-
rangement, which allows rotation of the lower part of S6.361,368

Depending on the channel isoform and the applied activators,
TRPVs can adopt several open states, some of which feature a pore
radius of more than 2 Å, allowing the permeation of large organic
cations, such as NMDG+, YoPro-1, MEQ+, or QX-314.369—372 Like in
TRPCs, the VSLD of TRPVs can harbor lipids in positions that, in
some cases, overlap with ligand binding sites.352,368,373—376

2. Assembly of TRPV complexes
Structural, biophysical, and functional analyses have demon-

strated that all TRPV isoforms are capable of forming homomeric
complexes, yielding functionally active cation channels. Hetero-
meric TRPV assemblies can form between the closely related iso-
forms TRPV5 and TRPV6, but also between TRPV1 and
TRPV2.377—379 Other studies found a more promiscuous pattern of
heteromerization between the heat-sensitive TRPV1—4 sub-
units,380—382 or heteromeric complexes across different TRP
channel families, such as TRPV1 and TRPA1,383 TRPV2 and
TRPP2,384 TRPV4 and TRPC1145,385 or TRPC1/TRPP2,386 TRPV5 and
TRPML3,387 or TRPV6 and TRPC1.59 At present, the relevance of
heteromeric TRPV complexes is not yet sufficiently understood,
and heteromer-specific pharmacological tools are lacking.

As an exception to the rule that TRP channels assemble as
tetramers, a small fraction of purified and reconstituted TRPV3
channel subunits has been shown to transiently engage in a non-
canonical pentameric assembly when studied by high-speed
atomic force microscopy under specific stimulation conditions,
and its properties as a dilated pore conformation have been pro-
posed.388 The proof that electrophysiological single channel re-
cordings actually show currents through a pentameric TRPV3
complex is, however, lacking, and the experimental settings have
been critically commented.389

Finally, assemblies between TRPVs and auxiliary subunits or
temporary interaction partners may contribute to the regulation of
channel activity, plasma membrane targeting, internalization, or
degradation. The plasma membrane stability and lifetime of TRPV1
have been found to be positively modulated by physical interac-
tion with the toll-like receptor 4,390 and by the interaction with
Kvß1, a non—pore-forming subunit of voltage-gated potassium
channels.391 Functional interactions between TRPV1, TRPV3, and
TRPV4 with associated anoctamin 1, a Ca2+-activated Cl— channel,
have been found to enhance capsaicin-evoked nociception, pro-
mote wound healing, secretion from exocrine glands, and release
of vasodilatory factors from endothelial cells.392 In keratinocytes,
TRPV3 has been shown to form a complex with the EGF receptor,
which is associated with a mutual augmentation of functional
activities.393 Another interaction of TRPV3 with TMEM79 was
demonstrated to decrease the plasma membrane abundance of
TRPV3 by promoting its degradation.394 Likewise, trafficking of
TRPV2 and TRPV4 has been proposed to be regulated by their
respective interactomes, as recently reviewed.395 TRPV4 physically
interacts with the small GTPase RhoA, which dampens the TRPV4
activity unless disease-related mutations in either TRPV4 or RhoA
prevent their assembly.396,397

Physical interactions of TRPV5 channels involve the catalytic
processing by the extracellular ß-glucuronidase klotho,398 and an
intracellular interaction with the Ca2+-buffering protein calbin-
din-D(28K).399 A serine-threonine kinase with-no-lysine 4-
dependent forward trafficking from the Golgi apparatus to the
plasma membrane has been described as a result of fibroblast
growth factor-23 signaling.400 The apical plasma membrane traf-
ficking of TRPV5 may be further stabilized by interactions with the

multi-PDZ domain protein NHERF2,401 and by a second non-
catalytical function of the soluble extracellular domain of α-klotho
to connect TRPV5 with the membrane protein galectin-1.402 Both
TRPV5 and TRPV6 have been shown to interact with Rab11a, which
targets the channels to the plasma membrane,403 where they
might be concentrated in the apical membrane of polarized cells
by interacting with the PDZ domain-bearing scaffolding protein
NHERF4.404 Finally, a physical interaction of TRPV6 with the pro-
tein tyrosine phosphatase PTP1B has been shown to remove a Src-
mediated tyrosine phosphorylation, thereby dampening the
channel activity when studied in a heterologous expression
system.405

In the future, more studies of TRPV interactomes, applying
quantitatively accurate and unbiased methodologies like those
recently presented62 for TRPC1, may provide additional hypothe-
ses to unravel functionally relevant macromolecular assemblies
involving TRPVs.

3. Functional characteristics of TRPV complexes
Based on sequence homology and functional properties, TRPVs

can be subdivided into 2 subgroups. The TRPV1—4 subgroup forms
warmth- or heat-activated, Ca2+-permeable, but poorly selective
(pCa/pNa = 2—10) cation channels that typically share an
outwardly rectifying current voltage relationship. By contrast,
TRPV5 and TRPV6 form Ca2+-selective channels that are at least, to
some degree, spontaneously active, but not activated by heat, and
give rise to inwardly rectifying ionic currents.

The founding member, TRPV1, is a prototypical temperature
sensor that is further sensitized by inflammatory mediators,
chemical ligands, or low extracellular pH. The heat- or capsaicin-
induced gating mechanism of TRPV1 is characterized by a
uniquely large shift of its voltage-dependent activation curve from
nonphysiological positive potentials to more negative poten-
tials.406 Since large shifts in half-maximally activating membrane
potentials are a common feature within thermally activated TRP
channels, including TRPV3, TRPM4, and TRPM8, and since acti-
vating ligands can cause similar shifts in these channels, an
atypical voltage sensor with a small gating charge has been pro-
posed to integrate various inputs by shifting the window of
voltage-dependent gating into the range of physiological resting
membrane potentials.407

The temperature thresholds of heterologously expressed hu-
man TRPV1—4 channels observed at membrane potentials of —60
mV to —100 mV in quiescent cells scale between mild warmth of
23—39 ◦C for TRPV3 and TRPV4,408,409 to moderate heat of above
43 ◦C for TRPV1.410 Other than the rat or mouse TRPV2 orthologs,
which are activated at noxious hot temperatures of >52 ◦C, human
TRPV2 has been found to be heat-insensitive.411,412 Notably, TRPV1
orthologs that are isolated from species adapted to lower or higher
temperatures can display corresponding changes in temperature-
dependent channel gating, with higher temperature thresholds
found in camel or ground squirrel TRPV1,413 while TRPV1 in am-
phibians or zebrafish is tuned to lower temperatures.414—416 These
thresholds shall not be considered as absolute values because they
are voltage-dependent and modulated by ligands, second mes-
sengers, or during repeated activation cycles. Conditions that
mimic inflammation, such as stimulation of PLC- and PKC-
coupling bradykinin receptors or cAMP-elevating prostaglandin
receptors or extracellular acidification, lower the temperature
threshold for TRPV1 activation. Similarly, capsaicin417 or
piperine,418 the pungent ingredients of chili pepper and black
pepper, respectively, ethanol,419 or certain spider420,421 and scor-
pion422,423 venoms shift the activation threshold to temperatures
that are well below physiological values. Finally, anandamide and
structurally related endovanilloids act as activators or positive
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modulators of TRPV1 channel activity.424 Hence, TRPV1 is a poly-
modal sensor that integrates physiological, pathophysiological,
and alimentary or toxic stimuli. Similar changes in temperature
thresholds have been reported for repeatedly activated TRPV3
with and without additional sensitization by cholesterol
supplementation.408,425,426

Since local temperatures are elevated by inflammation-
associated hyperemia, TRPV1 strongly contributes to constant
pain sensation and confers a major component of thermal in-
flammatory hyperalgesia. The underlying mechanisms have been
studied in impressive detail. Mutagenesis studies have revealed
that protonation of E600 in the loop that links S5 with the pore
loop is the most likely candidate to initiate TRPV1 sensitization in
tissue acidosis.360 In sensory neurons, TRPV1 modulation via
stimulation of G protein-coupled receptors (GPCRs) can either
enhance or mitigate thermal or capsaicin-induced responses.
While Gq-coupled B1 bradykinin and EP1 prostaglandin receptors,
as well as Gs-coupled EP4 or IP prostaglandin receptors, sensitize
TRPV1 to lower temperatures,427—429 Gi-coupled μ opioid430 or
GABAB1 receptors431 dampen the TRPV1 channel activity.

When strongly activated for longer time periods, TRPV1—4
channels tend to change their permeation properties, allowing
penetration of organic cations. This behavior has been referred to
as pore dilation, as recently reviewed.432 It is of pharmacological
interest that large pore diameters found in TRPV1 allow the
penetration of cationic tool compounds and drugs, such as the
organic cation NMDG+, the quinolinium-based chloride indicator
dyes MEQ+ and MQAE+, the DNA stain YoPro-1, and even local
anaesthetics.369,371,433 While some observations and conclusions
may be restricted to prolonged activation of strongly overex-
pressed channels in heterologous expression systems, leading to
unwanted changes in intracellular cation concentrations,434 the
development of large TRPV1 pore diameters that allow the
permeation of organic cations has been confirmed by structural
biology approaches.361,435

In stark contrast to TRPV1—4, TRPV5 and TRPV6 are highly
selective for Ca2+ with pCa/pNa > 100 for both channels,436,437

indicating their specialized function in cellular Ca2+ transport.
However, under divalent-free conditions, they become permeant
to monovalent cations,436,438 such as Na+ and K+. The regulation
of TRPV5 and TRPV6 activity involves various intracellular
signaling pathways and extracellular factors, whereby PIP2 and
extracellular Ca2+ play a decisive role. TRPV5 and TRPV6 are
constitutively active in the presence of PIP2, which stabilizes the
channel in its open configuration.439,440 Both channels are also
sensitive to extracellular pH, with protons acting as potent
inhibitors,441—443 and recently, cryo-EM structures revealed that
the proton-dependent block of TRPV5 is caused by a disruption of
the PIP2 binding pocket, thereby preventing PIP2 binding to
TRPV5.444

TRPV5 and TRPV6 undergo rapid inactivation in the presence of
high intracellular Ca2+ concentrations, which allows both proteins
to dynamically adjust the Ca2+ content of the cell, thereby pre-
venting excessive Ca2+ influx and maintaining cellular calcium ho-
meostasis. This inactivation is mainly caused by the binding of Ca2+-
CaM to the channel protein.445,446 Cryo-EM studies of TRPV5 and
TRPV6, together with Ca2+-CaM, have revealed that upon binding of
Ca2+-CaM to the C-terminal regions of the channel, it sterically in-
hibits the ion-conducting pore.447—449 The basal activity of both
channels is, therefore, largely determined by the interplay between
PIP2-dependent activation and Ca2+-CaM—dependent
inactivation.353,450

In electrophysiological recordings, the current voltage curve of
TRPV5 and TRPV6 displays a marked inward rectification, which is
a hallmark of Ca2+ channels and can be partly attributed to the

inhibition by intracellular Mg2+ via a mechanism that has yet to be
clarified.357,439,451 In conclusion, the biophysical properties of
TRPV5 and TRPV6, including their high Ca2+ selectivity, constitu-
tive activity, and regulation by CaM and calciotropic hormones,
underscore their importance in maintaining cellular and organ-
ismic calcium homeostasis.

C. Expression pattern and primary physiological roles of TRPVs

Numerous studies have investigated the mRNA and protein
expression of TRPVs in a variety of species using different meth-
odologies, which have sometimes yielded inconsistent findings.
This chapter focuses on TRPV expression in human tissues and
includes data from the Human Protein Atlas and single-cell tran-
scriptomic analyses.452,453 An overview of the expression profile of
TRPVs is provided in Table 1.

The most prominent expression of TRPV1 is found in nocicep-
tive neurons whose somata are localized in the dorsal root ganglia
(DRG) and in the trigeminal ganglion.454—456 The fine nerve end-
ings of their dendrites reach the entire skin, the oropharyngeal
mucosa, and other internal organs, such as the urinary bladder.
Compared with strongly myelinated sensory neurons that confer
touch sensitivity, the TRPV1-expressing nociceptive neurons
typically have a small or medium diameter and feature either
poorly myelinated Aδ fibers or unmyelinated C fibers. In the case of
DRG neurons, they terminate in the substantia gelatinosa within
the dorsal horn of the spinal cord, where they are connected to the
second neuron of the pain pathway and the spinothalamic tract via
excitatory glutamatergic synapses. The primary afferent function
of TRPV1 channels is to confer heat perception, thermal noci-
ception, and the pungent or “hot” sensation of various alimentary
spices. In diseased states that trigger inflammation, TRPV1 can
become strongly sensitized and chiefly mediates inflammatory
thermal hyperalgesia and constant pain sensations.457—459

Importantly, TRPV1-expressing nociceptive neurons also exert
a pseudo-efferent function by releasing the strongly vasodilatory
calcitonin gene-related peptide and the inflammation-mimicking
peptide substance P from free nerve endings, which contribute
to thermoregulation by enhancing cutaneous blood flow and
passive heat dissipation.424,460 Since TRPV1 is activated by warmth
or moderate heat, this feedback mechanism is ideally suited to
maintain body temperature within a narrow range while not yet
losing significant amounts of water and electrolytes, which would
be the consequence of sweating. Notably, most TRPV1 inhibitors
also disrupt this thermoregulatory function. Consequently, the
adverse effects of analgesic TRPV1-targeting drugs not only
include burning or scalding injuries, but also a significant elevation
of body temperature.459,461,462 In the brain, TRPV1 expression is
found in neurons, astrocytes, and microglia.463

TRPV2 has initially been identified in DRG neurons as well, but
the TRPV2-positive neurons are larger in diameter and poorly
overlap with the population of TRPV1-expressing neurons.411

Later, the expression of TRPV2 has been found to be much more
widespread, with the strongest expression in various immune
cells, including macrophages, monocytes, neutrophils, T lympho-
cytes, mast cells, and dendritic cells.464—466 In the CNS, TRPV2 is
also strongly expressed in a wide variety of excitatory or inhibitory
neurons and in the microglia. According to single-cell tran-
scriptomic analyses, an abundant expression of TRPV2 is found in
tissue-resident immune cells, such as lung macrophages, placental
Hofbauer cells, as well as nonimmune cells, such as cutaneous
melanocytes, vascular smooth muscle cells, the urothelium, and
red blood cells.453,467,468

Despite its high abundance in various cell types, the primary
function of TRPV2 is still poorly understood. No obvious thermal or
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mechanical nociceptive sensory phenotype has been detected in
mice lacking TRPV2 expression.469 In agreement with the strong
TRPV2 expression in cell types of the innate and adaptive immune
system, phenotypes are more prominent upon immunological
challenges. In macrophages, TRPV2 activity is critical for efficient
cell migration, phagocytosis, and bacterial clearance.470,471 Simi-
larly, TRPV2-deficient mice displayed attenuated B-cell responses
and antibody formation upon immunization.472

The most prominent site of TRPV3 expression is found in
basal and suprabasal cutaneous keratinocytes, as well as in
epithelial cells of the hair follicles.425,473 TRPV3 expression has
also been detected in sensory DRG and trigeminal ganglion
neurons,408,474 but based on KO mouse models, the functional
role of TRPV3 as a primary sensor for warmth or heat
perception has been controversial.475,476 Since TRPV3, like
TRPV4, contributes to warmth-induced ionic currents in kera-
tinocytes, a functional link to sensory neurons may involve the
formation or release of paracrine factors such as ATP, prosta-
glandin E2, nitric oxide, or transforming growth factor-α to
transmit the signals to sensory neurons.393,477—481 TRPV3
expression has also been demonstrated in epithelial tissues of
the oral cavity, in glandular cells of the small intestine, and in
enterocytes of the small and large intestine.453,482,483 In the
CNS, a moderate TRPV3 expression is found dispersed over
neuronal and glial cells.

The primary function of TRPV3 is best established in the devel-
opment and maintenance of intact skin architecture. As GOF mu-
tations in TRPV3 cause hair loss and mutilating keratoderma (see
below), and since TRPV3-deficient mice display wavy hairs, curly
whiskers, and a partially defective skin barrier,393,473 undisturbed
TRPV3 activity appears indispensable for the proper development of
the skin and skin appendages. Consistently, TRPV3 activity has been
shown to promote keratinocyte proliferation and migration in vitro,
and may therefore support wound healing.482,484,485

Among the heat-sensitive TRPV1—4 channels, the expression of
TRPV4 is most widespread. Initially, its expression has been
detected in the kidney, lung, trachea, liver, spleen, brain, prostate,
and placenta.486—489 At the cellular level, TRPV4 is strongly
expressed in many human epithelial, glandular, and endothelial
cell types, such as in exocrine epithelial cells of the salivary and
pancreatic glands, in tracheal, bronchial, and fallopian tube cili-
ated epithelial cells, in epithelial cells of the choroid plexus, in
tubular epithelia of the kidney, in female breasts, in tracheal and
tongue glandular cells, in placental trophoblast and decidual cells,
in vascular endothelial cells, and in skin keratinocytes and mela-
nocytes, only to name a few.452,453 High levels of TRPV4 expression
have also been found in tissue-resident macrophages, including
hepatic Kupffer cells.453

In line with the widely distributed expression of TRPV4,
manifold primary functions of TRPV4 have been identified. A
common motif of some of them is based on the indirect activation
of TRPV4 by hypotonic stress, causing the conversion of arach-
idonic acid to epoxyeicosatrienoic acids that, in turn, activate
TRPV4.490,491 In glandular and exocrine cells, the activation of Ca2+

influx through TRPV4 seems to initiate a secondary opening of
anoctamin 1, a Ca2+-regulated chloride channel, to initiate fluid
secretion,492,493 while acute pharmacological activation of TRPV4
in vascular endothelial cells mediates the formation of nitric oxide
and triggers microvascular leakage, causing circulatory
collapse.494 Under more physiological conditions, shear stress can
activate endothelial TRPV4 channels, thereby triggering vasodila-
tion and outgrowth of collateral vessels.24,495,496 Finally, TRPV4
plays an important role in development, as pathogenic GOF mu-
tations in human TRPV4 are linked to congenital skeletal and
neuromuscular disorders.497

TRPV5 is mainly expressed in the apical membrane compart-
ment of epithelial cells of the kidney, distal convoluted tubules
(DCTs), and collecting ducts.441 In human tissues, TRPV5 transcripts
have also been detected in the pancreas, duodenum, jejunum, colon,
placenta, prostate gland, testis, brain, and bone osteoclasts.498,499

Vitamin D-response elements have been identified in the TRPV5
promoter, and TRPV5 protein expression was found to correlate
with the expression of other vitamin D receptor target genes in rat
kidneys.500 Other studies found that TRPV5 expression in mice
appeared to be regulated501 by Ca2+ rather than by 1,25-
dihydroxyvitamin D3 or that TRPV5 expression is also regulated502

by estrogens. In DCTs obtained from the kidneys of transgenic re-
porter mice that express enhanced GFP under the control of a TRPV6
promoter, 1,25-dihydroxyvitamin D3- and parathyroid hormone-
dependent transcriptional regulation of TRPV5 was detected.503 In
the same study, TRPV5 deficiency was shown to strongly impede
transepithelial Ca2+ transport, which also represents the primary
function of TRPV5. TRPV5 deficiency is associated with severe renal
Ca2+ wasting, highlighting the seminal role of TRPV5 in renal Ca2+

reabsorption and bone mineralization.504,505

Compared with TRPV5, the expression of TRPV6 in mice is more
widespread and mostly found in extrarenal tissues and organs. It
includes the Ca2+-absorbing epithelia in the small intestine,
exocrine and endocrine epithelia of the salivary gland, pancreas,
and prostate gland, as well as subsets of epithelial cells in the
thyroid, stomach, duodenum, caecum, epididymis, endometrium,
placenta, and mucus-secreting epithelia in the main olfactory
epithelium and the bronchiae.506—508 In human tissues, a similar
TRPV6 expression pattern has been found.453,509—511 Like TRPV5,
TRPV6 expression is regulated in a 1,25-dihydroxyvitamin D3-
dependent fashion.512,513 In addition, TRPV6 expression has been
shown501,514,515 to be upregulated by estrogens and dietary Ca2+.

Notably, TRPV6 expression in polarized epithelia strongly
overlaps with that of the vitamin D receptor and other 1,25-
dihydroxyvitamin D3-regulated proteins that are involved in
transepithelial Ca2+ transport, such as the Ca2+-buffering calbin-
dins D(9k) and D(28k), as well as the plasma membrane calcium
ATPase.510,516 Accordingly, the primary function of TRPV6 is to
transport Ca2+ across epithelial barriers. Important transport
routes include the 1,25-dihydroxyvitamin D3-dependent regula-
tion of Ca2+ resorption in the small intestine,517 fetal Ca2+ supply
via placental Ca2+ transport,518 and maintenance of fertility by
lowering the Ca2+ concentration in the seminal fluid.519

D. Human diseases associated with TRPVs

Although variants in the TRPV1 gene have been identified, they
are rare and not commonly associated with human diseases. Katz
et al520 reported the phenotypes of 2 individuals carrying a ho-
mozygous missense mutation in the ARD of the channel. This
mutation, which leads to a complete loss of TRPV1 activity, causes
an elevated heat-pain tolerance and a higher cold-pain threshold.
Another study linked 2 independently identified TRPV1 missense
variants in individuals to a high risk of malignant hyperthermia.521

Other SNPs in TRPV1 were associated with nocturnal, usual, and
chronic cough.522

An altered TRPV2 expression is mainly associated with the
development and progression of several solid tumors and hema-
tological malignancies, as reviewed recently.466,523 For instance, in
triple-negative breast cancer (TNBC), TRPV2 expression correlates
with recurrence-free survival of TNBC patients, opening up the
possibility that TRPV2 activation, for example, by cannabidiol,
might be beneficial as an adjuvant therapy in TNBC.524 A similar
observation was made in patients suffering from glioblastoma,
where TRPV2 expression decreased with disease progression.525 In
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Table 3
Pharmacological modulators of TRPVs.

Name (PubChem CIDa) Effect References

TRPV1

Selected TRPV1 inhibitors

SB-705498 (9910486) Inhibition hTRPV1 IC50 = 3—6 nM; in clinical trials 554

AMG 517 (16007367) Inhibition hTRPV1 IC50 = 0.9 nM; in clinical trials 555

A-1165442 (46191567) Inhibition hTRPV1 IC50 = 9 nM for capsaicin activation, partial block of H+

activation

556

A-1165901 (171378652) Inhibition hTRPV1 IC50 = 19 nM for capsaicin activation, potentiation of H+

activation

557

AMG8562 (56603667) Inhibition hTRPV1 IC50 = 1.8 nM for capsaicin activation;
IC50 > 10 μM for heat activation, potentiates H+ activation

558

NEO6860 (N/A) Inhibition hTRPV1 IC50 = 41.5 nM for capsaicin activation;
IC50 > 4 μM for heat activation; in clinical trials

559

PAC-14028 (asivatrep) (56649347) Inhibition rTRPV1 IC50 = 55 nM; topical application; in clinical trials 560

Selected TRPV1 activators

Capsaicin (1548943) Activation rTRPV1 EC50 = 0.7 μM; hTRPV1 EC50 = 31.6 nM; in clinical trials 454,561

Resiniferatoxin (5702546) Activation rTRPV1 EC50 = 39.1 nM; hTRPV1 EC50 = 4 nM; in clinical trials 454,561

Anandamide (5281969) Activation hTRPV1 EC50 = 1.3 μM 562

CA-008 (vocacapsaicin) (121349852) Prodrug of trans-capsaicin; in clinical trials 563

TRPV2

Inhibitors

Tranilast (5282230) Inhibition hTRPV2, mTRPV2 IC50 approx. 10 μM; in clinical trials 564

Lumin (23305342) Inhibition mTRPV2 IC50 = 5 μM 564

Valdecoxib (119607) Inhibition rTRPV2 IC50 = 10 μM 565

Monanchomycalin B (102489008) Inhibition mTRPV2 IC50 = 2.8 μM; hTRPV3 IC50 = 3.2 μM 566

B304-1 (N/A) Partial inhibition mTRPV2 IC50 = 22.2 μM 567

B304-2 (N/A) Partial Inhibition mTRPV2 IC50 = 3.7 μM 567

Piperlongumine (637858) Inhibition hTRPV2 IC50 = 4.6 μM 568

SET2 (155541857) Inhibition mTRPV2 IC50 = 0.5 μM 569

IV2-1 (N/A) Inhibition rTRPV2 IC50 = 6.3 μM 471

Activators

Probenecid (4911) Activation; in clinical trials 570

Cannabidiol (644019) Activation 571

TRPV3

Inhibitors

Citrusinine-II (10016895) Inhibition mTRPV3 IC50 = 12.4 μM 572

Isochlorogenic acid A (6474310) Inhibition hTRPV3 IC50 = 2.7 μM 573

Isochlorogenic acid B (5281780) Inhibition hTRPV3 IC50 = 0.9 μM 573

Osthole (10228) Inhibition hTRPV3 IC50 = 37 μM 574

Forsythoside B (23928102) Inhibition hTRPV3 IC50 = 6.7 μM 575

Verbascoside (5281800) Inhibition hTRPV3 IC50 = 14 μM 576

Alpha-mangostin (5281650) Inhibition hTRPV2 IC50 = 77 nM; hTRPV2 GOF mutant
IC50 approx. 2 μM

577

Compound 74a (155184122) Inhibition hTRPV3 IC50 = 0.38 μM 578

Trpvicin (122589101) Inhibition hTRPV3 IC50 = 0.38 μM; blocks G573S GOF mutant
IC50 = 0.66 μM

579

Local anesthetics (bupivacaine, mepivacaine,
lidocaine, ropivacaine)

Inhibition hTRPV3 low potency (0.17—2 mM) 580

Dyclonine (3180) Inhibition mTRPV3 IC50 = 3.2 μM 581

Flopropione (3362) Inhibition hTRPV3 IC50 = 18 μM 582

GRC15300 (N/A) Inhibition of TRPV3; in clinical trials Reviewed in583

Activators

Naturally occurring monoterpenes (thymol,
carvacrol, camphor)

Activation of low potency 584

Incensole acetate (73755086) Activation mTRPV3 EC50 = 16 μM 585

Tetrahydrocannabivarin (93147) Activation rTRPV3 EC50 = 6.1 μM 586

KS0365 (N/A) Activation mTRPV3 EC50 = 5.1 μM (cholesterol-enriched cells) 484

TRPV4

Inhibitors

GSK2193874 (53464483) Inhibition rTRPV4 IC50 = 2 nM; hTRPV4 IC50 = 40 nM 587

GSK2798745 (71227359) Inhibition hTRPV4 IC50 = 1.8 nM; in clinical trials 588

HC-067047 (2742550) Inhibition hTRPV4 IC50 = 48 nM; rTRPV4 IC50 = 133 nM;
mTRPV4 IC50 = 17 nM

589

RN-1734 (3601086) Inhibition hTRPV4 IC50 = 2.3 μM 590

V. Chubanov, C. Grimm, K. Hill et al. Pharmacological Reviews 77 (2025) 100089

18



contrast, a higher TRPV2 expression was associated with worse
outcomes in multiple myeloma,526 prostate cancer,527 and gastric
carcinoma.528

Pathologies arising from TRPV3 dysfunction mainly affect the
skin and are strongly associated with itch. The clearest link exists
between Olmsted syndrome (OLMS1, OMIM 614594), a rare
congenital disorder, and GOF mutations in TRPV3, as demonstrated
in a series of clinical reports.473 Olmsted syndrome is character-
ized by palmoplantar keratoderma and periorificial hyperkerato-
sis, accompanied by severe pruritus and, in extreme cases,
spontaneous amputation of fingers or toes. An elevated expression
of TRPV3 is also linked to atopic dermatitis529,530 and psoriasis,531

inflammatory skin conditions, in which TRPV3 activation might
contribute to chronic pruritus. Furthermore, patients with itching
scars from burn injuries display increased TRPV3 expression in the
epidermis of the affected areas. The role of TRPV3 in pruritus is
further highlighted by the fact that topical application of the
TRPV3 activator carvacrol causes itching in burn scars.532,533

Autosomal dominant TRPV4 disorders are primarily associated
with skeletal dysplasias or motor function disorders, though
phenotypic overlap occurs. In skeletal dysplasia, affected in-
dividuals mainly present with brachydactyly, short stature, and
progressive scoliosis,534 but individual manifestations and severity
vary among individuals. More than 50 different TRPV4 mutations
have been identified so far,535 distributed widely across the gene
with a clustering of mutations in the region between TM5 and
TM6. Most mutations lead to overactive TRPV4 channels, as seen in
autosomal dominant brachyolmia type 3 (OMIM 113500),536

metatropic dysplasia (OMIM 156530),537 and spondylometaphy-
seal Kozlowski type dysplasia (OMIM 1842522).538 However, some
reported mutations also result in a reduced availability of TRPV4 at
the plasma membrane, for example, in familiar digital
arthropathy-brachydactyly (OMIM 606835).539 A TRPV4 mutation
with a trafficking defect has also been observed in hereditary
motor and sensory neuropathy type IIC (OMIM 606071), also
known as Charcot-Marie-Tooth disease type 2C, a neuromuscular
disorder mainly characterized by progressive peripheral neurop-
athy, as well as in congenital distal spinal muscular atrophy (OMIM
600175) and scapuloperoneal spinal muscular atrophy (OMIM
606071).540,541

Recently, a pathogenic homozygous missense mutation in
TRPV5 (V598M) was identified that causes a LOF phenotype
associated with a novel form of autosomal recessive hypercalciuria
and calcium wasting. The mutation, which affects the TRP helix
region, results in protein misfolding and a complete loss of TRPV5-
mediated calcium uptake upon overexpression in human embry-
onic kidney (HEK) 293 cells.505

Dysregulation of TRPV6 activity by mutations or abnormal
expression levels is linked to several human diseases. Homozygous
or compound heterozygous mutations in TRPV6 have been iden-
tified in individuals suffering from transient neonatal hyperpara-
thyroidism (OMIM 618188), a condition associated with fetal
skeletal abnormalities. Some of the mutations cause TRPV6 traf-
ficking deficits or partial loss of function, which is believed to
reduce calcium transport across the placenta, followed by an
impaired fetal bone mineralization.542,543 Functionally deficient
TRPV6 variants are also associated with hereditary and familial
pancreatitis.544,545 Moreover, in recent years, several studies have
attributed TRPV6 as an oncochannel in cancers of epithelial
origin.546 In most malignancies, an elevated TRPV6 expression
correlates with a more aggressive form of the disease and a higher
risk for metastasis, possibly contributing to a poorer prognosis in
prostate cancer,547—549 breast cancer,550,551 ovarian cancer,552 and
pancreatic cancer.553 However, additional research is needed to
fully understand the mechanisms by which the putative onco-
channels TRPV6 and TRPV2 may influence cancer progression and
to explore the potential of pharmacological modulation — whether
activation or inhibition — as a therapeutic strategy for controlling
tumor growth and metastasis in specific cancer types.

E. Pharmacological modulators of TRPVs

Apart from TRPV1 and, to a lesser extent, TRPV4, the availability
of specific and potent TRPV modulators remains limited. While
currently available modulators provide valuable tools, their limi-
tations regarding specificity, potency, and toxicity when applied
in vivo underscore the need for the development of novel com-
pounds. Table 3453,454,471,484,554—602 provides an overview of TRPV
modulators.

Table 3 (continued )

Name (PubChem CIDa) Effect References

RN-9893 (121513880) Inhibition hTRPV4 IC50 = 0.42 μM; rTRPV4 IC50 = 0.66 μM;
mTRPV4 IC50 =0.32 μM

591

Activators

GSK1016790A (23630211) Activation hTRPV4 EC50 = 2 nM; mTRPV4 EC50=2.1 nM 592

36-HCl (N/A) Activation hTRPV4 EC50 = 60 nM 593

RN-1747 (5068295) Activation hTRPV4 EC50 = 0.77 μM; m/rTRPV4 EC50 = 4 μM 590

Curcumin (969516) Activation is low potency, poor selectivity 594

Puerarin (5281807) Activation is low potency 595

TRPV5,6

Inhibitors

Miconazole (4189) Inhibition, TRPV6 > TRPV5; active >100 μM 596

Econazole (3198) Inhibition, TRPV6 > TRPV5; active >100 μM 596

ZINC17988990 (27791261) Inhibition rbTRPV5 IC50 = 0.11 μM; hTRPV5 IC50 = 0.18 μM 597

Compound 3 (N/A) Inhibition TRPV6 IC50 = 90 μM; TRPV5 IC50 = 503 μM 596

cis-22a (169553405) Inhibition hTRPV6 IC50 = 0.32 μM 598

3OG (N/A) Inhibition hTRPV6 IC50 = 83 nM; hTRPV5 IC50 = 531 nM 599

SOR-C13 (121596688) Inhibition hTRPV6 IC50 = 14 nM; in clinical trials 600

SOR-C27 (N/A) Inhibition TRPV6 IC50 = 64 nM 600

Tetrahydrocannabivarin (93147) Inhibition rTRPV5 IC50= 4.8 μM; mTRPV6 IC50 = 9.4 μM 601

Compound 9e (N/A) Photoswitchable inhibitor TRPV6 602

aPubChem Compound Identification number. N/A — not available.
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1. TRPV1
Over the past 20 years, numerous TRPV1-modulating com-

pounds, inhibitors, and activators have been introduced, primarily
with the intention of treating diverse pain conditions. As a highly
druggable target, TRPV1 has attracted considerable research in-
terest, resulting in an abundance of selective and potent modula-
tors. They will be only briefly summarized here, and we refer to
current reviews for more detailed information.603

First-generation TRPV1 inhibitors, such as SB-705498 or AMG
517,554,555 are polymodal antagonists of TRPV1 that block activa-
tion by capsaicin, protons, and heat, as reviewed by Garami
et al.462 However, many of these compounds cause hyperthermia
in vivo and reduce the perception of noxious heat, resulting in
burn injuries (reviewed by Romanovsky et al461). To address these
issues, second-generation TRPV1 inhibitors were developed,
which target TRPV1 depending on the mode of channel activation.
For instance, A-1165442 blocks capsaicin and heat-evoked TRPV1
responses with minimal effects on H+-activated TRPV1 and does
not significantly change core body temperature in rats.556 Other
drugs, such as A-1165901 and AMG8562,557,558 block TRPV1 acti-
vation by capsaicin while potentiating H+ activation. Interestingly,
they cause hypothermia in mice. NEO6860 is specific only for
vanilloid activation of TRPV1 and leaves H+ activation unaf-
fected.559 It also does not alter body temperature.604

The prototypical TRPV1 activator is capsaicin.453 Other natu-
rally occurring TRPV1 activators include the superagonist resin-
iferatoxin,561 arachidonic acid metabolites such as anandamide,562

and several venom peptides, as reviewed by Hwang et al.605

Capsaicin is therapeutically relevant in the treatment of neuro-
pathic pain conditions due to its ability to desensitize and
ultimately cause ablation and defunctionalization of TRPV1-
expressing pain-conducting fibers after prolonged application,
such as through topical capsaicin patches, as recently reviewed by
Alalami et al.606

2. TRPV2
Compared with TRPV1, the development of TRPV2-modulating

compounds has been much less the focus of research. While spe-
cific and potent activators of TRPV2 are still lacking, some progress
has been made regarding TRPV2 inhibitors. Iwata et al564 identi-
fied several TRPV2 inhibitors, including the antiallergic drug tra-
nilast (IC50 = 10 μM) and the cyanine dye lumin (IC50 = 5 μM).
Lumin acts as a general immunostimulant and exerts car-
dioprotective effects in a hamster model of dilated cardiomyopa-
thy (δ-sarcoglycan-deficient hamster).564 The administration of
tranilast prevents cardiac dysfunction in a mouse cardiomyopathy
model (dystrophin-utrophin double KO)607 and suppresses fibrosis
progression in a mouse model of nonalcoholic steatohepatitis.608

However, apart from its action on TRPV2, tranilast also exerts
pleiotropic effects on other targets in immune cells, fibroblasts, the
cardiovascular system, and tumor cells, as reviewed by Darakh-
shan and Pour,609 and it needs to be further confirmed to what
extent the beneficial effects of tranilast and lumin in cardiac dis-
ease models depend on TRPV2 inhibition. Valdecoxib, a
cyclooxygenase-2 inhibitor withdrawn from the market due to its
unfavorable cardiovascular side effects, blocks rat TRPV2 channels
with moderate potency (IC50 = 10 μM) but not TRPV1, TRPV3, and
TRPV4 channels.565 Monanchomycalin B, an alkaloid isolated from
the marine sponge Monanchora pulchra, only poorly discriminates
between TRPV1, TRPV2, and TRPV3 channels (IC50 = 6.0, 2.8, and
3.2 μM, respectively).566 Other natural compounds that inhibit
TRPV2 include coumarin derivative enantiomers from the roots of
the orange jasmine Murraya exotica, B304-1 and B304-2, which
partially inhibit567 TRPV2 channels (IC50 = 22.2 and 3.7 μM,
respectively) but not TRPV1, TRPV3, or TRPV4 channels, as well as

piperlongumine, an alkaloid from the long pepper Piper longum.
Piperlongumine selectively inhibits human TRPV2 (IC50 = 4.6 μM)
and reduces tumor sizes when applied to a murine glioblastoma
model.568 However, due to low solubility, the compound has to be
encapsulated in ß-cyclodextrin and applied to an implantable
dextran-dendrimer hydrogel scaffold.

Synthetic TRPV2 inhibitors include SET2 (IC50 = 0.5 μM)569 and
IV2-1 (IC50 = 6.3 μM),471 which do not affect TRPV1, TRPV3, and
TRPV4 channels. However, neither compound has been tested in
TRPV2-relevant disease models yet.

Regarding TRPV2 activation, particularly human TRPV2, has
proven difficult to activate without inducing cytotoxic effects at
the concentrations of the drugs required for robust activation.
Currently, probenecid and cannabinoids, or a combination of both,
are primarily used for in vitro studies.412,570,571,610

3. TRPV3
Various natural compounds isolated from plants inhibit TRPV3

channels, though most of them are only moderately potent.
Nonetheless, some of them have demonstrated efficacy in vivo,
particularly in mouse models of acute and chronic itch. Citrusinine
II, derived from the small evergreen tree Atalantia monophylla,
inhibits TRPV3, albeit with a relatively low potency (IC50 = 12.4
μM). It suppresses itch in mouse models of both acute and chronic
pruritus when administered subcutaneously.572 Naturally occur-
ring isochlorogenic acid A (IC50 = 2.7 μM) and B (IC50 = 0.9 μM),
active ingredients of the herb Achillea alpina, inhibit TRPV3 and
reduce ear swelling and chronic pruritus in mouse models of
topical carvacrol treatment.573,611 The coumarin osthole, isolated
from Cnidiummonnieri (IC50 = 37 μM for hTRPV3)―a plant used in
traditional Chinese medicine―attenuates dry skin itch and
histamine-dependent itch.574 Subsequent studies by the same
group have demonstrated the efficacy of the TRPV3 inhibitors
forsythoside B, which is found in a number of plants of the mint
order (IC50 = 6.7 μM),575 and plant-derived verbascoside (IC50 = 14
μM) in similar disease models.576 More recently, α-mangostin from
the mangosteen plant was identified as a highly potent inhibitor of
WT TRPV3 (IC50 = 77 nM) and TRPV3 GOF mutants (G573S and
G573C) (IC50 ~2 μM).577

In addition to naturally occurring substances, several chemi-
cally synthesized TRPV3 inhibitors were developed. Optimization
of primary hits regarding absorption, distribution, metabolism,
and excretion properties has led to the discovery of compound 74a
(IC50 = 0.38 μM) with favorable drug-like properties and efficacy
in mouse models of neuropathic and central pain.578 Another
compound, Trpvicin (IC50 = 0.38 μM), stabilizes both WT TRPV3
and a GOF mutant (G573S) in their closed conformations, effec-
tively inhibiting hair loss in a mouse model carrying the G568V
mutation, relieving symptoms of chronic and acute itch.579 Some
local anesthetics, which are sometimes used to treat pruritus and
pain, have also shown efficacy in inhibiting TRPV3 channels,
although with low potency. Bupivacaine, mepivacaine, lidocaine,
and ropivacaine inhibit TRPV3 with IC50 values ranging from 170
μM to 2.5 mM.580 Dyclonine, a clinically used anesthetic, acts at
least 2 orders of magnitude more potently on TRPV3 channels
(IC50 = 3.2 μM) than on TRPV1, TRPV2, TRPM8, and TRPA1 and
relieves carvacrol-induced scratching in mice.581 Flopropione, an
antispasmic agent, also blocks TRPV3 channels (IC50 = 18 μM) and
alleviates symptoms in mouse models of skin inflammation
induced by skin sensitizers.582

Naturally occurring monoterpenes, such as thymol, carvacrol,
or camphor, activate TRPV3 but with poor potencies.584 A
screening of Boswellia extracts for bioactive components identi-
fied the diterpene incensole acetate (EC50 = 16 μM) as a novel
TRPV3 activator. It exerts antidepressant and anxiolytic effects in
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WT but not in TRPV3-deficient mice, suggesting that these effects
are indeed mediated via TRPV3 activation.585 Tetrahy-
drocannabivarin, a nonpsychoactive analogue of tetrahydrocan-
nabinol, stimulates TRPV3 channels (EC50 = 6.1 μM) by binding to
the vanilloid site but also activates several other TRP chan-
nels.376,586 More recently, the synthetic compound KS0365 was
identified, showing 3-fold greater potency than 2-
aminoethoxydiphenyl borate (EC50 = 5.1 μM, calculated in
cholesterol-enriched cells) in activating TRPV3 without affecting
TRPV2 channels.484

4. TRPV4
Significant progress has been made to improve the pharma-

cology of TRPV4 channels, as several pharmaceutical companies
have set out to develop novel TRPV4 modulators. Subsequently,
their efficacies have been demonstrated in different mouse models
of diseases.

In terms of antagonists, highly potent and selective drugs are
now available. Thorneloe et al587 reported that the orally available
TRPV4 antagonist GSK2193874 (IC50 = 2 nM for rTRPV4 and 40 nM
for hTRPV4) was beneficial in mouse models of pulmonary edema.
GSK2193874 is highly specific for TRPV4, demonstrating selectivity
across more than 200 tested targets. The compound GSK2798745
(IC50 = 1.8 nM) resulted from a lead optimization process and
demonstrated efficacy in a rat model of pulmonary edema.588 In
rats, cyclophosphamide-induced cystitis was inhibited by Hydra's
HC-067047 (IC50 values were 48 nM for hTRPV4, 133 nM for
rTRPV4, and 17 nM for mTRPV4).589 Renovis Pharma also identified
several TRPV4-targeting modulators, including both activators and
inhibitors. RN-1734 inhibited TRPV4 (IC50 = 2.3 μM) with moder-
ate potency.590 Later, the same group591 introduced orally
bioavailable RN-9893 with an improved potency (IC50 values of
0.42 μM, 0.66 μM, and 0.32 μM for human, rat, and mouse TRPV4
receptors, respectively) and high specificity for TRPV4.

Several selective activators of TRPV4 are available. Glax-
oSmithKline’s GSK1016790A is highly potent (EC50 = 2 nM for
hTRPV4) and selective for TRPV4. Systemic administration of
GSK1016790A in animals causes a severe drop in blood pressure up
to circulatory collapse and death, highlighting the role of TRPV4 in
the regulation of vascular tone and vasodilation.494,592 Recently, a
novel TRPV4 agonist was discovered (EC50 = 60 nM), which is
suitable for in vivo application. The quinazolin-4(3H)-one deriva-
tive 36-HCl suppressed the progression of osteoarthritis in a rat
model of surgically induced osteoarthritis (meniscal tear model)
through intra-articular application.593 Renovis Pharma introduced
the piperazine RN-1747 with EC50 values of 0.77 and 4 μM for
hTRPV4 and mTRPV4/rTRPV4, respectively.590

Naturally occurring TRPV4 activators include curcumin and
puerarin, although both compounds only show low potencies and
are, in the case of curcumin, only poorly selective for TRPV4.594,595

5. TRPV5 and TRPV6 channels
Several compounds block TRPV5 and TRPV6 channels. Initially,

their potency was low, and most of them did not discriminate well
between the 2 isoforms. Miconazole and econazole demonstrate
approximately 2-fold higher activity for TRPV6 than for TRPV5 but
require high concentrations (>100 μM) for effective channel
blockade.596 Cryo-EM studies of TRPV6 in complex with econazole
revealed binding to the periphery of the channel, where econazole
replaced a lipid.612,613

Structure-based virtual screening has further advanced the
identification of TRPV5-selective compounds. By virtually
screening the econazole binding pocket using a database of 12
million compounds, 3 novel TRPV5 inhibitors were identified,
including ZINC17988990, which selectively inhibits rabbit human

TRPV5 but not human TRPV6 (IC50 = 0.11 and 0.18 μM,
respectively).597

Based on the lead compound TH-1177,614 Landowski et al596

introduced the weakly potent compound 3 with a 5-fold selec-
tivity for TRPV6 (IC50 = 90 μM) over TRPV5 (IC50 = 503 μM).
Subsequent efforts have led to the development of cis-22a (IC50 =

0.32 μM) through ligand-based virtual screening, which exerts a 7-
fold selectivity for TRPV5 compared with TRPV6.598 However, cis-
22a is not suitable for in vivo studies due to its low stability against
microsomal degradation. Chemical modification of cis-22a resul-
ted in the discovery of 3OG with a higher potency for TRPV6 in-
hibition (IC50 = 83 nM) and improved microsomal stability.599

Cryo-EM, X-ray crystallography, and mutagenesis studies identi-
fied 2 types of binding sites for cis-22a in the TM region: one
overlaps with lipid binding site 2 and the other is located at the
intracellular pore entry site, which also serves as a binding region
for Ca2+-CaM.615,616

Several naturally occurring compounds inhibit TRPV6 channels.
SOR-C13 and SOR-C27, 2 short peptides derived from sorcidin, a
paralytic venom of the shrew Blarina brevicauda, block TRPV6 with
IC50 values of 14 and 64 nM, respectively. In mice, these peptides
were used to detect TRPV6-overexpressing tumors600 and reduced
tumor growth in a xenograft model.552 Tetrahydrocannabivarin
blocks both TRPV5 and TRPV6 channels (IC50 = 4.8 μM and 9.4 μM,
respectively) by binding to a site at the interface between the
channel’s pore and the surrounding membrane.601,617

6. Photoswitchable inhibitors of TRPVs
Recently, Cunha et al602 developed a photoswitchable TRPV6

inhibitor based on the chemical structure of a previously reported
TRPV6 inhibitor by introducing a phenyldiazo group to the mole-
cule. Compound 9e rapidly switches by illumination with UVA
light from the almost ineffective E-isomer to the inhibitory Z-
isomer (IC50 = 1.7 μM).598,602

F. Ongoing or completed clinical trials with TRPVs as therapeutic
targets

With respect to clinical trials, TRPV1 is by far the most intensely
studied member of the TRPV family. According to the ClinicalTrials.
gov database, nearly 100 studies have targeted TRPV1 for various
conditions, with a focus on asthma and cough, inflammatory skin
diseases, and, in particular, various pain conditions. However, due
to hyperthermia and an increased likelihood of burn injuries
associated with TRPV1 inhibition, many first-generation TRPV1
antagonists were withdrawn from clinical trials or did not progress
further.603 Mode-specific second-generation TRPV1 inhibitors,
such as NEO6860 (NCT02337543), do not affect heat and pH
activation of TRPV1 and provide a better safety profile.559 How-
ever, NEO6860 did not demonstrate superior efficacy compared
with placebo in a phase 2 trial to treat knee osteoarthritis
(NCT02712957).604 Topical TRPV1 antagonists are well tolerated
and are under investigation for the treatment of inflammatory skin
diseases, such as atopic dermatitis (PAC-14028, asivatrep;
NCT02583022, NCT02757729, and NCT02965118), where they
show promising effects.618 Another approach involves the desen-
sitization of TRPV1 channels, which is used in therapeutic ap-
proaches such as the use of capsaicin-containing creams for the
treatment of moderate pain or the intravesical instillation of
capsaicin or resiniferatoxin for an overactive bladder. This strategy
is also being explored in trials investigating capsaicin formulations
or the TRPV1 agonist CA-008 (vocacapsaicin) for the management
of chronic pain conditions, as reviewed by Iftinca et al.619

Compared with TRPV1, far fewer studies have evaluated the
efficacy of compounds targeting other members of the TRPV
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family. Two drug repurposing studies have evaluated the use of the
nonspecific TRPV2 activator probenecid, an FDA-approved drug to
treat gout and hyperuricemia. In a small phase 4 study
(NCT03965351) involving patients with functionally uni-
ventricular (Fontan) circulation, probenecid improved cardiac
function compared with placebo.620 Another phase 2 study,
involving 20 patients, investigated probenecid as a positive
inotropic agent for the treatment of heart failure (NCT01814319)
and demonstrated a better cardiac function.621 However, given the
nonspecific action of probenecid, further confirmation is required
to determine whether TRPV2 activation underpins its potential
cardiac benefits. The TRPV2 inhibitor tranilast is currently being
studied in a phase 1/2 study of patients suffering from advanced
esophageal cancer for its efficacy when combined with traditional
chemotherapy (jRCTs051190076).622

Although preclinical studies suggest a role for TRPV3 in skin
diseases, to date, only the TRPV3 inhibitor, GRC15300
(SAR292833), by Glenmark Pharmaceuticals has progressed to
clinical trials for targeting osteoarthritis and neuropathic pain.
However, the drug failed to meet its primary endpoint in a phase 2
trial in 2013 (NCT01463397).

Alongside TRPV1, TRPV4-selective modulators have achieved
notable clinical progress within the TRPV family. GSK2798745, a
highly potent TRPV4 inhibitor developed by GlaxoSmithKline,588

has entered several early-phase clinical trials. No safety issues or
serious side effects were observed in a phase 1 study
(NCT02119260).623 However, in 2017, a phase 2a study of heart
failure patients (NCT02497937) failed to demonstrate significant
effects of TRPV4 inhibition on pulmonary gas diffusion as an in-
dicator of lung congestion.624 In 2019, a combined phase 1/2 study
(NCT03372603) assessed the effect of the same molecule on
chronic cough, but the study was terminated due to a lack of ef-
ficacy. GSK2798745 was also unable to reduce alveolar barrier
disruption in a model of lipopolysaccharide-induced acute lung
injury in another phase 1 trial (NCT03511105),625 and the study
was terminated due to a low probability of achieving a positive
outcome of the primary endpoint. A recently completed phase 1
study (NCT04292912), evaluating GSK2798745 in patients with
diabetic macular edema, has yet to publish results. Additionally, in
2023, an observational study started, monitoring the natural his-
tory of neuropathic pain in patients with confirmed genetic mu-
tations in the TRPV4 gene (NCT05600764).

TRPV6, due to its overexpression in many solid tumors, is
considered to comprise a novel target for anticancer therapy.600 In
2015, the safety and tolerability of SOR-C13 from Sorcimed Bio-
pharma were demonstrated in a phase 1 study (NCT01578564)
involving patients with advanced solid tumors, with some

experiencing antitumor effects of the drug.626 These findings were
followed up in another recently completed phase 1 trial
(NCT03784677), but no results have been published yet. The FDA
has granted SOR-C13 an orphan drug designation for advanced
ovarian and pancreatic cancer. CBP-1008, by Coherent Biopharma,
is a bispecific ligand-drug conjugate targeting folate receptor α and
TRPV6 linked to the cytostatic monomethyl auristatin E. Treatment
with CBP-1008 is currently evaluated in an ongoing phase 1 trial
(NCT04740398) for advanced solid tumors.

IV. TRPMs

A. TRPM gene family

The founding member of the TRPM gene subfamily was iden-
tified as transcripts enriched in melanomas and, therefore, named
melastatin (now TRPM1; Table 1).5,7 The human TRPM gene family
consists of 8 members. Based on amino acid similarity, TRPM
proteins form 2 phylogenetic groups, TRPM1/3/6/7 and TRPM2/8/
4/5, which can be further subdivided into 4 pairs of homologous
channels: TRPM1/3, TRPM2/8, TRPM4/5, and TRPM6/7
(Fig. 4A).5,7,627,628 The structural organization and key biophysical
characteristics were found to be conserved within pairs; however,
with some exceptions.

B. Domain topology, assembly, and functional characteristics of
individual TRPMs

1. Domain topology and channel assembly
The domain organization of TRPMs is illustrated in Fig. 4B. The

large N-terminus of TRPMs, comprising ~70% of the total protein
sequence, is unique among ion channels and subdivided into 4
melastatin homology regions (MHR1—4). The membrane-
spanning segment of TRPMs, similar to other TRP channels, con-
tains a small amphiphilic domain (pre-S1 helix) and 6 TM helices
(S1—S6). The region between S5 and S6 forms a short PH and a
pore-forming loop. The S6 helix is linked to a highly conserved TRP
helix and a CC domain. TRPM proteins function as tetrameric
channel complexes, with 4 S5—S6 segments forming a common
membrane-spanning channel pore (Fig. 4B).

TRPMs function as homotetramers―4 subunits assemble to form
a channel pore. In addition, the closely related TRPM1 and TRPM3
proteins, as well as TRPM6 and TRPM7, can form TRPM1/3 and
TRPM6/7 heterotetrameric channels.629—633 Cryo-EM was success-
fully used to address high-resolution structures of TRPM2,634—640

TRPM3,641—643 TRPM4,644—648 TRPM5,649,650 TRPM7,651—653 and

Fig. 4. The relatedness and domain topology of TRPMs. (A) Phylogenetic tree of the human TRPM1—8 proteins. (B) TRPMs contain the following domains: MHR1—4, pre-S1, S1—S6,
amphiphilic helices; PH, PL, pore-forming loop; TRP, highly conserved TRP helix; CC domain, NUDT9-H in TRPM2; α-Kinase in TRPM6 and TRPM7.
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TRPM8.40,41,654—656 These findings provided new mechanistic insights
into structure-function relationships of TRPMs.657,658

Three TRPMs contain additional C-terminal segments. TRPM2
contains the nudix hydrolase 9 homology (NUDT9-H) domain
(Fig. 4B).659,660 NUDT9 proteins cleave ADP-ribose (ADPR) into
AMP and ribose-5-phosphate.661 NUDT9-H of human TRPM2 binds
ADPR but does not exhibit enzymatic activity, while invertebrate
TRPM2 proteins retain the capability to cleave ADPR.640,662

The C-terminal domains of TRPM6 and TRPM7 encode α-type
kinase domains (Fig. 4B).663—665 α-Kinases are a group of atypical
serine/threonine protein kinases with low primary sequence
similarity to conventional protein kinases.666,667 C-terminal re-
gions in other TRPM proteins do not contain enzymatic domains
(Fig. 4B).

Alternative mRNA splicing creates additional diversity among
TRPMs. TRPM1 is expressed as a “long” active variant and as a
“short” transcript that lacks the sequence encoding the TM
channel segment.668 Alternative mRNA processing of TRPM2 re-
sults in truncated channel versions with different functional
characteristics.669—671 Alternative splicing of the pore-coding
sequence in TRPM3 produces channels with distinct cation
selectivity.672 TRPM4 is expressed as TRPM4a and TRPM4b vari-
ants with low and high channel activity, respectively.673,674

Alternative splicing of TRPM6 and TRPM7 creates isoforms
encoding the N-terminal segments directly fused to the α-kinase
domains.629,675

2. Functional characteristics
TRPMs have been extensively investigated, and despite the

overall structural similarity, they differ significantly in functional
characteristics and cellular roles.657,658 The phylogenetic group of
TRPM1, 3, 6, and 7 (Fig. 4A) represents channels that are highly
permeable to divalent cations, including Zn2+, Mg2+, and Ca2+, and
are regulated by PIP2 and intracellular Mg2+.

TRPM1, the founding member of the TRPM subfamily, forms a
constitutively active channel highly expressed in melanocytes and
the retina.633,676 The constitutive activity of TRPM1 can be further
stimulated by the neurosteroid pregnenolone sulfate (PS) and
inhibited by extracellular Zn2+ or intracellular Mg2+ ions.633 As
mentioned above, TRPM3 produces several alternatively spliced
variants,677,678 including TRPM3α1 and TRPM3α2. TRPM3α1 con-
tains a longer pore-forming segment between S5 and S6 and is
highly permeable to Na+ ions.672 TRPM3α2 contains a shorter
pore-forming sequence and is characterized by a high perme-
ability to divalent cations.672,679 In addition, the S1—S4 regions of
TRPM3α2 contains a noncanonical ion permeation mechanism
called “omega” Na+ currents.680,681 TRPM3α2 is the most studied
channel variant referred to herein as TRPM3. TRPM3 is negatively
regulated by intracellular Mg2+ and PIP2 depletion and stimulated
by PS and other steroids.672,682—684 TRPM3 is modulated by
osmolality and D-erythro-sphingosine.685,686 Cryo-EM structures
have demonstrated that PS activates TRPM3 through a site at the
outer region of the channel pore formed by the PH and S1.642 The
TRPM3 channel is activated by heat, underlying the temperature
responses of the dorsal root and trigeminal ganglia neurons.687,688

Stimulation of receptors coupled to Gi and Go causes inhibition of
the channel through the direct assembly of the Gßγ subunits with
TRPM3.641,689,690

TRPM6 and TRPM7 are homologous bifunctional proteins
containing TM channel segments fused to cytosolic kinase do-
mains and, therefore, are frequently named channel kinases.5,7,627

Thus, one TRPM6 or TRPM7 tetramer will form a typical TRP
channel unit linked to 4 cytosolic kinase domains.5,7,627 Further-
more, recent proteomic studies demonstrated that ARL15,
PPT4A1—3, and CNNM1—4 proteins coassemble to such channel-

kinase complexes.691,692 Channel complexes formed by TRPM6 and
TRPM7 are highly permeable to divalent cations and are negatively
regulated by cytoplasmic Mg2+ and Mg·ATP as well as membrane
levels of PIP2.664,665,675,693—701 The cryo-EM structures of the
truncated TRPM7 have been resolved in the closed and open
states.651—653 The solved structures are consistent with the idea
that the lower channel gate contains the regulatory Mg2+ binding
site.702

The α-kinase domains of TRPM6 and TRPM7 display low amino
acid sequence homology to conventional serine/threonine ki-
nases.667 However, the crystal structure of the TRPM7 kinase re-
veals considerable structural similarity to other protein kinases.666

The mass spectrometry approach identified multiple autophos-
phorylation sites mainly located in a serine/threonine-rich region
situated upstream of the kinase domain of TRPM7.691,703,704

Similar to TRPM7 kinase, TRPM6 kinase can phosphorylate its
own serine/threonine residues.703 In immune cells, the TRPM7
kinase domain can be cleaved from the channel domain by cas-
pases upon Fas-receptor stimulation.705,706 Other studies have
reported that cleaved TRPM6 and TRPM7 kinases are detected in
the cell nucleus, where they can phosphorylate histones.706,707

Currently, the known phosphorylation substrates of TRPM6 and
TRPM7 kinases comprise ~20 proteins with varied subcellular lo-
cations and functional roles.708—716 Overall, such functional di-
versity makes it challenging to develop a unified model of the
cellular roles of the TRPM6 and TRPM7 kinase domains.

The TRPM2, 4, 5, and 8 phylogenetic group (Fig. 4A) comprises
channels with diverse functional characteristics. The TRPM2 and
TRPM8 channels are permeable to divalent and monovalent cat-
ions and are often called nonselective cation channels or Ca2+-
permeable cation channels. By contrast, TRPM4 and TRPM5 are
impermeable to Ca2+ and are thus frequently called monovalent
cation-selective channels.

TRPM2 was recognized as an unusual TRP channel due to the
presence of the C-terminal NUDT9-H domain. TRPM2 is directly
activated by intracellular ADPR.659,717—723 Recently, cryo-EM
analysis of TRPM2 has identified 2 ADPR-binding pockets located
in the MHR1/2 and NUDT9-H domains.634—639 Both sites play a role
in the opening of the TRPM2 channel. However, the interaction of
ADPR with MHR1/2 underpins the prime regulatory mechanism in
the human TRPM2 channel.634—639 In addition, intracellular Ca2+

and membrane PIP2 were identified as crucial physiological li-
gands of TRPM2 required for channel opening by ADPR.662,724—728

The Ca2+ binding site is formed by acidic side chains of residues
located in the S2 and S3 helices and the TRP domain of
TRPM2.634—639 PIP2 is found in a cavity often called a “vanilloid
binding pocket.”634 TRPM2 is positively regulated by warm tem-
peratures (>35 ◦C).729—732 The structural basis for the temperature
sensitivity of TRPM2 remains puzzling. The TRPM2 channel was
also suggested as a cellular redox sensor because it is activated by
peroxides, like H2O2, or other agents that produce reactive oxygen
species (ROS).733 However, ROS act indirectly on TRPM2, likely due
to the elevation of intracellular ADPR.721,722,726,734,735

TRPM8 shares significant structural homology with TRPM2.
However, the C-terminal segment of TRPM8 lacks NUDT9-H.
TRPM8 is activated by cold (<23—28 ◦C) and chemical agents
evoking a sensation of coolness, including menthol and ici-
lin.14,405,736,737 TRPM8 is a voltage-dependent channel.406,738

Analogously to TRPM2, the channel activity of TRPM8 is crit-
ically dependent42,739 on PIP2 and intracellular Ca2+. The
depletion of PIP2 prevents channel opening by pharmacological
compounds and cold,42,739—741 whereas Ca2+ is required for
TRPM8 activation by icilin.40,656 Cryo-EM studies of TRPM8 have
identified the binding sites of Ca2+, PIP2, and cooling ago-
nists.40,41,654—656,742 The location of Ca2+ and PIP2 binding sites in
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TRPM8 parallels the corresponding sites in TRPM2.40,41,654—656,742

Cooling agents acoltremon (WS-12) and icilin interact with a
binding pocket formed by the S1—S4 helices and the TRP domain
of TRPM8, frequently called the VSLD.40,41,654—656,742,743 However,
the structural basis of the effects evoked by voltage and tem-
perature on TRPM8 has not yet been established.742,744,745

TRPM4 and TRPM5 display functional characteristics that are
unique among TRP channels―both channels are selective for
monovalent cations and are activated upon increases in cytosolic
Ca2+ levels.673,674,746—748 Two Ca2+-binding pockets are found in
TRPM4 and TRPM5.644—650 One site is evolutionarily conserved,
and, like in TRPM2 and TRPM8, it is formed by negatively charged
residues in the TM domains of TRPM4 and TRPM5.648—650 This
site is primarily responsible for the Ca2+-dependent opening of
the TRPM4 and TRPM5 channels.648—650 Another Ca2+-binding
site is unique to TRPM proteins and is located at the interface of
the MHR1/2 and MHR3/4 cytosolic domains.648—650 In TRPM4,
the interaction of Ca2+ with the cytosolic domain regulates a
complex conformational temperature transition of the chan-
nel.648 In TRPM5, the binding of Ca2+ to this site affects the
structural dynamics of the N-terminal domain, which subse-
quently regulates the voltage- and Ca2+-dependent opening of
the channel.649,650 In addition, TRPM4 and TRPM5 are regulated
by PIP2.673,674,746—749 ATP is a negative modulator of TRPM4.749,750

ATP binds to TRPM4 through a site located at the interface of the
MHR1/2 domains, and this interaction is temperature-depen-
dent.644 Importantly, ATP does not act on TRPM5.649,749,750

TRPM5 was found to be a heat-sensitive channel that contrib-
utes to the temperature-dependent reception of chemical stimuli
by taste receptor cells.751,752

C. Expression pattern and primary physiological roles

1. TRPM1 and TRPM3
Initially, TRPM1 was identified as a transcript enriched in hu-

man melanomas and was suggested to be a potential tumor sup-
pressor.753,754 However, the particular function of TRPM1 in
melanomas and skin melanocytes remains unclear. The patho-
physiological role of TRPM1 has been extensively investigated in
the context of ON-bipolar neurons, which form synapses with rod,
cone, and horizontal cells in the retina,676,755—757 because LOF
mutations in the human TRPM1 gene cause congenital stationary
night blindness.757—761 In the dark, rod cells secrete glutamate,
which activates metabotropic glutamate receptor 6 (mGluR6) in
postsynaptic ON-bipolar neurons. mGluR6 is a Go protein-coupled
receptor, and its activation leads to the release of Gα(o) and Gßγ.
Both subunits directly interact and deactivate the TRPM1
channel.676,762—764 Exposure to light blocks the release of gluta-
mate and inactivates mGluR6, leading to the opening of the TRPM1
channel and depolarization of ON-bipolar neurons.676,762—764

Importantly, stationary night blindness was developed by Trpm1
KO mice, confirming the monogenic basis of the disease.756

TRPM3 is highly expressed in nociceptive neurons, pancreatic ß

cells, the brain, and several other tissues.677 In pancreatic islets,
TRPM3 functions as an ionotropic steroid receptor responsible for
PS-induced Ca2+ influx in ß cells, leading to enhanced insulin
secretion.682 In addition, TRPM3 can underlie PS-stimulated Zn2+

uptake in ß cells, the crucial factor for insulin-containing dense
core vesicles.679 PIP2 is directly associated with TRPM3.641,683,765 In
insulinoma cells, stimulation of Gq protein-coupled receptors
leads to the stimulation of PLC, depletion of its substrate PIP2, and
inhibition of TRPM3.683 As mentioned above, activation of GPCRs
leads to the inhibition of TRPM3 through the direct association of
Gßγ with the channel.641,689,690 This regulatory mechanism con-
tributes to the antinociceptive effects of μ opioid receptor agonists

in DRG neurons.689 The TRPM3 channel is required for the tem-
perature sensitivity of DRG and trigeminal ganglia neuro-
ns.687,688,766—768 Trpm3 KO mice exhibited diminished sensitivity
to noxious heat and reduced inflammatory heat hyper-
algesia.687,688 Consequently, TRPM3 was suggested as a new
analgesic drug target.769

2. TRPM6 and TRPM7
TRPM7 is a ubiquitously expressed channel. Endogenous Mg2+-

regulated TRPM7 currents have been found in virtually all primary
isolated cells and stable cell lines examined, supporting the notion
that TRPM7 is a versatile channel that plays a housekeeping
cellular role.675,694,702,770—775 To this end, independent
evidence693,694,776—778 supports the concept that the TRPM7
channel represents the principal route for the cellular uptake of
divalent cations, especially Mg2+. In line with this assumption, the
genetic disruption or pharmacological inhibition of TRPM7 causes
cell cycle arrest.693,694,776 Besides the homeostatic control of
cellular Mg2+ and Zn2+ contents, TRPM7 is recognized as a Ca2+

channel shaping Ca2+-dependent cellular pathways779—782 and a
vesicular Zn2+ release channel.695 In this context, tissue-specific
ablation of Trpm7 in mice was used to elucidate the role of
TRPM7 in the systemic balance of divalent cations. Unexpectedly,
kidney-restricted deletion of Trpm7 in mice did not cause apparent
changes in the development, physical appearance, and biochem-
ical characteristics of biological fluids.693 In another mouse strain,
Trpm7 was inactivated in enterocytes throughout the whole in-
testine, including the colon.693 Newborn mutants displayed
growth failure and 100% mortality before weaning. Moreover,
Trpm7-deficient pups displayed low Zn2+, Mg2+, and Ca2+ levels in
serum, urine, and bones. Nutritional Zn2+ and Mg2+ supplemen-
tation of breastfeeding females extended the lifespan of mutant
pups. These findings693 support the concept that intestinal TRPM7
operates as a master regulator of the body’s balance of Zn2+, Mg2+,
and Ca2+.

Transgenic mouse models have been extensively used to
investigate the role of TRPM7 in prenatal development (reviewed
by Chubanov et al665,783). Among other exciting findings, it was
demonstrated that TRPM7 is indispensable for early embryo
development.784,785 Also, TRPM7 is abundantly expressed in
gametes.784—787 KO of Trpm7 reduced Mg2+ and Zn2+ levels in
oocytes and 4-cell embryos, leading to arrested embryonic
development at the blastocyst stage.786 Interestingly, Mg2+ but not
Zn2+ supplementation rescues the arrest of Trpm7-deficient zy-
gotes.786 These findings correlate well with the in vitro examina-
tion of mouse embryonic stem cells and embryonic trophoblast
stem cells, demonstrating that the loss of TRPM7 function leads to
Mg2+-dependent proliferation arrest.776,788 In other studies, con-
ditional mutagenesis of Trpm7 at different embryonic stages has
demonstrated that TRPM7 is indispensable for organogenesis of
the kidney, heart, CNS, and immune organs.789—791

Unlike the ubiquitously present TRPM7 channel, the expression
of TRPM6 is limited to transporting epithelial cells of the placenta,
kidneys, and intestine.629,788,792,793 The necessity for epithelial
cells to express both TRPM6 and TRPM7 remains a topic of
debate.663,794 Some studies suggest that the TRPM6 channel rep-
resents the close functional homolog of TRPM7 and that both
proteins operate independently.632,795,796 An alternative view is
that TRPM6 assembles with TRPM7 in heteromeric channels,
which are less susceptible to metabolic negative control by cyto-
solic Mg·ATP.629—631,788,797

TRPM6 was found to be highly expressed in the DCT segment of
the kidney and in enterocytes of the gastrointestinal tract.792,793

Consequently, a comparative examination of mice with global
versus kidney- or intestine-specific deletions of Trpm6 was
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conducted.788 Mice lacking Trpm6 in the whole body or specifically
in the intestine exhibited severe hypomagnesemia and depletion
of Mg2+ in bones due to impaired intestinal uptake of Mg2+

ions.788,798 Dietary Mg2+ supplementation fully normalized the
biochemical and physiological characteristics of Trpm6-deficient
mice.788 In contrast, 2 independent mouse strains with a kidney-
specific KO of Trpm6 displayed little or no impact on serum
Mg2+ levels of mutant mice.788,799 These findings aligned with
experiments693 involving kidney- versus intestine-specific de-
letions of Trpm7. Hence, the traditional kidney-centric view on the
organismal balance of divalent cations needs some adjustment.

3. TRPM2 and TRPM8
TRPM2 is a ubiquitously expressed channel implicated in

many physiological processes, including insulin secretion by
pancreatic ß cells, Ca2+ signaling in immune cells, and body
temperature sensation by somatosensory and hypothalamic
neurons.721,722,729—731,800—819 TRPM2 is implicated in patho-
physiological conditions linked to excessive ROS production, for
instance, inflammation, neurodegenerative disorders, and IR
injury.808,809,818,820—831 IR injury is characterized by increased
tissue levels of ROS leading to Ca2+ overload, cell death, and
inflammatory processes.829 In this context, pharmacological in-
hibition of TRPM2 was suggested as a new strategy for treating
IR injury.828

The physiological role of TRPM8 was investigated in genetic
mouse models.832,833 Trpm8 KO mice showed behavioral defi-
ciency after exposure to cold temperatures.834—837 TRPM8 is
defined as the principal mediator of acute and inflammatory pain
and irritation-induced reflexes.834—846 TRPM8 is abundantly
expressed in the nerve endings of DRG neurons innervating the
urinary bladder and contributes to symptoms of urinary urgency
and other bladder reflexes.847,848 Consequently, TRPM8 has been
proposed as a new target for the treatment of pain, cancer, and
other disorders.

4. TRPM4 and TRPM5
As TRPM4 and TRPM5 are impermeable to divalent cations,

including Ca2+, their activation leads to Na+ influx and depolari-
zation of the plasma membrane.674 In electrically nonexcitable
cells, the opening of TRPM4 and TRPM5 reduces the driving force
for Ca2+ entry through Ca2+-permeable channels.752,849—852 In
excitable cells, like cardiomyocytes and neurons, depolarization of
the cell membrane opens voltage-activated Ca2+

channels.752,849—852 TRPM4 is a ubiquitously expressed channel,
and its role in shaping cellular responses to external stimuli is well
documented in diverse immune and endocrine cells, car-
diomyocytes, and neurons.752,849—852

TRPM5 is highly expressed in type II taste receptor cells,
mediating responses to sweet, amino acids, and bitter com-
pounds.853,854 In taste cells, the activation of GPCRs leads to PLCß2-
evoked release of Ca2+ from intracellular stores and the opening of
the TRPM5 channel.852—855 The activation of TRPM5 causes
membrane depolarization, the opening of voltage-gated Ca2+

channels, and consequently, the Ca2+-dependent release of the
transmitter ATP.852—855 Accordingly, deletion of Trpm5 in mice
impaired taste reception.751,854 TRPM5 was found to be a heat-
sensitive channel, and this characteristic contributes to the
temperature-dependent reception of chemical stimuli by taste
receptor cells in the tongue.751,752

In addition, TRPM5 was identified as a prime transduction
channel in chemosensory tuft cells, also known as brush
cells.856—867 Tuft cells are solitary epithelial cells containing apical
“brush-like” microvilli that are present in many internal organs,
including the respiratory system, thymus, gall bladder, urethra,

and gastrointestinal tract.868,869 Tuft cells are crucial players in
type 2 immune responses because they can detect pathogenic
helminths, bacteria, and viruses.858,867—877 Upon activation, tuft
cells release leukotrienes, acetylcholine, interleukin-25, and ATP,
mobilizing tissue-resident immune cells and other protective
responses.858,867—878

D. Human diseases associated with TRPMs

Gene association studies revealed the causal role of TRPMs in
several human disorders. Thus, LOF mutations in the human
TRPM1 gene cause congenital stationary night blindness (type 1C),
leading to impaired mGluR6/Go/TRPM1 signaling in ON-bipolar
neurons in the retina.757—761

De novo heterozygous point mutations in TRPM3 have been
identified in patients with developmental and epileptic encepha-
lopathy (DEE).879,880 DEE is a group of chronic encephalopathies
characterized by epilepsy and intellectual disability.879 Electro-
physiological analysis of TRPM3 revealed that DEE-associated
mutations represent GOF mutations.881—883 Pharmacological in-
hibition of TRPM3 by primidone has been demonstrated as a po-
tential treatment for DEE patients.880—884

LOF mutations in the human TRPM6 gene give rise to a disorder
known as primary hypomagnesemia type 1, intestinal
(HOMG1).648,885—887 HOMG1 patients are typically infants pre-
senting with generalized convulsions, muscle spasms, and very
low blood levels of Mg2+ and Ca2+. Supplementation with high
doses of Mg2+ in patients relieves hypomagnesemia and all other
symptoms, including hypocalcemia.792,793 Therefore, this disorder
is frequently called primary hypomagnesemia with secondary
hypocalcemia.792,793,888 Clinical assessment of the first HOMG1
patients revealed that hypomagnesemia developed due to defec-
tive intestinal Mg2+ uptake.885—887 In follow-up studies, renal leak
of Mg2+ was also detected in Mg2+-supplemented HOMG1
individuals.792,793,888

Missense mutations in TRPM7 have been linked to stillbirth.889

Stillbirth is defined as the loss of a fetus after 22 weeks of gestation
during pregnancy.890 Worldwide, the stillbirth rate is ~14 cases per
1000 births, and the etiology of this disease remains poorly un-
derstood.890 Recently,889 sequencing of tissue samples from
affected fetuses revealed heterozygous nonsynonymous variants
in TRPM7. Upon heterologous expression, introducing 2 mutations
in TRPM7 caused a reduction in channel activity, whereas 2 other
substitutions led to proteasomal degradation of TRPM7.890 How-
ever, the exact physiological process impaired by these mutations
in TRPM7 has not been established yet.

A new form of macrothrombocytopenia has been linked891 to
missense substitutions in TRPM7. Macrothrombocytopenia is a
group of disorders characterized by abnormally large platelets due
to their impaired formation in megakaryocytes.891 The affected
patients were heterozygous for LOF point mutations in TRPM7 and
displayed reduced Mg2+ levels in platelets.891 Notably, a mouse
strain with conditional megakaryocyte-restricted Trpm7 KO also
developed macrothrombocytopenia.891

Trigeminal neuralgia is a human disease defined by severe
facial pain.892 Whole-exome sequencing identified 1 patient het-
erozygous for the A931T mutation affecting the S3 helix of
TRPM7.892 Electrophysiological analysis of the A931T TRPM7
channel variant revealed atypical “omega” Na+ currents.892 Hence,
it was proposed that these “omega” currents depolarize trigeminal
ganglion neurons, causing pain in trigeminal neuralgia patients.892

Recently, mutations in TRPM7 have been linked to an autosomal
dominant variant of hypomagnesemia (low serum concentrations
of Mg2+).893—895 The affected patients were heterozygous for LOF
point mutations in TRPM7. Apart from hypomagnesemia, the
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patients displayed other less prominent symptoms, including ep-
isodes of hypocalcemia (low serum concentrations of Ca2+), sei-
zures, and muscle cramps. In addition, some individuals suffered
from migraine, autism, and developmental delays, mainly
affecting speech and motor skills. Notably, supplementation with
high doses of Mg2+ in patients could only partially normalize
serum concentrations of Mg2+ and incompletely ameliorate other
symptoms.893,894

GOF and LOF point mutations in the human TRPM4 gene have
been linked to different forms of cardiac conduction defects,
including progressive familial heart block type I,896,897 Brugada
syndrome,898—901 right-bundle branch block, atrioventricular
block, and complete heart block.902—904 However, it remains puz-
zling why either reduced or increased TRPM4 activity leads to
different forms of cardiac conduction defects.

E. Pharmacological modulators of TRPMs

As outlined above, TRPMs critically contribute to diverse
physiological processes and are considered prospective drug tar-
gets for the treatment of human diseases.657,658 Consequently,
numerous studies have been conducted to identify small organic
compounds suitable for the pharmacological regulation of TRPMs
in cultured cells and animal disease models.657,658 Herein, we
summarize the key developments in these research areas and
discuss the identified pharmacological modulators of TRPMs.
However, the present chapter will not cover the effects of
nonspecific channel inhibitors (eg, ruthenium red and 2-

aminoethoxydiphenyl borate) or compounds incompletely char-
acterized in terms of their potency and efficacy.

1. TRPM1 and TRPM3
The pharmacological toolkit for TRPM1 has not yet been

developed. TRPV1 agonists, capsaicin and anandamide, were used
to activate endogenous TRPM1 currents in ON-bipolar cells.757 The
response of ON-bipolar cells to capsaicin was blocked by the
TRPV1 inhibitor capsazepine.757 Similarly, an antibiotic agent,
voriconazole, was suggested to inhibit capsaicin-evoked TRPM1
currents in ON-bipolar cells.905 However, evidence of the direct
action of these compounds on the TRPM1 channel and the phar-
macological characteristics of such interactions (eg, IC50) remains
to be seen.

Several synthetic compounds positively regulate TRPM3
channel activity, including CIM0216, clotrimazole, and nifedipine
(Table 4).681,682,906—909 CIM0216 was determined to be the most
potent activator of the TRPM3 channel.906 The antifungal agent
clotrimazole causes potentiation of the TRPM3 channel, as this
compound does not affect basal or heat-activated TRPM3 currents
but robustly stimulates TRPM3 upon coapplication with PS.681 In
addition, several potent inhibitors of TRPM3 have been identified.
Thus, the FDA-approved drugs diclofenac, maprotiline, and pri-
midone were found to be potent inhibitors of PS-induced TRPM3
activity (Table 4).907 Notably, primidone could attenuate thermal
nociception in animals.907 Recently,642 cryo-EM structures of
TRPM3 were addressed in complex with PS, primidone, and
CIM0216. While PS interacts with TRPM3 through a site at the
outer region of the channel pore, primidone, nifedipine, and
CIM0216 bind to TRPM3 within the cavity between the S1—S4
segments and the TRP domain.642,643 Another study demonstrated
that 2 fruit flavanones, naringenin and hesperetin, and the spiny
restharrow derivative, ononetin, are potent inhibitors of TRPM3
(Table 4).908 Follow-up hit optimization experiments uncovered
fruit flavanones isosakuranetin and liquiritigenin, displaying
improved potency in the block of TRPM3 currents (Table 4).909

Moreover, isosakuranetin and hesperetin were capable of
reducing the sensitivity of mice to noxious heat and PS-induced
pain.909

2. TRPM6 and TRPM7
Several small molecules have been defined as negative regu-

lators of the TRPM7 channel.664,910—912 A significant fraction of

Table 4
Pharmacological modulators of TRPM3

Name (PubChem CIDa) Effect References

CIM0216 (42887770) Activation, EC50 = 0.77 μM 906

Clotrimazole (2812) Potentiation, EC50 = 20 nM 681

Nifedipine (4485) Activation, EC50 = 30—32 μM 682

Diclofenac (3033) Inhibition, IC50 = 6.2 μM 907

Maprotiline (4011) Inhibition, IC50 = 1.3 μM 907

Primidone (4909) Inhibition, IC50 = 0.6 μM 907

Naringenin (439246) Inhibition, IC50 = 0.5 μM 908

Hesperetin (72281) Inhibition, IC50 = 2.0 μM 908

Ononetin (259632) Inhibition, IC50 = 0.3 μM 908

Isosakuranetin (160481) Inhibition, IC50 = 50 nM 909

Liquiritigenin (114829) Inhibition, IC50 = 0.5 μM 909

aPubChem Compound Identification number.

Table 5
Pharmacological modulators of TRPM6 and TRPM7

Name (PubChem CIDa) Effect References

TRPM7

NS8593 (71311765) Channel inhibition, IC50 = 1.6 μMb (3.9 μMc) 913

Waixenicin A (73755210) Channel inhibition, IC50 = 7.0 μMb (16 nMc) 914

FTY720 (107969) Channel inhibition, IC50 = 0.72 μM 917

VER155008 (25195348) Channel inhibition, IC50 = 0.11 μM 915

CCT128930 (17751819) Channel inhibition, IC50 = 0.86 μMb (0.63 μMc) 916

Cannabigerolic acid (CBDA) (6449999) Channel inhibition, IC50 = 1.8 μM 919

Cannabidivarin (CBDV) (11601669) Channel inhibition, IC50 = 3.4 μM 919

Naltriben (5486827) Channel activation, EC50 = 21 μM 920

Mibefradil (60663) Channel activation, EC50 = 53 μM 921

TG100-115 (10427712) Kinase inhibition, IC50 = 1.07 μM 922

TRPM6

Iloperidone (71360) Channel inhibition, IC50 = 0.73 μM 915

Ifenprodil (3689) Channel inhibition, IC50 = 3.33 μM 915

aPubChem Compound Identification number.
bIC50 was determined in Mg2+-free intracellular saline.
cIC50 was determined in the presence of physiological Mg2+ concentration.
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these agents represent polyspecific channel blockers, incompletely
characterized compounds, or low-potency antagonists of
TRPM7.664,910,911 However, NS8593, waixenicin A, FTY720,
VER155008, CCT128930, cannabigerolic acid, and cannabidivarin
were found to be potent inhibitors of TRPM7 currents with IC50
values in the low micromolar to nanomolar range (Table 5).913—922

Noteworthy, waixenicin A, VER155008, CCT128930, and cannabi-
gerolic acid selectively suppressed the TRPM7 channel and dis-
played no effects on the homologous TRPM6
channel.652,653,914,915,919 In contrast, NS8593 and FTY720 inhibited
both channels, TRPM6 and TRPM7.652,653,915,917 NS8593, waix-
enicin A, and FTY720 were the most extensively used to map the
cellular roles of the TRPM7 channel in different physiological and
pathophysiological settings, including animal models of human
diseases, such as tissue fibrosis, metabolic, cardiovascular, and
immune disorders, and treatment of tumors, inflammation, and
aortic aneurysm.715,782,923—935

Recently,652,653 cryo-EM structures of TRPM7 were solved in
complex with NS8593, VER155008, and CCT128930. All 3 in-
hibitors bind to the same site in TRPM7, located on the cytoplasmic
side of the membrane at the interface of the S3, S4, and S5 helices
and the TRP domain. This ligand-binding pocket in TRPM7 is called
a vanilloid-like site because the homologous cavity in the TRPV1
channel has been previously defined as a vanilloid regulatory
site.652,653 However, whether waixenicin A and FTY720 bind to the
vanilloid-like site of TRPM7 or act through an alternative mecha-
nism remains to be examined.

A set of small molecules serving as TRPM7 channel agonists has
been identified.920,921 Among them, naltriben and mibefradil have
been characterized in detail (Table 5). Both agents can potently
activate TRPM7 currents without depletion of intracellular Mg2+,
indicating that both compounds act as true agonists of the TRPM7
channel.920,921 Consequently, many studies employed naltriben
and mibefradil, frequently in combination with TRPM7 inhibitors,
to examine the role of this channel in different cellular

processes.664,910—912 More recently, the cryo-EM structure of
TRPM7 was solved in the open state in complex with naltriben.653

A comparison of the closed and open naltriben-bound structures
of TRPM7 uncovered particular conformational rearrangements
associated with agonist-induced activation of the TRPM7 channel.
Naltriben-binding pockets (4 sites per tetramer) were found at the
intersubunit interface, formed by the MHR4/pre-S1 helix of one
subunit and the MHR4 domain of the neighboring subunit.
Intriguingly, this ligand-binding site has not been identified in
TRPMs before.653

The selective pharmacological modulators of TRPM7 kinase
remain to be identified. Currently, only 1 compound, TG100-115
(Table 5), is known as an inhibitor of TRPM7 kinase activity, but
this molecule also inactivates TRPM6 kinase.630,691,922

In contrast to TRPM7, the pharmacological profile of TRPM6 is
less established. Recently, 2 structurally unrelated compounds,
iloperidone and ifenprodil, were defined as potent inhibitors of the
TRPM6 channel (Table 5).915 Notably, both reagents showed no
impact on the TRPM7 channel.915 As mentioned above, NS8593
and FTY720 can suppress TRPM6 currents.652,653,915,917 Hence, the
available pharmacological toolkit enables selective or combined
targeting of TRPM6 and TRPM7 in physiological conditions or
preclinical experimental models, for instance, in patient-derived
primary cells.

3. TRPM2 and TRPM8
H2O2- and ADPR-evoked TRPM2 currents can be blocked by

several synthetic and natural compounds, including N-(p-amyl-
cinnamoyl)anthranilic acid, tyrphostin AG 490 (AG490), clotri-
mazole, JNJ-28583113, scalaradial, and 2,3-dihydroquinazolin-4
(1H)-one derivative D9 (Table 6).936—956 The generation of syn-
thetic analogs of ADPR represents another strategy to target
TRPM2. Thus, 8-phenyl-2′-deoxy-ADPR was found to be a potent
inhibitor of TRPM2 currents.942 Two other synthesized ADPR an-
alogs with substitutions in the pyrophosphate segment of the

Table 6
Selected examples of pharmacological modulators of TRPM2 and TRPM8.

Name (PubChem CIDa) Effect References

TRPM2

N-(p-Amylcinnamoyl)anthranilic acid (ACA) (5353376) Inhibition, IC50 = 1.7 μM 936

AG490 (5328779) Inhibition, IC50 = 0.4 μM 937

Clotrimazole (2812) Inhibition, IC50 = ~1 μM 938

JNJ-28583113 (164628567) Inhibition, IC50 = 0.13 μM 939

Scalaradial (21637538) Inhibition, IC50 = 0.21 μM 940

2,3-dihydroquinazolin-4(1H)-one derivative D9c (N/A) Inhibition, IC50 = 3.7 μM 941

8-phenyl-2′-deoxy-ADPR (compound 86c) (N/A) Inhibition, IC50 = 3 μM 942

ADPR analogues 7ic and 8ac (N/A) Inhibition, IC50 = ~5 μM 943

TatM2NX (154699439) Inhibition, IC50 = 0.40 μM 944

TRPM8

(—)-Menthol (16666) Activation, EC50 = 48 μM 945

Icilin (161930) Activation, EC50 = 0.36 μM 946

Acoltremon (WS-12) (11266244) Activation, EC50 = 0.19 μM 947

Azo-menthol (N/A) Activation, EC50 = 4.4 μM 948

(+)-Sesamin (72307) Inhibition, IC50 = 9.8 μM 949

Hispidulin (5281628) Inhibition, IC50 = 1.7 μM 950

Oroxylin A (5320315) Inhibition, IC50 = 9.7 μM 950

AMTB (16095383) Inhibition, IC50 = ~1 μM 951

M8-B (69316632) Inhibition, IC50 = 7.8 nM 952

TC-I 2000b (compound 87c) (57326210) Inhibition, IC50 = 36 nM 953

AMG 333 (71144018) Inhibition, IC50 = 13 nM 954

RQ-00203078 (49783953) Inhibition, IC50 = 8.3 nM 955

TC-I 2014b (compound 5c) (135883253) Inhibition, IC50 = 3 nM 956

aPubChem Compound Identification number. N/A — not available.
bCommercially available product.
cReferred as in reference.
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nucleotide (compounds 7i and 8a) displayed considerable potency
and selectivity in the suppression of TRPM2 (Table 6).943 TatM2NX
is a cell-permeable peptide designed to interact with ADRP bind-
ing in TRPM2.944 In electrophysiological experiments, TatM2NX
was found to be a potent inhibitor of the TRPM2 channel
(Table 6).944 Despite outstanding progress in structural assess-
ment of TRPM2 channels from different species,634—639 the mo-
lecular basis underpinning the inhibitory effect of the ligands
mentioned above remains unknown. Also, it is worth noting that
pharmacological compounds acting as agonists of the TRPM2
channel have not yet been identified.

TRPM8 has been proposed as a new target for the treatment of
pain, and consequently, a very comprehensive collection of
TRPM8 modulators has been developed. TRPM8 agonists like
menthol, icilin, and WS-12 are broadly used to explore the
pharmacological potential of this channel (Table 6).945—947 In
addition to menthol, other natural products with menthol-like
cooling effects are defined as activators of TRPM8, including
camphor, rotundifolone, eucalyptol, and borneol.957 However,
these compounds affect TRPM8 at a high micromolar range of
concentrations and elicit multiple effects on other proteins.957,958

The structures of such cooling agents serve as blueprints for
designing dozens of synthetic agents with EC50 values in the
nanomolar range.957,958 These synthetic substances have been
predominantly documented in patents from pharmaceutical
companies and await further validation.957,958 Recently, the first
photoswitchable TRPM8 activator, azo-menthol, has been
developed, which enables optical regulation of TRPM8 currents
with UV and blue light (Table 6).948

Screening natural products led to the discovery of TRPM8 in-
hibitors, such as sesamin, hispidulin, and oroxylin A (Table 6).949,950

In addition, a series of synthetic TRPM8 antagonists have been
identified, for instance, AMTB, M8-B, TC-I 2000, AMG 333, RQ-
00203078, and TC-I 2014 (Table 6).951—956,959 AMTB and TC-I 2014
were used in the cryo-EM analysis of TRPM8, and the resolved
structures revealed that, analogously to agonists WS-12 and icilin,
both inhibitors interact with a ligand-binding site formed by resi-
dues of the S1—S4 segments of TRPM8.40,654 Finally, it is worth
noting that pharmaceutical companies have synthesized several
potent inhibitors of TRPM8, but similar to the situation with TRPM8
activators, the functional impacts of these entities on TRPM8 are
only briefly reported in patents.957,958

4. TRPM4 and TRPM5
In initial studies, several polyspecific channel blockers were

used to inhibit TRPM4 currents, for instance, 9-phenanthrol and
MPB-104 (Table 7).649,960—970 However, these agents displayed a
low potency toward TRPM4. Subsequently, more potent TRPM4
inhibitors were identified, such as 4-chloro-2-{[2-(2-
chlorophenoxy)acetyl]amino} benzoic acid, 4-chloro-2-[2-(naph-
thalen-1-yloxy)acetamido] benzoic acid, and meclofenamate
(Table 7).962,963,971 In mice, meclofenamate inhibited the Ca2+

overload-induced background current in ventricular car-
diomyocytes and suppressed catecholaminergic polymorphic
ventricular tachycardia-associated arrhythmias in a TRPM4-
dependent manner.963 U73122 was found to be a potent acti-
vator of TRPM4, which can stimulate TRPM4 currents in the
absence of intracellular Ca2+ (Table 7).964 Another compound, a
3,5-bis(trifluoromethyl)pyrazole derivative (YM-58483), is
defined as a potentiator (or enhancer) of the TRPM4 channel
because the degree of TRPM4 activation is dependent on the
presence of intracellular Ca2+ (Table 7).965

Recently, a small molecule, necrocide 1 (NC1), was identified as
a potent activator of human TRPM4 but not mouse TRPM4
(Table 7).966 Interestingly, upon activation of TRPM4, NC1 induces
necrotic cell death because of Na+ overload.966 Despite significant
progress in cryo-EM analysis of TRPM4,644—648 the structural basis
for the inhibitory and stimulatory effects of the ligands mentioned
above remains unknown.

Several pharmacological agents, such as flufenamic acid, clotri-
mazole, and quinine, were found suitable for inhibiting the TRPM5
channel.750,972 However, these compounds were active in the high
micromolar range and capable of suppressing TRPM4.750,972 Sub-
sequently, triphenylphosphine oxide demonstrated improved
selectivity and potency toward TRPM5, whereas N′-(3,4-
dimethoxybenzylidene)-2-(naphthalen-1-yl)acetohydrazide
(NDNA) represents the most potent inhibitor of TRPM5 currents
(Table 7).649,967 Cryo-EM analysis demonstrated that NDNA binds to
a cleft between the S1—S4 segment and the S5—S6 helices, known
as the vanilloid binding site in TRPVs, stabilizing the channel in a
closed conformation.649 Recently, NC1 was identified as a com-
pound that induces necrotic cell death through direct activation of
the TRPM4 channel through the NDNA-binding site (Table 7).966

Several natural compounds are applicable for the positive
regulation of TRPM5 (Table 7). Steviol glycosides, such as

Table 7
Pharmacological modulators of TRPM4 and TRPM5

Name (PubChem CIDa) Effect References

TRPM4

9-Phenanthrol (10229) Inhibition, IC50 = 17—23 μM 960

MPB-104 (11738767) Inhibition, IC50 = 11—24 μM 960

4-Chloro-2-{[2-(2-chlorophenoxy)acetyl]amino} benzoic acid (CBAb, compound
5c) (2264067)

Inhibition, IC50 = 1.8 μM 962

4-Chloro-2-[2-(naphthalen-1-yloxy)acetamido] benzoic acid (NBAb, compound
6c) (1295523)

Inhibition, IC50 = 0.2 μM 962

Meclofenamate (4038) Inhibition, IC50 = 3.4 μM 963

U73122 (104794) Activation, EC50 = 0.44 μM 964

3,5-Bis(trifluoromethyl)pyrazole derivative BTP2 (YM-58483) (2455) Potentiation, EC50 = 8—500 nM 965

Necrocide 1 (NC1) (49783440) Activation, EC50 = 0.31 μM 966

TRPM5

Triphenylphosphine oxide (TPPOb) (13097) Inhibition, IC50 = 12 μM 967

NDNAb (674882) Inhibition, IC50 = 2.4 nM 649

Stevioside (442089) Potentiation, EC50 = 690 nM 968

Benzo[d]isothiazole derivatives 61c, 64c (164611814, 164619590) Activation, EC50 = 8—44 nM 969

Tetrahydroisoquinoline derivative 39c (167993652) Activation, EC50 = 80 nM 970

aPubChem Compound Identification number.
bAbbreviation of chemical name.
cReferred to as in the reference.
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stevioside, potentiate the Ca2+-dependent activity of the TRPM5
channel and are thus defined as potentiators of TRPM5.968 In other
studies, high-throughput screening and lead optimization strate-
gies suggested several synthetic compounds to act as potent
TRPM5 agonists.969,970 Among several benzo[d]isothiazole de-
rivatives, 2 molecules (referred to as compounds 61 and 64) acti-
vated the TRPM5 channel with EC50 values in the nanomolar
range.969 A series of tetrahydroisoquinoline-based molecules (ie,
compound 39) stimulated TRPM5 with an EC50 of 0.1—10 μM
(Table 7).970 However, a more comprehensive biophysical assess-
ment is needed to conclude that these ligands open the TRPM5
channel in a Ca2+- and voltage-independent fashion.

F. Ongoing or completed clinical trials with TRPMs

According to the ClinicalTrials.gov database,973 TRPM3 is the
subject of a clinical trial (NCT05275751) aimed at examining
whether the redundant functions of TRPV1, TRPA1, and TRPM3
observed in mice regarding heat perception are also applicable to
humans. Another trial (NCT03252834) is examining whether the
genetic variants of TRPM2 represent biomarkers for chemotherapy-
induced abnormal thermal sensation in cancer patients. Early
treatment of cerebral edema and intracranial pressure is crucial for
improving outcomes. The study NCT06017635 investigates whether
TRPM4 expression levels can serve as a diagnostic marker for cere-
bral edema in children. It is well documented that early mobiliza-
tion of patients in the surgical intensive care unit improves
outcomes. The trial NCT01363102 examines whether genetic poly-
morphisms inTRPM6 and other genes are linked to sleep quality and
muscle strength, and whether these associations relate to early
mobilization in surgical patients. The project NCT04229992 exam-
ines the association between SNPs in TRPM7, dietary intake of cal-
cium and magnesium, and the risk of developing colorectal cancer.

Several ongoing clinical trials assess TRPM8 as a therapeutic
target for various pathophysiological conditions. The trial
NCT01408446 investigates the impact of the TRPM8 agonist
menthol (Table 6) on the prevention of prehypertension and mild
hypertension. This trial aims to assess the effects of dietary
menthol on blood pressure and metabolic parameters. The study
NCT05935280 aims to determine whether TRPM8 contributes to
cold pain perception in humans. Cold pain will be experimentally
induced by injecting a cooling solution (3 ◦C) into the skin, along
with TRPM8 inhibitors to assess their effects. Experiments with
animals indicated that activating TRPM8, which is expressed in the
dermal tissue of the limbs, using menthol is beneficial for stroke
recovery. The investigation NCT05877079 aims to examine the
impact of such treatment on patients with acute ischemic stroke.
The trials NCT04711044, NCT04554888, NCT04515056, and
NCT03943407 evaluate the effects of menthol on itch induced by
histamine, cowhage, and papain. The project NCT03610386 ex-
amines the effect of menthoxypropanediol, a derivative of
menthol, on pruritus in atopic dermatitis (eczema) using biopsies
from patients with atopic dermatitis. Applying menthol topically
increases resting energy expenditure, likely by activating brown
adipose tissue. The aim of the study NCT07030725 is to determine
whether applying menthol to the front of the thorax will boost
thermogenesis through brown adipose tissue activation and
enhanced blood flow in skeletal muscles. The project
NCT01565070 examines whether menthol can alleviate symptoms
associated with knee osteoarthritis, thereby reducing immobility
and isolation in older adults.

Recently, the FDA approved WS-12, a TRPM8 agonist (Table 6),
for the treatment of symptoms associated with dry eye disease.974

WS-12 stimulates corneal nerves to promote natural tear

production and has been found beneficial in 40% of patients over
90 days of treatment.974

On this background, we anticipate that the recently developed
modulators of TRPMs will enable the design of new clinical trials in
the near future.

V. TRPAs

A. TRPA gene family

In humans, TRPA1 is the only member of the ankyrin-repeat
TRP channel subfamily (Table 1). It is a polymodal irritant sensor
that is expressed in nociceptive neurons and some nonneuronal
cell types. Its marked promiscuity to be activated by a plethora of
natural products, drugs, and drug-like compounds sets it apart
from most other TRP channels and often results in covalent
modification or indirect mechanisms, which include the formation
of ROS or oxidized membrane lipids.

B. Domain topology, assembly, and functional characteristics of
TRPA1

1. Domain topology and channel assembly
A prominent and name-giving property of TRPA1 is its extended

N-terminal ARD, featuring approximately 16 (14—18, depending on
the species) consecutive ankyrin-like folds that consist of about 33
amino acids each. This N-terminal ARD makes up most of the intra-
cellular volume of the channel protein. The 3D structure of
mammalian TRPA1 has been elucidated by cryo-EM, first at a rather
low resolution of about 16 Å,975 and more recently, at a resolution of 4
Å976 or ~3 Å,977 which allowed for a more reliable reconstruction.
While the first 11 ankyrin repeats appear as a concave crescent-like
density that extends away from the central symmetry axis, the
ankyrin repeats 12—16 closely surround a central bundle of the 4 C-
terminal located α-helical structures, which engage in CC helices
with their respective neighbors. A prominent regulatory site is
located in the linker region between the ARD and the first TM
segment S1 region. This linker, also referred to as the coupling
domain, contains cysteine (C621 and C641) and lysine (K710) resi-
dues that surround a binding pocket and can be covalently modified
by electrophilic TRPA1-activating drugs.977

Like other TRP channels, the TMD can be subdivided into a
VSLD comprising the first 4 TM-spanning segments S1—S4, a he-
lical S4—S5 linker, a pore-forming fold that consists of TM helix S5,
the re-entrant pore loop, and a tilted S6 helix, which strongly
constricts the pore in its closed conformation. The pore loop fea-
tures 2 short helical segments that position a string of 3 glutamate
residues (E920, E924, and E930) to generate a negatively charged
surface in and around the extracellular pore mouth. The most
centrally positioned E920, together with D915, is a key feature of
the selectivity filter that constricts the pore and divides the
permeation pathway into an outer vestibule and an inner cavity.978

At present, structural data on the open channel state of TRPA1 are
still lacking. Hypothetical models postulate a rotation of S6 that
repositions the strongly constricting hydrophobic amino acids
I957 and V961 away from the central axis, which then may be
flanked by E966 and open to form a hydrophilic cation-conducting
pore.979 The TMD is followed by a TRP-like domain and the
aforementioned C-terminal CC-forming domain.

Finally, the TMD features grooves and clefts that allow the
noncovalent binding of allosteric TRPA1-modulating drugs. An
intersubunit cleft between S4 and the S4—S5 linker of one subunit,
and S5 and S6 of the neighboring subunit, has been demonstrated
to adopt GNE551, a noncovalent TRPA1 activator.980 The TRPA1
antagonist A-967079 most likely binds to a pocket formed in the
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upper part of the TMD flanked by S5, S6, and the first PH.976

Figure 5 provides a graphical illustration of the domain topology
of TRPA1.

All structural biology data on recombinantly expressed TRPA1
channel complexes confirm the expected homotetrameric
conformation with rotational symmetry (see PDB entries provided
in Table 1). Evidence of heteromeric channel assemblies composed
of TRPA1 and TRPV1 subunits was obtained through coimmuno-
precipitation analyses, F€orster resonance energy transfer,
single-channel current properties, and atomic force microscopy of
heterologously expressed concatemers.383,981 The extent and
physiological, pathophysiological, and pharmacological relevance
of a possible heteromeric assembly have not yet been clearly
defined. Moreover, the complexes may either result from a het-
erotetrameric assembly, as suggested by Fischer et al,383 or from
functional interaction of side-by-side assemblies of homotetra-
meric complexes that may interact directly via a bridging pro-
tein,982 such as TMEM100, or by an A kinase-anchoring protein
(AKAP79/150) as a scaffold.983

2. Functional characteristics of TRPA1 channel complexes
Due to its responsiveness to numerous compounds and con-

ditions and its strong expression in nociceptive or chemosensory
afferent neurons, there is a broad consensus that TRPA1 acts as a
polymodal irritant sensor. A plethora of input queues converge
toward TRPA1 activation, including the covalent binding of
cysteine-reactive or other electrophilic activators,984,985 the indi-
rect effects of compounds that induce lipid peroxidation, such as
the formation of 4-hydroxynonenal,986 ultraviolet light, or
phototoxic substances that can generate ROS upon illumina-
tion,987,988 ROS themselves,989 as well as nonreactive TRPA1 acti-
vators, some of which are summarized below. In addition, TRPA1
activity can be further potentiated by intra- and extracellular Ca2+

ions,990—992 or via GPCRs that sense inflammatory
mediators.993,994

Initial findings suggesting that TRPA1 may sense noxious cold
temperatures995 were soon challenged,996 and the results strongly
relied on the investigated species.997,998 Genetic as well as phar-
macological evidence has even attributed TRPA1 to contribute to a
heat-sensing pathway.766 Human TRPA1 seems to be both cold-
and heat-sensitive, and structural determinants for thermal acti-
vation have been identified.999

With respect to its biophysical properties, TRPA1 mediates
poorly selective cation currents that show a marked outward
rectification when recorded in the presence of physiological con-
centrations of divalent cations.978,991 Depending on the applied
activator, TRPA1 inward currents exhibit a slight and variable 2- to
8-fold preference for divalent versus monovalent cations.1000,1001

Likewise, unitary current amplitudes strongly depend on the
composition of bath and pipette solutions and the applied ago-
nists. In isotonic solutions, they range between 48 pS for inward
currents measured in the presence1000 of 5 mM intracellular Mg2+

and 251 pS in symmetrical Cs+ solutions978 containing only
0.1 mM Mg2+. The smaller, nonflickering unitary currents in the
presence of divalent cations that can permeate through the TRPA1
pore are consistent with the assumption that divalent cations act
as permeating blockers.1002 Applying charge carriers of different
sizes, a pore diameter of at least 8.2 Å has been determined,978 and
the pore may further dilate up to 13.8 Å when activated by mustard
oil.1000 Accordingly,1003—1005 TRPA1 prolonged activation by a va-
riety of reactive or nonreactive agonists allows permeation of the
organic cations Yo-Pro-1 or NMDG+, a phenomenon that has been
attributed to pore dilation. Alternatively, pore dilation might be
mimicked by changed intracellular ion concentrations.434

C. Expression pattern and primary physiological roles of TRPA1

Owing to its primary role as an irritant sensor, a strong
expression of TRPA1 is found in sensory afferent neurons whose
cell bodies are located in the dorsal root and trigeminal
ganglia.995,1006 In these sensory neurons, TRPA1 expression
strongly overlaps with that of TRPV1, qualifying them as noci-
ceptors. Likewise, TRPA1 expression in enterochromaffin cells
confers chemosensation and is coupled to the release of serotonin
to regulate intestinal motility.1007 A moderate or low expression of
TRPA1 is found in many other tissues and cell types, including
various types of cancer, as recently reviewed,1008 and summarized
in Table 1.

In general, chemosensation is governed by unpleasant smell,
bitter taste, and pain, causing avoidance behaviors and controlling
protective reflexes that limit exposure to potentially harmful
substances. Being expressed in nociceptive neurons and cells that
can confer cough or vomiting reflexes, TRPA1 is strategically
positioned to recognize irritants and other xenobiotics, preventing
further ingestion. Owing to species-dependent thermal TRPA1
activation, nocifensive responses may include the avoidance of
potentially noxious hot or cold temperatures.

D. Human diseases associated with the TRPA1 channel

A rare disease-causing mutation in human TRPA1 gives rise to
familial episodic pain syndrome (OMIM 615040). A single family
with 21 affected members in 4 generations has been identified to
carry an N885S missense mutation in S4, leading to a GOF variant
of TRPA1 with 5-fold increased inward currents at normal resting
potential, loss of outward rectification, and a shift in cinna-
maldehyde (100 μM)-induced, voltage-dependent activation of
about 56 mV, causing higher channel activity at the physiological
range of membrane potentials.1009 Epigenome-wide analyses of
DNA methylation in twins with discordant sensitivity to heat-
induced pain revealed that an increased pain sensitivity corre-
lated with the demethylation of the TRPA1 promoter, possibly
resulting in an enhanced channel expression in nociceptive
neurons.1010

Besides the direct contributions of TRPA1 in pain perception
and neuralgia, numerous physiological and pathophysiological
responses have been described to involve TRPA1-mediated

Fig. 5. The domain topology of TRPA1. The TRPA1 channel contains the following
domains: an ARD consisting of 16 consecutive ankyrin repeats, a helix-loop-helix-
shaped linker domain that connects to the bundle of the first 4 TM-spanning heli-
ces via an α-helical pre-S1 segment. The selectivity filter and gate of the permeation
pathway are formed by a recurrent pore loop and TM segments 5 and 6. The cytosolic
C terminus features the highly conserved TRP helix and a CC domain, which engages
in contacts with neighboring subunits.

V. Chubanov, C. Grimm, K. Hill et al. Pharmacological Reviews 77 (2025) 100089

30



processes. A prominent theme is the role of TRPA1 in pulmonary
and intestinal vagal afferents to sense irritants, thereby contrib-
uting to protective reflexes like cough and emesis or vomiting, but
also in exaggerated responses, such as bronchial or visceral hy-
persensitivity, allergic responses, and chronic obstructive pulmo-
nary disease (COPD), or its contribution to the development of
various skin diseases, IR damage, migraine, and other forms of
headache, as recently reviewed.1011,1012 TRPA1 activation in pul-
monary fibroblasts has been shown to prevent the transition into
myofibroblasts and may thus protect from the development of
lung fibrosis.1013,1014 In addition, TRPA1 expression in the vascular
endothelium may be exploited to treat cardiovascular diseases,1015

and aberrant TRPA1 expression in various malignancies has been
proposed to enable cancer cells to sense and cope with conditions
of oxidative stress.1016

E. Pharmacological modulators of the TRPA1 channel

1. TRPA1-activating compounds
Besides the role of TRPA1 in direct or indirect responses to

noxious cold or hot temperatures, TRPA1 may be regarded as a
broadly specific irritant sensor. Owing to its unique sensitivity
toward cysteine-modifying compounds and ROS, TRPA1 is acti-
vated by a plethora of chemical stimuli. They may be grouped into
(1) pungent tastants and spices, (2) oxidants and phototoxic
compounds, (3) approved drugs, and (4) specifically developed
TRPA1-selective activators. Table 8980,984,986,1017—1040 summarizes
some of the most prominent TRPA1-activating compounds, as well
as TRPA1 inhibitors or blockers.

2. Pungent tastants, spices, and natural products
Soon after the initial characterization of TRPA1, its activation by

mustard oil, cinnamon oil, ginger, and others was

recognized.1006,1041 Allicin, the spicy and unstable ingredient of
garlic, strongly activates TRPA1, whereas its heat-derived conver-
sion products, diallyl mono-, di-, and trisulfide, less strongly and/
or less potently act on the channel.1042 Other natural compounds
that cause TRPA1 opening include menthol, thymol, and nico-
tine.1020,1022,1023,1043 One should note that most compounds
require concentrations of 10—300 μM to elicit strong effects on
TRPA1, and some of them (menthol, cinnamaldehyde, nicotine, and
camphor) exert bimodal effects with a current inhibition when
applied at even higher concentrations.1023,1044

3. ROS, peroxidation products, and cysteine-modifying compounds
In chemosensory neurons, TRPA1 is a prominent molecular

substrate that decodes ROS or chemical oxidants either directly or
via the formation of peroxidation products of membrane lipids.
Effective oxidants include hydrogen peroxide, hypochlorite,1045

and cysteine-modifying compounds, such as 2-methyl-
sulfonothioyloxyethanamine or iodoacetamide.1030 While several
cysteine-modifying compounds can covalently bind to TRPA1, ROS,
ultraviolet light, or visible light in the presence of photosensitizing
compounds987 are likely to act in an indirect fashion, eg, by per-
oxidation products of membrane lipids, such as 4-hydroxy-2-
nonenal, 4-oxo-nonenal, and 4-hydroxyhexenal or oxidized
phospholipids.986,1031,1046,1047

4. Approved drugs
Since several FDA-approved drugs or drug metabolites are

capable of activating TRPA1, stimulation of chemosensory neurons
and vagal afferents may contribute to adverse responses to the
respective drugs. Acrolein, an irritating and highly electrophilic
metabolite of cyclophosphamide, activates the TRPA1 channel.996

The pungent smell of the TRPA1-activating volatile anesthetics
isoflurane and desflurane limits their application during the

Table 8
Pharmacological modulators of TRPA1.

Name (PubChem CIDa) Effect References

JT010 (18524489) Channel activation, EC50 = 0.65 nM 1017

PF-4840154 (53380803) Channel activation, EC50 = 23 nM 1018

GNE551 (2135890) Channel activation, EC50 = 254 nM 980

Dibenzoxazepine (9213) Channel activation, EC50 = 63 nM 1019

Morphanthridine (10878016) Channel activation, EC50 = 83 nM 1019

Acrolein (7847) Channel activation, EC50 = 5 μM 1017

Allyl isothiocyanate (5971) Channel activation, EC50 = 11-64.5 μM 984,1020

Allicin (65036) Channel activation, EC50 = 7.5 μM) 1021

Thymol (6989) Channel activation, EC50 = 127 μM 1022

Menthol (16666) Channel activation, EC50 = 95 μM 1023

Isoflurane (3763) Channel activation, EC50 = 180 μM 1024

Apomorphine (6005) Channel activation, EC50 = 7.1 μM 1025

Auranofin (16667669) Channel activation, EC50 = 1 μM 1026

Isovelleral (37839) Channel activation, EC50 = 0.5 μM 1027

Flufenamic acid (3371) Channel activation, EC50 = 147 μM 1028

Clopidogrel (60606) Channel activation, EC50 = 5.4 μM 1029

Ticlopidine (5472) Channel activation, EC50 = 7.2 μM 1029

Nicotine (89594) Channel activation, EC50 = 17 μM 1020

2-Iodoacetamide (3727) Channel activation, EC50 = 357 μM 1030

2-Methylsulfonothioyloxyethanamine (MTSEA) (53443082) Channel activation, EC50 = 1.58 mM 1030

4-Hydroxynonenal (5283344) Channel activation, EC50 = 13-27 μM 986,1031

HC-030031 (1150897) Channel inhibition, IC50 = 0.7-6.2 μM 1032

A-967079 (42641861) Channel inhibition, IC50 = 51 nM 1033

AP18 (9584673) Channel inhibition, IC50 = 3.1 μM 1034

LY3526318 (118961431) Channel inhibition, IC50 = 13.5 nM 1035

AM-0902 (73297271) Channel inhibition, IC50 = 131 nM 1036

BAY-390 (155539293) Channel inhibition, IC50 = 16 nM 1037

GDC-0334 (122490062) Channel inhibition, IC50 = 1.7 nM 1038

Ruthenium red (656819) Channel block, IC50 < 10 μM 1032,1039,1040

N/A, not available.
aPubChem Compound Identification number.
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induction of general anesthesia and may be linked to TRPA1 acti-
vation.1024 Stinging pain during photodynamic therapy may be
caused by ROS that indirectly activate TRPA1.1048 Other TRPA1-
activating drugs include several fenamates, apomorphine, aur-
anofin, ticlopidine, and clopidogrel.1025,1026,1028,1029 In most cases,
therapeutic plasma concentrations are much lower than the con-
centrations required to activate TRPA1. Nonetheless, high local
concentrations of TRPA1-activating drugs may contribute to
adverse gastrointestinal effects during oral application.

5. Selective, highly potent, and photoswitchable TRPA1 activators
To gain a deeper insight into TRPA1-mediated functions and to

further validate TRPA1 as a potential drug target, highly potent and
selective TRPA1 activators are eagerly sought. Any kind of elec-
trophilic activator would be highly prone to exerting off-target
effects. Therefore, electrophilic TRPA1 activators such as JT010
may be regarded as second-generation tool compounds despite
their increased potency.1017 The nonelectrophilic peptide TRPA1
activators, PF-4840154 or GNE551, are more drug-like and may
provide some advantages as activating compounds in screening
approaches.980,1018 Interestingly, GNE551, as well as a pain-
inducing plasma membrane-permeable scorpion toxin WaTx,
induce TRPA1 activation modes that differ from that induced by
allyl isothiocyanate, with a lack of current inactivation and longer
single-channel opening events, respectively.1049 By identifying
TRPA1-activating compounds with reversibly photoswitchable
azobenzene or azopyrazole moieties, optical control of zebrafish or
human TRPA1 activity has been achieved.1050,1051

6. TRPA1 inhibitors
Like in many other TRP channels, inward currents through

TRPA1 are blocked by ruthenium red, a polycationic compound,
which presumably plugs into the outer entrance of the pore and
obliterates the permeation pathway in a voltage-dependent
fashion.1039 The first TRPA1-selective inhibitor developed by Hy-
dra Biosciences, HC-030031, acts in a voltage-independent fashion
and has been demonstrated to counteract formalin-induced pain
upon intraperitoneal application in rats.1032 Two inhibitory com-
pounds, AP18 and A967079, share a styrene pharmacophore and
are structurally related to the activating compound cinnamalde-
hyde. While the inhibitory potency of AP18 lies in the micromolar
range, A967079 reaches a nanomolar potency, especially with re-
gard to inhibition of human TRPA1.1034,1052

In a preclinical study, using a guinea pig model of chronic
cough, intraperitoneally applied GRC 17536 (60—100 mg/kg) was
more effective in suppressing citric acid-induced cough responses
than dextrometorphan (50 mg/kg) as a comparator drug.1053 In the
patent literature, more drug-like TRPA1-targeting compounds
with low to mid-nanomolar inhibitory potency have been pro-
posed by Bayer (WO2021233752A1), MSD (WO2011043954A1),
Hofmann La-Roche (WO2019182925A1 and WO2018029288A1),
Genentech (WO2018162607A1), Orion Pharma (WO2014053694),
and Eli Lilly (WO2019152465A1), some of which share striking
similarities with GRC 17536 or LY3526318. Bayer has decided to
make one of these compounds, BAY-390, publicly available as an
orally bioavailable and CNS-penetrant drug that inhibits rat and
human TRPA1 with comparable potency and may facilitate further
validation of TRPA1 as a potential pharmacological target in a va-
riety of preclinical disease models.1037

F. Ongoing or completed clinical trials with the TRPA1 channel as a
therapeutic target

Owing to its irritant-sensing properties, TRPA1 has gained
considerable interest as a pharmacological target in diseased

conditions to control symptoms such as pain, itch, cough, or
neurogenic inflammation, including migraine.

Among the first completed phase 1 and 2 trials, Glenmark
Pharmaceuticals Ltd has focused on the compound GRC 17536, a
thienopyrimidinedione derivative, as either a systemically applied
or inhaled TRPA1 antagonist. A combined phase 1/2 trial tested the
safety, tolerability, and efficacy of inhaled GRC 17536 in patients
with mild allergic asthma. While inhaled GRC 17536 met the safety
endpoints in single and repeated application regimes, the drug
failed to reach the primary efficacy endpoint to reduce the drop of
the 1-second forced expiratory volume (FEV1) after an allergen
challenge (Eudra CT: 2012-002567-99). In a cohort of elderly pa-
tients suffering from chronic cough, inhaled GRC 17536 again
failed to prove effective (Eudra CT: 2013-002728-17). In a third
study, GRC 17536 (250 mg) or placebo was administered twice
daily orally for 28 days to diabetic patients suffering from pe-
ripheral neuropathic pain. After 4 weeks of treatment, a significant
decline in the average pain intensity was not achieved as the pri-
mary endpoint for all participants in the subgroup with moderate
to severe pain (Eudra-CT: 2012-002320-33). No other studies with
GRC 17536 have since been reported, implying that further
development of this candidate may have been stopped.

More recently, Eli Lilly has embarked on another series of
clinical trials, aiming at validating the purin-based compound
LY3526318 as a potential analgesic drug in osteoarthritis
(NCT05080660), low back pain (NCT05086289), or diabetic neu-
ropathy (NCT05177094). According to information provided via
clinicaltrials.gov, all 3 studies have been completed in 2022. As of
the time of writing, results remain undisclosed, and a possible
progression into phase 3 trials has not been announced yet. In
oropharyngeal dysphagia, various TRP channel activators have
been probed for possible relief and reconstitution of safe swal-
lowing. Notably, activators of TRPV1 (capsaicin and piperine) or
TRPA1 (cinnamaldehyde and citral) provided the best results,
highlighting a possible use of TRPA1-targeting sensory stimulants
in deglutition disorders.1054

VI. TRPMLs

A. Introduction

The TRP channels TRPML1, TRPML2, and TRPML3 (also called
MCOLN1—3 or mucolipin1—3) are Ca2+-permeable, nonselective
cation channels expressed in early endosomes, late endosomes,
recycling endosomes, and lysosomes. TRPMLs are like the other
TRP channels, 6 TMD proteins. They form tetramers, with the
channel pore between TMD5 and 6. Since 2016, numerous struc-
tures have been determined for all 3 TRPML members using either
X-ray crystallography or cryo-EM (see “Domain topology,
assembly, and functional characteristics of TRPMLs”).1055—1061

In contrast to TRPML1, which is ubiquitously expressed,
TRPML2 is predominantly found in immune cells, while TRPML3 is
found in immune cells, other specialized cells, such as melano-
cytes or hair cells of the inner ear, and endocrine glands and
secretory cells, as recently shown by a whole-body analysis of
TRPML3 expression in a GFP-reporter mouse model.1062 TRPMLs
mediate cation flux from endosomes and lysosomes, sense endo-
lysosomal pH, regulate membrane potential across endolysosomal
membranes, regulate trafficking, exocytosis, endocytosis/phago-
cytosis, and autophagy in the endolysosomal system, and partici-
pate in lysosomal biogenesis, cell membrane repair, cell migration,
and nutrient sensing (see “Expression pattern and primary
physiological roles of TRPMLs”).

LOF mutations in the human TRPML1 gene (>50 deletions,
point mutations, in-frame deletions, early stop mutations, and
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other types of mutations) cause the neurodegenerative lysosomal
storage disorder mucolipidosis type IV (MLIV) in humans. MLIV is
characterized by psychomotor abnormalities, corneal clouding,
retinal degeneration, and achlorhydria, which results in an in-
crease in blood gastrin levels, iron deficiency due to an absence of
acid secretion in the stomach, and endolysosomal accumulation of
macromolecules, lipids, and heavy metals like zinc and iron in
endolysosomes throughout the body.1063—1068 In human TRPML2,
an SNP, which is common in certain African populations, results in
the TRPML2 variant TRPML2K370Q. TRPML2K370Q reportedly dis-
rupts the ability of the channel protein to enhance viral infections,
raising the possibility of altered susceptibility to certain viral in-
fections in homozygous carriers of this and possibly other TRPML2
polymorphisms.1069 Mutations in TRPML3, TRPML3,A419P and
TRPML3I362T/A419P are GOF mutations causing deafness and circling
behavior in mice (Varitint-waddler mutants).1070—1074 Equivalent
mutations in the human isoform likewise result in strong GOF.1070

The discovery of humans homozygous for early stop codon vari-
ants of TRPML2 and TRPML3 (TRPML2K329* and TRPML3R390*) ar-
gues that LOF of either TRPML2 or TRPML3 is not lethal.1075

Nothing is, however, known about the pathophysiological fea-
tures or disease susceptibility of individuals carrying these mu-
tations. In addition to the aforementioned pathologies, roles of
TRPMLs in cancer, lung disease, cardiovascular and kidney disease,
Alzheimer’s and Parkinson’s disease (PD), inflammation and im-
munity, osteoclast function and bone remodeling, muscular dys-
trophy, and intestinal pathology have been suggested (see “Human
diseases associated with TRPMLs and mouse models”).

Endogenous activators of TRPMLs are the phosphoinositides
phosphatidylinositol 3,5-bisphosphate (PI[3,5]P2) and

phosphatidylinositol 3-phosphate (PI3P), the latter being a
demonstrated1076 agonist of TRPML3, while PI(3,5)P2 activates all 3
isoforms. PIKfyve, a FYVE finger-containing phosphoinositide ki-
nase, catalyzes the conversion from PI3P to PI(3,5)P2, the latter
being predominantly found on late endosomal/lysosomal mem-
branes, while PI3P is found on early endosomal and autophago-
somal membranes.1076,1077 Besides the discovery of endogenous
ligands, in over 10 years, a plethora of small-molecule agonists and
a number of antagonists have been identified, mostly through
high-throughput screenings, and were subsequently functionally
characterized (see “Pharmacology of TRPMLs”).

TRPML1 as a drug target, specifically TRPML1 activation to
treat, eg, lysosomal storage disorders and other neurodegener-
ative diseases, has gained much attention in recent years. Thus,
according to publicly available information, Calporta Therapeu-
tics, acquired by Merck in 2019, has developed preclinical stage
TRPML1 agonists for potential treatment of Niemann-Pick C
disease (NPC) and other lysosomal storage diseases, as well as
amyotrophic lateral sclerosis, Alzheimer’s disease, and PD.
Caraway Therapeutics, bought by Merck in 2023, has developed,
with support from the Michael J. Fox Foundation, TRPML1 ag-
onists for GBA-PD treatment. And Casma Therapeutics has
likewise developed TRPML1 agonists according to the Alz-
heimer’s Drug Discovery Foundation (see “TRPMLs as
therapeutic targets”).

In sum, we will discuss here the current knowledge of TRPMLs
from structural aspects to function and physiology, including
pathophysiology, and potential therapeutic applications, including
currently available pharmacological tools to modulate TRPML
channel activity.

Fig. 6. Shown as schematic are the monomeric structures of the 3 TRPMLs. In humans, TRPML1 > 50 MLIV, causing homozygous mutations or heterozygous combinations of
mutations have been identified in Jewish Ashkenazi (AJ) as well as non-Jewish (NJ) populations in the USA, Canada, France, Germany, the Middle East, India, Japan, and other
countries. The most common mutation is MCOLN1IVS3-2A>G (AJ major; not shown in the cartoon). Others comprise single point mutations (in red, pink, and blue, respectively), in-
frame deletions (F408Δ), and early stop mutations (Q79X, R102X, Y126X, R172X, Q278X, and R322X). In addition, small deletions or insertions leading to frame shifts, splicing
mutations, and complex rearrangements can also occur (not shown in the cartoon; see Krogsaeter et al.1080). PRD = proline-rich domain, LTS = lysosomal targeting sequence. Hs =

Homo sapiens; Mm = Mus musculus. Point mutations shown in blue are predominantly expressed in lysosomes, while the ones depicted in red are heavily mislocalized.1067 The
subcellular localization of the mutations shown in pink has not been systematically analysed yet. TRPML2 is the only osmo-/mechanosensitive TRPML channel.1081 Amino acid
L314 within the PI(3,5)P2 binding pocket abrogates osmo-/mechanosensation while activation by the TRPML2 selective agonist ML2-SA1 is unaffected.1082 TRPML2K370Q disrupts
the ability of the channel protein to enhance viral infections, raising the possibility of altered susceptibility to certain viral infections in homozygous carriers of this and possibly
other TRPML2 polymorphisms.1069 In mouse TRPML3, the mutations A419P (Va) and A419/P/I362T (VaJ) are GOF mutations causing the Varitint-waddler phenotype characterized
by circling behavior, deafness, and coat color dilution.1070—1074,1083,1084 TRPML3A419P and TRPML3A419P/1362T are likewise GOF variants in human.1070 Amino acids H252, H272, and
H283 are involved in pH sensing and pH-dependent channel activity regulation (increasing pH increases activity). In both human TRPML2 and TRPML3 viable putative KO or LOF
variants in humans have been identified (TRPML2K329* and TRPML3K390*).1075
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B. Domain topology, assembly, and functional characteristics of
TRPMLs

TRPMLs have, like other TRP channels, long been postulated to
comprise 6 TMDs with a pore (P) loop between TMD5 and 6, and
the functional pore being formed by tetrameric assembly.1078

Structural evidence available since 2016 eventually confirmed
these predictions.1055—1061 The TRPMLs together with the TRPPs
differ from the rest of the TRP channels due to the presence of a
large extracellular/luminal loop between TMD1 and 2. Structural
analysis revealed that the 4 luminal linker domains form a square-
shaped canopy with a central opening above the channel pore.1055

The canopy in TRPMLs forms a cap-like structure and acts as a
highly negative electrostatic trap or sink, which facilitates ion
selection by favourably attracting divalent Ca2+ ions, limiting the
access of monovalent cations to the filter, thereby reducing the
permeation of monovalent ions.1060 All TRPMLs are activated by PI
(3,5)P2, and several amino acids have been identified either by
functional assays (eg, endolysosomal patch-clamp) or in structural
studies to affect PI(3,5)P2 binding, eg, K55, R61, K65, R318, and
R322 in TRPML1 (Fig. 6).1055,1057,1067,1069—1075,1079—1084 Two addi-
tional amino acids in TRPML1, Y355 and R403 were postulated to
be involved in PI(3,5)P2 activation. Thus, the phosphate group of PI
(3,5)P2 induces Y355 to form a π-cation interaction with R403,
moving the TMD4—5 linker, resulting in an allosteric activation of
the channel.1079

Notably, R403K is an MLIV-causing mutation in human TRPML1
(Fig. 6) that cannot be significantly activated by PI(3,5)P2 anymore.
By contrast, the small-molecule agonists ML-SA1 and MK6-83
(Table 9)1062,1065,1067,1069,1070,1080—1082,1085—1103 can still activate
this mutant, albeit to a much lesser extent than WT.1067,1079 In
humans, >50 MLIV caused by homozygous TRPML1 mutations or
heterozygous combinations of mutations has been identified. The
most common mutation is MCOLN1IVS3-2A>G, a splicing mutation
(AJ major),1104,1105 followed by AJ minor (MCOLN1511del6434 or
MCOLN1Ex1-7del), both resulting in the loss of a functional gene
product. Other mutations comprise single point mutations (either
correctly localized in lysosomes (blue), substantially mislocalized
(red), or of unknown subcellular localization; marked in pink), in-
frame deletions (F313Δ, F408Δ), and early stop mutations (Q79*,
R102*, Y126*, R172*, Q278*, and R322*). In addition, small de-
letions or insertions leading to frame shifts, splicing mutations and
complex rearrangements can also occur (see Krogsaeter et al1080;
“Expression pattern and primary physiological roles of TRPMLs”;
Fig. 6). While most of the point mutations are severely mis-
localized, some retain their lysosomal localization and at least
residual activity,1067 eg, F408Δ and F465L. Y436C, however, despite
being correctly expressed in lysosomes, was shown1067 to be
neither activated by PI(3,5)P2 nor the synthetic agonist MK6-83.
This is in accordance with data provided by Schmiege et al,1059

demonstrating that Y436A is not activatable by the synthetic
ligand ML-SA1, as this amino acid, Y436, together with I468,

Fig. 7. Schematic showing intracellular distribution/expression of TRPMLs and putative endogenous activation and inhibition mechanisms. All 3 TRPMLs are activated by PI(3,5)P2

(LE/LY); TRPML3 was also shown to be activated by PI3P (EE). TRPML3 is blocked by high luminal Na+ and H+, while TRPML2 is blocked by H+. EE, early endosomes; LE, late
endosomes; LY, lysosomes; RE, recycling endosomes.
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Table 9
Summary of TRPML channel characteristics

Name TRPML1 TRPML2 TRPML3

Synonyms MCOLN1, Mucolipin1 MCOLN2, Mucolipin2 MCOLN3, Mucolipin3
Length (aa) Hs 580 566 553
Length (aa) Mm 580 566 (538; isoform 2) 553
Seq motifs Serine lipase; Lysosomal targeting seq. (N- and

C-terminal); Proline rich domain (PRD)
Lysosomal targeting seq. (LTS; N-terminal in Mm) N.D.

Localization Late endosomes (LE)/lysosomes (LY); LRO? Rab4+ and Rab11+ recycling endosomes (RE);
early endosomes (EE)1081,1082; LE/LY1082; LRO?;
PM (in-vitro/OE)

EE; LE/LY; not in RE; melanosomes? PM (in-vitro/
OE); phagophore during autophagy

Tissue distribution Ubiquitous Thymus, spleen, kidney, trachea, liver, lung, colon,
testis, thyroid, B- and T-cells, macrophages,
dendritic cells

Hair cells of the inner ear, organ of corti, utricle,
stria vascularis, lung (alveolar macrophages),
(skin) melanocytes, (neonatal) enterocytes,
kidney, lung, olfactory bulb (sensory neurons),
nasal cavity, thymus, colon, trachea, several
glands (parathyroid, salivary, adrenal, pituitary),
testes, ovaries1062,1070,1085—1087

Activators PI(3,5)P2 (endogenous)
ML1-SA1 (EVP-169) = isoform selective1088

Others:
ML-SA1 (not isoform selective)1089

SF-22, SF-51 (not isoform selective)1089

MK6-83 (EC50, 0.11 μM (patch-clamp))1067

ML-SA3 (isoform selectivity unclear), ML-SA5
(isoform selectivity unclear)1090

Rapamycin1091

NAADP?

PI(3,5)P2 (endogenous)
ML2-SA1 (EVP-22) = isoform selective (EC50, 1.2

μM (Ca2+ imaging))1082

Others:
ML-SA1 (not isoform selective)
SF-21; SF-41; SF-81 (not isoform selective)1065

Rapamycin1091

(+)-trans-ML-SI3 = TRPML2 agonist (see section on
inhibitors)

PI3P, PI(3,5)P2 (endogenous)
ML3-SA1 (EVP-77; mouse isoform selective; EC50, 9

μM (Ca2+ imaging)1088

EVP-21 (human isoform selective; EC50, 4.3 μM
(Ca2+ imaging)1092

Others:
ML-SA1 (not isoform selective)
SF-11; SN-1; SF-21; SF-22; SF-31; SF-23; SF-41; SF-

51; SF-32; SF-24; SF-33; SN-2; SF61; SF-71; SF-
811085

Inhibitors PIP2 (endogenous)
ML-SI1 (not isoform selective; stereochemistry of

the active isomer not elucidated; dependent on
activator)

ML-SI2 (structure not published)
(—/+)-trans-ML-SI3 (not isoform selective)1093;

racemic trans-isomer commercially available;
both enantiomers available by enantioselective
synthesis1094

EDME (isoform-selective; IC50, 0.6 μM (Ca2+

imaging) and 0.2 μM (patch-clamp))1095

PRU-10, PRU-12 (EDME derivatives; isoform
selective; IC50, 0.4 and 0.3 μM (Ca2+

imaging))1095

High luminal pH
Sphingomyelins (SMs)

PIP2 (endogenous)
ML-SI1, (—)-trans-ML-SI3 (not isoform selective;

(+)-trans-ML-SI3 = TRPML2 agonist!)1093

Low luminal pH

P)P2 (endogenous)
(—)-trans-ML-SI3 (effect weaker than for TRPML1

and TRPML2)1093

No other synthetic small molecule blockers
currently available

Low luminal pH and high luminal Na+

Regulators Acidic luminal pH increases activity1067,1096 Acidic luminal pH reduces activity1082 Low luminal Na+ potentiates activation
Acidic luminal pH reduces activity1097

Disease mutations or polymorphisms
associated with a phenotype

MLIV is associated with mutations in HsTRPML1;
symptoms include severe psychomotor
retardation, retinal degeneration, corneal
clouding, achlorhydria, elevated serum gastrin
levels, iron deficiency, (lipid) storage bodies in
almost every cell type (>50 MLIV causing
homozygous mutations or heterozygous
combinations of mutations identified)

TRPML2K370Q disrupts the ability of the channel
protein to enhance viral infections, raising the
possibility of altered susceptibility to certain
viral infections in homozygous carriers of this
and possibly other TRPML2 polymorphisms1069

Deafness, circling behavior, head bobbing and coat
color dilution is associated with mutations in
MmTRPML3 (Varitint-waddler mutations
TRPML3A419P (Va) and TRPML3A419P/I362T (VaJ))

(Disease-associated)
GOF mutants

V432P (Hs, Mm) A425P (Hs); A396P (Mm, isoform 2) Va (A419P) and VaJ (A419P/I362T) (Hs, Mm)

(continued on next page)
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Table 9 (continued )

Name TRPML1 TRPML2 TRPML3

(Disease-associated)
LOF mutants

IVS3-2A>G (AJ major), Ex1-7del (AJ minor), T77M,
Q79*, R102*, L106P, T121M, Y126*, L137P,
C161S, C166F, R172*, I184T, P203S, T232P,
F262S, Q278*, G293R, F313Δ, R322*, R340S,
D362Y, R403C, F408Δ, R419P, C431Y, Y436C,
V446L, L447P, S456L, C463Y, F465L, N469D,
small deletions or insertions leading to frame
shifts, splicing mutations and complex
rearrangements (see also Krogsaeter et al.1080

and Fig. 6)

K329* (homozygous; Hs) K390* (homozygous; Hs)

KO mouse models KO mice display enlarged vacuoles, psychomotor
defects, retinal degeneration, impairments in
basal and histamine-stimulated gastric acid
secretion,1098 impaired myelination and reduced
brain ferric iron,1099 early-onset muscular
dystrophy1100

TRPML1/3 co-deficiency causes accelerated
endolysosomal vacuolation of enterocytes and
failure-to-thrive from birth to weaning1101

KO mice display defects in inflammatory mediator
release, in particular CCL2 (MCP-1)1082,1102

KO mice display no auditory or vestibular
phenotype and no coat color dilution1086; Two
different KO mouse models (Mcoln3tm1.2Hels and
Mcoln3tm1.1Jga) show an increased susceptibility
to develop emphysema/COPD and increased
MMP12 levels in broncho-alveolar fluid and in
the supernatant of cultured alveolar
macrophages1088

TRPML1/3 co-deficiency causes accelerated
endolysosomal vacuolation of enterocytes and
failure-to-thrive from birth to weaning1101

Functions Lysosomal exocytosis; regulates autophagy (TFEB,
calcineurin, CaMKKß/VPS34); role in sorting/
transport in late endocytic pathway; regulation
of lysosomal lipid and cholesterol trafficking;
ROS sensor in lysosomes; endolysosomal cation/
heavy metal (iron, zinc) homeostasis; role in
gastric acid secretion; regulation of lysosomal
motility; plasma membrane repair;
phagocytosis; endolysosomal pH regulation?;
vesicle fusion, fission?; NAADP receptor?

Osmo-/mechanosensation in RE; EE/RE trafficking;
endolysosomal cation homeostasis; vesicle
fusion, fission?; endolysosomal pH regulation?

Endocytosis, macropinocytosis (MMPs); regulates
autophagy; EE trafficking; endo-lysosomal
cation homeostasis; senses lysosome
neutralization by pathogens to trigger their
expulsion; vesicle fusion, fission?
endolysosomal pH regulation?

Interacting proteins ALG21103; TRPML2, TRPML3, TPC1?, TPC2?;
LAPTMs; Hsp40; Hsc70

TRPML1, TRPML3, Hsc70? TRPML1, TRPML2, GATE16, TPC1?, TPC2?, Hsc70?
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F428, C429, C432, Y436, F465, F505, F513, Y499, and Y507 forms a
hydrophobic cavity accommodating the agonist ML-SA1. Like
Y436A, F465A reportedly cannot be activated by ML-SA1 in
whole-cell patch clamp experiments using a plasma membrane
redirected TRPML1 channel.1059 By contrast, Chen et al1067 re-
ported that F465L can still be activated with the synthetic small-
molecule agonist of TRPML1, MK6-83, in endolysosomal patch-
clamp experiments. Furthermore, Chen et al1067 found that mu-
tation F465L has lost its pH sensitivity, ie, pH 4.6, in the lysosomal
lumen and cannot further increase channel activity compared
with pH 7.2, as seen typically in WT TRPML1.1067,1096 In contrast to
TRPML1, which shows increasing activity with decreasing (ie,
more acidic) luminal pH, TRPML3 activity increases with
increasing pH, ie, from luminal 4.6 to 6.8 or 7.2 (Fig. 7).1084 Since a
pH of 6.8 is common in early endosomes, TRPML3 would natu-
rally be more active in early rather than late endosomes or ly-
sosomes. Indeed, functionally TRPML3 seems largely silent in
endogenous acidic lysosomes and only becomes active if the
luminal pH of the lysosomes rises, eg, under pathogenic condi-
tions (see Miao et al1106 and “Expression pattern and primary
physiological roles of TRPMLs”).

A further feature of TRPML3 is its sensitivity to high luminal
Na+ levels (Fig. 7). The lower the Na+ concentration in the
lumen of TRPML3-expressing endolysosomes, the higher its
activity. This effect seems to be dependent on E361, as mutation
E361A has an increased activity in high Na+-containing luminal
solution.1065 While E361 is located in the luminal loop between
TMD3 and 4, amino acids H252, H272, and H283, which are
involved in pH sensing and pH-dependent TRPML3 activity
regulation, are located in the large luminal loop between TMD1
and 2. The effect of luminal pH on TRPML2 is similar to that of
TRPML3. TRPML2 activity, stimulated with either PI(3,5)P2 or
the TRPML2 isoform-selective agonist ML2-SA1, increases with
increasing (ie, less acidic) luminal pH.1082 This is in accordance
with TRPML2 being also expressed in less acidic vesicles, in
particular Rab11+ and Rab4+ recycling endosomes (Table 9),1082

while the expression of TRPML1 is strictly limited to late
endosomes/lysosomes. A special feature of TRPML2, in contrast
to TRPML1 and TRPML3, is its sensitivity to osmo-/mechano-
stimulation.1081 The point mutation L314R within the TRPML2
PI(3,5)P2 binding pocket abolishes osmo-/mechanosensitivity
and slows down the fast recycling pathway, while activation
with ML2-SA1 is preserved. Introducing leucine residues at
positions corresponding to L314 in TRPML1 (ie, R322L) or
TRPML3 (ie, R309L) was not sufficient to induce osmo-/
mechanosensitivity in TRPML1 or TRPML3.1081 A role of TRPML2
in fast recycling processes and the secretion of inflammatory
mediators, such as CCL2 (MCP-1), has been postulated.1082,1102

In contrast to TRPML2, for both TRPML1 and TRPML3, roles in
autophagy have been demonstrated.1076,1107,1108 Medina et al1107

showed that TRPML1-mediated Ca2+ signaling regulates auto-
phagy through transcription factor EB (TFEB) and calcineurin. TFEB
is a well established master gene for lysosomal biogenesis, driving
the expression of autophagy and lysosomal genes.1109 TRPML1
controls both TFEB activity and TFEB downstream transcriptional
targets.1107,1110 In addition, Scotto Rosato et al1110 showed that
during starvation, TRPML1 links lysosomal Ca2+ release to auto-
phagosome biogenesis through the activation of the CaMKKß/
VPS34 pathway, a mechanism which is independent of the TFEB
transcriptional program and involves activation of the CaMKKß

and the AMP-activated protein kinase AMPK. Furthermore, ROS
can induce autophagy via TRPML1. An increase in mitochondrial
ROS levels or exogenous oxidants directly stimulates TRPML1-
mediated Ca2+ release from lysosomes, thus triggering
calcineurin-dependent TFEB nuclear translocation.1107,1111

Furthermore, a role for TRPML1 in the fusion of autophagic vesi-
cles with lysosomes has been postulated.1112,1113 On the other
hand, Cao et al1114 claimed that TRPML1 is required for the re-
covery of enlarged lysosomes and proposed a role for TRPML1 in
lysosomal fission. Despite these controversies, the role of TRPML1
in autophagy modulation via multiple pathways is well
established.

Less evidence is available for the exact role of TRPML3 in
autophagy, but recent results by Kim et al1076 showed that TRPML3
activation increases autophagy while TRPML3 inhibition sup-
presses it. Kim et al1076 identified PI3P as a physiological activator
of TRPML3 to release Ca2+ from the phagophore, thus promoting
autophagy. The possibility that TRPML3 modulates autophagy
independently from TRPML1 gained considerable momentum
with these new results.

Besides being an autophagy regulator, regulation of lysosomal
exocytosis is another well established role of TRPML1.1100,1115—1117

Upon TRPML1 stimulation, lysosomes move to the plasma mem-
brane (visualized, eg, by LAMP1 translocation). Lysosomes can fuse
directly with the plasma membrane and release their content into
the extracellular space. Increase in local Ca2+ seems to trigger the
fusion process,1118,1119 and the concept that the lysosome releases
Ca2+ by itself via TRPML1 for this process has gained much inter-
est.1096,1100,1115,1116,1120—1124 Lysosomes containing GOF mutants of
TRPML1 can also undergo uncontrolled lysosomal exocytosis.1125

By contrast, in TRPML1 KO mice, Park et al1126 found that fusion
of lysosomes with secretory organelles leads to uncontrolled
exocytosis. How these findings can be reconciled with the accu-
mulating evidence that TRPML1 is a positive regulator of lysosomal
exocytosis remains unresolved.

There is also evidence for a role of TRPML3 in lysosomal
exocytosis under certain conditions, ie, when the lumen of the
lysosome gets neutralized and TRPML3 becomes more active. Miao
et al1106 showed that TRPML3 is required for bacterial expulsion,
specifically for uropathogenic Escherichia coli (UPEC) release from
infected cells, through lysosomal exocytosis. UPEC, after infecting
bladder epithelial cells, are targeted for degradation by the auto-
phagic machinery. However, UPEC escapes degradation by
increasing the lysosomal pH. TRPML3 activity is triggered by an
increase in pH, and UPEC can be exocytosed; nevertheless, it is also
a potentially important protective mechanism in other infectious
diseases.

C. Expression pattern and primary physiological roles of TRPMLs

TRPML1 is ubiquitously expressed. TRPML2 is predominantly
found in immune cells, including macrophages, dendritic cells, and
B and T cells (for recent reviews see Chao et al1127 and Spix
et al1128; Table 9). TRPML3 is likewise found to be expressed in
immune cells, eg, in alveolar macrophages in the lung (Table 9).1087

TRPML3 is also found in skin and inner ear melanocytes, hair cells
of the inner ear, olfactory sensory neurons, principal cells of the
collecting duct in the kidney, and in endocrine glands and secre-
tory cells, as recently shown by a whole-body analysis of TRPML3
expression in a GFP-reporter mouse model (Table 9).1062,1129 Thus,
TRPML3 was found to be expressed in the adenohypophysis of the
pituitary gland, the cortex of the adrenal gland, the parathyroid
gland (presumably in chief cells), and testes (presumably in
spermatozoa). For comparison with human expression data,
please refer to Grimm et al1129 or the Human Protein Atlas.452

D. Human diseases associated with TRPMLs and mouse models

LOF mutations in TRPML1 lead to progressive neuro-
degeneration in humans, as discussed above. Mutations also affect
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the eye and stomach. Patients suffer, eg, from corneal clouding,
retinal degeneration, achlorhydria, and iron deficiency resulting
from an absence of acid secretion in the stomach. However,
TRPML1 is ubiquitously expressed, and endolysosomal accumu-
lation of macromolecules, lipids, heavy metal ions like Zn2+ and
Fe2+, and probably others in endolysosomes throughout the body
of MLIV patients must be assumed.1063—1068 In addition to brain
defects, potential defects due to lack or dysfunction of TRPML1 in
the kidney have been proposed.1130—1134 Other organs may also be
affected, eg, liver, as MLIV patient fibroblasts were shown to
accumulate cholesterol1117 or spleen, where loss of TRPML1 results
in defective red blood cell clearance by macrophages.1115

MLIV goes along with a strongly reduced quality of life and
overall life expectancy. Currently, no curative treatment is
available, although treatment of several LOF mutations with small-
molecule TRPML1 agonists has been proposed.1067 Most promising
candidates for such an approach would be patients with mutations
in TRPML1 that do not result in strong mislocalization of the
protein or mutations that have a loss of PI(3,5)P2 sensitivity, while
synthetic small-molecule agonists are still able to activate the
channel, with the prerequisite that they must retain some lyso-
somal localization.

Another proposed strategy is the replacement of the TRPML1
function by enhancing the activity of an alternative Ca2+-perme-
able cation channel in endolysosomes, eg, 2-pore channel 2 (TPC2;
see Prat Castro et al1135 and Scotto Rosato et al1117). TRPML1 is
permeable for Na+, K+, and Ca2+ but also for Zn2+, Fe2+, and other
metal ions. While activation by TPC2 could potentially rescue the
functions associated with Na+/Ca2+ permeability, the accumula-
tion of metal ions in the lysosomal lumen, such as Zn2+ or Fe2+,
may require additional strategies. While TRPML1 LOF mutations or
KO result in severe disease in human and mouse (the murine MLIV
phenotype is very similar to the human phenotype),1099,1136,1137 no
disease-causing LOF or KO phenotypes for TRPML2 or TRPML3 are
known in humans. Apparently, homozygous mutations in TRPML2
and TRPML3, resulting in an early stop (TRPML2K329* and
TRPML3R390*) in humans, are not lethal (Table 9).1075 Early stop
mutations or complete loss of TRPML1 in humans are likewise not
lethal, but result in severe phenotypes. Whether homozygous
carriers of TRPML2K329* and TRPML3,R390* identified in East and
South Asia, are severely ill or have other health disadvantages, is
not known. Several heterozygous carriers were also identified in
North Borneo (Dusun people).

A homozygous mutation in TRPML2, common in certain African
populations, is TRPML2K370Q. TRPML2K370Q reportedly disrupts the
ability of the channel protein to enhance viral infections, raising
the possibility of an altered susceptibility to certain viral infections
in homozygous carriers of this and possibly other TRPML2
polymorphisms.1069

Disease-causing mutations for TRPML3 have been described
only in mice. The GOF mutations, A419P (Va) and A419/P/I362T
(VaJ), cause the Varitint-waddler phenotype characterized by
circling behavior, deafness, and coat color dilution.1070—1074,1083,1084

Introducing A419P or A419P/I362T mutations into WT human
TRPML3 likewise result in GOF effects.1070 The Varitint-waddler
phenotype can be rescued by overexpression of plasma mem-
brane ATPase, suggesting that cytosolic Ca2+ overload due to the
TRPML3 GOF mutation A419P is causative for the observed ef-
fects.1074 The additional mutation of I362T in VaJ results in a
slightly less severe phenotype, which nevertheless shows similar
Ca2+ overload as well as circling behavior, deafness, and coat color
dilution.1070,1083 The reason for VaJ being milder remains unclear.
Of note, however, I362T is located next to E361, which was re-
ported to affect the Na+ sensitivity of TRPML3, increasing channel
activity.1065

Besides diseases associated directly with mutations in TRPMLs,
KO mouse models and other functional studies have revealed
additional potential roles of TRPMLs in physiology and patho-
physiology, from immune cell function and cancer to gastroin-
testinal, kidney, cardiovascular, neurodegenerative, lung, and
infectious diseases.

TRPML1 activity is strongly reduced with increasing pH; hence,
a backup channel getting engaged when TRPML1 is blocked, eg, as
in the case of bladder epithelial cell infection with UPEC, which
neutralize the lysosomal lumen to evade degradation, seems an
elegant solution.1106 TRPML3 can fulfill that function as it gets
activated when the pH in the lysosomal lumen increases, while
under normal lysosomal pH conditions, it would be largely silent.
Other indications for roles of TRPMLs in infectious diseases relate
to TRPML1, but increasingly also to TRPML2 and TRPML3. Thus,
TRPML1 was shown to play a role in Helicobacter pylori infec-
tion,1138 where virulence factor vacuolating cytotoxin A promotes
more severe disease development and gastric colonization. Viru-
lence factor vacuolating cytotoxin A targets TRPML1 to disrupt
endolysosomal trafficking and autophagy, an effect that could be
reversed by direct activation of TRPML1 with a small-molecule
agonist, leading to the clearance of intracellular bacteria.
Furthermore, Khan et al1139 reported on the role of TRPML1 in
cooperation with the big-conductance Ca2+ activated K+ channel
(BK) in HIV infection and proposed that TRPML1/BK coactivation
leads to an enhanced acidification of endolysosomes, resulting in
an increased degradation of Tat protein, which facilitates HIV
replication. TRPML2 was postulated to enhance viral infections, eg,
yellow fever virus, influenza A virus, and equine arteritis virus
infections, and the human TRPML2 variant, TRPML2K370Q, dis-
cussed before, reportedly shows a LOF phenotype with respect to
viral enhancement.1069 Quite to the contrary, Gibbs et al1140 found
that TRPML2 acts also as an inward rectifying Mg2+ channel on
endolysosomes and can thus deprive Salmonella Typhi of Mg2+,
restricting growth.

Xu et al. recently showed that suppressing either TRPML3 or BK
helps bacterial survival, whereas increasing either TRPML3 or BK
favors bacterial clearance.1141

Hence, in sum, it is currently claimed that activation of TRPML1
and TRPML3 would be beneficial in treating certain infectious
diseases, while in the case of TRPML2, it remains unclear whether
activation or inhibition may be more beneficial. This may, of
course, also depend on the type of infection.

Generally, all 3 TRPMLs are expressed in a range of immune
cells, including different types of macrophages, natural killer cells,
dendritic cells, B and T cells, microglia, and astrocytes
(Table 9).1127,1128,1142—1144 In the mouse lung, TRPML3 is almost
exclusively expressed in alveolar macrophages1088 and in 2 inde-
pendent KO mouse models (Mcoln3tm1.2Hels and Mcoln3tm1.1Jga), an
increased susceptibility to develop an emphysema-like phenotype
was found. KO mice showed differences in lung function and his-
tological parameters such as elastance and compliance, or the
mean linear chord length (mean free distance in the air spaces),
pointing to an emphysema-like phenotype compared with WT
mice, which was further and more strongly exacerbated in KO
mice compared with WT mice after elastase or tobacco smoke
treatment. In broncho-alveolar fluid and the supernatant of
cultured alveolar macrophages, increased levels of matrix metal-
loproteinase 12 (macrophage elastase) were detected, a known
risk factor for emphysema and COPD development.1088,1145 The
authors further found that the relative TRPML3 expression was
increased in samples from human smokers with COPD compared
with healthy smokers. TRPML3 expression was also increased in
smokers compared with nonsmokers. This was interpreted as
being a potential compensatory mechanism to increase the uptake
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of excess matrix metalloproteinase 12 and potentially other MMPs
with the help of TRPML3.

TRPML1, in addition, was shown to play an important role in the
gastrointestinal tract. Thus, Sahoo et al1068 found that TRPML1
overexpression or activation in mouse parietal cells induced
gastric acid secretion, while TRPML1 inhibitors blocked it. This is
in accordance with human MLIV patients who are reportedly
achlorhydric. Mechanistically, TRPML1 was found to play a role in
gastric acid secretion in parietal cells by regulating the trafficking
and exocytosis of H+/K+-ATPase-rich tubulovesicles after hista-
mine stimulation.1068 Chandra et al1098 found that Trpml1 KO mice
have significant impairments in basal and histamine-stimulated
gastric acid secretion.

There are also reports of progressive renal failure in MLIV pa-
tients, and blockade of TRPML1 was found to suppress the inter-
action of lysosomes and multivesicular bodies, leading to
increased exosome release from mouse podocytes.1146 In addition,
Nakamura et al1130 suggested a role of lipidated LC3 interacting
with TRPML1 to release lysosomal Ca2+ essential for TFEB activa-
tion during kidney injury and lysosomal damage response.1133

In 2 recent works published by the same group,1147,1148 it is
claimed that inhibition of TRPML1 has a protective role in
myocardial ischemia/reperfusion injury. Mechanistically, this was
attributed to a restoration of impaired cardiomyocyte autophagy
by blocking TRPML1, which gets activated by ROS elevation,
following myocardial ischemia/reperfusion injury. Activated
TRPML1, releasing lysosomal Zn2+, reportedly blocks autophagic
flux in cardiomyocytes by disrupting the fusion between auto-
phagosomes and lysosomes. This is a surprising finding, as
TRPML1, according to the vast majority of publications, is believed
to promote autophagy rather than inhibit it. Thus, a large body of
evidence suggests that TRPML1 promotes autophagy through
activation of TFEB, mediated by lysosomal Ca2+

release.1107,1108,1111,1112,1149,1150 TRPML1 is also much less permeable
to Zn2+ compared with Ca2+, hence a dominant effect of Ca2+ on
autophagy would be expected.

Several lines of evidence point to a role of TRPMLs in different
types of cancer, eg, breast cancer, melanoma, or glioma1095,1151—1158

(for recent reviews, see 1124,1153,1159—1161). The loss or inhibition of
TRPMLs reduces, eg, cancer cell migration and invasion, and roles
of TRPMLs in TFEB-mediated gene transcription and lysosomal
exocytosis promoting invasiveness and drug resistance in cancer
cells, cancer cell nutrient sensing, and antitumor immunity have

been proposed. Collectively, the data suggest that TRPMLs, in
particular TRPML1, stimulate oncogenesis by enhancing survival,
growth, invasiveness, and mitochondrial activity of cancer
cells.1160

Two recent papers1162,1163 are challenging this view. Xing
et al1163 claim that TRPML1 activation inhibits autophagy (similar
works1147,1164 discussed above) and that this autophagy inhibition
suppresses cancer (melanoma) metastasis. Similarly, Du et al1162

suggest that TRPML1 small molecule activation induces Zn2+

release mediated cell death in metastatic melanoma, emphasizing
that instead of inhibition, activation of TRPML1 may be beneficial
in treating metastasis formation in cancer, at least in melanoma.

Due to the neurodegenerative phenotype in MLIV disease and
several studies showing TRPML1 activation to rescue lysosomal
storage and neurodegenerative disease phenotypes, TRPML1 ap-
pears to be a promising novel drug target for the treatment of such
diseases. We will, therefore, in the following chapter, focus on this
topic and discuss it in more detail after a brief discussion of
currently available pharmacological tools to modulate TRPMLs.

E. Pharmacology of TRPMLs

It was already mentioned that the currently known endoge-
nous activators of TRPMLs are the phosphoinositides PI(3,5)P2
(agonist for all 3 TRPMLs) and PI3P (agonist1076 for TRPML3), while
PIP2 inhibits TRPMLs (Table 9). How about lipophilic small mole-
cule modulators of TRPMLs? In addition to Table 9 presented here,
a comprehensive and detailed overview of the currently available
pharmacology for TRPMLs has been published recently by Rau-
tenberg et al1092 Of note, isoform-selective activators for all 3
TRPMLs have become available in recently: ML1-SA1 (EVP-
169)1088 for human/mouse TRPML1, ML2-SA1 (EVP-22)1082 for
human/mouse TRPML2, EVP-21 for human TRPML3, and ML3-SA1
(EVP-77)1088,1165 for mouse TRPML3. ML1-SA1 is structurally
related to ML-SA1 published previously1066 (Fig. 8). ML2-SA1 is a
derivative of the previously published1087 structure SN-2; like-
wise, ML3-SA1 (EVP-77) and EVP-21 are derived from SN-2 (Fig. 8).
In contrast to these isoform-selective agonists, ML-SA1 and MK6-
83 are not isoform-selective TRPML channel agonists.1067,1068

Regarding inhibitors of TRPMLs, there are currently only
isoform-selective antagonists available for TRPML1: EDME (17ß-
estradiol methyl ether)1095 and its derivatives PRU-10 and PRU-12,
the latter 2 showing reduced efficacy at the estrogen receptor α

Fig. 8. Shown are the chemical structures of ML-SA1 and SN-2 and their derivatives ML1-SA1 (EVP-169; isoform selective agonist for mouse/human TRPML1), ML2-SA1 (EVP-22;
isoform selective agonist for mouse/human TRPML2), ML3-SA1 (EVP-77; isoform selective agonist for mouse TRPML3), and EVP-21 (isoform selective agonist for human TRPML3).
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compared with EDME.1095 Other available inhibitors1166 are ML-SI1
and ML-SI3. From the original publication, it remains, however,
unclear which of the stereoisomers of ML-SI1 and ML-SI3 are
functionally active. ML-SI1 has 4 different stereoisomers, and
currently, only racemic mixtures are commercially available.1093

One commercial product sold as a TRPML1 inhibitor is
GW405833. This compound differs from the published struc-
ture1166 as it is not based on an indoline moiety (for details see
Rautenberg et al1092). Importantly,1093,1165 this compound is inac-
tive on TRPML1. Nevertheless, GW405833 was used at least in 2
publications erroneously as a TRPML1 inhibitor.1123,1167 In addition,
GW405833 is also sold as a selective cannabinoid CB2 receptor
agonist. Of note, ML-SI1 in the structure as published by Wang
et al,1166 blocks both TRPML1 and TRPML2 with equal
potency.1093,1165

Commercially available ML-SI3 is a racemic mixture of trans-
enantiomers.1093 Separation of the trans-enantiomers of ML-SI3
revealed that the (—)-enantiomer is an inhibitor of all 3 TRPMLs,
while the (+)-enantiomer inhibits TRPML1, but activates TRPML2
and TRPML3 (Table 9).1093 The commercially available racemic
mixture also activates TRPML2 but blocks TRPML1 and
TRPML3.1093

F. TRPMLs as therapeutic targets

That loss of TRPML1 leads to severe neurodegeneration (MLIV)
is undisputable. But does activation of TRPML1 ameliorate lyso-
somal storage and neurodegenerative disease phenotypes? In
2012, Shen et al1066 claimed that abnormal lipid accumulation
(cholesterol, sphingolipids, sphingomyelin) in Niemann-Pick type
C1 patient cells can be reversed by TRPML1 activation. It was also
shown1066,1135 that sphingomyelin can directly block TRPML1. FIG4
(encoding Sac3 protein) deficiency, which causes a rare peripheral
neuropathy with severe motor deficits called Charcot-Marie-Tooth
type 4J, results in decreased levels of both PI5P and the endoge-
nous agonist of TRPML1, PI(3,5)P2. Zou et al1168 showed that
TRPML1 activation rescues the abnormal lysosomal storage in
FIG4-deficient cells and in ex vivo nervous tissue. Rescue effects of
TRPML1 activation were recently confirmed for 2 subtypes of
demyelinating Charcot-Marie-Tooth disease in an independent
study.1169 Amelioration of lysosomal storage in Niemann-Pick type
A and Fabry disease, as well as Niemann-Pick type C1 disease, was
shown to depend on the BK that forms a physical and functional
coupling with TRPML1. Importantly, Ca2+ release via TRPML1 ac-
tivates BK, which in turn facilitates further Ca2+ release, enhancing
membrane trafficking and lysosomal exocytosis.1170,1171

Tsunemi et al1122 found that increased lysosomal exocytosis by
TRPML1 activation protects human inducible pluripotent stem cell
(iPSC)-derived dopaminergic neurons in a model of familial PD
from α− synuclein toxicity, caused by mutations in ATP13A2
(CLN12). Another link between PD and TRPML1 has recently been
established by Sasazawa et al1172 reporting that acrolein, an alde-
hyde that is significantly elevated in PD patient serum, enhances
autophagy via a newly discovered JIP4-TRPML1-ALG2 pathway.

In APP/PS1 double transgenic mice and hippocampal neurons
with AD-like alterations, Zhang et al1173 found that overexpression
of TRPML1 played a neuroprotective role in AD by ameliorating
cognitive function and attenuating cognitive impairments. Xu
et al.1123 reported that TFEB regulates, in a TRPML1-dependent
manner, the lysosomal exocytosis of tau and that TFEB loss exac-
erbates tau pathology and spreading. In another recent study,
Somogyi et al1174 show that dysfunction of TRPML1 is associated
with abnormalities in the endolysosomal system in AD and APOE-
ε4 iPSC-derived neurons. Inhibition of PIKfyve, the key enzyme in
the production of the TRPML1 agonist PI(3,5)P2, recapitulated

these results, while effects could be reverted or reduced by the
TRPML agonist ML-SA1.

Other examples for TRPML1 activation providing potential
therapeutic benefit in neurodegenerative or lysosomal storage
diseases are HIV gp120-related lysosomal storage, where TRPML1
activation cleared amyloid β (Aβ) from lysosomal compartments in
neurons1175, and data suggesting TRPML1 activation to promote
autophagy, facilitating the clearance of accumulated α-synuclein
in both in vitro and in vivo models of MPP+/MPTP-induced Par-
kinson's disease.1176

In contrast to TRPML1, TRPML2 expression is largely absent
from the human brain, while TRPML3 appears to be expressed to
some extent in the hippocampus, cerebral cortex, and hypothala-
mus.1080 Importantly, TRPML3 activity increases with increasing
pH, suggesting that even under conditions of increased lysosomal
pH, as often observed in lysosomal storage and neurodegenerative
diseases, TRPML3 would still be active to drive lysosomal exocy-
tosis similar to TPC2, the activity of which does likewise not
depend on the luminal pH.1106,1117,1135

Currently, it is unclear how much lysosomal Ca2+ release would
be beneficial and how it can be finely controlled so that it is, on the
one hand, sufficient enough to promote lysosomal exocytosis and
autophagy, while on the other hand avoiding potential cytotoxicity
due to cytosolic Ca2+ overload. The possibility of a hyperactive
TRPML1 under certain disease conditions1177,1178 and the contro-
versies around this possibility have been discussed
recently.1080,1135 In addition, Zn2+, Fe2+, and other heavy metal
ions, which may be released alongside Ca2+ from lysosomes after
TRPML1 activation, may pose a risk for increased cytotoxicity.1179

In sum, despite compelling and increasing evidence for a
beneficial effect of TRPML1 activation in clearing lysosomal stor-
age and promoting lysosomal exocytosis and autophagy, more
empirical evidence is needed, as well as safety and chronic dosing
studies. It also remains unclear if a defect in lysosomal acidifica-
tion can be corrected by TRPML1 activation, although some evi-
dence suggests this.1139,1175

VII. TRPP channels

A. Introduction

TRP polycystin (TRPP) channels are Ca2+-permeable nonselec-
tive cation channels with conserved roles in biological processes
such as tubular morphogenesis and left-right patterning of organs
in vertebrates.1180,1181 TRPP channels are regarded as the most
ancient subfamily of TRP channels, with orthologs in organisms
ranging from yeast to mammals.6,1182 The founding member of the
TRPP channels, TRPP2, was discovered as the PKD2 gene product
mutated in ADPKD.1183 TRPP channels form homotetrameric
complexes and heterotetrameric protein assemblies with other
TRP channels and polycystin-1 (PC1) family members. The physi-
ological importance of the heteromeric PC1-TRPP2 receptor-
channel complex is underscored by the fact that mutations in
the PKD1 gene, encoding PC1, also cause polycystic kidney dis-
ease.1184 Since the discovery of the genes encoding the founding
members of the polycystins, PKD1 and PKD2, 6 additional family
members have been identified1185—1190 based on sequence and
structural homology: PKD1L1, PKD1L2, PKD1L3, PKDREJ, PKD2L1,
and PKD2L2. The PKD2-like genes encode TRPP channels, whereas
the PKD1-like genes encode PC1 family proteins that assemble
with TRPP channels in a modular fashion. TRPP channels are found
in various tissues and regulate calcium signaling in primary cilia
and other cellular compartments. Recent advances in determining
the structure and function of TRPP channels in homo- and heter-
otetrameric complexes have provided first insights into the
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structural basis for channel gating and ion permeation. Pharma-
cological modulators of TRPP channels are still scarce.

B. Domain topology, assembly, and functional characteristics of
individual TRPP channels

The nomenclature of TRPP ion channels is ambiguous. Initial
publications named the gene products of PKD1 and PKD2 PC1 and
polycystin-2. The founding member of the TRPP subfamily,
polycystin-2 (PC2), was later classified as TRPP2, and this desig-
nation is commonly used in the literature. The latter designation of
TRPP2 as TRPP1 has not been widely adopted and has caused
confusion, as it has been used for both PC1 and polycystin-2. We
therefore advocate for the following TRP nomenclature: 1) only
bona fide ion channels with 6 TMDs should be named TRPP
channels, and 2) PC1-like proteins with 11 TMDs should be
referred to with their gene names until a unified protein nomen-
clature exists (Table 1). Because of ambiguity, TRPP1 and TRPP4
should not be used.

1. Domain topology and assembly
Like all TRP channels, TRPP family members have 6 TMDs

(S1—S6) and intracellular amino- and carboxy-termini (Fig. 9A).
The TM segments S1—S4 form a voltage-sensor domain and the
segments S5-S6 constitute the pore domain. A characteristic
feature of TRPP ion channels is the large extracellular loop be-
tween S1 and S2, consisting of more than 200 amino acids in

TRPP2, TRPP3, and TRPP5, respectively. This extracellular loop of
TRPP2 contains 5 conserved asparagine-linked glycosylation sites
(N299, N305, N328, N362, and N375), which are required for
efficient TRPP2 biogenesis and stability.1191 The carboxy-terminal
region of TRPP2 comprises motifs involved in channel regulation,
assembly, and trafficking, including a Ca2+-binding EF hand, a CC
domain, and an ER retention motif with an acidic amino acid
cluster (Fig. 9A).1192—1199 The EF hand has been implicated in Ca2+-
dependent regulation of TRPP2.1198,1199 A more recent study,
however, questions the hypothesis that Ca2+ occupancy of the
TRPP2 EF hand is responsible for the regulation of channel activ-
ity.1200 The acidic cluster is involved in protein trafficking, whereas
the 2 CC domains contribute to homo- and heteromerization of
TRPP2 subunits.1193—1195,1197,1199

TRPP2 contains several predicted and validated phosphoryla-
tion sites, some of which have been studied in more detail (S76,
S801, S812, and S829).1192,1197,1201—1207 Glycogen synthase kinase 3
(GSK3) was shown to phosphorylate serine 76 to promote redis-
tribution of TRPP2 from the plasma membrane to intracellular
compartments.1204 Phosphorylation of serine 801 is increased by
epidermal growth factor stimulation and appears to be protein ki-
nase D-dependent.1205 Phosphorylation of serine 812 by PKC K2
contributes to regulation of TRPP2 trafficking and ion channel ac-
tivity.1197,1201,1207 Serine 829 phosphorylation by aurora A or protein
kinase A has been reported to modulate ion channel func-
tion.1203,1206 It should be noted, however, that the functional
importance of these TRPP2 modifications has been difficult to

Fig. 9. Domain topology and multimeric assemblies of TRPP channels. (A) Domain topology of TRPP2 comprising 6 TMDs (S1—S6). S1—S4 form the voltage sensor domain, the
large extracellular loop between S1 and S2 forms the TOP domain, and S5—S6 form the pore domain. TRPP3 and TRPP5 have a similar overall topology with variable C-terminal
regulatory motifs. (B) Domain topology of PC1 comprises 11 TMDs (S1—S11) with a large extracellular N-terminal domain. S6—S11 are highly homologous to TRPP2 and contribute
to the pore domain in heteromeric PC1-TRPP2 complexes. PKD1L1, PKD1L2, PKD1L3, and PKDREJ have a similar topology with variable N-terminal extracellular domains. (C)
TRPP2 and other TRPP channels form homotetrameric complexes, and (D) heteromeric complexes with other TRP channels, including TRPC1 and TRPV4. (E) TRPP2 and PC1 form
heteromeric complexes with a 3:1 stoichiometry. The same subunit stoichiometry was shown for PKD1L3-TRPP3 channel complexes. GAIN, GPCR autoproteolysis-inducing; GPS,
GPCR proteolytic site; LDL-A, low-density lipoprotein A; REJ, receptor for egg jelly.
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evaluate as overexpressed TRPP2 is trapped in the ER, impeding the
electrophysiological analysis at the plasma membrane (see below).
The overall domain topology of TRPP3 and TRPP5 resembles TRPP2.
While motifs such as C-terminal CC domains and phosphorylation
sites have also been predicted in these channels, there is still much
less information compared with TRPP2.1208,1209 TRPP3 channel
function has been shown to be regulated by palmitoylation and
phosphorylation at the cytoplasmic N-terminal domain (at cysteine
39 and threonine 39, respectively).1210 Furthermore,1211 TRPP3 was
found to be regulated by cAMP signaling via a cluster of phos-
phorylation sites at S682, S685, and S686.

2. Homotetrameric TRPP channel complexes
Recently, the first 3D structures of TRPP2 and TRPP3 have been

resolved using single-particle cryo-EM.1212—1216 These studies
show that TRPP channels are assembled as homotetrameric com-
plexes with each subunit comprising a voltage-sensor domain
(S1—S4), a tetragonal opening for polycystins (TOP) domain,
formed by the extracellular loop between S1 and S2, and a pore
domain (S5—S6), jointly formed by the 4 subunits. The individual
channel subunits interface through their TOP and pore domains,
suggesting a role of these subunit interactions in homotetrameric
assembly. The structural arrangement of the voltage-sensor and
pore domains in TRPP2 and TRPP3 provides mechanistic insights
into voltage-dependent gating.

The voltage-sensor domains of the respective TRPP subunits
connect to the pore domains of neighboring subunits via an S4-S5
linker helix. This S4—S5 linker helix is thought to communicate the
activation state of the voltage-sensor domain to control gating of
the pore domain. The S4 segment of TRPP2 and TRPP3 contains 2
positive gating charges, which are thought to move outward in
response to membrane depolarization.1213,1217 This outward
movement may be coupled to the opening of the pore via lateral
displacement.

The TOP domain extends from the S1 and S2 helices on the
extracellular side of the voltage-sensor domain. This domain is not
found in TRPCs, but is similar to a corresponding domain of
TRPMLs.1055,1060 The TOP domain is composed of 5 ß strands and 2
α-helices and forms extracellular contacts with the extracellular
loop between S3 and S4, suggesting a functional connection to the
voltage-sensor domain. In support of this notion, ADPKD-causing
missense mutations in this domain can significantly shift the
voltage dependence of TRPP2 opening.1218

The pore domain constitutes the ion-conductive pathway and
the selectivity filter. TRPP2 and TRPP3 are Ca2+-permeable
nonselective cation channels. TRPP3 is more selective for Ca2+

than TRPP2, probably because the selectivity filter of TRPP3 har-
bors a second ring of negatively charged aspartate residues that is
not present in TRPP2.1219 Structural and functional studies suggest
that TRPP channels have multiple gates, with the lower gate in the
S6 segment being mobilized by uncoiling its secondary helical
structure.1214 The upper gate is thought to be within the selectivity
filter and might be involved in channel inactivation.1214—1216

Asparagine 533 in the outer pore loop of mouse TRPP3 was
shown to be essential for its voltage-dependent inactivation.1220

The carboxy-terminal domains have not been structurally
resolved in the reported TRPP2 and TRPP3 structures. However, the
structures of isolated fragments containing the EF hand or the CC
domain have been determined.1199,1221—1223 The isolated CC
domain of TRPP2 forms trimers, which appears to contradict the
homotetrameric assembly of whole TRPP channels.1224 Yet, the
trimeric assembly of the isolated CC domains may be explained by
the fact that heteromultimeric assemblies of TRPP channels with
PC1 family proteins occur at a 3:1 stoichiometry (see below).
While the precise role of the coiled-coil motif for TRPP channel

assembly and structure is not known, it appears to be important
for channel function, since truncating mutations that delete the CC
motif of TRPP2 cause ADPKD (The ADPKD Mutation Database,
https://pkdb.mayo.edu/variants).

3. Heteromeric TRPP channel complexes
TRPP2 has been shown to interact with several TRP channels

(TRPC1, TRPC3, TRPC4, TRPC5, TRPC7, and TRPV4) in heterologous
expression systems.1225 There are currently no 3D structures of
these heteromeric assemblies, but atomic force studies proposed a
2:2 stoichiometry with an alternating subunit arrangement for
TRPP2/TRPC1 and TRPP2/TRPV4 heterotetramers, respec-
tively.57,128,384,1226 It has been proposed that the channel proper-
ties of these heteromeric TRPP2 complexes are modulated by the
TRP subunit composition, adapting the functional properties of
TRPP2 to tissue-specific roles, including mechano- and thermo-
sensation.1226 However, there is still limited information con-
cerning the physiological role of most of these heteromeric TRPP2
complexes in vivo.

Heteromeric complexes formed by TRPP channels with mem-
bers of the PC1 family have been shown to play an essential role in
biological processes such as tubular morphogenesis and estab-
lishment of left-right asymmetry.1180 Mutations in the genes
encoding PC1 and TRPP2 cause polycystic kidney disease in
humans and model organisms (see “Expression pattern and
primary physiological roles of TRPP channels” and “Human
diseases associated with TRPP channels”). Both proteins interact
to form a receptor-ion channel complex.1227,1228 PC1 and related
family members (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) are
rather large proteins (210—520 kDa) with 11 TMDs (S1—S11). The 6
carboxy-terminal TMDs of PC1 (S6—S11) share high sequence ho-
mology with TRPP2. Despite this homology, PC1 is not an ion
channel itself, but may contribute to the pore domain of hetero-
meric complexes with TRPP2. Members of the PC1 family have a
large extracellular N-terminal domain, which is thought to be
involved in the sensing of mechanical or chemical cues.1229—1232

This domain contains multiple motifs suggesting interaction
with cell matrix or extracellular proteins (Fig. 9B).1233,1234 PC1 has
the largest extracellular domain with 3074 amino acids, followed
by PKD1L1 (1784 amino acids), PKD1L2 (1344 amino acids),
PKD1L3 (1083 amino acids), and PKD1REJ (1184 amino acids). The
PC1 N-terminal domain contains multiple motifs, including
leucine-rich repeats, 15 PKD repeats, an low-density lipoprotein
A—related motif, a C-type lectin domain, and a receptor for egg
jelly module (Fig. 9B). Interestingly, PC1 shows similarities to the
adhesion class GPCRs (adhesion GPCRs). A common feature of PC1
and adhesion GPCRs is a GPCR autoproteolysis-inducing domain
and autoproteolytic cleavage of the extracellular amino-terminus
at a G protein-receptor-coupled proteolytic site.1235—1237 Activa-
tion of adhesion GPCRs through a tethered agonist has been pro-
posed to involve a stalk region preceding the first TMD.1238 Recent
studies1239,1240 suggest that a similar mechanism may apply for
the activation of PC1.

The 3D structures of the heteromeric PC1-TRPP2 complex and
the PKD1L3-TRPP3 complex were determined using cryo-EM,
revealing a 1:3 stoichiometry, which had already been proposed
in earlier studies.1241—1243

Owing to the sequence homology to TRPP2, the S6—S11 TMDs of
PC1 are arranged with similar symmetry to TRPP2 subunits within
the heteromeric structure.1212,1214,1216,1242 The same holds true for
the highly homologous TOP domains of PC1.1242 In PC1 and
PKD1L3, the TOP domains extend from the extracellular S6—S7
loop (Fig. 9B). In contrast to homomeric TRPP2 and TRPP3 channels
which have symmetric channel selectivity filters, the pore domain
of heteromeric PC1-TRPP2 channels is asymmetric due to the
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contribution of the S10 and S11 segments of PC1-related sub-
units.1241,1242 Based on the structure of the pore domain, the cation
selectivity of these heteromeric channels is predicted to be distinct
from homomeric TRPP2 channels, because the PC1 pore loop lacks
the aspartate residues found in TRPP2. This prediction is supported
by electrophysiological experiments (see below). In the published
structure of the PC1-TRPP2 complex, 3 positively charged residues
in the pore lining S11 of PC1 (R4100, R4107, and H4111) plug the
ion permeation pathway. It has been speculated that lateral
displacement S11 of PC1, possibly coupled to conformational
changes in distant parts of the complex, may gate the PC1-TRPP2
heteromeric channel.1181 Future studies of the structure of the
heteromeric PC1-TRPP2 complex in the open state, ideally with a
bound activating ligand, are required to unravel its gating
mechanism.

The structure of the PKD1L3-TRPP3 complex was determined in
a closed and in a Ca2+-bound open state.1241 Two Ca2+-binding
sites that are probably involved in gating the channel complex
were identified. In the closed state, the PKD1L3-TRPP3 complex is
blocked by K2069 from PKD1L3, which appears to plug the ion
permeation pathway in the absence of Ca2+. At high Ca2+ con-
centrations, K2069 of PKD1L3 is displaced by the Ca2+ ion coor-
dinated by the D523 side chain of TRPP3 and main chain carbonyls
of both TRPP3 and PKD1L3. The second Ca2+ binding site is in the
extracellular cleft of the voltage sensor domain within the third
TRPP3 subunit of the heteromeric complex. Electrophysiological
experiments support the hypothesis that Ca2+ binding of the
voltage sensor domain of TRPP3 is responsible for Ca2+-dependent
activation.1241 In summary, the structures of the heteromeric TRPP
channel complexes have provided mechanistic insights into ion
permeation and gating. It should be noted that all structures of the
heteromeric TRPP complexes have been determined using trun-
cated forms of the PC1-related subunits. In the heteromeric PC1-
TRPP2 structure, PC1 was missing the extracellular N-terminal
domain and the intracellular C-terminus. In the PKD1L3-TRPP3
structure, PKD1L3 was missing its N-terminal extracellular
domain and the first 5 TMDs (S1—S5).1241,1242

4. Functional characteristics of individual TRPP channels
TRPP channels are Ca2+-permeable nonselective cation chan-

nels. Their biophysical properties are modulated by differential
assemblies with members of the PC1 family. Here, we summarize
the functional properties of individual homotetrameric and het-
eromeric TRPP channel complexes.

a. TRPP2. TRPP2 function has been studied in the plasma mem-
brane, in the ER, and in primary cilia. The functional analysis of
TRPP2 in the plasma membrane has proven difficult because
heterologously expressed TRPP2 in mammalian cell lines localizes
mostly, if not exclusively, in the ER.1192,1197,1198,1244 Despite earlier
studies reporting TRPP2 currents after heterologous expression in
different cell types,1245 many later studies failed to record
increased whole cell currents after overexpression of WT TRPP2
(with or without coexpression of PC1).1197,1214 Earlier functional
studies of TRPP2 are reviewed elsewhere.1245 In the ER, TRPP2
operates as a Ca2+ release channel, and different mechanisms have
been proposed on how this may affect Ca2+ signaling and ER Ca2+

homeostasis. One study showed that TRPP2-mediated Ca2+ release
decreases the ER concentration, thereby regulating the sensitivity
of cells to apoptotic stimuli.1246 Another study proposed that
TRPP2 amplifies ER Ca2+ release via Ca2+-dependent activation of
TRPP2,1198 whereas others reported increased Ca2+ release from
the ER through direct association with the inositol trisphosphate
receptor.1247 Reconstitution of TRPP2 proteins isolated from the ER

was used to record single-channel currents and Ca2+ regulation of
the channel.1198,1207

Recent progress in the electrophysiological characterization of
TRPP2 channels has been achieved through 2 methodological
breakthroughs: (1) direct electrophysiological recordings from
primary cilia,1248,1249 and (2) GOF mutations in TRPP2 enabling the
electrophysiological characterization in the plasma membrane.1250

TRPP2 localizes to the membrane of primary cilia.1251 Patch-
clamp recordings from cilia showed that endogenous and heter-
ologous TRPP2 channels have a cation permeability profile of K+ >
Na+ >> Ca2+ with a single channel conductance of 139 pS (in the
presence of K+). TRPP2 has a 10-fold higher permeability for Na+

than for Ca2+ ions.1249,1252,1253 Despite the relatively low Ca2+

selectivity, opening of TRPP2 channels can trigger Ca2+ signals in
cilia and other cellular compartments due to the huge Ca2+ con-
centration gradient with an extracellular concentration that is
10,000 times higher than the intracellular Ca2+ concentration.
Together with the negative membrane potential, this provides a
big electrochemical driving force for Ca2+ to enter cells. TRPP2 is
voltage-dependent with an outwardly rectifying current-voltage
relationship. This voltage dependence is modulated through the
intracellular Ca2+ concentration.1200,1249 Furthermore, TRPP2
whole cell cation currents at the plasma membrane could be
recorded in Xenopus oocytes over-expressing a TRPP2 F604P GOF
mutant, which has enabled functional studies of TRPP2 at the
plasma membrane1250 and studies of disease-associated missense
mutations in the pore loop of TRPP2 that alter its channel
function.1254

In addition to homomeric complexes, TRPP2 forms heteromeric
complexes with members of the PC1 family, which modulate its
functional properties. The PC1-TRPP2 channel complex has been
studied the most because of its involvement in ADPKD (see
“Expression pattern and primary physiological roles of TRPP
channels”). Despite intense research efforts, many functional fea-
tures of this channel complex remain poorly understood. This can
be explained by the fact that heterologous expression of PC1
together with TRPP2 does not give rise to constitutively active
channels in the plasma membrane.1253,1255 Initial studies reporting
increased whole cell currents upon co-expression of PC1 and
TRPP2 in the plasma membrane1196,1256 could not be reproduced
by others.1253,1255

Two recent studies have provided insights into the channel
function of the PC1-TRPP2 complex. In the first study in Xenopus
oocytes, co-expression of PC1 with TRPP2 harboring 2 GOF mu-
tations (L677A/N681A) resulted in altered ion selectivity, with
greater Ca2+ permeability compared with the TRPP2 mutant
channels alone, suggesting a contribution of PC1 to the selectivity
filter.1257 In a second study, the TRPP2 F604P GOF mutant was
coexpressed with PC1 containing a strong N-terminal signal pep-
tide to increase plasma membrane trafficking.1255 Kidney epithe-
lial cells coexpressing these constructs showed constitutive
outwardly rectifying ion currents, whereas coexpression of WT
PC1 and TRPP2 produced no currents. Interestingly, the C-type
lectin domain from the PC1 N-terminus was used as a soluble
activator of the PC1-TRPP2 F604P complex, suggesting that
extracellular ligands binding to the complex can modulate channel
activity.1255 Furthermore, it was shown that cilia-enriched oxy-
sterol 7ß,27-dihydroxycholesterol is required for TRPP2 ion chan-
nel activation.1258 The key takeaway from these studies is that
heteromeric PC1-TRPP2 channels without GOF mutations appear
to be constitutively closed, and active mutant channels in the
heteromeric complex are more Ca2+-permeable than homomeric
TRPP2 channels. The identification of the physiological activation
mechanism of the PC1-TRPP2 complex remains one of the most
important future challenges, because it will enable the study of the
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biophysical properties of the native WT complex and downstream
signaling pathways, which may be dysregulated in ADPKD.

The PKD1L1-TRPP2 complex is required for the establishment of
left-right organ asymmetry (see “Expression pattern and primary
physiological roles of TRPP channels”).1259—1261 Cilia-mediated
asymmetric Ca2+ signals in the embryonic node have been shown
to result in asymmetric gene expression to establish left-right
asymmetry.1259,1260,1262,1263 Genetic data from humans, mice, and
zebrafish implicate the PKD1L1-TRPP2 complex in the generation of
these asymmetric Ca2+ signals.1259—1261,1264 However, there are no
direct measurements of PKD1L1-TRPP2 channels in the embryonic
node to date. Future work will have to determine the biophysical
properties of this complex and its activation mechanism.

Heteromeric TRPP channel complexes with PKDREJ have been
proposed to play a role in fertilization. PKDREJ-TRPP2 and PKDREJ-
TRPP3 co-immunoprecipitate when over-expressed in HEK293
cells.1265 To date, there are no functional channel data of these
heteromeric complexes.

In summary, the modular assembly of TRPP2 with different
members of the PC1 family appears to enable tissue-specific
functions that are tuned to specific physiological requirements,
eg, responsiveness to different, yet to be identified, ligands that
activate the respective heteromeric complexes.

b. TRPP3. Unlike TRPP2, ion currents from homomeric TRPP3 chan-
nels can be measured from the plasma membrane when heterolo-
gously expressed.1208 TRPP3 is an outwardly rectifying nonselective
cation channel which conducts mono- and divalent cations.1214 TRPP3
is more Ca2+-selective than TRPP2 with a Ca2+ permeability that is 15
times higher than that for Na+, probably because of an additional
aspartate (D525) in the selectivity filter.1219 TRPP3 has properties of
voltage-dependent channels, such as voltage-dependent inactivation
and tail currents after membrane repolarization.1217,1220 Similar to
TRPP2, TRPP3 activity is modulated1219 by intracellular Ca2+. In het-
erologous expression systems (Xenopus oocytes and mammalian
cells), TRPP3 has been shown to be activated by acidic and alkaline
extracellular pH,1266,1267 and has been proposed to play a role in sour
taste transduction (see “Expression pattern and primary physiological
roles of TRPP channels”).

Heteromeric PKD1L1-TRPP3 channels have been shown to
regulate the ciliary Ca2+ concentration.1268 Endogenous PKD1L1-
TRPP3 channels have been measured directly by patch-clamping
of primary cilia in fibroblasts and retinal pigment epithelial cells.
These currents recorded from cilia were activated1248 by ATP and
blocked by Gd3+. High membrane pressure increased the open
probability of heteromeric PKD1L1-TRPP3 channels, but there is
currently no data suggesting a direct role of this heteromeric
complex in ciliary mechanotransduction. Since homomeric TRPP3
channels can be measured at the plasma membrane and in cilia, the
contribution of the PKD1L1 subunit to the functional pore can be
determined by comparing the permeation properties of the
homomeric and heteromeric channels.1214,1219,1248 The single-
channel conductance of homomeric TRPP3 channels is larger than
the conductance of heteromeric PKD1L1-TRPP3 channels (156 pS
versus 96 pS, respectively; with Na+ as charge carrier). The Ca2+

selectivity over Na+ of monomeric TRPP3 channels is higher than
that of PKD1L1-TRPP3 channels (15- versus 6-fold, respectively).
These alterations of the biophysical properties of the heteromeric
complex are likely explained by the contribution of the PKD1L1
pore domain (S10-S11) to the selectivity filter of the heteromeric
PKD1L1-TRPP3 complex. The precise structural features deter-
mining these biophysical properties remain to be investigated.

Co-expression of PKD1L3 and TRPP3 in HEK293 cells, Xenopus
oocytes, and HEK cells results in ion currents that are activated by
extracellular Ca2+ and pH changes (acidic and alkaline).1269,1270

PKD1L3-TRPP3 operates as nonselective cation channel with
preference for Ca2+ over Na+ (PCa2+/PNa+ ≈ 11). Interestingly, the
pH- or Ca2+-activated currents have no voltage depen-
dence.1271,1272 Since the regulation by Ca2+ and pH is also observed
in homomeric TRPP3 channels, it is difficult to distinguish whether
this regulation is a feature of homo- or heteromeric channels in an
overexpression system. Taken together, PKD1L3 and TRPP3 form
complexes, but their functional features and their physiological
relevance require further investigation.

c. TRPP5. The biophysical properties and the physiological func-
tion of TRPP5 channels are the least well characterized of the TRPP
channels. It has been reported that overexpression of TRPP5 in
HEK293 cells produces single-channel currents with a conduc-
tance of 25 pS that are not voltage-sensitive.1265,1273 There are no
reports of endogenous TRPP5 currents.

C. Expression pattern and primary physiological roles of TRPP
channels

1. Expression pattern
The genes encoding TRPP channels are expressed in many or-

gans in vertebrates. Transcriptome analyses have detected mRNA
of TRPP channels in nearly all human and mouse tissues. Targeted
studies focusing on individual TRPP channels have confirmed and
expanded these findings: PKD2 and PKD2L1 transcripts are present
in numerous fetal and adult tissues, including the heart, brain,
lungs, spleen, testes, ovaries, and kidneys.1183,1188,1189,1209,1272,1274

PKD2L2 expression appears to be more restricted to the brain
and testis.1185,1189 Splice variants of TRPP channels have been
identified, but their functional properties are currently
unknown.1183,1185,1188,1189

PKD2 expression is modulated by post-transcriptional regula-
tion. The RNA-binding protein bicaudal C (BICC1) and the micro-
RNA group 17 (miR-17) have been reported to regulate TRPP2
expression levels in opposite directions.1275—1277 miR-17 has been
shown to repress Pkd2 expression by binding on the 3'-untrans-
lated region of Pkd2 mRNA. This may be of physiological relevance
since overexpression of miR-17 in the kidneys of transgenic mice
leads to kidney cysts. In contrast, loss of miR-17 reduced cyst
growth in a mouse model with polycystic kidney disease caused by
Kif3a KO.1275 Conversely, BICC1 enhances Pkd2 mRNA stability and
translation efficiency.1277 Loss of Bicc1 results in cystic kidneys in
model organisms and antagonizes the repressive activity of
miR-17.1277 Since miR-17 targets many genes, including several
genes associated with cystic kidney disease, it remains to be
determined whether the effects of miR-17 on kidney cysts are
caused solely by the reduction of TRPP2 expression.

TRPP2 and PC1 have also been studied in invertebrate model
organisms, which provided fundamental biological insights
such as the discovery that the polycystins localize in primary
cilia.1278—1283 In Caenorhabditis elegans and Drosophila mela-
nogaster, Pkd2 expression is restricted to ciliated cells, namely
male-specific sensory neurons and spermatozoa, respec-
tively.1278,1283 In the meantime, a convergence of additional
findings from mammalian model organisms suggests that
defective ciliary signaling plays an important role in the path-
ogenesis of polycystic kidney disease and related disorders,
which are now collectively called ciliopathies.1284 In addition to
primary cilia, PC1 and TRPP2 have been found in the ER and the
lateral membrane.1244,1285 More recently, fragments of PC1 have
also been detected in mitochondria.1286—1288

The physiologically relevant cellular localization of the PC1-
TRPP2 complex is debated, but considerable evidence suggests
that this channel complex functions in primary cilia or in the
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plasma membrane. However, a function in other membranes, for
example, in the ER, cannot be ruled out and requires further
studies. Trafficking of PC1 and TRPP2 to the plasma membrane or
cilia appears to be interdependent, supporting the hypothesis that
the heteromeric complex, rather than homomeric assemblies of
each subunit, is the functionally relevant channel complex at these
locations.1289,1290 However, it has also been reported1291 that
TRPP2 traffics to cilia without PC1. In addition to PC1, multiple
other proteins have been shown to be involved in the trafficking of
TRPP2 to cilia and the plasma membrane.1197,1244,1292,1293

The identification of specific cell types expressing TRPP pro-
teins in vivo has been challenging. While TRPP2-specific anti-
bodies enable detection of TRPP2 by Western blot in the kidney,
in the heart, and in other organs, the unequivocal detection of the
cellular and subcellular distribution of TRPP2 protein in vivo has
been hampered by low expression levels and the lack of anti-
bodies with sufficient sensitivity and specificity for immunohis-
tochemical and immunofluorescence studies. The same applies to
TRPP3 and TRPP5. In the future, this limitation may be overcome
by the introduction of epitope tags to endogenously expressed
TRPP channels,1287 or by generating TRPP-reporter alleles to
detect cell types expressing these channels using combinatorial
genetic approaches, which have been successfully employed to
detect the expression of other TRP channels in specific cell
types.1294

2. Primary physiological roles of TRPP channels
The physiological roles of TRPP channels have been studied in

several model organisms with a focus on TRPP2 function because
of its relevance in human disease.

a. TRPP2. The primary physiological roles of TRPP2 in vertebrates
are the regulation of tubular morphogenesis and the

establishment of organ left-right asymmetry.1180,1295 The impor-
tance of TRPP2 in controlling the morphology of epithelial tubules
was first recognized when PKD2 was cloned as the second gene
mutated in ADPKD patients.1183 The requirement of TRPP2 for the
formation of properly shaped tubules and for left-right patterning
was later confirmed in mouse and zebrafish.1296—1299 Loss of TRPP2
results in polycystic kidney disease in mice,1299 and pronephric
cysts in zebrafish larvae.1297 Constitutive Pkd2 KO mice develop
cystic kidneys, edema, and hemorrhage and die in utero around
midgestation.1298—1300 Kidney cysts originate from dilatations
along all nephron segments mimicking cyst formation in human
ADPKD, with the notable exception that cyst formation in ADPKD
is focal due to loss of heterozygosity in individual tubule cells,
whereas PKD mouse models display much more widespread cyst
formation due to Pkd2 inactivation in all tubular epithelial cells. A
mouse model with a Pkd2 allele prone to spontaneous recombi-
nation (Pkd2WS25) mimics the loss of heterozygosity through so-
matic mutations in ADPKD and shows focal cyst formation similar
to the human disease.1299 Conditional inactivation of Pkd2 in
specific cell types prevents embryonic lethality and enables
studies of organ-specific functions of TRPP2.1300 Mutations in
PKD1 in humans or KO of Pkd1 in mice also cause polycystic kidney
disease.1301 Multiple lines of evidence, including the similarity of
KO phenotypes of Pkd1 and Pkd2, the coassembly of PC1 and TRPP2
in a heteromeric complex, and their interdependence of trafficking
to cilia, support the notion that the PC1-TRPP2 complex rather
than homomeric assemblies of these proteins are critical for the
proper regulation of tubular shape (Fig. 10A). How Ca2+ signals
triggered by this complex control the shape of epithelial tubes
remains to be determined.

A second important physiological function of TRPP2 is its role in
the establishment of left-right asymmetry. Loss of TRPP2 in mice
and zebrafish causes left-right asymmetry defects that have been

Fig. 10. Physiological roles of heteromeric TRPP channels and pathologies caused by loss of function. (A) Left panel: heteromeric TRPP2-PC1 channels regulate the morphology of
epithelial tubules in the kidney and other organs (eg, liver and pancreas). Middle panel: The channels operate in the primary cilium and ER and are thought to trigger Ca2+ signals.
The activation mechanism of the TRPP2-PC1 complex and the downstream effectors controlling tubular morphology are unknown. Right panel: LOF of the TRPP2-PC1 complex
results in focal cyst formation in the nephron, resulting in polycystic kidney disease. (B) Left panel: Heteromeric TRPP2-PKD1L1 complexes regulate left-right patterning during
embryonic development. Middle panel: Left-right patterning in the embryonic node is driven by motile cilia in pit cells, creating a leftward nodal flow. Sensory cilia in perinodal
crown cells detect flow-mediated mechanical or chemical signals via ciliary TRPP2-PKD1L1 channels. This triggers asymmetric Ca2+ signals in the embryonic node, resulting in
asymmetric gene expression, which specifies left-right asymmetry. Right panel: LOF of the TRPP2-PKD1L1 complex causes left-right asymmetry defects.
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shown to be caused by impaired TRPP2-mediated Ca2+ signaling in
the embryonic node.1261,1296—1298 Left-right asymmetry is
controlled by Ca2+-dependent asymmetric gene expression in cells
on one side of the embryonic node, a transient concave structure in
the midline of the postgastrulation embryo.1302 The cells in the
embryonic node are ciliated. So-called pit cells in the embryonic
node generate fluid flow directed toward the left side by the
beating of motile cilia. Perinodal crown cells possess immotile
primary cilia, which are required to sense the fluid flow to trigger
intracellular Ca2+ signals (Fig. 10B).1261,1302 It is still debated
whether the signal or stimulus sensed by these cilia is mechanical
or chemical.1261,1262,1296—1298,1303 Notably, Pkd1 KO mice do not
display left-right asymmetry defects despite otherwise extensive
phenotypic similarities to Pkd2 KO mice. However, loss of PKD1L1
causes left-right asymmetry defects in humans and model or-
ganisms.1259,1260,1264 Since Ca2+ transients in perinodal crown cells
require both TRPP2 and PKD1L1, and both channel subunits
localize to primary cilia, PKD1L1-TRPP2 heteromeric channels
probably function as sensors of nodal flow in the embryo (Fig. 10B).

TRPP2 channels are broadly expressed and likely have addi-
tional physiological functions. This is supported by the embryonic
lethality of constitutive Pkd2 KO mice, which is not caused by the
kidney phenotype.1299,1300 Instead, the embryonic lethality in Pkd2
KO mice appears to be caused by vascular defects in the
placenta.1300 TRPP2 and PC1 appear to have a role in vascular
integrity, since loss of function of both proteins causes cardio-
vascular phenotypes, ranging from cardiac valve defects to aneu-
rysms and abnormal vascular permeability in KO mice.1300,1304,1305

Extrarenal manifestations of ADPKD patients support a role of PC1
and TRPP2 in the cardiovascular system.1306 In cardiomyocytes,
TRPP2 has been reported to regulate Ca2+ release through ryano-
dine receptors through direct association.1307 A recent study
showed that natriuretic peptide production requires TRPP2 in the
heart, and loss of this pathway may contribute to the development
of hypertension in ADPKD.1308 Studies of TRPP2 in the regulation of
vascular tone are contradictory. In arterial smooth muscle cells,
TRPP2 is proposed to contribute to systemic blood pressure and to
the myogenic response in cerebral arteries through vasoconstric-
tion.1309,1310 In vascular endothelial cells, TRPP2 was reported to
mediate vasodilation through activation of nitric oxide syn-
thase.1311 In addition, TRPP2 and Filamin-A have been proposed to
regulate pressure sensing in mouse vascular smooth muscle cells,
by fine-tuning stretch-activated channels to adapt the vascular
myogenic response.1312 These seemingly paradoxical functions of
TRPP2 in the vasculature might be explained by differences in
specific locations and cell types within the vasculature. Further
studies are required for a comprehensive understanding of TRPP2
function in the vasculature and other organs.

b. TRPP3. The physiological functions of TRPP3 are much less well
understood. The phenotypes of TRPP3 (Pkd2l1) KO models suggest
functions in the CNS, cardiomyocytes, and early development.
Pkd2l1 KO mice show hippocampal and thalamo-cortical hyper-
excitability with increased susceptibility to seizures.1313 Like
TRPP2, TRPP3 localizes to primary cilia. TRPP3 channel activity has
been measured in neurons contacting the subependymal cere-
brospinal fluid. These neurons have protrusions with a primary
cilium that extends into the central canal, where it is thought to
sense mechanical or chemical signals from the cerebrospinal
fluid.1274,1314,1315 In zebrafish, related neurons contacting the ce-
rebrospinal fluid were shown to be mechanosensitive cells. The
detection of cerebrospinal fluid flow through these neurons was
shown to require mechanosensitive TRPP3 channels.1315

The organismal function of heteromeric PKD1L1-TRPP3 chan-
nels remains poorly understood. PKD1L1-TRPP3 channels have

been reported1268 to control the Ca2+ concentration in cilia and to
regulate Hedgehog-dependent transcription of glioma-associated
oncogene homolog 1. The physiological consequences of these
cellular events in vivo remain to be determined.

Heteromeric PKD1L3-TRPP3 channels have been proposed as a
candidate sour taste receptor in gustatory cells.1272,1316 TRPP3 is
expressed in some gustatory type III cells, and acid-evoked Ca2+

responses and optogenetic activation of these cells support a role
of these cells in sour taste perception.1270,1316,1317 However, the role
of the PKD1L3-TRPP3 in sour taste transduction is controversial.
Mice with genetic ablation of TRPP3-expressing cells were shown
to be completely devoid of acid responses in electrophysiology
recordings to sour stimuli, supporting a role of these cells in sour
taste reception.1316 Based on these and additional results showing
acid activation of the complex, PKD1L3-TRPP3 channels were
proposed to form the sour taste receptor.1270 Subsequent studies in
PKD1L3-deficient mice, however, showed normal sour taste
responsiveness in behavioral and electrophysiological
experiments.1318

c. TRPP5. Mouse TRPP5 mRNA and protein expression have been
reported in spermatocytes and spermatids, but its role in male
reproduction or other physiological functions has not been studied
yet.1319

D. Human diseases associated with TRPP channels

1. TRPP2
TRPP2 was first identified as the gene product of PKD2, the

second causative gene for ADPKD.1183 Mutations in PKD2 ac-
count for ~15% of ADPKD cases, mutations in PKD1 for ~80%, and
a few additional genes for the remaining 5%.1184,1320 ADPKD is by
far the most common genetic cause of kidney failure and affects
~1/1000 individuals in the general population.1320,1321 The dis-
ease is characterized by polycystic kidneys, with cyst develop-
ment starting in the fetus and continuing through a patient’s
lifetime. Continuous development and growth of cysts com-
presses the remaining tubules. In the majority of patients, this
results in reduced kidney function and ultimately kidney fail-
ure. The clinical course of ADPKD is highly variable, but ~50% of
patients have kidney failure by 60 years of age.1321 Multiple
extra-renal clinical manifestations, including liver cysts,
pancreas cysts, intracranial aneurysms, and cardiac valvular
disease, show that ADPKD is a systemic disorder.1320,1321 These
extrarenal clinical manifestations point to functions of TRPP2
and PC1 in multiple organs, which are continuing to be studied
in conditional mouse models.

Hundreds of unique ADPKD mutations have been identified,
which are spread across PKD1 and PKD2 without obvious muta-
tional hotspots (The ADPKD Mutation Database, https://pkdb.
mayo.edu/variants). Patients with PKD1 mutations tend to have
more severe disease compared with those with PKD2 mutations,
and truncating mutations usually result in a more severe pheno-
type than nontruncating missense mutations.1322 There is signifi-
cant inter- and intrafamilial variability in ADPKD symptoms even
in patients with the same germline mutation. This suggests the
existence of genetic, environmental, and epigenetic modifiers of
ADPKD.

Each human kidney has about 1,000,000 nephrons. However,
cysts develop only in a very small fraction (1%—5%) of nephrons.
The focal nature of cyst formation in ADPKD can be explained by
the 2-hit model.1323,1324 According to this model, a germline
mutation (first hit) and a somatic mutation (second hit) in the
normal allele are required for cyst formation in ADPKD. The loss
of heterozygosity in kidney cells leads to the complete loss of
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functional polycystin proteins, which causes focal cyst forma-
tion. Thus, even though the mode of inheritance of ADPKD is
dominant, the process of cyst formation is recessive at the
cellular level. Multiple lines of evidence ranging from genetic
analyses of cyst epithelia in patients to mouse models support
the 2-hit model.1299,1324,1325

2. TRPP3
To date, no variants in PKD2L1, the gene encoding TRPP3, have

been associated with human disease.

3. TRPP5
Like for TRPP3, there are no reports of human disease associ-

ated with variants in TRPP5.

E. Pharmacological modulators of TRPP channels

There is very limited information on pharmacological modu-
lators of TRPP channels. No validated specific activators or blockers
of TRPP2 are available because of the difficulty of measuring TRPP2
channel activity in heterologous expression systems. A recent
study showed that some TRPML agonists (MK6-83, ML2-SA1, SF-
21, SF-22, SF-23, SF-24, SF-31, SF-32, SF-33, SF-41, SF-71, SN-2,
and rapamycin) inhibit the activity of TRPP2 with a F604P GOF
mutation at high concentrations (see “Pharmacological
modulators of TRPP channels”). Two of these TRPML agonists,
ML-SA1 and SF-51, further activate the TRPP2 F604P channel, but
not WT TRPP2, at low concentrations and inactivate it at higher
concentrations.1326 TRPP3 is activated by acidic pH (see above),
and is blocked by flufenamic acid at rather high concentrations
(0.5 mM).1208 Furthermore, TRPP3 has been shown to be inhibited
by amiloride, phenamil, benzamil, and 5-(N-ethyl-N-isopropyl)
amiloride with an order of potency of phenamil > benzamil > 5-
(N-ethyl-N-isopropyl)amiloride > amiloride, with IC50 values of
0.14, 1.1, 10.5, and 143 μM, respectively.1327 There is still only one
study reporting TRPP5 channel measurements,1273 and no phar-
macological modulators of TRPP5 are available to date.

F. Ongoing or completed clinical trials with TRPP channels as
therapeutic targets

There are no ongoing or completed clinical trials with TRPP
channels as therapeutic targets. The majority of ADPKD is caused
by mutations in PKD1, which led to the hypothesis that pharma-
cological activation of TRPP2 might mitigate the disease. However,
there are no validated pharmacological activators of WT TRPP2 to
date, and it remains to be determined whether pharmacological
activation of TRPP2 can compensate for the loss of PC1, which is
thought to be an essential subunit of the heteromeric PC1-TRPP2
complex. The development of ivacaftor and related drugs for the
treatment of cystic fibrosis has shown the efficacy of potentiators
and correctors of mutated ion channels harboring missense mu-
tations.1328 It is conceivable that similar approaches might be
applicable for ADPKD.

VIII. Conclusions and outlook

Recent experiments using animal disease models and human
genetic studies have linked TRP channels to various pathophysio-
logical processes, highlighting their broad therapeutic potential.
Moreover, significant progress has been made in developing
potent pharmacological agents targeting TRP channels in
conjunction with electrophysiological and structural analysis of
these proteins, which provides the mechanistic basis for innova-
tive treatments of a wide array of human disorders. Despite the

relevance of TRP channels as pivotal therapeutic targets for the
treatment of human diseases, the clinical modulation of TRP
channels has turned out to be more challenging than initially
anticipated. The following 3 preclinical issues deserve future
attention. (1) There still is a pressing need to further our under-
standing of the pathophysiological role of TRP channels, their exact
contribution to cellular, tissue, and organismal homeostasis and
dysfunction, including activation mechanisms in a native envi-
ronment and reliable tissue expression with high spatial resolu-
tion. (2) Unwanted side effects, as noted in clinical trials, may arise
from either off-target or off-tissue interactions of drug candidates.
Recent advances in molecular approaches, such as single-particle
cryo-EM, in combination with AI-guided computational
methods, will refine the development of modality-specific and
activity-dependent modulators, which can be validated through
in-depth biophysical analyses. To limit off-tissue side effects, the
direct local or topical application of TRP channel modulators ap-
pears to be an appropriate strategy. Long-term toxicity of topically
applied chemical probes and drug candidates can be averted by
controlled local inactivation of compounds, for instance, by
introducing photoswitches. (3) To foster clinical translation, reli-
able and robust preclinical disease models must be developed,
including genetically modified mouse models, in vitro human-
derived organoids, and engineered human tissue cultured in bio-
mimetic chambers. In this regard, progress in cellular reprog-
ramming of iPSCs holds the promise of providing relevant
preclinical models for early validation of TRP channel modulators.
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