

REVIEW ARTICLE

Physiological functions and pharmacological targeting of transient receptor potential channels

Vladimir Chubanov ^{1,*} , Christian Grimm ^{1,2,3} , Kerstin Hill ⁴, Michael Schaefer ⁴ , Michael Köttgen ⁵ , Ursula Storch ⁶ , Michael Mederos y Schnitzler ¹, Veronika Kudrina ¹, Anna Erbacher ¹ , Thomas Gudermann ^{1,7,*}

¹ Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany

² Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany

³ Department of Pharmacology, University of Oxford, Oxford, United Kingdom

⁴ Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany

⁵ Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany

⁶ Institute of Pharmacy, Clinical Pharmacy, University of Regensburg, Regensburg, Germany

⁷ Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany

Abstract	3
Significance Statement	3
I. Introduction	3
II. TRPCs	3
A. TRPC gene family	3
B. Domain topology, assembly, and functional characteristics of individual TRPCs	3
1. Domain topology of TRPCs	3
2. Assembly of TRPCs	7
3. Functional characteristics of individual TRPCs	8
C. Expression pattern and primary physiological roles of TRPCs	9
D. Human diseases associated with TRPCs	10
E. Pharmacological modulators of TRPCs	11
1. Inhibitors of TRPC1/4/5 channels	11
2. Inhibitors of TRPC3/6/7 channels	11
3. Activators of TRPC4/5 channels	13
4. Activators of TRPC3/6/7 channels	13
5. Optical control of TRPCs	13
F. Ongoing or completed clinical trials with TRPCs as therapeutic targets	13
III. TRPVs	14
A. TRPV gene family	14
B. Domain topology, assembly, and functional characteristics of TRPVs	14
1. Domain topology of TRPVs	14
2. Assembly of TRPV complexes	15
3. Functional characteristics of TRPV complexes	15
C. Expression pattern and primary physiological roles of TRPVs	16
D. Human diseases associated with TRPVs	17
E. Pharmacological modulators of TRPVs	19
1. TRPV1	20
2. TRPV2	20
3. TRPV3	20
4. TRPV4	21
5. TRPV5 and TRPV6 channels	21
6. Photoswitchable inhibitors of TRPVs	21
F. Ongoing or completed clinical trials with TRPVs as therapeutic targets	21

* **Address correspondence to:** Vladimir Chubanov, Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, Munich 80336, Germany. E-mail: vladimir.chubanov@lrz.uni-muenchen.de; or Thomas Gudermann, Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, Munich 80336, Germany. E-mail: thomas.gudermann@lrz.uni-muenchen.de

IV. TRPMs	22
A. <i>TRPM gene family</i>	22
B. <i>Domain topology, assembly, and functional characteristics of individual TRPMs</i>	22
1. <i>Domain topology and channel assembly</i>	22
2. <i>Functional characteristics</i>	23
C. <i>Expression pattern and primary physiological roles</i>	24
1. <i>TRPM1 and TRPM3</i>	24
2. <i>TRPM6 and TRPM7</i>	24
3. <i>TRPM2 and TRPM8</i>	25
4. <i>TRPM4 and TRPM5</i>	25
D. <i>Human diseases associated with TRPMs</i>	25
E. <i>Pharmacological modulators of TRPMs</i>	26
1. <i>TRPM1 and TRPM3</i>	26
2. <i>TRPM6 and TRPM7</i>	26
3. <i>TRPM2 and TRPM8</i>	27
4. <i>TRPM4 and TRPM5</i>	28
F. <i>Ongoing or completed clinical trials with TRPMs</i>	29
V. TRPAs	29
A. <i>TRPA gene family</i>	29
B. <i>Domain topology, assembly, and functional characteristics of TRPA1</i>	29
1. <i>Domain topology and channel assembly</i>	29
2. <i>Functional characteristics of TRPA1 channel complexes</i>	30
C. <i>Expression pattern and primary physiological roles of TRPA1</i>	30
D. <i>Human diseases associated with the TRPA1 channel</i>	30
E. <i>Pharmacological modulators of the TRPA1 channel</i>	31
1. <i>TRPA1-activating compounds</i>	31
2. <i>Pungent tastants, spices, and natural products</i>	31
3. <i>ROS, peroxidation products, and cysteine-modifying compounds</i>	31
4. <i>Approved drugs</i>	31
5. <i>Selective, highly potent, and photoswitchable TRPA1 activators</i>	32
6. <i>TRPA1 inhibitors</i>	32
F. <i>Ongoing or completed clinical trials with the TRPA1 channel as a therapeutic target</i>	32
VI. TRPMLs	32
A. <i>Introduction</i>	32
B. <i>Domain topology, assembly, and functional characteristics of TRPMLs</i>	34
C. <i>Expression pattern and primary physiological roles of TRPMLs</i>	37
D. <i>Human diseases associated with TRPMLs and mouse models</i>	37
E. <i>Pharmacology of TRPMLs</i>	39
F. <i>TRPMLs as therapeutic targets</i>	40
VII. TRPP channels	40
A. <i>Introduction</i>	40
B. <i>Domain topology, assembly, and functional characteristics of individual TRPP channels</i>	41
1. <i>Domain topology and assembly</i>	41
2. <i>Homotetrameric TRPP channel complexes</i>	42
3. <i>Heteromeric TRPP channel complexes</i>	42
4. <i>Functional characteristics of individual TRPP channels</i>	43
a. <i>TRPP2</i>	43
b. <i>TRPP3</i>	44
c. <i>TRPP5</i>	44
C. <i>Expression pattern and primary physiological roles of TRPP channels</i>	44
1. <i>Expression pattern</i>	44
2. <i>Primary physiological roles of TRPP channels</i>	45
a. <i>TRPP2</i>	45
b. <i>TRPP3</i>	46
c. <i>TRPP5</i>	46
D. <i>Human diseases associated with TRPP channels</i>	46
1. <i>TRPP2</i>	46
2. <i>TRPP3</i>	47
3. <i>TRPP5</i>	47
E. <i>Pharmacological modulators of TRPP channels</i>	47
F. <i>Ongoing or completed clinical trials with TRPP channels as therapeutic targets</i>	47
VIII. Conclusions and outlook	47
References	48

ARTICLE INFO

Associate Editor: Rhian Touyz

ABSTRACT

Transient receptor potential (TRP) channels represent an extensive and diverse protein family fulfilling salient roles as versatile cellular sensors and effectors. The pivotal role of TRP and related ion channels in sensory processes has been well documented. Over the last few years, a new concept has emerged that TRP proteins control an exceptionally broad spectrum of homeostatic physiological functions such as maintenance of body temperature, blood pressure, transmitter release from neurons, mineral and energy homeostasis, and reproduction. This notion is further supported by more than 20 hereditary human diseases in areas as diverse as neurology, cardiology, hematology, pulmonology, nephrology, dermatology, and urology. Most TRP channel-related human disorders impinge on development, metabolism, and other homeostatic functions. The remarkable diversity of pathologies caused by TRP channel dysfunction underscores these proteins' broad spectrum of roles *in vivo*. Here, we provide a comprehensive overview of our progress in the identification, characterization, and clinical relevance of pharmacological agents targeting mammalian TRP channels.

Significance Statement: Accumulating evidence links transient receptor potential (TRP) channels to various human diseases and highlights TRPs as the most appealing pharmacological targets. The review provides an overview of this quickly developing research area, focusing on identified pharmacological modulators of mammalian TRP channels.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of American Society for Pharmacology and Experimental Therapeutics. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

I. Introduction

The transient receptor potential (TRP) gene superfamily represents a large, evolutionarily conserved group of ion channels initially identified in a mutant strain of *Drosophila melanogaster* that displayed an abnormal response to light illumination.¹ The mutant flies exhibited a rapid decay in the light-induced electroretinogram response of photoreceptor cells, referred to as transient receptor potential, to distinguish it from the sustained receptor potential observed in wild-type (WT) flies.^{2–4} Subsequent genetic and molecular investigations unveiled a new type of ion channel, now known as the TRP channel.⁵

A systematic search for homologous proteins led to the discovery of TRP channels across a diverse array of eukaryotes, including algae, fungi, choanoflagellates, invertebrates, and mammals.⁶ In humans, 27 TRP proteins are known, which are subdivided into 6 families (Table 1): canonical TRP channels (TRPCs), vanilloid receptor and related TRP channels (TRPVs), melastatin-like TRP channels (TRPMs), ankyrin domain-enriched TRP channels (TRPAs), mucolipin-related TRP channels (TRPMLs), and polycystic kidney disease-related TRP proteins (TRPPs).^{7,8}

All TRP channels maintain a notable structural similarity in their channel-pore forming domains, which include 6 membrane-spanning helices and a short stretch of hydrophobic residues between the fifth and sixth transmembrane (TM) segments, often called the pore helix (PH). After the sixth helix, TRPCs, TRPVs, and TRPMs also feature a highly conserved segment known as the TRP domain. TRPPs and TRPMLs exhibit a more distinct topology of the channel segment because they include a long loop linking the first 2 TM helices and lack the TRP domain. Besides this, TRP channels display significant structural heterogeneity in their large N- and C-terminal domains. TRP proteins are assembled in tetramers, implying that 4 subunits contribute to a common membrane-spanning channel pore (Fig. 1).

Over the past decade, significant progress has been made in single-particle cryogenic electron microscopy (cryo-EM) analysis of TRP channels, resulting in more than 400 structural models that encompass nearly all vertebrate TRP proteins (Table 1). The structural data obtained enable a detailed examination of the 3-dimensional (3D) arrangement of channel subunits at the atomic level and elucidate the roles of certain amino acids in the tetrameric

assembly of TRP channels (Fig. 1). Undoubtedly, these results provide a foundation for structure-function analysis of TRP channels, including insights into regulatory mechanisms, the functional effects of pathogenic mutations, and structure-based drug design.

Apart from considerable structural variability (Fig. 1), TRP channels also display fascinating diversity in functional characteristics, subcellular distribution, expression patterns, and physiological roles (Table 1).^{9,10} The pivotal role of TRP and related ion channels in sensory processes has been highlighted by the 2021 Nobel Prize in Physiology or Medicine, awarded to David Julius and Ardem Patapoutian.¹¹ Clinical studies and experiments on preclinical disease models revealed the prominent role of TRP proteins in human health and disease.¹² Accordingly, TRP proteins have been identified as the most appealing pharmacological targets.^{13,14} This review provides an up-to-date assessment of TRP channels, emphasizing our progress in developing pharmacological agents that allow selective modulation of mammalian TRP channels in diverse pathophysiological settings.

II. TRPCs

A. TRPC gene family

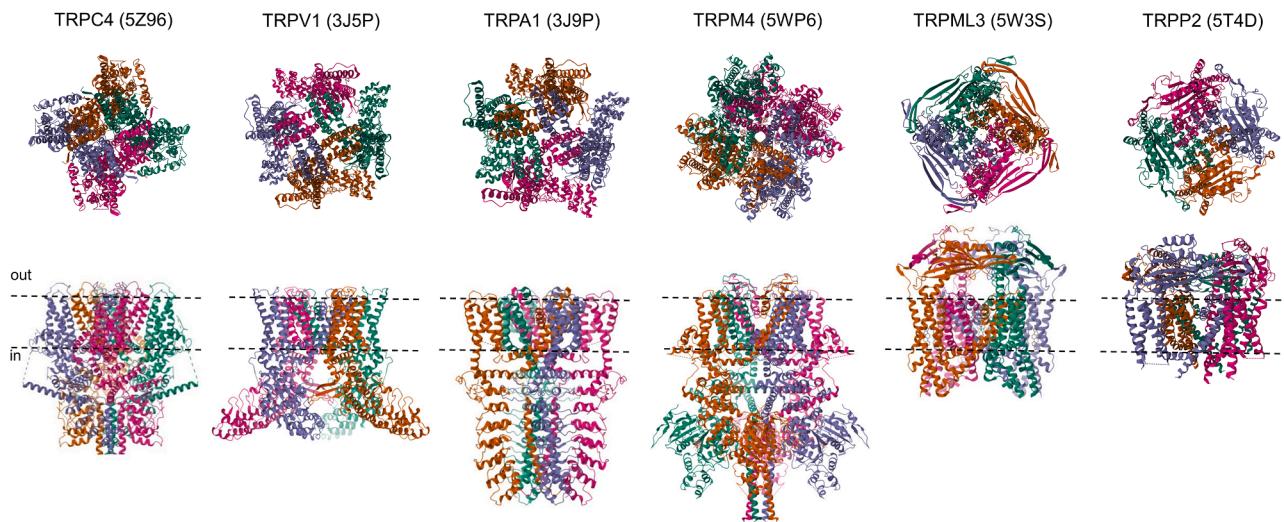
The TRPC gene family in mammals consists of 7 members (Table 1): TRPC1–7. Notably, TRPC2 is a pseudogene in humans, as well as in Old World monkeys and apes (Catarrhini).^{15,16} Based on amino acid sequence similarity, the TRPC family is divided into 4 subgroups: TRPC1, TRPC2, TRPC3/6/7, and TRPC4/5 (Fig. 2A).

Dysregulation of specific TRPCs has been implicated in various disease states, including pulmonary and renal diseases, as well as neurological disorders. Despite recent advances in the development of potent and selective TRPC modulators, substantial clinical benefits have yet to be realized. This underscores the need for further research to fully elucidate the role of TRPCs in health and disease.

B. Domain topology, assembly, and functional characteristics of individual TRPCs

1. Domain topology of TRPCs

In 2018, the first high-resolution 3D structures of TRPCs were resolved using single-particle cryo-EM technology. Since then,


Table 1
Nomenclature, structural data, and expression profiles of TRP channels

Gene	Protein and UniProt Enty ^a	Structures in PDB ^b	Expression Pattern
TRPCs			
<i>TRPC1</i>	TRPC1 (TRP1); P48995	only as TRPC1/4 heteromer: 8WPL, 8WPM	ubiquitous
<i>TRPC2</i>	TRPC2 (TRP2) pseudogene in humans and Old-World monkeys	n.d.	VNO of rodents and other macrosmatic mammals
<i>TRPC3</i>	TRPC3 (TRP3); Q13507	7DXB, 7DXC, 7DXD, 7DXE, 6DJR, 6CUD, 5ZBG	brain, heart, lung, blood vessels prostate, placenta, kidney, testis
<i>TRPC4</i>	TRPC4 (TRP4, CCE1); Q9UBN4	7B0J, 6G1K, 7B05, 7B0S, 7B16, 6JZO, 5Z96, 8WPN, 7B1G; as TRPC1/4 heteromer: 8WPL, 8WPM	high levels in brain and placenta, lower levels in heart, pancreas, kidney, endothelium
<i>TRPC5</i>	TRPC5 (TRP5, CCE2); Q9UL62	7E4T, 7D4P, 7D4Q, 7WDB, 7X6C, 8GVW, 7X6I, 8GVX, 6AEI, 6YSN	high levels in brain, lower levels in kidney, blood vessels, liver, stomach
<i>TRPC6</i>	TRPC6 (TRP6); Q9Y210	7DXF, 7DXG, 6UZB, 6UZA, 5YX9, 7A6U	placenta, lung, blood vessels, spleen, ovary, small intestine, neutrophils, podocytes
<i>TRPC7</i>	TRPC7 (TRP7); Q9HCX4	n.d.	hypophysis, kidney, heart, lung, blood vessel, eye, spleen, testis
TRPVs			
<i>TRPV1</i>	TRPV1 (VR1, OTRPC1); Q8NER1	5IRX, 5IRZ, 5ISO, 7L2H, 7L2I, 7L2J, 7L2K, 7L2L, 7L2M, 7L2N, 7L2O, 7L2P, 7L2R, 7L2S, 7L2T, 7L2U, 7L2V, 7L2W, 7L2X, 7LP9, 7LPA, 7LPC, 7LPC, 7LPD, 7LPE, 7LQY, 7LQZ, 7LR0, 7MZ5, 7MZ6, 7MZ7, 7MZ9, 7MZA, 7MZB, 7MZC, 7MZD, 7MZE, 7RQU, 7RQV, 7RQW, 7RQX, 7RQY, 7RQZ, 8GF8, 8GF9, 8GFA, 8JQR, 8T0C, 8T0E, 8TOY, 8T10, 8T3L, 8T3M, 8U2Z, 8U30, 8U3A, 8U3C, 8U3J, 8U3L, 8U43, 8U4D, 8X94	small-to medium diameter DRG and trigeminal ganglion sensory neurons, brain neurons, astrocytes and microglia
<i>TRPV2</i>	TRPV2 (VRL-1, OTRPC2); Q9Y5S1	6003, 6004, 6005, 6007, 7XEM, 7XEO, 7XER, 7XEU, 7XEV, 7XEW, 7YEP, 6BWJ, 6BWMM, 5AN8, 8SLX, 8SLY, 8FFL, 8FFM, 8FFN, 8FFQ, 5HI9, 6B04, 6B05, 6U84, 6U86, 6U88, 6U8A, 7N0M, 7N0N, 7T37, 7T38, 7ZJD, 7ZJE, 7ZJC, 7ZJH, 7ZJI, 9B3U, 9B3V, 9B3W, 9B3X, 9B3Y, 9B3Z, 8EKP, 8EKQ, 8EKR, 8EKS	medium-to-large diameter DRG and trigeminal ganglion sensory neurons, various immune cell types, red blood cells, neurons, microglial cells, melanocytes, vascular smooth muscle cells, urothelium
<i>TRPV3</i>	TRPV3 (VRL3, oTRPC3); Q8NET8	<u>Tetrameric</u> 6DVV, 6DVY, 6DVZ, 6MHO, 6MHS, 6MHV, 6MHW, 6MHX, 6OT2, 6OT5, 6PVL, 6PVM, 6PVN, 6PVO, 6PVP, 6PVQ, 6LGP, 6UW4, 6UW6, 6UW8, 6UW9, 7MIJ, 7MIK, 7MIL, 7MIM, 7MIN, 7MIO, 7RAS, 7RAU, 7UGG, 7XJ0, 7XJ1, 7XJ2, 7XJ3, 8CKA, 8V6K, 8V6L, 8V6M, 8V6N, 8V6O, 9JDM, 9JE5, 9JEE, 9JEF, 9JEG, 9BKT <u>Pentameric</u> 8GKG, 9DJ	keratinocytes, oral gingival and epithelial cells, glandular cells and enterocytes in the small and large intestine
<i>TRPV4</i>	TRPV4 (TRP12, VRL-2, oTRPC4); Q9HBA0	8T1B, 8T1C, 8T1D, 8T1E, 8T1F, 8FC7, 8FC8, 8FC9, 8FCA, 8FCB, 8J1B, 8J1D, 8J1F, 8J1H, 8JKM, 8JU5, 8JU6, 8JVI, 8JVJ	Ubiquitous in vascular endothelial cells, pancreatic, tongue and salivary gland exocrine epithelial cells, epithelial cells in kidney tubules, bronchial, tracheal and fallopian tube ciliated cells, skin keratinocytes and melanocytes, macrophages, hepatic Kupffer cells, placental trophoblast, and decidua cells
<i>TRPV5</i>	TRPV5 (ECaC, ECaC1, CAT2, OTRPC3); Q9NQA5	6B5V, 6DMR, 6DMU, 6DMW, 6O1N, 6O1P, 6O1U, 6O20, 6PBE, 6PBF, 7T6J, 7T6K, 7T6L, 7T6M, 7T6N, 7T6O, 7T6P, 7T6Q, 7T6R, 8FFO, 8FHH, 8FHI, 8TF2, 8TF3, 8TF4, 8FFL, 8FFM, 8FFN, 8FFQ	DCT and collecting duct of the kidney, pancreas, small and large intestine, prostate gland, testis, brain, bone osteoclasts, and placenta
<i>TRPV6</i>	TRPV6 (CaT1, ECaC2, OTRPC3); Q9H1D0	5IWK, 5IWP, 5IWR, 5IWT, 5WO6, 5WO7, 5WO8, 5WO9, 5WOA, 6B08, 6B09, 6B0A, 6B0B, 6D70, 6D7P, 6D7Q, 6D7S, 6D7T, 6D7V, 6D7X, 6E2F, 6E2G, 7D2K, 7K4A, 7K4B, 7K4C, 7K4D, 7K4E, 7K4F, 7S88, 7S89, 7S8B, 7S8C, 8FOA, 8FOB, 8SP8, 9CUH, 9CUI, 9CUJ, 9CUK	Small intestine, glandular cells of the salivary gland, pancreas, prostate, thyroid, bronchia, placenta, testis, epididymis, endometrium, stomach, caecum, main olfactory epithelium

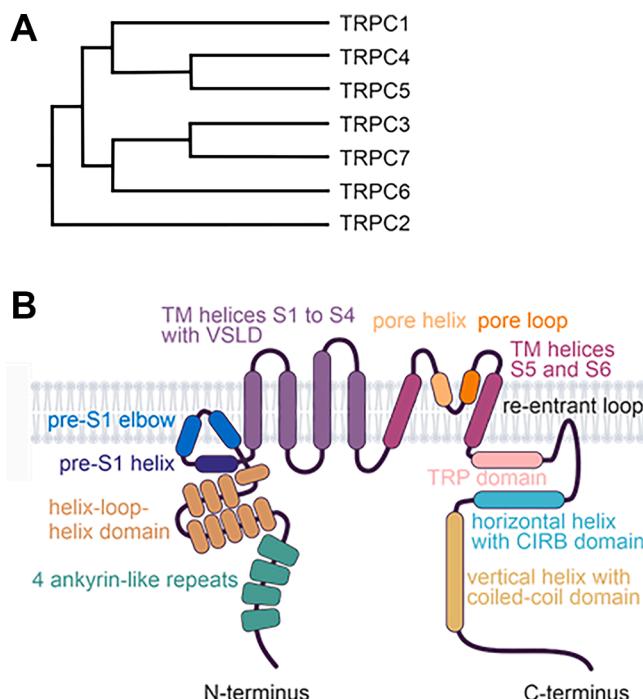
TRPMs			
<i>TRPM1</i>	TRPM1 (Melastatin, MLSN1, LTRPC1); Q7Z4N2	n.d.	melanocytes, retinal ON bipolar cells
<i>TRPM2</i>	TRPM2 (LTRPC2); Q94759	6MIX, 6MIZ, 6MJ2, 6PUO, 6PUR, 6PUU, 6PUS, 7VQ1, 8E6Q, 8E6T, 8E6R, 8E6S, 8E6U	ubiquitous; high levels in brain and immune cells
<i>TRPM3</i>	TRPM3 (MLSN2, LTRPC3, TRPM3 α 2); Q9HCF6	8ED7, 8ED8, 8ED9, 8DDR, 8DDS, 8DDT, 8DDX, 8DDQ, 8DDU, 8DDV, 8DDW, 9B2A, 9B29, 9B28	DRG sensory neurons, brain, kidney, pancreatic β -cells, placenta, testis
<i>TRPM4</i>	TRPM4 (LTRPC4, TRPM4B); Q8TD43	9B93, 6BQV, 9B90, 6BCO, 6BCQ, 9B92, 9B94, 6BCL, 5WP6, 6BWI, 8RCR, 8RCU, 8RD9, 9B8W, 9B8Y, 6BCJ, 6BQR	ubiquitous; high levels in brain, heart, immune cells, and pancreatic β -cells
<i>TRPM5</i>	TRPM5 (MTR1, LTRPC5); Q9NZQ8	8SLE, 8SL6, 8SL8, 8SLA, 8SLI, 8SLP, 8SLQ, 8SLW	type II taste receptor cells, tuft cells, olfactory epithelium, and pancreatic β -cells
<i>TRPM6</i>	TRPM6 (ChaK2, Channel-kinase 2); Q9BX84	n.d.	kidney, intestine, placenta, lung, testis
<i>TRPM7</i>	TRPM7 (LTRPC7, TRP-PLIK, ChaK1, Channel-kinase 1, MagNum, MIC); Q96QT4	5ZX5, 6BWF, 6BWD, 8SI2, 8SI3, 8SIA, 8SI7, 8SI5, 8SI6, 8SI4, 8S18, 8W2L; kinase domain: 1IAH, 1IA9, 1IAJ	ubiquitous
<i>TRPM8</i>	TRPM8 (Trp-p8, CMR1, Cold receptor 1); Q7Z2W7	8BDC, 8E4L, 8E4M, 8E4N, 8E4O, 8E4P, 9B6D, 9B6E, 9B6F, 9B6G, 9B6H, 9B6J, 9B6K, 7WRA, 7RWB, 7WRC, 7WRD, 7WRE, 7WRF	DRG and TG sensory neurons, brain, prostate, pancreatic β -cells, placenta, testis
TRPAs			
<i>TRPA1</i>	TRPA1 (ANKTM1, TRPN1); Q75762	3J9P, 6PQO, 6PQP, 6PQQ, 6V9V, 6V9W, 6V9X, 6V9Y, 6X2J, 6WJ5, 7JUP, 7OR0, 7OR1, 9MOE	DRG, trigeminal and vagal ganglia, enterochromaffin cells, astrocytes, Schwann cells, bronchial, alveolar, renal and urothelial epithelial cells, keratinocytes, melanocytes, cardiac fibroblasts, pancreatic β -cells, enterochromaffin cells, T-cells, pancreatic and colon cancer, neuroblastoma, glioblastoma
TRPMLs			
<i>TRPML1</i>	TRPML1 (MCOLN1, Mucolipin1); Q9GZU1	7SQ7, 7SQ8, 7SQ9, 5WPQ, 5WPY, 5WPV, 7MGL, 9CBZ, 9CBZ, 9CBZ, 5YDZ, 5YE2, 9CC2, 5YE5, 9EKT, 7SQ6, 9EKS, 9EKU, 6E7P, 6E7Y, 6E7Z, 5YE1, 9EKV, 5WJ5, 5WJ9, 9HJ6, 9HJ8, 9HL3, 9HL4, 9HL6, 9HL8, 9HLA, 9HLB, 9HLC, 9HLD	ubiquitous
<i>TRPML2</i>	TRPML2 (MCOLN2, Mucolipin2); Q8IZK6	7DYS, 9EKW, 9EKX, 9EKY, 9EKZ, 9EKO, 8EL1, 6HRS, 6HRR	thymus, spleen, kidney, trachea, liver, lung, colon, testis, thyroid, B- and T-cells, macrophages, dendritic cells
<i>TRPML3</i>	TRPML3 (MCOLN3, Mucolipin3); Q8TDD5	6AYG, 6AYE, 6AYF	hair cells of the inner ear, organ of corti, utricle, stria vascularis, alveolar macrophages, skin melanocytes, neonatal enterocytes, kidney, lung, olfactory bulb (sensory neurons), nasal cavity, thymus, colon, trachea, several glands (parathyroid, salivary, adrenal, pituitary), testis, ovary
TRPP channels			
<i>PKD2</i>	TRPP2 (polycystin-2, PC2, PKD2); Q13563	8HK7, 8K3S, 6D1W, 9DLI, 9DWQ, 5K47, 5MKE, 5MKF, 5T4D, 6T9N, 6T9O, 6WB8; as PKD1-PKD2 heteromer: 6A70	ubiquitous; high levels in the kidney, brain, heart
<i>PKD2L1</i>	TRPP3 (polycystin L, PKD2L1); Q9P0L9	5Z1W, 6DU8; as PKD1L3-CTD-PKD2L1 heteromer: 7D7E, 7D7F	brain, taste receptor cells, kidney, lung
<i>PKD2L2</i>	TRPP5 (PKD2L2); Q9NZM6	n.d.	testis and brain, low levels in the kidney, liver, heart, lung

n.d., not determined.

^aaccession numbers for human proteins in UniProt.^bexperimentally addressed structures for human/rodent/fish (TRPC), human/rodent (TRPV, TRPM, TRPML, TRPP), or human (TRPA) proteins in RCSB PDB (Research Collaboratory for Structural Bioinformatics Protein Data Bank).

Fig. 1. Representative structures of TRP channels. Cryo-EM structures of TRPC4, TRPV1, TRPA1, TRPM4, TRPML3, and TRPP2 channels are shown from extracellularly (top) and parallel to the plasma membrane (bottom), with the exception that TRPML3 is viewed from the extracytosolic side (top) and the lysosomal membrane plane (bottom). The 4 subunits are colored in blue, pink, green, and brown to outline the tetrameric assembly of the channels. TRPML3 and TRPP2 contain a cap-like structure above a channel pore entrance.

several 3D structures of TRPC3, TRPC4, TRPC5, and TRPC6 channels, and TRPC1/4 heteromers have been identified, with resolutions ranging from 2.4 Å to 4.4 Å. These structures were obtained in the presence and absence of inhibitors, activators, and Ca^{2+} , or in complex with interacting proteins such as calmodulin (CaM) or Gai protein subunits.^{17–30} Table 1 summarizes the available Protein Data Bank (PDB) entries. Studies have revealed that all TRPCs exhibit a tetrameric structure, with each channel subunit adopting a Y-shaped arrangement, giving the tetramers rotational symmetry. The 4 monomers collectively form the central channel pore,


which is permeable to both monovalent and divalent cations. Each channel monomer comprises 6 TM domains (TMDs) (S1–S6), formed by α -helices, with cytosolic N- and C-termini. The general structural features of TRPCs are depicted in Fig. 2B.

The N-terminus of TRPCs contains 4 ankyrin-like repeats, conserved across other TRP channel families such as TRPMs, TRPVs, and TRPA1.³¹ These repeats play critical roles in protein or cytoskeleton interactions^{32,33} and stabilize the distal cytoplasmic portions of the C-terminus.^{29,34,35} The first ankyrin-like repeat appears crucial for channel homo- or heterotetramerization,³⁶ as it interacts with a connecting helix – the rib helix – and the C-terminus of the adjacent monomer, potentially stabilizing the tetramer.²⁰ Notably, the 3D structure of TRPC5 in complex with the Gai3 protein subunit has revealed direct interaction between Gai3 and the ankyrin-like repeat domains 1 and 2.²⁷

TRPC4 and TRPC5 channels feature 7 helices, while TRPC3 and TRPC6 contain 9 helices of varying lengths, connected by loops (helix-loop-helix domain) located at the proximal N-terminus. This domain interacts with the C-terminal TRP domain, a conserved structure that follows the S6 TMD. Adjacent to this domain lies the pre-S1 elbow, a membrane-associated structure consisting of 2 helices. The following pre-S1 helix itself is parallel to the cytoplasmic membrane surface.

The TM helices S1–S4 form a Y-shaped “shank” and a voltage-sensing-like domain (VSLD) that harbors binding sites for various channel modulators. The second Y-shaped “leg” is composed of the TM helices S5 and S6, connected via the PH and pore loop. The ion-conducting pathway is primarily formed by S5, S6, and the pore domain, which includes the PH, turret, and loop. The pore walls are constructed of 4 pore loops and their corresponding S6 helices, with the extracellular pore region carrying a negative charge. TRPC5 has one additional negatively charged amino acid compared with TRPC4,²³ potentially explaining the higher single-channel conductance of TRPC5.³⁷ Mutations in this extracellular pore region alter channel properties, underscoring its role in ion selectivity and conductivity.^{23,38}

The leucine-phenylalanine-tryptophan (LFW) motif in the PH, along with upstream residues, stabilizes the pore domain by interacting with the S5 domain of the same monomer and the S6 domain of an adjacent monomer. The ion selectivity filter is formed by phenylalanine and glycine residues, which are located 2

Fig. 2. The relatedness and domain topology of TRPCs. (A) Phylogenetic tree of the human TRPC1–7 proteins. Since TRPC2 is a pseudogene in humans, mouse TRPC2 is displayed. (B) Schematic representation of a TRPC monomer using the example of TRPC6.

amino acids downstream of the LFW motif at the end of the PH and at the beginning of the pore loop, with their carbonyl oxygens interacting electrostatically with permeating cations, thereby forming the ion selectivity filter.²⁸ Below the selectivity filter lies a central, presumably water-filled, pore cavity formed by the S6 helix, with constriction sites at the cytoplasmic end. The narrowest part of the ion-conducting pore, the lower gate, is usually formed by 3 amino acids. These constriction sites, spaced by 3 amino acids each, consist of valine, histidine, and glutamine in TRPC1³⁰; leucine and isoleucine¹⁷ or leucine, isoleucine, and phenylalanine¹⁹ in TRPC3; isoleucine, asparagine, and glutamine in TRPC4²² and TRPC5²³; and leucine, isoleucine, and phenylalanine²⁸ or the adjacent amino acids isoleucine, asparagine, and glutamine¹⁸ in TRPC6. Interestingly, it was suggested that, depending on the selected inhibitor, the lower gate of TRPC6 is formed by isoleucine, asparagine, and glutamine.¹⁹

Another conserved structure in TRPCs is the helical TRP domain, located proximally to the intracellular C-terminus. It includes the TRP box, which contains the amino acid motif glutamate-tryptophan-lysine-phenylalanine-alanine-arginine (EWKFAR). This motif stabilizes the cytoplasmic proximal section of the channel. The tryptophan and phenylalanine residues of the TRP box, along with tyrosine and lysine residues of the TRP helix, interact with the N-terminal proximal helices (helix-loop-helix domain), the intracellular loop between S4 and S5, and the cytoplasmic ends of the S1 and S4 helices. Consequently, the TRP domain forms a stabilizing contact surface between the TM regions and the proximal cytoplasmic sections of the channel.

Although the precise function of the TRP box remains unclear, growing evidence suggests that it plays a critical role in channel-gating regulation. For instance, glycine at position 503 in TRPC4 affects gating, as a substitution for serine results in uncontrolled channel opening.³⁹ Glycine 503 interacts with tryptophan 635 in the TRP domain, stabilizing the S6 segment that constitutes the lower gate.²⁰ Additionally, the TRP domain may interact with phosphoinositol-4,5-bisphosphate (PIP₂), as observed in other TRP channels like TRPM8.^{40–42} In TRPC6, PIP₂ binding likely occurs between the distal TRP box and the pre-S1 helix.⁴³ A lysine-to-alanine substitution at position 771 in the TRP box potentiates TRPC6 currents, altering the channel state. In TRPC3, PIP₂ binds at the intersection of the pre-S1 helix and the S1 TM helix, inducing conformational changes via the re-entrant loop and TRP domain.⁴⁴ Altogether, the TRP domain is highly conserved within the TRP channel superfamily and is crucial for structural stabilization, gating regulation, and cofactor interactions.

Following the TRP domain, a loop containing 2 glutamates (in TRPC4 and TRPC6), 2 aspartates (in TRPC1 and TRPC3), or an aspartate-glutamate combination (in TRPC5 and TRPC7) extends into the cytoplasmic membrane layer. This loop interacts with the pre-S1 elbow of the N-terminus and the cytoplasmic end of the S1 helix. Although not resolved in all 3D structures, it is presumed to be a common feature of TRPCs.

TRPC4 and TRPC5 possess a unique extracellular disulfide bond between 2 cysteines near the S5 PH linker, which may play a role in redox sensing.^{22,45} Additionally, TRPC3 and TRPC6 differ from TRPC4 and TRPC5 in the length of their S3 helices on the extracellular side, which are approximately 4 helical turns longer.

A nearly parallel helix, slightly sloping toward the cytoplasmic membrane, has been variously termed "CH1",¹⁸ "horizontal helix",²⁹ or "CTD rib helix".¹⁷ In TRPC4 and TRPC5, it is referred to as the "connecting helix"^{22,23} or "Rib helix + CaM 1,4,5-trisphosphate (IP₃) receptor binding (CIRB) domain".²⁰ The CIRB domain, present in all TRPCs, begins before the horizontal helix and encompasses most of it. The 3D structure of TRPC4 in complex with CaM reveals an interaction between 1 channel monomer and 1 CaM protein at

the CIRB domain.²¹ Interestingly, CaM binding depends on calcium concentration: at low calcium levels, IP₃ receptor binding is favored, while at high calcium levels, CaM preferentially binds. CaM stabilizes the inactive channel state, whereas IP₃ receptor binding promotes activation.^{21,46,47}

At the distal end of the C-terminus, a perpendicular helix forms another conserved feature, variously called "CH2",¹⁸ "CTD pole helix",¹⁷ "vertical helix",²⁹ "coiled-coil (CC) domain",^{22,23} or "C-term helix"²⁰ in TRPC4 and TRPC5. This helix exhibits a heptahedron-like pattern, and 4 such helices assemble to form a central, vertically extending tunnel in the distal cytoplasmic region. Together with the ankyrin repeat domains (ARDs), this structure is critical for tetrameric assembly.

TRPCs can be regulated by lipids, though the precise mechanism of lipid regulation remains incompletely understood. Recently, 2 distinct lipid-binding sites have been identified. Lipid binding site 1 is located in the inner leaflet of the VSLD, while lipid binding site 2 is situated in the pore region between the pore loop and the S6 helix of an adjacent channel monomer. In the apo states of TRPC5^{23–25} and TRPC4,^{20,22} a lipid has been found in the pore region, interacting with the phenylalanine and tryptophan residues of the LFW motif. This lipid has been identified as ceramide-1-phosphate, phosphatidic acid^{23,25} or diacylglycerol (DAG).^{24,48} Mutations in lipid binding site 2 have been shown to affect the DAG sensitivity of TRPC3 and TRPC6 channels,^{28,49,50} highlighting this region's critical role in regulating channel activity.

In the 3D structure of TRPC6, a lipid identified as phosphatidylcholine was found in lipid binding site 2, interacting with the phenylalanine and tryptophan residues of the LFW motif.²⁸ Interestingly, this lipid was shifted upward toward the extracellular side and rotated vertically compared with the lipids found in the TRPC4 and TRPC5 structures.

At lipid binding site 1, cholesterol hemisuccinate—introduced during protein purification—was detected. However, in the TRPC3 structure, a phospholipid was identified at this site,¹⁷ which may represent an endogenous lipid that binds to the channel. Additionally, the 3D structures of TRPC4 in both their ligand-bound and apo states²¹ suggest the presence of a Ca²⁺ ion in the VSLD domain. This ion appears to stabilize ligand binding in the VSLD through a bridging water molecule. Similar cation densities have been observed in the TRPC4 and TRPC5 structures.^{22,23} Deleting the Ca²⁺ binding site in TRPC5 abolished channel activation by elevated extracellular Ca²⁺ concentrations.²⁴

To date, high-resolution structures of TRPCs in their open state are still lacking, and significant portions of the C-terminal region remain unresolved. However, comparisons of TRPC6 3D structures in the apo and activator-bound states suggest that channel opening involves critical movements of the TM helices.²⁸ Upon activation, the S6 helix of TRPC6 relaxes and moves downward, widening the restriction point at the lower gate, which is formed by leucine, isoleucine, and phenylalanine residues. This movement is accompanied by a downward bending of the S5 helix. Conversely, Vinayagam et al.²¹ propose a different mechanism, in which channel activation involves movements of the VSLD and the TRP box.

2. Assembly of TRPCs

TRPCs can assemble into either homotetrameric or heterotetrameric channel complexes. However, TRPC1 alone may not form functional homotetrameric channels, at least in over-expression systems. Instead, it can form heterotetrameric channel complexes with other TRPC subunits^{30,51–56} and even with subunits from other TRP channel families, such as TRPP2,⁵⁷ TRPV4,⁵⁸ and TRPV6.⁵⁹

In neurons, TRPC1 can heterotetramerize with TRPC4 and TRPC5 to form TRPC1/4/5 channels.^{54,55,60–62} Within these heterotetramers, TRPC1 alters the permeation properties and reduces calcium permeability.^{51,63–65} Additionally, TRPC1 plays a regulatory role as part of a multiprotein complex that includes stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein Orai, both of which are involved in store-operated calcium entry (SOCE).^{66–68} Heterotetrameric complexes can also form between TRPC3, TRPC6, and TRPC7 subunits,^{60,69,70} as well as between TRPC3 and TRPC4.⁷¹ TRPC2 channels, which are highly expressed in the vomeronasal organs (VNOs) of rodents⁷² but are pseudogenes in humans, are more likely to exist as homomeric channels. In the brain, TRPC3, TRPC6, and TRPC7 preferentially form homomeric channels.⁶² Assumably, the expression of TRPCs as homomeric or heteromeric channels might vary between different cells and tissues.

3. Functional characteristics of individual TRPCs

TRPCs are widely recognized as nonselective, calcium-permeable, and receptor-operated cation channels. These channels are activated downstream of phospholipase C (PLC) following the activation of $G_{q/11}$ protein-coupled receptors or receptor tyrosine kinases.^{5,73} PLC activation leads to the cleavage of PIP₂ into the second messengers, inositol IP₃ and DAG. IP₃ promotes calcium release from intracellular stores, increasing the free intracellular calcium concentration, while DAG directly activates TRPCs, facilitating sodium and calcium influx and triggering cellular effects. All TRPCs can be directly activated by DAG,^{74–78} suggesting that DAG serves as an endogenous activator. However, the DAG sensitivity of TRPC4 and TRPC5 channels is tightly regulated and requires dephosphorylation of a threonine residue in the C-terminal postsynaptic density protein, *Drosophila* disc large tumor suppressor, and zonula occludens-1 protein (PDZ)-binding motif. This motif is unique to TRPC4 and TRPC5 channels and allows for the replacement of Na^+/H^+ exchanger regulatory factor (NHERF) 1 and 2 adapter proteins, which are essential for DAG sensitivity.^{77–79}

In the case of TRPC3, the use of the photoswitchable DAG derivative, OptoDArG, revealed that DAG might activate the channel through a fenestration involving a conserved glycine residue behind the channel's selectivity filter.⁴⁹ However, the precise mechanism underlying lipid sensing remains to be fully elucidated. IP₃ and IP₃ receptors also modulate TRPC function. IP₃ can directly activate TRPC7 channels,⁸⁰ while IP₃ receptors activate TRPC3 and TRPC5 channels.^{47,81} This interaction occurs via the C-terminal CIRB motif of TRPCs, where IP₃ receptor binding competes with CaM binding.^{21,46,47,82,83} The binding of IP₃ receptors establishes an active channel state, while CaM binding promotes an inactive state.

TRPC activity is further influenced by juncate, a TM protein expressed in the endoplasmic reticulum (ER) membrane that interacts with IP₃ receptors.^{84–86} Juncate serves as a calcium-sensing structural component of Orai and STIM1 within the ER membrane at ER-plasma membrane junctions.⁸⁷ Notably, juncate enhances the formation of ER-plasma membrane junctions containing TRPC3 and IP₃ receptors,⁸⁶ which may represent a mechanism by which IP₃ receptors and TRPCs contribute to SOCE.

A store-operated activation mechanism has been proposed for TRPCs based on observations that the depletion of intracellular calcium stores triggers calcium influx through the plasma membrane.⁸⁸ This phenomenon is associated with the highly Ca^{2+} -selective calcium release-activated current.⁸⁹ However, this current does not share the nonselective characteristics of TRPC currents. Despite this, TRPC1 has been suggested to function as a store-operated channel, either alone or in complex with Orai.^{90–93}

Additionally, TRPC1 may also be activated via a receptor-dependent mechanism that involves store depletion, effectively integrating both activation pathways.⁹⁴

Currently, it is widely accepted that Orai and STIM proteins are the primary molecular components of store-operated calcium influx.^{95–99} STIM serves as a calcium sensor in the ER membrane and activates Orai proteins, which form the channel pore. Evidence suggests that TRPCs, particularly TRPC1, may interact with STIM and/or Orai, modulating SOCE.^{100,101} Nevertheless, while Orai is essential for calcium influx following store depletion, TRPCs are not strictly required, as demonstrated in studies using mice lacking all 7 TRPC genes.¹⁰²

The membrane lipid PIP₂ also modulates TRPC function. PIP₂, as a substrate of PLC, plays a role in receptor-operated signaling pathways but can also act as a second messenger that regulates cellular processes, potentially influencing ion channel activity.^{103,104} Interestingly, the effects of PIP₂ vary depending on the patch-clamp configuration used. In inside-out patches, heterologously expressed TRPC5, TRPC3, TRPC6, and TRPC7 channels are activated by PIP₂,^{105,106} whereas endogenously expressed TRPC6 channels are inhibited.^{107–109} Whole-cell patch-clamp recordings of heterologously overexpressed TRPC5 channels show that PIP₂ depletion activates TRPC5,^{77,106} while PIP₂ application through the patch pipette inhibits the channel. TRPC4 channels are similarly inhibited by PIP₂ in an isoform-specific manner, with PIP₂ binding to the C-terminal region stabilizing the inactive channel state.¹¹⁰ Furthermore, the intracellular application of PIP₂ reduces TRPC5 desensitization following receptor activation.¹¹¹

In overexpression systems, PIP₂ depletion induces a conformational change in the TRPC5 C-terminal region, causing the dissociation of NHERF and conferring direct sensitivity to DAG.⁷⁷ This NHERF dissociation also occurs following protein kinase C (PKC) inhibition or threonine mutation in the C-terminal PDZ-binding motif of TRPC4/5 channels.⁷⁷ Similar PKC-related modulation of DAG sensitivity has been reported,^{78,79} suggesting a regulatory role of PIP₂ in TRPC function. Notably, PIP₂ application through the patch pipette enhances DAG-induced TRPC5 currents after PKC inhibition.⁷⁸

A PIP₂-binding site has been proposed for TRPC5 near the linker regions between the S2 and S3 helices, the S4 and S5 helices, the TRP helix, and the helix-loop-helix domain.²⁷ The intracellular application of PIP₂ increases the open probability of TRPC5 channels.²⁷ Moreover, trivalent cations and DAG allosterically modulate PIP₂ binding to TRPC5, underscoring PIP₂ as a critical factor in channel activation and inactivation.⁷⁸ Additionally, PIP₂ binding to TRPC5 is enhanced by the interaction with Gαi protein subunits, making TRPC5 more readily open in the cell membrane.²⁷

Lipid regulation of TRPC3 channels may require an interplay between PIP₂ and DAG.¹¹² Cleavage of PIP₂ by PLC generates DAG, which can bind to lipid-binding site 2 within the channel pore, while PIP₂ interacts with lipid-binding site 1 near the VSLD. This interaction inhibits TRPC3 channel opening, regulating DAG's access to lipid-binding site 2.¹¹² Furthermore, it has been proposed that PIP₂ modulates the ionic selectivity of the TRPC3 pore following receptor stimulation, and that in PIP₂-rich membrane domains, TRPC3 may be recruited to ER-plasma membrane junctions, suggesting an interaction between TRPC3 and STIM1 to regulate calcium influx.¹¹²

In TRPC6 channels, amino acid substitutions in the PIP₂-binding site at the pre-S1 helix⁴³ reduce receptor- and 1-oleoyl-2-acetyl-sn-glycerol-induced TRPC6 currents, indicating that PIP₂ binding enhances channel activity. However, substituting lysine with glutamine in the distal TRP box reverses this effect, potentiating TRPC6 currents at low PIP₂ concentrations.⁴³ This highlights the critical role of the C-terminus in PIP₂-mediated regulation of

TRPCs. Despite these findings, the lipid regulation of TRPCs, including the precise roles of PIP₂ and DAG in channel activation, remains incompletely understood.

Cleavage of PIP₂ by PLC also produces protons at the cytoplasmic side of the plasma membrane, causing localized acidification.¹¹³ This acidification may influence TRPC4 channel activity by sensitizing PLC δ 1 to calcium, leading to its activation and the potentiation of TRPC4 currents.¹¹⁴ The signaling pathway for TRPC activation is complex, involving multiple components whose interplay is not yet fully elucidated. Additionally, extracellular protons¹¹⁵ and trivalent cations, such as lanthanum and gadolinium,^{38,116} can potentiate TRPC4 and TRPC5 currents. Interestingly, TRPC4 and TRPC5 channels can be activated not only downstream of G_{q/11} protein but also via G_{i/o} protein-coupled receptor activation. For example, G_{i/o} protein-coupled receptor activation triggers TRPC4 channel opening through PLC δ 1 activation.¹¹⁴ However, TRPC4 activation by G_{i/o} protein-coupled receptors may also occur independently of PLC, relying instead on a direct interaction with G α i proteins.¹¹⁷ Similarly, TRPC5 channels are activated by G α i proteins.¹¹⁸

Recent structural analyses²⁷ have revealed that G α i proteins directly interact with TRPC5 channels via the N-terminal ankyrin-like repeat domains 1 and 2, leading to channel activation in the presence of PIP₂. Direct interactions between G proteins and ion channels have so far been well established only for G protein-activated inwardly rectifying potassium channels, where G $\beta\gamma$ subunits directly bind to the channel.¹¹⁹ It has also been proposed that TRPC5 channels are activated downstream of G_s protein-coupled receptor stimulation through a cAMP-mediated intracellular calcium release.¹²⁰

The free intracellular calcium concentration also plays a critical role in regulating TRPC activity. Increasing free intracellular calcium levels above 300 nM activates TRPC4 and TRPC5 channels.^{37,121} Consequently, calcium release from the ER following receptor activation can induce TRPC4 and TRPC5 channel opening, further elevating free intracellular calcium levels and enhancing sodium and calcium influx. Simultaneously, depletion of intracellular calcium stores activates Orai channels, contributing to an additional increase in free intracellular calcium. Free intracellular calcium concentrations of approximately 1 μ M were shown to potentiate receptor-operated TRPC5 channels.¹²² Even higher concentrations, with an EC₅₀ of around 12 μ M, are required to activate the short isoform TRPC4 β .¹¹⁴ However, as noted earlier, elevated calcium levels also promote CaM binding,²¹ which restricts the mobility of the TRP helix and locks the channel in its closed state.²¹

TRPC4 and TRPC5 currents can also be potentiated by increasing extracellular calcium concentrations to 10 mM.¹²² TRPC6 channels are similarly sensitive to free intracellular calcium levels, but their activation is primarily mediated through CaM-dependent kinase II phosphorylation.^{80,123} Elevated free intracellular calcium concentrations can also promote the translocation of TRPCs to the plasma membrane.¹²⁴ Additionally, higher extracellular calcium levels increase TRPC6 currents.⁸⁰

However, extracellular calcium concentrations exceeding physiological levels (≥ 3 mM) inhibit TRPC6 channel activity, while TRPC7 currents are inhibited by extracellular calcium even at micromolar concentrations.⁸⁰ TRPC3 currents are similarly suppressed by extracellular calcium.¹²⁵ Altogether, calcium exerts both stimulatory and inhibitory effects on different TRPCs, allowing for precise fine-tuning and regulation of channel function.

C. Expression pattern and primary physiological roles of TRPCs

An overview of the expression profile of TRPCs is provided in Table 1. TRPC1 is ubiquitously expressed across various

tissues.^{126,127} It forms heterotetrameric channels with other TRPC protein subunits,^{51–54} and even with other TRP proteins, such as TRPP2,¹²⁸ TRPV4,⁵⁸ and TRPV6.⁵⁹ These interactions alter biophysical properties⁵⁴ and reduce calcium permeability.^{51,59,63–65}

TRPC1 is highly expressed in neurons, where it plays roles in axonal chemotaxis,¹²⁹ mediates the slow excitatory postsynaptic potential induced by metabotropic glutamate receptors in Purkinje cells,¹³⁰ and provides neuroprotection against exogenous neurotoxins.¹³¹ Additionally, TRPC1 enhances the differentiation of hippocampal neurons¹³² and promotes the proliferation of neuronal progenitor cells in the hippocampus¹³³ and cochlear spiral ganglion.¹³⁴ These findings suggest that TRPC1 is involved in neuronal homeostasis and might play a role in neurodegeneration.¹³⁵

In nonneuronal tissues, calcium influx via TRPC1 in mandibular salivary gland cells enhances salivary secretion.^{136,137} In the cardiovascular system, TRPC1 promotes proliferation,⁶⁵ influences vascular tone, and is upregulated in smooth muscle and cardiac myocytes after stenosis, leading to enhanced proliferation.^{138,139} This suggests a potential role for TRPC1 in cardiac dysfunction.¹⁴⁰ TRPC1 also regulates vascular function, inducing vasoconstriction.^{141–144} However, endothelial TRPC1 promotes vasodilation.^{145–147} TRPC1/4 heteromers regulate endothelial permeability in the lungs,¹⁴⁸ and TRPC1 contributes to pulmonary hypertension,^{149,150} immune system regulation,¹⁵¹ cancer progression,¹⁵² and endocrine functions, such as parathyroid hormone secretion.¹⁵³

TRPC2 channels⁷⁵ are functionally expressed in most macroscopic species, such as fish and mammals.¹⁵⁴ However, in microscopic species, such as hominids and Old World monkeys, TRPC2 is nonfunctional and has evolved into a pseudogene.^{15,16} This loss is associated with the degeneration of the VNO,¹⁵⁵ where TRPC2 channels are essential for pheromone perception.^{72,156}

In the VNO, TRPC2 is crucial for pheromone-driven behaviors. TRPC2 deficiency results in impaired pheromone perception, sex-typical (sex is defined as the biological classification of individuals as male or female) brain changes,¹⁵⁷ and altered social behaviors, including reduced aggression and impaired olfactory sex recognition.^{158,159} TRPC2-deficient males may exhibit male–male mating behavior,¹⁵⁹ which is accompanied by reduced dopamine levels in dopaminergic neurons.¹⁶⁰ Similarly, TRPC2-deficient females may display male-typical sexual behavior.¹⁶¹

Outside the VNO, TRPC2 channels have diverse functions. In thyroid cells, TRPC2 may increase thyroid-stimulating hormone receptor expression, reduce thyroglobulin maturation, influence free intracellular calcium and iodide homeostasis, and reduce thyroid cell proliferation.¹⁶² In spermatozoa, TRPC2 channels enhance the acrosome reaction,¹⁶³ facilitating penetration of the oocyte.¹⁶³ In erythrocytes, TRPC2 channels have been implicated in oxidative stress-induced hemolytic anemia.¹⁶⁴ Expression in the testis was also demonstrated.¹⁶⁵

TRPC3 channels are highly expressed in the central nervous system (CNS),¹⁶⁶ with particularly prominent expression in the pituitary gland and Purkinje cells of the cerebellum.^{167–169} TRPC3 is also expressed in the cardiovascular system, notably in the heart¹⁷⁰ and lungs of patients with pulmonary arterial hypertension.^{171,172}

TRPC3 can form heterotetrameric channel complexes with TRPC6 and TRPC7,^{60,70} as well as with TRPC1^{51,56} and TRPC4⁷¹ protein subunits. Mice deficient in the TRPC3 gene exhibit abnormal extrapyramidal coordination deficits, which are attributed to the absence of TRPC3-mediated calcium influx in Purkinje cells.¹⁶⁷ A point mutation in the TRPC3 gene (T635A), which leads to increased channel activity,¹⁷³ results in an ataxic phenotype. This mutant mouse line is referred to as "moonwalker."¹⁷⁴ In these mice, increased TRPC3 activity causes impaired differentiation of

Purkinje cells during early postnatal development and extensive degeneration during late postnatal development.¹⁷⁴

In addition to Purkinje cells, TRPC3 is expressed in unipolar brush cells, which are excitatory interneurons in the cerebellum.^{175,176} These unipolar brush cells undergo significant degeneration within the first 4 weeks of postnatal development in moonwalker mice.¹⁷⁷

TRPC3 channels are also expressed in the kidney¹⁷⁸ and blood vessels. They are found in the endothelium of the low-pressure system, such as umbilical veins¹⁷⁹ and pulmonary arteries,¹⁸⁰ as well as in the high-pressure system, including afferent arterioles of the kidney¹⁸¹ and coronary arteries.¹⁸² Notably, TRPC3 channels are highly expressed in the endothelium of high-pressure arteries, where they are implicated in hypertension¹⁸¹ and arteriosclerosis.¹⁸³

TRPC3 channels are also expressed in smooth muscle cells of resistance arteries^{184,185} and cardiomyocytes.^{186–190} They may promote cardiac hypertrophy^{188,190} and fibrosis.¹⁹¹ Additionally, TRPC3 channels have endocrine functions, enhancing insulin secretion,¹⁹² and are involved in cancer, such as ovarian and breast cancer.^{193,194} TRPC3 also influences tumor energy metabolism¹⁹⁵ by enhancing mitochondrial calcium uptake.^{196,197} This mitochondrial mechanism demonstrates that TRPC3 plays important roles both in the plasma membrane and intracellularly.¹⁹⁸

TRPC4 and TRPC5 channels are expressed in multiple tissues and organs, including the brain,¹⁹⁹ kidney,^{200,201} and vascular system.²⁰² TRPC4 is highly expressed in the endothelium,²⁰³ where it regulates endothelial calcium homeostasis. In the CNS, TRPC4 and TRPC5 channels are significantly expressed and involved in neuroplasticity. TRPC4 is present in corticolimbic regions¹⁹⁹ and midbrain dopaminergic neurons in the ventral tegmental area and substantia nigra.²⁰⁴

In peripheral sensory and spinal cord neurons, TRPC4 and TRPC5 contribute to pain, inflammation, and itch.^{205–207} TRPC1/4/5 heteromers, particularly TRPC4, are implicated in neurodegeneration²⁰⁸ and play a role in morphine tolerance and hyperalgesia.²⁰⁹

TRPC5 is primarily expressed in the brain,^{168,199,210,211} where it is associated with neurite growth, neurotransmission, and learning.^{61,212–214} In the amygdala, TRPC4 and TRPC5 mediate strong fear responses to aversive stimuli^{214,215} and are involved in peripheral-induced neuropathic pain syndromes.²¹⁶ Notably, TRPC5 activation reduces mechanically induced neuropathic pain.²¹⁷

Beyond pain, TRPC5 influences metabolism^{218,219} and contributes to epileptic activity. In hippocampal CA1 neurons, TRPC5 causes constant membrane depolarizations, known as plateau potentials,²²⁰ which occur during epileptic seizures.^{221,222} TRPC5-deficient mice exhibit fewer epileptic seizures.⁶¹ Additionally, TRPC5 inhibits hippocampal neurite length and growth cone morphology.²¹³

TRPC5 is expressed in adrenal chromaffin cells and plays a crucial role in adrenaline secretion, which is essential for preventing hypoglycemia.^{223,224} TRPC5 also contributes to angiogenesis²²⁵ and acts as a cold sensor²²⁶ in the heterologous overexpression system,^{227,228} the peripheral nervous system,²²⁷ and in odontoblasts.²²⁹

TRPC5 and TRPC6 channels exhibit opposing effects on the actin cytoskeleton of podocytes and fibroblasts. Receptor-operated TRPC5 activation leads to the loss of actin stress fibers, resulting in a motile and noncontractile phenotype,²³⁰ which characterizes podocyte damage and contributes to proteinuria and kidney disease.^{231–233} In contrast, TRPC6 activation promotes the formation of actin stress fibers, establishing a contractile and nonmotile phenotype.²³⁰

TRPC5 channels may also play a role in cancer by enhancing angiogenesis.^{234,235} Furthermore, TRPC5 contributes to chemotherapy-induced multidrug resistance in tumor cells by increasing the expression of ATP-binding cassette subfamily B

member 1 transporters, also known as P-glycoprotein 1 or multidrug resistance protein 1.^{234–236} TRPC5 additionally functions as a pressure sensor in aortic baroreceptors, stabilizing blood pressure,²³⁷ and mediates endothelium-dependent contraction of carotid arteries.^{238,239}

TRPC6 channels are highly expressed in the vasculature, lungs, brain, placenta, spleen, ovaries, small intestine, neutrophils, and podocyte foot processes.²⁴⁰ In neurons, TRPC6 channels increase endocannabinoid synthesis,²⁴¹ promote dendrite growth,^{242,243} and support neuronal plasticity.²⁴³ TRPC6 is also expressed in extrinsic fibers innervating the intrinsic cardiac ganglia,²⁴⁴ olfactory epithelium neurons,²⁴⁵ retinal ganglion cells,²⁴⁶ and various brain regions, including the cortex, hippocampus, substantia nigra, and cerebellum.²⁴⁷

In the vascular system, TRPC6 channels mediate vasoconstriction²⁴⁸ and promote vascular smooth muscle cell proliferation.^{249,250} TRPC6 was proposed to be a direct mechanosensor²⁵¹ mediating myogenic vasoconstriction. However, TRPC6 rather acts as a mechanotransducer with indirect mechanosensitivity.^{252,253} Nevertheless, TRPC6 may contribute to ultrasound neuromodulation in the brain²⁵⁴ and is proangiogenic.^{255,256} Low extracellular pH activates TRPC6, inhibiting platelet aggregation,²⁵⁷ while oxidants, like hydrogen peroxide, not only activate TRPC6 but also increase its membrane expression.²⁵⁸

In the kidney, TRPC6 is expressed in glomeruli, tubular cells, and podocytes.²⁵⁹ Mutations in the TRPC6 gene result in podocyte damage and are associated with focal segmental glomerulosclerosis (FSGS), a chronic kidney disease leading to end-stage renal failure.^{260,261} Although the pathomechanism remains unclear, TRPC6 channels in podocyte foot processes, which form the slit diaphragm, are crucial for maintaining calcium homeostasis.

Beyond renal functions, TRPC6 has neuronal roles, including involvement in neurodegeneration and Alzheimer's disease, and is highly expressed in several cancers.²⁶² In the lungs, TRPC6 is found in airway smooth muscle cells,^{263,264} epithelial cells,²⁶⁴ and endothelial cells.²⁶⁵ TRPC6 contributes to hypoxic pulmonary vasoconstriction,²⁶³ lung ischemia-reperfusion (IR)-induced edema,²⁶⁵ and lung fibrosis.²⁶⁶ In the heart, TRPC6-mediated zinc influx enhances myocardial contractility, suggesting its potential as a therapeutic target for heart failure.^{267,268} TRPC6, along with TRPC1, TRPC3, and TRPC5, also plays roles in the immune system and phagocytosis.²⁶⁹

TRPC7 channels are the least studied TRPCs. They are expressed in the CNS, hypophysis, kidneys,¹⁶⁸ heart, lungs,²⁷⁰ endothelium,²⁷¹ vasculature,^{108,272,273} eyes, spleen, and testis.⁷⁶ TRPC7 activation has been linked to an increased breathing rate,²⁷⁴ and may contribute to enhanced proliferation in autosomal dominant polycystic kidney disease (ADPKD).²⁷⁵ Cardiac TRPC7 channels are implicated in arrhythmias²⁷⁶ and myocardial apoptosis.²⁷⁷ TRPC7 may also play a role in the pupillary light reflex,²⁷⁸ although this remains controversial.²⁷⁹

TRPC7 and TRPC6 channels are both involved in phototransduction in retinal ganglion cells, where they are activated downstream of the photosensitive G_q protein-coupled receptor melanopsin, leading to PLC β 4-induced TRPC6/7 activation and cAMP formation.²⁷⁸ High TRPC7 expression is associated with the progression of hepatocellular carcinoma^{280,281} and lung adenocarcinoma.²⁸²

In summary, TRPCs play vital roles in the regulation of calcium homeostasis and are involved in vascular, neuronal, and kidney functions, sensory transduction, as well as cell migration and proliferation.

D. Human diseases associated with TRPCs

Surprisingly, the global knockout (KO) of all TRPCs results in viable mice that are fertile.^{102,283,284} However, a multitude of

animal models suggests that TRPCs, in particular but not exclusively, may underlie or aggravate different human diseases through their excessive activity.

A gain-of-function (GOF) mutation in the TRPC3 gene (R762H) is associated with a rare case of autosomal dominant adult-onset spinocerebellar ataxia type 41 (OMIM 616410). Overexpression of this variant in murine neuroblastoma cells leads to neuronal cell death, presumably caused by an increased open probability of the channel,²⁸⁵ thereby resembling the phenotype of the mutated channel in the so-called “moonwalker” mouse.¹⁷⁴

TRPC5 is frequently discussed as a potential therapeutic target for treating kidney diseases, anxiety, and depression.^{214,286} In 2014, Mignon-Ravix et al²⁸⁷ described a loss-of-function (LOF) mutation in the TRPC5 gene associated with X-linked intellectual disabilities (OMIM 300982). Subsequently, additional missense variants in TRPC5, resulting in either constitutively open or nonfunctional channels, were linked to cases of intellectual disabilities, anxiety, and autism.^{288,289} Moreover, TRPC5 variants are associated with severe childhood-onset obesity, suggesting a potential role for TRPC5 in the regulation of food intake.²⁸⁸

TRPC6 dysfunction, resulting from gene mutations or upregulation of its expression, is best understood in the context of pulmonary and renal diseases. In the kidney, several GOF mutations in the TRPC6 gene are closely linked to an autosomal-dominant form of FSGS2 (OMIM 603965),^{290,291} a rare progressive disease that ultimately leads to kidney failure due to progressive scarring of the glomeruli. Notably, LOF mutations in the TRPC6 channel cause a similar phenotype, particularly in juvenile forms of the disease.²⁹² Furthermore, an increased TRPC6 expression compared with healthy individuals was observed in podocytes of patients with diabetic kidney disease.²⁹³ In the lung, studies using mouse models suggest that TRPC6 is essential for the regulation of hypoxia-mediated pulmonary vasoconstriction and pulmonary hypertension.^{263,294} In humans, a single-nucleotide polymorphism (SNP) in the TRPC6 promoter region, which leads to elevated basal TRPC6 expression, is associated with an increased risk of idiopathic pulmonary hypertension.^{171,295} Subsequently, Poussada et al²⁹⁶ identified 3 more TRPC6 SNPs in the 5'-untranslated region of the TRPC6 gene that were significantly more common in a cohort of patients with idiopathic pulmonary hypertension compared with the control group. Several mouse models of heart disease suggest an important role for TRPC3 and TRPC6 channels in the development of cardiac hypertrophy.^{297,298} Relating thereto, a study recently demonstrated an association between elevated TRPC6 expression and a higher risk of heart failure after chemotherapy with the cardiotoxic drug doxorubicin.²⁹⁹

For TRPC1, TRPC4, and TRPC7 channels, only weak links between human pathologies and channel dysfunction have been reported to date.

E. Pharmacological modulators of TRPCs

In recent years, the availability of pharmacological modulators of TRPCs has substantially advanced from drugs acting on a range of TRPC isoforms to compounds acting more selectively on distinct TRPC isoforms, with some exceptions; most of the published TRPC blockers still do not sufficiently discriminate between TRPC1/4/5 or TRPC3/6/7. However, combining high-resolution cryo-EM with mutagenesis approaches has recently led to a much better understanding of how drugs modulate TRPC activity, which may facilitate the identification of selective and potent TRPC modulators in the future. Table 2^{18,28,49,201,297,298,300–333} provides an overview of TRPC modulators.

1. Inhibitors of TRPC1/4/5 channels

The first identified inhibitors of TRPC4 and TRPC5 channels discriminated poorly between the 2 isoforms and were of low potency. ML204 inhibits TRPC4 channels ($IC_{50} = 2.9 \mu M$) with a 3-fold preference over TRPC5 ($IC_{50} = 10 \mu M$) and a 19-fold selectivity over TRPC6.³⁰⁰ In a transgenic rat model of FSGS with podocyte-specific overexpression of the angiotensin II AT₁ receptor, intraperitoneal application of ML204 suppressed proteinuria and prevented podocyte loss.²⁰¹ AC-1903, which inhibits TRPC5 less potently ($IC_{50} = 14.7 \mu M$) but does not inhibit TRPC4 or TRPC6 channels, was also effective in the transgenic rat model mentioned above and in a model of hypertension-induced FSGS (Dahl salt-sensitive rats), reducing proteinuria and protecting podocytes.²⁰¹ However, the pathogenic role of TRPC5 in podocytes was recently called into question.³³⁴

The antihistamine clemizole displays a 6-fold preference for TRPC5 ($IC_{50} = 1–1.3 \mu M$) over TRPC4 ($IC_{50} = 6 \mu M$).³⁰¹ Cryo-EM has revealed the binding site of clemizole, which is located within the VSLD of TRPC5.²⁴ Duloxetine, an antidepressant that is also effective in the treatment of neuropathic pain, inhibits TRPC5 channels ($IC_{50} = 0.54 \mu M$) by fitting into the same binding pocket.³⁰²

In comparison, the xanthine-based compound Pico145 (HC-068) is considerably more potent, inhibiting TRPC1/4/5 channels with an IC_{50} of 1.3 nM and 0.35 nM for TRPC5 and TRPC4, respectively.³⁰³ Its close analog, HC-070, blocks homo- and heteromeric TRPC4/5 channels with IC_{50} values between 0.3 and 3.4 nM.^{303,304} The cryo-EM structure of the human homomeric TRPC5 channels in the presence of Pico145 identified the binding of the drug to lipid binding site 2 between individual TRPC5 subunits, displacing a lipid upon binding of the drug.²⁵ This binding site, which is highly conserved within the TRPC family,²⁵ was also determined for the Pico145-bound TRPC1/4 heteromer,³⁰ and further confirmed by Song et al²⁴ for the binding of HC-070 to TRPC5. HC-070 is effective in animal models of neurological diseases, as oral administration in mice allows the compound to cross the blood-brain barrier, exerting antidepressant and anxiolytic effects.³⁰⁴ Moreover, intraperitoneal administration of HC-070 reverses cognitive and motor deficits in rat models of Parkinson's disease.^{335,336}

Screening of a 400,000-compound library and subsequent hit optimization led to the discovery of several pyridazinone-based inhibitors, with GFB-8438 being the most promising regarding its physicochemical properties. GFB-8438 inhibits TRPC5 ($IC_{50} = 0.18 \mu M$) with a similar potency to TRPC4 channels ($IC_{50} = 0.29 \mu M$).³⁰⁵ Cryo-EM studies performed on TRPC4 homomers demonstrated the binding of GFB-8438 and closely related compounds, GFB-9289 and GFB-8749, to the VSLD of TRPC4.²¹ In the deoxycorticosterone acetate-salt rat model of hypertension and renal inflammation, GFB-8438 exerts nephroprotective effects, evident by reduced protein and albumin concentrations in the urine.³⁰⁵

2. Inhibitors of TRPC3/6/7 channels

TRPC3 is, at least within the TRPC family, selectively inhibited by pyrazole compounds Pyr3 and Pyr10 ($IC_{50} = \sim 0.7 \mu M$).^{312,313} In vivo, Pyr3 reduces cardiac hypertrophy and transition to heart failure in mice subjected to pressure overload,³¹² whereas Pyr10-mediated TRPC3 inhibition alleviates systemic inflammatory responses in mice after treatment with lipopolysaccharide.¹⁹⁷ However, both drugs also inhibit ORAI1 channels, obscuring the attribution of their beneficial effects to individual channel blockage.³¹³ Structural optimization of Pyr3 results in the development of compound C20 (JW-65), a derivative with increased metabolic stability and low toxicity, which retains similar potency

Table 2

Pharmacological modulators of TRPCs.

Name (PubChem CID ^a)	Effect	References
TRPC1,4,5		
Inhibitors		
ML204 (230710)	Inhibition mTRPC4 IC ₅₀ = 2.9 μM; mTRPC5 IC ₅₀ = 10 μM	300
AC-1903 (667146)	Inhibition TRPC5 IC ₅₀ = 14.7 μM	201
Clemizole (2782)	Inhibition mTRPC5 IC ₅₀ = 1–1.3 μM; mTRPC4 IC ₅₀ = 6 μM	301
Duloxetine (60835)	Inhibition hTRPC5 IC ₅₀ = 0.54 μM	302
Pico145 (85473438)	Inhibition hTRPC4 IC ₅₀ = 0.35 nM; hTRPC5 IC ₅₀ = 1.3 nM	303
HC-070 (85473309)	Inhibition hTRPC4 and hTRPC5 IC ₅₀ = 0.35–3.4 nM	304
GFB-8438 (138471783)	Inhibition hTRPC5 IC ₅₀ = 0.18 μM; hTRPC4 IC ₅₀ = 0.29 μM	305
Activators		
Riluzole (5070)	Activation mTRPC5 IC ₅₀ = 9.2 μM	306
Methylprednisolone (6741)	Activation mTRPC5 EC ₅₀ = 12 μM	307
BTD (46369355)	Activation mTRPC5 EC ₅₀ = 1.4 μM	307
(–)-Englerin A (46242512)	Activation hTRPC5 EC ₅₀ = 7.6 nM; hTRPC4 IC ₅₀ = 11.2 nM	308
AM237 (90403462)	Activation hTRPC5 EC ₅₀ = 15–20 nM	309
GFB-887 (N/A)	Inhibition TRPC5, in clinical trials	310
BI 1358894 (N/A)	Inhibition TRPC4; TRPC5, in clinical trials	311
TRPC3,6,7		
Inhibitors		
Pyr3 (56964346)	Inhibition mTRPC3 IC ₅₀ = 0.7 μM	312
Pyr10 (53475435)	Inhibition TRPC3 IC ₅₀ = 0.72 μM	313
Compound 20 (C20, JW-65) (162659202)	Inhibition hTRPC3 IC ₅₀ = 0.37 μM	314
60a (N/A)	Inhibition hTRPC3 IC ₅₀ = 90 nM	315
GSK2833503A (71818575)	Inhibition rTRPC6 IC ₅₀ = 3 nM; rTRPC3 IC ₅₀ = 21 nM	297,316
GSK2332255B (71818573)	Inhibition rTRPC6 IC ₅₀ = 4 nM; rTRPC3 IC ₅₀ = 5 nM	297,316
SAR7334 (53378752)	Inhibition hTRPC6 IC ₅₀ = 9.5 nM; hTRPC3 IC ₅₀ = 282 nM; TRPC7 IC ₅₀ = 226 nM	317
AM-1473 (167993650)	Inhibition hTRPC6 IC ₅₀ = 0.2 nM	28
Larixyl acetate (11957828)	Inhibition hTRPC6 IC ₅₀ = 0.58 μM; hTRPC3 IC ₅₀ = 6.83 μM	318
SH045 (134611888)	Inhibition hTRPC6 IC ₅₀ = 62 nM; hTRPC3 IC ₅₀ = 0.84 μM	319
BI 749327 (138377580)	Inhibition mTRPC6 IC ₅₀ = 13 nM; orally bioavailable	298
BTDM (162423070)	Inhibition hTRPC6 IC ₅₀ = 10 nM	18
DS88790512 (138319685)	Inhibition hTRPC6 IC ₅₀ = 11 nM; orally bioavailable	320
BI 764198 (138674835)	Inhibition hTRPC6, in clinical trials	321
Activators		
PPZ1 (6462584), PPZ2 (6465626)	Activation mTRPC3/6/7 nonselective	322
GSK1702934A (16376051)	activation hTRPC3 EC ₅₀ = 80 nM; hTRPC6 EC ₅₀ = 440 nM	323
Compound 4n (N/A)	Activation hTRPC3 EC ₅₀ = 20 nM; mTRPC7 EC ₅₀ = 90 nM μM; mTRPC6 EC ₅₀ = 1.39 μM	324
Artemisinin (68827)	Activation hTRPC3 EC ₅₀ = 30–50 μM	325
AM-0883 (145997911)	Activation hTRPC6 EC ₅₀ = 46 nM	28
M085 (N/A)	Activation hTRPC6, mTRPC6 EC ₅₀ = 3.8 μM	326
C20 (N/A)	Positive allosteric modulator TRPC6	327
PhoDAG-1 (121225613)	Photoswitchable activator hTRPC6, mTRPC6; mTRPC2	328–330
PhoDAG-3 (121225610)	Photoswitchable activator hTRPC3; mTRPC6	49,330
OptoDAG (131954527)	Photoswitchable activator hTRPC3; mTRPC6, hTRPC6, hTRPC7	330,331
OptoBI-1 (146018968)	Photoswitchable activator mTRPC5	332
BTDAzo (N/A)	Photoswitchable activator mTRPC6	333
dfdc-OptoBI-1 (N/A)		

^aPubChem Compound Identification number. N/A – not available.

for TRPC3 inhibition (IC₅₀ = 0.37 μM), while exhibiting improved selectivity over ORAI1 channels.³¹⁴ Based on the same lead structure, compound 60a, with a 4-fold improvement in potency, was later synthesized.³¹⁵

The aminothiazole GSK2833503A (GSK503A) potently inhibits TRPC3 and TRPC6 with a higher selectivity for TRPC6 (IC₅₀ = 3 nM) over TRPC3 (IC₅₀ = 21 nM), whereas GSK2332255B (GSK255B) inhibits both TRPC3 and TRPC6 with a similar potency (IC₅₀ = 3–4 nM).^{297,316} Both drugs reduce hypertrophy and fibrosis in a model of cardiac hypertrophy, possibly by acting on both channels.²⁹⁷

SAR7334 was identified through a pharmacophore-guided design of aminoindanol derivatives based on the broad TRP channel blocker SKF96365. SAR7334 predominantly inhibits TRPC6 but also TRPC3 and TRPC7 channels with IC₅₀ values of 9.5, 282, and 226 nM, respectively, and suppresses hypoxic pulmonary vasoconstriction in explanted mouse lungs exposed to hypoxic

conditions.³¹⁷ Based on SAR7334, the most potent and selective TRPC6 inhibitor to date, AM-1473, was developed (IC₅₀ = 0.2 nM),²⁸ which binds to a pocket formed by the cytoplasmic portions of S1–S4 and the TRP helix.²⁸

Larixyl acetate, a diterpenoid from larch resin, primarily inhibits TRPC6 channels with a 10-fold selectivity for TRPC6 (IC₅₀ = 0.6 μM) over TRPC3. It effectively prevents acute hypoxia-induced vasoconstriction in isolated lungs from mice³¹⁸ and offers protection against pressure overload-induced heart failure.³³⁷ Subsequent structural optimization yielded the methylcarbamate derivative SH045 with an improved potency for TRPC6 (IC₅₀ = 62 nM). SH045 reduced edema in an animal model of lung IR³¹⁹ and ameliorated renal fibrosis in obese mice after unilateral ureteral obstruction.³³⁸

BI 749327 is an orally bioavailable TRPC6 blocker (IC₅₀ = 13 nM) with high selectivity.²⁹⁸ Due to its favorable physicochemical

properties, the compound has been tested in several animal models. The administration of BI 749327 improved heart function and reduced fibrosis in mice subjected to pressure overload, and reduced renal fibrosis in a renal injury model.²⁹⁸ Moreover, in a mouse model of severe Duchenne muscular dystrophy, TRPC6 inhibition by BI 749327, starting from day P3, improved skeletal and cardiac muscle function and survival in mice.³³⁹

Other highly potent TRPC6 inhibitors include the high-affinity TRPC6 inhibitor BTDM ($IC_{50} = 10$ nM), which binds at the interface between the pore and VSDL,¹⁸ and orally bioavailable DS88790512 ($IC_{50} = 11$ nM).³²⁰ However, neither of these compounds has been tested *in vivo* so far.

3. Activators of TRPC4/5 channels

Riluzole, which is the only Food and Drug Administration (FDA)-approved drug to treat amyotrophic lateral sclerosis, activates TRPC5 with low potency ($EC_{50} = 9.2$ μ M) but is, at least within the TRPC family, specific for TRPC5.³⁰⁶ A screening approach by Beckmann et al³⁰⁷ identified methylprednisolone ($EC_{50} = 12$ μ M) and the benzothiadiazine derivative (BTD) ($EC_{50} = 1.4$ μ M) as novel TRPC5 agonists. Notably, BTD alleviated mechanical allodynia in diabetic peripheral neuropathic rats, presumably via the downregulation of TRPC5 expression and anti-inflammatory and antiapoptotic effects of BTD.²¹⁷

(–)-Englerin A, derived from the bark of the *Phyllanthus engleri* tree, displays the highest potency and efficacy and activates both TRPC4 and TRPC5 in low nanomolar concentrations ($EC_{50} = 11.2$ nM and 7.6 nM for TRPC4 and TRPC5, respectively).³⁰⁸ However, (–)-englerin A is lethal in rodents when administered at concentrations near those required to activate TRPC4, likely due to excessive TRPC4 activation leading to pulmonary edema.³⁴⁰

Following up on the structure of the TRPC1/4/5 blocker Pico145, Minard et al³⁰⁹ recently synthesized the analog AM237, which potently activates homomeric TRPC5 ($EC_{50} = 15$ –20 nM) but not heteromeric TRPC1/5, TRPC4/5, or homomeric TRPC4 channels.

4. Activators of TRPC3/6/7 channels

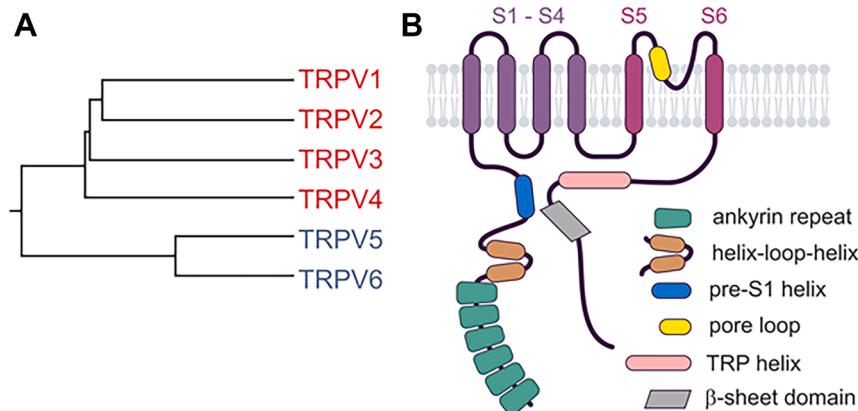
Small molecules that activate TRPC3 channels include piperazine-derived compounds³²² PPZ1 and PPZ2, which do not discriminate well between TRPC3/6/7 and GSK1702934A, a potent TRPC3/6 activator ($EC_{50} = 80$ and 440 nM for TRPC3 and 6, respectively).³²³ Qu et al³²⁴ developed a series of pyrazolopyrimidine-derived TRPC3/6/7 agonists with a preference for TRPC3, of which compound 4n was the most potent ($EC_{50} = 20$ nM). The antimalarial drug artemisinin activates TRPC3 with low potency ($EC_{50} = 30$ –50 μ M) but with a high preference for TRPC3 over TRPC6 and TRPC7.³²⁵

The TRPC6 activator AM-0883 is highly potent ($EC_{50} = 46$ nM) with a binding site between the PH and the S6 helix of the adjacent subunit,²⁸ which is similar to that of HC-70 and Pico145 in the TRPC1/4/5 channels. The same binding site is targeted by structurally distinct TRPC6 activators M-085 ($EC_{50} = 3.8$ μ M) and GSK1702934A.³²⁶ In addition to TRPC6 channel activators, the substance C20 was identified, which acts as a positive allosteric modulator, enabling TRPC6 current increases in the presence of 1-oleoyl-2-acetyl-sn-glycerol.³²⁷

5. Optical control of TRPCs

Recently, compounds have been developed for the precise optical control of TRPCs. These photoswitches are generated by linking a light-sensitive azobenzene moiety to a known channel modulator, enabling light of distinct wavelengths to switch the compound's activity on and off. Photoswitchable DAGs, such as PhoDAG³²⁸ and OptoDArG,⁴⁹ are used to rapidly activate DAG-

sensitive TRPCs: photoswitchable DAGs are switched on to their active *cis*-isomer upon exposure to 370 nm UVA light and off through *trans*-isomerization at 460 nM. In the *cis* configuration, PhoDAG1 and the more membrane-permeant PhoDAG3 activate TRPC2 in mouse vomeronasal sensory neurons.^{329,341} *Cis*-PhoDAG1 also activates heterologously expressed TRPC6 channels.^{329,330,341} Another photoswitchable DAG, OptoDArG, features 2 photoswitchable azobenzene moieties and is active in the *cis*-form at 365 nm and inactive at 430 nm. OptoDArG enables optical control of TRPC2, TRPC3, and TRPC6 channels upon photoisomerization.^{49,330,341}


Based on the TRPC3/6 agonist GSK1702934A, Opto-BI-1 was developed to enable optical control of TRPC3 channels in human vascular endothelial cells and mouse hippocampal neurons,³³¹ as well as the precise control of TRPC6 channel function.³³⁰ More recently, BTD served as a starting point for the generation of the photoswitchable TRPC5 agonist BTDAzo, which can control TRPC5 channels in isolated cells and mouse brain slices ($EC_{50} = 1.5$ μ M).³³² In the future, it will be fascinating to explore whether photoswitchable TRPC modulators can also be applied *in vivo*. A crucial step toward the *in vivo* application of photopharmaceuticals is the development of red-light switchable compounds, such as the recently developed dfdc-OptoBI-1.³³³ Red light is nonphototoxic and offers greater tissue penetration, making it particularly suitable for biomedical applications.

F. Ongoing or completed clinical trials with TRPCs as therapeutic targets

To date, only a few clinical trials have been initiated that use small molecules targeting TRPCs. Considering their prominent role in lung and kidney diseases, TRPC5 and TRPC6 have emerged as the most promising therapeutic targets. The TRPC5 inhibitor GFB-887 is well tolerated in healthy patients (phase 1 study; NCT03970122).³¹⁰ It was further tested in patients with FSGS (NCT04950114) and those suffering from diabetic nephropathy or FSGS (NCT04387448) to evaluate the possible beneficial effect of GFB-887 on kidney function. However, both studies were terminated due to business reasons, and no results have been published to date.

The TRPC4/5 channel inhibitor BI 1358894 has recently been explored as a potential treatment for psychiatric disorders, including depression and anxiety. Its safety, tolerability, and pharmacokinetics were demonstrated in 2 phase 1 studies (NCT03210272 and NCT03754959).³⁴² However, phase 2 trials assessing the efficacy of BI 1358894 in patients with major depression (NCT04423757), post-traumatic stress (NCT05103657), and borderline personality disorders (NCT04566601) did not show efficacy of the drug.^{343,344} Nonetheless, the outcome of another phase 2 trial (NCT04521478) investigating its efficacy in patients with major depression who showed an inadequate response to standard antidepressants is still awaited.

The TRPC6 inhibitor BI 764198 was well tolerated in 4 phase 1 studies (NCT03854552, NCT04102462, NCT04656288, and NCT04176536) and is currently being investigated in individuals with FSGS in a phase 2 trial (NCT05213624).³⁴⁵ In another phase 2 trial (NCT04604184), the same drug failed to reduce the risk and/or severity of acute respiratory distress syndrome during the course of the COVID-19 disease.³²¹ Additionally, an observational study (NCT05507879) is currently exploring whether TRPC6 variants can predict chemotherapy-related cardiomyopathy and heart failure in breast cancer patients.

Fig. 3. Phylogenetic tree and domain topology of TRPVs. (A) Phylogenetic tree of the human TRPV1–6 proteins. (B) Domain architecture of TRPV monomers.

III. TRPVs

A. TRPV gene family

The TRPV gene family consists of 6 distinct members: TRPV1–6 (Table 1), which can be categorized into 2 main subgroups based on their homology and functional characteristics: the thermo-sensitive channels TRPV1–4, which are nonselective for monovalent cations, and the Ca^{2+} -selective channels TRPV5 and TRPV6 (reviewed in Vennekens et al³⁴⁶) (Fig. 3A).

TRPVs, especially TRPV1, have been extensively studied and have emerged as promising drug targets for treating various human diseases. In this chapter, we will provide an overview of the key advancements in understanding TRPV characteristics and their roles in health and disease. We will introduce and discuss modulators of TRPVs and their applicability in animal and human disease models. However, due to their abundance, the focus will be on compounds that have already been well validated and are characterized by relatively high specificity and potency.

B. Domain topology, assembly, and functional characteristics of TRPVs

1. Domain topology of TRPVs

Cryo-EM and crystallographic studies have provided structures for all homotetrameric mammalian TRPV complexes, including numerous structures in their ligand-bound or CaM-bound states. Overall, the available homotetrameric TRPV structures display a rotationally symmetric subunit assembly with protein moieties mostly extending into the cytoplasmic space and only minor extracellular bulges formed by short loops that connect the TM-spanning segments S1–S6 and the pore loop, which is intercalated between S5 and S6 (Fig. 3B).

Several expert reviews have elaborated on common or distinct structural features of specific TRPV isoforms and their contribution to the regulatory and biophysical properties of the respective channels.^{347–357} Table 1 summarizes the available PDB entries for TRPVs in their apo or ligand-bound states.

The intracellular N- and C-termini of TRPVs are joined by TMDs that are organized in a similar fashion as in TRPCs. A bundle composed of the first 4 TM-spanning helices forms a VSLD, which connects via the α-helical S4–S5 linker to a second fold, consisting of S5, a re-entrant short pore loop, and S6. The N-termini of TRPVs contain an ARD with 6 consecutive ankyrin repeats that, in some but not all TRPV isoforms, engage in contact with neighboring subunits. The ARD is followed by 2 α-helices that are

referred to as the helix-loop-helix linker domain and a pre-S1 α-helix.

Forming a sharp turn, the S6 of the TMD is connected to the cytosolic C-terminus by a TRP domain, which contains an α-helix that is oriented parallel to the plasma membrane, and intimately contacts the S4–S5 linker as well as the pre-S1 helix, and is supposed to undergo a rotational movement during channel opening.^{358,359} Following the TRP helix, a β-sheet-containing domain engages in additional interactions with the N-terminus of the same channel subunit.

Structural motifs within the permeation pathway include a cone-shaped vestibule at the outer mouth of the pore, which exposes negatively charged amino acids and may attract cations, engage in salt bridges with neighboring subunits, or become protonated under acidic extracellular conditions, eg, in inflamed tissues.^{360,361} Notably, the strong electronegativity of the vestibule of TRPV6 has been proposed to resemble that of *Drosophila* Orai, thereby providing a common mechanism for divalent-selective permeation.³⁶²

The selectivity filter of the TRPV1–4 subgroup shares an I-G-M/L-G-D/E motif, whereas the Ca^{2+} -selective TRPV5 and TRPV6 channels display a distinct L-T-V/I-I-D amino acid sequence. The latter is located in the second part of the pore loop, which is centrally positioned and kinks back from a short PH to form an outward-pointing vertical stack of amino acids that narrows down the entry pathway and coordinates influxing cations in 1 or 2 sites before releasing them to another coordination site located within an inner cavity that leads to the lower gate.^{363,364} In all human TRPVs, the outer vestibule narrows down to the selectivity filter with an aspartic acid (or glutamic acid in TRPV2), possibly expelling anions, and representing a first landing platform-like coordination site for influxing cations in the upper part of the selectivity filter. Since neutralization of this anionic amino acid in TRPV1 or TRPV4 not only reduces the permeability of divalent cations, but also lowers the potency of ruthenium red-mediated channel block, it has been recognized early as part of the binding site of the polycationic open pore blocker,^{365,366} a concept that has been confirmed by structural analyses.³⁶⁷ In the Ca^{2+} -selective isoforms TRPV5 and TRPV6, the upper coordination site may bind divalent cations more tightly, thereby causing longer occupancy times and contributing to repulsive forces between stacked divalent cations that would allow a “knock-on” mechanism of Ca^{2+} -selective permeation.³⁶⁴ The second coordination site, formed in the central and lower parts of the selectivity filter, opens toward an inner cavity that is flanked by residues and backbone carbonyls within S6. Owing to their inverted teepee-like helix bundling and

crossing, the S6 segments constrict the pore diameter to form the inner gate. The opening of the inner gate involves reorientation within the S6, characterized by a partial α - to π -helical rearrangement, which allows rotation of the lower part of S6.^{361,368} Depending on the channel isoform and the applied activators, TRPVs can adopt several open states, some of which feature a pore radius of more than 2 Å, allowing the permeation of large organic cations, such as NMDG⁺, YoPro-1, MEQ⁺, or QX-314.^{369–372} Like in TRPCs, the VSLD of TRPVs can harbor lipids in positions that, in some cases, overlap with ligand binding sites.^{352,368,373–376}

2. Assembly of TRPV complexes

Structural, biophysical, and functional analyses have demonstrated that all TRPV isoforms are capable of forming homomeric complexes, yielding functionally active cation channels. Heteromeric TRPV assemblies can form between the closely related isoforms TRPV5 and TRPV6, but also between TRPV1 and TRPV2.^{377–379} Other studies found a more promiscuous pattern of heteromerization between the heat-sensitive TRPV1–4 subunits,^{380–382} or heteromeric complexes across different TRP channel families, such as TRPV1 and TRPA1,³⁸³ TRPV2 and TRPP2,³⁸⁴ TRPV4 and TRPC1^{145,385} or TRPC1/TRPP2,³⁸⁶ TRPV5 and TRPML3,³⁸⁷ or TRPV6 and TRPC1.⁵⁹ At present, the relevance of heteromeric TRPV complexes is not yet sufficiently understood, and heteromer-specific pharmacological tools are lacking.

As an exception to the rule that TRP channels assemble as tetramers, a small fraction of purified and reconstituted TRPV3 channel subunits has been shown to transiently engage in a non-canonical pentameric assembly when studied by high-speed atomic force microscopy under specific stimulation conditions, and its properties as a dilated pore conformation have been proposed.³⁸⁸ The proof that electrophysiological single channel recordings actually show currents through a pentameric TRPV3 complex is, however, lacking, and the experimental settings have been critically commented.³⁸⁹

Finally, assemblies between TRPVs and auxiliary subunits or temporary interaction partners may contribute to the regulation of channel activity, plasma membrane targeting, internalization, or degradation. The plasma membrane stability and lifetime of TRPV1 have been found to be positively modulated by physical interaction with the toll-like receptor 4,³⁹⁰ and by the interaction with Kv β 1, a non-pore-forming subunit of voltage-gated potassium channels.³⁹¹ Functional interactions between TRPV1, TRPV3, and TRPV4 with associated anoctamin 1, a Ca²⁺-activated Cl⁻ channel, have been found to enhance capsaicin-evoked nociception, promote wound healing, secretion from exocrine glands, and release of vasodilatory factors from endothelial cells.³⁹² In keratinocytes, TRPV3 has been shown to form a complex with the EGF receptor, which is associated with a mutual augmentation of functional activities.³⁹³ Another interaction of TRPV3 with TMEM79 was demonstrated to decrease the plasma membrane abundance of TRPV3 by promoting its degradation.³⁹⁴ Likewise, trafficking of TRPV2 and TRPV4 has been proposed to be regulated by their respective interactomes, as recently reviewed.³⁹⁵ TRPV4 physically interacts with the small GTPase RhoA, which dampens the TRPV4 activity unless disease-related mutations in either TRPV4 or RhoA prevent their assembly.^{396,397}

Physical interactions of TRPV5 channels involve the catalytic processing by the extracellular β -glucuronidase klotho,³⁹⁸ and an intracellular interaction with the Ca²⁺-buffering protein calbindin-D(28K).³⁹⁹ A serine-threonine kinase with-no-lysine 4-dependent forward trafficking from the Golgi apparatus to the plasma membrane has been described as a result of fibroblast growth factor-23 signaling.⁴⁰⁰ The apical plasma membrane trafficking of TRPV5 may be further stabilized by interactions with the

multi-PDZ domain protein NHERF2,⁴⁰¹ and by a second non-catalytical function of the soluble extracellular domain of α -klotho to connect TRPV5 with the membrane protein galectin-1.⁴⁰² Both TRPV5 and TRPV6 have been shown to interact with Rab11a, which targets the channels to the plasma membrane,⁴⁰³ where they might be concentrated in the apical membrane of polarized cells by interacting with the PDZ domain-bearing scaffolding protein NHERF4.⁴⁰⁴ Finally, a physical interaction of TRPV6 with the protein tyrosine phosphatase PTP1B has been shown to remove a Src-mediated tyrosine phosphorylation, thereby dampening the channel activity when studied in a heterologous expression system.⁴⁰⁵

In the future, more studies of TRPV interactomes, applying quantitatively accurate and unbiased methodologies like those recently presented⁶² for TRPC1, may provide additional hypotheses to unravel functionally relevant macromolecular assemblies involving TRPVs.

3. Functional characteristics of TRPV complexes

Based on sequence homology and functional properties, TRPVs can be subdivided into 2 subgroups. The TRPV1–4 subgroup forms warmth- or heat-activated, Ca²⁺-permeable, but poorly selective (pCa/pNa = 2–10) cation channels that typically share an outwardly rectifying current voltage relationship. By contrast, TRPV5 and TRPV6 form Ca²⁺-selective channels that are at least, to some degree, spontaneously active, but not activated by heat, and give rise to inwardly rectifying ionic currents.

The founding member, TRPV1, is a prototypical temperature sensor that is further sensitized by inflammatory mediators, chemical ligands, or low extracellular pH. The heat- or capsaicin-induced gating mechanism of TRPV1 is characterized by a uniquely large shift of its voltage-dependent activation curve from nonphysiological positive potentials to more negative potentials.⁴⁰⁶ Since large shifts in half-maximally activating membrane potentials are a common feature within thermally activated TRP channels, including TRPV3, TRPM4, and TRPM8, and since activating ligands can cause similar shifts in these channels, an atypical voltage sensor with a small gating charge has been proposed to integrate various inputs by shifting the window of voltage-dependent gating into the range of physiological resting membrane potentials.⁴⁰⁷

The temperature thresholds of heterologously expressed human TRPV1–4 channels observed at membrane potentials of -60 mV to -100 mV in quiescent cells scale between mild warmth of 23 – 39 °C for TRPV3 and TRPV4,^{408,409} to moderate heat of above 43 °C for TRPV1.⁴¹⁰ Other than the rat or mouse TRPV2 orthologs, which are activated at noxious hot temperatures of >52 °C, human TRPV2 has been found to be heat-insensitive.^{411,412} Notably, TRPV1 orthologs that are isolated from species adapted to lower or higher temperatures can display corresponding changes in temperature-dependent channel gating, with higher temperature thresholds found in camel or ground squirrel TRPV1,⁴¹³ while TRPV1 in amphibians or zebrafish is tuned to lower temperatures.^{414–416} These thresholds shall not be considered as absolute values because they are voltage-dependent and modulated by ligands, second messengers, or during repeated activation cycles. Conditions that mimic inflammation, such as stimulation of PLC- and PKC-coupling bradykinin receptors or cAMP-elevating prostaglandin receptors or extracellular acidification, lower the temperature threshold for TRPV1 activation. Similarly, capsaicin⁴¹⁷ or piperine,⁴¹⁸ the pungent ingredients of chili pepper and black pepper, respectively, ethanol,⁴¹⁹ or certain spider^{420,421} and scorpion^{422,423} venoms shift the activation threshold to temperatures that are well below physiological values. Finally, anandamide and structurally related endovanilloids act as activators or positive

modulators of TRPV1 channel activity.⁴²⁴ Hence, TRPV1 is a polymodal sensor that integrates physiological, pathophysiological, and alimentary or toxic stimuli. Similar changes in temperature thresholds have been reported for repeatedly activated TRPV3 with and without additional sensitization by cholesterol supplementation.^{408,425,426}

Since local temperatures are elevated by inflammation-associated hyperemia, TRPV1 strongly contributes to constant pain sensation and confers a major component of thermal inflammatory hyperalgesia. The underlying mechanisms have been studied in impressive detail. Mutagenesis studies have revealed that protonation of E600 in the loop that links S5 with the pore loop is the most likely candidate to initiate TRPV1 sensitization in tissue acidosis.³⁶⁰ In sensory neurons, TRPV1 modulation via stimulation of G protein-coupled receptors (GPCRs) can either enhance or mitigate thermal or capsaicin-induced responses. While G_q-coupled B₁ bradykinin and EP₁ prostaglandin receptors, as well as G_s-coupled EP₄ or IP prostaglandin receptors, sensitize TRPV1 to lower temperatures,^{427–429} G_i-coupled μ opioid⁴³⁰ or GABA_{B1} receptors⁴³¹ dampen the TRPV1 channel activity.

When strongly activated for longer time periods, TRPV1–4 channels tend to change their permeation properties, allowing penetration of organic cations. This behavior has been referred to as pore dilation, as recently reviewed.⁴³² It is of pharmacological interest that large pore diameters found in TRPV1 allow the penetration of cationic tool compounds and drugs, such as the organic cation NMDG⁺, the quinolinium-based chloride indicator dyes MEQ⁺ and MQAE⁺, the DNA stain YoPro-1, and even local anaesthetics.^{369,371,433} While some observations and conclusions may be restricted to prolonged activation of strongly overexpressed channels in heterologous expression systems, leading to unwanted changes in intracellular cation concentrations,⁴³⁴ the development of large TRPV1 pore diameters that allow the permeation of organic cations has been confirmed by structural biology approaches.^{361,435}

In stark contrast to TRPV1–4, TRPV5 and TRPV6 are highly selective for Ca²⁺ with pCa/pNa > 100 for both channels,^{436,437} indicating their specialized function in cellular Ca²⁺ transport. However, under divalent-free conditions, they become permeant to monovalent cations,^{436,438} such as Na⁺ and K⁺. The regulation of TRPV5 and TRPV6 activity involves various intracellular signaling pathways and extracellular factors, whereby PIP₂ and extracellular Ca²⁺ play a decisive role. TRPV5 and TRPV6 are constitutively active in the presence of PIP₂, which stabilizes the channel in its open configuration.^{439,440} Both channels are also sensitive to extracellular pH, with protons acting as potent inhibitors,^{441–443} and recently, cryo-EM structures revealed that the proton-dependent block of TRPV5 is caused by a disruption of the PIP₂ binding pocket, thereby preventing PIP₂ binding to TRPV5.⁴⁴⁴

TRPV5 and TRPV6 undergo rapid inactivation in the presence of high intracellular Ca²⁺ concentrations, which allows both proteins to dynamically adjust the Ca²⁺ content of the cell, thereby preventing excessive Ca²⁺ influx and maintaining cellular calcium homeostasis. This inactivation is mainly caused by the binding of Ca²⁺-CaM to the channel protein.^{445,446} Cryo-EM studies of TRPV5 and TRPV6, together with Ca²⁺-CaM, have revealed that upon binding of Ca²⁺-CaM to the C-terminal regions of the channel, it sterically inhibits the ion-conducting pore.^{447–449} The basal activity of both channels is, therefore, largely determined by the interplay between PIP₂-dependent activation and Ca²⁺-CaM-dependent inactivation.^{353,450}

In electrophysiological recordings, the current voltage curve of TRPV5 and TRPV6 displays a marked inward rectification, which is a hallmark of Ca²⁺ channels and can be partly attributed to the

inhibition by intracellular Mg²⁺ via a mechanism that has yet to be clarified.^{357,439,451} In conclusion, the biophysical properties of TRPV5 and TRPV6, including their high Ca²⁺ selectivity, constitutive activity, and regulation by CaM and calciotropic hormones, underscore their importance in maintaining cellular and organismic calcium homeostasis.

C. Expression pattern and primary physiological roles of TRPVs

Numerous studies have investigated the mRNA and protein expression of TRPVs in a variety of species using different methodologies, which have sometimes yielded inconsistent findings. This chapter focuses on TRPV expression in human tissues and includes data from the Human Protein Atlas and single-cell transcriptomic analyses.^{452,453} An overview of the expression profile of TRPVs is provided in Table 1.

The most prominent expression of TRPV1 is found in nociceptive neurons whose somata are localized in the dorsal root ganglia (DRG) and in the trigeminal ganglion.^{454–456} The fine nerve endings of their dendrites reach the entire skin, the oropharyngeal mucosa, and other internal organs, such as the urinary bladder. Compared with strongly myelinated sensory neurons that confer touch sensitivity, the TRPV1-expressing nociceptive neurons typically have a small or medium diameter and feature either poorly myelinated A δ fibers or unmyelinated C fibers. In the case of DRG neurons, they terminate in the substantia gelatinosa within the dorsal horn of the spinal cord, where they are connected to the second neuron of the pain pathway and the spinothalamic tract via excitatory glutamatergic synapses. The primary afferent function of TRPV1 channels is to confer heat perception, thermal nociception, and the pungent or “hot” sensation of various alimentary spices. In diseased states that trigger inflammation, TRPV1 can become strongly sensitized and chiefly mediates inflammatory thermal hyperalgesia and constant pain sensations.^{457–459}

Importantly, TRPV1-expressing nociceptive neurons also exert a pseudo-efferent function by releasing the strongly vasodilatory calcitonin gene-related peptide and the inflammation-mimicking peptide substance P from free nerve endings, which contribute to thermoregulation by enhancing cutaneous blood flow and passive heat dissipation.^{424,460} Since TRPV1 is activated by warmth or moderate heat, this feedback mechanism is ideally suited to maintain body temperature within a narrow range while not yet losing significant amounts of water and electrolytes, which would be the consequence of sweating. Notably, most TRPV1 inhibitors also disrupt this thermoregulatory function. Consequently, the adverse effects of analgesic TRPV1-targeting drugs not only include burning or scalding injuries, but also a significant elevation of body temperature.^{459,461,462} In the brain, TRPV1 expression is found in neurons, astrocytes, and microglia.⁴⁶³

TRPV2 has initially been identified in DRG neurons as well, but the TRPV2-positive neurons are larger in diameter and poorly overlap with the population of TRPV1-expressing neurons.⁴¹¹ Later, the expression of TRPV2 has been found to be much more widespread, with the strongest expression in various immune cells, including macrophages, monocytes, neutrophils, T lymphocytes, mast cells, and dendritic cells.^{464–466} In the CNS, TRPV2 is also strongly expressed in a wide variety of excitatory or inhibitory neurons and in the microglia. According to single-cell transcriptomic analyses, an abundant expression of TRPV2 is found in tissue-resident immune cells, such as lung macrophages, placental Hofbauer cells, as well as nonimmune cells, such as cutaneous melanocytes, vascular smooth muscle cells, the urothelium, and red blood cells.^{453,467,468}

Despite its high abundance in various cell types, the primary function of TRPV2 is still poorly understood. No obvious thermal or

mechanical nociceptive sensory phenotype has been detected in mice lacking TRPV2 expression.⁴⁶⁹ In agreement with the strong TRPV2 expression in cell types of the innate and adaptive immune system, phenotypes are more prominent upon immunological challenges. In macrophages, TRPV2 activity is critical for efficient cell migration, phagocytosis, and bacterial clearance.^{470,471} Similarly, TRPV2-deficient mice displayed attenuated B-cell responses and antibody formation upon immunization.⁴⁷²

The most prominent site of TRPV3 expression is found in basal and suprabasal cutaneous keratinocytes, as well as in epithelial cells of the hair follicles.^{425,473} TRPV3 expression has also been detected in sensory DRG and trigeminal ganglion neurons,^{408,474} but based on KO mouse models, the functional role of TRPV3 as a primary sensor for warmth or heat perception has been controversial.^{475,476} Since TRPV3, like TRPV4, contributes to warmth-induced ionic currents in keratinocytes, a functional link to sensory neurons may involve the formation or release of paracrine factors such as ATP, prostaglandin E₂, nitric oxide, or transforming growth factor- α to transmit the signals to sensory neurons.^{393,477–481} TRPV3 expression has also been demonstrated in epithelial tissues of the oral cavity, in glandular cells of the small intestine, and in enterocytes of the small and large intestine.^{453,482,483} In the CNS, a moderate TRPV3 expression is found dispersed over neuronal and glial cells.

The primary function of TRPV3 is best established in the development and maintenance of intact skin architecture. As GOF mutations in TRPV3 cause hair loss and mutilating keratoderma (see below), and since TRPV3-deficient mice display wavy hairs, curly whiskers, and a partially defective skin barrier,^{393,473} undisturbed TRPV3 activity appears indispensable for the proper development of the skin and skin appendages. Consistently, TRPV3 activity has been shown to promote keratinocyte proliferation and migration in vitro, and may therefore support wound healing.^{482,484,485}

Among the heat-sensitive TRPV1–4 channels, the expression of TRPV4 is most widespread. Initially, its expression has been detected in the kidney, lung, trachea, liver, spleen, brain, prostate, and placenta.^{486–489} At the cellular level, TRPV4 is strongly expressed in many human epithelial, glandular, and endothelial cell types, such as in exocrine epithelial cells of the salivary and pancreatic glands, in tracheal, bronchial, and fallopian tube ciliated epithelial cells, in epithelial cells of the choroid plexus, in tubular epithelia of the kidney, in female breasts, in tracheal and tongue glandular cells, in placental trophoblast and decidua cells, in vascular endothelial cells, and in skin keratinocytes and melanocytes, only to name a few.^{452,453} High levels of TRPV4 expression have also been found in tissue-resident macrophages, including hepatic Kupffer cells.⁴⁵³

In line with the widely distributed expression of TRPV4, manifold primary functions of TRPV4 have been identified. A common motif of some of them is based on the indirect activation of TRPV4 by hypotonic stress, causing the conversion of arachidonic acid to epoxyeicosatrienoic acids that, in turn, activate TRPV4.^{490,491} In glandular and exocrine cells, the activation of Ca²⁺ influx through TRPV4 seems to initiate a secondary opening of anoctamin 1, a Ca²⁺-regulated chloride channel, to initiate fluid secretion,^{492,493} while acute pharmacological activation of TRPV4 in vascular endothelial cells mediates the formation of nitric oxide and triggers microvascular leakage, causing circulatory collapse.⁴⁹⁴ Under more physiological conditions, shear stress can activate endothelial TRPV4 channels, thereby triggering vasodilation and outgrowth of collateral vessels.^{24,495,496} Finally, TRPV4 plays an important role in development, as pathogenic GOF mutations in human TRPV4 are linked to congenital skeletal and neuromuscular disorders.⁴⁹⁷

TRPV5 is mainly expressed in the apical membrane compartment of epithelial cells of the kidney, distal convoluted tubules (DCTs), and collecting ducts.⁴⁴¹ In human tissues, TRPV5 transcripts have also been detected in the pancreas, duodenum, jejunum, colon, placenta, prostate gland, testis, brain, and bone osteoclasts.^{498,499} Vitamin D-response elements have been identified in the TRPV5 promoter, and TRPV5 protein expression was found to correlate with the expression of other vitamin D receptor target genes in rat kidneys.⁵⁰⁰ Other studies found that TRPV5 expression in mice appeared to be regulated⁵⁰¹ by Ca²⁺ rather than by 1,25-dihydroxyvitamin D₃ or that TRPV5 expression is also regulated⁵⁰² by estrogens. In DCTs obtained from the kidneys of transgenic reporter mice that express enhanced GFP under the control of a TRPV6 promoter, 1,25-dihydroxyvitamin D₃- and parathyroid hormone-dependent transcriptional regulation of TRPV5 was detected.⁵⁰³ In the same study, TRPV5 deficiency was shown to strongly impede transepithelial Ca²⁺ transport, which also represents the primary function of TRPV5. TRPV5 deficiency is associated with severe renal Ca²⁺ wasting, highlighting the seminal role of TRPV5 in renal Ca²⁺ reabsorption and bone mineralization.^{504,505}

Compared with TRPV5, the expression of TRPV6 in mice is more widespread and mostly found in extrarenal tissues and organs. It includes the Ca²⁺-absorbing epithelia in the small intestine, exocrine and endocrine epithelia of the salivary gland, pancreas, and prostate gland, as well as subsets of epithelial cells in the thyroid, stomach, duodenum, caecum, epididymis, endometrium, placenta, and mucus-secreting epithelia in the main olfactory epithelium and the bronchia.^{506–508} In human tissues, a similar TRPV6 expression pattern has been found.^{453,509–511} Like TRPV5, TRPV6 expression is regulated in a 1,25-dihydroxyvitamin D₃-dependent fashion.^{512,513} In addition, TRPV6 expression has been shown^{501,514,515} to be upregulated by estrogens and dietary Ca²⁺.

Notably, TRPV6 expression in polarized epithelia strongly overlaps with that of the vitamin D receptor and other 1,25-dihydroxyvitamin D₃-regulated proteins that are involved in transepithelial Ca²⁺ transport, such as the Ca²⁺-buffering calbindins D(9k) and D(28k), as well as the plasma membrane calcium ATPase.^{510,516} Accordingly, the primary function of TRPV6 is to transport Ca²⁺ across epithelial barriers. Important transport routes include the 1,25-dihydroxyvitamin D₃-dependent regulation of Ca²⁺ resorption in the small intestine,⁵¹⁷ fetal Ca²⁺ supply via placental Ca²⁺ transport,⁵¹⁸ and maintenance of fertility by lowering the Ca²⁺ concentration in the seminal fluid.⁵¹⁹

D. Human diseases associated with TRPVs

Although variants in the TRPV1 gene have been identified, they are rare and not commonly associated with human diseases. Katz et al.⁵²⁰ reported the phenotypes of 2 individuals carrying a homozygous missense mutation in the ARD of the channel. This mutation, which leads to a complete loss of TRPV1 activity, causes an elevated heat-pain tolerance and a higher cold-pain threshold. Another study linked 2 independently identified TRPV1 missense variants in individuals to a high risk of malignant hyperthermia.⁵²¹ Other SNPs in TRPV1 were associated with nocturnal, usual, and chronic cough.⁵²²

An altered TRPV2 expression is mainly associated with the development and progression of several solid tumors and hematological malignancies, as reviewed recently.^{466,523} For instance, in triple-negative breast cancer (TNBC), TRPV2 expression correlates with recurrence-free survival of TNBC patients, opening up the possibility that TRPV2 activation, for example, by cannabidiol, might be beneficial as an adjuvant therapy in TNBC.⁵²⁴ A similar observation was made in patients suffering from glioblastoma, where TRPV2 expression decreased with disease progression.⁵²⁵ In

Table 3

Pharmacological modulators of TRPVs.

Name (PubChem CID ^a)	Effect	References
TRPV1		
Selected TRPV1 inhibitors		
SB-705498 (9910486)	Inhibition hTRPV1 IC ₅₀ = 3–6 nM; in clinical trials	554
AMG 517 (16007367)	Inhibition hTRPV1 IC ₅₀ = 0.9 nM; in clinical trials	555
A-1165442 (46191567)	Inhibition hTRPV1 IC ₅₀ = 9 nM for capsaicin activation, partial block of H ⁺ activation	556
A-1165901 (171378652)	Inhibition hTRPV1 IC ₅₀ = 19 nM for capsaicin activation, potentiation of H ⁺ activation	557
AMG8562 (56603667)	Inhibition hTRPV1 IC ₅₀ = 1.8 nM for capsaicin activation; IC ₅₀ > 10 μM for heat activation, potentiates H ⁺ activation	558
NEO6860 (N/A)	Inhibition hTRPV1 IC ₅₀ = 41.5 nM for capsaicin activation; IC ₅₀ > 4 μM for heat activation; in clinical trials	559
PAC-14028 (asivatrep) (56649347)	Inhibition rTRPV1 IC ₅₀ = 55 nM; topical application; in clinical trials	560
Selected TRPV1 activators		
Capsaicin (1548943)	Activation rTRPV1 EC ₅₀ = 0.7 μM; hTRPV1 EC ₅₀ = 31.6 nM; in clinical trials	454,561
Resiniferatoxin (5702546)	Activation rTRPV1 EC ₅₀ = 39.1 nM; hTRPV1 EC ₅₀ = 4 nM; in clinical trials	454,561
Anandamide (5281969)	Activation hTRPV1 EC ₅₀ = 1.3 μM	562
CA-008 (vocabcapsaicin) (121349852)	Prodrug of trans-capsaicin; in clinical trials	563
TRPV2		
Inhibitors		
Tranilast (5282230)	Inhibition hTRPV2, mTRPV2 IC ₅₀ approx. 10 μM; in clinical trials	564
Lumin (23305342)	Inhibition mTRPV2 IC ₅₀ = 5 μM	564
Valdecoxib (119607)	Inhibition rTRPV2 IC ₅₀ = 10 μM	565
Monanchomycalin B (102489008)	Inhibition mTRPV2 IC ₅₀ = 2.8 μM; hTRPV3 IC ₅₀ = 3.2 μM	566
B304-1 (N/A)	Partial inhibition mTRPV2 IC ₅₀ = 22.2 μM	567
B304-2 (N/A)	Partial Inhibition mTRPV2 IC ₅₀ = 3.7 μM	567
Piperlongumine (637858)	Inhibition hTRPV2 IC ₅₀ = 4.6 μM	568
SET2 (155541857)	Inhibition mTRPV2 IC ₅₀ = 0.5 μM	569
IV2-1 (N/A)	Inhibition rTRPV2 IC ₅₀ = 6.3 μM	471
Activators		
Probenecid (4911)	Activation; in clinical trials	570
Cannabidiol (644019)	Activation	571
TRPV3		
Inhibitors		
Citrusinone-II (10016895)	Inhibition mTRPV3 IC ₅₀ = 12.4 μM	572
Isochlorogenic acid A (6474310)	Inhibition hTRPV3 IC ₅₀ = 2.7 μM	573
Isochlorogenic acid B (5281780)	Inhibition hTRPV3 IC ₅₀ = 0.9 μM	573
Osthole (10228)	Inhibition hTRPV3 IC ₅₀ = 37 μM	574
Forsythoside B (23928102)	Inhibition hTRPV3 IC ₅₀ = 6.7 μM	575
Verbascoside (5281800)	Inhibition hTRPV3 IC ₅₀ = 14 μM	576
Alpha-mangostin (5281650)	Inhibition hTRPV2 IC ₅₀ = 77 nM; hTRPV2 GOF mutant IC ₅₀ approx. 2 μM	577
Compound 74a (155184122)	Inhibition hTRPV3 IC ₅₀ = 0.38 μM	578
Trpvinicin (122589101)	Inhibition hTRPV3 IC ₅₀ = 0.38 μM; blocks G573S GOF mutant IC ₅₀ = 0.66 μM	579
Local anesthetics (bupivacaine, mepivacaine, lidocaine, ropivacaine)	Inhibition hTRPV3 low potency (0.17–2 mM)	580
Dyclonine (3180)	Inhibition mTRPV3 IC ₅₀ = 3.2 μM	581
Flopropione (3362)	Inhibition hTRPV3 IC ₅₀ = 18 μM	582
GRC15300 (N/A)	Inhibition of TRPV3; in clinical trials	Reviewed in ⁵⁸³
Activators		
Naturally occurring monoterpenes (thymol, carvacrol, camphor)	Activation of low potency	584
Incensole acetate (73755086)	Activation mTRPV3 EC ₅₀ = 16 μM	585
Tetrahydrocannabivarin (93147)	Activation rTRPV3 EC ₅₀ = 6.1 μM	586
KS0365 (N/A)	Activation mTRPV3 EC ₅₀ = 5.1 μM (cholesterol-enriched cells)	484
TRPV4		
Inhibitors		
GSK2193874 (53464483)	Inhibition rTRPV4 IC ₅₀ = 2 nM; hTRPV4 IC ₅₀ = 40 nM	587
GSK2798745 (71227359)	Inhibition hTRPV4 IC ₅₀ = 1.8 nM; in clinical trials	588
HC-067047 (2742550)	Inhibition hTRPV4 IC ₅₀ = 48 nM; rTRPV4 IC ₅₀ = 133 nM; mTRPV4 IC ₅₀ = 17 nM	589
RN-1734 (3601086)	Inhibition hTRPV4 IC ₅₀ = 2.3 μM	590

Table 3 (continued)

Name (PubChem CID ^a)	Effect	References
RN-9893 (121513880)	Inhibition hTRPV4 IC ₅₀ = 0.42 μM; rTRPV4 IC ₅₀ = 0.66 μM; mTRPV4 IC ₅₀ = 0.32 μM	591
Activators		
GSK1016790A (23630211)	Activation hTRPV4 EC ₅₀ = 2 nM; mTRPV4 EC ₅₀ = 2.1 nM	592
36-HCI (N/A)	Activation hTRPV4 EC ₅₀ = 60 nM	593
RN-1747 (5068295)	Activation hTRPV4 EC ₅₀ = 0.77 μM; m/rTRPV4 EC ₅₀ = 4 μM	590
Curcumin (969516)	Activation is low potency, poor selectivity	594
Puerarin (5281807)	Activation is low potency	595
TRPV5,6		
Inhibitors		
Miconazole (4189)	Inhibition, TRPV6 > TRPV5; active >100 μM	596
Econazole (3198)	Inhibition, TRPV6 > TRPV5; active >100 μM	596
ZINC17988990 (27791261)	Inhibition rbTRPV5 IC ₅₀ = 0.11 μM; hTRPV5 IC ₅₀ = 0.18 μM	597
Compound 3 (N/A)	Inhibition TRPV6 IC ₅₀ = 90 μM; TRPV5 IC ₅₀ = 503 μM	596
cis-22a (169553405)	Inhibition hTRPV6 IC ₅₀ = 0.32 μM	598
3OG (N/A)	Inhibition hTRPV6 IC ₅₀ = 83 nM; hTRPV5 IC ₅₀ = 531 nM	599
SOR-C13 (121596688)	Inhibition hTRPV6 IC ₅₀ = 14 nM; in clinical trials	600
SOR-C27 (N/A)	Inhibition TRPV6 IC ₅₀ = 64 nM	600
Tetrahydrocannabivarin (93147)	Inhibition rTRPV5 IC ₅₀ = 4.8 μM; mTRPV6 IC ₅₀ = 9.4 μM	601
Compound 9e (N/A)	Photoswitchable inhibitor TRPV6	602

^aPubChem Compound Identification number. N/A – not available.

contrast, a higher TRPV2 expression was associated with worse outcomes in multiple myeloma,⁵²⁶ prostate cancer,⁵²⁷ and gastric carcinoma.⁵²⁸

Pathologies arising from TRPV3 dysfunction mainly affect the skin and are strongly associated with itch. The clearest link exists between Olmsted syndrome (OLMS1, OMIM 614594), a rare congenital disorder, and GOF mutations in TRPV3, as demonstrated in a series of clinical reports.⁴⁷³ Olmsted syndrome is characterized by palmoplantar keratoderma and periorificial hyperkeratosis, accompanied by severe pruritus and, in extreme cases, spontaneous amputation of fingers or toes. An elevated expression of TRPV3 is also linked to atopic dermatitis^{529,530} and psoriasis,⁵³¹ inflammatory skin conditions, in which TRPV3 activation might contribute to chronic pruritus. Furthermore, patients with itching scars from burn injuries display increased TRPV3 expression in the epidermis of the affected areas. The role of TRPV3 in pruritus is further highlighted by the fact that topical application of the TRPV3 activator carvacrol causes itching in burn scars.^{532,533}

Autosomal dominant TRPV4 disorders are primarily associated with skeletal dysplasias or motor function disorders, though phenotypic overlap occurs. In skeletal dysplasia, affected individuals mainly present with brachydactyly, short stature, and progressive scoliosis,⁵³⁴ but individual manifestations and severity vary among individuals. More than 50 different TRPV4 mutations have been identified so far,⁵³⁵ distributed widely across the gene with a clustering of mutations in the region between TM5 and TM6. Most mutations lead to overactive TRPV4 channels, as seen in autosomal dominant brachyolmia type 3 (OMIM 113500),⁵³⁶ metatropic dysplasia (OMIM 156530),⁵³⁷ and spondylometaphyseal Kozlowski type dysplasia (OMIM 1842522).⁵³⁸ However, some reported mutations also result in a reduced availability of TRPV4 at the plasma membrane, for example, in familiar digital arthropathy-brachydactyly (OMIM 606835).⁵³⁹ A TRPV4 mutation with a trafficking defect has also been observed in hereditary motor and sensory neuropathy type IIC (OMIM 606071), also known as Charcot-Marie-Tooth disease type 2C, a neuromuscular disorder mainly characterized by progressive peripheral neuropathy, as well as in congenital distal spinal muscular atrophy (OMIM 600175) and scapuloperoneal spinal muscular atrophy (OMIM 606071).^{540,541}

Recently, a pathogenic homozygous missense mutation in TRPV5 (V598M) was identified that causes a LOF phenotype associated with a novel form of autosomal recessive hypercalciuria and calcium wasting. The mutation, which affects the TRP helix region, results in protein misfolding and a complete loss of TRPV5-mediated calcium uptake upon overexpression in human embryonic kidney (HEK) 293 cells.⁵⁰⁵

Dysregulation of TRPV6 activity by mutations or abnormal expression levels is linked to several human diseases. Homozygous or compound heterozygous mutations in TRPV6 have been identified in individuals suffering from transient neonatal hyperparathyroidism (OMIM 618188), a condition associated with fetal skeletal abnormalities. Some of the mutations cause TRPV6 trafficking deficits or partial loss of function, which is believed to reduce calcium transport across the placenta, followed by an impaired fetal bone mineralization.^{542,543} Functionally deficient TRPV6 variants are also associated with hereditary and familial pancreatitis.^{544,545} Moreover, in recent years, several studies have attributed TRPV6 as an oncochannel in cancers of epithelial origin.⁵⁴⁶ In most malignancies, an elevated TRPV6 expression correlates with a more aggressive form of the disease and a higher risk for metastasis, possibly contributing to a poorer prognosis in prostate cancer,^{547–549} breast cancer,^{550,551} ovarian cancer,⁵⁵² and pancreatic cancer.⁵⁵³ However, additional research is needed to fully understand the mechanisms by which the putative oncochannels TRPV6 and TRPV2 may influence cancer progression and to explore the potential of pharmacological modulation – whether activation or inhibition – as a therapeutic strategy for controlling tumor growth and metastasis in specific cancer types.

E. Pharmacological modulators of TRPVs

Apart from TRPV1 and, to a lesser extent, TRPV4, the availability of specific and potent TRPV modulators remains limited. While currently available modulators provide valuable tools, their limitations regarding specificity, potency, and toxicity when applied in vivo underscore the need for the development of novel compounds. Table 3^{453,454,471,484,554–602} provides an overview of TRPV modulators.

1. TRPV1

Over the past 20 years, numerous TRPV1-modulating compounds, inhibitors, and activators have been introduced, primarily with the intention of treating diverse pain conditions. As a highly druggable target, TRPV1 has attracted considerable research interest, resulting in an abundance of selective and potent modulators. They will be only briefly summarized here, and we refer to current reviews for more detailed information.⁶⁰³

First-generation TRPV1 inhibitors, such as SB-705498 or AMG 517,^{554,555} are polymodal antagonists of TRPV1 that block activation by capsaicin, protons, and heat, as reviewed by Garami et al.⁴⁶² However, many of these compounds cause hyperthermia in vivo and reduce the perception of noxious heat, resulting in burn injuries (reviewed by Romanovsky et al⁴⁶¹). To address these issues, second-generation TRPV1 inhibitors were developed, which target TRPV1 depending on the mode of channel activation. For instance, A-1165442 blocks capsaicin and heat-evoked TRPV1 responses with minimal effects on H⁺-activated TRPV1 and does not significantly change core body temperature in rats.⁵⁵⁶ Other drugs, such as A-1165901 and AMG8562,^{557,558} block TRPV1 activation by capsaicin while potentiating H⁺ activation. Interestingly, they cause hypothermia in mice. NEO6860 is specific only for vanilloid activation of TRPV1 and leaves H⁺ activation unaffected.⁵⁵⁹ It also does not alter body temperature.⁶⁰⁴

The prototypical TRPV1 activator is capsaicin.⁴⁵³ Other naturally occurring TRPV1 activators include the superagonist resiniferatoxin,⁵⁶¹ arachidonic acid metabolites such as anandamide,⁵⁶² and several venom peptides, as reviewed by Hwang et al.⁶⁰⁵ Capsaicin is therapeutically relevant in the treatment of neuropathic pain conditions due to its ability to desensitize and ultimately cause ablation and defunctionalization of TRPV1-expressing pain-conducting fibers after prolonged application, such as through topical capsaicin patches, as recently reviewed by Alalami et al.⁶⁰⁶

2. TRPV2

Compared with TRPV1, the development of TRPV2-modulating compounds has been much less the focus of research. While specific and potent activators of TRPV2 are still lacking, some progress has been made regarding TRPV2 inhibitors. Iwata et al⁵⁶⁴ identified several TRPV2 inhibitors, including the antiallergic drug tranilast (IC₅₀ = 10 μM) and the cyanine dye lumin (IC₅₀ = 5 μM). Lumin acts as a general immunostimulant and exerts cardioprotective effects in a hamster model of dilated cardiomyopathy (δ-sarcoglycan-deficient hamster).⁵⁶⁴ The administration of tranilast prevents cardiac dysfunction in a mouse cardiomyopathy model (dystrophin-utrophin double KO)⁶⁰⁷ and suppresses fibrosis progression in a mouse model of nonalcoholic steatohepatitis.⁶⁰⁸ However, apart from its action on TRPV2, tranilast also exerts pleiotropic effects on other targets in immune cells, fibroblasts, the cardiovascular system, and tumor cells, as reviewed by Darakhshan and Pour,⁶⁰⁹ and it needs to be further confirmed to what extent the beneficial effects of tranilast and lumin in cardiac disease models depend on TRPV2 inhibition. Valdecoxib, a cyclooxygenase-2 inhibitor withdrawn from the market due to its unfavorable cardiovascular side effects, blocks rat TRPV2 channels with moderate potency (IC₅₀ = 10 μM) but not TRPV1, TRPV3, and TRPV4 channels.⁵⁶⁵ Monanchomycin B, an alkaloid isolated from the marine sponge *Monanchora pulchra*, only poorly discriminates between TRPV1, TRPV2, and TRPV3 channels (IC₅₀ = 6.0, 2.8, and 3.2 μM, respectively).⁵⁶⁶ Other natural compounds that inhibit TRPV2 include coumarin derivative enantiomers from the roots of the orange jasmine *Murraya exotica*, B304-1 and B304-2, which partially inhibit⁵⁶⁷ TRPV2 channels (IC₅₀ = 22.2 and 3.7 μM, respectively) but not TRPV1, TRPV3, or TRPV4 channels, as well as

piperlongumine, an alkaloid from the long pepper *Piper longum*. Piperlongumine selectively inhibits human TRPV2 (IC₅₀ = 4.6 μM) and reduces tumor sizes when applied to a murine glioblastoma model.⁵⁶⁸ However, due to low solubility, the compound has to be encapsulated in β-cyclodextrin and applied to an implantable dextran-dendrimer hydrogel scaffold.

Synthetic TRPV2 inhibitors include SET2 (IC₅₀ = 0.5 μM)⁵⁶⁹ and IV2-1 (IC₅₀ = 6.3 μM),⁴⁷¹ which do not affect TRPV1, TRPV3, and TRPV4 channels. However, neither compound has been tested in TRPV2-relevant disease models yet.

Regarding TRPV2 activation, particularly human TRPV2, has proven difficult to activate without inducing cytotoxic effects at the concentrations of the drugs required for robust activation. Currently, probenecid and cannabinoids, or a combination of both, are primarily used for in vitro studies.^{412,570,571,610}

3. TRPV3

Various natural compounds isolated from plants inhibit TRPV3 channels, though most of them are only moderately potent. Nonetheless, some of them have demonstrated efficacy in vivo, particularly in mouse models of acute and chronic itch. Citrusinone II, derived from the small evergreen tree *Atalantia monophylla*, inhibits TRPV3, albeit with a relatively low potency (IC₅₀ = 12.4 μM). It suppresses itch in mouse models of both acute and chronic pruritus when administered subcutaneously.⁵⁷² Naturally occurring isochlorogenic acid A (IC₅₀ = 2.7 μM) and B (IC₅₀ = 0.9 μM), active ingredients of the herb *Achillea alpina*, inhibit TRPV3 and reduce ear swelling and chronic pruritus in mouse models of topical carvacrol treatment.^{573,611} The coumarin osthole, isolated from *Cnidium monnieri* (IC₅₀ = 37 μM for hTRPV3)—a plant used in traditional Chinese medicine—attenuates dry skin itch and histamine-dependent itch.⁵⁷⁴ Subsequent studies by the same group have demonstrated the efficacy of the TRPV3 inhibitors forsythoside B, which is found in a number of plants of the mint order (IC₅₀ = 6.7 μM),⁵⁷⁵ and plant-derived verbascoside (IC₅₀ = 14 μM) in similar disease models.⁵⁷⁶ More recently, α-mangostin from the mangosteen plant was identified as a highly potent inhibitor of WT TRPV3 (IC₅₀ = 77 nM) and TRPV3 GOF mutants (G573S and G573C) (IC₅₀ ~2 μM).⁵⁷⁷

In addition to naturally occurring substances, several chemically synthesized TRPV3 inhibitors were developed. Optimization of primary hits regarding absorption, distribution, metabolism, and excretion properties has led to the discovery of compound 74a (IC₅₀ = 0.38 μM) with favorable drug-like properties and efficacy in mouse models of neuropathic and central pain.⁵⁷⁸ Another compound, Trpivicin (IC₅₀ = 0.38 μM), stabilizes both WT TRPV3 and a GOF mutant (G573S) in their closed conformations, effectively inhibiting hair loss in a mouse model carrying the G568V mutation, relieving symptoms of chronic and acute itch.⁵⁷⁹ Some local anesthetics, which are sometimes used to treat pruritus and pain, have also shown efficacy in inhibiting TRPV3 channels, although with low potency. Bupivacaine, mepivacaine, lidocaine, and ropivacaine inhibit TRPV3 with IC₅₀ values ranging from 170 μM to 2.5 mM.⁵⁸⁰ Dyclonine, a clinically used anesthetic, acts at least 2 orders of magnitude more potently on TRPV3 channels (IC₅₀ = 3.2 μM) than on TRPV1, TRPV2, TRPM8, and TRPA1 and relieves carvacrol-induced scratching in mice.⁵⁸¹ Flopropione, an antispasmodic agent, also blocks TRPV3 channels (IC₅₀ = 18 μM) and alleviates symptoms in mouse models of skin inflammation induced by skin sensitizers.⁵⁸²

Naturally occurring monoterpenes, such as thymol, carvacrol, or camphor, activate TRPV3 but with poor potencies.⁵⁸⁴ A screening of *Boswellia* extracts for bioactive components identified the diterpene incensole acetate (EC₅₀ = 16 μM) as a novel TRPV3 activator. It exerts antidepressant and anxiolytic effects in

WT but not in TRPV3-deficient mice, suggesting that these effects are indeed mediated via TRPV3 activation.⁵⁸⁵ Tetrahydrocannabivarin, a nonpsychoactive analogue of tetrahydrocannabinol, stimulates TRPV3 channels ($EC_{50} = 6.1 \mu M$) by binding to the vanilloid site but also activates several other TRP channels.^{376,586} More recently, the synthetic compound KS0365 was identified, showing 3-fold greater potency than 2-aminoethoxydiphenyl borate ($EC_{50} = 5.1 \mu M$, calculated in cholesterol-enriched cells) in activating TRPV3 without affecting TRPV2 channels.⁴⁸⁴

4. TRPV4

Significant progress has been made to improve the pharmacology of TRPV4 channels, as several pharmaceutical companies have set out to develop novel TRPV4 modulators. Subsequently, their efficacies have been demonstrated in different mouse models of diseases.

In terms of antagonists, highly potent and selective drugs are now available. Thorneloe et al.⁵⁸⁷ reported that the orally available TRPV4 antagonist GSK2193874 ($IC_{50} = 2 \text{ nM}$ for rTRPV4 and 40 nM for hTRPV4) was beneficial in mouse models of pulmonary edema. GSK2193874 is highly specific for TRPV4, demonstrating selectivity across more than 200 tested targets. The compound GSK2798745 ($IC_{50} = 1.8 \text{ nM}$) resulted from a lead optimization process and demonstrated efficacy in a rat model of pulmonary edema.⁵⁸⁸ In rats, cyclophosphamide-induced cystitis was inhibited by Hydra's HC-067047 (IC_{50} values were 48 nM for hTRPV4, 133 nM for rTRPV4, and 17 nM for mTRPV4).⁵⁸⁹ Renovis Pharma also identified several TRPV4-targeting modulators, including both activators and inhibitors. RN-1734 inhibited TRPV4 ($IC_{50} = 2.3 \mu M$) with moderate potency.⁵⁹⁰ Later, the same group⁵⁹¹ introduced orally bioavailable RN-9893 with an improved potency (IC_{50} values of $0.42 \mu M$, $0.66 \mu M$, and $0.32 \mu M$ for human, rat, and mouse TRPV4 receptors, respectively) and high specificity for TRPV4.

Several selective activators of TRPV4 are available. GlaxoSmithKline's GSK1016790A is highly potent ($EC_{50} = 2 \text{ nM}$ for hTRPV4) and selective for TRPV4. Systemic administration of GSK1016790A in animals causes a severe drop in blood pressure up to circulatory collapse and death, highlighting the role of TRPV4 in the regulation of vascular tone and vasodilation.^{494,592} Recently, a novel TRPV4 agonist was discovered ($EC_{50} = 60 \text{ nM}$), which is suitable for in vivo application. The quinazolin-4(3H)-one derivative 36-HCl suppressed the progression of osteoarthritis in a rat model of surgically induced osteoarthritis (meniscal tear model) through intra-articular application.⁵⁹³ Renovis Pharma introduced the piperazine RN-1747 with EC_{50} values of 0.77 and $4 \mu M$ for hTRPV4 and mTRPV4/rTRPV4, respectively.⁵⁹⁰

Naturally occurring TRPV4 activators include curcumin and puerarin, although both compounds only show low potencies and are, in the case of curcumin, only poorly selective for TRPV4.^{594,595}

5. TRPV5 and TRPV6 channels

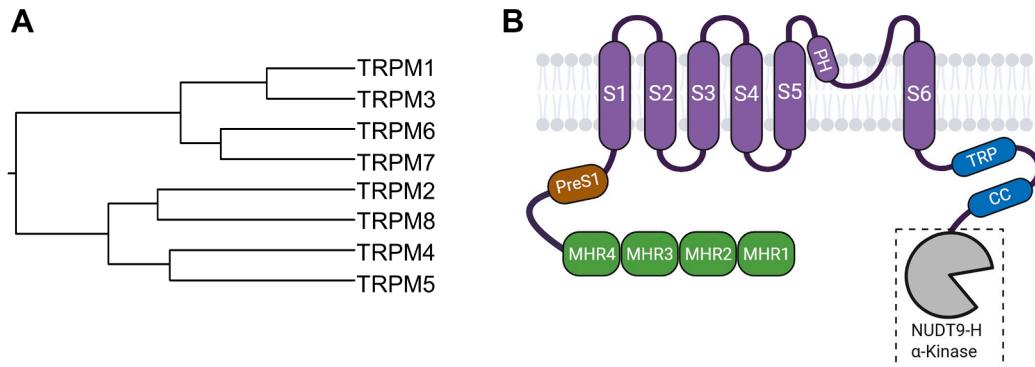
Several compounds block TRPV5 and TRPV6 channels. Initially, their potency was low, and most of them did not discriminate well between the 2 isoforms. Miconazole and econazole demonstrate approximately 2-fold higher activity for TRPV6 than for TRPV5 but require high concentrations ($>100 \mu M$) for effective channel blockade.⁵⁹⁶ Cryo-EM studies of TRPV6 in complex with econazole revealed binding to the periphery of the channel, where econazole replaced a lipid.^{612,613}

Structure-based virtual screening has further advanced the identification of TRPV5-selective compounds. By virtually screening the econazole binding pocket using a database of 12 million compounds, 3 novel TRPV5 inhibitors were identified, including ZINC17988990, which selectively inhibits rabbit human

TRPV5 but not human TRPV6 ($IC_{50} = 0.11$ and $0.18 \mu M$, respectively).⁵⁹⁷

Based on the lead compound TH-1177,⁶¹⁴ Landowski et al.⁵⁹⁶ introduced the weakly potent compound 3 with a 5-fold selectivity for TRPV6 ($IC_{50} = 90 \mu M$) over TRPV5 ($IC_{50} = 503 \mu M$). Subsequent efforts have led to the development of *cis*-22a ($IC_{50} = 0.32 \mu M$) through ligand-based virtual screening, which exerts a 7-fold selectivity for TRPV5 compared with TRPV6.⁵⁹⁸ However, *cis*-22a is not suitable for in vivo studies due to its low stability against microsomal degradation. Chemical modification of *cis*-22a resulted in the discovery of 3OG with a higher potency for TRPV6 inhibition ($IC_{50} = 83 \text{ nM}$) and improved microsomal stability.⁵⁹⁹ Cryo-EM, X-ray crystallography, and mutagenesis studies identified 2 types of binding sites for *cis*-22a in the TM region: one overlaps with lipid binding site 2 and the other is located at the intracellular pore entry site, which also serves as a binding region for Ca^{2+} -CaM.^{615,616}

Several naturally occurring compounds inhibit TRPV6 channels. SOR-C13 and SOR-C27, 2 short peptides derived from sorcidin, a paralytic venom of the shrew *Blarina brevicauda*, block TRPV6 with IC_{50} values of 14 and 64 nM , respectively. In mice, these peptides were used to detect TRPV6-overexpressing tumors⁶⁰⁰ and reduced tumor growth in a xenograft model.⁵⁵² Tetrahydrocannabivarin blocks both TRPV5 and TRPV6 channels ($IC_{50} = 4.8 \mu M$ and $9.4 \mu M$, respectively) by binding to a site at the interface between the channel's pore and the surrounding membrane.^{601,617}


6. Photoswitchable inhibitors of TRPVs

Recently, Cunha et al.⁶⁰² developed a photoswitchable TRPV6 inhibitor based on the chemical structure of a previously reported TRPV6 inhibitor by introducing a phenyldiazo group to the molecule. Compound 9e rapidly switches by illumination with UVA light from the almost ineffective E-isomer to the inhibitory Z-isomer ($IC_{50} = 1.7 \mu M$).^{598,602}

F. Ongoing or completed clinical trials with TRPVs as therapeutic targets

With respect to clinical trials, TRPV1 is by far the most intensely studied member of the TRPV family. According to the ClinicalTrials.gov database, nearly 100 studies have targeted TRPV1 for various conditions, with a focus on asthma and cough, inflammatory skin diseases, and, in particular, various pain conditions. However, due to hyperthermia and an increased likelihood of burn injuries associated with TRPV1 inhibition, many first-generation TRPV1 antagonists were withdrawn from clinical trials or did not progress further.⁶⁰³ Mode-specific second-generation TRPV1 inhibitors, such as NEO6860 (NCT02337543), do not affect heat and pH activation of TRPV1 and provide a better safety profile.⁵⁹⁹ However, NEO6860 did not demonstrate superior efficacy compared with placebo in a phase 2 trial to treat knee osteoarthritis (NCT02712957).⁶⁰⁴ Topical TRPV1 antagonists are well tolerated and are under investigation for the treatment of inflammatory skin diseases, such as atopic dermatitis (PAC-14028, asivatrep; NCT02583022, NCT02757729, and NCT02965118), where they show promising effects.⁶¹⁸ Another approach involves the desensitization of TRPV1 channels, which is used in therapeutic approaches such as the use of capsaicin-containing creams for the treatment of moderate pain or the intravesical instillation of capsaicin or resiniferatoxin for an overactive bladder. This strategy is also being explored in trials investigating capsaicin formulations or the TRPV1 agonist CA-008 (vocacapsaicin) for the management of chronic pain conditions, as reviewed by Iftinca et al.⁶¹⁹

Compared with TRPV1, far fewer studies have evaluated the efficacy of compounds targeting other members of the TRPV

Fig. 4. The relatedness and domain topology of TRPMs. (A) Phylogenetic tree of the human TRPM1–8 proteins. (B) TRPMs contain the following domains: MHR1–4, pre-S1, S1–S6, amphiphilic helices; PH, PL, pore-forming loop; TRP, highly conserved TRP helix; CC domain, NUDT9-H in TRPM2; α -Kinase in TRPM6 and TRPM7.

family. Two drug repurposing studies have evaluated the use of the nonspecific TRPV2 activator probenecid, an FDA-approved drug to treat gout and hyperuricemia. In a small phase 4 study (NCT03965351) involving patients with functionally univentricular (Fontan) circulation, probenecid improved cardiac function compared with placebo.⁶²⁰ Another phase 2 study, involving 20 patients, investigated probenecid as a positive inotropic agent for the treatment of heart failure (NCT01814319) and demonstrated a better cardiac function.⁶²¹ However, given the nonspecific action of probenecid, further confirmation is required to determine whether TRPV2 activation underpins its potential cardiac benefits. The TRPV2 inhibitor tranilast is currently being studied in a phase 1/2 study of patients suffering from advanced esophageal cancer for its efficacy when combined with traditional chemotherapy (jRCTs051190076).⁶²²

Although preclinical studies suggest a role for TRPV3 in skin diseases, to date, only the TRPV3 inhibitor, GRC15300 (SAR292833), by Glenmark Pharmaceuticals has progressed to clinical trials for targeting osteoarthritis and neuropathic pain. However, the drug failed to meet its primary endpoint in a phase 2 trial in 2013 (NCT01463397).

Alongside TRPV1, TRPV4-selective modulators have achieved notable clinical progress within the TRPV family. GSK2798745, a highly potent TRPV4 inhibitor developed by GlaxoSmithKline,⁵⁸⁸ has entered several early-phase clinical trials. No safety issues or serious side effects were observed in a phase 1 study (NCT02119260).⁶²³ However, in 2017, a phase 2a study of heart failure patients (NCT02497937) failed to demonstrate significant effects of TRPV4 inhibition on pulmonary gas diffusion as an indicator of lung congestion.⁶²⁴ In 2019, a combined phase 1/2 study (NCT03372603) assessed the effect of the same molecule on chronic cough, but the study was terminated due to a lack of efficacy. GSK2798745 was also unable to reduce alveolar barrier disruption in a model of lipopolysaccharide-induced acute lung injury in another phase 1 trial (NCT03511105),⁶²⁵ and the study was terminated due to a low probability of achieving a positive outcome of the primary endpoint. A recently completed phase 1 study (NCT04292912), evaluating GSK2798745 in patients with diabetic macular edema, has yet to publish results. Additionally, in 2023, an observational study started, monitoring the natural history of neuropathic pain in patients with confirmed genetic mutations in the TRPV4 gene (NCT05600764).

TRPV6, due to its overexpression in many solid tumors, is considered to comprise a novel target for anticancer therapy.⁶⁰⁰ In 2015, the safety and tolerability of SOR-C13 from Sorcimed Biopharma were demonstrated in a phase 1 study (NCT01578564) involving patients with advanced solid tumors, with some

experiencing antitumor effects of the drug.⁶²⁶ These findings were followed up in another recently completed phase 1 trial (NCT03784677), but no results have been published yet. The FDA has granted SOR-C13 an orphan drug designation for advanced ovarian and pancreatic cancer. CBP-1008, by Coherent Biopharma, is a bispecific ligand-drug conjugate targeting folate receptor α and TRPV6 linked to the cytostatic monomethyl auristatin E. Treatment with CBP-1008 is currently evaluated in an ongoing phase 1 trial (NCT04740398) for advanced solid tumors.

IV. TRPMs

A. TRPM gene family

The founding member of the TRPM gene subfamily was identified as transcripts enriched in melanomas and, therefore, named melastatin (now TRPM1; Table 1).^{5,7} The human TRPM gene family consists of 8 members. Based on amino acid similarity, TRPM proteins form 2 phylogenetic groups, TRPM1/3/6/7 and TRPM2/8/4/5, which can be further subdivided into 4 pairs of homologous channels: TRPM1/3, TRPM2/8, TRPM4/5, and TRPM6/7 (Fig. 4A).^{5,7,627,628} The structural organization and key biophysical characteristics were found to be conserved within pairs; however, with some exceptions.

B. Domain topology, assembly, and functional characteristics of individual TRPMs

1. Domain topology and channel assembly

The domain organization of TRPMs is illustrated in Fig. 4B. The large N-terminus of TRPMs, comprising ~70% of the total protein sequence, is unique among ion channels and subdivided into 4 melastatin homology regions (MHR1–4). The membrane-spanning segment of TRPMs, similar to other TRP channels, contains a small amphiphilic domain (pre-S1 helix) and 6 TM helices (S1–S6). The region between S5 and S6 forms a short PH and a pore-forming loop. The S6 helix is linked to a highly conserved TRP helix and a CC domain. TRPM proteins function as tetrameric channel complexes, with 4 S5–S6 segments forming a common membrane-spanning channel pore (Fig. 4B).

TRPMs function as homotetramers—4 subunits assemble to form a channel pore. In addition, the closely related TRPM1 and TRPM3 proteins, as well as TRPM6 and TRPM7, can form TRPM1/3 and TRPM6/7 heterotetrameric channels.^{629–633} Cryo-EM was successfully used to address high-resolution structures of TRPM2,^{634–640} TRPM3,^{641–643} TRPM4,^{644–648} TRPM5,^{649,650} TRPM7,^{651–653} and

TRPM8.^{40,41,654–656} These findings provided new mechanistic insights into structure-function relationships of TRPMs.^{657,658}

Three TRPMs contain additional C-terminal segments. TRPM2 contains the nudix hydrolase 9 homology (NUDT9-H) domain (Fig. 4B).^{659,660} NUDT9 proteins cleave ADP-ribose (ADPR) into AMP and ribose-5-phosphate.⁶⁶¹ NUDT9-H of human TRPM2 binds ADPR but does not exhibit enzymatic activity, while invertebrate TRPM2 proteins retain the capability to cleave ADPR.^{640,662}

The C-terminal domains of TRPM6 and TRPM7 encode α -type kinase domains (Fig. 4B).^{663–665} α -Kinases are a group of atypical serine/threonine protein kinases with low primary sequence similarity to conventional protein kinases.^{666,667} C-terminal regions in other TRPM proteins do not contain enzymatic domains (Fig. 4B).

Alternative mRNA splicing creates additional diversity among TRPMs. *TRPM1* is expressed as a “long” active variant and as a “short” transcript that lacks the sequence encoding the TM channel segment.⁶⁶⁸ Alternative mRNA processing of *TRPM2* results in truncated channel versions with different functional characteristics.^{669–671} Alternative splicing of the pore-coding sequence in *TRPM3* produces channels with distinct cation selectivity.⁶⁷² *TRPM4* is expressed as TRPM4a and TRPM4b variants with low and high channel activity, respectively.^{673,674} Alternative splicing of *TRPM6* and *TRPM7* creates isoforms encoding the N-terminal segments directly fused to the α -kinase domains.^{629,675}

2. Functional characteristics

TRPMs have been extensively investigated, and despite the overall structural similarity, they differ significantly in functional characteristics and cellular roles.^{657,658} The phylogenetic group of TRPM1, 3, 6, and 7 (Fig. 4A) represents channels that are highly permeable to divalent cations, including Zn^{2+} , Mg^{2+} , and Ca^{2+} , and are regulated by PIP_2 and intracellular Mg^{2+} .

TRPM1, the founding member of the TRPM subfamily, forms a constitutively active channel highly expressed in melanocytes and the retina.^{633,676} The constitutive activity of TRPM1 can be further stimulated by the neurosteroid pregnenolone sulfate (PS) and inhibited by extracellular Zn^{2+} or intracellular Mg^{2+} ions.⁶³³ As mentioned above, *TRPM3* produces several alternatively spliced variants^{677,678} including TRPM3 α 1 and TRPM3 α 2. TRPM3 α 1 contains a longer pore-forming segment between S5 and S6 and is highly permeable to Na^+ ions.⁶⁷² TRPM3 α 2 contains a shorter pore-forming sequence and is characterized by a high permeability to divalent cations.^{672,679} In addition, the S1–S4 regions of TRPM3 α 2 contains a noncanonical ion permeation mechanism called “omega” Na^+ currents.^{680,681} TRPM3 α 2 is the most studied channel variant referred to herein as TRPM3. TRPM3 is negatively regulated by intracellular Mg^{2+} and PIP_2 depletion and stimulated by PS and other steroids.^{672,682–684} TRPM3 is modulated by osmolality and D-erythro-sphingosine.^{685,686} Cryo-EM structures have demonstrated that PS activates TRPM3 through a site at the outer region of the channel pore formed by the PH and S1.⁶⁴² The TRPM3 channel is activated by heat, underlying the temperature responses of the dorsal root and trigeminal ganglia neurons.^{687,688} Stimulation of receptors coupled to G_i and G_o causes inhibition of the channel through the direct assembly of the $G_{\beta\gamma}$ subunits with TRPM3.^{641,689,690}

TRPM6 and TRPM7 are homologous bifunctional proteins containing TM channel segments fused to cytosolic kinase domains and, therefore, are frequently named channel kinases.^{5,7,627} Thus, one TRPM6 or TRPM7 tetramer will form a typical TRP channel unit linked to 4 cytosolic kinase domains.^{5,7,627} Furthermore, recent proteomic studies demonstrated that ARL15, PPT4A1–3, and CNNM1–4 proteins coassemble to such channel-

kinase complexes.^{691,692} Channel complexes formed by TRPM6 and TRPM7 are highly permeable to divalent cations and are negatively regulated by cytoplasmic Mg^{2+} and $Mg \cdot ATP$ as well as membrane levels of PIP_2 .^{664,665,675,693–701} The cryo-EM structures of the truncated TRPM7 have been resolved in the closed and open states.^{651–653} The solved structures are consistent with the idea that the lower channel gate contains the regulatory Mg^{2+} binding site.⁷⁰²

The α -kinase domains of TRPM6 and TRPM7 display low amino acid sequence homology to conventional serine/threonine kinases.⁶⁶⁷ However, the crystal structure of the TRPM7 kinase reveals considerable structural similarity to other protein kinases.⁶⁶⁶ The mass spectrometry approach identified multiple autophosphorylation sites mainly located in a serine/threonine-rich region situated upstream of the kinase domain of TRPM7.^{691,703,704} Similar to TRPM7 kinase, TRPM6 kinase can phosphorylate its own serine/threonine residues.⁷⁰³ In immune cells, the TRPM7 kinase domain can be cleaved from the channel domain by caspases upon Fas-receptor stimulation.^{705,706} Other studies have reported that cleaved TRPM6 and TRPM7 kinases are detected in the cell nucleus, where they can phosphorylate histones.^{706,707} Currently, the known phosphorylation substrates of TRPM6 and TRPM7 kinases comprise ~20 proteins with varied subcellular locations and functional roles.^{708–716} Overall, such functional diversity makes it challenging to develop a unified model of the cellular roles of the TRPM6 and TRPM7 kinase domains.

The TRPM2, 4, 5, and 8 phylogenetic group (Fig. 4A) comprises channels with diverse functional characteristics. The TRPM2 and TRPM8 channels are permeable to divalent and monovalent cations and are often called nonselective cation channels or Ca^{2+} -permeable cation channels. By contrast, TRPM4 and TRPM5 are impermeable to Ca^{2+} and are thus frequently called monovalent cation-selective channels.

TRPM2 was recognized as an unusual TRP channel due to the presence of the C-terminal NUDT9-H domain. TRPM2 is directly activated by intracellular ADPR.^{659,717–723} Recently, cryo-EM analysis of TRPM2 has identified 2 ADPR-binding pockets located in the MHR1/2 and NUDT9-H domains.^{634–639} Both sites play a role in the opening of the TRPM2 channel. However, the interaction of ADPR with MHR1/2 underpins the prime regulatory mechanism in the human TRPM2 channel.^{634–639} In addition, intracellular Ca^{2+} and membrane PIP_2 were identified as crucial physiological ligands of TRPM2 required for channel opening by ADPR.^{662,724–728} The Ca^{2+} binding site is formed by acidic side chains of residues located in the S2 and S3 helices and the TRP domain of TRPM2.^{634–639} PIP_2 is found in a cavity often called a “vanilloid binding pocket.”⁶³⁴ TRPM2 is positively regulated by warm temperatures (>35 °C).^{729–732} The structural basis for the temperature sensitivity of TRPM2 remains puzzling. The TRPM2 channel was also suggested as a cellular redox sensor because it is activated by peroxides, like H_2O_2 , or other agents that produce reactive oxygen species (ROS).⁷³³ However, ROS act indirectly on TRPM2, likely due to the elevation of intracellular ADPR.^{721,722,726,734,735}

TRPM8 shares significant structural homology with TRPM2. However, the C-terminal segment of TRPM8 lacks NUDT9-H. TRPM8 is activated by cold (<23 – 28 °C) and chemical agents evoking a sensation of coolness, including menthol and icilin.^{14,405,736,737} TRPM8 is a voltage-dependent channel.^{406,738} Analogously to TRPM2, the channel activity of TRPM8 is critically dependent^{42,739} on PIP_2 and intracellular Ca^{2+} . The depletion of PIP_2 prevents channel opening by pharmacological compounds and cold,^{42,739–741} whereas Ca^{2+} is required for TRPM8 activation by icilin.^{40,656} Cryo-EM studies of TRPM8 have identified the binding sites of Ca^{2+} , PIP_2 , and cooling agonists.^{40,41,654–656,742} The location of Ca^{2+} and PIP_2 binding sites in

TRPM8 parallels the corresponding sites in TRPM2.^{40,41,654–656,742} Cooling agents acoltremor (WS-12) and icilin interact with a binding pocket formed by the S1–S4 helices and the TRP domain of TRPM8, frequently called the VSLD.^{40,41,654–656,742,743} However, the structural basis of the effects evoked by voltage and temperature on TRPM8 has not yet been established.^{742,744,745}

TRPM4 and TRPM5 display functional characteristics that are unique among TRP channels—both channels are selective for monovalent cations and are activated upon increases in cytosolic Ca^{2+} levels.^{673,674,746–748} Two Ca^{2+} -binding pockets are found in TRPM4 and TRPM5.^{644–650} One site is evolutionarily conserved, and, like in TRPM2 and TRPM8, it is formed by negatively charged residues in the TM domains of TRPM4 and TRPM5.^{648–650} This site is primarily responsible for the Ca^{2+} -dependent opening of the TRPM4 and TRPM5 channels.^{648–650} Another Ca^{2+} -binding site is unique to TRPM proteins and is located at the interface of the MHR1/2 and MHR3/4 cytosolic domains.^{648–650} In TRPM4, the interaction of Ca^{2+} with the cytosolic domain regulates a complex conformational temperature transition of the channel.⁶⁴⁸ In TRPM5, the binding of Ca^{2+} to this site affects the structural dynamics of the N-terminal domain, which subsequently regulates the voltage- and Ca^{2+} -dependent opening of the channel.^{649,650} In addition, TRPM4 and TRPM5 are regulated by PIP₂.^{673,674,746–749} ATP is a negative modulator of TRPM4.^{749,750} ATP binds to TRPM4 through a site located at the interface of the MHR1/2 domains, and this interaction is temperature-dependent.⁶⁴⁴ Importantly, ATP does not act on TRPM5.^{649,749,750} TRPM5 was found to be a heat-sensitive channel that contributes to the temperature-dependent reception of chemical stimuli by taste receptor cells.^{751,752}

C. Expression pattern and primary physiological roles

1. TRPM1 and TRPM3

Initially, TRPM1 was identified as a transcript enriched in human melanomas and was suggested to be a potential tumor suppressor.^{753,754} However, the particular function of TRPM1 in melanomas and skin melanocytes remains unclear. The pathophysiological role of TRPM1 has been extensively investigated in the context of ON-bipolar neurons, which form synapses with rod, cone, and horizontal cells in the retina,^{676,755–757} because LOF mutations in the human *TRPM1* gene cause congenital stationary night blindness.^{757–761} In the dark, rod cells secrete glutamate, which activates metabotropic glutamate receptor 6 (mGluR6) in postsynaptic ON-bipolar neurons. mGluR6 is a G_α protein-coupled receptor, and its activation leads to the release of $\text{G}_{\alpha(0)}$ and $\text{G}_{\beta\gamma}$. Both subunits directly interact and deactivate the TRPM1 channel.^{676,762–764} Exposure to light blocks the release of glutamate and inactivates mGluR6, leading to the opening of the TRPM1 channel and depolarization of ON-bipolar neurons.^{676,762–764} Importantly, stationary night blindness was developed by *Trpm1* KO mice, confirming the monogenic basis of the disease.⁷⁵⁶

TRPM3 is highly expressed in nociceptive neurons, pancreatic β cells, the brain, and several other tissues.⁶⁷⁷ In pancreatic islets, TRPM3 functions as an ionotropic steroid receptor responsible for PS-induced Ca^{2+} influx in β cells, leading to enhanced insulin secretion.⁶⁸² In addition, TRPM3 can underlie PS-stimulated Zn^{2+} uptake in β cells, the crucial factor for insulin-containing dense core vesicles.⁶⁷⁹ PIP₂ is directly associated with TRPM3.^{641,683,765} In insulinoma cells, stimulation of G_q protein-coupled receptors leads to the stimulation of PLC, depletion of its substrate PIP₂, and inhibition of TRPM3.⁶⁸³ As mentioned above, activation of GPCRs leads to the inhibition of TRPM3 through the direct association of $\text{G}_{\beta\gamma}$ with the channel.^{641,689,690} This regulatory mechanism contributes to the antinociceptive effects of μ opioid receptor agonists

in DRG neurons.⁶⁸⁹ The TRPM3 channel is required for the temperature sensitivity of DRG and trigeminal ganglia neurons.^{687,688,766–768} *Trpm3* KO mice exhibited diminished sensitivity to noxious heat and reduced inflammatory heat hyperalgesia.^{687,688} Consequently, TRPM3 was suggested as a new analgesic drug target.⁷⁶⁹

2. TRPM6 and TRPM7

TRPM7 is a ubiquitously expressed channel. Endogenous Mg^{2+} -regulated TRPM7 currents have been found in virtually all primary isolated cells and stable cell lines examined, supporting the notion that TRPM7 is a versatile channel that plays a housekeeping cellular role.^{675,694,702,770–775} To this end, independent evidence^{693,694,776–778} supports the concept that the TRPM7 channel represents the principal route for the cellular uptake of divalent cations, especially Mg^{2+} . In line with this assumption, the genetic disruption or pharmacological inhibition of TRPM7 causes cell cycle arrest.^{693,694,776} Besides the homeostatic control of cellular Mg^{2+} and Zn^{2+} contents, TRPM7 is recognized as a Ca^{2+} channel shaping Ca^{2+} -dependent cellular pathways^{779–782} and a vesicular Zn^{2+} release channel.⁶⁹⁵ In this context, tissue-specific ablation of *Trpm7* in mice was used to elucidate the role of TRPM7 in the systemic balance of divalent cations. Unexpectedly, kidney-restricted deletion of *Trpm7* in mice did not cause apparent changes in the development, physical appearance, and biochemical characteristics of biological fluids.⁶⁹³ In another mouse strain, *Trpm7* was inactivated in enterocytes throughout the whole intestine, including the colon.⁶⁹³ Newborn mutants displayed growth failure and 100% mortality before weaning. Moreover, *Trpm7*-deficient pups displayed low Zn^{2+} , Mg^{2+} , and Ca^{2+} levels in serum, urine, and bones. Nutritional Zn^{2+} and Mg^{2+} supplementation of breastfeeding females extended the lifespan of mutant pups. These findings⁶⁹³ support the concept that intestinal TRPM7 operates as a master regulator of the body's balance of Zn^{2+} , Mg^{2+} , and Ca^{2+} .

Transgenic mouse models have been extensively used to investigate the role of TRPM7 in prenatal development (reviewed by Chubanov et al.^{665,783}). Among other exciting findings, it was demonstrated that TRPM7 is indispensable for early embryo development.^{784,785} Also, TRPM7 is abundantly expressed in gametes.^{784–787} KO of *Trpm7* reduced Mg^{2+} and Zn^{2+} levels in oocytes and 4-cell embryos, leading to arrested embryonic development at the blastocyst stage.⁷⁸⁶ Interestingly, Mg^{2+} but not Zn^{2+} supplementation rescues the arrest of *Trpm7*-deficient zygotes.⁷⁸⁶ These findings correlate well with the in vitro examination of mouse embryonic stem cells and embryonic trophoblast stem cells, demonstrating that the loss of TRPM7 function leads to Mg^{2+} -dependent proliferation arrest.^{776,788} In other studies, conditional mutagenesis of *Trpm7* at different embryonic stages has demonstrated that TRPM7 is indispensable for organogenesis of the kidney, heart, CNS, and immune organs.^{789–791}

Unlike the ubiquitously present TRPM7 channel, the expression of TRPM6 is limited to transporting epithelial cells of the placenta, kidneys, and intestine.^{629,788,792,793} The necessity for epithelial cells to express both TRPM6 and TRPM7 remains a topic of debate.^{663,794} Some studies suggest that the TRPM6 channel represents the close functional homolog of TRPM7 and that both proteins operate independently.^{632,795,796} An alternative view is that TRPM6 assembles with TRPM7 in heteromeric channels, which are less susceptible to metabolic negative control by cytosolic Mg^{2+} -ATP.^{629–631,788,797}

TRPM6 was found to be highly expressed in the DCT segment of the kidney and in enterocytes of the gastrointestinal tract.^{792,793} Consequently, a comparative examination of mice with global versus kidney- or intestine-specific deletions of *Trpm6* was

conducted.⁷⁸⁸ Mice lacking *Trpm6* in the whole body or specifically in the intestine exhibited severe hypomagnesemia and depletion of Mg²⁺ in bones due to impaired intestinal uptake of Mg²⁺ ions.^{788,798} Dietary Mg²⁺ supplementation fully normalized the biochemical and physiological characteristics of *Trpm6*-deficient mice.⁷⁸⁸ In contrast, 2 independent mouse strains with a kidney-specific KO of *Trpm6* displayed little or no impact on serum Mg²⁺ levels of mutant mice.^{788,799} These findings aligned with experiments⁶⁹³ involving kidney- versus intestine-specific deletions of *Trpm7*. Hence, the traditional kidney-centric view on the organismal balance of divalent cations needs some adjustment.

3. TRPM2 and TRPM8

TRPM2 is a ubiquitously expressed channel implicated in many physiological processes, including insulin secretion by pancreatic β cells, Ca²⁺ signaling in immune cells, and body temperature sensation by somatosensory and hypothalamic neurons.^{721,722,729–731,800–819} TRPM2 is implicated in pathophysiological conditions linked to excessive ROS production, for instance, inflammation, neurodegenerative disorders, and IR injury.^{808,809,818,820–831} IR injury is characterized by increased tissue levels of ROS leading to Ca²⁺ overload, cell death, and inflammatory processes.⁸²⁹ In this context, pharmacological inhibition of TRPM2 was suggested as a new strategy for treating IR injury.⁸²⁸

The physiological role of TRPM8 was investigated in genetic mouse models.^{832,833} *Trpm8* KO mice showed behavioral deficiency after exposure to cold temperatures.^{834–837} TRPM8 is defined as the principal mediator of acute and inflammatory pain and irritation-induced reflexes.^{834–846} TRPM8 is abundantly expressed in the nerve endings of DRG neurons innervating the urinary bladder and contributes to symptoms of urinary urgency and other bladder reflexes.^{847,848} Consequently, TRPM8 has been proposed as a new target for the treatment of pain, cancer, and other disorders.

4. TRPM4 and TRPM5

As TRPM4 and TRPM5 are impermeable to divalent cations, including Ca²⁺, their activation leads to Na⁺ influx and depolarization of the plasma membrane.⁶⁷⁴ In electrically nonexcitable cells, the opening of TRPM4 and TRPM5 reduces the driving force for Ca²⁺ entry through Ca²⁺-permeable channels.^{752,849–852} In excitable cells, like cardiomyocytes and neurons, depolarization of the cell membrane opens voltage-activated Ca²⁺ channels.^{752,849–852} TRPM4 is a ubiquitously expressed channel, and its role in shaping cellular responses to external stimuli is well documented in diverse immune and endocrine cells, cardiomyocytes, and neurons.^{752,849–852}

TRPM5 is highly expressed in type II taste receptor cells, mediating responses to sweet, amino acids, and bitter compounds.^{853,854} In taste cells, the activation of GPCRs leads to PLC β 2-evoked release of Ca²⁺ from intracellular stores and the opening of the TRPM5 channel.^{852–855} The activation of TRPM5 causes membrane depolarization, the opening of voltage-gated Ca²⁺ channels, and consequently, the Ca²⁺-dependent release of the transmitter ATP.^{852–855} Accordingly, deletion of *Trpm5* in mice impaired taste reception.^{751,854} TRPM5 was found to be a heat-sensitive channel, and this characteristic contributes to the temperature-dependent reception of chemical stimuli by taste receptor cells in the tongue.^{751,752}

In addition, TRPM5 was identified as a prime transduction channel in chemosensory tuft cells, also known as brush cells.^{856–867} Tuft cells are solitary epithelial cells containing apical "brush-like" microvilli that are present in many internal organs, including the respiratory system, thymus, gall bladder, urethra,

and gastrointestinal tract.^{868,869} Tuft cells are crucial players in type 2 immune responses because they can detect pathogenic helminths, bacteria, and viruses.^{858,867–877} Upon activation, tuft cells release leukotrienes, acetylcholine, interleukin-25, and ATP, mobilizing tissue-resident immune cells and other protective responses.^{858,867–878}

D. Human diseases associated with TRPMs

Gene association studies revealed the causal role of TRPMs in several human disorders. Thus, LOF mutations in the human *TRPM1* gene cause congenital stationary night blindness (type 1C), leading to impaired mGluR6/G_o/TRPM1 signaling in ON-bipolar neurons in the retina.^{757–761}

De novo heterozygous point mutations in *TRPM3* have been identified in patients with developmental and epileptic encephalopathy (DEE).^{879,880} DEE is a group of chronic encephalopathies characterized by epilepsy and intellectual disability.⁸⁷⁹ Electrophysiological analysis of TRPM3 revealed that DEE-associated mutations represent GOF mutations.^{881–883} Pharmacological inhibition of TRPM3 by primidone has been demonstrated as a potential treatment for DEE patients.^{880–884}

LOF mutations in the human *TRPM6* gene give rise to a disorder known as primary hypomagnesemia type 1, intestinal (HOMG1).^{648,885–887} HOMG1 patients are typically infants presenting with generalized convulsions, muscle spasms, and very low blood levels of Mg²⁺ and Ca²⁺. Supplementation with high doses of Mg²⁺ in patients relieves hypomagnesemia and all other symptoms, including hypocalcemia.^{792,793} Therefore, this disorder is frequently called primary hypomagnesemia with secondary hypocalcemia.^{792,793,888} Clinical assessment of the first HOMG1 patients revealed that hypomagnesemia developed due to defective intestinal Mg²⁺ uptake.^{885–887} In follow-up studies, renal leak of Mg²⁺ was also detected in Mg²⁺-supplemented HOMG1 individuals.^{792,793,888}

Misense mutations in *TRPM7* have been linked to stillbirth.⁸⁸⁹ Stillbirth is defined as the loss of a fetus after 22 weeks of gestation during pregnancy.⁸⁹⁰ Worldwide, the stillbirth rate is ~14 cases per 1000 births, and the etiology of this disease remains poorly understood.⁸⁹⁰ Recently,⁸⁸⁹ sequencing of tissue samples from affected fetuses revealed heterozygous nonsynonymous variants in *TRPM7*. Upon heterologous expression, introducing 2 mutations in *TRPM7* caused a reduction in channel activity, whereas 2 other substitutions led to proteasomal degradation of TRPM7.⁸⁹⁰ However, the exact physiological process impaired by these mutations in *TRPM7* has not been established yet.

A new form of macrothrombocytopenia has been linked⁸⁹¹ to missense substitutions in *TRPM7*. Macrothrombocytopenia is a group of disorders characterized by abnormally large platelets due to their impaired formation in megakaryocytes.⁸⁹¹ The affected patients were heterozygous for LOF point mutations in *TRPM7* and displayed reduced Mg²⁺ levels in platelets.⁸⁹¹ Notably, a mouse strain with conditional megakaryocyte-restricted *Trpm7* KO also developed macrothrombocytopenia.⁸⁹¹

Trigeminal neuralgia is a human disease defined by severe facial pain.⁸⁹² Whole-exome sequencing identified 1 patient heterozygous for the A931T mutation affecting the S3 helix of TRPM7.⁸⁹² Electrophysiological analysis of the A931T TRPM7 channel variant revealed atypical "omega" Na⁺ currents.⁸⁹² Hence, it was proposed that these "omega" currents depolarize trigeminal ganglion neurons, causing pain in trigeminal neuralgia patients.⁸⁹²

Recently, mutations in *TRPM7* have been linked to an autosomal dominant variant of hypomagnesemia (low serum concentrations of Mg²⁺).^{893–895} The affected patients were heterozygous for LOF point mutations in *TRPM7*. Apart from hypomagnesemia, the

Table 4
Pharmacological modulators of TRPM3

Name (PubChem CID ^a)	Effect	References
CIM0216 (42887770)	Activation, EC ₅₀ = 0.77 μM	906
Clotrimazole (2812)	Potentiation, EC ₅₀ = 20 nM	681
Nifedipine (4485)	Activation, EC ₅₀ = 30–32 μM	682
Diclofenac (3033)	Inhibition, IC ₅₀ = 6.2 μM	907
Maprotiline (4011)	Inhibition, IC ₅₀ = 1.3 μM	907
Primidone (4909)	Inhibition, IC ₅₀ = 0.6 μM	907
Naringenin (439246)	Inhibition, IC ₅₀ = 0.5 μM	908
Hesperetin (72281)	Inhibition, IC ₅₀ = 2.0 μM	908
Ononetin (259632)	Inhibition, IC ₅₀ = 0.3 μM	908
Isosakuranetin (160481)	Inhibition, IC ₅₀ = 50 nM	909
Liquiritigenin (114829)	Inhibition, IC ₅₀ = 0.5 μM	909

^aPubChem Compound Identification number.

patients displayed other less prominent symptoms, including episodes of hypocalcemia (low serum concentrations of Ca²⁺), seizures, and muscle cramps. In addition, some individuals suffered from migraine, autism, and developmental delays, mainly affecting speech and motor skills. Notably, supplementation with high doses of Mg²⁺ in patients could only partially normalize serum concentrations of Mg²⁺ and incompletely ameliorate other symptoms.^{893,894}

GOF and LOF point mutations in the human *TRPM4* gene have been linked to different forms of cardiac conduction defects, including progressive familial heart block type 1,^{896,897} Brugada syndrome,^{898–901} right-bundle branch block, atrioventricular block, and complete heart block.^{902–904} However, it remains puzzling why either reduced or increased TRPM4 activity leads to different forms of cardiac conduction defects.

E. Pharmacological modulators of TRPMs

As outlined above, TRPMs critically contribute to diverse physiological processes and are considered prospective drug targets for the treatment of human diseases.^{657,658} Consequently, numerous studies have been conducted to identify small organic compounds suitable for the pharmacological regulation of TRPMs in cultured cells and animal disease models.^{657,658} Herein, we summarize the key developments in these research areas and discuss the identified pharmacological modulators of TRPMs. However, the present chapter will not cover the effects of nonspecific channel inhibitors (eg, ruthenium red and 2-

aminoethoxydiphenyl borate) or compounds incompletely characterized in terms of their potency and efficacy.

1. TRPM1 and TRPM3

The pharmacological toolkit for TRPM1 has not yet been developed. TRPV1 agonists, capsaicin and anandamide, were used to activate endogenous TRPM1 currents in ON-bipolar cells.⁷⁵⁷ The response of ON-bipolar cells to capsaicin was blocked by the TRPV1 inhibitor capsazepine.⁷⁵⁷ Similarly, an antibiotic agent, voriconazole, was suggested to inhibit capsaicin-evoked TRPM1 currents in ON-bipolar cells.⁹⁰⁵ However, evidence of the direct action of these compounds on the TRPM1 channel and the pharmacological characteristics of such interactions (eg, IC₅₀) remains to be seen.

Several synthetic compounds positively regulate TRPM3 channel activity, including CIM0216, clotrimazole, and nifedipine (Table 4).^{681,682,906–909} CIM0216 was determined to be the most potent activator of the TRPM3 channel.⁹⁰⁶ The antifungal agent clotrimazole causes potentiation of the TRPM3 channel, as this compound does not affect basal or heat-activated TRPM3 currents but robustly stimulates TRPM3 upon coapplication with PS.⁶⁸¹ In addition, several potent inhibitors of TRPM3 have been identified. Thus, the FDA-approved drugs diclofenac, maprotiline, and primidone were found to be potent inhibitors of PS-induced TRPM3 activity (Table 4).⁹⁰⁷ Notably, primidone could attenuate thermal nociception in animals.⁹⁰⁷ Recently,⁶⁴² cryo-EM structures of TRPM3 were addressed in complex with PS, primidone, and CIM0216. While PS interacts with TRPM3 through a site at the outer region of the channel pore, primidone, nifedipine, and CIM0216 bind to TRPM3 within the cavity between the S1–S4 segments and the TRP domain.^{642,643} Another study demonstrated that 2 fruit flavanones, naringenin and hesperetin, and the spiny restarrow derivative, ononetin, are potent inhibitors of TRPM3 (Table 4).⁹⁰⁸ Follow-up hit optimization experiments uncovered fruit flavanones isosakuranetin and liquiritigenin, displaying improved potency in the block of TRPM3 currents (Table 4).⁹⁰⁹ Moreover, isosakuranetin and hesperetin were capable of reducing the sensitivity of mice to noxious heat and PS-induced pain.⁹⁰⁹

2. TRPM6 and TRPM7

Several small molecules have been defined as negative regulators of the TRPM7 channel.^{664,910–912} A significant fraction of

Table 5
Pharmacological modulators of TRPM6 and TRPM7

Name (PubChem CID ^a)	Effect	References
TRPM7		
NS8593 (71311765)	Channel inhibition, IC ₅₀ = 1.6 μM ^b (3.9 μM ^c)	913
Waixenincin A (73755210)	Channel inhibition, IC ₅₀ = 7.0 μM ^b (16 nM ^c)	914
FTY720 (107969)	Channel inhibition, IC ₅₀ = 0.72 μM	917
VER155008 (25195348)	Channel inhibition, IC ₅₀ = 0.11 μM	915
CCT128930 (17751819)	Channel inhibition, IC ₅₀ = 0.86 μM ^b (0.63 μM ^c)	916
Cannabigerolic acid (CBDA) (6449999)	Channel inhibition, IC ₅₀ = 1.8 μM	919
Cannabidiavarin (CBDV) (11601669)	Channel inhibition, IC ₅₀ = 3.4 μM	919
Naltriben (5486827)	Channel activation, EC ₅₀ = 21 μM	920
Mibepradil (60663)	Channel activation, EC ₅₀ = 53 μM	921
TG100-115 (10427712)	Kinase inhibition, IC ₅₀ = 1.07 μM	922
TRPM6		
Iloperidone (71360)	Channel inhibition, IC ₅₀ = 0.73 μM	915
Ifenprodil (3689)	Channel inhibition, IC ₅₀ = 3.33 μM	915

^aPubChem Compound Identification number.

^bIC₅₀ was determined in Mg²⁺-free intracellular saline.

^cIC₅₀ was determined in the presence of physiological Mg²⁺ concentration.

these agents represent polyspecific channel blockers, incompletely characterized compounds, or low-potency antagonists of TRPM7.^{664,910,911} However, NS8593, waixeninic A, FTY720, VER155008, CCT128930, cannabigerolic acid, and cannabidivarin were found to be potent inhibitors of TRPM7 currents with IC_{50} values in the low micromolar to nanomolar range (Table 5).^{913–922} Noteworthy, waixeninic A, VER155008, CCT128930, and cannabigerolic acid selectively suppressed the TRPM7 channel and displayed no effects on the homologous TRPM6 channel.^{652,653,914,915,919} In contrast, NS8593 and FTY720 inhibited both channels, TRPM6 and TRPM7.^{652,653,915,917} NS8593, waixeninic A, and FTY720 were the most extensively used to map the cellular roles of the TRPM7 channel in different physiological and pathophysiological settings, including animal models of human diseases, such as tissue fibrosis, metabolic, cardiovascular, and immune disorders, and treatment of tumors, inflammation, and aortic aneurysm.^{715,782,923–935}

Recently,^{652,653} cryo-EM structures of TRPM7 were solved in complex with NS8593, VER155008, and CCT128930. All 3 inhibitors bind to the same site in TRPM7, located on the cytoplasmic side of the membrane at the interface of the S3, S4, and S5 helices and the TRP domain. This ligand-binding pocket in TRPM7 is called a vanilloid-like site because the homologous cavity in the TRPV1 channel has been previously defined as a vanilloid regulatory site.^{652,653} However, whether waixeninic A and FTY720 bind to the vanilloid-like site of TRPM7 or act through an alternative mechanism remains to be examined.

A set of small molecules serving as TRPM7 channel agonists has been identified.^{920,921} Among them, naltriben and mibepradil have been characterized in detail (Table 5). Both agents can potently activate TRPM7 currents without depletion of intracellular Mg^{2+} , indicating that both compounds act as true agonists of the TRPM7 channel.^{920,921} Consequently, many studies employed naltriben and mibepradil, frequently in combination with TRPM7 inhibitors, to examine the role of this channel in different cellular

processes.^{664,910–912} More recently, the cryo-EM structure of TRPM7 was solved in the open state in complex with naltriben.⁶⁵³ A comparison of the closed and open naltriben-bound structures of TRPM7 uncovered particular conformational rearrangements associated with agonist-induced activation of the TRPM7 channel. Naltriben-binding pockets (4 sites per tetramer) were found at the intersubunit interface, formed by the MHR4/pre-S1 helix of one subunit and the MHR4 domain of the neighboring subunit. Intriguingly, this ligand-binding site has not been identified in TRPMs before.⁶⁵³

The selective pharmacological modulators of TRPM7 kinase remain to be identified. Currently, only 1 compound, TG100-115 (Table 5), is known as an inhibitor of TRPM7 kinase activity, but this molecule also inactivates TRPM6 kinase.^{630,691,922}

In contrast to TRPM7, the pharmacological profile of TRPM6 is less established. Recently, 2 structurally unrelated compounds, iloperidone and ifenprodil, were defined as potent inhibitors of the TRPM6 channel (Table 5).⁹¹⁵ Notably, both reagents showed no impact on the TRPM7 channel.⁹¹⁵ As mentioned above, NS8593 and FTY720 can suppress TRPM6 currents.^{652,653,915,917} Hence, the available pharmacological toolkit enables selective or combined targeting of TRPM6 and TRPM7 in physiological conditions or preclinical experimental models, for instance, in patient-derived primary cells.

3. TRPM2 and TRPM8

H_2O_2 - and ADPR-evoked TRPM2 currents can be blocked by several synthetic and natural compounds, including *N*-(*p*-amylcinnamoyl)anthranilic acid, typhostin AG 490 (AG490), clotrimazole, JNJ-28583113, scalaradial, and 2,3-dihydroquinazolin-4 (1*H*)-one derivative D9 (Table 6).^{936–956} The generation of synthetic analogs of ADPR represents another strategy to target TRPM2. Thus, 8-phenyl-2'-deoxy-ADPR was found to be a potent inhibitor of TRPM2 currents.⁹⁴² Two other synthesized ADPR analogs with substitutions in the pyrophosphate segment of the

Table 6
Selected examples of pharmacological modulators of TRPM2 and TRPM8.

Name (PubChem CID ^a)	Effect	References
TRPM2		
<i>N</i> -(<i>p</i> -Amylcinnamoyl)anthranilic acid (ACA) (5353376)	Inhibition, $IC_{50} = 1.7 \mu M$	936
AG490 (5328779)	Inhibition, $IC_{50} = 0.4 \mu M$	937
Clotrimazole (2812)	Inhibition, $IC_{50} = -1 \mu M$	938
JNJ-28583113 (164628567)	Inhibition, $IC_{50} = 0.13 \mu M$	939
Scalaradial (21637538)	Inhibition, $IC_{50} = 0.21 \mu M$	940
2,3-dihydroquinazolin-4 (1 <i>H</i>)-one derivative D9 ^c (N/A)	Inhibition, $IC_{50} = 3.7 \mu M$	941
8-phenyl-2'-deoxy-ADPR (compound 86 ^c) (N/A)	Inhibition, $IC_{50} = 3 \mu M$	942
ADPR analogues 7 ^c and 8 ^a (N/A)	Inhibition, $IC_{50} = -5 \mu M$	943
TatM2NX (154699439)	Inhibition, $IC_{50} = 0.40 \mu M$	944
TRPM8		
(–)-Menthol (16666)	Activation, $EC_{50} = 48 \mu M$	945
Icilin (161930)	Activation, $EC_{50} = 0.36 \mu M$	946
Acoltremon (WS-12) (11266244)	Activation, $EC_{50} = 0.19 \mu M$	947
Azo-menthol (N/A)	Activation, $EC_{50} = 4.4 \mu M$	948
(+)-Sesamin (72307)	Inhibition, $IC_{50} = 9.8 \mu M$	949
Hispidulin (5281628)	Inhibition, $IC_{50} = 1.7 \mu M$	950
Oroxylin A (5320315)	Inhibition, $IC_{50} = 9.7 \mu M$	950
AMTB (16095383)	Inhibition, $IC_{50} = -1 \mu M$	951
M8-B (69316632)	Inhibition, $IC_{50} = 7.8 \text{ nM}$	952
TC-I 2000 ^b (compound 87 ^c) (57326210)	Inhibition, $IC_{50} = 36 \text{ nM}$	953
AMG 333 (71144018)	Inhibition, $IC_{50} = 13 \text{ nM}$	954
RQ-00203078 (49783953)	Inhibition, $IC_{50} = 8.3 \text{ nM}$	955
TC-I 2014 ^b (compound 5 ^c) (135883253)	Inhibition, $IC_{50} = 3 \text{ nM}$	956

^aPubChem Compound Identification number. N/A – not available.

^bCommercially available product.

^cReferred as in reference.

nucleotide (compounds 7i and 8a) displayed considerable potency and selectivity in the suppression of TRPM2 (Table 6).⁹⁴³ TatM2NX is a cell-permeable peptide designed to interact with ADRP binding in TRPM2.⁹⁴⁴ In electrophysiological experiments, TatM2NX was found to be a potent inhibitor of the TRPM2 channel (Table 6).⁹⁴⁴ Despite outstanding progress in structural assessment of TRPM2 channels from different species,^{634–639} the molecular basis underpinning the inhibitory effect of the ligands mentioned above remains unknown. Also, it is worth noting that pharmacological compounds acting as agonists of the TRPM2 channel have not yet been identified.

TRPM8 has been proposed as a new target for the treatment of pain, and consequently, a very comprehensive collection of TRPM8 modulators has been developed. TRPM8 agonists like menthol, icilin, and WS-12 are broadly used to explore the pharmacological potential of this channel (Table 6).^{945–947} In addition to menthol, other natural products with menthol-like cooling effects are defined as activators of TRPM8, including camphor, rotundifolone, eucalyptol, and borneol.⁹⁵⁷ However, these compounds affect TRPM8 at a high micromolar range of concentrations and elicit multiple effects on other proteins.^{957,958} The structures of such cooling agents serve as blueprints for designing dozens of synthetic agents with EC₅₀ values in the nanomolar range.^{957,958} These synthetic substances have been predominantly documented in patents from pharmaceutical companies and await further validation.^{957,958} Recently, the first photoswitchable TRPM8 activator, azo-menthol, has been developed, which enables optical regulation of TRPM8 currents with UV and blue light (Table 6).⁹⁴⁸

Screening natural products led to the discovery of TRPM8 inhibitors, such as sesamin, hispidulin, and oroxylin A (Table 6).^{949,950} In addition, a series of synthetic TRPM8 antagonists have been identified, for instance, AMTB, M8-B, TC-I 2000, AMG 333, RQ-00203078, and TC-I 2014 (Table 6).^{951–956,959} AMTB and TC-I 2014 were used in the cryo-EM analysis of TRPM8, and the resolved structures revealed that, analogously to agonists WS-12 and icilin, both inhibitors interact with a ligand-binding site formed by residues of the S1–S4 segments of TRPM8.^{40,654} Finally, it is worth noting that pharmaceutical companies have synthesized several potent inhibitors of TRPM8, but similar to the situation with TRPM8 activators, the functional impacts of these entities on TRPM8 are only briefly reported in patents.^{957,958}

4. TRPM4 and TRPM5

In initial studies, several polyspecific channel blockers were used to inhibit TRPM4 currents, for instance, 9-phenanthrol and MPB-104 (Table 7).^{649,960–970} However, these agents displayed a low potency toward TRPM4. Subsequently, more potent TRPM4 inhibitors were identified, such as 4-chloro-2-[(2-(2-chlorophenoxy)acetyl]amino] benzoic acid, 4-chloro-2-[2-(naphthalen-1-yloxy)acetamido] benzoic acid, and meclofenamate (Table 7).^{962,963,971} In mice, meclofenamate inhibited the Ca²⁺ overload-induced background current in ventricular cardiomyocytes and suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner.⁹⁶³ U73122 was found to be a potent activator of TRPM4, which can stimulate TRPM4 currents in the absence of intracellular Ca²⁺ (Table 7).⁹⁶⁴ Another compound, a 3,5-bis(trifluoromethyl)pyrazole derivative (YM-58483), is defined as a potentiator (or enhancer) of the TRPM4 channel because the degree of TRPM4 activation is dependent on the presence of intracellular Ca²⁺ (Table 7).⁹⁶⁵

Recently, a small molecule, necrocide 1 (NC1), was identified as a potent activator of human TRPM4 but not mouse TRPM4 (Table 7).⁹⁶⁶ Interestingly, upon activation of TRPM4, NC1 induces necrotic cell death because of Na⁺ overload.⁹⁶⁶ Despite significant progress in cryo-EM analysis of TRPM4,^{644–648} the structural basis for the inhibitory and stimulatory effects of the ligands mentioned above remains unknown.

Several pharmacological agents, such as flufenamic acid, clotrimazole, and quinine, were found suitable for inhibiting the TRPM5 channel.^{750,972} However, these compounds were active in the high micromolar range and capable of suppressing TRPM4.^{750,972} Subsequently, triphenylphosphine oxide demonstrated improved selectivity and potency toward TRPM5, whereas N'-(3,4-dimethoxybenzylidene)-2-(naphthalen-1-yl)acetohydrazide (NDNA) represents the most potent inhibitor of TRPM5 currents (Table 7).^{649,967} Cryo-EM analysis demonstrated that NDNA binds to a cleft between the S1–S4 segment and the S5–S6 helices, known as the vanilloid binding site in TRPVs, stabilizing the channel in a closed conformation.⁶⁴⁹ Recently, NC1 was identified as a compound that induces necrotic cell death through direct activation of the TRPM4 channel through the NDNA-binding site (Table 7).⁹⁶⁶

Several natural compounds are applicable for the positive regulation of TRPM5 (Table 7). Steviol glycosides, such as

Table 7
Pharmacological modulators of TRPM4 and TRPM5

Name (PubChem CID ^a)	Effect	References
TRPM4		
9-Phenanthrol (10229)	Inhibition, IC ₅₀ = 17–23 μM	960
MPB-104 (11738767)	Inhibition, IC ₅₀ = 11–24 μM	960
4-Chloro-2-[(2-(2-chlorophenoxy)acetyl]amino] benzoic acid (CBA ^b , compound 5 ^c) (2264067)	Inhibition, IC ₅₀ = 1.8 μM	962
4-Chloro-2-[2-(naphthalen-1-yloxy)acetamido] benzoic acid (NBA ^b , compound 6 ^c) (1295523)	Inhibition, IC ₅₀ = 0.2 μM	962
Meclofenamate (4038)	Inhibition, IC ₅₀ = 3.4 μM	963
U73122 (104794)	Activation, EC ₅₀ = 0.44 μM	964
3,5-Bis(trifluoromethyl)pyrazole derivative BTP2 (YM-58483) (2455)	Potentiation, EC ₅₀ = 8–500 nM	965
Necrocide 1 (NC1) (49783440)	Activation, EC ₅₀ = 0.31 μM	966
TRPM5		
Triphenylphosphine oxide (TPPO ^b) (13097)	Inhibition, IC ₅₀ = 12 μM	967
NDNA ^b (674882)	Inhibition, IC ₅₀ = 2.4 nM	649
Stevioside (442089)	Potentiation, EC ₅₀ = 690 nM	968
Benzodisothiazole derivatives 61 ^c , 64 ^c (164611814, 164619590)	Activation, EC ₅₀ = 8–44 nM	969
Tetrahydroisoquinoline derivative 39 ^c (167993652)	Activation, EC ₅₀ = 80 nM	970

^aPubChem Compound Identification number.

^bAbbreviation of chemical name.

^cReferred to as in the reference.

stevioside, potentiate the Ca^{2+} -dependent activity of the TRPM5 channel and are thus defined as potentiators of TRPM5.⁹⁶⁸ In other studies, high-throughput screening and lead optimization strategies suggested several synthetic compounds to act as potent TRPM5 agonists.^{969,970} Among several benzo[d]isothiazole derivatives, 2 molecules (referred to as compounds 61 and 64) activated the TRPM5 channel with EC₅₀ values in the nanomolar range.⁹⁶⁹ A series of tetrahydroisoquinoline-based molecules (ie, compound 39) stimulated TRPM5 with an EC₅₀ of 0.1–10 μM (Table 7).⁹⁷⁰ However, a more comprehensive biophysical assessment is needed to conclude that these ligands open the TRPM5 channel in a Ca^{2+} - and voltage-independent fashion.

F. Ongoing or completed clinical trials with TRPMs

According to the ClinicalTrials.gov database,⁹⁷³ TRPM3 is the subject of a clinical trial (NCT05275751) aimed at examining whether the redundant functions of TRPV1, TRPA1, and TRPM3 observed in mice regarding heat perception are also applicable to humans. Another trial (NCT03252834) is examining whether the genetic variants of TRPM2 represent biomarkers for chemotherapy-induced abnormal thermal sensation in cancer patients. Early treatment of cerebral edema and intracranial pressure is crucial for improving outcomes. The study NCT06017635 investigates whether TRPM4 expression levels can serve as a diagnostic marker for cerebral edema in children. It is well documented that early mobilization of patients in the surgical intensive care unit improves outcomes. The trial NCT01363102 examines whether genetic polymorphisms in TRPM6 and other genes are linked to sleep quality and muscle strength, and whether these associations relate to early mobilization in surgical patients. The project NCT04229992 examines the association between SNPs in TRPM7, dietary intake of calcium and magnesium, and the risk of developing colorectal cancer.

Several ongoing clinical trials assess TRPM8 as a therapeutic target for various pathophysiological conditions. The trial NCT01408446 investigates the impact of the TRPM8 agonist menthol (Table 6) on the prevention of prehypertension and mild hypertension. This trial aims to assess the effects of dietary menthol on blood pressure and metabolic parameters. The study NCT05935280 aims to determine whether TRPM8 contributes to cold pain perception in humans. Cold pain will be experimentally induced by injecting a cooling solution (3 °C) into the skin, along with TRPM8 inhibitors to assess their effects. Experiments with animals indicated that activating TRPM8, which is expressed in the dermal tissue of the limbs, using menthol is beneficial for stroke recovery. The investigation NCT05877079 aims to examine the impact of such treatment on patients with acute ischemic stroke. The trials NCT04711044, NCT04554888, NCT04515056, and NCT03943407 evaluate the effects of menthol on itch induced by histamine, cowhage, and papain. The project NCT03610386 examines the effect of menthoxypropanediol, a derivative of menthol, on pruritus in atopic dermatitis (eczema) using biopsies from patients with atopic dermatitis. Applying menthol topically increases resting energy expenditure, likely by activating brown adipose tissue. The aim of the study NCT07030725 is to determine whether applying menthol to the front of the thorax will boost thermogenesis through brown adipose tissue activation and enhanced blood flow in skeletal muscles. The project NCT01565070 examines whether menthol can alleviate symptoms associated with knee osteoarthritis, thereby reducing immobility and isolation in older adults.

Recently, the FDA approved WS-12, a TRPM8 agonist (Table 6), for the treatment of symptoms associated with dry eye disease.⁹⁷⁴ WS-12 stimulates corneal nerves to promote natural tear

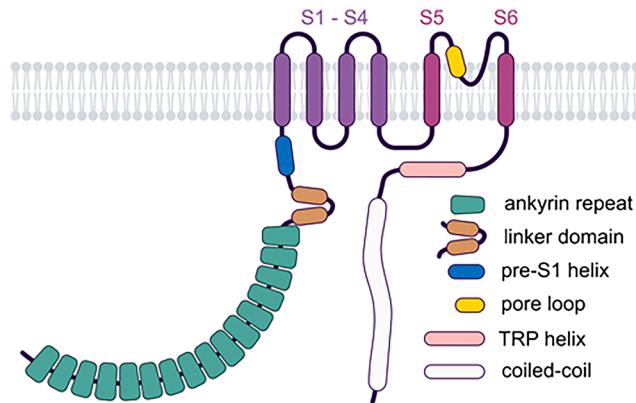
production and has been found beneficial in 40% of patients over 90 days of treatment.⁹⁷⁴

On this background, we anticipate that the recently developed modulators of TRPMs will enable the design of new clinical trials in the near future.

V. TRPAs

A. TRPA gene family

In humans, TRPA1 is the only member of the ankyrin-repeat TRP channel subfamily (Table 1). It is a polymodal irritant sensor that is expressed in nociceptive neurons and some nonneuronal cell types. Its marked promiscuity to be activated by a plethora of natural products, drugs, and drug-like compounds sets it apart from most other TRP channels and often results in covalent modification or indirect mechanisms, which include the formation of ROS or oxidized membrane lipids.


B. Domain topology, assembly, and functional characteristics of TRPA1

1. Domain topology and channel assembly

A prominent and name-giving property of TRPA1 is its extended N-terminal ARD, featuring approximately 16 (14–18, depending on the species) consecutive ankyrin-like folds that consist of about 33 amino acids each. This N-terminal ARD makes up most of the intracellular volume of the channel protein. The 3D structure of mammalian TRPA1 has been elucidated by cryo-EM, first at a rather low resolution of about 16 Å⁹⁷⁵ and more recently, at a resolution of 4 Å⁹⁷⁶ or ~3 Å⁹⁷⁷ which allowed for a more reliable reconstruction. While the first 11 ankyrin repeats appear as a concave crescent-like density that extends away from the central symmetry axis, the ankyrin repeats 12–16 closely surround a central bundle of the 4 C-terminal located α -helical structures, which engage in CC helices with their respective neighbors. A prominent regulatory site is located in the linker region between the ARD and the first TM segment S1 region. This linker, also referred to as the coupling domain, contains cysteine (C621 and C641) and lysine (K710) residues that surround a binding pocket and can be covalently modified by electrophilic TRPA1-activating drugs.⁹⁷⁷

Like other TRP channels, the TMD can be subdivided into a VSLD comprising the first 4 TM-spanning segments S1–S4, a helical S4–S5 linker, a pore-forming fold that consists of TM helix S5, the re-entrant pore loop, and a tilted S6 helix, which strongly constricts the pore in its closed conformation. The pore loop features 2 short helical segments that position a string of 3 glutamate residues (E920, E924, and E930) to generate a negatively charged surface in and around the extracellular pore mouth. The most centrally positioned E920, together with D915, is a key feature of the selectivity filter that constricts the pore and divides the permeation pathway into an outer vestibule and an inner cavity.⁹⁷⁸ At present, structural data on the open channel state of TRPA1 are still lacking. Hypothetical models postulate a rotation of S6 that repositions the strongly constricting hydrophobic amino acids I957 and V961 away from the central axis, which then may be flanked by E966 and open to form a hydrophilic cation-conducting pore.⁹⁷⁹ The TMD is followed by a TRP-like domain and the aforementioned C-terminal CC-forming domain.

Finally, the TMD features grooves and clefts that allow the noncovalent binding of allosteric TRPA1-modulating drugs. An intersubunit cleft between S4 and the S4–S5 linker of one subunit, and S5 and S6 of the neighboring subunit, has been demonstrated to adopt GNE551, a noncovalent TRPA1 activator.⁹⁸⁰ The TRPA1 antagonist A-967079 most likely binds to a pocket formed in the

Fig. 5. The domain topology of TRPA1. The TRPA1 channel contains the following domains: an ARD consisting of 16 consecutive ankyrin repeats, a helix-loop-helix-shaped linker domain that connects to the bundle of the first 4 TM-spanning helices via an α -helical pre-S1 segment. The selectivity filter and gate of the permeation pathway are formed by a recurrent pore loop and TM segments 5 and 6. The cytosolic C terminus features the highly conserved TRP helix and a CC domain, which engages in contacts with neighboring subunits.

upper part of the TMD flanked by S5, S6, and the first PH.⁹⁷⁶ Figure 5 provides a graphical illustration of the domain topology of TRPA1.

All structural biology data on recombinantly expressed TRPA1 channel complexes confirm the expected homotetrameric conformation with rotational symmetry (see PDB entries provided in Table 1). Evidence of heteromeric channel assemblies composed of TRPA1 and TRPV1 subunits was obtained through coimmunoprecipitation analyses, Förster resonance energy transfer, single-channel current properties, and atomic force microscopy of heterologously expressed concatemers.^{383,981} The extent and physiological, pathophysiological, and pharmacological relevance of a possible heteromeric assembly have not yet been clearly defined. Moreover, the complexes may either result from a heterotetrameric assembly, as suggested by Fischer et al.,³⁸³ or from functional interaction of side-by-side assemblies of homotetrameric complexes that may interact directly via a bridging protein,⁹⁸² such as TMEM100, or by an A kinase-anchoring protein (AKAP79/150) as a scaffold.⁹⁸³

2. Functional characteristics of TRPA1 channel complexes

Due to its responsiveness to numerous compounds and conditions and its strong expression in nociceptive or chemosensory afferent neurons, there is a broad consensus that TRPA1 acts as a polymodal irritant sensor. A plethora of input queues converge toward TRPA1 activation, including the covalent binding of cysteine-reactive or other electrophilic activators,^{984,985} the indirect effects of compounds that induce lipid peroxidation, such as the formation of 4-hydroxynonenal,⁹⁸⁶ ultraviolet light, or phototoxic substances that can generate ROS upon illumination,^{987,988} ROS themselves,⁹⁸⁹ as well as nonreactive TRPA1 activators, some of which are summarized below. In addition, TRPA1 activity can be further potentiated by intra- and extracellular Ca^{2+} ions,^{990–992} or via GPCRs that sense inflammatory mediators.^{993,994}

Initial findings suggesting that TRPA1 may sense noxious cold temperatures⁹⁹⁵ were soon challenged,⁹⁹⁶ and the results strongly relied on the investigated species.^{997,998} Genetic as well as pharmacological evidence has even attributed TRPA1 to contribute to a heat-sensing pathway.⁷⁶⁶ Human TRPA1 seems to be both cold- and heat-sensitive, and structural determinants for thermal activation have been identified.⁹⁹⁹

With respect to its biophysical properties, TRPA1 mediates poorly selective cation currents that show a marked outward rectification when recorded in the presence of physiological concentrations of divalent cations.^{978,991} Depending on the applied activator, TRPA1 inward currents exhibit a slight and variable 2- to 8-fold preference for divalent versus monovalent cations.^{1000,1001} Likewise, unitary current amplitudes strongly depend on the composition of bath and pipette solutions and the applied agonists. In isotonic solutions, they range between 48 pS for inward currents measured in the presence¹⁰⁰⁰ of 5 mM intracellular Mg^{2+} and 251 pS in symmetrical Cs^+ solutions⁹⁷⁸ containing only 0.1 mM Mg^{2+} . The smaller, nonflickering unitary currents in the presence of divalent cations that can permeate through the TRPA1 pore are consistent with the assumption that divalent cations act as permeating blockers.¹⁰⁰² Applying charge carriers of different sizes, a pore diameter of at least 8.2 Å has been determined,⁹⁷⁸ and the pore may further dilate up to 13.8 Å when activated by mustard oil.¹⁰⁰⁰ Accordingly,^{1003–1005} TRPA1 prolonged activation by a variety of reactive or nonreactive agonists allows permeation of the organic cations Yo-Pro-1 or NMDG $^+$, a phenomenon that has been attributed to pore dilation. Alternatively, pore dilation might be mimicked by changed intracellular ion concentrations.⁴³⁴

C. Expression pattern and primary physiological roles of TRPA1

Owing to its primary role as an irritant sensor, a strong expression of TRPA1 is found in sensory afferent neurons whose cell bodies are located in the dorsal root and trigeminal ganglia.^{995,1006} In these sensory neurons, TRPA1 expression strongly overlaps with that of TRPV1, qualifying them as nociceptors. Likewise, TRPA1 expression in enterochromaffin cells confers chemosensation and is coupled to the release of serotonin to regulate intestinal motility.¹⁰⁰⁷ A moderate or low expression of TRPA1 is found in many other tissues and cell types, including various types of cancer, as recently reviewed,¹⁰⁰⁸ and summarized in Table 1.

In general, chemosensation is governed by unpleasant smell, bitter taste, and pain, causing avoidance behaviors and controlling protective reflexes that limit exposure to potentially harmful substances. Being expressed in nociceptive neurons and cells that can confer cough or vomiting reflexes, TRPA1 is strategically positioned to recognize irritants and other xenobiotics, preventing further ingestion. Owing to species-dependent thermal TRPA1 activation, nocifensive responses may include the avoidance of potentially noxious hot or cold temperatures.

D. Human diseases associated with the TRPA1 channel

A rare disease-causing mutation in human TRPA1 gives rise to familial episodic pain syndrome (OMIM 615040). A single family with 21 affected members in 4 generations has been identified to carry an N885S missense mutation in S4, leading to a GOF variant of TRPA1 with 5-fold increased inward currents at normal resting potential, loss of outward rectification, and a shift in cinnamaldehyde (100 μM)-induced, voltage-dependent activation of about 56 mV, causing higher channel activity at the physiological range of membrane potentials.¹⁰⁰⁹ Epigenome-wide analyses of DNA methylation in twins with discordant sensitivity to heat-induced pain revealed that an increased pain sensitivity correlated with the demethylation of the TRPA1 promoter, possibly resulting in an enhanced channel expression in nociceptive neurons.¹⁰¹⁰

Besides the direct contributions of TRPA1 in pain perception and neuralgia, numerous physiological and pathophysiological responses have been described to involve TRPA1-mediated

processes. A prominent theme is the role of TRPA1 in pulmonary and intestinal vagal afferents to sense irritants, thereby contributing to protective reflexes like cough and emesis or vomiting, but also in exaggerated responses, such as bronchial or visceral hypersensitivity, allergic responses, and chronic obstructive pulmonary disease (COPD), or its contribution to the development of various skin diseases, IR damage, migraine, and other forms of headache, as recently reviewed.^{1011,1012} TRPA1 activation in pulmonary fibroblasts has been shown to prevent the transition into myofibroblasts and may thus protect from the development of lung fibrosis.^{1013,1014} In addition, TRPA1 expression in the vascular endothelium may be exploited to treat cardiovascular diseases,¹⁰¹⁵ and aberrant TRPA1 expression in various malignancies has been proposed to enable cancer cells to sense and cope with conditions of oxidative stress.¹⁰¹⁶

E. Pharmacological modulators of the TRPA1 channel

1. TRPA1-activating compounds

Besides the role of TRPA1 in direct or indirect responses to noxious cold or hot temperatures, TRPA1 may be regarded as a broadly specific irritant sensor. Owing to its unique sensitivity toward cysteine-modifying compounds and ROS, TRPA1 is activated by a plethora of chemical stimuli. They may be grouped into (1) pungent tastants and spices, (2) oxidants and phototoxic compounds, (3) approved drugs, and (4) specifically developed TRPA1-selective activators. Table 8^{980,984,986,1017–1040} summarizes some of the most prominent TRPA1-activating compounds, as well as TRPA1 inhibitors or blockers.

2. Pungent tastants, spices, and natural products

Soon after the initial characterization of TRPA1, its activation by mustard oil, cinnamon oil, ginger, and others was

recognized.^{1006,1041} Allicin, the spicy and unstable ingredient of garlic, strongly activates TRPA1, whereas its heat-derived conversion products, diallyl mono-, di-, and trisulfide, less strongly and/or less potently act on the channel.¹⁰⁴² Other natural compounds that cause TRPA1 opening include menthol, thymol, and nicotine.^{1020,1022,1023,1043} One should note that most compounds require concentrations of 10–300 μM to elicit strong effects on TRPA1, and some of them (menthol, cinnamaldehyde, nicotine, and camphor) exert bimodal effects with a current inhibition when applied at even higher concentrations.^{1023,1044}

3. ROS, peroxidation products, and cysteine-modifying compounds

In chemosensory neurons, TRPA1 is a prominent molecular substrate that decodes ROS or chemical oxidants either directly or via the formation of peroxidation products of membrane lipids. Effective oxidants include hydrogen peroxide, hypochlorite,¹⁰⁴⁵ and cysteine-modifying compounds, such as 2-methylsulfonothiolyloxyethanamine or iodoacetamide.¹⁰³⁰ While several cysteine-modifying compounds can covalently bind to TRPA1, ROS, ultraviolet light, or visible light in the presence of photosensitizing compounds⁹⁸⁷ are likely to act in an indirect fashion, eg, by peroxidation products of membrane lipids, such as 4-hydroxy-2-nonenal, 4-oxo-nonenal, and 4-hydroxyhexenal or oxidized phospholipids.^{986,1031,1046,1047}

4. Approved drugs

Since several FDA-approved drugs or drug metabolites are capable of activating TRPA1, stimulation of chemosensory neurons and vagal afferents may contribute to adverse responses to the respective drugs. Acrolein, an irritating and highly electrophilic metabolite of cyclophosphamide, activates the TRPA1 channel.⁹⁹⁶ The pungent smell of the TRPA1-activating volatile anesthetics isoflurane and desflurane limits their application during the

Table 8
Pharmacological modulators of TRPA1.

Name (PubChem CID ^a)	Effect	References
JT010 (18524489)	Channel activation, EC ₅₀ = 0.65 nM	1017
PF-4840154 (53380803)	Channel activation, EC ₅₀ = 23 nM	1018
GNE551 (2135890)	Channel activation, EC ₅₀ = 254 nM	980
Dibenzoxazepine (9213)	Channel activation, EC ₅₀ = 63 nM	1019
Morphanthridine (10878016)	Channel activation, EC ₅₀ = 83 nM	1019
Acrolein (7847)	Channel activation, EC ₅₀ = 5 μM	1017
Allyl isothiocyanate (5971)	Channel activation, EC ₅₀ = 11–64.5 μM	984,1020
Allicin (65036)	Channel activation, EC ₅₀ = 7.5 μM	1021
Thymol (6989)	Channel activation, EC ₅₀ = 127 μM	1022
Menthol (16666)	Channel activation, EC ₅₀ = 95 μM	1023
Isoflurane (3763)	Channel activation, EC ₅₀ = 180 μM	1024
Apomorphine (6005)	Channel activation, EC ₅₀ = 7.1 μM	1025
Auranofin (16667669)	Channel activation, EC ₅₀ = 1 μM	1026
Isovellerol (37839)	Channel activation, EC ₅₀ = 0.5 μM	1027
Flufenamic acid (3371)	Channel activation, EC ₅₀ = 147 μM	1028
Clopidogrel (60606)	Channel activation, EC ₅₀ = 5.4 μM	1029
Ticlopidine (5472)	Channel activation, EC ₅₀ = 7.2 μM	1029
Nicotine (89594)	Channel activation, EC ₅₀ = 17 μM	1020
2-Iodoacetamide (3727)	Channel activation, EC ₅₀ = 357 μM	1030
2-Methylsulfonothiolyloxyethanamine (MTSEA) (53443082)	Channel activation, EC ₅₀ = 1.58 mM	1030
4-Hydroxyxenonol (5283344)	Channel activation, EC ₅₀ = 13–27 μM	986,1031
HC-030031 (1150897)	Channel inhibition, IC ₅₀ = 0.7–6.2 μM	1032
A-967079 (42641861)	Channel inhibition, IC ₅₀ = 51 nM	1033
AP18 (9584673)	Channel inhibition, IC ₅₀ = 3.1 μM	1034
LY3526318 (118961431)	Channel inhibition, IC ₅₀ = 13.5 nM	1035
AM-0902 (73297271)	Channel inhibition, IC ₅₀ = 131 nM	1036
BAY-390 (155539293)	Channel inhibition, IC ₅₀ = 16 nM	1037
GDC-0334 (122490062)	Channel inhibition, IC ₅₀ = 1.7 nM	1038
Ruthenium red (656819)	Channel block, IC ₅₀ < 10 μM	1032,1039,1040

N/A, not available.

^aPubChem Compound Identification number.

induction of general anesthesia and may be linked to TRPA1 activation.¹⁰²⁴ Stinging pain during photodynamic therapy may be caused by ROS that indirectly activate TRPA1.¹⁰⁴⁸ Other TRPA1-activating drugs include several fenamates, apomorphine, auranofin, ticlopidine, and clopidogrel.^{1025,1026,1028,1029} In most cases, therapeutic plasma concentrations are much lower than the concentrations required to activate TRPA1. Nonetheless, high local concentrations of TRPA1-activating drugs may contribute to adverse gastrointestinal effects during oral application.

5. Selective, highly potent, and photoswitchable TRPA1 activators

To gain a deeper insight into TRPA1-mediated functions and to further validate TRPA1 as a potential drug target, highly potent and selective TRPA1 activators are eagerly sought. Any kind of electrophilic activator would be highly prone to exerting off-target effects. Therefore, electrophilic TRPA1 activators such as JT010 may be regarded as second-generation tool compounds despite their increased potency.¹⁰¹⁷ The nonelectrophilic peptide TRPA1 activators, PF-4840154 or GNE551, are more drug-like and may provide some advantages as activating compounds in screening approaches.^{980,1018} Interestingly, GNE551, as well as a pain-inducing plasma membrane-permeable scorpion toxin WaTx, induce TRPA1 activation modes that differ from that induced by allyl isothiocyanate, with a lack of current inactivation and longer single-channel opening events, respectively.¹⁰⁴⁹ By identifying TRPA1-activating compounds with reversibly photoswitchable azobenzene or azopyrazole moieties, optical control of zebrafish or human TRPA1 activity has been achieved.^{1050,1051}

6. TRPA1 inhibitors

Like in many other TRP channels, inward currents through TRPA1 are blocked by ruthenium red, a polycationic compound, which presumably plugs into the outer entrance of the pore and obliterates the permeation pathway in a voltage-dependent fashion.¹⁰³⁹ The first TRPA1-selective inhibitor developed by Hydra Biosciences, HC-030031, acts in a voltage-independent fashion and has been demonstrated to counteract formalin-induced pain upon intraperitoneal application in rats.¹⁰³² Two inhibitory compounds, AP18 and A967079, share a styrene pharmacophore and are structurally related to the activating compound cinnamaldehyde. While the inhibitory potency of AP18 lies in the micromolar range, A967079 reaches a nanomolar potency, especially with regard to inhibition of human TRPA1.^{1034,1052}

In a preclinical study, using a guinea pig model of chronic cough, intraperitoneally applied GRC 17536 (60–100 mg/kg) was more effective in suppressing citric acid-induced cough responses than dextromethorphan (50 mg/kg) as a comparator drug.¹⁰⁵³ In the patent literature, more drug-like TRPA1-targeting compounds with low to mid-nanomolar inhibitory potency have been proposed by Bayer (WO2021233752A1), MSD (WO2011043954A1), Hofmann La-Roche (WO2019182925A1 and WO2018029288A1), Genentech (WO2018162607A1), Orion Pharma (WO2014053694), and Eli Lilly (WO2019152465A1), some of which share striking similarities with GRC 17536 or LY3526318. Bayer has decided to make one of these compounds, BAY-390, publicly available as an orally bioavailable and CNS-penetrant drug that inhibits rat and human TRPA1 with comparable potency and may facilitate further validation of TRPA1 as a potential pharmacological target in a variety of preclinical disease models.¹⁰³⁷

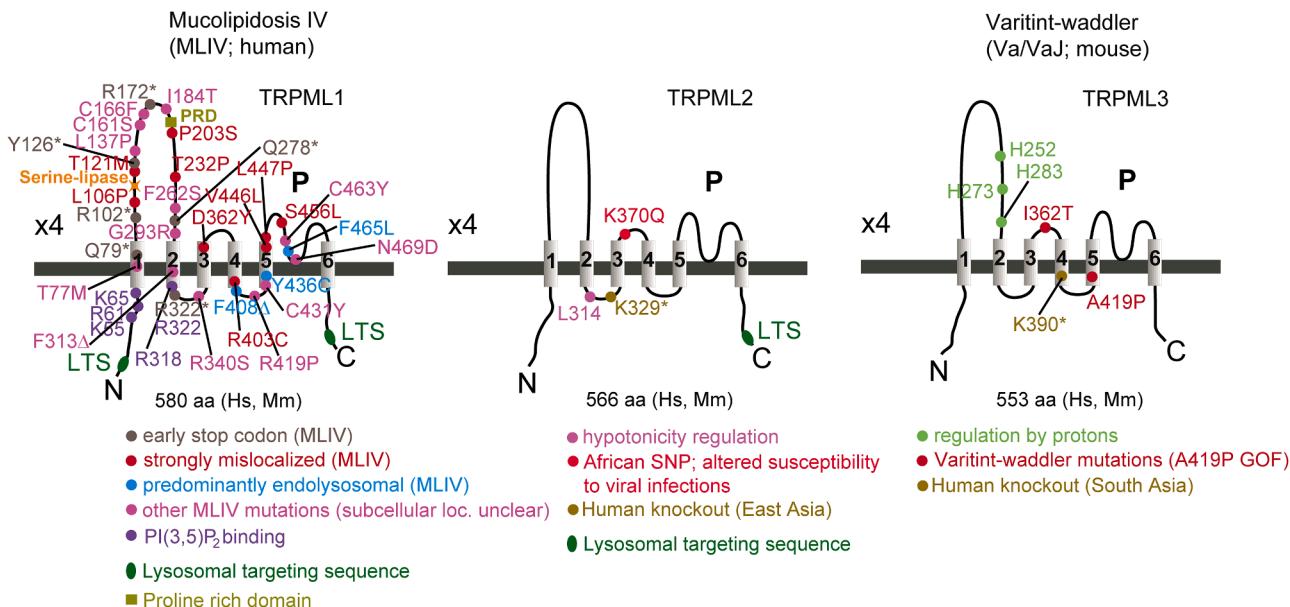
F. Ongoing or completed clinical trials with the TRPA1 channel as a therapeutic target

Owing to its irritant-sensing properties, TRPA1 has gained considerable interest as a pharmacological target in diseased

conditions to control symptoms such as pain, itch, cough, or neurogenic inflammation, including migraine.

Among the first completed phase 1 and 2 trials, Glenmark Pharmaceuticals Ltd has focused on the compound GRC 17536, a thienopyrimidinedione derivative, as either a systemically applied or inhaled TRPA1 antagonist. A combined phase 1/2 trial tested the safety, tolerability, and efficacy of inhaled GRC 17536 in patients with mild allergic asthma. While inhaled GRC 17536 met the safety endpoints in single and repeated application regimes, the drug failed to reach the primary efficacy endpoint to reduce the drop of the 1-second forced expiratory volume (FEV1) after an allergen challenge (Eudra CT: 2012-002567-99). In a cohort of elderly patients suffering from chronic cough, inhaled GRC 17536 again failed to prove effective (Eudra CT: 2013-002728-17). In a third study, GRC 17536 (250 mg) or placebo was administered twice daily orally for 28 days to diabetic patients suffering from peripheral neuropathic pain. After 4 weeks of treatment, a significant decline in the average pain intensity was not achieved as the primary endpoint for all participants in the subgroup with moderate to severe pain (Eudra-CT: 2012-002320-33). No other studies with GRC 17536 have since been reported, implying that further development of this candidate may have been stopped.

More recently, Eli Lilly has embarked on another series of clinical trials, aiming at validating the purin-based compound LY3526318 as a potential analgesic drug in osteoarthritis (NCT05080660), low back pain (NCT05086289), or diabetic neuropathy (NCT05177094). According to information provided via clinicaltrials.gov, all 3 studies have been completed in 2022. As of the time of writing, results remain undisclosed, and a possible progression into phase 3 trials has not been announced yet. In oropharyngeal dysphagia, various TRP channel activators have been probed for possible relief and reconstitution of safe swallowing. Notably, activators of TRPV1 (capsaicin and piperine) or TRPA1 (cinnamaldehyde and citral) provided the best results, highlighting a possible use of TRPA1-targeting sensory stimulants in deglutition disorders.¹⁰⁵⁴


VI. TRPMLs

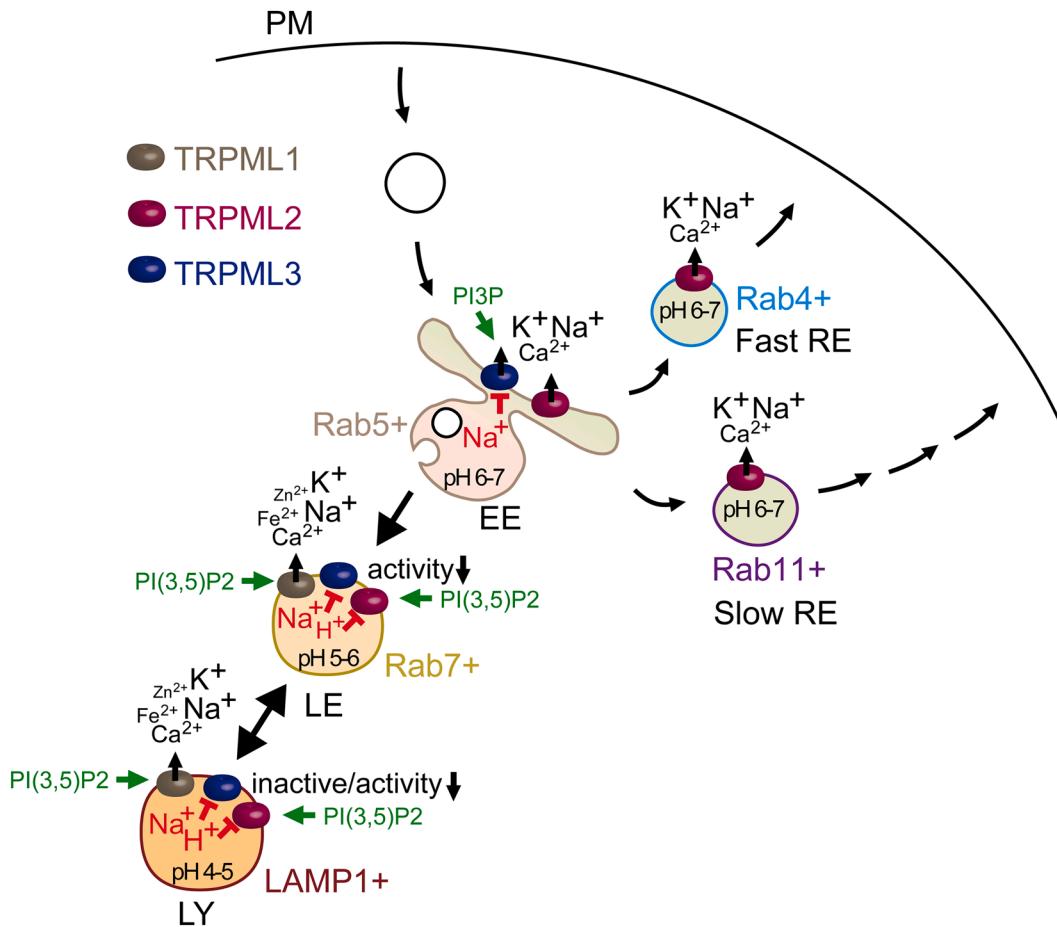
A. Introduction

The TRP channels TRPML1, TRPML2, and TRPML3 (also called MCOLN1–3 or mucolipin1–3) are Ca^{2+} -permeable, nonselective cation channels expressed in early endosomes, late endosomes, recycling endosomes, and lysosomes. TRPMLs are like the other TRP channels, 6 TMD proteins. They form tetramers, with the channel pore between TMD5 and 6. Since 2016, numerous structures have been determined for all 3 TRPML members using either X-ray crystallography or cryo-EM (see “[Domain topology, assembly, and functional characteristics of TRPMLs](#)”).^{1055–1061}

In contrast to TRPML1, which is ubiquitously expressed, TRPML2 is predominantly found in immune cells, while TRPML3 is found in immune cells, other specialized cells, such as melanocytes or hair cells of the inner ear, and endocrine glands and secretory cells, as recently shown by a whole-body analysis of TRPML3 expression in a GFP-reporter mouse model.¹⁰⁶² TRPMLs mediate cation flux from endosomes and lysosomes, sense endolysosomal pH, regulate membrane potential across endolysosomal membranes, regulate trafficking, exocytosis, endocytosis/phagocytosis, and autophagy in the endolysosomal system, and participate in lysosomal biogenesis, cell membrane repair, cell migration, and nutrient sensing (see “[Expression pattern and primary physiological roles of TRPMLs](#)”).

LOF mutations in the human TRPML1 gene (>50 deletions, point mutations, in-frame deletions, early stop mutations, and

Fig. 6. Shown as schematic are the monomeric structures of the 3 TRPMLs. In humans, TRPML1 > 50 MLIV, causing homozygous mutations or heterozygous combinations of mutations have been identified in Jewish Ashkenazi (AJ) as well as non-Jewish (NJ) populations in the USA, Canada, France, Germany, the Middle East, India, Japan, and other countries. The most common mutation is MCOLN1^{IVS3-2A>C} (AJ major; not shown in the cartoon). Others comprise single point mutations (in red, pink, and blue, respectively), in-frame deletions (F408Δ), and early stop mutations (Q79X, R102X, Y126X, R172X, Q278X, and R322X). In addition, small deletions or insertions leading to frame shifts, splicing mutations, and complex rearrangements can also occur (not shown in the cartoon; see Krogsaeter et al.¹⁰⁸⁰). PRD = proline-rich domain, LTS = lysosomal targeting sequence. Hs = *Homo sapiens*; Mm = *Mus musculus*. Point mutations shown in blue are predominantly expressed in lysosomes, while the ones depicted in red are heavily mislocalized.¹⁰⁶⁷ The subcellular localization of the mutations shown in pink has not been systematically analysed yet. TRPML2 is the only osmo-/mechanosensitive TRPML channel.¹⁰⁸¹ Amino acid L314 within the PI(3,5)P₂ binding pocket abrogates osmo-/mechanosensation while activation by the TRPML2 selective agonist ML2-SA1 is unaffected.¹⁰⁸² TRPML2^{K370Q} disrupts the ability of the channel protein to enhance viral infections, raising the possibility of altered susceptibility to certain viral infections in homozygous carriers of this and possibly other TRPML2 polymorphisms.¹⁰⁶⁹ In mouse TRPML3, the mutations A419P (Va) and A419P/I362T (VaJ) are GOF mutations causing the Varitint-waddler phenotype characterized by circling behavior, deafness, and coat color dilution.^{1070–1074,1083,1084} TRPML3^{A419P} and TRPML3^{A419P/I362T} are likewise GOF variants in human.¹⁰⁷⁰ Amino acids H252, H272, and H283 are involved in pH sensing and pH-dependent channel activity regulation (increasing pH increases activity). In both human TRPML2 and TRPML3 viable putative KO or LOF variants in humans have been identified (TRPML2^{K329*} and TRPML3^{K390*}).¹⁰⁷⁵


other types of mutations) cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV (MLIV) in humans. MLIV is characterized by psychomotor abnormalities, corneal clouding, retinal degeneration, and achlorhydria, which results in an increase in blood gastrin levels, iron deficiency due to an absence of acid secretion in the stomach, and endolysosomal accumulation of macromolecules, lipids, and heavy metals like zinc and iron in endolysosomes throughout the body.^{1063–1068} In human TRPML2, an SNP, which is common in certain African populations, results in the TRPML2 variant TRPML2^{K370Q}. TRPML2^{K370Q} reportedly disrupts the ability of the channel protein to enhance viral infections, raising the possibility of altered susceptibility to certain viral infections in homozygous carriers of this and possibly other TRPML2 polymorphisms.¹⁰⁶⁹ Mutations in TRPML3, TRPML3^{A419P} and TRPML3^{I362T/A419P} are GOF mutations causing deafness and circling behavior in mice (Varitint-waddler mutants).^{1070–1074} Equivalent mutations in the human isoform likewise result in strong GOF.¹⁰⁷⁰ The discovery of humans homozygous for early stop codon variants of TRPML2 and TRPML3 (TRPML2^{K329*} and TRPML3^{K390*}) argues that LOF of either TRPML2 or TRPML3 is not lethal.¹⁰⁷⁵ Nothing is, however, known about the pathophysiological features or disease susceptibility of individuals carrying these mutations. In addition to the aforementioned pathologies, roles of TRPMLs in cancer, lung disease, cardiovascular and kidney disease, Alzheimer's and Parkinson's disease (PD), inflammation and immunity, osteoclast function and bone remodeling, muscular dystrophy, and intestinal pathology have been suggested (see “[Human diseases associated with TRPMLs and mouse models](#)”).

Endogenous activators of TRPMLs are the phosphoinositides phosphatidylinositol 3,5-bisphosphate (PI[3,5]P₂) and

phosphatidylinositol 3-phosphate (PI3P), the latter being a demonstrated¹⁰⁷⁶ agonist of TRPML3, while PI(3,5)P₂ activates all 3 isoforms. PIKfyve, a FYVE finger-containing phosphoinositide kinase, catalyzes the conversion from PI3P to PI(3,5)P₂, the latter being predominantly found on late endosomal/lysosomal membranes, while PI3P is found on early endosomal and autophagosomes.^{1076,1077} Besides the discovery of endogenous ligands, in over 10 years, a plethora of small-molecule agonists and a number of antagonists have been identified, mostly through high-throughput screenings, and were subsequently functionally characterized (see “[Pharmacology of TRPMLs](#)”).

TRPML1 as a drug target, specifically TRPML1 activation to treat, e.g., lysosomal storage disorders and other neurodegenerative diseases, has gained much attention in recent years. Thus, according to publicly available information, Calporta Therapeutics, acquired by Merck in 2019, has developed preclinical stage TRPML1 agonists for potential treatment of Niemann-Pick C disease (NPC) and other lysosomal storage diseases, as well as amyotrophic lateral sclerosis, Alzheimer's disease, and PD. Caraway Therapeutics, bought by Merck in 2023, has developed, with support from the Michael J. Fox Foundation, TRPML1 agonists for GBA-PD treatment. And Casma Therapeutics has likewise developed TRPML1 agonists according to the Alzheimer's Drug Discovery Foundation (see “[TRPMLs as therapeutic targets](#)”).

In sum, we will discuss here the current knowledge of TRPMLs from structural aspects to function and physiology, including pathophysiology, and potential therapeutic applications, including currently available pharmacological tools to modulate TRPML channel activity.

Fig. 7. Schematic showing intracellular distribution/expression of TRPMLs and putative endogenous activation and inhibition mechanisms. All 3 TRPMLs are activated by PI(3,5)P₂ (LE/LY); TRPML3 was also shown to be activated by PI3P (EE). TRPML3 is blocked by high luminal Na⁺ and H⁺, while TRPML2 is blocked by H⁺. EE, early endosomes; LE, late endosomes; LY, lysosomes; RE, recycling endosomes.

B. Domain topology, assembly, and functional characteristics of TRPMLs

TRPMLs have, like other TRP channels, long been postulated to comprise 6 TMDs with a pore (P) loop between TMD5 and 6, and the functional pore being formed by tetrameric assembly.¹⁰⁷⁸ Structural evidence available since 2016 eventually confirmed these predictions.^{1055–1061} The TRPMLs together with the TRPPs differ from the rest of the TRP channels due to the presence of a large extracellular/luminal loop between TMD1 and 2. Structural analysis revealed that the 4 luminal linker domains form a square-shaped canopy with a central opening above the channel pore.¹⁰⁵⁵ The canopy in TRPMLs forms a cap-like structure and acts as a highly negative electrostatic trap or sink, which facilitates ion selection by favourably attracting divalent Ca²⁺ ions, limiting the access of monovalent cations to the filter, thereby reducing the permeation of monovalent ions.¹⁰⁶⁰ All TRPMLs are activated by PI(3,5)P₂, and several amino acids have been identified either by functional assays (eg, endolysosomal patch-clamp) or in structural studies to affect PI(3,5)P₂ binding, eg, K55, R61, K65, R318, and R322 in TRPML1 (Fig. 6).^{1055,1057,1067,1069–1075,1079–1084} Two additional amino acids in TRPML1, Y355 and R403, were postulated to be involved in PI(3,5)P₂ activation. Thus, the phosphate group of PI(3,5)P₂ induces Y355 to form a π-cation interaction with R403, moving the TMD4–5 linker, resulting in an allosteric activation of the channel.¹⁰⁷⁹

Notably, R403K is an MLIV-causing mutation in human TRPML1 (Fig. 6) that cannot be significantly activated by PI(3,5)P₂ anymore. By contrast, the small-molecule agonists ML-SA1 and MK6-83 (Table 9)^{1062,1065,1067,1069,1070,1080–1082,1085–1103} can still activate this mutant, albeit to a much lesser extent than WT.^{1067,1079} In humans, >50 MLIV caused by homozygous TRPML1 mutations or heterozygous combinations of mutations has been identified. The most common mutation is MCOLN1^{IVS3-2A>G}, a splicing mutation (AJ major),^{1104,1105} followed by AJ minor (MCOLN1^{511del6434} or MCOLN1^{Ex1-7del}), both resulting in the loss of a functional gene product. Other mutations comprise single point mutations (either correctly localized in lysosomes (blue), substantially mislocalized (red), or of unknown subcellular localization; marked in pink), in-frame deletions (F313Δ, F408Δ), and early stop mutations (Q79*, R102*, Y126*, R172*, Q278*, and R322*). In addition, small deletions or insertions leading to frame shifts, splicing mutations and complex rearrangements can also occur (see Krogsaeter et al¹⁰⁸⁰; “Expression pattern and primary physiological roles of TRPMLs”; Fig. 6). While most of the point mutations are severely mislocalized, some retain their lysosomal localization and at least residual activity,¹⁰⁶⁷ eg, F408Δ and F465L. Y436C, however, despite being correctly expressed in lysosomes, was shown¹⁰⁶⁷ to be neither activated by PI(3,5)P₂ nor the synthetic agonist MK6-83. This is in accordance with data provided by Schmiege et al,¹⁰⁵⁹ demonstrating that Y436A is not activatable by the synthetic ligand ML-SA1, as this amino acid, Y436, together with I468,

Table 9
Summary of TRPML channel characteristics

Name	TRPML1	TRPML2	TRPML3
Synonyms	MCOLN1, Mucolipin1	MCOLN2, Mucolipin2	MCOLN3, Mucolipin3
Length (aa) Hs	580	566	553
Length (aa) Mm	580	566 (538; isoform 2)	553
Seq motifs	Serine lipase; Lysosomal targeting seq. (N- and C-terminal); Proline rich domain (PRD)	Lysosomal targeting seq. (LTS; N-terminal in Mm)	N.D.
Localization	Late endosomes (LE)/lysosomes (LY); LRO?	Rab4+ and Rab11+ recycling endosomes (RE); early endosomes (EE) ^{1081,1082} ; LE/LY ¹⁰⁸² ; LRO?; PM (in-vitro/OE)	EE; LE/LY; not in RE; melanosomes? PM (in-vitro/ OE); phagophore during autophagy
Tissue distribution	Ubiquitous	Thymus, spleen, kidney, trachea, liver, lung, colon, testis, thyroid, B- and T-cells, macrophages, dendritic cells	Hair cells of the inner ear, organ of corti, utricle, stria vascularis, lung (alveolar macrophages), (skin) melanocytes, (neonatal) enterocytes, kidney, lung, olfactory bulb (sensory neurons), nasal cavity, thymus, colon, trachea, several glands (parathyroid, salivary, adrenal, pituitary), testes, ovaries ^{1062,1070,1085–1087}
Activators	PI(3,5)P ₂ (endogenous) ML1-SA1 (EVP-169) = isoform selective ¹⁰⁸⁸ Others: ML-SA1 (not isoform selective) ¹⁰⁸⁹ SF-22, SF-51 (not isoform selective) ¹⁰⁸⁹ MK6-83 (EC ₅₀ , 0.11 μM (patch-clamp)) ¹⁰⁶⁷ ML-SA3 (isoform selectivity unclear), ML-SA5 (isoform selectivity unclear) ¹⁰⁹⁰ Rapamycin ¹⁰⁹¹ NAADP? PIP ₂ (endogenous) ML-SI1 (not isoform selective; stereochemistry of the active isomer not elucidated; dependent on activator)	PI(3,5)P ₂ (endogenous) ML2-SA1 (EVP-22) = isoform selective (EC ₅₀ , 1.2 μM (Ca ²⁺ imaging)) ¹⁰⁸² Others: ML-SA1 (not isoform selective) SF-21; SF-41; SF-81 (not isoform selective) ¹⁰⁶⁵ Rapamycin ¹⁰⁹¹ (+)-trans-ML-SI3 = TRPML2 agonist (see section on inhibitors)	PI3P, PI(3,5)P ₂ (endogenous) ML3-SA1 (EVP-77; mouse isoform selective; EC ₅₀ , 9 μM (Ca ²⁺ imaging)) ¹⁰⁸⁸ EVP-21 (human isoform selective; EC ₅₀ , 4.3 μM (Ca ²⁺ imaging)) ¹⁰⁹² Others: ML-SA1 (not isoform selective) SF-11; SN-1; SF-21; SF-22; SF-31; SF-23; SF-41; SF-51; SF-32; SF-24; SF-33; SN-2; SF61; SF-71; SF-81 ¹⁰⁸⁵ P)P ₂ (endogenous) (–)-trans-ML-SI3 (effect weaker than for TRPML1 and TRPML2) ¹⁰⁹³ No other synthetic small molecule blockers currently available Low luminal pH
Inhibitors	ML-SI2 (structure not published) (–+)-trans-ML-SI3 (not isoform selective) ¹⁰⁹³ ; racemic trans-isomer commercially available; both enantiomers available by enantioselective synthesis ¹⁰⁹⁴ EDME (isoform-selective; IC ₅₀ , 0.6 μM (Ca ²⁺ imaging) and 0.2 μM (patch-clamp)) ¹⁰⁹⁵ PRU-10, PRU-12 (EDME derivatives; isoform selective; IC ₅₀ , 0.4 and 0.3 μM (Ca ²⁺ imaging)) ¹⁰⁹⁵ High luminal pH Sphingomyelins (SMs)	PIP ₂ (endogenous) ML-SI1, (–)-trans-ML-SI3 (not isoform selective; (+)-trans-ML-SI3 = TRPML2 agonist!) ¹⁰⁹³ Low luminal pH	Low luminal pH and high luminal Na ⁺
Regulators	Acidic luminal pH increases activity ^{1067,1096}	Acidic luminal pH reduces activity ¹⁰⁸²	Low luminal Na ⁺ potentiates activation Acidic luminal pH reduces activity ¹⁰⁹⁷
Disease mutations or polymorphisms associated with a phenotype	MLIV is associated with mutations in HsTRPML1; symptoms include severe psychomotor retardation, retinal degeneration, corneal clouding, achlorhydria, elevated serum gastrin levels, iron deficiency, (lipid) storage bodies in almost every cell type (>50 MLIV causing homozygous mutations or heterozygous combinations of mutations identified) V432P (Hs, Mm)	TRPML2 ^{K370Q} disrupts the ability of the channel protein to enhance viral infections, raising the possibility of altered susceptibility to certain viral infections in homozygous carriers of this and possibly other TRPML2 polymorphisms ¹⁰⁶⁹ A425P (Hs); A396P (Mm, isoform 2)	Deafness, circling behavior, head bobbing and coat color dilution is associated with mutations in MmTRPML3 (Varitint-waddler mutations TRPML3 ^{A419P} (Va) and TRPML3 ^{A419P/I362T} (Vaj)) Va (A419P) and Vaj (A419P/I362T) (Hs, Mm)
(Disease-associated) GOF mutants			(continued on next page)

Table 9 (continued)

Name	TRPML1	TRPML2	TRPML3
(Disease-associated) LOF mutants	IVS3-2A>G (AJ major), Ex1-7del (AJ minor), T77M, Q79*, R102*, L106P, T121M, Y126*, L137P, C161S, C166F, R172*, I184T, P203S, T232P, F262S, Q278*, G293R, F313Δ, R322*, R340S, D362Y, R403C, F408Δ, R419P, C431Y, Y436C, V446L, L447P, S456L, C463Y, F465L, N469D, small deletions or insertions leading to frame shifts, splicing mutations and complex rearrangements (see also Krogsaeter et al. ¹⁰⁸⁰ and Fig. 6)	K329* (homozygous; Hs)	K390* (homozygous; Hs)
KO mouse models	KO mice display enlarged vacuoles, psychomotor defects, retinal degeneration, impairments in basal and histamine-stimulated gastric acid secretion, ¹⁰⁹⁸ impaired myelination and reduced brain ferric iron, ¹⁰⁹⁹ early-onset muscular dystrophy ¹¹⁰⁰ TRPML1/3 co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning ¹¹⁰¹	KO mice display defects in inflammatory mediator release, in particular CCL2 (MCP-1) ^{1082,1102}	KO mice display no auditory or vestibular phenotype and no coat color dilution ¹⁰⁸⁶ ; Two different KO mouse models (Mcoln3 ^{tm1.2Hels} and Mcoln3 ^{tm1.1gag}) show an increased susceptibility to develop emphysema/COPD and increased MMP12 levels in broncho-alveolar fluid and in the supernatant of cultured alveolar macrophages ¹⁰⁸⁸ TRPML1/3 co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning ¹¹⁰¹
Functions	Lysosomal exocytosis; regulates autophagy (TFEB, calcineurin, CaMKK β /VPS34); role in sorting/transport in late endocytic pathway; regulation of lysosomal lipid and cholesterol trafficking; ROS sensor in lysosomes; endolysosomal cation/heavy metal (iron, zinc) homeostasis; role in gastric acid secretion; regulation of lysosomal motility; plasma membrane repair; phagocytosis; endolysosomal pH regulation?; vesicle fusion, fission?; NAADP receptor?	Osmo-/mechanosensation in RE; EE/RE trafficking; endolysosomal cation homeostasis; vesicle fusion, fission?; endolysosomal pH regulation?	Endocytosis, macropinocytosis (MMPs); regulates autophagy; EE trafficking; endo-lysosomal cation homeostasis; senses lysosome neutralization by pathogens to trigger their expulsion; vesicle fusion, fission? endolysosomal pH regulation?
Interacting proteins	ALG2 ¹¹⁰³ ; TRPML2, TRPML3, TPC1?, TPC2?; LAPTMs; Hsp40; Hsc70	TRPML1, TRPML3, Hsc70?	TRPML1, TRPML2, GATE16, TPC1?, TPC2?, Hsc70?

F428, C429, C432, Y436, F465, F505, F513, Y499, and Y507 forms a hydrophobic cavity accommodating the agonist ML-SA1. Like Y436A, F465A reportedly cannot be activated by ML-SA1 in whole-cell patch clamp experiments using a plasma membrane redirected TRPML1 channel.¹⁰⁵⁹ By contrast, Chen et al¹⁰⁶⁷ reported that F465L can still be activated with the synthetic small-molecule agonist of TRPML1, MK6-83, in endolysosomal patch-clamp experiments. Furthermore, Chen et al¹⁰⁶⁷ found that mutation F465L has lost its pH sensitivity, ie, pH 4.6, in the lysosomal lumen and cannot further increase channel activity compared with pH 7.2, as seen typically in WT TRPML1.^{1067,1096} In contrast to TRPML1, which shows increasing activity with decreasing (ie, more acidic) luminal pH, TRPML3 activity increases with increasing pH, ie, from luminal 4.6 to 6.8 or 7.2 (Fig. 7).¹⁰⁸⁴ Since a pH of 6.8 is common in early endosomes, TRPML3 would naturally be more active in early rather than late endosomes or lysosomes. Indeed, functionally TRPML3 seems largely silent in endogenous acidic lysosomes and only becomes active if the luminal pH of the lysosomes rises, eg, under pathogenic conditions (see Miao et al¹¹⁰⁶ and “**Expression pattern and primary physiological roles of TRPMLs**”).

A further feature of TRPML3 is its sensitivity to high luminal Na^+ levels (Fig. 7). The lower the Na^+ concentration in the lumen of TRPML3-expressing endolysosomes, the higher its activity. This effect seems to be dependent on E361, as mutation E361A has an increased activity in high Na^+ -containing luminal solution.¹⁰⁶⁵ While E361 is located in the luminal loop between TMD3 and 4, amino acids H252, H272, and H283, which are involved in pH sensing and pH-dependent TRPML3 activity regulation, are located in the large luminal loop between TMD1 and 2. The effect of luminal pH on TRPML2 is similar to that of TRPML3. TRPML2 activity, stimulated with either PI(3,5)P₂ or the TRPML2 isoform-selective agonist ML2-SA1, increases with increasing (ie, less acidic) luminal pH.¹⁰⁸² This is in accordance with TRPML2 being also expressed in less acidic vesicles, in particular Rab11+ and Rab4+ recycling endosomes (Table 9),¹⁰⁸² while the expression of TRPML1 is strictly limited to late endosomes/lysosomes. A special feature of TRPML2, in contrast to TRPML1 and TRPML3, is its sensitivity to osmo-/mechanostimulation.¹⁰⁸¹ The point mutation L314R within the TRPML2 PI(3,5)P₂ binding pocket abolishes osmo-/mechanosensitivity and slows down the fast recycling pathway, while activation with ML2-SA1 is preserved. Introducing leucine residues at positions corresponding to L314 in TRPML1 (ie, R322L) or TRPML3 (ie, R309L) was not sufficient to induce osmo-/mechanosensitivity in TRPML1 or TRPML3.¹⁰⁸¹ A role of TRPML2 in fast recycling processes and the secretion of inflammatory mediators, such as CCL2 (MCP-1), has been postulated.^{1082,1102}

In contrast to TRPML2, for both TRPML1 and TRPML3, roles in autophagy have been demonstrated.^{1076,1107,1108} Medina et al¹¹⁰⁷ showed that TRPML1-mediated Ca^{2+} signaling regulates autophagy through transcription factor EB (TFEB) and calcineurin. TFEB is a well established master gene for lysosomal biogenesis, driving the expression of autophagy and lysosomal genes.¹¹⁰⁹ TRPML1 controls both TFEB activity and TFEB downstream transcriptional targets.^{1107,1110} In addition, Scotto Rosato et al¹¹¹⁰ showed that during starvation, TRPML1 links lysosomal Ca^{2+} release to autophagosome biogenesis through the activation of the CaMKK β /VPS34 pathway, a mechanism which is independent of the TFEB transcriptional program and involves activation of the CaMKK β and the AMP-activated protein kinase AMPK. Furthermore, ROS can induce autophagy via TRPML1. An increase in mitochondrial ROS levels or exogenous oxidants directly stimulates TRPML1-mediated Ca^{2+} release from lysosomes, thus triggering calcineurin-dependent TFEB nuclear translocation.^{1107,1111}

Furthermore, a role for TRPML1 in the fusion of autophagic vesicles with lysosomes has been postulated.^{1112,1113} On the other hand, Cao et al¹¹¹⁴ claimed that TRPML1 is required for the recovery of enlarged lysosomes and proposed a role for TRPML1 in lysosomal fission. Despite these controversies, the role of TRPML1 in autophagy modulation via multiple pathways is well established.

Less evidence is available for the exact role of TRPML3 in autophagy, but recent results by Kim et al¹⁰⁷⁶ showed that TRPML3 activation increases autophagy while TRPML3 inhibition suppresses it. Kim et al¹⁰⁷⁶ identified PI3P as a physiological activator of TRPML3 to release Ca^{2+} from the phagophore, thus promoting autophagy. The possibility that TRPML3 modulates autophagy independently from TRPML1 gained considerable momentum with these new results.

Besides being an autophagy regulator, regulation of lysosomal exocytosis is another well established role of TRPML1.^{1100,1115–1117} Upon TRPML1 stimulation, lysosomes move to the plasma membrane (visualized, eg, by LAMP1 translocation). Lysosomes can fuse directly with the plasma membrane and release their content into the extracellular space. Increase in local Ca^{2+} seems to trigger the fusion process,^{1118,1119} and the concept that the lysosome releases Ca^{2+} by itself via TRPML1 for this process has gained much interest.^{1096,1100,1115,1116,1120–1124} Lysosomes containing GOF mutants of TRPML1 can also undergo uncontrolled lysosomal exocytosis.¹¹²⁵ By contrast, in TRPML1 KO mice, Park et al¹¹²⁶ found that fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis. How these findings can be reconciled with the accumulating evidence that TRPML1 is a positive regulator of lysosomal exocytosis remains unresolved.

There is also evidence for a role of TRPML3 in lysosomal exocytosis under certain conditions, ie, when the lumen of the lysosome gets neutralized and TRPML3 becomes more active. Miao et al¹¹⁰⁶ showed that TRPML3 is required for bacterial expulsion, specifically for uropathogenic *Escherichia coli* (UPEC) release from infected cells, through lysosomal exocytosis. UPEC, after infecting bladder epithelial cells, are targeted for degradation by the autophagic machinery. However, UPEC escapes degradation by increasing the lysosomal pH. TRPML3 activity is triggered by an increase in pH, and UPEC can be exocytosed; nevertheless, it is also a potentially important protective mechanism in other infectious diseases.

C. Expression pattern and primary physiological roles of TRPMLs

TRPML1 is ubiquitously expressed. TRPML2 is predominantly found in immune cells, including macrophages, dendritic cells, and B and T cells (for recent reviews see Chao et al¹¹²⁷ and Spix et al¹¹²⁸; Table 9). TRPML3 is likewise found to be expressed in immune cells, eg, in alveolar macrophages in the lung (Table 9).¹⁰⁸⁷ TRPML3 is also found in skin and inner ear melanocytes, hair cells of the inner ear, olfactory sensory neurons, principal cells of the collecting duct in the kidney, and in endocrine glands and secretory cells, as recently shown by a whole-body analysis of TRPML3 expression in a GFP-reporter mouse model (Table 9).^{1062,1129} Thus, TRPML3 was found to be expressed in the adenohypophysis of the pituitary gland, the cortex of the adrenal gland, the parathyroid gland (presumably in chief cells), and testes (presumably in spermatozoa). For comparison with human expression data, please refer to Grimm et al¹¹²⁹ or the Human Protein Atlas.⁴⁵²

D. Human diseases associated with TRPMLs and mouse models

LOF mutations in TRPML1 lead to progressive neurodegeneration in humans, as discussed above. Mutations also affect

the eye and stomach. Patients suffer, eg, from corneal clouding, retinal degeneration, achlorhydria, and iron deficiency resulting from an absence of acid secretion in the stomach. However, TRPML1 is ubiquitously expressed, and endolysosomal accumulation of macromolecules, lipids, heavy metal ions like Zn^{2+} and Fe^{2+} , and probably others in endolysosomes throughout the body of MLIV patients must be assumed.^{1063–1068} In addition to brain defects, potential defects due to lack or dysfunction of TRPML1 in the kidney have been proposed.^{1130–1134} Other organs may also be affected, eg, liver, as MLIV patient fibroblasts were shown to accumulate cholesterol¹¹¹⁷ or spleen, where loss of TRPML1 results in defective red blood cell clearance by macrophages.¹¹¹⁵

MLIV goes along with a strongly reduced quality of life and overall life expectancy. Currently, no curative treatment is available, although treatment of several LOF mutations with small-molecule TRPML1 agonists has been proposed.¹⁰⁶⁷ Most promising candidates for such an approach would be patients with mutations in TRPML1 that do not result in strong mislocalization of the protein or mutations that have a loss of PI(3,5)P₂ sensitivity, while synthetic small-molecule agonists are still able to activate the channel, with the prerequisite that they must retain some lysosomal localization.

Another proposed strategy is the replacement of the TRPML1 function by enhancing the activity of an alternative Ca^{2+} -permeable cation channel in endolysosomes, eg, 2-pore channel 2 (TPC2; see Prat Castro et al¹¹³⁵ and Scotto Rosato et al¹¹¹⁷). TRPML1 is permeable for Na^+ , K^+ , and Ca^{2+} but also for Zn^{2+} , Fe^{2+} , and other metal ions. While activation by TPC2 could potentially rescue the functions associated with Na^+/Ca^{2+} permeability, the accumulation of metal ions in the lysosomal lumen, such as Zn^{2+} or Fe^{2+} , may require additional strategies. While TRPML1 LOF mutations or KO result in severe disease in human and mouse (the murine MLIV phenotype is very similar to the human phenotype),^{1099,1136,1137} no disease-causing LOF or KO phenotypes for TRPML2 or TRPML3 are known in humans. Apparently, homozygous mutations in TRPML2 and TRPML3, resulting in an early stop (TRPML2^{K329*} and TRPML3^{R390*}) in humans, are not lethal (Table 9).¹⁰⁷⁵ Early stop mutations or complete loss of TRPML1 in humans are likewise not lethal, but result in severe phenotypes. Whether homozygous carriers of TRPML2^{K329*} and TRPML3^{R390*} identified in East and South Asia, are severely ill or have other health disadvantages, is not known. Several heterozygous carriers were also identified in North Borneo (Dusun people).

A homozygous mutation in TRPML2, common in certain African populations, is TRPML2^{K370Q}. TRPML2^{K370Q} reportedly disrupts the ability of the channel protein to enhance viral infections, raising the possibility of an altered susceptibility to certain viral infections in homozygous carriers of this and possibly other TRPML2 polymorphisms.¹⁰⁶⁹

Disease-causing mutations for TRPML3 have been described only in mice. The GOF mutations, A419P (Va) and A419P/I362T (Vaj), cause the Varitint-waddler phenotype characterized by circling behavior, deafness, and coat color dilution.^{1070–1074,1083,1084} Introducing A419P or A419P/I362T mutations into WT human TRPML3 likewise result in GOF effects.¹⁰⁷⁰ The Varitint-waddler phenotype can be rescued by overexpression of plasma membrane ATPase, suggesting that cytosolic Ca^{2+} overload due to the TRPML3 GOF mutation A419P is causative for the observed effects.¹⁰⁷⁴ The additional mutation of I362T in Vaj results in a slightly less severe phenotype, which nevertheless shows similar Ca^{2+} overload as well as circling behavior, deafness, and coat color dilution.^{1070,1083} The reason for Vaj being milder remains unclear. Of note, however, I362T is located next to E361, which was reported to affect the Na^+ sensitivity of TRPML3, increasing channel activity.¹⁰⁶⁵

Besides diseases associated directly with mutations in TRPMLs, KO mouse models and other functional studies have revealed additional potential roles of TRPMLs in physiology and pathophysiology, from immune cell function and cancer to gastrointestinal, kidney, cardiovascular, neurodegenerative, lung, and infectious diseases.

TRPML1 activity is strongly reduced with increasing pH; hence, a backup channel getting engaged when TRPML1 is blocked, eg, as in the case of bladder epithelial cell infection with UPEC, which neutralize the lysosomal lumen to evade degradation, seems an elegant solution.¹¹⁰⁶ TRPML3 can fulfill that function as it gets activated when the pH in the lysosomal lumen increases, while under normal lysosomal pH conditions, it would be largely silent. Other indications for roles of TRPMLs in infectious diseases relate to TRPML1, but increasingly also to TRPML2 and TRPML3. Thus, TRPML1 was shown to play a role in *Helicobacter pylori* infection,¹¹³⁸ where virulence factor vacuolating cytotoxin A promotes more severe disease development and gastric colonization. Virulence factor vacuolating cytotoxin A targets TRPML1 to disrupt endolysosomal trafficking and autophagy, an effect that could be reversed by direct activation of TRPML1 with a small-molecule agonist, leading to the clearance of intracellular bacteria. Furthermore, Khan et al¹¹³⁹ reported on the role of TRPML1 in cooperation with the big-conductance Ca^{2+} activated K^+ channel (BK) in HIV infection and proposed that TRPML1/BK coactivation leads to an enhanced acidification of endolysosomes, resulting in an increased degradation of Tat protein, which facilitates HIV replication. TRPML2 was postulated to enhance viral infections, eg, yellow fever virus, influenza A virus, and equine arteritis virus infections, and the human TRPML2 variant, TRPML2^{K370Q}, discussed before, reportedly shows a LOF phenotype with respect to viral enhancement.¹⁰⁶⁹ Quite to the contrary, Gibbs et al¹¹⁴⁰ found that TRPML2 acts also as an inward rectifying Mg^{2+} channel on endolysosomes and can thus deprive *Salmonella Typhi* of Mg^{2+} , restricting growth.

Xu et al. recently showed that suppressing either TRPML3 or BK helps bacterial survival, whereas increasing either TRPML3 or BK favors bacterial clearance.¹¹⁴¹

Hence, in sum, it is currently claimed that activation of TRPML1 and TRPML3 would be beneficial in treating certain infectious diseases, while in the case of TRPML2, it remains unclear whether activation or inhibition may be more beneficial. This may, of course, also depend on the type of infection.

Generally, all 3 TRPMLs are expressed in a range of immune cells, including different types of macrophages, natural killer cells, dendritic cells, B and T cells, microglia, and astrocytes (Table 9).^{1127,1128,1142–1144} In the mouse lung, TRPML3 is almost exclusively expressed in alveolar macrophages¹⁰⁸⁸ and in 2 independent KO mouse models (Mcoln3^{tm1.2He} and Mcoln3^{tm1.1Jga}), an increased susceptibility to develop an emphysema-like phenotype was found. KO mice showed differences in lung function and histological parameters such as elastance and compliance, or the mean linear chord length (mean free distance in the air spaces), pointing to an emphysema-like phenotype compared with WT mice, which was further and more strongly exacerbated in KO mice compared with WT mice after elastase or tobacco smoke treatment. In broncho-alveolar fluid and the supernatant of cultured alveolar macrophages, increased levels of matrix metalloproteinase 12 (macrophage elastase) were detected, a known risk factor for emphysema and COPD development.^{1088,1145} The authors further found that the relative TRPML3 expression was increased in samples from human smokers with COPD compared with healthy smokers. TRPML3 expression was also increased in smokers compared with nonsmokers. This was interpreted as being a potential compensatory mechanism to increase the uptake

of excess matrix metalloproteinase 12 and potentially other MMPs with the help of TRPML3.

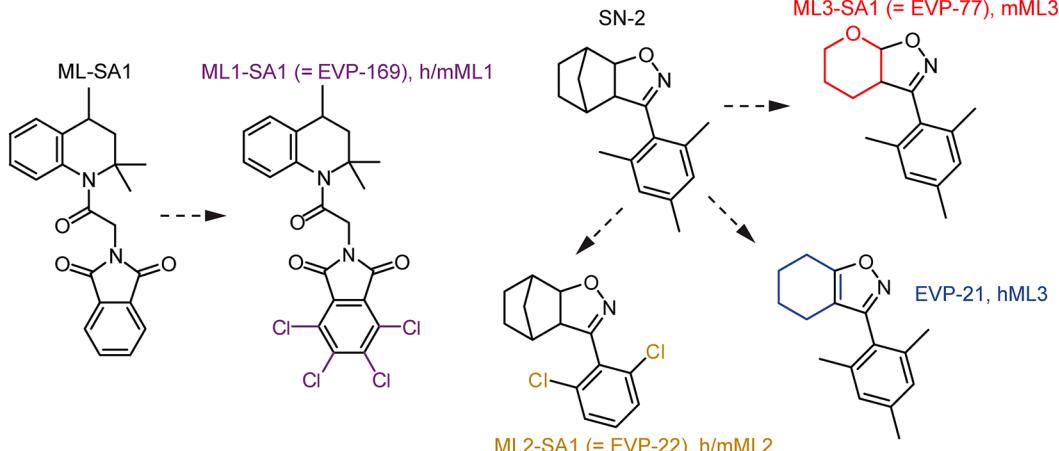
TRPML1, in addition, was shown to play an important role in the gastrointestinal tract. Thus, Sahoo et al¹⁰⁶⁸ found that TRPML1 overexpression or activation in mouse parietal cells induced gastric acid secretion, while TRPML1 inhibitors blocked it. This is in accordance with human MLIV patients who are reportedly achlorhydric. Mechanistically, TRPML1 was found to play a role in gastric acid secretion in parietal cells by regulating the trafficking and exocytosis of H⁺/K⁺-ATPase-rich tubulovesicles after histamine stimulation.¹⁰⁶⁸ Chandra et al¹⁰⁹⁸ found that Trpml1 KO mice have significant impairments in basal and histamine-stimulated gastric acid secretion.

There are also reports of progressive renal failure in MLIV patients, and blockade of TRPML1 was found to suppress the interaction of lysosomes and multivesicular bodies, leading to increased exosome release from mouse podocytes.¹¹⁴⁶ In addition, Nakamura et al¹¹³⁰ suggested a role of lipidated LC3 interacting with TRPML1 to release lysosomal Ca²⁺ essential for TFEB activation during kidney injury and lysosomal damage response.¹¹³³

In 2 recent works published by the same group,^{1147,1148} it is claimed that inhibition of TRPML1 has a protective role in myocardial ischemia/reperfusion injury. Mechanistically, this was attributed to a restoration of impaired cardiomyocyte autophagy by blocking TRPML1, which gets activated by ROS elevation, following myocardial ischemia/reperfusion injury. Activated TRPML1, releasing lysosomal Zn²⁺, reportedly blocks autophagic flux in cardiomyocytes by disrupting the fusion between autophagosomes and lysosomes. This is a surprising finding, as TRPML1, according to the vast majority of publications, is believed to promote autophagy rather than inhibit it. Thus, a large body of evidence suggests that TRPML1 promotes autophagy through activation of TFEB, mediated by lysosomal Ca²⁺ release.^{1107,1108,1111,1112,1149,1150} TRPML1 is also much less permeable to Zn²⁺ compared with Ca²⁺, hence a dominant effect of Ca²⁺ on autophagy would be expected.

Several lines of evidence point to a role of TRPMLs in different types of cancer, eg, breast cancer, melanoma, or glioma^{1095,1151–1158} (for recent reviews, see^{1124,1153,1159–1161}). The loss or inhibition of TRPMLs reduces, eg, cancer cell migration and invasion, and roles of TRPMLs in TFEB-mediated gene transcription and lysosomal exocytosis promoting invasiveness and drug resistance in cancer cells, cancer cell nutrient sensing, and antitumor immunity have

been proposed. Collectively, the data suggest that TRPMLs, in particular TRPML1, stimulate oncogenesis by enhancing survival, growth, invasiveness, and mitochondrial activity of cancer cells.¹¹⁶⁰


Two recent papers^{1162,1163} are challenging this view. Xing et al¹¹⁶³ claim that TRPML1 activation inhibits autophagy (similar works^{1147,1164} discussed above) and that this autophagy inhibition suppresses cancer (melanoma) metastasis. Similarly, Du et al¹¹⁶² suggest that TRPML1 small molecule activation induces Zn²⁺ release mediated cell death in metastatic melanoma, emphasizing that instead of inhibition, activation of TRPML1 may be beneficial in treating metastasis formation in cancer, at least in melanoma.

Due to the neurodegenerative phenotype in MLIV disease and several studies showing TRPML1 activation to rescue lysosomal storage and neurodegenerative disease phenotypes, TRPML1 appears to be a promising novel drug target for the treatment of such diseases. We will, therefore, in the following chapter, focus on this topic and discuss it in more detail after a brief discussion of currently available pharmacological tools to modulate TRPMLs.

E. Pharmacology of TRPMLs

It was already mentioned that the currently known endogenous activators of TRPMLs are the phosphoinositides PI(3,5)P₂ (agonist for all 3 TRPMLs) and PI3P (agonist¹⁰⁷⁶ for TRPML3), while PIP₂ inhibits TRPMLs (Table 9). How about lipophilic small molecule modulators of TRPMLs? In addition to Table 9 presented here, a comprehensive and detailed overview of the currently available pharmacology for TRPMLs has been published recently by Rautenberg et al¹⁰⁹² Of note, isoform-selective activators for all 3 TRPMLs have become available in recently: ML1-SA1 (EVP-169)¹⁰⁸⁸ for human/mouse TRPML1, ML2-SA1 (EVP-22)¹⁰⁸² for human/mouse TRPML2, EVP-21 for human TRPML3, and ML3-SA1 (EVP-77)^{1088,1165} for mouse TRPML3. ML1-SA1 is structurally related to ML-SA1 published previously¹⁰⁶⁶ (Fig. 8). ML2-SA1 is a derivative of the previously published¹⁰⁸⁷ structure SN-2; likewise, ML3-SA1 (EVP-77) and EVP-21 are derived from SN-2 (Fig. 8). In contrast to these isoform-selective agonists, ML-SA1 and MK6-83 are not isoform-selective TRPML channel agonists.^{1067,1068}

Regarding inhibitors of TRPMLs, there are currently only isoform-selective antagonists available for TRPML1: EDME (17 β -estradiol methyl ether)¹⁰⁹⁵ and its derivatives PRU-10 and PRU-12, the latter 2 showing reduced efficacy at the estrogen receptor α

Fig. 8. Shown are the chemical structures of ML-SA1 and SN-2 and their derivatives ML1-SA1 (EVP-169; isoform selective agonist for mouse/human TRPML1), ML2-SA1 (EVP-22; isoform selective agonist for mouse/human TRPML2), ML3-SA1 (EVP-77; isoform selective agonist for mouse TRPML3), and EVP-21 (isoform selective agonist for human TRPML3).

compared with EDME.¹⁰⁹⁵ Other available inhibitors¹¹⁶⁶ are ML-SI1 and ML-SI3. From the original publication, it remains, however, unclear which of the stereoisomers of ML-SI1 and ML-SI3 are functionally active. ML-SI1 has 4 different stereoisomers, and currently, only racemic mixtures are commercially available.¹⁰⁹³ One commercial product sold as a TRPML1 inhibitor is GW405833. This compound differs from the published structure¹¹⁶⁶ as it is not based on an indoline moiety (for details see Rautenberg et al¹⁰⁹²). Importantly,^{1093,1165} this compound is inactive on TRPML1. Nevertheless, GW405833 was used at least in 2 publications erroneously as a TRPML1 inhibitor.^{1123,1167} In addition, GW405833 is also sold as a selective cannabinoid CB2 receptor agonist. Of note, ML-SI1 in the structure as published by Wang et al,¹¹⁶⁶ blocks both TRPML1 and TRPML2 with equal potency.^{1093,1165}

Commercially available ML-SI3 is a racemic mixture of trans-enantiomers.¹⁰⁹³ Separation of the trans-enantiomers of ML-SI3 revealed that the (–)-enantiomer is an inhibitor of all 3 TRPMLs, while the (+)-enantiomer inhibits TRPML1, but activates TRPML2 and TRPML3 (Table 9).¹⁰⁹³ The commercially available racemic mixture also activates TRPML2 but blocks TRPML1 and TRPML3.¹⁰⁹³

F. TRPMLs as therapeutic targets

That loss of TRPML1 leads to severe neurodegeneration (MLIV) is undisputable. But does activation of TRPML1 ameliorate lysosomal storage and neurodegenerative disease phenotypes? In 2012, Shen et al¹⁰⁶⁶ claimed that abnormal lipid accumulation (cholesterol, sphingolipids, sphingomyelin) in Niemann-Pick type C1 patient cells can be reversed by TRPML1 activation. It was also shown^{1066,1135} that sphingomyelin can directly block TRPML1. FIG4 (encoding Sac3 protein) deficiency, which causes a rare peripheral neuropathy with severe motor deficits called Charcot-Marie-Tooth type 4J, results in decreased levels of both PI5P and the endogenous agonist of TRPML1, PI(3,5)P₂. Zou et al¹¹⁶⁸ showed that TRPML1 activation rescues the abnormal lysosomal storage in FIG4-deficient cells and in ex vivo nervous tissue. Rescue effects of TRPML1 activation were recently confirmed for 2 subtypes of demyelinating Charcot-Marie-Tooth disease in an independent study.¹¹⁶⁹ Amelioration of lysosomal storage in Niemann-Pick type A and Fabry disease, as well as Niemann-Pick type C1 disease, was shown to depend on the BK that forms a physical and functional coupling with TRPML1. Importantly, Ca²⁺ release via TRPML1 activates BK, which in turn facilitates further Ca²⁺ release, enhancing membrane trafficking and lysosomal exocytosis.^{1170,1171}

Tsunemi et al¹¹²² found that increased lysosomal exocytosis by TRPML1 activation protects human inducible pluripotent stem cell (iPSC)-derived dopaminergic neurons in a model of familial PD from α -synuclein toxicity, caused by mutations in ATP13A2 (CLN12). Another link between PD and TRPML1 has recently been established by Sasazawa et al¹¹⁷² reporting that acrolein, an aldehyde that is significantly elevated in PD patient serum, enhances autophagy via a newly discovered JIP4-TRPML1-ALG2 pathway.

In APP/PS1 double transgenic mice and hippocampal neurons with AD-like alterations, Zhang et al¹¹⁷³ found that overexpression of TRPML1 played a neuroprotective role in AD by ameliorating cognitive function and attenuating cognitive impairments. Xu et al.¹¹²³ reported that TFEB regulates, in a TRPML1-dependent manner, the lysosomal exocytosis of tau and that TFEB loss exacerbates tau pathology and spreading. In another recent study, Somogyi et al¹¹⁷⁴ show that dysfunction of TRPML1 is associated with abnormalities in the endolysosomal system in AD and APOE- ϵ 4 iPSC-derived neurons. Inhibition of PIKfyve, the key enzyme in the production of the TRPML1 agonist PI(3,5)P₂, recapitulated

these results, while effects could be reverted or reduced by the TRPML agonist ML-SA1.

Other examples for TRPML1 activation providing potential therapeutic benefit in neurodegenerative or lysosomal storage diseases are HIV gp120-related lysosomal storage, where TRPML1 activation cleared amyloid β (A β) from lysosomal compartments in neurons¹¹⁷⁵, and data suggesting TRPML1 activation to promote autophagy, facilitating the clearance of accumulated α -synuclein in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson's disease.¹¹⁷⁶

In contrast to TRPML1, TRPML2 expression is largely absent from the human brain, while TRPML3 appears to be expressed to some extent in the hippocampus, cerebral cortex, and hypothalamus.¹⁰⁸⁰ Importantly, TRPML3 activity increases with increasing pH, suggesting that even under conditions of increased lysosomal pH, as often observed in lysosomal storage and neurodegenerative diseases, TRPML3 would still be active to drive lysosomal exocytosis similar to TPC2, the activity of which does likewise not depend on the luminal pH.^{1106,1117,1135}

Currently, it is unclear how much lysosomal Ca²⁺ release would be beneficial and how it can be finely controlled so that it is, on the one hand, sufficient enough to promote lysosomal exocytosis and autophagy, while on the other hand avoiding potential cytotoxicity due to cytosolic Ca²⁺ overload. The possibility of a hyperactive TRPML1 under certain disease conditions^{1177,1178} and the controversies around this possibility have been discussed recently.^{1080,1135} In addition, Zn²⁺, Fe²⁺, and other heavy metal ions, which may be released alongside Ca²⁺ from lysosomes after TRPML1 activation, may pose a risk for increased cytotoxicity.¹¹⁷⁹

In sum, despite compelling and increasing evidence for a beneficial effect of TRPML1 activation in clearing lysosomal storage and promoting lysosomal exocytosis and autophagy, more empirical evidence is needed, as well as safety and chronic dosing studies. It also remains unclear if a defect in lysosomal acidification can be corrected by TRPML1 activation, although some evidence suggests this.^{1139,1175}

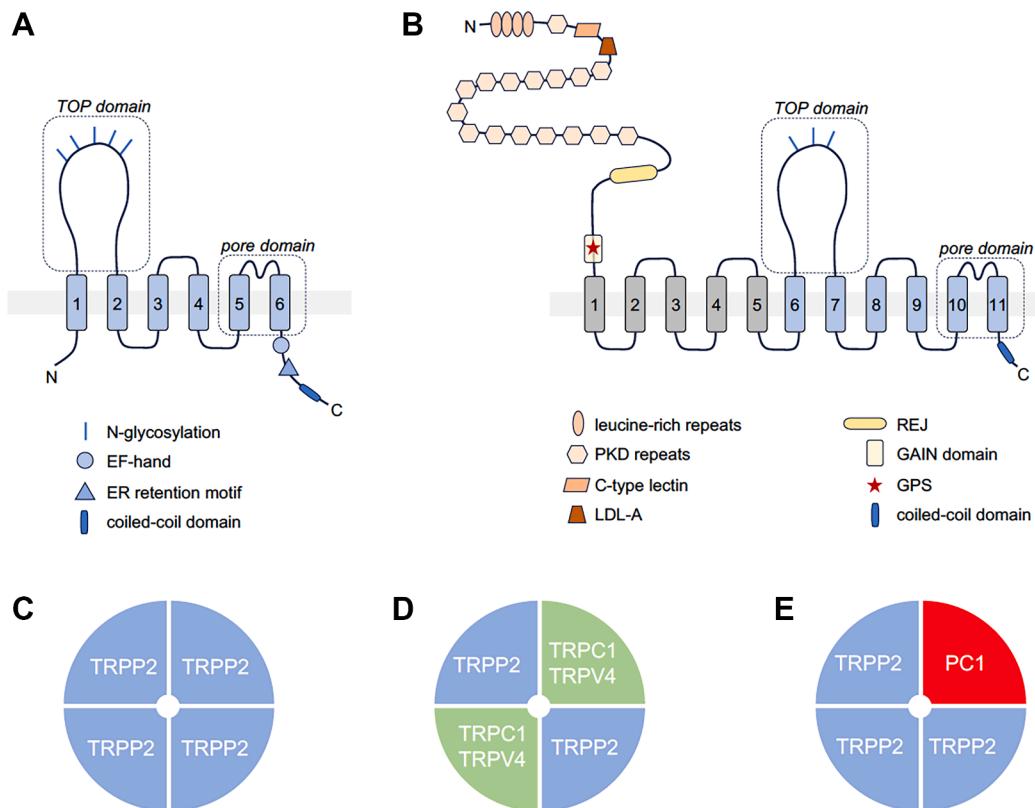
VII. TRPP channels

A. Introduction

TRP polycystin (TRPP) channels are Ca²⁺-permeable nonselective cation channels with conserved roles in biological processes such as tubular morphogenesis and left-right patterning of organs in vertebrates.^{1180,1181} TRPP channels are regarded as the most ancient subfamily of TRP channels, with orthologs in organisms ranging from yeast to mammals.^{6,1182} The founding member of the TRPP channels, TRPP2, was discovered as the PKD2 gene product mutated in ADPKD.¹¹⁸³ TRPP channels form homotetrameric complexes and heterotetrameric protein assemblies with other TRP channels and polycystin-1 (PC1) family members. The physiological importance of the heteromeric PC1-TRPP2 receptor-channel complex is underscored by the fact that mutations in the PKD1 gene, encoding PC1, also cause polycystic kidney disease.¹¹⁸⁴ Since the discovery of the genes encoding the founding members of the polycystins, PKD1 and PKD2, 6 additional family members have been identified^{1185–1190} based on sequence and structural homology: PKD1L1, PKD1L2, PKD1L3, PKDREJ, PKD2L1, and PKD2L2. The PKD2-like genes encode TRPP channels, whereas the PKD1-like genes encode PC1 family proteins that assemble with TRPP channels in a modular fashion. TRPP channels are found in various tissues and regulate calcium signaling in primary cilia and other cellular compartments. Recent advances in determining the structure and function of TRPP channels in homo- and heterotetrameric complexes have provided first insights into the

structural basis for channel gating and ion permeation. Pharmacological modulators of TRPP channels are still scarce.

B. Domain topology, assembly, and functional characteristics of individual TRPP channels


The nomenclature of TRPP ion channels is ambiguous. Initial publications named the gene products of *PKD1* and *PKD2* PC1 and polycystin-2. The founding member of the TRPP subfamily, polycystin-2 (PC2), was later classified as TRPP2, and this designation is commonly used in the literature. The latter designation of TRPP2 as TRPP1 has not been widely adopted and has caused confusion, as it has been used for both PC1 and polycystin-2. We therefore advocate for the following TRP nomenclature: 1) only *bona fide* ion channels with 6 TMDs should be named TRPP channels, and 2) PC1-like proteins with 11 TMDs should be referred to with their gene names until a unified protein nomenclature exists (Table 1). Because of ambiguity, TRPP1 and TRPP4 should not be used.

1. Domain topology and assembly

Like all TRP channels, TRPP family members have 6 TMDs (S1–S6) and intracellular amino- and carboxy-termini (Fig. 9A). The TM segments S1–S4 form a voltage-sensor domain and the segments S5–S6 constitute the pore domain. A characteristic feature of TRPP ion channels is the large extracellular loop between S1 and S2, consisting of more than 200 amino acids in

TRPP2, TRPP3, and TRPP5, respectively. This extracellular loop of TRPP2 contains 5 conserved asparagine-linked glycosylation sites (N299, N305, N328, N362, and N375), which are required for efficient TRPP2 biogenesis and stability.¹¹⁹¹ The carboxy-terminal region of TRPP2 comprises motifs involved in channel regulation, assembly, and trafficking, including a Ca^{2+} -binding EF hand, a CC domain, and an ER retention motif with an acidic amino acid cluster (Fig. 9A).^{1192–1199} The EF hand has been implicated in Ca^{2+} -dependent regulation of TRPP2.^{1198,1199} A more recent study, however, questions the hypothesis that Ca^{2+} occupancy of the TRPP2 EF hand is responsible for the regulation of channel activity.¹²⁰⁰ The acidic cluster is involved in protein trafficking, whereas the 2 CC domains contribute to homo- and heteromerization of TRPP2 subunits.^{1193–1195,1197,1199}

TRPP2 contains several predicted and validated phosphorylation sites, some of which have been studied in more detail (S76, S801, S812, and S829).^{1192,1197,1201–1207} Glycogen synthase kinase 3 (GSK3) was shown to phosphorylate serine 76 to promote redistribution of TRPP2 from the plasma membrane to intracellular compartments.¹²⁰⁴ Phosphorylation of serine 801 is increased by epidermal growth factor stimulation and appears to be protein kinase D-dependent.¹²⁰⁵ Phosphorylation of serine 812 by PKC K2 contributes to regulation of TRPP2 trafficking and ion channel activity.^{1197,1201,1207} Serine 829 phosphorylation by aurora A or protein kinase A has been reported to modulate ion channel function.^{1203,1206} It should be noted, however, that the functional importance of these TRPP2 modifications has been difficult to

Fig. 9. Domain topology and multimeric assemblies of TRPP channels. (A) Domain topology of TRPP2 comprising 6 TMDs (S1–S6). S1–S4 form the voltage sensor domain, the large extracellular loop between S1 and S2 forms the TOP domain, and S5–S6 form the pore domain. TRPP3 and TRPP5 have a similar overall topology with variable C-terminal regulatory motifs. (B) Domain topology of PC1 comprises 11 TMDs (S1–S11) with a large extracellular N-terminal domain. S6–S11 are highly homologous to TRPP2 and contribute to the pore domain in heteromeric PC1-TRPP2 complexes. PKD1L1, PKD1L2, PKD1L3, and PKDREJ have a similar topology with variable N-terminal extracellular domains. (C) TRPP2 and other TRPP channels form homotetrameric complexes, and (D) heteromeric complexes with other TRP channels, including TRPC1 and TRPV4. (E) TRPP2 and PC1 form heteromeric complexes with a 3:1 stoichiometry. The same subunit stoichiometry was shown for PKD1L3-TRPP3 channel complexes. GAIN, GPCR autoproteolysis-inducing; GPS, GPCR proteolytic site; LDL-A, low-density lipoprotein A; REJ, receptor for egg jelly.

evaluate as overexpressed TRPP2 is trapped in the ER, impeding the electrophysiological analysis at the plasma membrane (see below). The overall domain topology of TRPP3 and TRPP5 resembles TRPP2. While motifs such as C-terminal CC domains and phosphorylation sites have also been predicted in these channels, there is still much less information compared with TRPP2.^{1208,1209} TRPP3 channel function has been shown to be regulated by palmitoylation and phosphorylation at the cytoplasmic N-terminal domain (at cysteine 39 and threonine 39, respectively).¹²¹⁰ Furthermore,¹²¹¹ TRPP3 was found to be regulated by cAMP signaling via a cluster of phosphorylation sites at S682, S685, and S686.

2. Homotetrameric TRPP channel complexes

Recently, the first 3D structures of TRPP2 and TRPP3 have been resolved using single-particle cryo-EM.^{1212–1216} These studies show that TRPP channels are assembled as homotetrameric complexes with each subunit comprising a voltage-sensor domain (S1–S4), a tetragonal opening for polycystins (TOP) domain, formed by the extracellular loop between S1 and S2, and a pore domain (S5–S6), jointly formed by the 4 subunits. The individual channel subunits interface through their TOP and pore domains, suggesting a role of these subunit interactions in homotetrameric assembly. The structural arrangement of the voltage-sensor and pore domains in TRPP2 and TRPP3 provides mechanistic insights into voltage-dependent gating.

The voltage-sensor domains of the respective TRPP subunits connect to the pore domains of neighboring subunits via an S4–S5 linker helix. This S4–S5 linker helix is thought to communicate the activation state of the voltage-sensor domain to control gating of the pore domain. The S4 segment of TRPP2 and TRPP3 contains 2 positive gating charges, which are thought to move outward in response to membrane depolarization.^{1213,1217} This outward movement may be coupled to the opening of the pore via lateral displacement.

The TOP domain extends from the S1 and S2 helices on the extracellular side of the voltage-sensor domain. This domain is not found in TRPCs, but is similar to a corresponding domain of TRPMLs.^{1055,1060} The TOP domain is composed of 5 β strands and 2 α -helices and forms extracellular contacts with the extracellular loop between S3 and S4, suggesting a functional connection to the voltage-sensor domain. In support of this notion, ADPKD-causing missense mutations in this domain can significantly shift the voltage dependence of TRPP2 opening.¹²¹⁸

The pore domain constitutes the ion-conductive pathway and the selectivity filter. TRPP2 and TRPP3 are Ca^{2+} -permeable nonselective cation channels. TRPP3 is more selective for Ca^{2+} than TRPP2, probably because the selectivity filter of TRPP3 harbors a second ring of negatively charged aspartate residues that is not present in TRPP2.¹²¹⁹ Structural and functional studies suggest that TRPP channels have multiple gates, with the lower gate in the S6 segment being mobilized by uncoiling its secondary helical structure.¹²¹⁴ The upper gate is thought to be within the selectivity filter and might be involved in channel inactivation.^{1214–1216} Asparagine 533 in the outer pore loop of mouse TRPP3 was shown to be essential for its voltage-dependent inactivation.¹²²⁰

The carboxy-terminal domains have not been structurally resolved in the reported TRPP2 and TRPP3 structures. However, the structures of isolated fragments containing the EF hand or the CC domain have been determined.^{1199,1221–1223} The isolated CC domain of TRPP2 forms trimers, which appears to contradict the homotetrameric assembly of whole TRPP channels.¹²²⁴ Yet, the trimeric assembly of the isolated CC domains may be explained by the fact that heteromultimeric assemblies of TRPP channels with PC1 family proteins occur at a 3:1 stoichiometry (see below). While the precise role of the coiled-coil motif for TRPP channel

assembly and structure is not known, it appears to be important for channel function, since truncating mutations that delete the CC motif of TRPP2 cause ADPKD (The ADPKD Mutation Database, <https://pkdb.mayo.edu/variants>).

3. Heteromeric TRPP channel complexes

TRPP2 has been shown to interact with several TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC7, and TRPV4) in heterologous expression systems.¹²²⁵ There are currently no 3D structures of these heteromeric assemblies, but atomic force studies proposed a 2:2 stoichiometry with an alternating subunit arrangement for TRPP2/TRPC1 and TRPP2/TRPV4 heterotetramers, respectively.^{57,128,384,1226} It has been proposed that the channel properties of these heteromeric TRPP2 complexes are modulated by the TRP subunit composition, adapting the functional properties of TRPP2 to tissue-specific roles, including mechano- and thermosensation.¹²²⁶ However, there is still limited information concerning the physiological role of most of these heteromeric TRPP2 complexes *in vivo*.

Heteromeric complexes formed by TRPP channels with members of the PC1 family have been shown to play an essential role in biological processes such as tubular morphogenesis and establishment of left-right asymmetry.¹¹⁸⁰ Mutations in the genes encoding PC1 and TRPP2 cause polycystic kidney disease in humans and model organisms (see “[Expression pattern and primary physiological roles of TRPP channels](#)” and “[Human diseases associated with TRPP channels](#)”). Both proteins interact to form a receptor-ion channel complex.^{1227,1228} PC1 and related family members (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) are rather large proteins (210–520 kDa) with 11 TMDs (S1–S11). The 6 carboxy-terminal TMDs of PC1 (S6–S11) share high sequence homology with TRPP2. Despite this homology, PC1 is not an ion channel itself, but may contribute to the pore domain of heteromeric complexes with TRPP2. Members of the PC1 family have a large extracellular N-terminal domain, which is thought to be involved in the sensing of mechanical or chemical cues.^{1229–1232} This domain contains multiple motifs suggesting interaction with cell matrix or extracellular proteins (Fig. 9B).^{1233,1234} PC1 has the largest extracellular domain with 3074 amino acids, followed by PKD1L1 (1784 amino acids), PKD1L2 (1344 amino acids), PKD1L3 (1083 amino acids), and PKD1REJ (1184 amino acids). The PC1 N-terminal domain contains multiple motifs, including leucine-rich repeats, 15 PKD repeats, an low-density lipoprotein A-related motif, a C-type lectin domain, and a receptor for egg jelly module (Fig. 9B). Interestingly, PC1 shows similarities to the adhesion class GPCRs (adhesion GPCRs). A common feature of PC1 and adhesion GPCRs is a GPCR autoproteolysis-inducing domain and autoproteolytic cleavage of the extracellular amino-terminus at a G protein-receptor-coupled proteolytic site.^{1235–1237} Activation of adhesion GPCRs through a tethered agonist has been proposed to involve a stalk region preceding the first TMD.¹²³⁸ Recent studies^{1239,1240} suggest that a similar mechanism may apply for the activation of PC1.

The 3D structures of the heteromeric PC1-TRPP2 complex and the PKD1L3-TRPP3 complex were determined using cryo-EM, revealing a 1:3 stoichiometry, which had already been proposed in earlier studies.^{1241–1243}

Owing to the sequence homology to TRPP2, the S6–S11 TMDs of PC1 are arranged with similar symmetry to TRPP2 subunits within the heteromeric structure.^{1212,1214,1216,1242} The same holds true for the highly homologous TOP domains of PC1.¹²⁴² In PC1 and PKD1L3, the TOP domains extend from the extracellular S6–S7 loop (Fig. 9B). In contrast to homomeric TRPP2 and TRPP3 channels which have symmetric channel selectivity filters, the pore domain of heteromeric PC1-TRPP2 channels is asymmetric due to the

contribution of the S10 and S11 segments of PC1-related subunits.^{1241,1242} Based on the structure of the pore domain, the cation selectivity of these heteromeric channels is predicted to be distinct from homomeric TRPP2 channels, because the PC1 pore loop lacks the aspartate residues found in TRPP2. This prediction is supported by electrophysiological experiments (see below). In the published structure of the PC1-TRPP2 complex, 3 positively charged residues in the pore lining S11 of PC1 (R4100, R4107, and H4111) plug the ion permeation pathway. It has been speculated that lateral displacement S11 of PC1, possibly coupled to conformational changes in distant parts of the complex, may gate the PC1-TRPP2 heteromeric channel.¹¹⁸¹ Future studies of the structure of the heteromeric PC1-TRPP2 complex in the open state, ideally with a bound activating ligand, are required to unravel its gating mechanism.

The structure of the PKD1L3-TRPP3 complex was determined in a closed and in a Ca^{2+} -bound open state.¹²⁴¹ Two Ca^{2+} -binding sites that are probably involved in gating the channel complex were identified. In the closed state, the PKD1L3-TRPP3 complex is blocked by K2069 from PKD1L3, which appears to plug the ion permeation pathway in the absence of Ca^{2+} . At high Ca^{2+} concentrations, K2069 of PKD1L3 is displaced by the Ca^{2+} ion coordinated by the D523 side chain of TRPP3 and main chain carbonyls of both TRPP3 and PKD1L3. The second Ca^{2+} binding site is in the extracellular cleft of the voltage sensor domain within the third TRPP3 subunit of the heteromeric complex. Electrophysiological experiments support the hypothesis that Ca^{2+} binding of the voltage sensor domain of TRPP3 is responsible for Ca^{2+} -dependent activation.¹²⁴¹ In summary, the structures of the heteromeric TRPP channel complexes have provided mechanistic insights into ion permeation and gating. It should be noted that all structures of the heteromeric TRPP complexes have been determined using truncated forms of the PC1-related subunits. In the heteromeric PC1-TRPP2 structure, PC1 was missing the extracellular N-terminal domain and the intracellular C-terminus. In the PKD1L3-TRPP3 structure, PKD1L3 was missing its N-terminal extracellular domain and the first 5 TMDs (S1–S5).^{1241,1242}

4. Functional characteristics of individual TRPP channels

TRPP channels are Ca^{2+} -permeable nonselective cation channels. Their biophysical properties are modulated by differential assemblies with members of the PC1 family. Here, we summarize the functional properties of individual homotetrameric and heteromeric TRPP channel complexes.

a. TRPP2. TRPP2 function has been studied in the plasma membrane, in the ER, and in primary cilia. The functional analysis of TRPP2 in the plasma membrane has proven difficult because heterologously expressed TRPP2 in mammalian cell lines localizes mostly, if not exclusively, in the ER.^{1192,1197,1198,1244} Despite earlier studies reporting TRPP2 currents after heterologous expression in different cell types,¹²⁴⁵ many later studies failed to record increased whole cell currents after overexpression of WT TRPP2 (with or without coexpression of PC1).^{1197,1214} Earlier functional studies of TRPP2 are reviewed elsewhere.¹²⁴⁵ In the ER, TRPP2 operates as a Ca^{2+} release channel, and different mechanisms have been proposed on how this may affect Ca^{2+} signaling and ER Ca^{2+} homeostasis. One study showed that TRPP2-mediated Ca^{2+} release decreases the ER concentration, thereby regulating the sensitivity of cells to apoptotic stimuli.¹²⁴⁶ Another study proposed that TRPP2 amplifies ER Ca^{2+} release via Ca^{2+} -dependent activation of TRPP2,¹¹⁹⁸ whereas others reported increased Ca^{2+} release from the ER through direct association with the inositol trisphosphate receptor.¹²⁴⁷ Reconstitution of TRPP2 proteins isolated from the ER

was used to record single-channel currents and Ca^{2+} regulation of the channel.^{1198,1207}

Recent progress in the electrophysiological characterization of TRPP2 channels has been achieved through 2 methodological breakthroughs: (1) direct electrophysiological recordings from primary cilia,^{1248,1249} and (2) GOF mutations in TRPP2 enabling the electrophysiological characterization in the plasma membrane.¹²⁵⁰

TRPP2 localizes to the membrane of primary cilia.¹²⁵¹ Patch-clamp recordings from cilia showed that endogenous and heterologous TRPP2 channels have a cation permeability profile of $\text{K}^+ > \text{Na}^+ >> \text{Ca}^{2+}$ with a single channel conductance of 139 pS (in the presence of K^+). TRPP2 has a 10-fold higher permeability for Na^+ than for Ca^{2+} ions.^{1249,1252,1253} Despite the relatively low Ca^{2+} selectivity, opening of TRPP2 channels can trigger Ca^{2+} signals in cilia and other cellular compartments due to the huge Ca^{2+} concentration gradient with an extracellular concentration that is 10,000 times higher than the intracellular Ca^{2+} concentration. Together with the negative membrane potential, this provides a big electrochemical driving force for Ca^{2+} to enter cells. TRPP2 is voltage-dependent with an outwardly rectifying current-voltage relationship. This voltage dependence is modulated through the intracellular Ca^{2+} concentration.^{1200,1249} Furthermore, TRPP2 whole cell cation currents at the plasma membrane could be recorded in *Xenopus* oocytes over-expressing a TRPP2 F604P GOF mutant, which has enabled functional studies of TRPP2 at the plasma membrane¹²⁵⁰ and studies of disease-associated missense mutations in the pore loop of TRPP2 that alter its channel function.¹²⁵⁴

In addition to homomeric complexes, TRPP2 forms heteromeric complexes with members of the PC1 family, which modulate its functional properties. The PC1-TRPP2 channel complex has been studied the most because of its involvement in ADPKD (see “[Expression pattern and primary physiological roles of TRPP channels](#)”). Despite intense research efforts, many functional features of this channel complex remain poorly understood. This can be explained by the fact that heterologous expression of PC1 together with TRPP2 does not give rise to constitutively active channels in the plasma membrane.^{1253,1255} Initial studies reporting increased whole cell currents upon co-expression of PC1 and TRPP2 in the plasma membrane^{1196,1256} could not be reproduced by others.^{1253,1255}

Two recent studies have provided insights into the channel function of the PC1-TRPP2 complex. In the first study in *Xenopus* oocytes, co-expression of PC1 with TRPP2 harboring 2 GOF mutations (L677A/N681A) resulted in altered ion selectivity, with greater Ca^{2+} permeability compared with the TRPP2 mutant channels alone, suggesting a contribution of PC1 to the selectivity filter.¹²⁵⁷ In a second study, the TRPP2 F604P GOF mutant was coexpressed with PC1 containing a strong N-terminal signal peptide to increase plasma membrane trafficking.¹²⁵⁵ Kidney epithelial cells coexpressing these constructs showed constitutive outwardly rectifying ion currents, whereas coexpression of WT PC1 and TRPP2 produced no currents. Interestingly, the C-type lectin domain from the PC1 N-terminus was used as a soluble activator of the PC1-TRPP2 F604P complex, suggesting that extracellular ligands binding to the complex can modulate channel activity.¹²⁵⁵ Furthermore, it was shown that cilia-enriched oxy-sterol 7 β ,27-dihydroxycholesterol is required for TRPP2 ion channel activation.¹²⁵⁸ The key takeaway from these studies is that heteromeric PC1-TRPP2 channels without GOF mutations appear to be constitutively closed, and active mutant channels in the heteromeric complex are more Ca^{2+} -permeable than homomeric TRPP2 channels. The identification of the physiological activation mechanism of the PC1-TRPP2 complex remains one of the most important future challenges, because it will enable the study of the

biophysical properties of the native WT complex and downstream signaling pathways, which may be dysregulated in ADPKD.

The PKD1L1-TRPP2 complex is required for the establishment of left-right organ asymmetry (see “[Expression pattern and primary physiological roles of TRPP channels](#)”).^{1259–1261} Cilia-mediated asymmetric Ca^{2+} signals in the embryonic node have been shown to result in asymmetric gene expression to establish left-right asymmetry.^{1259,1260,1262,1263} Genetic data from humans, mice, and zebrafish implicate the PKD1L1-TRPP2 complex in the generation of these asymmetric Ca^{2+} signals.^{1259–1261,1264} However, there are no direct measurements of PKD1L1-TRPP2 channels in the embryonic node to date. Future work will have to determine the biophysical properties of this complex and its activation mechanism.

Heteromeric TRPP channel complexes with PKDREJ have been proposed to play a role in fertilization. PKDREJ-TRPP2 and PKDREJ-TRPP3 co-immunoprecipitate when over-expressed in HEK293 cells.¹²⁶⁵ To date, there are no functional channel data of these heteromeric complexes.

In summary, the modular assembly of TRPP2 with different members of the PC1 family appears to enable tissue-specific functions that are tuned to specific physiological requirements, e.g., responsiveness to different, yet to be identified, ligands that activate the respective heteromeric complexes.

b. TRPP3. Unlike TRPP2, ion currents from homomeric TRPP3 channels can be measured from the plasma membrane when heterologously expressed.¹²⁰⁸ TRPP3 is an outwardly rectifying nonselective cation channel which conducts mono- and divalent cations.¹²¹⁴ TRPP3 is more Ca^{2+} -selective than TRPP2 with a Ca^{2+} permeability that is 15 times higher than that for Na^+ , probably because of an additional aspartate (D525) in the selectivity filter.¹²¹⁹ TRPP3 has properties of voltage-dependent channels, such as voltage-dependent inactivation and tail currents after membrane repolarization.^{1217,1220} Similar to TRPP2, TRPP3 activity is modulated¹²¹⁹ by intracellular Ca^{2+} . In heterologous expression systems (*Xenopus* oocytes and mammalian cells), TRPP3 has been shown to be activated by acidic and alkaline extracellular pH,^{1266,1267} and has been proposed to play a role in sour taste transduction (see “[Expression pattern and primary physiological roles of TRPP channels](#)”).

Heteromeric PKD1L1-TRPP3 channels have been shown to regulate the ciliary Ca^{2+} concentration.¹²⁶⁸ Endogenous PKD1L1-TRPP3 channels have been measured directly by patch-clamping of primary cilia in fibroblasts and retinal pigment epithelial cells. These currents recorded from cilia were activated¹²⁴⁸ by ATP and blocked by Gd^{3+} . High membrane pressure increased the open probability of heteromeric PKD1L1-TRPP3 channels, but there is currently no data suggesting a direct role of this heteromeric complex in ciliary mechanotransduction. Since homomeric TRPP3 channels can be measured at the plasma membrane and in cilia, the contribution of the PKD1L1 subunit to the functional pore can be determined by comparing the permeation properties of the homomeric and heteromeric channels.^{1214,1219,1248} The single-channel conductance of homomeric TRPP3 channels is larger than the conductance of heteromeric PKD1L1-TRPP3 channels (156 pS versus 96 pS, respectively; with Na^+ as charge carrier). The Ca^{2+} selectivity over Na^+ of monomeric TRPP3 channels is higher than that of PKD1L1-TRPP3 channels (15- versus 6-fold, respectively). These alterations of the biophysical properties of the heteromeric complex are likely explained by the contribution of the PKD1L1 pore domain (S10-S11) to the selectivity filter of the heteromeric PKD1L1-TRPP3 complex. The precise structural features determining these biophysical properties remain to be investigated.

Co-expression of PKD1L3 and TRPP3 in HEK293 cells, *Xenopus* oocytes, and HEK cells results in ion currents that are activated by extracellular Ca^{2+} and pH changes (acidic and alkaline).^{1269,1270}

PKD1L3-TRPP3 operates as nonselective cation channel with preference for Ca^{2+} over Na^+ ($P_{\text{Ca}^{2+}}/P_{\text{Na}^+} \approx 11$). Interestingly, the pH- or Ca^{2+} -activated currents have no voltage dependence.^{1271,1272} Since the regulation by Ca^{2+} and pH is also observed in homomeric TRPP3 channels, it is difficult to distinguish whether this regulation is a feature of homo- or heteromeric channels in an overexpression system. Taken together, PKD1L3 and TRPP3 form complexes, but their functional features and their physiological relevance require further investigation.

c. TRPP5. The biophysical properties and the physiological function of TRPP5 channels are the least well characterized of the TRPP channels. It has been reported that overexpression of TRPP5 in HEK293 cells produces single-channel currents with a conductance of 25 pS that are not voltage-sensitive.^{1265,1273} There are no reports of endogenous TRPP5 currents.

C. Expression pattern and primary physiological roles of TRPP channels

1. Expression pattern

The genes encoding TRPP channels are expressed in many organs in vertebrates. Transcriptome analyses have detected mRNA of TRPP channels in nearly all human and mouse tissues. Targeted studies focusing on individual TRPP channels have confirmed and expanded these findings: *PKD2* and *PKD2L1* transcripts are present in numerous fetal and adult tissues, including the heart, brain, lungs, spleen, testes, ovaries, and kidneys.^{1183,1188,1189,1209,1272,1274} *PKD2L2* expression appears to be more restricted to the brain and testis.^{1185,1189} Splice variants of TRPP channels have been identified, but their functional properties are currently unknown.^{1183,1185,1188,1189}

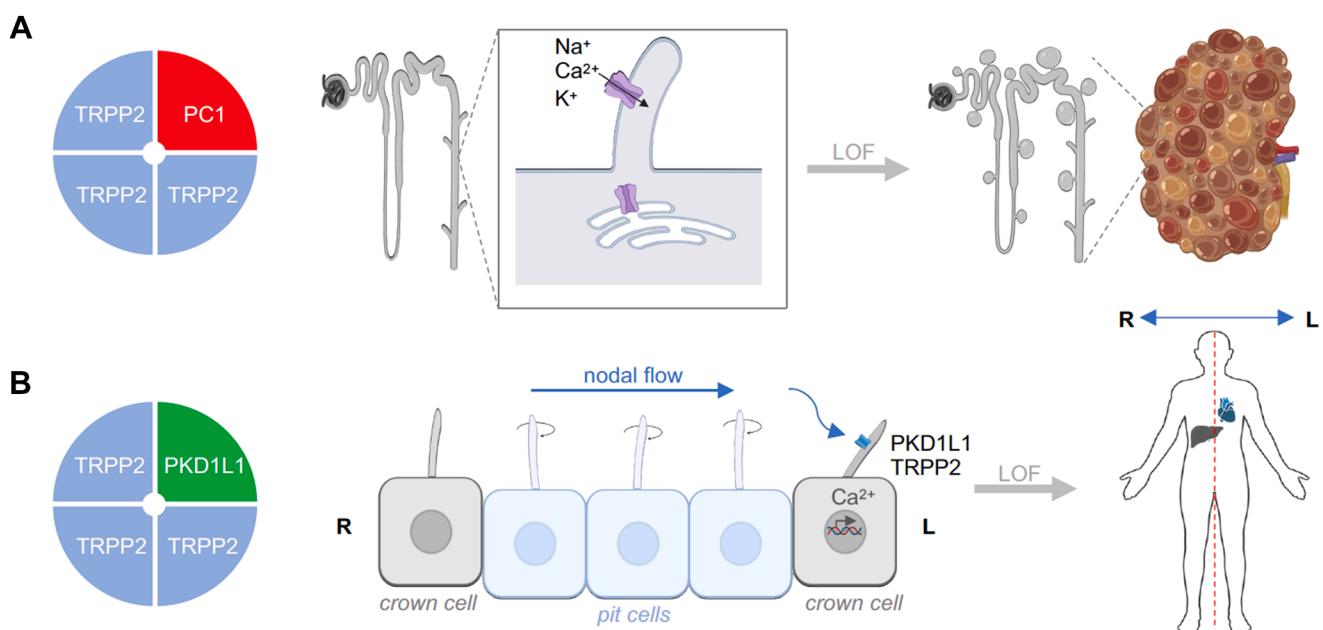
PKD2 expression is modulated by post-transcriptional regulation. The RNA-binding protein bicaudal C (BICC1) and the microRNA group 17 (*miR-17*) have been reported to regulate TRPP2 expression levels in opposite directions.^{1275–1277} *miR-17* has been shown to repress *Pkd2* expression by binding on the 3'-untranslated region of *Pkd2* mRNA. This may be of physiological relevance since overexpression of *miR-17* in the kidneys of transgenic mice leads to kidney cysts. In contrast, loss of *miR-17* reduced cyst growth in a mouse model with polycystic kidney disease caused by *Kif3a* KO.¹²⁷⁵ Conversely, BICC1 enhances *Pkd2* mRNA stability and translation efficiency.¹²⁷⁷ Loss of *Bicc1* results in cystic kidneys in model organisms and antagonizes the repressive activity of *miR-17*.¹²⁷⁷ Since *miR-17* targets many genes, including several genes associated with cystic kidney disease, it remains to be determined whether the effects of *miR-17* on kidney cysts are caused solely by the reduction of TRPP2 expression.

TRPP2 and PC1 have also been studied in invertebrate model organisms, which provided fundamental biological insights such as the discovery that the polycystins localize in primary cilia.^{1278–1283} In *Caenorhabditis elegans* and *Drosophila melanogaster*, *Pkd2* expression is restricted to ciliated cells, namely male-specific sensory neurons and spermatozoa, respectively.^{1278,1283} In the meantime, a convergence of additional findings from mammalian model organisms suggests that defective ciliary signaling plays an important role in the pathogenesis of polycystic kidney disease and related disorders, which are now collectively called ciliopathies.¹²⁸⁴ In addition to primary cilia, PC1 and TRPP2 have been found in the ER and the lateral membrane.^{1244,1285} More recently, fragments of PC1 have also been detected in mitochondria.^{1286–1288}

The physiologically relevant cellular localization of the PC1-TRPP2 complex is debated, but considerable evidence suggests that this channel complex functions in primary cilia or in the

plasma membrane. However, a function in other membranes, for example, in the ER, cannot be ruled out and requires further studies. Trafficking of PC1 and TRPP2 to the plasma membrane or cilia appears to be interdependent, supporting the hypothesis that the heteromeric complex, rather than homomeric assemblies of each subunit, is the functionally relevant channel complex at these locations.^{1289,1290} However, it has also been reported¹²⁹¹ that TRPP2 traffics to cilia without PC1. In addition to PC1, multiple other proteins have been shown to be involved in the trafficking of TRPP2 to cilia and the plasma membrane.^{1197,1244,1292,1293}

The identification of specific cell types expressing TRPP proteins *in vivo* has been challenging. While TRPP2-specific antibodies enable detection of TRPP2 by Western blot in the kidney, in the heart, and in other organs, the unequivocal detection of the cellular and subcellular distribution of TRPP2 protein *in vivo* has been hampered by low expression levels and the lack of antibodies with sufficient sensitivity and specificity for immunohistochemical and immunofluorescence studies. The same applies to TRPP3 and TRPP5. In the future, this limitation may be overcome by the introduction of epitope tags to endogenously expressed TRPP channels,¹²⁸⁷ or by generating TRPP-reporter alleles to detect cell types expressing these channels using combinatorial genetic approaches, which have been successfully employed to detect the expression of other TRP channels in specific cell types.¹²⁹⁴


2. Primary physiological roles of TRPP channels

The physiological roles of TRPP channels have been studied in several model organisms with a focus on TRPP2 function because of its relevance in human disease.

a. TRPP2. The primary physiological roles of TRPP2 in vertebrates are the regulation of tubular morphogenesis and the

establishment of organ left-right asymmetry.^{1180,1295} The importance of TRPP2 in controlling the morphology of epithelial tubules was first recognized when *PKD2* was cloned as the second gene mutated in ADPKD patients.¹¹⁸³ The requirement of TRPP2 for the formation of properly shaped tubules and for left-right patterning was later confirmed in mouse and zebrafish.^{1296–1299} Loss of TRPP2 results in polycystic kidney disease in mice,¹²⁹⁹ and pronephric cysts in zebrafish larvae.¹²⁹⁷ Constitutive *Pkd2* KO mice develop cystic kidneys, edema, and hemorrhage and die *in utero* around midgestation.^{1298–1300} Kidney cysts originate from dilatations along all nephron segments mimicking cyst formation in human ADPKD, with the notable exception that cyst formation in ADPKD is focal due to loss of heterozygosity in individual tubule cells, whereas PKD mouse models display much more widespread cyst formation due to *Pkd2* inactivation in all tubular epithelial cells. A mouse model with a *Pkd2* allele prone to spontaneous recombination (*Pkd2*^{WS25}) mimics the loss of heterozygosity through somatic mutations in ADPKD and shows focal cyst formation similar to the human disease.¹²⁹⁹ Conditional inactivation of *Pkd2* in specific cell types prevents embryonic lethality and enables studies of organ-specific functions of TRPP2.¹³⁰⁰ Mutations in *PKD1* in humans or KO of *Pkd1* in mice also cause polycystic kidney disease.¹³⁰¹ Multiple lines of evidence, including the similarity of KO phenotypes of *Pkd1* and *Pkd2*, the coassembly of PC1 and TRPP2 in a heteromeric complex, and their interdependence of trafficking to cilia, support the notion that the PC1-TRPP2 complex rather than homomeric assemblies of these proteins are critical for the proper regulation of tubular shape (Fig. 10A). How Ca^{2+} signals triggered by this complex control the shape of epithelial tubes remains to be determined.

A second important physiological function of TRPP2 is its role in the establishment of left-right asymmetry. Loss of TRPP2 in mice and zebrafish causes left-right asymmetry defects that have been

Fig. 10. Physiological roles of heteromeric TRPP channels and pathologies caused by loss of function. (A) Left panel: heteromeric TRPP2-PC1 channels regulate the morphology of epithelial tubules in the kidney and other organs (eg, liver and pancreas). Middle panel: The channels operate in the primary cilium and ER and are thought to trigger Ca^{2+} signals. The activation mechanism of the TRPP2-PC1 complex and the downstream effectors controlling tubular morphology are unknown. Right panel: LOF of the TRPP2-PC1 complex results in focal cyst formation in the nephron, resulting in polycystic kidney disease. (B) Left panel: Heteromeric TRPP2-PKD1L1 complexes regulate left-right patterning during embryonic development. Middle panel: Left-right patterning in the embryonic node is driven by motile cilia in pit cells, creating a leftward nodal flow. Sensory cilia in perinodal crown cells detect flow-mediated mechanical or chemical signals via ciliary TRPP2-PKD1L1 channels. This triggers asymmetric Ca^{2+} signals in the embryonic node, resulting in asymmetric gene expression, which specifies left-right asymmetry. Right panel: LOF of the TRPP2-PKD1L1 complex causes left-right asymmetry defects.

shown to be caused by impaired TRPP2-mediated Ca^{2+} signaling in the embryonic node.^{1261,1296–1298} Left-right asymmetry is controlled by Ca^{2+} -dependent asymmetric gene expression in cells on one side of the embryonic node, a transient concave structure in the midline of the postgastrulation embryo.¹³⁰² The cells in the embryonic node are ciliated. So-called pit cells in the embryonic node generate fluid flow directed toward the left side by the beating of motile cilia. Perinodal crown cells possess immotile primary cilia, which are required to sense the fluid flow to trigger intracellular Ca^{2+} signals (Fig. 10B).^{1261,1302} It is still debated whether the signal or stimulus sensed by these cilia is mechanical or chemical.^{1261,1262,1296–1298,1303} Notably, *Pkd1* KO mice do not display left-right asymmetry defects despite otherwise extensive phenotypic similarities to *Pkd2* KO mice. However, loss of PKD1L1 causes left-right asymmetry defects in humans and model organisms.^{1259,1260,1264} Since Ca^{2+} transients in perinodal crown cells require both TRPP2 and PKD1L1, and both channel subunits localize to primary cilia, PKD1L1-TRPP2 heteromeric channels probably function as sensors of nodal flow in the embryo (Fig. 10B).

TRPP2 channels are broadly expressed and likely have additional physiological functions. This is supported by the embryonic lethality of constitutive *Pkd2* KO mice, which is not caused by the kidney phenotype.^{1299,1300} Instead, the embryonic lethality in *Pkd2* KO mice appears to be caused by vascular defects in the placenta.¹³⁰⁰ TRPP2 and PC1 appear to have a role in vascular integrity, since loss of function of both proteins causes cardiovascular phenotypes, ranging from cardiac valve defects to aneurysms and abnormal vascular permeability in KO mice.^{1300,1304,1305} Extrarenal manifestations of ADPKD patients support a role of PC1 and TRPP2 in the cardiovascular system.¹³⁰⁶ In cardiomyocytes, TRPP2 has been reported to regulate Ca^{2+} release through ryanodine receptors through direct association.¹³⁰⁷ A recent study showed that natriuretic peptide production requires TRPP2 in the heart, and loss of this pathway may contribute to the development of hypertension in ADPKD.¹³⁰⁸ Studies of TRPP2 in the regulation of vascular tone are contradictory. In arterial smooth muscle cells, TRPP2 is proposed to contribute to systemic blood pressure and to the myogenic response in cerebral arteries through vasoconstriction.^{1309,1310} In vascular endothelial cells, TRPP2 was reported to mediate vasodilation through activation of nitric oxide synthase.¹³¹¹ In addition, TRPP2 and Filamin-A have been proposed to regulate pressure sensing in mouse vascular smooth muscle cells, by fine-tuning stretch-activated channels to adapt the vascular myogenic response.¹³¹² These seemingly paradoxical functions of TRPP2 in the vasculature might be explained by differences in specific locations and cell types within the vasculature. Further studies are required for a comprehensive understanding of TRPP2 function in the vasculature and other organs.

b. TRPP3. The physiological functions of TRPP3 are much less well understood. The phenotypes of TRPP3 (*Pkd2l1*) KO models suggest functions in the CNS, cardiomyocytes, and early development. *Pkd2l1* KO mice show hippocampal and thalamo-cortical hyperexcitability with increased susceptibility to seizures.¹³¹³ Like TRPP2, TRPP3 localizes to primary cilia. TRPP3 channel activity has been measured in neurons contacting the subependymal cerebrospinal fluid. These neurons have protrusions with a primary cilium that extends into the central canal, where it is thought to sense mechanical or chemical signals from the cerebrospinal fluid.^{1274,1314,1315} In zebrafish, related neurons contacting the cerebrospinal fluid were shown to be mechanosensitive cells. The detection of cerebrospinal fluid flow through these neurons was shown to require mechanosensitive TRPP3 channels.¹³¹⁵

The organismal function of heteromeric PKD1L1-TRPP3 channels remains poorly understood. PKD1L1-TRPP3 channels have

been reported¹²⁶⁸ to control the Ca^{2+} concentration in cilia and to regulate Hedgehog-dependent transcription of glioma-associated oncogene homolog 1. The physiological consequences of these cellular events *in vivo* remain to be determined.

Heteromeric PKD1L3-TRPP3 channels have been proposed as a candidate sour taste receptor in gustatory cells.^{1272,1316} TRPP3 is expressed in some gustatory type III cells, and acid-evoked Ca^{2+} responses and optogenetic activation of these cells support a role of these cells in sour taste perception.^{1270,1316,1317} However, the role of the PKD1L3-TRPP3 in sour taste transduction is controversial. Mice with genetic ablation of TRPP3-expressing cells were shown to be completely devoid of acid responses in electrophysiology recordings to sour stimuli, supporting a role of these cells in sour taste reception.¹³¹⁶ Based on these and additional results showing acid activation of the complex, PKD1L3-TRPP3 channels were proposed to form the sour taste receptor.¹²⁷⁰ Subsequent studies in PKD1L3-deficient mice, however, showed normal sour taste responsiveness in behavioral and electrophysiological experiments.¹³¹⁸

c. TRPP5. Mouse TRPP5 mRNA and protein expression have been reported in spermatocytes and spermatids, but its role in male reproduction or other physiological functions has not been studied yet.¹³¹⁹

D. Human diseases associated with TRPP channels

1. TRPP2

TRPP2 was first identified as the gene product of *PKD2*, the second causative gene for ADPKD.¹¹⁸³ Mutations in *PKD2* account for ~15% of ADPKD cases, mutations in *PKD1* for ~80%, and a few additional genes for the remaining 5%.^{1184,1320} ADPKD is by far the most common genetic cause of kidney failure and affects ~1/1000 individuals in the general population.^{1320,1321} The disease is characterized by polycystic kidneys, with cyst development starting in the fetus and continuing through a patient's lifetime. Continuous development and growth of cysts compresses the remaining tubules. In the majority of patients, this results in reduced kidney function and ultimately kidney failure. The clinical course of ADPKD is highly variable, but ~50% of patients have kidney failure by 60 years of age.¹³²¹ Multiple extra-renal clinical manifestations, including liver cysts, pancreas cysts, intracranial aneurysms, and cardiac valvular disease, show that ADPKD is a systemic disorder.^{1320,1321} These extrarenal clinical manifestations point to functions of TRPP2 and PC1 in multiple organs, which are continuing to be studied in conditional mouse models.

Hundreds of unique ADPKD mutations have been identified, which are spread across *PKD1* and *PKD2* without obvious mutational hotspots (The ADPKD Mutation Database, <https://pkdb.mayo.edu/variants>). Patients with *PKD1* mutations tend to have more severe disease compared with those with *PKD2* mutations, and truncating mutations usually result in a more severe phenotype than nontruncating missense mutations.¹³²² There is significant inter- and intrafamilial variability in ADPKD symptoms even in patients with the same germline mutation. This suggests the existence of genetic, environmental, and epigenetic modifiers of ADPKD.

Each human kidney has about 1,000,000 nephrons. However, cysts develop only in a very small fraction (1%–5%) of nephrons. The focal nature of cyst formation in ADPKD can be explained by the 2-hit model.^{1323,1324} According to this model, a germline mutation (first hit) and a somatic mutation (second hit) in the normal allele are required for cyst formation in ADPKD. The loss of heterozygosity in kidney cells leads to the complete loss of

functional polycystin proteins, which causes focal cyst formation. Thus, even though the mode of inheritance of ADPKD is dominant, the process of cyst formation is recessive at the cellular level. Multiple lines of evidence ranging from genetic analyses of cyst epithelia in patients to mouse models support the 2-hit model.^{1299,1324,1325}

2. *TRPP3*

To date, no variants in *PKD2L1*, the gene encoding TRPP3, have been associated with human disease.

3. *TRPP5*

Like for TRPP3, there are no reports of human disease associated with variants in TRPP5.

E. Pharmacological modulators of TRPP channels

There is very limited information on pharmacological modulators of TRPP channels. No validated specific activators or blockers of TRPP2 are available because of the difficulty of measuring TRPP2 channel activity in heterologous expression systems. A recent study showed that some TRPML agonists (MK6-83, ML2-SA1, SF-21, SF-22, SF-23, SF-24, SF-31, SF-32, SF-33, SF-41, SF-71, SN-2, and rapamycin) inhibit the activity of TRPP2 with a F604P GOF mutation at high concentrations (see “[Pharmacological modulators of TRPP channels](#)”). Two of these TRPML agonists, ML-SA1 and SF-51, further activate the TRPP2 F604P channel, but not WT TRPP2, at low concentrations and inactivate it at higher concentrations.¹³²⁶ TRPP3 is activated by acidic pH (see above), and is blocked by flufenamic acid at rather high concentrations (0.5 mM).¹²⁰⁸ Furthermore, TRPP3 has been shown to be inhibited by amiloride, phenamil, benzamil, and 5-(N-ethyl-N-isopropyl) amiloride with an order of potency of phenamil > benzamil > 5-(N-ethyl-N-isopropyl)amiloride > amiloride, with IC₅₀ values of 0.14, 1.1, 10.5, and 143 μM, respectively.¹³²⁷ There is still only one study reporting TRPP5 channel measurements,¹²⁷³ and no pharmacological modulators of TRPP5 are available to date.

F. Ongoing or completed clinical trials with TRPP channels as therapeutic targets

There are no ongoing or completed clinical trials with TRPP channels as therapeutic targets. The majority of ADPKD is caused by mutations in *PKD1*, which led to the hypothesis that pharmacological activation of TRPP2 might mitigate the disease. However, there are no validated pharmacological activators of WT TRPP2 to date, and it remains to be determined whether pharmacological activation of TRPP2 can compensate for the loss of PC1, which is thought to be an essential subunit of the heteromeric PC1-TRPP2 complex. The development of ivacaftor and related drugs for the treatment of cystic fibrosis has shown the efficacy of potentiaters and correctors of mutated ion channels harboring missense mutations.¹³²⁸ It is conceivable that similar approaches might be applicable for ADPKD.

VIII. Conclusions and outlook

Recent experiments using animal disease models and human genetic studies have linked TRP channels to various pathophysiological processes, highlighting their broad therapeutic potential. Moreover, significant progress has been made in developing potent pharmacological agents targeting TRP channels in conjunction with electrophysiological and structural analysis of these proteins, which provides the mechanistic basis for innovative treatments of a wide array of human disorders. Despite the

relevance of TRP channels as pivotal therapeutic targets for the treatment of human diseases, the clinical modulation of TRP channels has turned out to be more challenging than initially anticipated. The following 3 preclinical issues deserve future attention. (1) There still is a pressing need to further our understanding of the pathophysiological role of TRP channels, their exact contribution to cellular, tissue, and organismal homeostasis and dysfunction, including activation mechanisms in a native environment and reliable tissue expression with high spatial resolution. (2) Unwanted side effects, as noted in clinical trials, may arise from either off-target or off-tissue interactions of drug candidates. Recent advances in molecular approaches, such as single-particle cryo-EM, in combination with AI-guided computational methods, will refine the development of modality-specific and activity-dependent modulators, which can be validated through in-depth biophysical analyses. To limit off-tissue side effects, the direct local or topical application of TRP channel modulators appears to be an appropriate strategy. Long-term toxicity of topically applied chemical probes and drug candidates can be averted by controlled local inactivation of compounds, for instance, by introducing photoswitches. (3) To foster clinical translation, reliable and robust preclinical disease models must be developed, including genetically modified mouse models, *in vitro* human-derived organoids, and engineered human tissue cultured in biomimetic chambers. In this regard, progress in cellular reprogramming of iPSCs holds the promise of providing relevant preclinical models for early validation of TRP channel modulators.

Abbreviations

3D, 3-dimensional; ADPKD, autosomal dominant polycystic kidney disease; ADPR, ADP-ribose; ARD, ankyrin repeat domain; BK, big-conductance Ca²⁺ activated K⁺ channel; BTD, benzothiadiazine derivative; CC, coiled-coil; cryo-EM, cryogenic electron microscopy; DAG, diacylglycerol; IP₃, 1,4,5-trisphosphate; ER, endoplasmic reticulum; CaM, calmodulin; CIRB, calmodulin-IP₃ receptor binding; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; DCT, distal convoluted tubule; DRG, dorsal root ganglia; DEE, developmental and epileptic encephalopathy; FDA, Food and Drug Administration; GOF, gain-of-function; GPCR, G protein-coupled receptor; HEK, human embryonic kidney; HOMG1, primary hypomagnesemia type 1, intestinal; iPSC, inducible pluripotent stem cells; IR, ischemia-reperfusion; KO, knockout; LFW, leucine-phenylalanine-tryptophan; LOF, loss-of-function; mGluR6, metabotropic glutamate receptor 6; MHR, melastatin homology region; MLIV, mucolipidosis type IV; NC1, necrocide 1; NDNA, N-(3,4-dimethoxybenzylidene)-2-(naphthalen-1-yl)acetohydrazide; NHERF, Na⁺/H⁺ exchanger regulatory factor; NUDT9-H, nudix hydrolase 9 homology; PC1, polycystin-1; PD, Parkinson's disease; PDB, Protein Data Bank; PDZ, postsynaptic density protein, *Drosophila* disc large tumor suppressor, and zonula occludens-1 protein; PH, pore helix; PI(3,5)P₂, phosphatidylinositol 3,5-bisphosphate; PI3P, phosphatidylinositol 3-phosphate; PIP₂, phosphoinositol 4,5-bisphosphate; PLC, phospholipase C; PKC, protein kinase C; PS, pregnenolone sulfate; ROS, reactive oxygen species; SOCE, store-operated calcium entry; STIM1, stromal interaction molecule 1; SNP, single-nucleotide polymorphism; TFEB, transcription factor EB; TM, transmembrane; TMD, transmembrane domain; TNBC, triple-negative breast cancer; TOP, tetragonal opening for polycystin; TPC2, 2-pore channel 2; TRP, transient receptor potential; TRPA, ankyrin domain-enriched TRP channel; TRPC, canonical TRP channel; TRPM, melastatin-like TRP channel; TRPML, mucolipin-related TRP channel; TRPP, polycystic kidney disease-related TRP protein;

TRPV, vanilloid receptor and related TRP channel; UPEC, uropathogenic Escherichia coli; VNO, vomeronasal organ; VSLD, voltage-sensing-like domain; WS-12, acoltremor; WT, wild-type.

Financial support

This work was funded by the German Research Foundation (DFG) TRR152 [Grant P03] (to M.K.), [Grant P04] (to C.G.), [Grant P15] (to V.C. and T.G.), [Grant P18] (to K.H. and M.S.), [Grant P26] (to U.S.), GRK2338 [Grant P08] (to C.G.), [Grant P10] (to V.C. and T.G.), SFB 1453 [Grant 431984000] (to M.K.), Centre for Integrative Biological Signalling Studies, EXC-2189 [Grant 390939984] (to M.K.), SFB 1328 [Grant A21] (to C.G.), [Grant GR4315/2-2] (to C.G.), [Grant GR4315/6-1] (to C.G.), and [Grant GR4315/7-1] (to C.G.).

Conflict of interest

Thomas Gudermann functions as an Associate Editor of Pharmacological Reviews. All other authors declare no conflicts of interest.

Data availability

All data used in the current manuscript are publicly available.

CRediT authorship contribution statement

Vladimir Chubanov: Conceptualization, Writing – original draft, Writing – review and editing. **Christian Grimm:** Writing – original draft, Writing – review and editing. **Kerstin Hill:** Writing – original draft, Writing – review and editing. **Michael Schaefer:** Writing – original draft, Writing – review and editing. **Michael Köttgen:** Writing – original draft, Writing – review and editing. **Ursula Storch:** Writing – original draft, Writing – review and editing. **Michael Mederos y Schnitzler:** Writing – original draft, Writing – review and editing. **Veronika Kudrina:** Writing – original draft, Writing – review and editing. **Anna Erbacher:** Writing – original draft, Writing – review and editing. **Thomas Gudermann:** Conceptualization, Writing – original draft, Writing – review and editing.

References

1. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. *Nature*. 1969;224(5216):285–287. <https://doi.org/10.1038/224285a0>
2. Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. *Neuron*. 1989;2(4):1313–1323. [https://doi.org/10.1016/0896-6273\(89\)90069-x](https://doi.org/10.1016/0896-6273(89)90069-x)
3. Wong F, Schaefer EL, Roop BC, LaMendola JN, Johnson-Seaton D, Shao D. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. *Neuron*. 1989;3(1):81–94. [https://doi.org/10.1016/0896-6273\(89\)90117-7](https://doi.org/10.1016/0896-6273(89)90117-7)
4. Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. *Nature*. 1975;258(5530):84–87. <https://doi.org/10.1038/258084a0>
5. Montell C. The TRP superfamily of cation channels. *Sci STKE*. 2005;2005(272):re3. <https://doi.org/10.1126/stke.2722005re3>
6. Venkatachalam K, Montell C. TRP channels. *Annu Rev Biochem*. 2007;76:387–417. <https://doi.org/10.1146/annurev.biochem.75.103004.142819>
7. Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels. *Mol Cell*. 2002;9(2):229–231. [https://doi.org/10.1016/s1097-2765\(02\)00448-3](https://doi.org/10.1016/s1097-2765(02)00448-3)
8. Clapham DE. Snapshot: mammalian TRP channels. *Cell*. 2007;129(1):220. <https://doi.org/10.1016/j.cell.2007.03.034>
9. Gees M, Owsianik G, Nilius B, Voets T. TRP channels. *Compr Physiol*. 2012;2(1):563–608. <https://doi.org/10.1002/cphy.c110026>
10. Clapham DE. TRP channels as cellular sensors. *Nature*. 2003;426(6966):517–524. <https://doi.org/10.1038/nature02196>
11. Ledford H, Callaway E. Medicine Nobel goes to scientists who discovered biology of senses. *Nature*. 2021;598(7880):246. <https://doi.org/10.1038/d41586-021-01283-6>
12. Yue L, Xu H. TRP channels in health and disease at a glance. *J Cell Sci*. 2021;134(13):jcs258372. <https://doi.org/10.1242/jcs.258372>
13. Diver MM, Lin King JV, Julius D, Cheng Y. Sensory TRP channels in three dimensions. *Annu Rev Biochem*. 2022;91:629–649. <https://doi.org/10.1146/annurev-biochem-032620-105738>
14. Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. *Annu Rev Neurosci*. 2006;29:135–161. <https://doi.org/10.1146/annurev.neuro.29.051605.112958>
15. Liman ER, Innan H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. *Proc Natl Acad Sci U S A*. 2003;100(6):3328–3332. <https://doi.org/10.1073/pnas.0636123100>
16. Zhang J, Webb DM. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. *Proc Natl Acad Sci U S A*. 2003;100(14):8337–8341. <https://doi.org/10.1073/pnas.1331721100>
17. Fan C, Choi W, Sun W, Du J, Lü W. Structure of the human lipid-gated cation channel TRPC3. *eLife*. 2018;7:e36852. <https://doi.org/10.7554/eLife.36852>
18. Tang Q, Guo W, Zheng L, et al. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. *Cell Res*. 2018;28(7):746–755. <https://doi.org/10.1038/s41422-018-0038-2>
19. Guo W, Tang Q, Wei M, Kang Y, Wu JX, Chen L. Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. *Neuron*. 2022;110(6):1023–1035.e5. <https://doi.org/10.1016/j.neuron.2021.12.023>
20. Vinayagam D, Mager T, Apelbaum A, et al. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. *eLife*. 2018;7:e36615. <https://doi.org/10.7554/eLife.36615>
21. Vinayagam D, Quentin D, Yu-Strzelczyk J, et al. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. *eLife*. 2020;9:e60603. <https://doi.org/10.7554/eLife.60603>
22. Duan J, Li J, Zeng B, et al. Structure of the mouse TRPC4 ion channel. *Nat Commun*. 2018;9(1):3102. <https://doi.org/10.1038/s41467-018-05247-9>
23. Duan J, Li J, Chen GL, et al. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. *Sci Adv*. 2019;5(7):eaaw7935. <https://doi.org/10.1126/sciadv.aaw7935>
24. Song K, Wei M, Guo W, et al. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. *eLife*. 2021;10:e63429. <https://doi.org/10.7554/eLife.63429>
25. Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. *Commun Biol*. 2020;3(1):704. <https://doi.org/10.1038/s42003-020-01437-8>
26. Yang Y, Wei M, Chen L. Structural identification of riluzole-binding site on human TRPC5. *Cell Discov*. 2022;8(1):67. <https://doi.org/10.1038/s41421-022-00410-5>
27. Won J, Kim J, Jeong H, et al. Molecular architecture of the Gαi-bound TRPC5 ion channel. *Nat Commun*. 2023;14(1):2550. <https://doi.org/10.1038/s41467-023-38281-3>
28. Bai Y, Yu X, Chen H, et al. Structural basis for pharmacological modulation of the TRPC6 channel. *eLife*. 2020;9:e53311. <https://doi.org/10.7554/eLife.53311>
29. Azumaya CM, Sierra-Valdez F, Cordero-Morales JF, Nakagawa T. Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6). *J Biol Chem*. 2018;293(26):10381–10391. <https://doi.org/10.1074/jbc.RA118.003183>
30. Won J, Kim J, Kim J, et al. Cryo-EM structure of the heteromeric TRPC1/TRPC4 channel. *Nat Struct Mol Biol*. 2025;32(2):326–338. <https://doi.org/10.1038/s41594-024-01408-1>
31. Huffer KE, Aleksandrova AA, Jara-Oseguera A, Forrest LR, Swartz KJ. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. *eLife*. 2020;9:e58660. <https://doi.org/10.7554/eLife.58660>
32. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney Jr JW. The mammalian TRPC cation channels. *Biochim Biophys Acta*. 2004;1742(1–3):21–36. <https://doi.org/10.1016/j.bbampcr.2004.08.015>
33. Lüssier MP, Cayouette S, Lepage PK, et al. MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. *J Biol Chem*. 2005;280(19):19393–19400. <https://doi.org/10.1074/jbc.M500391200>
34. Schindl R, Romanin C. Assembly domains in TRP channels. *Biochem Soc Trans*. 2007;35(1):84–85. <https://doi.org/10.1042/BST0350084>
35. Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. *Mol Biosyst*. 2008;4(5):372–379. <https://doi.org/10.1039/b801481g>
36. Schindl R, Frischaufl I, Kahr H, et al. The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. *Cell Calcium*. 2008;43(3):260–269. <https://doi.org/10.1016/j.ceca.2007.05.015>
37. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. *J Biol Chem*. 2000;275(23):17517–17526. <https://doi.org/10.1074/jbc.275.23.17517>
38. Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, Plant TD. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore

- mouth. *J Biol Chem.* 2003;278(6):3562–3571. <https://doi.org/10.1074/jbc.M211484200>
39. Beck A, Speicher T, Stoerger C, et al. Conserved gating elements in TRPC4 and TRPC5 channels. *J Biol Chem.* 2013;288(27):19471–19483. <https://doi.org/10.1074/jbc.M113.478305>
40. Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee SY. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. *Science.* 2019;363(6430):eaav9334. <https://doi.org/10.1126/science.aav9334>
41. Yin Y, Wu M, Zubcovic L, Borschel WF, Lander GC, Lee SY. Structure of the cold- and menthol-sensing ion channel TRPM8. *Science.* 2018;359(6372):237–241. <https://doi.org/10.1126/science.aan4325>
42. Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P₂ regulates the activation and desensitization of TRPM8 channels through the TRP domain. *Nat Neurosci.* 2005;8(5):626–634. <https://doi.org/10.1038/nn1451>
43. Mori MX, Okada R, Sakaguchi R, et al. Critical contributions of pre-S1 shoulder and distal TRP box in DAG-activated TRPC6 channel by PIP(2) regulation. *Sci Rep.* 2022;12(1):10766. <https://doi.org/10.1038/s41598-022-14766-x>
44. Clarke A, Skerjan J, Gsell MA, et al. PIP2 modulates TRPC3 activity via TRP helix and S4-S5 linker. *Nat Commun.* 2024;15(1):5220. <https://doi.org/10.1038/s41467-024-49396-6>
45. Xu SZ, Sukumar P, Zeng F, et al. TRPC channel activation by extracellular thioredoxin. *Nature.* 2008;451(7174):69–72. <https://doi.org/10.1038/nature06414>
46. Berridge M. Conformational coupling: a physiological calcium entry mechanism. *Sci STKE.* 2004;2004(243):pe33. <https://doi.org/10.1126/stke.2432004pe33>
47. Kanki H, Kinoshita M, Akaike A, Satoh M, Mori Y, Kaneko S. Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channels. *Mol Pharmacol.* 2001;60(5):989–998. <https://doi.org/10.1124/mol.60.5.989>
48. Storch U, Mederos Y Schnitzler M, Gudermann TT. A greasy business: identification of a diacylglycerol binding site in human TRPC5 channels by cryo-EM. *Cell Calcium.* 2021;97:102414. <https://doi.org/10.1016/j.cea.2021.102414>
49. Lichtenegger M, Tiapko O, Svobodova B, et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. *Nat Chem Biol.* 2018;14(4):396–404. <https://doi.org/10.1038/s41589-018-0015-6>
50. Erkan-Candag H, Clarke A, Tiapko O, Gsell MA, Stockner T, Groschner K. Diacylglycerols interact with the L2 lipidation site in TRPC3 to induce a sensitized channel state. *EMBO Rep.* 2022;23(7):e54276. <https://doi.org/10.15252/embo.202154276>
51. Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. *J Biol Chem.* 2012;287(5):3530–3540. <https://doi.org/10.1074/jbc.M111.283218>
52. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca²⁺-sensitive cation channels. *J Biol Chem.* 2000;275(36):27799–27805. <https://doi.org/10.1074/jbc.M002705200>
53. Sours-Brothers S, Ding M, Graham S, Ma R. Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca²⁺ entry in mesangial cells. *Exp Biol Med (Maywood).* 2009;234(6):673–682. <https://doi.org/10.3181/0809-RM-279>
54. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. *Neuron.* 2001;29(3):645–655. [https://doi.org/10.1016/s0896-6273\(01\)00240-9](https://doi.org/10.1016/s0896-6273(01)00240-9)
55. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. *J Biol Chem.* 2003;278(40):39014–39019. <https://doi.org/10.1074/jbc.M306705200>
56. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. *J Biol Chem.* 2005;280(22):21600–21606. <https://doi.org/10.1074/jbc.C400492200>
57. Kobori T, Smith GD, Sandford R, Edwardson JM. The transient receptor potential channels TRPP2 and TRPC1 form heterotetramer with a 2: 2 stoichiometry and an alternating subunit arrangement. *J Biol Chem.* 2009;284(51):35507–35513. <https://doi.org/10.1074/jbc.M109.060228>
58. Ma X, Qiu S, Luo J, et al. Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca²⁺ influx. *Arterioscler Thromb Vasc Biol.* 2010;30(4):851–858. <https://doi.org/10.1161/ATVBAHA.109.196584>
59. Schindl R, Fritsch R, Jardin I, et al. Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca²⁺ influx. *J Biol Chem.* 2012;287(42):35612–35620. <https://doi.org/10.1074/jbc.M112.400952>
60. Hofmann T, Schaefer M, Schultz G, Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. *Proc Natl Acad Sci U S A.* 2002;99(11):7461–7466. <https://doi.org/10.1073/pnas.102596199>
61. Phelan KD, Shwe UT, Abramowitz J, et al. Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. *Mol Pharmacol.* 2013;83(2):429–438. <https://doi.org/10.1124/mol.112.082271>
62. Kollewe A, Schwarz Y, Oleinikov K, et al. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. *Neuron.* 2022;110(24):4162–4175.e7. <https://doi.org/10.1016/j.neuron.2022.09.029>
63. Medic N, Desai A, Olivera A, et al. Knockout of the Trpc1 gene reveals that TRPC1 can promote recovery from anaphylaxis by negatively regulating mast cell TNF-alpha production. *Cell Calcium.* 2013;53(5–6):315–326. <https://doi.org/10.1016/j.ceca.2013.02.001>
64. Kim J, Kwak M, Jeon JP, et al. Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. *Pflugers Arch.* 2014;466(3):491–504. <https://doi.org/10.1007/s00424-013-1332-y>
65. Eraç Y, Sellî Ç, Tosun M. TRPC1 ion channel gene regulates store-operated calcium entry and proliferation in human aortic smooth muscle cells. *Turk J Biol.* 2016;40(6):1336–1344. <https://doi.org/10.3906/biy-1602-57>
66. Lee KP, Choi S, Hong JH, et al. Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). *J Biol Chem.* 2014;289(10):6372–6382. <https://doi.org/10.1074/jbc.M113.546556>
67. Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS. Local Ca²⁺ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²⁺ signals required for specific cell functions. *PLoS Biol.* 2011;9(3):e1001025. <https://doi.org/10.1371/journal.pbio.1001025>
68. Onog EC, Nesin V, Long CL, et al. A TRPC1 protein-dependent pathway regulates osteoclast formation and function. *J Biol Chem.* 2013;288(31):22219–22232. <https://doi.org/10.1074/jbc.M113.459826>
69. Trebak M, Vazquez G, Bird GS, Putney Jr JW. The TRPC3/6/7 subfamily of cation channels. *Cell Calcium.* 2003;33(5–6):451–461. [https://doi.org/10.1016/s0143-4160\(03\)00056-3](https://doi.org/10.1016/s0143-4160(03)00056-3)
70. Goel M, Sinkins WG, Schilling WP. Selective association of TRPC channel subunits in rat brain synaptosomes. *J Biol Chem.* 2002;277(50):48303–48310. <https://doi.org/10.1074/jbc.M207882200>
71. Poteser M, Graziani A, Rosker C, et al. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. *J Biol Chem.* 2006;281(19):13588–13595. <https://doi.org/10.1074/jbc.M512205200>
72. Liman ER, Corey DP, Dulac C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. *Proc Natl Acad Sci U S A.* 1999;96(10):5791–5796. <https://doi.org/10.1073/pnas.96.10.5791>
73. Trebak M. Canonical transient receptor potential channels in disease: targets for novel drug therapy? *Drug Discov Today.* 2006;11(19–20):924–930. <https://doi.org/10.1016/j.drudis.2006.08.002>
74. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. *Nature.* 1999;397(6716):259–263. <https://doi.org/10.1038/16711>
75. Lucas P, Ukhonov K, Leinders-Zufall T, Zufall F. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. *Neuron.* 2003;40(3):551–561. [https://doi.org/10.1016/s0896-6273\(03\)00675-5](https://doi.org/10.1016/s0896-6273(03)00675-5)
76. Okada T, Inoue R, Yamazaki K, et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. *J Biol Chem.* 1999;274(39):27359–27370. <https://doi.org/10.1074/jbc.274.39.27359>
77. Storch U, Forst AL, Pardatscher F, et al. Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. *Proc Natl Acad Sci U S A.* 2017;114(1):E37–E46. <https://doi.org/10.1073/pnas.1612263114>
78. Ningoo M, Plant LD, Greka A, Logothetis DE. PIP2 regulation of TRPC5 channel activation and desensitization. *J Biol Chem.* 2021;296:100726. <https://doi.org/10.1016/j.jbc.2021.100726>
79. Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. *J Biol Chem.* 2003;278(31):29031–29040. <https://doi.org/10.1074/jbc.M302751200>
80. Shi J, Mori E, Mori Y, et al. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. *J Physiol.* 2004;561(2):415–432. <https://doi.org/10.1113/jphysiol.2004.075051>
81. Kiselyov K, Xu X, Mozhayeva G, et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. *Nature.* 1998;396(6710):478–482. <https://doi.org/10.1038/24890>
82. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. *J Biol Chem.* 2001;276(24):21303–21310. <https://doi.org/10.1074/jbc.M102316200>
83. Zhu MX, Tang J. TRPC channel interactions with calmodulin and IP3 receptors. *Novartis Found Symp.* 2004;258:44–58. discussion 58–62, 98–102, 263–106.
84. Stamboulian S, Moutin MJ, Treves S, et al. Junctate, an inositol 1,4,5-trisphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. *Dev Biol.* 2005;286(1):326–337. <https://doi.org/10.1016/j.ydbio.2005.08.006>
85. Treves S, Franzini-Armstrong C, Moccagatta L, et al. Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. *J Cell Biol.* 2004;166(4):537–548. <https://doi.org/10.1083/jcb.200404079>
86. Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F. Agonist-activated Ca²⁺ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. *J Cell Sci.* 2010;123(23):4170–4181. <https://doi.org/10.1242/jcs.068387>
87. Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y. Junctate is a Ca²⁺-sensing structural component of Orai1 and stromal interaction molecule 1

- (STIM1). *Proc Natl Acad Sci U S A.* 2012;109(22):8682–8687. <https://doi.org/10.1073/pnas.1200667109>
88. Putney Jr JW. A model for receptor-regulated calcium entry. *Cell Calcium.* 1986;7(1):1–12. [https://doi.org/10.1016/0143-4160\(86\)90026-6](https://doi.org/10.1016/0143-4160(86)90026-6)
89. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. *Nature.* 1992;355(6358):353–356. <https://doi.org/10.1038/355353a0>
90. Jardin I, Salido GM, Rosado JA. Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. *Channels.* 2008;2(6):401–403. <https://doi.org/10.4161/chan.2.6.7055>
91. Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S. Native store-operated Ca²⁺ influx requires the channel function of Orai1 and TRPC1. *J Biol Chem.* 2009;284(15):9733–9741. <https://doi.org/10.1074/jbc.M808097200>
92. Gueguinou M, Harnois T, Crottes D, et al. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline. *Oncotarget.* 2016;7(24):36168–36184. <https://doi.org/10.18632/oncotarget.8786>
93. Ambudkar IS, de Souza LB, Ong HL. TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. *Cell Calcium.* 2017;63:33–39. <https://doi.org/10.1016/j.ceca.2016.12.009>
94. Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store depletion induces G_q-mediated PLC β 1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. *FASEB J.* 2016;30(2):702–715. <https://doi.org/10.1096/fj.15-282071>
95. Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca²⁺ channel function. *J Cell Biol.* 2005;169(3):435–445. <https://doi.org/10.1083/jcb.200502019>
96. Liou J, Kim ML, Heo WD, et al. STIM is a Ca²⁺ sensor essential for Ca²⁺-store-depletion-triggered Ca²⁺ influx. *Curr Biol.* 2005;15(13):1235–1241. <https://doi.org/10.1016/j.cub.2005.05.055>
97. Luik RM, Wu MM, Buchanan J, Lewis RS. The elementary unit of store-operated Ca²⁺ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. *J Cell Biol.* 2006;174(6):815–825. <https://doi.org/10.1083/jcb.200604015>
98. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. *Nature.* 2006;443(7108):226–229. <https://doi.org/10.1038/nature05108>
99. Vig M, Beck A, Billingsley JM, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. *Curr Biol.* 2006;16(20):2073–2079. <https://doi.org/10.1016/j.cub.2006.08.085>
100. Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Smani T, Rosado JA. TRPC channels in the SOCE scenario. *Cells.* 2020;9(1):126. <https://doi.org/10.3390/cells9010126>
101. Bird GS, Putney Jr JW. Pharmacology of store-operated calcium entry channels. In: Kozak JA, Putney JW Jr, eds. *Calcium Entry Channels in Non-excitable Cells.* 2018:311–324.
102. Susperreguy S, Yamashita M, Choi C-I, et al. Genetic evidence against involvement of TRPC proteins in SOCE, ROCE, and CRAC channel function. *Proc Natl Acad Sci U S A.* 2024;121(49):e2411389121. <https://doi.org/10.1073/pnas.2411389121>
103. Rohacs T. Phosphoinositide regulation of non-canonical transient receptor potential channels. *Cell Calcium.* 2009;45(6):554–565. <https://doi.org/10.1016/j.ceca.2009.03.011>
104. Logothetis DE, Petrou VI, Zhang M, et al. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. *Annu Rev Physiol.* 2015;77:81–104. <https://doi.org/10.1146/annurev-physiol-021113-170358>
105. Lemonnier L, Trebak M, Putney Jr JW. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. *Cell Calcium.* 2008;43(5):506–514. <https://doi.org/10.1016/j.ceca.2007.09.001>
106. Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney Jr JW. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. *Pflügers Arch.* 2009;457(4):757–769. <https://doi.org/10.1007/s00424-008-0550-1>
107. Albert AP, Saleh SN, Large WA. Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5-bisphosphate in mesenteric artery myocytes. *J Physiol.* 2008;586(13):3087–3095. <https://doi.org/10.1113/jphysiol.2008.153676>
108. Ju M, Shi J, Saleh SN, Albert AP, Large WA. Ins(1,4,5)P₃ interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. *J Physiol.* 2010;588(9):1419–1433. <https://doi.org/10.1113/jphysiol.2009.185256>
109. Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP. TRPC1 proteins confer PKC and phosphoinositide activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and TRPC1^{–/–} mice. *FASEB J.* 2012;26(1):409–419. <https://doi.org/10.1096/fj.11-185611>
110. Otsuguro K, Tang J, Tang Y, et al. Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. *J Biol Chem.* 2008;283(15):10026–10036. <https://doi.org/10.1074/jbc.M707306200>
111. Kim BJ, Kim MT, Jeon JH, Kim SJ, So I. Involvement of phosphatidylinositol 4,5-bisphosphate in the desensitization of canonical transient receptor potential 5. *Biol Pharm Bull.* 2008;31(9):1733–1738. <https://doi.org/10.1248/bpb.31.1733>
112. Liu H, Lin WY, Leibow SR, Morateck AJ, Ahuja M, Muallem S. TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1. *J Cell Biol.* 2022;221(5):e202107120. <https://doi.org/10.1083/jcb.202107120>
113. Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC. Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. *Curr Biol.* 2010;20(3):189–197. <https://doi.org/10.1016/j.cub.2009.12.019>
114. Thakur DP, Tian JB, Jeon J, et al. Critical roles of G_{i/o} proteins and phospholipase C- δ 1 in the activation of receptor-operated TRPC4 channels. *Proc Natl Acad Sci U S A.* 2016;113(4):1092–1097. <https://doi.org/10.1073/pnas.1522294113>
115. Semtner M, Schaefer M, Pinkenburg O, Plant TD. Potentiation of TRPC5 by protons. *J Biol Chem.* 2007;282(46):33868–33878. <https://doi.org/10.1074/jbc.M702577200>
116. Obukhov AG, Nowycky MC. TRPC5 channels undergo changes in gating properties during the activation-deactivation cycle. *J Cell Physiol.* 2008;216(1):162–171. <https://doi.org/10.1002/jcp.21388>
117. Jeon JP, Lee KP, Park EJ, et al. The specific activation of TRPC4 by G_i protein subtype. *Biochem Biophys Res Commun.* 2008;377(2):538–543. <https://doi.org/10.1016/j.bbrc.2008.10.012>
118. Jeon JP, Hong C, Park EJ, et al. Selective G_i subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. *J Biol Chem.* 2012;287(21):17029–17039. <https://doi.org/10.1074/jbc.M111.326553>
119. Whorton MR, MacKinnon R. X-ray structure of the mammalian GIRK2- β G-protein complex. *Nature.* 2013;498(7453):190–197. <https://doi.org/10.1038/nature12241>
120. Hong C, Kim J, Jeon JP, et al. G_s cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca²⁺ release and ion channel trafficking. *Biochem Biophys Res Commun.* 2012;421(1):105–111. <https://doi.org/10.1016/j.bbrc.2012.03.123>
121. Gross SA, Guzman GA, Wissenbach U, et al. TRPC5 is a Ca²⁺-activated channel functionally coupled to Ca²⁺-selective ion channels. *J Biol Chem.* 2009;284(49):34423–34432. <https://doi.org/10.1074/jbc.M109.018192>
122. Blair NT, Kaczmarek JS, Clapham DE. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. *J Gen Physiol.* 2009;133(5):525–546. <https://doi.org/10.1085/jgp.200810153>
123. Shi J, Geshi N, Takahashi S, et al. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca²⁺/calmodulin-dependent kinase II. *J Physiol.* 2013;591(11):2851–2866. <https://doi.org/10.1113/jphysiol.2013.251249>
124. Bezzemel VJ, Ramsey IS, Koticha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. *Nat Cell Biol.* 2004;6(8):709–720. <https://doi.org/10.1038/ncb1150>
125. Thyagarajan B, Poteser M, Romanin C, Kahr H, Zhu MX, Groschner K. Expression of Trp3 determines sensitivity of capacitative Ca²⁺ entry to nitric oxide and mitochondrial Ca²⁺ handling: evidence for a role of Trp3 as a subunit of capacitative Ca²⁺ entry channels. *J Biol Chem.* 2001;276(51):48149–48158. <https://doi.org/10.1074/jbc.M103977200>
126. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store-operated channel. *Proc Natl Acad Sci U S A.* 1995;92(21):9652–9656. <https://doi.org/10.1073/pnas.92.21.9652>
127. Zhu X, Chu PB, Peyton M, Birnbaumer L. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. *FEBS Lett.* 1995;373(3):193–198. [https://doi.org/10.1016/0014-5793\(95\)01038-g](https://doi.org/10.1016/0014-5793(95)01038-g)
128. Tsikas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP. Specific association of the gene product of PKD2 with the TRPC1 channel. *Proc Natl Acad Sci U S A.* 1999;96(7):3934–3939. <https://doi.org/10.1073/pnas.96.7.3934>
129. Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. *Nature.* 2005;434(7035):898–904. <https://doi.org/10.1038/nature03478>
130. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. *Nature.* 2003;426(6964):285–291. <https://doi.org/10.1038/nature02162>
131. Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M. TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. *J Biol Chem.* 2005;280(3):2132–2140. <https://doi.org/10.1074/jbc.M407384200>
132. Wu X, Zagranichnaya TK, Gurd A, Eves EM, Villereal ML. A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. *J Biol Chem.* 2004;279(42):43392–43402. <https://doi.org/10.1074/jbc.M408959200>
133. Li M, Chen C, Zhou Z, Xu S, Yu Z. A TRPC1-mediated increase in store-operated Ca²⁺ entry is required for the proliferation of adult hippocampal neural progenitor cells. *Cell Calcium.* 2012;51(6):486–496. <https://doi.org/10.1016/j.ceca.2012.04.014>
134. Chen HC, Wang CH, Shih CP, et al. TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells. *Int J Pediatr Otorhinolaryngol.* 2015;79(12):2290–2294. <https://doi.org/10.1016/j.ijporl.2015.10.027>
135. Skerjanz J, Bauernhofer L, Lenk K, et al. TRPC1: the housekeeper of the hippocampus. *Cell Calcium.* 2024;123:102933. <https://doi.org/10.1016/j.ceca.2024.102933>
136. Liu X, Cheng KT, Bandyopadhyay BC, et al. Attenuation of store-operated Ca²⁺ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. *Proc Natl Acad Sci U S A.* 2007;104(44):17542–17547. <https://doi.org/10.1073/pnas.0701254104>

137. Sun Y, Birnbaumer L, Singh BB. TRPC1 regulates calcium-activated chloride channels in salivary gland cells. *J Cell Physiol*. 2015;230(11):2848–2856. <https://doi.org/10.1002/jcp.25017>
138. Kumar B, Dreja K, Shah S, et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. *Circ Res*. 2006;98(4):557–563. <https://doi.org/10.1161/01.RES.0000204724.29685.db>
139. Ohba T, Watanabe H, Murakami M, et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. *J Mol Cell Cardiol*. 2007;42(3):498–507. <https://doi.org/10.1016/j.jmcc.2006.10.020>
140. Tang N, Tian W, Ma G-Y, et al. TRPC channels blockade abolishes endotoxic cardiac dysfunction by hampering intracellular inflammation and Ca^{2+} leakage. *Nat Commun*. 2022;13(1):7455. <https://doi.org/10.1038/s41467-022-35242-0>
141. Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX. Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca^{2+} entry. *Am J Physiol Lung Cell Mol Physiol*. 2004;287(5):L962–L969. <https://doi.org/10.1152/ajplung.00452.2003>
142. Lin MJ, Leung GP, Zhang WM, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca^{2+} channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. *Circ Res*. 2004;95(5):496–505. <https://doi.org/10.1161/01.RES.0000138952.16382.a>
143. Bergdahl A, Gomez MF, Wihlborg AK, et al. Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca^{2+} entry. *Am J Physiol Cell Physiol*. 2005;288(4):C872–C880. <https://doi.org/10.1152/ajpcell.00334.2004>
144. Wolfle SE, Navarro-Gonzalez MF, Grayson TH, Stricker C, Hill CE. Involvement of nonselective cation channels in the depolarisation initiating vasoconstriction. *Clin Exp Pharmacol Physiol*. 2010;37(5–6):536–543. <https://doi.org/10.1111/j.1440-1681.2009.05350.x>
145. Greenberg HZE, Carlton-Carew SRE, Khan DM, et al. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. *Vasc Pharmacol*. 2017;96–98:53–62. <https://doi.org/10.1016/j.vph.2017.08.005>
146. Kochukov MY, Balasubramanian A, Noel RC, Marrelli SP. Role of TRPC1 and TRPC3 channels in contraction and relaxation of mouse thoracic aorta. *J Vasc Res*. 2013;50(1):11–20. <https://doi.org/10.1159/000342461>
147. Qu YY, Wang LM, Zhong H, et al. TRPC1 stimulates calcium-sensing receptor-induced store-operated Ca^{2+} entry and nitric oxide production in endothelial cells. *Mol Med Rep*. 2017;16(4):4613–4619. <https://doi.org/10.3892/mmr.2017.7164>
148. Zergane M, Kuebler WM, Michalick L. Heteromeric TRP channels in lung inflammation. *Cells*. 2021;10(7):1654. <https://doi.org/10.3390/cells10071654>
149. Malczyk M, Veith C, Fuchs B, et al. Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension. *Am J Respir Crit Care Med*. 2013;188(12):1451–1459. <https://doi.org/10.1164/rccm.201307-1252OC>
150. Malkmus K, Brosien M, Knoepf F, et al. Deletion of classical transient receptor potential 1, 3 and 6 alters pulmonary vasoconstriction in chronic hypoxia-induced pulmonary hypertension in mice. *Front Physiol*. 2022;13:1080875. <https://doi.org/10.3389/fphys.2022.1080875>
151. Nascimento Da Conceicao V, Sun Y, Ramachandran K, et al. Resolving macrophage polarization through distinct $\text{Ca}^{(2+)}$ entry channel that maintains intracellular signaling and mitochondrial bioenergetics. *iScience*. 2021;24(11):103339. <https://doi.org/10.1016/j.isci.2021.103339>
152. Elzamzamy OM, Penner R, Hazlehurst LA. The role of TRPC1 in modulating cancer progression. *Cells*. 2020;9(2):388. <https://doi.org/10.3390/cells9020388>
153. Onopriuk M, Eby B, Nesin V, et al. Control of PTH secretion by the TRPC1 ion channel. *JCI Insight*. 2020;5(8):e132496. <https://doi.org/10.1172/jci.insight.132496>
154. Liman ER, Dulac C. TRPC2 and the molecular biology of pheromone detection in mammals. In: Liedtke WB, Heller S, eds. *TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades*. 2007.
155. Hecker N, Lächele U, Stuckas H, Giere P, Hiller M. Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorant-degrading genes. *Mol Ecol*. 2019;28(16):3656–3668. <https://doi.org/10.1111/mec.15180>
156. Hofmann T, Schaefer M, Schultz G, Gudermann T. Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. *Biochem J*. 2000;351(1):115–122. <https://doi.org/10.1042/0264-6021:3510115>
157. Pfau DR, Baribeau S, Brown F, Khetarpal N, Marc Breedlove S, Jordan CL. Loss of TRPC2 function in mice alters sex differences in brain regions regulating social behaviors. *J Comp Neurol*. 2023;531(15):1550–1561. <https://doi.org/10.1002/cne.25528>
158. Leybold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R. Altered sexual and social behaviors in trp2 mutant mice. *Proc Natl Acad Sci U S A*. 2002;99(9):6376–6381. <https://doi.org/10.1073/pnas.082127599>
159. Stowers L, Holy TE, Meister M, Dulac C, Koentges G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. *Science*. 2002;295(5559):1493–1500. <https://doi.org/10.1126/science.1069259>
160. Beny-Shefer Y, Zilkha N, Lavi-Avnon Y, et al. Nucleus accumbens dopamine signaling regulates sexual preference for females in male mice. *Cell Rep*. 2017;21(11):3079–3088. <https://doi.org/10.1016/j.celrep.2017.11.062>
161. Kimchi T, Xu J, Dulac C. A functional circuit underlying male sexual behaviour in the female mouse brain. *Nature*. 2007;448(7157):1009–1014. <https://doi.org/10.1038/nature06089>
162. Tornquist K, Sukumaran P, Kemppainen K, Lof C, Viitanen T. Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology. *Pflugers Arch*. 2014;466(11):2025–2034. <https://doi.org/10.1007/s00424-014-1509-z>
163. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Flormann HM. Trp2 regulates entry of Ca^{2+} into mouse sperm triggered by egg ZP3. *Nat Cell Biol*. 2001;3(5):499–502. <https://doi.org/10.1038/35074570>
164. Hirscher-Laszkiewicz I, Zhang W, Keefer K, et al. Trpc2 depletion protects red blood cells from oxidative stress-induced hemolysis. *Exp Hematol*. 2012;40(1):71–83. <https://doi.org/10.1016/j.exphem.2011.09.006>
165. Vannier B, Peyton M, Boulay G, et al. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca^{2+} entry channel. *Proc Natl Acad Sci U S A*. 1999;96(5):2060–2064. <https://doi.org/10.1073/pnas.96.5.2060>
166. Zhu X, Jiang M, Peyton M, et al. TRP, a novel mammalian gene family essential for agonist-activated capacitative Ca^{2+} entry. *Cell*. 1996;85(5):661–671. [https://doi.org/10.1016/s0092-8674\(00\)81233-7](https://doi.org/10.1016/s0092-8674(00)81233-7)
167. Hartmann J, Dragicevic E, Adelsberger H, et al. TRPC3 channels are required for synaptic transmission and motor coordination. *Neuron*. 2008;59(3):392–398. <https://doi.org/10.1016/j.neuron.2008.06.009>
168. Riccio A, Medhurst AD, Mattei C, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. *Brain Res Mol Brain Res*. 2002;109(1–2):95–104. [https://doi.org/10.1016/s1061-328x\(02\)00527-2](https://doi.org/10.1016/s1061-328x(02)00527-2)
169. Wu B, Blot FGC, Wong AB, et al. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. *eLife*. 2019;8:e45590. <https://doi.org/10.7554/eLife.45590>
170. Goel M, Zuo CD, Sinkins WG, Schilling WP. TRPC3 channels colocalize with $\text{Na}^{+}/\text{Ca}^{2+}$ exchanger and Na^{+} pump in axial component of transverse-axial tubular system of rat ventricle. *Am J Physiol Heart Circ Physiol*. 2007;292(2):H874–H883. <https://doi.org/10.1152/ajpheart.00785.2006>
171. Yu Y, Fantozzi I, Remillard CV, et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. *Proc Natl Acad Sci U S A*. 2004;101(38):13861–13866. <https://doi.org/10.1073/pnas.0405908101>
172. Masson B, Saint-Martin Willer A, Dutheil M, et al. Contribution of transient receptor potential canonical channels in human and experimental pulmonary arterial hypertension. *Am J Physiol Lung Cell Mol Physiol*. 2023;325(2):L246–L261. <https://doi.org/10.1152/ajplung.00011.2023>
173. Hanson SM, Sansom MS, Becker EB. Modeling suggests TRPC3 hydrogen bonding and not phosphorylation contributes to the ataxia phenotype of the moonwalker mouse. *Biochemistry*. 2015;54(26):4033–4041. <https://doi.org/10.1021/acs.biophys.5b00235>
174. Becker EBE, Oliver PL, Glitsch MD, et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. *Proc Natl Acad Sci U S A*. 2009;106(16):6706–6711. <https://doi.org/10.1073/pnas.0810599106>
175. Dino MR, Willard FH, Mugnaini E. Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. *J Neurocytol*. 1999;28(2):99–123. <https://doi.org/10.1023/a:1007072105919>
176. Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. *Neuroscience*. 2000;98(4):625–636. [https://doi.org/10.1016/s0306-4522\(00\)00123-8](https://doi.org/10.1016/s0306-4522(00)00123-8)
177. Sekerkova G, Kim JA, Nigro MJ, et al. Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction. *J Neurosci*. 2013;33(50):19689–19694. <https://doi.org/10.1523/JNEUROSCI.2294-13.2013>
178. Goel M, Sinkins WG, Zuo CD, Hopfer U, Schilling WP. Vasopressin-induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct. *Am J Physiol Renal Physiol*. 2007;293(5):F1476–F1488. <https://doi.org/10.1152/ajprenal.00186.2007>
179. Groschner K, Hingel S, Lintschinger B, et al. Trp proteins form store-operated cation channels in human vascular endothelial cells. *FEBS Lett*. 1998;437(1–2):101–106. [https://doi.org/10.1016/s0014-5793\(98\)01212-5](https://doi.org/10.1016/s0014-5793(98)01212-5)
180. Kamouchi M, Philipp S, Flockerzi V, et al. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. *J Physiol*. 1999;518(2):345–358. <https://doi.org/10.1111/j.1469-7793.1999.03459.x>
181. Thilo F, Lodenkemper C, Berg E, Zidek W, Tepel M. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. *Mod Pathol*. 2009;22(3):426–430. <https://doi.org/10.1038/modpathol.2008.200>
182. Smedlund K, Vazquez G. Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. *Arterioscler Thromb Vasc Biol*. 2008;28(11):2049–2055. <https://doi.org/10.1161/ATVBAHA.108.175356>
183. Smedlund KB, Birnbaumer L, Vazquez G. Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. *Proc Natl Acad Sci U S A*. 2015;112(17):E2201–E2206. <https://doi.org/10.1073/pnas.1505410112>
184. Xi Q, Adebiyi A, Zhao G, et al. IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic

- reticulum Ca^{2+} release. *Circ Res*. 2008;102(9):1118–1126. <https://doi.org/10.1161/CIRCRESAHA.108.173948>
185. Park HW, Kim JV, Choi SK, et al. Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. *Proc Natl Acad Sci U S A*. 2011;108(26):10750–10755. <https://doi.org/10.1073/pnas.1104271108>
186. Nakayama H, Wilkin BJ, Bodl I, Molkentin JD. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. *FASEB J*. 2006;20(10):1660–1670. <https://doi.org/10.1096/fj.05-5560com>
187. Wu X, Eder P, Chang B, Molkentin JD. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. *Proc Natl Acad Sci U S A*. 2010;107(15):7000–7005. <https://doi.org/10.1073/pnas.1001825107>
188. Han JW, Lee YH, Yoon SI, et al. Resistance to pathologic cardiac hypertrophy and reduced expression of $\text{CaV}1.2$ in Trpc3 -depleted mice. *Mol Cell Biochem*. 2016;421(1–2):55–65. <https://doi.org/10.1007/s11010-016-2784-0>
189. Onohara N, Nishida M, Inoue R, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. *EMBO J*. 2006;25(22):5305–5316. <https://doi.org/10.1038/sj.embj.7601417>
190. Poteser M, Schleifer H, Lichtenegger M, et al. PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. *Proc Natl Acad Sci USA*. 2011;108(26):10556–10561. <https://doi.org/10.1073/pnas.1106183108>
191. Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in cardiac fibrosis. *Front Cardiovasc Med*. 2017;4:56. <https://doi.org/10.3389/fcm.2017.00056>
192. Rached G, Saliba Y, Maddah D, et al. TRPC3 regulates islet beta-cell insulin secretion. *Adv Sci (Weinh)*. 2023;10(6):e2204846. <https://doi.org/10.1002/advs.202204846>
193. Li S, Jiang K, Li J, et al. Estrogen enhances the proliferation and migration of ovarian cancer cells by activating transient receptor potential channel C3. *J Ovarian Res*. 2020;13(1):20. <https://doi.org/10.1186/s13048-020-00621-y>
194. Hirata N, Yamada S, Yanagida S, et al. Lysophosphatidic acid promotes the expansion of cancer stem cells via TRPC3 channels in triple-negative breast cancer. *Int J Mol Sci*. 2022;23(4):1967. <https://doi.org/10.3390/ijms23041967>
195. Farfariello V, Gordienko DV, Mesilmany L, et al. TRPC3 shapes the ER-mitochondria Ca^{2+} transfer characterizing tumour-promoting senescence. *Nat Commun*. 2022;13(1):956. <https://doi.org/10.1038/s41467-022-28597-x>
196. Feng S, Li H, Tai Y, et al. Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. *Proc Natl Acad Sci U S A*. 2013;110(27):11011–11016. <https://doi.org/10.1073/pnas.1309531110>
197. Casas J, Meana C, López-López JR, Balsinde J, Balboa MA. Lipin-1-derived diacylglycerol activates intracellular TRPC3 which is critical for inflammatory signaling. *Cell Mol Life Sci*. 2021;78(24):8243–8260. <https://doi.org/10.1007/s00018-021-03999-0>
198. Wang B, Xiong S, Lin S, et al. Enhanced mitochondrial transient receptor potential channel, canonical type 3-mediated calcium handling in the vasculature from hypertensive rats. *J Am Heart Assoc*. 2017;6(7):e005812. <https://doi.org/10.1161/JAHA.117.005812>
199. Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. *PLoS One*. 2007;2(6):e573. <https://doi.org/10.1371/journal.pone.0000573>
200. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R. Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. *Am J Physiol Renal Physiol*. 2006;290(6):F1507–F1515. <https://doi.org/10.1152/ajprenal.00268.2005>
201. Zhou Y, Castonguay P, Sidhom EH, et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. *Science*. 2017;358(6368):1332–1336. <https://doi.org/10.1126/science.aal4178>
202. Gonzalez-Cobos JC, Trebak M. TRPC channels in smooth muscle cells. *Front Biosci (Landmark Ed)*. 2010;15(3):1023–1039. <https://doi.org/10.2741/3660>
203. Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial transient receptor potential channels and vascular remodeling: extracellular Ca^{2+} entry for angiogenesis, arteriogenesis and vasculogenesis. *Front Physiol*. 2019;10:1618. <https://doi.org/10.3389/fphys.2019.01618>
204. Klipec WD, Burrow KR, O'Neill C, et al. Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards. *Behav Brain Res*. 2016;306:117–127. <https://doi.org/10.1016/j.bbr.2016.03.027>
205. Sun ZC, Ma SB, Chu WG, Jia D, Luo C. Canonical transient receptor potential (TRPC) channels in nociception and pathological pain. *Neural Plast*. 2020;2020:3764193. <https://doi.org/10.1155/2020/3764193>
206. Cohen CF, Prudente AS, Berta T, Lee SH. Transient receptor potential Channel 4 small-molecule inhibition alleviates migraine-like behavior in mice. *Front Mol Neurosci*. 2021;14:765181. <https://doi.org/10.3389/fnmol.2021.765181>
207. Lee SH, Tonello R, Choi Y, Jung SJ, Berta T. Sensory neuron-expressed TRPC4 is target for the relief of psoriasisiform itch and skin inflammation in mice. *J Invest Dermatol*. 2020;140(11):2221–2229.e6. <https://doi.org/10.1016/j.jid.2020.03.959>
208. Jeon J, Bu F, Sun G, et al. Contribution of TRPC channels in neuronal excitotoxicity associated with neurodegenerative disease and ischemic stroke. *Front Cell Dev Biol*. 2020;8:618663. <https://doi.org/10.3389/fcell.2020.618663>
209. Chu W-G, Wang F-D, Sun Z-C, et al. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. *FASEB J*. 2020;34(6):8526–8543. <https://doi.org/10.1096/fj.202000154RR>
210. Okada T, Shimizu S, Wakamori M, et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca^{2+} channel from mouse brain. *J Biol Chem*. 1998;273(17):10279–10287. <https://doi.org/10.1074/jbc.273.17.10279>
211. Philipp S, Hambrecht J, Braslavski L, et al. A novel capacitative calcium entry channel expressed in excitable cells. *EMBO J*. 1998;17(15):4274–4282. <https://doi.org/10.1093/embj/17.15.4274>
212. Bröker-Lai J, Kollewe A, Schindeldecker B, et al. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. *EMBO J*. 2017;36(18):2770–2789. <https://doi.org/10.15252/embj.201696369>
213. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. *Nat Neurosci*. 2003;6(8):837–845. <https://doi.org/10.1038/nn1092>
214. Riccio A, Li Y, Moon J, et al. Essential role for TRPC5 in amygdala function and fear-related behavior. *Cell*. 2009;137(4):761–772. <https://doi.org/10.1016/j.cell.2009.03.039>
215. Riccio A, Li Y, Tsvetkov E, et al. Decreased anxiety-like behavior and $\text{G}\alpha_q/11$ -dependent responses in the amygdala of mice lacking TRPC4 channels. *J Neurosci*. 2014;34(10):3653–3667. <https://doi.org/10.1523/JNEUROSCI.2274-13.2014>
216. Wei H, Sagalajev B, Yüzer MA, Koivisto A, Pertovaara A. Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels. *Neurosci Lett*. 2015;608:12–17. <https://doi.org/10.1016/j.neulet.2015.09.033>
217. Adhya P, Vaidya B, Sharma SS. BTD: a TRPC5 activator ameliorates mechanical allodynia in diabetic peripheral neuropathic rats by modulating TRPC5-CAMKII-ERK pathway. *Neurochem Int*. 2023;170:105609. <https://doi.org/10.1016/j.neuint.2023.105609>
218. Khare P, Chand J, Ptakova A, et al. The TRPC5 receptor as pharmacological target for pain and metabolic disease. *Pharmacol Ther*. 2024;263:108727. <https://doi.org/10.1016/j.pharmthera.2024.108727>
219. Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: a review of current evidence from bench to bedside. *Curr Opin Pharmacol*. 2024;75:102447. <https://doi.org/10.1016/j.coph.2024.102447>
220. Tai C, Hines DJ, Choi HB, MacVicar BA. Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. *Hippocampus*. 2011;21(9):958–967. <https://doi.org/10.1002/hipo.20807>
221. Dichter MA, Ayala GF. Cellular mechanisms of epilepsy: a status report. *Science*. 1987;237(4811):157–164. <https://doi.org/10.1126/science.3037700>
222. Fraser DD, MacVicar BA. Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. *J Neurosci*. 1996;16(13):4113–4128. <https://doi.org/10.1523/JNEUROSCI.16-13-04113.1996>
223. Bröker-Lai J, Rego Terol J, Richter C, et al. TRPC5 controls the adrenaline-mediated counter regulation of hypoglycemia. *EMBO J*. 2024;43(23):5813–5836. <https://doi.org/10.1038/s44318-024-00231-0>
224. Carbone E. TRPC5: a new entry to the chromaffin cell's palette of ion channels that control adrenal response to hypoglycemia. *EMBO J*. 2024;43(23):5784–5787. <https://doi.org/10.1038/s44318-024-00286-z>
225. Zhu Y, Gao M, Zhou T, et al. The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. *J Biol Chem*. 2019;294(1):28–37. <https://doi.org/10.1074/jbc.RA118.005392>
226. Ptakova A, Vlachova V. Thermosensing ability of TRPC5: current knowledge and unsettled questions. *J Physiol Sci*. 2024;74(1):50. <https://doi.org/10.1186/s12576-024-00942-3>
227. Zimmermann K, Lennerz JK, Hein A, et al. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. *Proc Natl Acad Sci U S A*. 2011;108(44):18114–18119. <https://doi.org/10.1073/pnas.1115387108>
228. Ptakova A, Mitro M, Zimova L, Vlachova V. Cellular context determines primary characteristics of human TRPC5 as a cold-activated channel. *J Cell Physiol*. 2022;237(9):3614–3626. <https://doi.org/10.1002/jcp.30821>
229. Bernal L, Sotelo-Hitschfeld P, König C, et al. Odontoblast TRPC5 channels signal cold pain in teeth. *Sci Adv*. 2021;7(13):eabf5567. <https://doi.org/10.1126/sciadv.abf5567>
230. Tian D, Jacobo SMP, Biling D, et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. *Sci Signal*. 2010;3(145):ra77. <https://doi.org/10.1126/scisignal.2001200>
231. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. *Trends Cell Biol*. 2007;17(9):428–437. <https://doi.org/10.1016/j.tcb.2007.06.006>
232. Takeda T, McQuistan T, Orlando RA, Farquhar MG. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. *J Clin Invest*. 2001;108(2):289–301. <https://doi.org/10.1172/JCI12539>
233. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P. Synaptotagmin orchestrates actin organization and cell motility via regulation of RhoA signalling. *Nat Cell Biol*. 2006;8(5):485–491. <https://doi.org/10.1038/ncb1400>
234. Ma X, Cai Y, He D, et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. *Proc Natl*

- Acad Sci U S A. 2012;109(40):16282–16287. <https://doi.org/10.1073/pnas.1202989109>
235. Ma X, Chen Z, Hua D, et al. Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. *Proc Natl Acad Sci U S A.* 2014;111(17):6389–6394. <https://doi.org/10.1073/pnas.1400272111>
236. Wang T, Chen Z, Zhu Y, et al. Inhibition of transient receptor potential channel 5 reverses 5-fluorouracil resistance in human colorectal cancer cells. *J Biol Chem.* 2015;290(1):448–456. <https://doi.org/10.1074/jbc.M114.590364>
237. Lau OC, Shen B, Wong CO, et al. TRP5 channels participate in pressure-sensing in aortic baroreceptors. *Nat Commun.* 2016;7:11947. <https://doi.org/10.1038/ncomms11947>
238. Liang C, Zhang Y, Zhuo D, et al. Endothelial cell transient receptor potential channel C5 (TRP5) is essential for endothelium-dependent contraction in mouse carotid arteries. *Biochem Pharmacol.* 2019;159:11–24. <https://doi.org/10.1016/j.bcp.2018.11.002>
239. Chu Y, Wang S, Zhu Y, Yu F, Zhang K, Ma X. TRP5 mediates endothelium-dependent contraction in the carotid artery of diet-induced obese mice. *Hypertens Res.* 2022;45(12):1945–1953. <https://doi.org/10.1038/s41440-022-01017-9>
240. Nilius B, Owsianik G. The transient receptor potential family of ion channels. *Genome Biol.* 2011;12(3):218. <https://doi.org/10.1186/gb-2011-12-3-218>
241. Bardell TK, Barker EL. Activation of TRP6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. *Neurochem Int.* 2010;57(1):76–83. <https://doi.org/10.1016/j.neuint.2010.05.002>
242. Tai Y, Feng S, Ge R, et al. TRP6 channels promote dendritic growth via the CaMKIV-CREB pathway. *J Cell Sci.* 2008;121(14):2301–2307. <https://doi.org/10.1242/jcs.026906>
243. Heiser JH, Schuwald AM, Sillani G, Ye L, Müller WE, Leuner K. TRP6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. *J Neurochem.* 2013;127(3):303–313. <https://doi.org/10.1111/jnc.12376>
244. Calupca MA, Locknar SA, Parsons RL. TRP6 immunoreactivity is colocalized with neuronal nitric oxide synthase in extrinsic fibers innervating guinea pig intrinsic cardiac ganglia. *J Comp Neurol.* 2002;450(3):283–291. <https://doi.org/10.1002/cne.10322>
245. Elsaesser R, Montani G, Tirindelli R, Paysan J. Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. *Eur J Neurosci.* 2005;21(10):2692–2700. <https://doi.org/10.1111/j.1460-9568.2005.04108.x>
246. Warren EJ, Allen CN, Brown RL, Robinson DW. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. *Eur J Neurosci.* 2006;23(9):2477–2487. <https://doi.org/10.1111/j.1460-9568.2006.04777.x>
247. Sun Y, Sukumaran P, Bandyopadhyay BC, Singh BB. Physiological function and characterization of TRP6s in neurons. *Cells.* 2014;3(2):455–475. <https://doi.org/10.3390/cells3020455>
248. Hill AJ, Hinton JM, Cheng H, et al. A TRP6-like non-selective cation current activated by alpha 1-adrenoceptors in rat mesenteric artery smooth muscle cells. *Cell Calcium.* 2006;40(1):29–40. <https://doi.org/10.1016/j.ceca.2006.03.007>
249. Wang Q, Wang D, Yan G, Sun L, Tang C. TRP6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. *Mol Med Rep.* 2016;13(2):1577–1585. <https://doi.org/10.3892/mmr.2015.4750>
250. Yu Y, Sweeney M, Zhang S, et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRP6 expression. *Am J Physiol Cell Physiol.* 2003;284(2):C316–C330. <https://doi.org/10.1152/ajpcell.00125.2002>
251. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRP6 channels. *Proc Natl Acad Sci U S A.* 2006;103(44):16586–16591. <https://doi.org/10.1073/pnas.0606894103>
252. Mederos y Schnitzler M, Storch U, Meibers S, et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. *EMBO J.* 2008;27(23):3092–3103. <https://doi.org/10.1038/embj.2008.233>
253. Cox CD, Poole K, Martinac B. Re-evaluating TRP channel mechanosensitivity. *Trends Biochem Sci.* 2024;49(8):693–702. <https://doi.org/10.1016/j.tibs.2024.05.004>
254. Matsushita Y, Yoshida K, Yoshiya M, et al. TRP6 is a mechanosensitive channel essential for ultrasound neuromodulation in the mammalian brain. *Proc Natl Acad Sci U S A.* 2024;121(50):e2404877121. <https://doi.org/10.1073/pnas.2404877121>
255. Ge R, Tai Y, Sun Y, et al. Critical role of TRP6 channels in VEGF-mediated angiogenesis. *Cancer Lett.* 2009;283(1):43–51. <https://doi.org/10.1016/j.canlet.2009.03.023>
256. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRP6. *Microcirculation.* 2008;15(7):605–614. <https://doi.org/10.1080/10739680802220323>
257. Berna-Erro A, Albaran L, Dionisio N, et al. The canonical transient receptor potential 6 (TRP6) channel is sensitive to extracellular pH in mouse platelets. *Blood Cells Mol Dis.* 2014;52(2–3):108–115. <https://doi.org/10.1016/j.bcmd.2013.08.007>
258. Graham S, Ding M, Ding Y, et al. Canonical transient receptor potential 6 (TRP6), a redox-regulated cation channel. *J Biol Chem.* 2010;285(30):23466–23476. <https://doi.org/10.1074/jbc.M109.093500>
259. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP. Identification and localization of TRP6 channels in the rat kidney. *Am J Physiol Renal Physiol.* 2006;290(5):F1241–F1252. <https://doi.org/10.1152/ajprenal.00376.2005>
260. Liu X, Yao X, Tsang SY. Post-translational modification and natural mutation of TRP6 channels. *Cells.* 2020;9(1):135. <https://doi.org/10.3390/cells9010135>
261. Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. *Physiol Rev.* 2023;103(1):787–854. <https://doi.org/10.1152/physrev.00013.2022>
262. Englisch CN, Paulsen F, Tschernig T. TRP6 Channels in the physiology and pathophysiology of the renal tubular system: what do we know? *Int J Mol Sci.* 2022;24(1):181. <https://doi.org/10.3390/ijms24010181>
263. Weissmann N, Dietrich A, Fuchs B, et al. Classical transient receptor potential channel 6 (TRP6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. *Proc Natl Acad Sci U S A.* 2006;103(50):19093–19098. <https://doi.org/10.1073/pnas.0606728103>
264. Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP. Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. *Am J Respir Cell Mol Biol.* 2004;30(2):145–154. <https://doi.org/10.1165/rccm.2003-0134OC>
265. Weissmann N, Sydykov A, Kalwa H, et al. Activation of TRP6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. *Nat Commun.* 2012;3:649. <https://doi.org/10.1038/ncomms1660>
266. Ratnasingham M, Bradding P, Roach KM. The role of TRP6 channels in lung fibrosis: mechanisms and therapeutic potential. *Int J Biochem Cell Biol.* 2025;180:106728. <https://doi.org/10.1016/j.biocel.2024.106728>
267. Oda S, Nishiyama K, Furumoto Y, et al. Myocardial TRP6-mediated Zn²⁺ influx induces beneficial positive inotropy through β-adrenoceptors. *Nat Commun.* 2022;13(1):6374. <https://doi.org/10.1038/s41467-022-34194-9>
268. Dietrich A. Is Zn²⁺ the new Ca²⁺ for TRP6 channels in the myocardium? *Cell Calcium.* 2023;109:102674. <https://doi.org/10.1016/j.ceca.2022.102674>
269. Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: a comprehensive review. *Eur J Pharmacol.* 2024;964:176302. <https://doi.org/10.1016/j.ejphar.2023.176302>
270. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U. Quantitative analysis of TRP channel genes in mouse organs. *Arch Pharm Res.* 2012;35(10):1823–1830. <https://doi.org/10.1007/s12272-012-01016-8>
271. Yip H, Chan WY, Leung PC, et al. Expression of TRP6 homologs in endothelial cells and smooth muscle layers of human arteries. *Histochem Cell Biol.* 2004;122(6):553–561. <https://doi.org/10.1007/s00418-004-0720-y>
272. Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. *Am J Physiol Cell Physiol.* 2001;280(5):C1184–C1192. <https://doi.org/10.1152/ajpcell.2001.280.5.C1184>
273. Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC. Heteromultimeric TRP6-TRP7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. *Circ Res.* 2006;98(12):1520–1527. <https://doi.org/10.1161/01.RES.0000226495.34949.28>
274. Ben-Mabrouk F, Tryba AK. Substance P modulation of TRP6 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. *Eur J Neurosci.* 2010;31(7):1219–1232. <https://doi.org/10.1111/j.1460-9568.2010.07156.x>
275. Miyagi K, Kiyonaka S, Yamada K, et al. A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca²⁺ entry via association with TRP6 and TRP7. *J Biol Chem.* 2009;284(49):34400–34412. <https://doi.org/10.1074/jbc.M109.015149>
276. Alvarez J, Coulombe A, Cazorla O, et al. ATP/UTP activate cation-permeable channels with TRP6/7 properties in rat cardiomyocytes. *Am J Physiol Heart Circ Physiol.* 2008;295(1):H21–H28. <https://doi.org/10.1152/ajpheart.00135.2008>
277. Satoh S, Tanaka H, Ueda Y, et al. Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca²⁺ channel mediating angiotensin II-induced myocardial apoptosis. *Mol Cell Biochem.* 2007;294(1–2):205–215. <https://doi.org/10.1007/s11010-006-9261-0>
278. Xue T, Do MT, Riccio A, et al. Melanopsin signalling in mammalian iris and retina. *Nature.* 2011;479(7371):67–73. <https://doi.org/10.1038/nature10567>
279. Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P. Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRP6 subunits. *Eur J Neurosci.* 2011;33(5):856–867. <https://doi.org/10.1111/j.1460-9568.2010.07583.x>
280. Zhang X, Li Z, Nie H, et al. The IGF2BP2-lncRNA TRP6-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. *Cell Signal.* 2024;117:111078. <https://doi.org/10.1016/j.cellsig.2024.111078>
281. Zhu S, Ye H, Xu X, et al. Involvement of TRP6-AS1 expression in hepatitis B virus-related hepatocellular carcinoma. *J Oncol.* 2021;2021:8114327. <https://doi.org/10.1155/2021/8114327>
282. Liang JL, Tsai MH, Hsieh YC, et al. TRP6-AS1 facilitates cell growth and migration by regulating intracellular Ca²⁺ mobilization in lung adenocarcinoma cells. *Oncol Lett.* 2023;25(3):92. <https://doi.org/10.3892/ol.2023.13678>

283. Camacho Londoño JE, Marx A, Kraft AE, et al. Angiotensin-II-evoked Ca^{2+} entry in murine cardiac fibroblasts does not depend on TRPC channels. *Cells*. 2020;9(2):322. <https://doi.org/10.3390/cells9020322>
284. Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. *Sci Rep*. 2020;10(1):7227. <https://doi.org/10.1038/s41598-020-61177-x>
285. Fogel BL, Hanson SM, Becker EBE. Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? *Mov Disord*. 2015;30(2):284–286. <https://doi.org/10.1002/mds.26096>
286. Schaldecker T, Kim S, Tarabanis C, et al. Inhibition of the TRPC5 ion channel protects the kidney filter. *J Clin Invest*. 2013;123(12):5298–5309. <https://doi.org/10.1172/JCI71165>
287. Mignon-Ravix C, Cacciaglia P, Choucair N, et al. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes. *Am J Med Genet A*. 2014;164A(8):1991–1997. <https://doi.org/10.1002/ajmg.a.36602>
288. Li Y, Cacciottolo TM, Yin N, et al. Loss of transient receptor potential channel 5 causes obesity and postpartum depression. *Cell*. 2024;187(16):4176–4192. e17. <https://doi.org/10.1016/j.cell.2024.06.001>
289. Leitão E, Schröder C, Parenti I, et al. Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X. *Nat Commun*. 2022;13(1):6570. <https://doi.org/10.1038/s41467-022-34264-y>
290. Winn MP, Conlon PJ, Lynn KL, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. *Science*. 2005;308(5729):1801–1804. <https://doi.org/10.1126/science.1106215>
291. Reiser J, Polu KR, Möller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. *Nat Genet*. 2005;37(7):739–744. <https://doi.org/10.1038/ng1592>
292. Riehle M, Büscher AK, Gohlke BO, et al. TRPC6 G757D loss-of-function mutation associates with FSGS. *J Am Soc Nephrol*. 2016;27(9):2771–2783. <https://doi.org/10.1681/ASN.2015030318>
293. Staruschenko A, Spires D, Palygin O. Role of TRPC6 in progression of diabetic kidney disease. *Curr Hypertens Rep*. 2019;21(7):48. <https://doi.org/10.1007/s11906-019-0960-9>
294. Urban N, Hill K, Wang L, Kuebler WM, Schaefer M. Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. *Cell Calcium*. 2012;51(2):194–206. <https://doi.org/10.1016/j.ceca.2012.01.001>
295. Yu Y, Keller SH, Remillard CV, et al. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. *Circulation*. 2009;119(17):2313–2322. <https://doi.org/10.1161/CIRCULATIONAHA.108.782458>
296. Pousada G, Baloira A, Valverde D. Molecular and clinical analysis of TRPC6 and AGTR1 genes in patients with pulmonary arterial hypertension. *Orphanet J Rare Dis*. 2015;10:1. <https://doi.org/10.1186/s13023-014-0216-3>
297. Seo K, Rainer PP, Shalkey Hahn V, et al. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. *Proc Natl Acad Sci U S A*. 2014;111(4):1551–1556. <https://doi.org/10.1073/pnas.1308963111>
298. Lin BL, Matera D, Doerner JF, et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. *Proc Natl Acad Sci U S A*. 2019;116(20):10156–10161. <https://doi.org/10.1073/pnas.1815354116>
299. Norton N, Crook JE, Wang L, et al. Association of genetic variants at TRPC6 with chemotherapy-related heart failure. *Front Cardiovasc Med*. 2020;7:142. <https://doi.org/10.3389/fcvm.2020.000142>
300. Miller M, Shi J, Zhu Y, et al. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. *J Biol Chem*. 2011;286(38):33436–33446. <https://doi.org/10.1074/jbc.M111.274167>
301. Richter JM, Schaefer M, Hill K. Clemizole hydrochloride is a novel and potent inhibitor of transient receptor potential channel TRPC5. *Mol Pharmacol*. 2014;86(5):514–521. <https://doi.org/10.1124/mol.114.093229>
302. Zimova L, Ptakova A, Mitro M, Krusek J, Vlachova V. Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. *Biomed Pharmacother*. 2022;152:113262. <https://doi.org/10.1016/j.bioph.2022.113262>
303. Rubaiy HN, Ludlow MJ, Henrot M, et al. Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. *J Biol Chem*. 2017;292(20):8158–8173. <https://doi.org/10.1074/jbc.M116.773556>
304. Just S, Chennard BL, Ceci A, et al. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. *PLoS One*. 2018;13(1):e0191225. <https://doi.org/10.1371/journal.pone.0191225>
305. Yu M, Ledebbo MW, Daniels M, et al. Discovery of a potent and selective TRPC5 inhibitor, efficacious in a focal segmental glomerulosclerosis model. *ACS Med Chem Lett*. 2019;10(11):1579–1585. <https://doi.org/10.1021/acsmmedchemlett.9b00430>
306. Richter JM, Schaefer M, Hill K. Riluzole activates TRPC5 channels independently of PLC activity. *Br J Pharmacol*. 2014;171(1):158–170. <https://doi.org/10.1111/bph.12436>
307. Beckmann H, Richter J, Hill K, Urban N, Lemoine H, Schaefer M. A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5 (TRPC5) channels. *Cell Calcium*. 2017;66:10–18. <https://doi.org/10.1016/j.ceca.2017.05.012>
308. Akbulut Y, Gaunt HJ, Muraki K, et al. (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. *Angew Chem Int Ed Engl*. 2015;54(12):3787–3791. <https://doi.org/10.1002/anie.201411511>
309. Minard A, Bauer CC, Chuntharpursat-Bon E, et al. Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. *Br J Pharmacol*. 2019;176(20):3924–3938. <https://doi.org/10.1111/bph.14791>
310. Walsh L, Reilly JF, Cornwall C, et al. Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. *Kidney Int Rep*. 2021;6(10):2575–2584. <https://doi.org/10.1016/j.ejir.2021.07.006>
311. Grimm S, Keicher C, Paret C, et al. The effects of transient receptor potential cation channel inhibition by BI 1358894 on cortico-limbic brain reactivity to negative emotional stimuli in major depressive disorder. *Eur Neuropsychopharmacol*. 2022;65:44–51. <https://doi.org/10.1016/j.euro.2022.10.009>
312. Kiyonaka S, Kato K, Nishida M, et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. *Proc Natl Acad Sci U S A*. 2009;106(13):5400–5405. <https://doi.org/10.1073/pnas.0808793106>
313. Schleifer H, Doleschal B, Lichtenegger M, et al. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca^{2+} entry pathways. *Br J Pharmacol*. 2012;167(8):1712–1722. <https://doi.org/10.1111/j.1476-5381.2012.02126.x>
314. Zhang S, Romero LO, Deng S, et al. Discovery of a highly selective and potent TRPC3 inhibitor with high metabolic stability and low toxicity. *ACS Med Chem Lett*. 2021;12(4):572–578. <https://doi.org/10.1021/acsmmedchemlett.0c00571>
315. Wang J, Zhang S, Boda VK, et al. Discovery of a potent and selective TRPC3 antagonist with neuroprotective effects. *Bioorg Med Chem*. 2025;117:118021. <https://doi.org/10.1016/j.bmc.2024.118021>
316. Washburn DG, Holt DA, Dodson J, et al. The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore. *Bioorg Med Chem Lett*. 2013;23(17):4979–4984. <https://doi.org/10.1016/j.bmcl.2013.06.047>
317. Maier T, Follmann M, Hessler G, et al. Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. *Br J Pharmacol*. 2015;172(14):3650–3660. <https://doi.org/10.1111/bph.13151>
318. Urban N, Wang L, Kwiek S, Rademann J, Kuebler WM, Schaefer M. Identification and validation of Larixyl acetate as a potent TRPC6 inhibitor. *Mol Pharmacol*. 2016;89(1):197–213. <https://doi.org/10.1124/mol.115.100792>
319. Häfner S, Burg F, Kannler M, et al. A (+)-larixol congener with high affinity and subtype selectivity toward TRPC6. *ChemMedChem*. 2018;13(10):1028–1035. <https://doi.org/10.1002/cmdc.201800021>
320. Motoyama K, Nagata T, Kobayashi J, et al. Discovery of a bicyclo[4.3.0]nonane derivative DS88790512 as a potent, selective, and orally bioavailable blocker of transient receptor potential canonical 6 (TRPC6). *Bioorg Med Chem Lett*. 2018;28(12):2222–2227. <https://doi.org/10.1016/j.bmcl.2018.03.056>
321. Ware LB, Soleymanlou N, McAuley DF, et al. TRPC6 inhibitor (BI 764198) to reduce risk and severity of ARDS due to COVID-19: a phase II randomised controlled trial. *Thorax*. 2023;78(8):816–824. <https://doi.org/10.1136/thorax-2022-219668>
322. Sawamura S, Hatano M, Takada Y, et al. Screening of transient receptor potential canonical channel activators identifies novel neurotrophic piperazine compounds. *Mol Pharmacol*. 2016;89(3):348–363. <https://doi.org/10.1124/mol.115.102863>
323. de la Cruz GGd, Slobodova B, Lichtenegger M, Tiapko O, Groschner K, Glasnov T. Intensified microwave-assisted N-acylation procedure – Synthesis and activity evaluation of TRPC3 channel agonists with a 1,3-Dihydro-2H-benzod[d]imidazol-2-one core. *Synlett*. 2017;28(6):695–700. <https://doi.org/10.1055/s-0036-1589472>
324. Qu C, Ding M, Zhu Y, et al. Pyrazolopyrimidines as potent stimulators for transient receptor potential canonical 3/6/7 channels. *J Med Chem*. 2017;60(11):4680–4692. <https://doi.org/10.1021/acs.jmedchem.7b00304>
325. Urban N, Schaefer M. Direct activation of TRPC3 channels by the antimalarial agent artemisinin. *Cells*. 2020;9(1):202. <https://doi.org/10.3390/cells9010202>
326. Yang P-L, Li X-H, Wang J, et al. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. *J Biol Chem*. 2021;297(4):101125. <https://doi.org/10.1016/j.jbc.2021.101125>
327. Häfner S, Urban N, Schaefer M. Discovery and characterization of a positive allosteric modulator of transient receptor potential canonical 6 (TRPC6) channels. *Cell Calcium*. 2019;78:26–34. <https://doi.org/10.1016/j.ceca.2018.12.009>
328. Frank JA, Yushchenko DA, Hodson DJ, et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. *Nat Chem Biol*. 2016;12(9):755–762. <https://doi.org/10.1038/nchembio.2141>
329. Leinders-Zufall T, Storch U, Bleymehl K, et al. PhoDAGs enable optical control of diacylglycerol-sensitive transient receptor potential channels. *Cell Chem Biol*. 2018;25(2):215–223.e3. <https://doi.org/10.1016/j.chembiol.2017.11.008>

330. Keck M, Hermann C, Lützel K, et al. Photoswitchable TRPC6 channel activators evoke distinct channel kinetics reflecting different gating behaviors. *iScience*. 2024;27(10):111008. <https://doi.org/10.1101/j.isci.2024.111008>
331. Tiapko O, Shrestha N, Lindinger S, et al. Lipid-independent control of endothelial and neuronal TRPC3 channels by light. *Chem Sci*. 2019;10(9):2837–2842. <https://doi.org/10.1039/c8sc05536j>
332. Müller M, Niemeyer K, Urban N, et al. BTDAzo: a photoswitchable TRPC5 channel activator. *Angew Chem Int Ed Engl*. 2022;61(36):e202201565. <https://doi.org/10.1002/anie.202201565>
333. Lützel K, Laqua H, Sathian MB, et al. A platform for the development of highly red-shifted azobenzene-based optical tools. *Angew Chem Int Ed Engl*. 2025;64(32):e202501779. <https://doi.org/10.1002/anie.202501779>
334. Polat OK, Isaeva E, Sudhini YR, et al. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. *Kidney Int*. 2023;103(6):1056–1062. <https://doi.org/10.1016/j.kint.2023.01.016>
335. Vaidya B, Roy I, Sharma SS. Neuroprotective potential of HC070, a potent TRPC5 channel inhibitor in Parkinson's disease models: a behavioral and mechanistic study. *ACS Chem Neurosci*. 2022;13(18):2728–2742. <https://doi.org/10.1021/acschemneuro.2c00403>
336. Vaidya B, Gupta P, Laha JK, Roy I, Sharma SS. Amelioration of Parkinson's disease by pharmacological inhibition and knockdown of redox sensitive TRPC5 channels: focus on mitochondrial health. *Life Sci*. 2023;328:121871. <https://doi.org/10.1016/j.lfs.2023.121871>
337. Jia M, Liu W, Zhang K, et al. Larixyl acetate, a TRPC6 inhibitor, attenuates pressure overload-induced heart failure in mice. *Mol Med Rep*. 2024;29(3):49. <https://doi.org/10.3892/mmr.2024.13174>
338. Zheng Z, Xu Y, Krügel U, et al. In vivo inhibition of TRPC6 by SH045 attenuates renal fibrosis in a New Zealand obese (NZO) mouse model of metabolic syndrome. *Int J Mol Sci*. 2022;23(12):6870. <https://doi.org/10.3390/ijms23126870>
339. Lin BL, Shin JY, Jeffreys WP, et al. Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy. *JCI Insight*. 2022;7(19):e158906. <https://doi.org/10.1172/jci.insight.158906>
340. Carson C, Raman P, Tullai J, et al. Englerin A agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. *PLoS One*. 2015;10(6):e0127498. <https://doi.org/10.1371/journal.pone.0127498>
341. Leinders-Zufall T, Storch U, Mederos Y Schnitzler M, et al. A diacylglycerol photoswitching protocol for studying TRPC channel functions in mammalian cells and tissue slices. *Star Protoc*. 2021;2(2):100527. <https://doi.org/10.1016/j.xpro.2021.100527>
342. Fuertig R, Goettel M, Herich L, Hoeffler J, Wiebe ST, Sharma V. Effects of single and multiple ascending doses of BI 1358894 in healthy male volunteers on safety, tolerability and pharmacokinetics: two phase I partially randomised studies. *CNS Drugs*. 2023;37(12):1081–1097. <https://doi.org/10.1007/s40263-023-01041-4>
343. Dwyer JB, Schmahl C, Makinodan M, et al. Efficacy and safety of BI 1358894 in patients with borderline personality disorder: results of a phase 2 randomized, placebo-controlled, parallel group dose-ranging trial. *J Clin Psychiatry*. 2025;86(1):24m15523. <https://doi.org/10.4088/JCP.24m15523>
344. Reist C, Li P, Le Nguyen T, Süssmuth SD. Safety of BI 1358894 in patients with major depressive disorder: results and learnings from a phase II randomized decentralized clinical trial. *Clin Transl Sci*. 2024;17(12):e70102. <https://doi.org/10.1111/cts.70102>
345. Trachtman H, Kretzler M, Desmond HE, Choi W, Manuel RC, Soleymanlou N. TRPC6 inhibitor BI 764198 in focal segmental glomerulosclerosis: phase 2 study design. *Kidney Int Rep*. 2023;8(12):2822–2825. <https://doi.org/10.1016/j.kir.2023.09.026>
346. Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: an overview. *Curr Pharm Des*. 2008;14(1):18–31. <https://doi.org/10.2174/138161208783330763>
347. Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. *Phys Biol*. 2018;15(2):021001. <https://doi.org/10.1088/1478-3975/aa9a6f>
348. Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. *Channels*. 2024;18(1):2313323. <https://doi.org/10.1080/1936950.2024.2313323>
349. Yuan P. Structural biology of thermoTRPV channels. *Cell Calcium*. 2019;84:102106. <https://doi.org/10.1016/j.ceca.2019.102106>
350. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. TRPV1: structure, endogenous agonists, and mechanisms. *Int J Mol Sci*. 2020;21(10):3421. <https://doi.org/10.3390/ijms21103421>
351. van Goor MK, De Jager L, Cheng Y, van der Wijst J. High-resolution structures of transient receptor potential vanilloid channels: unveiling a functionally diverse group of ion channels. *Protein Sci*. 2020;29(7):1569–1580. <https://doi.org/10.1002/pro.3861>
352. Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. *J Physiol*. 2021;599(10):2673–2697. <https://doi.org/10.1111/jp279024>
353. Rohacs T, Fluck EC, De Jesús-Pérez JJD, Moiseenkova-Bell VY. What structures did, and did not, reveal about the function of the epithelial Ca²⁺ channels TRPV5 and TRPV6. *Cell Calcium*. 2022;106:102620. <https://doi.org/10.1016/j.ceca.2022.102620>
354. Yelshanskaya MV, Sobolevsky AI. Ligand-binding sites in vanilloid-subtype TRP channels. *Front Pharmacol*. 2022;13:900623. <https://doi.org/10.3389/fphar.2022.900623>
355. Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV, Ion C. TRPV3 ion channel: from gene to pharmacology. *Int J Mol Sci*. 2023;24(10):8601. <https://doi.org/10.3390/ijms24108601>
356. Lei J, Tominaga M. Unlocking the therapeutic potential of TRPV3: insights into thermosensation, channel modulation, and skin homeostasis involving TRPV3. *Bioessays*. 2024;46(7):e2400047. <https://doi.org/10.1002/bies.202400047>
357. Neuberger A, Sobolevsky AI. Molecular pharmacology of the onco-TRP channel TRPV6. *Channels*. 2023;17(1):2266669. <https://doi.org/10.1080/19336950.2023.2266669>
358. Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. *Nature*. 2013;504(7478):107–112. <https://doi.org/10.1038/nature12822>
359. Singh AK, McGoldrick LL, Sobolevsky AI. Structure and gating mechanism of the transient receptor potential channel TRPV3. *Nat Struct Mol Biol*. 2018;25(9):805–813. <https://doi.org/10.1038/s41594-018-0108-7>
360. Jordt SE, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. *Proc Natl Acad Sci U S A*. 2000;97(14):8134–8139. <https://doi.org/10.1073/pnas.100129497>
361. Zhang K, Julius D, Cheng Y. Structural snapshots of TRPV1 reveal mechanism of poly-modal functionality. *Cell*. 2021;184(20):5138–5150e12. <https://doi.org/10.1016/j.cell.2021.08.012>
362. Saotome K, Singh AK, Sobolevsky AI. Calcium entry channels in non-excitable cells: determining the crystal structure of TRPV6. 2018.
363. Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI. Crystal structure of the epithelial calcium channel TRPV6. *Nature*. 2016;534(7608):506–511. <https://doi.org/10.1038/nature17975>
364. Ives CM, Thomson NJ, Zachariae U. A cooperative knock-on mechanism underpins Ca²⁺-selective cation permeation in TRPV channels. *J Gen Physiol*. 2023;155(5):e202213226. <https://doi.org/10.1085/jgp.202213226>
365. García-Martínez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. *J Biol Chem*. 2000;275(42):32552–32558. <https://doi.org/10.1074/jbc.M002391200>
366. Voets T, Prenen J, Vriens J, et al. Molecular determinants of permeation through the cation channel TRPV4. *J Biol Chem*. 2002;277(37):33704–33710. <https://doi.org/10.1074/jbc.M204828200>
367. Pumroy RA, De Jesús-Pérez JJD, Protopopova AD, et al. Molecular details of ruthenium red pore block in TRPV channels. *EMBO Rep*. 2024;25(2):506–523. <https://doi.org/10.1038/s44319-023-00050-0>
368. McGoldrick LL, Singh AK, Saotome K, et al. Opening of the human epithelial calcium channel TRPV6. *Nature*. 2018;553(7687):233–237. <https://doi.org/10.1038/nature25182>
369. Hellwig N, Plant TD, Janson W, Schäfer M, Schultz G, Schaefer M. TRPV1 acts as proton channel to induce acidification in nociceptive neurons. *J Biol Chem*. 2004;279(33):34553–34561. <https://doi.org/10.1074/jbc.M402966200>
370. Chung M-K, Güler AD, Caterina MJ. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. *J Biol Chem*. 2005;280(16):15928–15941. <https://doi.org/10.1074/jbc.M500596200>
371. Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. *Nature*. 2007;449(7162):607–610. <https://doi.org/10.1038/nature06191>
372. Zubcevic L, Le S, Yang H, Lee S-Y. Conformational plasticity in the selectivity filter of the TRPV2 ion channel. *Nat Struct Mol Biol*. 2018;25(5):405–415. <https://doi.org/10.1038/s41594-018-0059-z>
373. Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. *Nature*. 2016;534(7607):347–351. <https://doi.org/10.1038/nature17964>
374. Deng Z, Maksaev G, Rau M, et al. Gating of human TRPV3 in a lipid bilayer. *Nat Struct Mol Biol*. 2020;27(7):635–644. <https://doi.org/10.1038/s41594-020-0428-2>
375. Pumroy RA, Protopopova AD, Fricke TC, et al. Structural insights into TRPV2 activation by small molecules. *Nat Commun*. 2022;13(1):2334. <https://doi.org/10.1038/s41467-022-30083-3>
376. Nadezhdin KD, Neuberger A, Khosrof LS, et al. TRPV3 activation by different agonists accompanied by lipid dissociation from the vanilloid site. *Sci Adv*. 2024;10(18):eadn2453. <https://doi.org/10.1126/sciadv.adn2453>
377. Hoenderop JGJ, Voets T, Hoefs S, et al. Homo- and heterotetrameric architecture of the epithelial Ca²⁺ channels TRPV5 and TRPV6. *EMBO J*. 2003;22(4):776–785. <https://doi.org/10.1093/emboj/cdg080>
378. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. Homo- and heteromeric assembly of TRPV channel subunits. *J Cell Sci*. 2005;118(5):917–928. <https://doi.org/10.1242/jcs.01675>
379. Rutter AR, Ma Q-P, Leveridge M, Bonnert TP. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. *NeuroReport*. 2005;16(16):1735–1739. <https://doi.org/10.1097/01.wnr.0000185958.03841.0f>
380. Cheng W, Yang F, Takanishi CL, Zheng J. Thermosensitive TRPV channel subunits Coassemble into heteromeric channels with intermediate conductance and gating properties. *J Gen Physiol*. 2007;129(3):191–207. <https://doi.org/10.1085/jgp.200709731>

381. Cheng W, Yang F, Liu S, et al. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. *J Biol Chem.* 2012;287(10):7279–7288. <https://doi.org/10.1074/jbc.M111.305045>
382. Hu F, Cao X, Niu C, Wang K. Coassembly of warm temperature-sensitive transient receptor potential vanilloid (TRPV) 3 and TRPV4 channel complexes with distinct functional properties. *Mol Pharmacol.* 2022;101(6):390–399. <https://doi.org/10.1124/molpharm.121.000370>
383. Fischer MJM, Balasuriya D, Jeggle P, et al. Direct evidence for functional TRPV1/TRPA1 heteromers. *Pflugers Arch.* 2014;466(12):2229–2241. <https://doi.org/10.1007/s00424-014-1497-z>
384. Stewart AP, Smith GD, Sandford RN, Edwardson JM. Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. *Biophys J.* 2010;99(3):790–797. <https://doi.org/10.1016/j.bpj.2010.05.012>
385. Ma X, Cheng K-T, Wong C-O, et al. Heteromeric TRPV4-C1 channels contribute to store-operated Ca^{2+} entry in vascular endothelial cells. *Cell Calcium.* 2011;50(6):502–509. <https://doi.org/10.1016/j.ceca.2011.08.006>
386. Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X. TRPV4, TRPC1, and TRPP2 assemble to form a slow-sensitive heteromeric channel. *FASEB J.* 2014;28(11):4677–4685. <https://doi.org/10.1096/fj.14-251652>
387. Guo Z, Grimm C, Becker L, Ricci AJ, Heller S. A novel ion channel formed by interaction of TRPM13 with TRPV5. *PLoS One.* 2013;8(2):e58174. <https://doi.org/10.1371/journal.pone.0058174>
388. Lansky S, Betancourt JM, Zhang J, et al. A pentameric TRPV3 channel with a dilated pore. *Nature.* 2023;621(7977):206–214. <https://doi.org/10.1038/s41586-023-06470-1>
389. Neuberger A, Sobolevsky AI. Pentameric TRPV3: an artifact or a clue to channel function? *Cell Calcium.* 2023;116:102812. <https://doi.org/10.1016/j.ceca.2023.102812>
390. Min H, Cho W-H, Lee H, et al. Association of TRPV1 and TLR4 through the TIR domain potentiates TRPV1 activity by blocking activation-induced desensitization. *Mol Pain.* 2018;14:1744806918812636. <https://doi.org/10.1177/1744806918812636>
391. Wang Y, Mo X, Ping C, et al. Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel $\text{Kv}\beta 1$ subunit. *J Biol Chem.* 2020;295(50):17337–17348. <https://doi.org/10.1074/jbc.RA120.015605>
392. Takayama Y, Tominaga M. Interaction between TRP channels and anocatamins. *Cell Calcium.* 2024;121:102912. <https://doi.org/10.1016/j.ceca.2024.102912>
393. Cheng X, Jin J, Hu L, et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. *Cell.* 2010;141(2):331–343. <https://doi.org/10.1016/j.cell.2010.03.013>
394. Lei J, Yoshimoto RU, Matsui T, Amagai M, Kido MA, Tominaga M. Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice. *Nat Commun.* 2023;14(1):4104. <https://doi.org/10.1038/s41467-023-39712-x>
395. Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of stretch-regulated TRPV2 and TRPV4 channels inferred through interactomics. *Biomolecules.* 2019;9(12):791. <https://doi.org/10.3390/biom9120791>
396. Kwon DH, Zhang F, McCray BA, et al. TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease. *Nat Commun.* 2023;14(1):3732. <https://doi.org/10.1038/s41467-023-39345-0>
397. Nadezhdin KD, Talyzina IA, Parthasarathy A, Neuberger A, Zhang DX, Sobolevsky AI. Structure of human TRPV4 in complex with GTPase RhoA. *Nat Commun.* 2023;14(1):3733. <https://doi.org/10.1038/s41467-023-39346-z>
398. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. *Science.* 2005;310(5747):490–493. <https://doi.org/10.1126/science.1114245>
399. Lambers TT, Mahieu F, Oancea E, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca^{2+} transport. *EMBO J.* 2006;25(13):2978–2988. <https://doi.org/10.1038/sj.emboj.7601186>
400. Andrukova O, Smorodchenko A, Egerbacher M, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. *EMBO J.* 2014;33(3):229–246. <https://doi.org/10.1002/embj.201284188>
401. Palmada M, Poppendieck S, Embark HM, et al. Requirement of PDZ domains for the stimulation of the epithelial Ca^{2+} channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1. *Cell Physiol Biochem.* 2005;15(1–4):175–182. <https://doi.org/10.1159/000083650>
402. Lee J, Ju KD, Kim HJ, et al. Soluble α -klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously. *Am J Physiol Renal Physiol.* 2021;320(4):F559–F568. <https://doi.org/10.1152/ajprenal.00044.2021>
403. van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca^{2+} channels TRPV5 and TRPV6 to the plasma membrane. *Mol Cell Biol.* 2006;26(1):303–312. <https://doi.org/10.1128/MCB.26.1.303-312.2006>
404. van de Graaf SFJ, Hoenderop JGJ, van der Kemp AWCM, Gisler SM, Bindels RJM. Interaction of the epithelial Ca^{2+} channels TRPV5 and TRPV6 with the intestine- and kidney-enriched PDZ protein NHERF4. *Pflugers Arch.* 2006;452(4):407–417. <https://doi.org/10.1007/s00424-006-0051-z>
405. Sternfeld L, Krause E, Schmid A, et al. Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells. *Cell Signal.* 2005;17(8):951–960. <https://doi.org/10.1016/j.cellsig.2004.11.012>
406. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. *Nature.* 2004;430(7001):748–754. <https://doi.org/10.1038/nature02732>
407. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T. Gating of TRP channels: a voltage connection? *J Physiol.* 2005;567(1):35–44. <https://doi.org/10.1113/jphysiol.2005.088377>
408. Xu H, Ramsey IS, Kotecha SA, et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. *Nature.* 2002;418(6894):181–186. <https://doi.org/10.1038/nature00882>
409. Sawai H, Kohda K, Kurahashi T. The effect of temporal adaptation to different temperatures and osmolarities on heat response of TRPV4 in cultured cells. *J Therm Biol.* 2019;85:102424. <https://doi.org/10.1016/j.jtherbio.2019.102424>
410. Hayes P, Meadows HJ, Gunthorpe MJ, et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. *Pain.* 2000;88(2):205–215. [https://doi.org/10.1016/S0304-3959\(00\)00353-5](https://doi.org/10.1016/S0304-3959(00)00353-5)
411. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. *Nature.* 1999;398(6726):436–441. <https://doi.org/10.1038/18906>
412. Nepper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. *J Biol Chem.* 2007;282(21):15894–15902. <https://doi.org/10.1074/jbc.M608287200>
413. Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. *Proc Natl Acad Sci U S A.* 2016;113(40):11342–11347. <https://doi.org/10.1073/pnas.1604269113>
414. Gracheva EO, Cordero-Morales JF, González-Carcía JA, et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. *Nature.* 2011;476(7358):88–91. <https://doi.org/10.1038/nature10245>
415. Ohkita M, Saito S, Imagawa T, Takahashi K, Tominaga M, Ohta T. Molecular cloning and functional characterization of *Xenopus tropicalis* frog transient receptor potential vanilloid 1 reveals its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates. *J Biol Chem.* 2012;287(4):2388–2397. <https://doi.org/10.1074/jbc.M111.305698>
416. Hori S, Tateyama M, Shirai T, Kubo Y, Saitoh O. Two single-point mutations in ankyrin Repeat one drastically change the threshold temperature of TRPV1. *Nat Commun.* 2023;14(1):2415. <https://doi.org/10.1038/s41467-023-38051-1>
417. Tominaga M, Caterina MJ, Malmberg AB, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. *Neuron.* 1998;21(3):531–543. [https://doi.org/10.1016/s0896-6273\(00\)80564-4](https://doi.org/10.1016/s0896-6273(00)80564-4)
418. McNamara FN, Randall A, Gunthorpe MJ. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). *Br J Pharmacol.* 2005;144(6):781–790. <https://doi.org/10.1038/sj.bjp.0706040>
419. Trevisani M, Smart D, Gunthorpe MJ, et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. *Nat Neurosci.* 2002;5(6):546–551. <https://doi.org/10.1038/nn0602-852>
420. Siemens J, Zhou S, Piskorowski R, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. *Nature.* 2006;444(7116):208–212. <https://doi.org/10.1038/nature05285>
421. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. *Cell.* 2010;141(5):834–845. <https://doi.org/10.1016/j.cell.2010.03.052>
422. Singh SK, Deshpande SB. Nociceptive vascular reflexes evoked by scorpion venom modulate cardiorespiratory parameters involving vanilloid receptor 1 in anaesthetised rats. *Neurosci Lett.* 2009;451(3):194–198. <https://doi.org/10.1016/j.neulet.2009.01.012>
423. Hakim MA, Jiang W, Luo L, et al. Scorpion toxin, BmP01, induces pain by targeting TRPV1 channel. *Toxins.* 2015;7(9):3671–3687. <https://doi.org/10.3390/toxins7093671>
424. Zygmunt PM, Petersson J, Andersson DA, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. *Nature.* 1999;400(6743):452–457. <https://doi.org/10.1038/22761>
425. Peier AJ, Reeve AJ, Andersson DA, et al. A heat-sensitive TRP channel expressed in keratinocytes. *Science.* 2002;296(5575):2046–2049. <https://doi.org/10.1126/science.1073140>
426. Klein AS, Tannert A, Schaefer M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. *Cell Calcium.* 2014;55(1):59–68. <https://doi.org/10.1016/j.ceca.2013.12.001>
427. Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. *Nature.* 2000;408(6815):985–990. <https://doi.org/10.1038/35050121>
428. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. *Neuron.* 2002;35(4):721–731. [https://doi.org/10.1016/s0896-6273\(02\)00802-4](https://doi.org/10.1016/s0896-6273(02)00802-4)
429. Moriyama T, Higashi T, Togashi K, et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. *Mol Pain.* 2005;1:3. <https://doi.org/10.1186/1744-8069-1-3>
430. Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1

- responses through a cyclic AMP-dependent protein kinase A pathway. *Mol Pain*. 2006;2:22. <https://doi.org/10.1186/1744-8069-2-22>
431. Hanack C, Moroni M, Lima WC, et al. GABA blocks pathological but not acute TRPV1 pain signals. *Cell*. 2015;160(4):759–770. <https://doi.org/10.1016/j.cell.2015.01.022>
432. Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? *J Bioenerg Biomembr*. 2016;48(1):1–12. <https://doi.org/10.1007/s10863-015-9634-8>
433. Chung M-K, Güler AD, Caterina MJ. TRPV1 shows dynamic ionic selectivity during agonist stimulation. *Nat Neurosci*. 2008;11(5):555–564. <https://doi.org/10.1038/nn.2102>
434. Li M, Toombs GES, Silberberg SD, Swartz KJ. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. *Nat Neurosci*. 2015;18(11):1577–1583. <https://doi.org/10.1038/nn.4120>
435. Kwon DH, Zhang F, Fedor JG, Suo Y, Lee S-Y. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. *Nat Commun*. 2022;13(1):2874. <https://doi.org/10.1038/s41467-022-30602-2>
436. Vennekens R, Hoenderop JG, Prenen J, et al. Permeation and gating properties of the novel epithelial Ca(2+) channel. *J Biol Chem*. 2000;275(6):3963–3969. <https://doi.org/10.1074/jbc.275.6.3963>
437. Yue L, Peng JB, Hediger MA, Clapham DE. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. *Nature*. 2001;410(6829):705–709. <https://doi.org/10.1038/35070596>
438. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G. Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. *J Physiol*. 2000;527(2):239–248. <https://doi.org/10.1111/j.1469-7793.2000.00239.x>
439. Lee J, Cha S-K, Sun T-J, Huang C-L. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. *J Gen Physiol*. 2005;126(5):439–451. <https://doi.org/10.1085/jgp.200509314>
440. Thyagarajan B, Lukacs V, Rohacs T. Hydrolysis of phosphatidylinositol 4,5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. *J Biol Chem*. 2008;283(22):14980–14987. <https://doi.org/10.1074/jbc.M704224200>
441. Hoenderop JG, van der Kemp AW, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. *J Biol Chem*. 1999;274(13):8375–8378. <https://doi.org/10.1074/jbc.274.13.8375>
442. Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. *Pflugers Arch*. 2001;442(2):237–242. <https://doi.org/10.1007/s004240100517>
443. Yeh B-I, Kim YK, Jabbar W, Huang C-L. Conformational changes of pore helix coupled to gating of TRPV5 by protons. *EMBO J*. 2005;24(18):3224–3234. <https://doi.org/10.1038/sj.emboj.7600795>
444. Fluck EC, Yazici AT, Rohacs T, Moiseenkova-Bell VY. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. *Cell Rep*. 2022;39(4):110737. <https://doi.org/10.1016/j.celrep.2022.110737>
445. de Groot TD, Kovalevskaya NV, Verkaart S, et al. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. *Mol Cell Biol*. 2011;31(14):2845–2853. <https://doi.org/10.1128/MCB.01319-10>
446. Kovalevskaya NV, Bokhovchuk FM, Vuister GW. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties. *J Struct Funct Genomics*. 2012;13(2):91–100. <https://doi.org/10.1007/s10969-012-9128-4>
447. Hughes TET, Pumroy RA, Yazici AT, et al. Structural insights on TRPV5 gating by endogenous modulators. *Nat Commun*. 2018;9(1):4198. <https://doi.org/10.1038/s41467-018-06753-6>
448. Singh AK, McGoldrick LL, Twomey EC, Sobolevsky AI. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. *Sci Adv*. 2018;4(8):eaau6088. <https://doi.org/10.1126/sciadv.aau6088>
449. Dang S, van Goor MK, Asarnow D, et al. Structural insight into TRPV5 channel function and modulation. *Proc Natl Acad Sci U S A*. 2019;116(18):8869–8878. <https://doi.org/10.1073/pnas.1820323116>
450. Cao C, Zakharian E, Borbilo I, Rohacs T. Interplay between calmodulin and phosphatidylinositol 4,5-bisphosphate in Ca2+-induced inactivation of transient receptor potential vanilloid 6 channels. *J Biol Chem*. 2013;288(8):5278–5290. <https://doi.org/10.1074/jbc.M112.409482>
451. Voets T, Janssens A, Prenen J, Droogmans G, Nilius B. Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. *J Gen Physiol*. 2003;121(3):245–260. <https://doi.org/10.1085/jgp.20028752>
452. Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. *Science*. 2015;347(6220):1260419. <https://doi.org/10.1126/science.1260419>
453. Karlsson M, Zhang C, Méar L, et al. A single-cell type transcriptomics map of human tissues. *Sci Adv*. 2021;7(31):eabih2169. <https://doi.org/10.1126/sciadv.abh2169>
454. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. *Nature*. 1997;389(6653):816–824. <https://doi.org/10.1038/39807>
455. Cortright DN, Crandall M, Sanchez JF, Zou T, Krause JE, White G. The tissue distribution and functional characterization of human VR1. *Biochem Biophys Res Commun*. 2001;281(5):1183–1189. <https://doi.org/10.1006/bbrc.2001.4482>
456. Hou M, Uddman R, Tajti J, Kanje M, Edvinsson L. Capsaicin receptor immunoreactivity in the human trigeminal ganglion. *Neurosci Lett*. 2002;330(3):223–226. [https://doi.org/10.1016/s0304-3940\(02\)00741-3](https://doi.org/10.1016/s0304-3940(02)00741-3)
457. Davis JB, Gray J, Gunthorpe MJ, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. *Nature*. 2000;405(6783):183–187. <https://doi.org/10.1038/35012076>
458. Chuang HH, Prescott ED, Kong H, et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. *Nature*. 2001;411(6840):957–962. <https://doi.org/10.1038/35082088>
459. Moore C, Gupta R, Jordt S-E, Chen Y, Liedtke WB. Regulation of pain and itch by TRP channels. *Neurosci Bull*. 2018;34(1):120–142. <https://doi.org/10.1007/s12264-017-0200-8>
460. Tognetto M, Amadesi S, Harrison S, et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. *J Neurosci*. 2001;21(4):1104–1109. <https://doi.org/10.1523/JNEUROSCI.21-04-01104.2001>
461. Romanovsky AA, Almeida MC, Garami A, et al. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. *Pharmacol Rev*. 2009;61(3):228–261. <https://doi.org/10.1124/pr.109.001263>
462. Garami A, Shimansky YP, Rumbus Z, et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: insights from mathematical modeling and meta-analysis. *Pharmacol Ther*. 2020;208:107474. <https://doi.org/10.1016/j.pharmthera.2020.107474>
463. Zhang E, Liao P. Brain transient receptor potential channels and stroke. *J Neurosci Res*. 2015;93(8):1165–1183. <https://doi.org/10.1002/jnr.23529>
464. Saunders CL, Kunde DA, Crawford A, Geraghty DP. Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. *Mol Immunol*. 2007;44(6):1429–1435. <https://doi.org/10.1016/j.molimm.2006.04.027>
465. Kojima I, Nagasawa M. TRPV2. *Handb Exp Pharmacol*. 2014;222:247–272. https://doi.org/10.1007/978-3-642-54215-2_10
466. Santoni G, Amantini C, Maggi F, et al. The TRPV2 cation channels: from urothelial cancer invasiveness to glioblastoma multiforme interactome signature. *Lab Invest*. 2020;100(2):186–198. <https://doi.org/10.1038/s41374-019-0333-7>
467. Everaerts W, Vriens J, Owsianik G, et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. *Am J Physiol Renal Physiol*. 2010;298(3):F692–F701. <https://doi.org/10.1152/ajprel.00599.2009>
468. Belkacemi A, Trost CF, Tinschert R, et al. The TRPV2 channel mediates Ca2+ influx and the Δ9-THC-dependent decrease in osmotic fragility in red blood cells. *Haematologica*. 2021;106(8):2246–2250. <https://doi.org/10.3324/haematol.2020.274951>
469. Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. *J Neurosci*. 2011;31(32):11425–11436. <https://doi.org/10.1523/JNEUROSCI.1384-09.2011>
470. Link TM, Park U, Vonakos BM, Raben DM, Soloski MJ, Caterina MJ. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. *Nat Immunol*. 2010;11(3):232–239. <https://doi.org/10.1038/ni.1842>
471. Raudszus R, Paulig A, Urban N, et al. Pharmacological inhibition of TRPV2 attenuates phagocytosis and lipopolysaccharide-induced migration of primary macrophages. *Br J Pharmacol*. 2023;180(21):2736–2749. <https://doi.org/10.1111/bph.16154>
472. Li C, Zhao M, Liu X, et al. Ion channel TRPV2 is critical in enhancing B cell activation and function. *J Exp Med*. 2024;221(3):e20221042. <https://doi.org/10.1084/jem.20221042>
473. Lin Z, Chen Q, Lee M, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. *Am J Hum Genet*. 2012;90(3):558–564. <https://doi.org/10.1016/j.ajhg.2012.02.006>
474. Smith GD, Gunthorpe MJ, Kelsell RE, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. *Nature*. 2002;418(6894):186–190. <https://doi.org/10.1038/nature00894>
475. Moqrich A, Hwang SW, Earley TJ, et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. *Science*. 2005;307(5714):1468–1472. <https://doi.org/10.1126/science.1108609>
476. Huang SM, Li X, Yu Y, Wang J, Caterina MJ. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. *Mol Pain*. 2011;7:37. <https://doi.org/10.1186/1744-8069-7-37>
477. Chung M-K, Lee H, Mizuno A, Suzuki M, Caterina MJ. TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. *J Biol Chem*. 2004;279(20):21569–21575. <https://doi.org/10.1074/jbc.M401872200>
478. Huang SM, Lee H, Chung M-K, et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. *J Neurosci*. 2008;28(51):13727–13737. <https://doi.org/10.1523/JNEUROSCI.5741-07.2008>
479. Mandadi S, Sokabe T, Shibusaki K, et al. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. *Pflugers Arch*. 2009;458(6):1103–1102. <https://doi.org/10.1007/s00424-009-0703-x>
480. Miyamoto T, Petrus MJ, Dubin AE, Patapotian A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. *Nat Commun*. 2011;2:369. <https://doi.org/10.1038/ncomms1371>
481. Yang P, Zhu MX. TRPV3. *Handb Exp Pharmacol*. 2014;222:273–291. https://doi.org/10.1007/978-3-642-54215-2_11

482. Aijima R, Wang B, Takao T, et al. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. *FASEB J.* 2015;29(1): 182–192. <https://doi.org/10.1096/fj.14-251314>
483. Bischof M, Olthoff S, Glas C, Thorn-Seshold O, Schaefer M, Hill K. TRPV3 endogenously expressed in murine colonic epithelial cells is inhibited by the novel TRPV3 blocker 26E10. *Cell Calcium.* 2020;92:102310. <https://doi.org/10.1016/j.ceca.2020.102310>
484. Maier M, Olthoff S, Hill K, et al. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. *Br J Pharmacol.* 2022;179(24):5290–5304. <https://doi.org/10.1111/bph.15937>
485. Yamanoi Y, Lei J, Takayama Y, Hosogi S, Marunaka Y, Tominaga M. TRPV3-ANO1 interaction positively regulates wound healing in keratinocytes. *Commun Biol.* 2023;6(1):88. <https://doi.org/10.1038/s42003-023-04482-1>
486. Liedtke W, Choe Y, Martí-Renom MA, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoperceptor. *Cell.* 2000;103(3):525–535. [https://doi.org/10.1016/s0092-8674\(00\)00143-4](https://doi.org/10.1016/s0092-8674(00)00143-4)
487. Strotmann R, Harteneck C, Nunnemannacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. *Nat Cell Biol.* 2000;2(10):695–702. <https://doi.org/10.1038/35036318>
488. Wissenbach U, Bödding M, Freichel M, Flockerzi V. Trp12, a novel Trp related protein from kidney. *FEBS Lett.* 2000;485(2–3):127–134. [https://doi.org/10.1016/s0014-5793\(00\)02212-2](https://doi.org/10.1016/s0014-5793(00)02212-2)
489. Delany NS, Hurle M, Facer P, et al. Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. *Physiol Genomics.* 2001;4 (3):165–174. <https://doi.org/10.1152/physiolgenomics.2001.4.3.165>
490. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. *Nature.* 2003;424(6947):434–438. <https://doi.org/10.1038/nature01807>
491. Vriens J, Owssianik G, Fisslthaler B, et al. Modulation of the Ca₂ permeable cation channel TRPV4 by cytochrome P450 epoxigenases in vascular endothelium. *Circ Res.* 2005;97(9):908–915. <https://doi.org/10.1161/01.RES.0000187474.47805.30>
492. Derouiche S, Takayama Y, Murakami M, Tominaga M. TRPV4 heats up ANO1-dependent exocrine gland fluid secretion. *FASEB J.* 2018;32(4):1841–1854. <https://doi.org/10.1096/fj.20170094R>
493. Kashio M, Derouiche S, Yoshimoto RU, et al. Involvement of TRPV4 in temperature-dependent perspiration in mice. *eLife.* 2024;13:RP92993. <https://doi.org/10.7554/eLife.92993>
494. Willette RN, Bao W, Nerurkar S, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. *J Pharmacol Exp Ther.* 2008;326(2):443–452. <https://doi.org/10.1124/jpet.107.134551>
495. Köhler R, Heyken W-T, Heinrich P, et al. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. *Arterioscler Thromb Vasc Biol.* 2006;26(7):1495–1502. <https://doi.org/10.1161/01.ATV.0000225698.36212.6a>
496. Troidl C, Troidl K, Schierling W, et al. Tpv4 induces collateral vessel growth during regeneration of the arterial circulation. *J Cell Mol Med.* 2009;13(8B): 2613–2621. <https://doi.org/10.1111/j.1582-4934.2008.00579.x>
497. Berth SH, Vo L, Kwon DH, et al. Combined clinical, structural, and cellular studies discriminate pathogenic and benign TRPV4 variants. *Brain.* 2025;148 (2):564–579. <https://doi.org/10.1093/brain/awae243>
498. Müller D, Hoenderop JG, Meij IC, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca₂ channel (ECAC1). *Genomics.* 2000;67(1):48–53. <https://doi.org/10.1006/geno.2000.6203>
499. van der Eerden BCJ, Hoenderop JGJ, de Vries TJD, et al. The epithelial Ca₂ channel TRPV5 is essential for proper osteoclastic bone resorption. *Proc Natl Acad Sci U S A.* 2005;102(48):17507–17512. <https://doi.org/10.1073/pnas.0505789102>
500. Hoenderop JGJ, Müller D, van der Kemp AWCM, et al. Calcitriol controls the epithelial calcium channel in kidney. *J Am Soc Nephrol.* 2001;12(7): 1342–1349. <https://doi.org/10.1681/ASN.V12171342>
501. Weber K, Erben RG, Rump A, Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECAC1 and 2. *Biochem Biophys Res Commun.* 2001;289(5):1287–1294. <https://doi.org/10.1006/bbrc.2001.6121>
502. van Abel M, Hoenderop JGJ, Dardenne O, et al. 1,25-dihydroxyvitamin D(3)-independent stimulatory effect of estrogen on the expression of ECAC1 in the kidney. *J Am Soc Nephrol.* 2002;13(8):2102–2109. <https://doi.org/10.1097/01.asn.00000022423.34922.2a>
503. van der Hagen EAE, Lavrijzen M, van Zeeland F, et al. Coordinated regulation of TRPV5-mediated Ca²⁺ transport in primary distal convolution cultures. *Pflugers Arch.* 2014;466(11):2077–2087. <https://doi.org/10.1007/s00424-014-1470-x>
504. Hoenderop JGJ, van Leeuwen JPTM, van der Eerden BCJ, et al. Renal Ca₂ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. *J Clin Invest.* 2003;112(12):1906–1914. <https://doi.org/10.1172/JCI19826>
505. Guleray Lafci N, van Goor M, Cetinkaya S, et al. Decreased calcium permeability caused by biallelic TRPV5 mutation leads to autosomal recessive renal calcium-wasting hypercalciuria. *Eur J Hum Genet.* 2024;32(11):1506–1514. <https://doi.org/10.1038/s41431-024-01589-9>
506. Hirnet D, Olausson J, Fecher-Trost C, et al. The TRPV6 gene, cDNA and protein. *Cell Calcium.* 2003;33(5–6):509–518. [https://doi.org/10.1016/s0143-4160\(03\)00066-6](https://doi.org/10.1016/s0143-4160(03)00066-6)
507. Suzuki Y, Kovacs CS, Takanaga H, Peng J-B, Landowski CP, Hediger MA. Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. *J Bone Miner Res.* 2008;23(8):1249–1256. <https://doi.org/10.1359/jbmr.0803014>
508. Wartenberg P, Lux F, Busch K, et al. A TRPV6 expression atlas for the mouse. *Cell Calcium.* 2021;100:102481. <https://doi.org/10.1016/j.ceca.2021.102481>
509. Peng JB, Chen XZ, Berger UV, et al. Human calcium transport protein CaT1. *Biochem Biophys Res Commun.* 2000;278(2):326–332. <https://doi.org/10.1006/bbrc.2000.3716>
510. Barley NF, Howard A, O'Callaghan D, Legon S, Walters JR. Epithelial calcium transporter expression in human duodenum. *Am J Physiol Gastrointest Liver Physiol.* 2001;280(2):G285–G290. <https://doi.org/10.1152/ajpgi.2001.280.2.G285>
511. Peng JB, Brown EM, Hediger MA. Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. *Genomics.* 2001;76(1–3): 99–109. <https://doi.org/10.1006/geno.2001.6606>
512. van Abel M, Hoenderop JGJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM. Regulation of the epithelial Ca₂ channels in small intestine as studied by quantitative mRNA detection. *Am J Physiol Gastrointest Liver Physiol.* 2003;285(1):G78–G85. <https://doi.org/10.1152/ajpgi.00036.2003>
513. Meyer MB, Watanuki M, Kim S, Shevde NK, Pike JW. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. *Mol Endocrinol.* 2006;20(6):1447–1461. <https://doi.org/10.1210/me.2006-0031>
514. van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. *Proc Natl Acad Sci U S A.* 2001;98(23):13324–13329. <https://doi.org/10.1073/pnas.231474698>
515. van Cromphaut SJ, Rummens K, Stockmans I, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. *J Bone Miner Res.* 2003;18(10):1725–1736. <https://doi.org/10.1359/jbmr.2003.18.10.1725>
516. Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA. A rat kidney-specific calcium transporter in the distal nephron. *J Biol Chem.* 2000;275(36):28186–28194. <https://doi.org/10.1074/jbc.M909686199>
517. Hoenderop JGJ, Nilius B, Bindels RJM. Calcium absorption across epithelia. *Physiol Rev.* 2005;85(1):373–422. <https://doi.org/10.1152/physrev.00003.2004>
518. Fecher-Trost C, Lux F, Busch K-M, et al. Maternal transient receptor potential vanilloid 6 (Trpv6) is involved in offspring bone development. *J Bone Miner Res.* 2019;34(4):699–710. <https://doi.org/10.1002/jbm.3646>
519. Weissgerber P, Kriebs U, Tsvilovskyy V, et al. Male fertility depends on Ca²⁺ absorption by TRPV6 in epididymal epithelia. *Sci Signal.* 2011;4(171):ra27. <https://doi.org/10.1126/scisignal.2001791>
520. Katz B, Zaguri R, Edvardson S, et al. Nociception and pain in humans lacking a functional TRPV1 channel. *J Clin Invest.* 2023;133(3):e153558. <https://doi.org/10.1172/JCI153558>
521. Vandene Beele F, Lotteau S, Ducreux S, et al. TRPV1 variants impair intracellular Ca²⁺ signaling and may confer susceptibility to malignant hyperthermia. *Genet Med.* 2019;21(2):441–450. <https://doi.org/10.1038/s41436-018-0066-9>
522. Smit LAM, Kogevinas M, Antó JM, et al. Transient receptor potential genes, smoking, occupational exposures and cough in adults. *Respir Res.* 2012;13(1): 26. <https://doi.org/10.1186/1465-9921-13-26>
523. Siveen KS, Nizamuddin PB, Uddin S, et al. TRPV2: a cancer biomarker and potential therapeutic target. *Dis Markers.* 2020;2020:8892312. <https://doi.org/10.1155/2020/8892312>
524. Elbaz M, Ahirwar D, Xiaoli Z, et al. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. *Oncotarget.* 2018;9(71): 33459–33470. <https://doi.org/10.18632/oncotarget.9663>
525. Nabissi M, Morelli MB, Amantini C, et al. TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. *Carcinogenesis.* 2010;31(5):794–803. <https://doi.org/10.1093/carcin/bgq019>
526. Fabris S, Todoerti K, Mosca L, et al. Molecular and transcriptional characterization of the novel 17p11.2-p12 amplicon in multiple myeloma. *Genes Chromosomes Cancer.* 2007;46(12):1109–1118. <https://doi.org/10.1002/gcc.20494>
527. Monet M, Lehen'kyi V, Gackiere F, et al. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. *Cancer Res.* 2010;70(3):1225–1235. <https://doi.org/10.1158/0008-5472.CAN-09-2205>
528. Zoppoli P, Calice G, Laurino S, et al. TRPV2 calcium channel gene expression and outcomes in gastric cancer patients: a clinically relevant association. *J Clin Med.* 2019;8(5):662. <https://doi.org/10.3390/jcm8050662>
529. Qu Y, Wang G, Sun X, Wang K. Inhibition of the warm temperature-activated Ca²⁺-permeable transient receptor potential vanilloid TRPV3 channel attenuates atopic dermatitis. *Mol Pharmacol.* 2019;96(3):393–400. <https://doi.org/10.1124/mol.119.116962>

530. Larkin C, Chen W, Szabó IL, et al. Novel insights into the TRPV3-mediated itch in atopic dermatitis. *J Allergy Clin Immunol.* 2021;147(3):1110–1114.e5. <https://doi.org/10.1016/j.jaci.2020.09.028>
531. Özcan SS, Gürel G, Çakır M. Gene expression profiles of transient receptor potential (TRP) channels in the peripheral blood mononuclear cells of psoriasis patients. *Hum Exp Toxicol.* 2021;40(8):1234–1240. <https://doi.org/10.1177/0960327121991191>
532. Yang YS, Cho SI, Choi MG, et al. Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus. *Acta Derm Venereol.* 2015;95(1):20–24. <https://doi.org/10.2340/00011555-1858>
533. Kim HO, Jin Cheol K, Yu Gyeong K, In Suk K. Itching caused by TRPV3 (transient receptor potential Vanilloid-3) activator application to skin of burn patients. *Med (Kaunas Lith).* 2020;56(11):560. <https://doi.org/10.3390/medicina56110560>
534. Andreucci E, Aftimos S, Alcausin M, et al. TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted by clinical, radiographic, and molecular studies in 21 new families. *Orphanet J Rare Dis.* 2011;6:37. <https://doi.org/10.1186/1750-1172-6-37>
535. Nishimura G, Lausch E, Savarirayan R, et al. TRPV4-associated skeletal dysplasias. *Am J Med Genet C Semin Med Genet.* 2012;160C(3):190–204. <https://doi.org/10.1002/ajmgc.31335>
536. Rock MJ, Prenen J, Funari VA, et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. *Nat Genet.* 2008;40(8):999–1003. <https://doi.org/10.1038/ng.166>
537. Camacho N, Krakow D, Johnykytta S, et al. Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. *Am J Med Genet A.* 2010;152A(5):1169–1177. <https://doi.org/10.1002/ajmg.a.33392>
538. Krakow D, Vriens J, Camacho N, et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. *Am J Hum Genet.* 2009;84(3):307–315. <https://doi.org/10.1016/j.ajhg.2009.01.021>
539. Lamandé SR, Yuan Y, Gresshoff IL, et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. *Nat Genet.* 2011;43(11):1142–1146. <https://doi.org/10.1038/ng.945>
540. Auer-Grumbach M, Olschewski A, Papić L, et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. *Nat Genet.* 2010;42(2):160–164. <https://doi.org/10.1038/ng.508>
541. Landouré G, Zdebik AA, Martinez TL, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. *Nat Genet.* 2010;42(2):170–174. <https://doi.org/10.1038/ng.512>
542. Suzuki Y, Chitayat D, Sawada H, et al. TRPV6 variants interfere with maternal-fetal calcium transport through the placenta and cause transient neonatal hyperparathyroidism. *Am J Hum Genet.* 2018;102(6):1104–1114. <https://doi.org/10.1016/j.ajhg.2018.04.006>
543. Suzuki Y, Sawada H, Tokumasu T, et al. Novel TRPV6 mutations in the spectrum of transient neonatal hyperparathyroidism. *J Physiol Sci.* 2020;70(1):33. <https://doi.org/10.1186/s12576-020-00761-2>
544. Masamune A, Kotani H, Sörgel FL, et al. Variants that affect function of calcium channel TRPV6 are associated with early-onset chronic pancreatitis. *Gastroenterology.* 2020;158(6):1626–1641.e8. <https://doi.org/10.1053/j.gastro.2020.01.005>
545. Hamada S, Masson E, Chen J-M, et al. Functionally deficient TRPV6 variants contribute to hereditary and familial chronic pancreatitis. *Hum Mutat.* 2022;43(2):228–239. <https://doi.org/10.1002/humu.24315>
546. Lehen'kyi V, Prevarskaia N. Oncogenic TRP channels. *Adv Exp Med Biol.* 2011;704:929–945. https://doi.org/10.1007/978-94-007-0265-3_48
547. Peng JB, Zhuang L, Berger UV, et al. CaT1 expression correlates with tumor grade in prostate cancer. *Biochem Biophys Res Commun.* 2001;282(3):729–734. <https://doi.org/10.1006/bbrc.2001.4638>
548. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca²⁺-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. *Oncogene.* 2003;22(49):7858–7861. <https://doi.org/10.1038/sj.onc.1206895>
549. Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca²⁺ channel expression. *Biochem Biophys Res Commun.* 2004;322(4):1359–1363. <https://doi.org/10.1016/j.bbrc.2004.08.042>
550. Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. *Mol Cancer Ther.* 2008;7(2):271–279. <https://doi.org/10.1158/1535-7163.MCT-07-0478>
551. Dhennin-Duthille I, Gautier M, Faouzi M, et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. *Cell Physiol Biochem.* 2011;28(5):813–822. <https://doi.org/10.1159/000335795>
552. Xue H, Wang Y, MacCormack TJ, et al. Inhibition of Transient Receptor Potential vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. *J Cancer.* 2018;9(17):3196–3207. <https://doi.org/10.7150/jca.20639>
553. Mesquita G, Hastrate A, Mihalache A, et al. TRPV6 channel is involved in pancreatic ductal adenocarcinoma aggressiveness and resistance to chemotherapeutics. *Cancers.* 2023;15(24):5769. <https://doi.org/10.3390/cancers15245769>
554. Gunthorpe MJ, Hannan SL, Smart D, et al. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. *J Pharmacol Exp Ther.* 2007;321(3):1183–1192. <https://doi.org/10.1124/jpet.106.116657>
555. Doherty EM, Fotsch C, Bannon AW, et al. Novel vanilloid receptor-1 antagonists: 2. Structure-activity relationships of 4-oxopyrimidines leading to the selection of a clinical candidate. *J Med Chem.* 2007;50(15):3515–3527. <https://doi.org/10.1021/jm070190p>
556. Voight EA, Comtsyan AR, Daanen JF, et al. Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy. *J Med Chem.* 2014;57(17):7412–7424. <https://doi.org/10.1021/jm00916t>
557. Garami A, Pakal E, McDonald HA, et al. TRPV1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: compounds' pharmacological profiles, in vivo targets, thermoeffectors recruited and implications for drug development. *Acta Physiol.* 2018;223(3):e13038. <https://doi.org/10.1111/apha.13038>
558. Lehto SG, Tamir R, Deng H, et al. Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. *J Pharmacol Exp Ther.* 2008;326(1):218–229. <https://doi.org/10.1124/jpet.107.132233>
559. Brown W, Leff RL, Griffin A, et al. Safety, pharmacokinetics, and pharmacodynamics study in healthy subjects of oral NEO6860, a modality selective transient receptor potential vanilloid Subtype 1 antagonist. *J Pain.* 2017;18(6):726–738. <https://doi.org/10.1016/j.jpain.2017.01.009>
560. Yun JW, Seo JA, Jeong YS, et al. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. *J Dermatol Sci.* 2011;62(1):8–15. <https://doi.org/10.1016/j.jdermsci.2010.10.014>
561. Smart D, Jerman JC, Gunthorpe MJ, et al. Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. *Eur J Pharmacol.* 2001;417(1–2):51–58. [https://doi.org/10.1016/s0014-2999\(01\)00901-3](https://doi.org/10.1016/s0014-2999(01)00901-3)
562. Smart D, Gunthorpe MJ, Jerman JC, et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). *Br J Pharmacol.* 2000;129(2):227–230. <https://doi.org/10.1038/sj.bjp.0703050>
563. Knotts T, Mease K, Sangameswaran L, Felix M, Kramer S, Donovan J. Pharmacokinetics and local tissue response to local instillation of vocapsaicin, a novel capsaicin prodrug, in rat and rabbit osteotomy models. *J Orthop Res.* 2022;40(10):2281–2293. <https://doi.org/10.1002/jor.25271>
564. Iwata Y, Katayama Y, Okuno Y, Wakabayashi S. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model. *Oncotarget.* 2018;9(18):14042–14057. <https://doi.org/10.18632/oncotarget.24449>
565. Bluhm Y, Raudszus R, Wagner A, Urban N, Schaefer M, Hill K. Valdecoxib blocks rat TRPV2 channels. *Eur J Pharmacol.* 2022;915:174702. <https://doi.org/10.1016/j.ejphar.2021.174702>
566. Korolova Y, Makarieva T, Tabakmakher K, et al. Marine cyclic guanidine alkaloids Monanchomycalin B and Urupocidin A act as inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 receptors. *Mar Drugs.* 2017;15(4). <https://doi.org/10.3390/md15040087>
567. Zhou Q, Shi Y, Qi H, et al. Identification of two natural coumarin enantiomers for selective inhibition of TRPV2 channels. *FASEB J.* 2020;34(9):12338–12353. <https://doi.org/10.1096/fj.201901541rrr>
568. Conde J, Pumroy RA, Baker C, et al. Allosteric antagonist modulation of TRPV2 by piperlongumine impairs glioblastoma progression. *ACS Cent Sci.* 2021;7(5):868–881. <https://doi.org/10.1021/acscentsci.1c00070>
569. Chai H, Cheng X, Zhou B, et al. Structure-based discovery of a subtype-selective inhibitor targeting a transient receptor potential vanilloid channel. *J Med Chem.* 2019;62(3):1373–1384. <https://doi.org/10.1021/acs.jmedchem.8b01496>
570. Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. *Neurosci Lett.* 2007;425(2):120–125. <https://doi.org/10.1016/j.neulet.2007.08.035>
571. Qin N, Neper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. *J Neurosci.* 2008;28(24):6231–6238. <https://doi.org/10.1523/JNEUROSCI.0504-08.2008>
572. Han Y, Luo A, Kamau PM, et al. A plant-derived TRPV3 inhibitor suppresses pain and itch. *Br J Pharmacol.* 2021;178(7):1669–1683. <https://doi.org/10.1111/bph.15390>
573. Qi H, Shi Y, Wu H, Niu C, Sun X, Wang K. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritis. *Acta Pharm Sin B.* 2022;12(2):723–734. <https://doi.org/10.1016/j.apsb.2021.08.002>
574. Sun X-Y, Sun L-L, Qi H, et al. Antipruritic effect of natural coumarin osthole through selective inhibition of thermosensitive TRPV3 channel in the skin. *Mol Pharmacol.* 2018;94(4):1164–1173. <https://doi.org/10.1124/mol.118.112466>
575. Zhang H, Sun X, Qi H, et al. Pharmacological inhibition of the temperature-sensitive and Ca²⁺-permeable transient receptor potential vanilloid TRPV3 channel by natural Forsythoside B attenuates pruritus and cytotoxicity of keratinocytes. *J Pharmacol Exp Ther.* 2019;368(1):21–31. <https://doi.org/10.1124/jpet.118.254045>

576. Sun X, Qi H, Wu H, Qu Y, Wang K. Anti-pruritic and anti-inflammatory effects of natural verbascoside through selective inhibition of temperature-sensitive Ca²⁺-permeable TRPV3 channel. *J Dermatol Sci.* 2020;97(3):229–231. <https://doi.org/10.1016/j.jdermsci.2020.01.004>
577. Dang TH, Kim JY, Kim HJ, Kim BJ, Kim WK, Nam JH. Alpha-mangostin: a potent inhibitor of TRPV3 and pro-inflammatory cytokine secretion in keratinocytes. *Int J Mol Sci.* 2023;24(16):12930. <https://doi.org/10.3390/ijms241612930>
578. Gomtsyan A, Schmidt RG, Bayburt EK, et al. Synthesis and pharmacology of (Pyridin-2-yl)methanol derivatives as novel and selective transient receptor potential vanilloid 3 antagonists. *J Med Chem.* 2016;59(10):4926–4947. <https://doi.org/10.1021/acs.jmedchem.6b00287>
579. Fan J, Hu L, Yue Z, et al. Structural basis of TRPV3 inhibition by an antagonist. *Nat Chem Biol.* 2023;19(1):81–90. <https://doi.org/10.1038/s41589-022-01166-5>
580. Horishita R, Ogata Y, Fukui R, et al. Local anesthetics inhibit transient receptor potential vanilloid Subtype 3 channel function in *Xenopus* oocytes. *Anesth Analg.* 2021;132(6):1756–1767. <https://doi.org/10.1213/ANE.0000000000005546>
581. Liu Q, Wang J, Wei X, et al. Therapeutic inhibition of keratinocyte TRPV3 sensory channel by local anesthetic dyclonine. *eLife.* 2021;10:e68128. <https://doi.org/10.7554/eLife.68128>
582. Xu Y, Qu Y, Zhang C, et al. Selective inhibition of overactive warmth-sensitive Ca²⁺-permeable TRPV3 channels by antispasmodic agent flopropione for alleviation of skin inflammation. *J Biol Chem.* 2024;300(2):105595. <https://doi.org/10.1016/j.jbc.2023.105595>
583. Broad LM, Mogg AJ, Eberle E, Tolley M, Li DL, Knopp KL. TRPV3 in drug development. *Pharmaceuticals.* 2016;9(3):55. <https://doi.org/10.3390/ph9030055>
584. Vogt-Eisele AK, Weber K, Sherkheli MA, et al. Monoterpeneid agonists of TRPV3. *Br J Pharmacol.* 2007;151(4):530–540. <https://doi.org/10.1038/sj.bjp.0707245>
585. Moussaieff A, Rimmerman N, Bregman T, et al. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. *FASEB J.* 2008;22(8):3024–3034. <https://doi.org/10.1096/fj.07-101865>
586. De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. *Br J Pharmacol.* 2011;163(7):1479–1494. <https://doi.org/10.1111/j.1476-5381.2010.01166.x>
587. Thorneloe KS, Cheung M, Bao W, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. *Sci Transl Med.* 2012;4(159):159ra148. <https://doi.org/10.1126/scitranslmed.3004276>
588. Brooks CA, Barton LS, Behm DJ, et al. Discovery of GSK2798745: a clinical candidate for inhibition of transient receptor potential vanilloid 4 (TRPV4). *ACS Med Chem Lett.* 2019;10(8):1228–1233. <https://doi.org/10.1021/acsmmedchemlett.9b00274>
589. Everaerts W, Zhen X, Ghosh D, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. *Proc Natl Acad Sci U S A.* 2010;107(44):19084–19089. <https://doi.org/10.1073/pnas.1005333107>
590. Vincent F, Acevedo A, Nguyen MT, et al. Identification and characterization of novel TRPV4 modulators. *Biochem Biophys Res Commun.* 2009;389(3):490–494. <https://doi.org/10.1016/j.bbrc.2009.09.007>
591. Wei Z-L, Nguyen MT, O'Mahony DJR, et al. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. *Bioorg Med Chem Lett.* 2015;25(18):4011–4015. <https://doi.org/10.1016/j.bmcl.2015.06.098>
592. Thorneloe KS, Sulpizio AC, Lin Z, et al. N-((1 S)-1-[(4-((2 S)-2-[(2, 4-dichlorophenyl) sulfonyl] amino)-3-hydroxypropanoyl)-1-piperazinyl] carbonyl)-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. *J Pharmacol Exp Ther.* 2008;326(2):432–442. <https://doi.org/10.1124/jpet.108.139295>
593. Atobe M, Nagami T, Muramatsu S, et al. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation: identification of Quinazolin-4(3H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. *J Med Chem.* 2019;62(3):1468–1483. <https://doi.org/10.1021/acs.jmedchem.8b01615>
594. Shao J, Han J, Zhu Y, et al. Curcumin induces endothelium-dependent relaxation by activating endothelial TRPV4 channels. *J Cardiovasc Transl Res.* 2019;12(6):600–607. <https://doi.org/10.1007/s12265-019-0928-8>
595. Zhou T, Wang Z, Guo M, et al. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. *Food Funct.* 2020;11(11):10137–10148. <https://doi.org/10.1039/d0fo02356f>
596. Landowski CP, Bolanz KA, Suzuki Y, Hediger MA. Chemical inhibitors of the calcium entry channel TRPV6. *Pharm Res.* 2011;28(2):322–330. <https://doi.org/10.1007/s11095-010-0249-9>
597. Hughes TE, Del Rosario JS, Kapoor A, et al. Structure-based characterization of novel TRPV5 inhibitors. *eLife.* 2019;8:e49572. <https://doi.org/10.7554/eLife.49572>
598. Simonin C, Awale M, Brand M, et al. Optimization of TRPV6 calcium channel inhibitors using a 3D ligand-based virtual screening method. *Angew Chem Int Ed Engl.* 2015;54(49):14748–14752. <https://doi.org/10.1002/anie.201507320>
599. Cunha MR, Bhardwaj R, Carrel AL, et al. Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. *RSC Med Chem.* 2020;11(9):1032–1040. <https://doi.org/10.1039/d0md00145g>
600. Bowen CV, DeBay D, Ewart HS, et al. In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. *PLoS One.* 2013;8(3):e58866. <https://doi.org/10.1371/journal.pone.0058866>
601. Janssens A, Silvestri C, Martella A, Vanoevelen JM, Di Marzo V, Voets T. Δ9-tetrahydrocannabivarin impairs epithelial calcium transport through inhibition of TRPV5 and TRPV6. *Pharmacol Res.* 2018;136:83–89. <https://doi.org/10.1016/j.phrs.2018.08.021>
602. Cunha MR, Bhardwaj R, Lindinger S, et al. Photoswitchable inhibitor of the calcium channel TRPV6. *ACS Med Chem Lett.* 2019;10(9):1341–1345. <https://doi.org/10.1021/acsmmedchemlett.9b00298>
603. Bamps D, Vriens J, De Hoon J, Voets T. TRP channel cooperation for nociception: therapeutic opportunities. *Annu Rev Pharmacol Toxicol.* 2021;61:655–677. <https://doi.org/10.1146/annurev-pharmtox-010919-023238>
604. Arsenault P, Chiche D, Brown W, et al. NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. *PAIN Rep.* 2018;3(6):e696. <https://doi.org/10.1097/PR9.0000000000000096>
605. Hwang S-M, Jo Y-Y, Cohen CF, Kim Y-H, Berta T, Park C-K. Venom peptide toxins targeting the outer pore region of transient receptor potential vanilloid 1 in pain: implications for analgesic drug development. *Int J Mol Sci.* 2022;23(10):577. <https://doi.org/10.3390/ijms2310577>
606. Alalami K, Goff J, Crimson H, et al. Does topical capsaicin affect the central nervous system in neuropathic pain? A narrative review. *Pharmaceuticals.* 2024;17(7):842. <https://doi.org/10.3390/ph17070842>
607. Iwata Y, Matsumura T. Blockade of TRPV2 is a novel therapy for cardiomyopathy in muscular dystrophy. *Int J Mol Sci.* 2019;20(16):3844. <https://doi.org/10.3390/ijms20163844>
608. Nagata T, Shakado S, Yamauchi E, et al. Tranilast inhibits TRPV2 and suppresses fibrosis progression and weight gain in a NASH model mouse. *Anticancer Res.* 2024;44(8):3593–3604. <https://doi.org/10.21873/anticancer.17182>
609. Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. *Pharmacol Res.* 2015;91:15–28. <https://doi.org/10.1016/j.phrs.2014.10.009>
610. Zhang L, Simonsen C, Zimova L, et al. Cannabinoid non-cannabinoid site modulation of TRPV2 structure and function. *Nat Commun.* 2022;13(1):7483. <https://doi.org/10.1038/s41467-022-35163-y>
611. Sun S-W, Wang R-R, Sun X-Y, et al. Identification of transient receptor potential vanilloid 3 antagonists from Achillea alpina L. and separation by liquid-liquid-refining extraction and high-speed counter-current chromatography. *Molecules.* 2020;25(9):2025. <https://doi.org/10.3390/molecules25092025>
612. Neuberger A, Nadezhdin KD, Sobolevsky AI. Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole. *Nat Commun.* 2021;12(1):6284. <https://doi.org/10.1038/s41467-021-26608-x>
613. De Jesus-Perez JJD, Gabrielle M, Raheem S, Fluck EC, Rohacs T, Moiseenkova-Bell VY. Structural mechanism of TRPV5 inhibition by econazole. *Structure.* 2024;32(2):148–156.e5. <https://doi.org/10.1016/j.str.2023.11.012>
614. Haverstick DM, Heady TN, Macdonald TL, Gray LS. Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca²⁺ entry. *Cancer Res.* 2000;60(4):1002–1008.
615. Bhardwaj R, Lindinger S, Neuberger A, et al. Inactivation-mimicking block of the epithelial calcium channel TRPV6. *Sci Adv.* 2020;6(48):eabe1508. <https://doi.org/10.1126/sciadv.abe1508>
616. Humer C, Lindinger S, Carrel AL, Romanin C, Höglinder C. TRPV6 Regulation by Cis-22a and cholesterol. *Biomolecules.* 2022;12(6):804. <https://doi.org/10.3390/biom12060804>
617. Neuberger A, Trofimov YA, Yelshanskaya MV, et al. Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin. *Nat Commun.* 2023;14(1):4630. <https://doi.org/10.1038/s41467-023-40362-2>
618. Lee KP, Koshelev MV. Upcoming topical TRPV1 anti-pruritic compounds. *Dermatol Online J.* 2020;26(9). <https://doi.org/10.5070/D3269050158>
619. Iftinca M, Defaye M, Altier C. TRPV1-targeted drugs in development for human pain conditions. *Drugs.* 2021;81(1):7–27. <https://doi.org/10.1007/s40265-020-01429-2>
620. Rubinstein J, Woo JG, Garcia AM, et al. Probencid improves cardiac function in subjects with a Fontan circulation and augments cardiomyocyte calcium homeostasis. *Pediatr Cardiol.* 2020;41(8):1675–1688. <https://doi.org/10.1007/s00246-020-02427-7>
621. Robbins N, Gilbert M, Kumar M, et al. Probencid improves cardiac function in patients with heart failure with reduced ejection fraction in vivo and cardiomyocyte calcium sensitivity in vitro. *J Am Heart Assoc.* 2018;7(2):e007148. <https://doi.org/10.1161/JAHA.117.007148>
622. Shiozaki A, Kudou M, Fujiwara H, et al. Clinical safety and efficacy of neoadjuvant combination chemotherapy of tranilast in advanced esophageal squamous cell carcinoma: Phase I/II study (TNAC). *Medicine.* 2020;99(50):e23633. <https://doi.org/10.1097/MD.00000000000023633>
623. Goyal N, Skrdla P, Schroyer R, et al. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. *Am J Cardiovasc Drugs.* 2019;19(3):335–342. <https://doi.org/10.1007/s40256-018-00320-6>
624. Stewart GM, Johnson BD, Sprecher DL, et al. Targeting pulmonary capillary permeability to reduce lung congestion in heart failure: a randomized, controlled pilot trial. *Eur J Heart Fail.* 2020;22(9):1641–1645. <https://doi.org/10.1002/ejhf.1809>

625. Mole S, Harry A, Fowler A, et al. Investigating the effect of TRPV4 inhibition on pulmonary-vascular barrier permeability following segmental endotoxin challenge. *Pulm Pharmacol Ther.* 2020;64:101977. <https://doi.org/10.1016/j.pupt.2020.101977>
626. Fu S, Hirte H, Welch S, et al. First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. *Investig New Drugs.* 2017;35(3):324–333. <https://doi.org/10.1007/s10637-017-0438-z>
627. Clapham DE, Montell C, Schultz G, Julius D, International Union of Pharmacology. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. *Pharmacol Rev.* 2003;55(4):591–596. <https://doi.org/10.1124/pr.55.4.6>
628. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. *Trends Pharmacol Sci.* 2004;25(12):633–639. <https://doi.org/10.1016/j.tips.2004.10.004>
629. Chubanov V, Waldegg S, Mederos Y, Schnitzler M, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. *Proc Natl Acad Sci U S A.* 2004;101(9):2894–2899. <https://doi.org/10.1073/pnas.0305252101>
630. Ferioli S, Zierler S, Zaibserer J, Schredelseker J, Gudermann T, Chubanov V. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg²⁺ and Mg-ATP. *Sci Rep.* 2017;7(1):8806. <https://doi.org/10.1038/s41598-017-08144-1>
631. Zhang Z, Yu H, Huang J, et al. The TRPM6 kinase domain determines the Mg-ATP sensitivity of TRPM7/M6 heteromeric ion channels. *J Biol Chem.* 2014;289(8):5217–5227. <https://doi.org/10.1074/jbc.M113.512285>
632. Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. *J Gen Physiol.* 2006;127(5):525–537. <https://doi.org/10.1085/jgp.200609502>
633. Lambert S, Drews A, Rizun O, et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. *J Biol Chem.* 2011;286(14):12221–12233. <https://doi.org/10.1074/jbc.M110.202945>
634. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca²⁺ explains unique gating regulation. *eLife.* 2018;7: e36409. <https://doi.org/10.7554/eLife.36409>
635. Yin Y, Wu M, Hsu AL, et al. Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. *Nat Commun.* 2019;10(1):3740. <https://doi.org/10.1038/s41467-019-11733-5>
636. Huang Y, Winkler PA, Sun W, Lü W, Du J. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. *Nature.* 2018;562(7725):145–149. <https://doi.org/10.1038/s41586-018-0558-4>
637. Huang Y, Roth B, Lü W, Du J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. *eLife.* 2019;8: e50175. <https://doi.org/10.7554/eLife.50175>
638. Wang L, Fu TM, Zhou Y, Xia S, Greka A, Wu H. Structures and gating mechanism of human TRPM2. *Science.* 2018;362(6421):eaav4809. <https://doi.org/10.1126/science.aav4809>
639. Yu X, Xie Y, Zhang X, et al. Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. *Cell Rep.* 2021;37(7):110025. <https://doi.org/10.1016/j.celrep.2021.110025>
640. Huang Y, Kumar S, Lee J, Lü W, Du J. Coupling enzymatic activity and gating in an ancient TRPM channzyme and its molecular evolution. *Nat Struct Mol Biol.* 2024;31(10):1509–1521. <https://doi.org/10.1038/s41594-024-01316-4>
641. Zhao C, MacKinnon R. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. *Neuron.* 2023;111(1):81–91.e7. <https://doi.org/10.1016/j.neuron.2022.10.002>
642. Yin Y, Park CG, Feng S, et al. Molecular basis of neurosteroid and anticonvulsant regulation of TRPM3. *Nat Struct Mol Biol.* 2025;32(5):828–840. <https://doi.org/10.1038/s41594-024-01463-8>
643. Kumar S, Jin F, Park SJ, et al. Convergent agonist and heat activation of nociceptor TRPM3. *bioRxiv.* 2025;2025.01.23.634542. <https://doi.org/10.1101/2025.01.23.634542>
644. Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y. Structures of the calcium-activated, non-selective cation channel TRPM4. *Nature.* 2017;552(7684): 205–209. <https://doi.org/10.1038/nature24997>
645. Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. *Science.* 2018;359(6372):228–232. <https://doi.org/10.1126/science.aar4510>
646. Winkler PA, Huang Y, Sun W, Du J, Lü W. Electron cryo-microscopy structure of a human TRPM4 channel. *Nature.* 2017;552(7684):200–204. <https://doi.org/10.1038/nature24674>
647. Duan J, Li Z, Li J, et al. Structure of full-length human TRPM4. *Proc Natl Acad Sci U S A.* 2018;115(10):2377–2382. <https://doi.org/10.1073/pnas.1722038115>
648. Hu J, Park SJ, Walter T, et al. Physiological temperature drives TRPM4 ligand recognition and gating. *Nature.* 2024;630(8016):509–515. <https://doi.org/10.1038/s41586-024-07436-7>
649. Ruan Z, Haley E, Orozco JJ, et al. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. *Nat Struct Mol Biol.* 2021;28(7): 604–613. <https://doi.org/10.1038/s41594-021-00607-4>
650. Karuppan S, Schrag LG, Pastrano CM, Jara-Oseguera A, Zubcevic L. Structural dynamics at cytosolic interprotomer interfaces control gating of a mammalian TRPM5 channel. *Proc Natl Acad Sci U S A.* 2024;121(27): e240333121. <https://doi.org/10.1073/pnas.240333121>
651. Duan J, Li Z, Li J, et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. *Proc Natl Acad Sci U S A.* 2018;115(35):E8201–E8210. <https://doi.org/10.1073/pnas.1810719115>
652. Nadezhdin KD, Correia L, Shalygin A, et al. Structural basis of selective TRPM7 inhibition by the anticancer agent CCT128930. *Cell Rep.* 2024;43(4):114108. <https://doi.org/10.1016/j.celrep.2024.114108>
653. Nadezhdin KD, Correia L, Narangoda C, et al. Structural mechanisms of TRPM7 activation and inhibition. *Nat Commun.* 2023;14(1):2639. <https://doi.org/10.1038/s41467-023-38362-3>
654. Diver MM, Cheng Y, Julius D. Structural insights into TRPM8 inhibition and desensitization. *Science.* 2019;365(6460):1434–1440. <https://doi.org/10.1126/science.aax6672>
655. Zhao C, Xie Y, Xu L, et al. Structures of a mammalian TRPM8 in closed state. *Nat Commun.* 2022;13(1):3113. <https://doi.org/10.1038/s41467-022-30919-y>
656. Yin Y, Zhang F, Feng S, et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2. *Science.* 2022;378(6616): eadd1268. <https://doi.org/10.1126/science.add1268>
657. Huang Y, Fliegert R, Guse AH, Lü W, Du J. A structural overview of the ion channels of the TRPM family. *Cell Calcium.* 2020;85:102111. <https://doi.org/10.1016/j.ceca.2019.102111>
658. Chen Y, Zhang X, Yang T, et al. Emerging structural biology of TRPM subfamily channels. *Cell Calcium.* 2019;79:75–79. <https://doi.org/10.1016/j.ceca.2019.02.011>
659. Perraud AL, Fleig A, Dunn CA, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. *Nature.* 2001;411(6837):595–599. <https://doi.org/10.1038/35079100>
660. Shen BW, Perraud AL, Scharenberg A, Stoddard BL. The crystal structure and mutational analysis of human NUDT9. *J Mol Biol.* 2003;332(2):385–398. [https://doi.org/10.1016/s0022-2836\(03\)00954-9](https://doi.org/10.1016/s0022-2836(03)00954-9)
661. Mildvan AS, Xia Z, Azurmendi HF, et al. Structures and mechanisms of Nudix hydrolases. *Arch Biochem Biophys.* 2005;433(1):129–143. <https://doi.org/10.1016/j.abb.2004.08.017>
662. Szollosi A. Two decades of evolution of our understanding of the transient receptor potential melastatin 2 (TRPM2) cation channel. *Life.* 2021;11(5): 397. <https://doi.org/10.3390/life11050397>
663. Chubanov V, Gudermann T. Trpm. TRPM6. *Handb Exp Pharmacol.* 2014;222: 503–520. https://doi.org/10.1007/978-3-642-54215-2_20
664. Fleig A, Chubanov V. TRPM7. *Handb Exp Pharmacol.* 2014;222:521–546. https://doi.org/10.1007/978-3-642-54215-2_21
665. Chubanov V, Mittermeier L, Gudermann T. Role of kinase-coupled TRP channels in mineral homeostasis. *Pharmacol Ther.* 2018;184:159–176. <https://doi.org/10.1016/j.pharmthera.2017.11.003>
666. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. *Mol Cell.* 2001;7(5):1047–1057. [https://doi.org/10.1016/s1097-2765\(01\)00256-8](https://doi.org/10.1016/s1097-2765(01)00256-8)
667. Ryazanov AG, Ward MD, Mendola CE, et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. *Proc Natl Acad Sci U S A.* 1997;94(10):4884–4889. <https://doi.org/10.1073/pnas.94.10.4884>
668. Xu XZ, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. *Proc Natl Acad Sci U S A.* 2001;98(19):10692–10697. <https://doi.org/10.1073/pnas.191360198>
669. Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. *J Biol Chem.* 2002;277(26):23150–23156. <https://doi.org/10.1074/jbc.M112096200>
670. Zhang W, Chu X, Tong Q, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. *J Biol Chem.* 2003;278(18):16222–16229. <https://doi.org/10.1074/jbc.M300298200>
671. Uemura T, Kudoh J, Noda S, Kanba S, Shimizu N. Characterization of human and mouse TRPM2 genes: identification of a novel N-terminal truncated protein specifically expressed in human striatum. *Biochem Biophys Res Commun.* 2005;328(4):1232–1243. <https://doi.org/10.1016/j.bbrc.2005.01.086>
672. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. *J Biol Chem.* 2005;280(23):22540–22548. <https://doi.org/10.1074/jbc.M503092200>
673. Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. *Curr Biol.* 2003;13(13):1153–1158. [https://doi.org/10.1016/s0960-9822\(03\)00431-7](https://doi.org/10.1016/s0960-9822(03)00431-7)
674. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca²⁺-activated nonselective cation channel mediating cell membrane depolarization. *Cell.* 2002;109(3):397–407. [https://doi.org/10.1016/s0092-8674\(02\)00719-5](https://doi.org/10.1016/s0092-8674(02)00719-5)
675. Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. *Nat Cell Biol.* 2002;4(5):329–336. <https://doi.org/10.1038/ncb781>
676. Schneider FM, Mohr F, Behrendt M, Oberwinkler J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. *Eur J Cell Biol.* 2015;94(7–9):420–427. <https://doi.org/10.1016/j.ejcb.2015.06.005>

677. Oberwinkler J, Phillip SE. TRPM3. *Handb Exp Pharmacol*. 2007;179:253–267. https://doi.org/10.1007/978-3-540-34891-7_15
678. Held K, Aloi VD, Freitas ACN, et al. Pharmacological properties of TRPM3 isoforms are determined by the length of the pore loop. *Br J Pharmacol*. 2022;179(14):3560–3575. <https://doi.org/10.1111/bph.15223>
679. Wagner TFJ, Drews A, Loch S, et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. *Pflügers Arch*. 2010;460(4):755–765. <https://doi.org/10.1007/s00424-010-0838-9>
680. Held K, Gruss F, Aloi VD, et al. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. *J Physiol*. 2018;596(12):2413–2422. <https://doi.org/10.1113/jp274124>
681. Vriens J, Held K, Janssens A, et al. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. *Nat Chem Biol*. 2014;10(3):188–195. <https://doi.org/10.1038/nchembio.1428>
682. Wagner TFJ, Loch S, Lambert S, et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. *Nat Cell Biol*. 2008;10(12):1421–1430. <https://doi.org/10.1038/ncb1801>
683. Tóth BI, Konrad M, Ghosh D, et al. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. *J Gen Physiol*. 2015;146(1):51–63. <https://doi.org/10.1085/jgp.201411339>
684. Persoons E, Kerselaers S, Voets T, Vriens J, Held K. Partial agonistic actions of sex hormone steroids on TRPM3 function. *Int J Mol Sci*. 2021;22(24):13652. <https://doi.org/10.3390/ijms222413652>
685. Grimm C, Kraft R, Schultz G, Harteneck C. Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. *Mol Pharmacol*. 2005;67(3):798–805. <https://doi.org/10.1124/mol.104.006734>
686. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. *J Biol Chem*. 2003;278(24):21493–21501. <https://doi.org/10.1074/jbc.M300945200>
687. Vriens J, Owsianik G, Hofmann T, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. *Neuron*. 2011;70(3):482–494. <https://doi.org/10.1016/j.neuron.2011.02.051>
688. Mulier M, Van Ranst N, Corthout N, et al. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. *eLife*. 2020;9:e61103. <https://doi.org/10.7554/eLife.61103>
689. Dembla S, Behrendt M, Mohr F, et al. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. *eLife*. 2017;6:e26280. <https://doi.org/10.7554/eLife.26280>
690. Behrendt M, Gruss F, Enzeroth R, et al. The structural basis for an on-off switch controlling Gbetagamma-mediated inhibition of TRPM3 channels. *Proc Natl Acad Sci U S A*. 2020;117(46):29090–29100. <https://doi.org/10.1073/pnas.2001177117>
691. Kollewe A, Chubanov V, Tseung FT, et al. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. *eLife*. 2021;10:e68544. <https://doi.org/10.7554/eLife.68544>
692. Bai Z, Feng J, Franken GAC, et al. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. *PLoS Biol*. 2021;19(12):e3001496. <https://doi.org/10.1371/journal.pbio.3001496>
693. Mittermeier L, Demirkhanian L, Stadlbauer B, et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. *Proc Natl Acad Sci U S A*. 2019;116(10):4706–4715. <https://doi.org/10.1073/pnas.1810633116>
694. Schmitz C, Perraud AL, Johnson CO, et al. Regulation of vertebrate cellular Mg²⁺ homeostasis by TRPM7. *Cell*. 2003;114(2):191–200. [https://doi.org/10.1016/s0092-8674\(03\)00556-7](https://doi.org/10.1016/s0092-8674(03)00556-7)
695. Abiria SA, Krapivinsky G, Sah R, et al. TRPM7 senses oxidative stress to release Zn²⁺ from unique intracellular vesicles. *Proc Natl Acad Sci U S A*. 2017;114(30):E6079–E6088. <https://doi.org/10.1073/pnas.1707380114>
696. Monteilh-Zoller MK, Hermosura MC, Nadler MJS, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. *J Gen Physiol*. 2003;121(1):49–60. <https://doi.org/10.1085/jgp.20028740>
697. Faouzi M, Kilch T, Horgen FD, Fleig A, Penner R. The TRPM7 channel kinase regulates store-operated calcium entry. *J Physiol*. 2017;595(10):3165–3180. <https://doi.org/10.1113/jp274006>
698. Bates-Withers C, Sah R, Clapham DE. TRPM7, the Mg(2+) inhibited channel and kinase. *Adv Exp Med Biol*. 2011;704:173–183. https://doi.org/10.1007/978-94-007-0265-3_9
699. Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. *J Gen Physiol*. 2006;127(4):421–434. <https://doi.org/10.1085/jgp.200509410>
700. Kozak JA, Matsushita M, Nairn AC, Cahalan MD. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. *J Gen Physiol*. 2005;126(5):499–514. <https://doi.org/10.1085/jgp.200509324>
701. Xie J, Sun B, Du J, et al. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper TRPM6 activity. *Sci Rep*. 2011;1:146. <https://doi.org/10.1038/srep00146>
702. Schmidt E, Narangoda C, Nörenberg W, et al. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. *Cell Mol Life Sci*. 2022;79(5):225. <https://doi.org/10.1007/s00018-022-04192-7>
703. Clark K, Middelbeek J, Morrice NA, Figgord CG, Lasonder E, van Leeuwen FN. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. *PLoS One*. 2008;3(3):e1876. <https://doi.org/10.1371/journal.pone.0001876>
704. Matsushita M, Kozak JA, Shimizu Y, et al. Channel function is dissociated from the intrinsic kinase activity and autoprophosphorylation of TRPM7/Chak1. *J Biol Chem*. 2005;280(21):20793–20803. <https://doi.org/10.1074/jbc.M413671200>
705. Desai BN, Krapivinsky G, Navarro B, et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. *Dev Cell*. 2012;22(6):1149–1162. <https://doi.org/10.1016/j.devcel.2012.04.006>
706. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 channzyme is cleaved to release a chromatin-modifying kinase. *Cell*. 2014;157(5):1061–1072. <https://doi.org/10.1016/j.cell.2014.03.046>
707. Krapivinsky G, Krapivinsky L, Renthal NE, Santa-Cruz A, Manasian Y, Clapham DE. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. *Proc Natl Acad Sci U S A*. 2017;114(34):E7092–E7100. <https://doi.org/10.1073/pnas.1708427114>
708. Brandao K, Deason-Towne F, Zhao X, Perraud AL, Schmitz C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. *Cell Mol Life Sci*. 2014;71(24):4853–4867. <https://doi.org/10.1007/s00018-014-1647-7>
709. Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. *J Biol Chem*. 2004;279(49):50643–50646. <https://doi.org/10.1074/jbc.C400441200>
710. Clark K, Middelbeek J, Lasonder E, et al. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. *J Mol Biol*. 2008;378(4):790–803. <https://doi.org/10.1016/j.jmb.2008.02.057>
711. Perraud AL, Zhao X, Ryazanov AG, Schmitz C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. *Cell Signal*. 2011;23(3):586–593. <https://doi.org/10.1016/j.cellsig.2010.11.011>
712. Dorovkov MV, Beznosov SN, Shah S, Kotlianskaia L, Kostikova AS. [Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin]. *Biofizika*. 2008;53(6):943–949. <https://doi.org/10.1134/S0006350908060055>
713. Deason-Towne F, Perraud AL, Schmitz C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. *Cell Signal*. 2012;24(11):2070–2075. <https://doi.org/10.1016/j.cellsig.2012.06.015>
714. Romagnani A, Vettore V, Rezzonico-Jost T, et al. TRPM7 kinase activity is essential for T cell colonization and allorreactivity in the gut. *Nat Commun*. 2017;8(1):1917. <https://doi.org/10.1038/s41467-017-01960-z>
715. Voringer S, Schreyer L, Nadolni W, et al. Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. *Oncogene*. 2020;39(11):2328–2344. <https://doi.org/10.1038/s41388-019-1140-8>
716. Ogata K, Tsumuraya T, Oka K, et al. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. *Sci Rep*. 2017;7(1):18099. <https://doi.org/10.1038/s41598-017-18291-0>
717. Sano Y, Inamura K, Miyake A, et al. Immunocyte Ca²⁺ influx system mediated by LTRPC2. *Science*. 2001;293(5533):1327–1330. <https://doi.org/10.1126/science.1062473>
718. Kolisek M, Beck A, Fleig A, Penner R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. *Mol Cell*. 2005;18(1):61–69. <https://doi.org/10.1016/j.molcel.2005.02.033>
719. Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. Nicotinamide adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. *FASEB J*. 2006;20(7):962–964. <https://doi.org/10.1096/fj.05-5538je>
720. Lange I, Penner R, Fleig A, Beck A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. *Cell Calcium*. 2008;44(6):604–615. <https://doi.org/10.1016/j.ceca.2008.05.001>
721. Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling. *J Physiol*. 2011;589(7):1515–1525. <https://doi.org/10.1113/jphysiol.2010.201855>
722. Faouzi M, Penner R. TRPM2. *Handb Exp Pharmacol*. 2014;222:403–426. https://doi.org/10.1007/978-3-642-54215-2_16
723. Yu P, Liu Z, Yu X, et al. Direct gating of the TRPM2 channel by cADPR via specific interactions with the ADPR binding pocket. *Cell Rep*. 2019;27(12):3684–3695.e4. <https://doi.org/10.1016/j.celrep.2019.05.067>
724. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca²⁺ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. *J Biol Chem*. 2003;278(13):11002–11006. <https://doi.org/10.1074/jbc.M210810200>
725. Starkus J, Beck A, Fleig A, Penner R. Regulation of TRPM2 by extra- and intracellular calcium. *J Gen Physiol*. 2007;130(4):427–440. <https://doi.org/10.1085/jgp.200709836>
726. Tóth B, Csanády L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. *J Biol Chem*. 2010;285(39):30091–30102. <https://doi.org/10.1074/jbc.M109.066464>
727. Csanády L, Törökcsik B. Four Ca²⁺ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. *J Gen Physiol*. 2009;133(2):189–203. <https://doi.org/10.1085/jgp.200810109>
728. Tóth B, Csanády L. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. *Proc Natl Acad Sci USA*. 2012;109(33):13440–13445. <https://doi.org/10.1073/pnas.1204702109>

729. Song K, Wang H, Kamm GB, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. *Science*. 2016;353(6306):1393–1398. <https://doi.org/10.1126/science.aaf7537>
730. Tan CH, McNaughton PA. The TRPM2 ion channel is required for sensitivity to warmth. *Nature*. 2016;536(7617):460–463. <https://doi.org/10.1038/nature19074>
731. Togashi K, Hara Y, Tominaga T, et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. *EMBO J*. 2006;25(9):1804–1815. <https://doi.org/10.1038/sj.emboj.7601083>
732. Bartók Á, Csanády L. Dual amplification strategy turns TRPM2 channels into supersensitive central heat detectors. *Proc Natl Acad Sci U S A*. 2022;119(48):e2212378119. <https://doi.org/10.1073/pnas.2212378119>
733. Hara Y, Wakamori M, Ishii M, et al. LTRPC2 Ca²⁺-permeable channel activated by changes in redox status confers susceptibility to cell death. *Mol Cell*. 2002;9(1):163–173. [https://doi.org/10.1016/s1097-2765\(01\)00438-5](https://doi.org/10.1016/s1097-2765(01)00438-5)
734. Perraud AL, Takanishi CL, Shen B, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. *J Biol Chem*. 2005;280(7):6138–6148. <https://doi.org/10.1074/jbc.M411446200>
735. Grubisha O, Rafty LA, Takanishi CL, et al. Metabolite of SIR2 reaction modulates TRPM2 ion channel. *J Biol Chem*. 2006;281(20):14057–14065. <https://doi.org/10.1074/jbc.M513741200>
736. Fuessel S, Sickert D, Meye A, et al. Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. *Int J Oncol*. 2003;23(1):221–228. <https://doi.org/10.3892/ijo.23.1.221>
737. Tsavalier L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. *Cancer Res*. 2001;61(9):3760–3769.
738. Brauchi S, Orio P, Latorre R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. *Proc Natl Acad Sci U S A*. 2004;101(43):15494–15499. <https://doi.org/10.1073/pnas.0406773101>
739. Yudin Y, Lukacs V, Cao C, Rohacs T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. *J Physiol*. 2011;589(24):6007–6027. <https://doi.org/10.1113/jphysiol.2011.222028>
740. Liu L, Yudin Y, Nagwekar J, Kang C, Shirokova N, Rohacs T. Gαq sensitizes TRPM8 to inhibition by PI(4,5)P2 depletion upon receptor activation. *J Neurosci*. 2019;39(31):6067–6080. <https://doi.org/10.1523/JNEUROSCI.2304-18.2019>
741. Liu L, Rohacs T. Regulation of the cold-sensing TRPM8 channels by phosphoinositides and G(q)-coupled receptors. *Channels*. 2020;14(1):79–86. <https://doi.org/10.1080/19336950.2020.1734266>
742. Yin Y, Lee SY. Current view of ligand and lipid recognition by the menthol receptor TRPM8. *Trends Biochem Sci*. 2020;45(9):806–819. <https://doi.org/10.1016/j.tibs.2020.05.008>
743. Xu L, Han Y, Chen X, et al. Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. *Nat Commun*. 2020;11(1):3790. <https://doi.org/10.1038/s41467-020-17582-x>
744. Lu X, Yao Z, Wang Y, et al. The acquisition of cold sensitivity during TRPM8 ion channel evolution. *Proc Natl Acad Sci U S A*. 2022;119(21):e2201349119. <https://doi.org/10.1073/pnas.2201349119>
745. Voets T, Owsianik G, Nilius B. TRPM8. *Handb Exp Pharmacol*. 2007;179:329–344. https://doi.org/10.1007/978-3-540-34891-2_20
746. Prawitt D, Monteith-Zoller MK, Brixel L, et al. TRPM5 is a transient Ca²⁺-activated cation channel responding to rapid changes in [Ca²⁺]. *Proc Natl Acad Sci U S A*. 2003;100(25):15166–15171. <https://doi.org/10.1073/pnas.2334624100>
747. Liu D, Liman ER. Intracellular Ca²⁺ and the phospholipidPIP2 regulate the taste transduction ion channel TRPM5. *Proc Natl Acad Sci U S A*. 2003;100(25):15160–15165. <https://doi.org/10.1073/pnas.2334159100>
748. Nilius B, Prenen J, Droogmans G, et al. Voltage dependence of the Ca²⁺-activated cation channel TRPM4. *J Biol Chem*. 2003;278(33):30813–30820. <https://doi.org/10.1074/jbc.M305127200>
749. Nilius B, Prenen J, Tang J, et al. Regulation of the Ca²⁺ sensitivity of the nonselective cation channel TRPM4. *J Biol Chem*. 2005;280(8):6423–6433. <https://doi.org/10.1074/jbc.M411089200>
750. Ullrich ND, Voets T, Prenen J, et al. Comparison of functional properties of the Ca²⁺-activated cation channels TRPM4 and TRPM5 from mice. *Cell Calcium*. 2005;37(3):267–278. <https://doi.org/10.1016/j.ceca.2004.11.001>
751. Talavera K, Yasumatsu K, Voets T, et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. *Nature*. 2005;438(7070):1022–1025. <https://doi.org/10.1038/nature04248>
752. Vennekens R, Nilius B. Insights into TRPM4 function, regulation and physiological role. *Handb Exp Pharmacol*. 2007;179:269–285. https://doi.org/10.1007/978-3-540-34891-7_16
753. Duncan LM, Deeds J, Hunter J, et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. *Cancer Res*. 1998;58(7):1515–1520.
754. Irie S, Furukawa T. TRPM1. *Handb Exp Pharmacol*. 2014;222:387–402. https://doi.org/10.1007/978-3-642-54215-2_15
755. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. TRPM1 forms ion channels associated with melanin content in melanocytes. *Sci Signal*. 2009;2(70):ra21. <https://doi.org/10.1126/scisignal.2000146>
756. Morgans CW, Zhang J, Jeffrey BG, et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. *Proc Natl Acad Sci U S A*. 2009;106(45):19174–19178. <https://doi.org/10.1073/pnas.0908711106>
757. Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. *J Neurosci*. 2009;29(19):6088–6093. <https://doi.org/10.1523/JNEUROSCI.0132-09.2009>
758. Bellone RR, Brooks SA, Sandmeyer L, et al. Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (*Equus caballus*). *Genetics*. 2008;179(4):1861–1870. <https://doi.org/10.1534/genetics.108.088807>
759. van Genderen MM, Bijveld MMC, Claassen YB, et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. *Am J Hum Genet*. 2009;85(5):730–736. <https://doi.org/10.1016/j.ajhg.2009.10.012>
760. Audo I, Kohl S, Leroy BP, et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. *Am J Hum Genet*. 2009;85(5):720–729. <https://doi.org/10.1016/j.ajhg.2009.10.013>
761. Li Z, Sergouniotis PI, Michaelides M, et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. *Am J Hum Genet*. 2009;85(5):711–719. <https://doi.org/10.1016/j.ajhg.2009.10.003>
762. Iosifidis C, Liu J, Gale T, et al. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. *Acta Ophthalmol*. 2022;100(6):e1332–e1339. <https://doi.org/10.1111/aoe.15186>
763. Shen Y, Rampino MAF, Carroll RC, Nawy S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the G β γ dimer. *Proc Natl Acad Sci U S A*. 2012;109(22):8752–8757. <https://doi.org/10.1073/pnas.1117433109>
764. Xu Y, Orlando C, Cao Y, et al. The TRPM1 channel in ON-bipolar cells is gated by both the α and the β γ subunits of the G-protein Go. *Sci Rep*. 2016;6:20940. <https://doi.org/10.1038/srep20940>
765. Zhao S, Carnevale V, Gabriele M, Gianti E, Rohacs T. Computational and functional studies of the PI(4,5)P2 binding site of the TRPM3 ion channel reveal interactions with other regulators. *J Biol Chem*. 2022;298(11):102547. <https://doi.org/10.1016/j.jbc.2022.102547>
766. Vandewauw I, De Clercq K, Mulier M, et al. A TRP channel trio mediates acute noxious heat sensing. *Nature*. 2018;555(7698):662–666. <https://doi.org/10.1038/nature26137>
767. Vanneste M, Mulier M, Nogueira Freitas AC, et al. TRPM3 is expressed in afferent bladder neurons and is upregulated during bladder inflammation. *Int J Mol Sci*. 2021;23(1):107. <https://doi.org/10.3390/ijms23010107>
768. Zhao M, Liu L, Chen Z, et al. Upregulation of transient receptor potential cation channel subfamily M member-3 in bladder afferents is involved in chronic pain in cyclophosphamide-induced cystitis. *Pain*. 2022;163(11):2200–2212. <https://doi.org/10.1097/j.pain.0000000000002616>
769. Vriens J, Voets T. Sensing the heat with TRPM3. *Pflugers Arch*. 2018;470(5):799–807. <https://doi.org/10.1007/s00424-017-2100-1>
770. Kerschbaum HH, Cahalan MD. Single-channel recording of a store-operated Ca²⁺ channel in Jurkat T lymphocytes. *Science*. 1999;283(5403):836–839. <https://doi.org/10.1126/science.283.5403.836>
771. Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg²⁺-inhibited cation (MIC) channels. *J Gen Physiol*. 2002;119(5):487–507. <https://doi.org/10.1085/jgp.20028551>
772. Kozak JA, Kerschbaum HH, Cahalan MD. Distinct properties of CRAC and MIC channels in RBL cells. *J Gen Physiol*. 2002;120(2):221–235. <https://doi.org/10.1085/jgp.20028601>
773. Nadler MJ, Hermosura MC, Inabe K, et al. LTRPC7 is a Mg²⁺-ATP-regulated divalent cation channel required for cell viability. *Nature*. 2001;411(6837):590–595. <https://doi.org/10.1038/35079092>
774. Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. *Nat Rev Neurosci*. 2001;2(6):387–396. <https://doi.org/10.1038/35077544>
775. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. *J Biol Chem*. 2004;279(5):3708–3716. <https://doi.org/10.1074/jbc.M308820200>
776. Ryazanova LV, Rondon IJ, Zierler S, et al. TRPM7 is essential for Mg²⁺ homeostasis in mammals. *Nat Commun*. 2010;1:109. <https://doi.org/10.1038/ncomms1108>
777. Ardestani G, Mehregan A, Fleig A, Horgen FD, Carvacho I, Fissore RA. Divalent cation influx and calcium homeostasis in germinal vesicle mouse oocytes. *Cell Calcium*. 2020;87:102181. <https://doi.org/10.1016/j.ceca.2020.102181>
778. Tashiro M, Inoue H, Konishi M. Modulation of Mg²⁺ influx and cytoplasmic free Mg²⁺ concentration in rat ventricular myocytes. *J Physiol Sci*. 2019;69(1):97–102. <https://doi.org/10.1007/s12576-018-0625-5>
779. Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. *Science*. 2001;291(5506):1043–1047. <https://doi.org/10.1126/science.1058519>
780. Schappe MS, Strembska ME, Busey GW, et al. Efferocytosis requires periphagosomal Ca²⁺-signaling and TRPM7-mediated electrical activity. *Nat Commun*. 2022;13(1):3230. <https://doi.org/10.1038/s41467-022-30959-4>
781. Schappe MS, Szteyn K, Strembska ME, et al. Chanzyme TRPM7 mediates the Ca²⁺ influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. *Immunity*. 2018;48(1):59–74.e5. <https://doi.org/10.1016/j.immuni.2017.11.026>
782. Mendum SK, Strembska ME, Schappe MS, et al. Targeting the ion channel TRPM7 promotes the thymic development of regulatory T cells by promoting IL-2 signaling. *Sci Signal*. 2020;13(661):eabb0619. <https://doi.org/10.1126/scisignal.abb0619>

783. Chubanov V, Kötting M, Touyz RM, Gudermann T. TRPM channels in health and disease. *Nat Rev Nephrol.* 2024;20(3):175–187. <https://doi.org/10.1038/s41581-023-00777-y>
784. Carvacho I, Ardestani G, Lee HC, McGarvey K, Fissore RA, Lykke-Hartmann K. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse. *Sci Rep.* 2016;6(1):34236. <https://doi.org/10.1038/srep34236>
785. Bernhardt ML, Stein P, Carvacho I, et al. TRPM7 and CaV3.2 channels mediate Ca(2+) influx required for egg activation at fertilization. *Proc Natl Acad Sci U S A.* 2018;115(44):E10370–E10378. <https://doi.org/10.1073/pnas.1810422115>
786. Gupta N, Soriano-Úbeda C, Stein P, et al. Essential role of Mg(2+) in mouse preimplantation embryo development revealed by TRPM7 channel-deficient gametes. *Cell Rep.* 2023;42(10):113232. <https://doi.org/10.1016/j.celrep.2023.113232>
787. Schütz A, Richter C, Weissgerber P, et al. Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. *Cell Rep.* 2021;37(3):109851. <https://doi.org/10.1016/j.celrep.2021.109851>
788. Chubanov V, Ferioli S, Wisnowsky A, et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. *eLife.* 2016;5:e20914. <https://doi.org/10.7554/eLife.20914>
789. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg²⁺ homeostasis. *Science.* 2008;322(5902):756–760. <https://doi.org/10.1126/science.1163493>
790. Jin J, Wu LJ, Jun J, et al. The channel kinase, TRPM7, is required for early embryonic development. *Proc Natl Acad Sci U S A.* 2012;109(5):E225–E233. <https://doi.org/10.1073/pnas.1120033109>
791. Sah R, Mesirca P, Mason X, et al. The timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction and repolarization. *Circulation.* 2013;128(2):101–114. <https://doi.org/10.1161/CIRCULATIONAHA.112.000768>
792. Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. *Nat Genet.* 2002;31(2):166–170. <https://doi.org/10.1038/ng889>
793. Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. *Nat Genet.* 2002;31(2):171–174. <https://doi.org/10.1038/ng901>
794. van der Wijst J, Bindels RJM, Hoenderop JGJ. Mg²⁺ homeostasis: the balancing act of TRPM6. *Curr Opin Nephrol Hypertens.* 2014;23(4):361–369. <https://doi.org/10.1097/MNH.0b00047023.59346.ab>
795. Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg²⁺ influx channel involved in intestinal and renal Mg²⁺ absorption. *J Biol Chem.* 2004;279(1):19–25. <https://doi.org/10.1074/jbc.M311201200>
796. Cao G, Hoenderop JGJ, Bindels RJM. Insight into the molecular regulation of the epithelial magnesium channel TRPM6. *Curr Opin Nephrol Hypertens.* 2008;17(4):373–378. <https://doi.org/10.1097/MNH.0b013e328303e184>
797. Zhang Z, Faouzi M, Huang J, et al. N-Myc-induced up-regulation of TRPM6/TPRM7 channels promotes neuroblastoma cell proliferation. *Oncotarget.* 2014;5(17):7625–7634. <https://doi.org/10.18632/oncotarget.2283>
798. Adella A, Gommers LMM, Bos C, Leermakers PA, de Baaij JHF, Hoenderop JGJ. Characterization of intestine-specific TRPM6 knockout C57BL/6 mice: effects of short-term omeprazole treatment. *Pflugers Arch.* 2025;477(1):99–109. <https://doi.org/10.1007/s00424-024-03017-9>
799. Funato Y, Yamazaki D, Okuzaki D, Yamamoto N, Miki H. Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure. *Nat Commun.* 2021;12(1):3683. <https://doi.org/10.1038/s41467-021-24063-2>
800. Yamamoto S, Shimizu S, Kiyonaka S, et al. TRPM2-mediated Ca²⁺ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. *Nat Med.* 2008;14(7):738–747. <https://doi.org/10.1038/nm1758>
801. Di A, Gao XP, Qian F, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. *Nat Immunol.* 2011;13(1):29–34. <https://doi.org/10.1038/ni.2171>
802. Sumoza-Toledo A, Lange I, Cortado H, et al. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca²⁺ release. *FASEB J.* 2011;25(10):3529–3542. <https://doi.org/10.1096/fj.10-178483>
803. Robledo-Avila FH, Ruiz-Rosado JD, Brockman KL, Partida-Sánchez S. The TRPM2 ion channel regulates inflammatory functions of neutrophils during *Listeria* monocytogenes infection. *Front Immunol.* 2020;11:97. <https://doi.org/10.3389/fimmu.2020.00097>
804. Knowles H, Heizer JW, Li Y, et al. Transient Receptor Potential melastatin 2 (TRPM2) ion channel is required for innate immunity against *Listeria* monocytogenes. *Proc Natl Acad Sci U S A.* 2011;108(28):11578–11583. <https://doi.org/10.1073/pnas.1010678108>
805. Uchida K, Dezaki K, Damdindorj B, et al. Lack of TRPM2 impaired insulin secretion and glucose metabolism in mice. *Diabetes.* 2011;60(1):119–126. <https://doi.org/10.2337/db10-0276>
806. Melzer N, Hicking G, Göbel K, Wiendl H. TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. *PLoS One.* 2012;7(10):e47617. <https://doi.org/10.1371/journal.pone.0047617>
807. Kashio M, Sokabe T, Shintaku K, et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. *Proc Natl Acad Sci U S A.* 2012;109(17):6745–6750. <https://doi.org/10.1073/pnas.1114193109>
808. Haraguchi K, Kawamoto A, Isami K, et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. *J Neurosci.* 2012;32(11):3931–3941. <https://doi.org/10.1523/JNEUROSCI.4703-11.2012>
809. Ostapchenko VG, Chen M, Guzman MS, et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to beta-amyloid oligomer-related neurotoxicity and memory impairment. *J Neurosci.* 2015;35(45):15157–15169. <https://doi.org/10.1523/JNEUROSCI.4081-14.2015>
810. Kashio M, Tominaga M. Redox signal-mediated enhancement of the temperature sensitivity of transient receptor potential melastatin 2 (TRPM2) elevates glucose-induced insulin secretion from pancreatic islets. *J Biol Chem.* 2015;290(19):12435–12442. <https://doi.org/10.1074/jbc.M115.649913>
811. Hoffman NE, Miller BA, Wang J, et al. Ca²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. *Am J Physiol Heart Circ Physiol.* 2015;308(6):H637–H650. <https://doi.org/10.1152/ajpheart.00720.2014>
812. Manna PT, Munsey TS, Abuarab N, et al. TRPM2-mediated intracellular Zn²⁺ release triggers pancreatic beta-cell death. *Biochem J.* 2015;466(3):537–546. <https://doi.org/10.1042/BJ20140747>
813. Di A, Kiya T, Gong H, Gao X, Malik AB. Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages. *J Cell Sci.* 2017;130(4):735–744. <https://doi.org/10.1242/jcs.196014>
814. Miyanohara J, Kakae M, Nagayasu K, et al. TRPM2 channel aggravates CNS inflammation and cognitive impairment via activation of microglia in chronic cerebral hypoperfusion. *J Neurosci.* 2018;38(14):3520–3533. <https://doi.org/10.1523/JNEUROSCI.2451-17.2018>
815. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH. A critical role of TRPM2 channel in A_β42-induced microglial activation and generation of tumor necrosis factor-α. *Glia.* 2018;66(3):562–575. <https://doi.org/10.1002/glia.23265>
816. Tsutsui M, Hirase R, Miyamura S, et al. TRPM2 exacerbates central nervous system inflammation in experimental autoimmune encephalomyelitis by increasing production of CXCL2 chemokines. *J Neurosci.* 2018;38(39):8484–8495. <https://doi.org/10.1523/JNEUROSCI.2203-17.2018>
817. Paricio-Montesinos R, Schwaller F, Udhayachandran A, et al. The sensory coding of warm perception. *Neuron.* 2020;106(5):830–841.e3. <https://doi.org/10.1016/j.neuron.2020.02.035>
818. Zong P, Feng J, Yue Z, et al. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. *Neuron.* 2022;110(12):1944–1958.e8. <https://doi.org/10.1016/j.neuron.2022.03.021>
819. Wang G, Cao L, Liu X, et al. Oxidant sensing by TRPM2 inhibits neutrophil migration and mitigates inflammation. *Dev Cell.* 2016;38(5):453–462. <https://doi.org/10.1016/j.devcel.2016.07.014>
820. Miller BA, Wang J, Hirschler-Laszkiewicz I, et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. *Am J Physiol Heart Circ Physiol.* 2013;304(7):H1010–H1022. <https://doi.org/10.1152/ajpheart.00906.2012>
821. Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. *J Neurosci.* 2013;33(44):17264–17277. <https://doi.org/10.1523/JNEUROSCI.1729-13.2013>
822. Miller BA, Hoffman NE, Merali S, et al. TRPM2 channels protect against cardiac ischemia-reperfusion injury: role of mitochondria. *J Biol Chem.* 2014;289(11):7615–7629. <https://doi.org/10.1074/jbc.M113.533851>
823. Gao G, Wang W, Tadagavadi RK, et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. *J Clin Invest.* 2014;124(11):4989–5001. <https://doi.org/10.1172/JCI76042>
824. Mittal M, Urao N, Hecquet CM, et al. Novel role of reactive oxygen species-activated Trp melastatin channel-2 in mediating angiogenesis and post-ischemic neovascularization. *Arterioscler Thromb Vasc Biol.* 2015;35(4):877–887. <https://doi.org/10.1161/ATVBAHA.114.304802>
825. Jang Y, Lee SH, Lee B, et al. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase Kinase-3 activity in the brain. *J Neurosci.* 2015;35(34):11811–11823. <https://doi.org/10.1523/JNEUROSCI.5251-14.2015>
826. Kakae M, Miyanohara J, Morishima M, et al. Pathophysiological role of TRPM2 in age-related cognitive impairment in mice. *Neuroscience.* 2019;408:204–213. <https://doi.org/10.1016/j.neuroscience.2019.04.012>
827. Ko SY, Wang SE, Lee HK, et al. Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors. *Proc Natl Acad Sci U S A.* 2019;116(5):1770–1775. <https://doi.org/10.1073/pnas.1814335116>
828. Eraslan E, Tanyeli A, Polat E, Polat E. 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. *J Cell Physiol.* 2019;234(4):4572–4581. <https://doi.org/10.1002/jcp.27236>
829. Zhan KY, Yu PL, Liu CH, Luo JH, Yang W. Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. *Acta Pharmacol Sin.* 2016;37(1):4–12. <https://doi.org/10.1038/aps.2015.141>
830. Hu X, Wu L, Liu X, et al. Deficiency of ROS-activated TRPM2 channel protects neurons from cerebral ischemia-reperfusion injury through upregulating autophagy. *Oxid Med Cell Longev.* 2021;2021:7356266. <https://doi.org/10.1155/2021/7356266>
831. Khanahmad H, Mirbod SM, Karimi F, et al. Pathological mechanisms induced by TRPM2 ion channels activation in renal ischemia-reperfusion injury. *Mol*

- Biol Rep.* 2022;49(11):11071–11079. <https://doi.org/10.1007/s11033-022-07836-w>
832. Almaraz L, Manenschijn JA, de la Peña E, Viana F. TRPM8. *Handb Exp Pharmacol.* 2014;222:547–579. https://doi.org/10.1007/978-3-642-54215-2_22
833. Liu Y, Mikrani R, He Y, et al. TRPM8 channels: a review of distribution and clinical role. *Eur J Pharmacol.* 2020;882:173312. <https://doi.org/10.1016/j.ejphar.2020.173312>
834. Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. *Pain.* 2010;150(2):340–350. <https://doi.org/10.1016/j.pain.2010.05.021>
835. Bautista DM, Siemens J, Glazer JM, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. *Nature.* 2007;448(7150):204–208. <https://doi.org/10.1038/nature05910>
836. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. *Neuron.* 2007;54(3):371–378. <https://doi.org/10.1016/j.neuron.2007.02.024>
837. Colburn RW, Lubin ML, Stone Jr DJ, et al. Attenuated cold sensitivity in TRPM8 null mice. *Neuron.* 2007;54(3):379–386. <https://doi.org/10.1016/j.neuron.2007.04.017>
838. Liu B, Fan L, Balakrishna S, Sui A, Morris JB, Jordt SE. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. *Pain.* 2013;154(10):2169–2177. <https://doi.org/10.1016/j.pain.2013.06.043>
839. Alcalde I, Irígo-Portugués A, González-González O, et al. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice. *J Comp Neurol.* 2018;526(11):1859–1874. <https://doi.org/10.1002/cne.24454>
840. Weyen AD, Lehto SG. Development of TRPM8 antagonists to treat chronic pain and Migraine. *Pharmaceuticals.* 2017;10(2):37. <https://doi.org/10.3390/ph10020037>
841. Parra A, Madrid R, Echevarria D, et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. *Nat Med.* 2010;16(12):1396–1399. <https://doi.org/10.1038/nm.2264>
842. Quallo T, Vastani N, Horridge E, et al. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. *Nat Commun.* 2015;6:7150. <https://doi.org/10.1038/ncomms8150>
843. Ramachandran R, Hyun E, Zhao L, et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. *Proc Natl Acad Sci U S A.* 2013;110(18):7476–7481. <https://doi.org/10.1073/pnas.1217431110>
844. Shapovalov G, Gkika D, Devilliers M, et al. Opiates modulate thermosensation by internalizing cold receptor TRPM8. *Cell Rep.* 2013;4(3):504–515. <https://doi.org/10.1016/j.celrep.2013.07.002>
845. Knowlton WM, Palkar R, Lippoldt EK, et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. *J Neurosci.* 2013;33(7):2837–2848. <https://doi.org/10.1523/JNEUROSCI.1943-12.2013>
846. Milenovic N, Zhao WJ, Walcher J, et al. A somatosensory circuit for cooling perception in mice. *Nat Neurosci.* 2014;17(11):1560–1566. <https://doi.org/10.1038/nn.3828>
847. Uvin P, Franken J, Pinto S, et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. *Eur Urol.* 2015;68(4):655–661. <https://doi.org/10.1016/j.euro.2015.03.037>
848. Everaerts W, Gevaert T, Nilius B, De Ridder D. On the origin of bladder sensing: Tr(i)ps in urology. *Neurorol Urodyn.* 2008;27(4):264–273. <https://doi.org/10.1002/neu.20511>
849. Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R. TRPM4. *Handb Exp Pharmacol.* 2014;222:461–487. https://doi.org/10.1007/978-3-642-54215-2_18
850. Liman ER. The Ca(2+)-activated TRP channels. In: Liedtke WB, Heller S, eds. *TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades.* 2007. TRPM4 and TRPM5.
851. Guinamard R, Salle L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. *Adv Exp Med Biol.* 2011;704:147–171. https://doi.org/10.1007/978-94-007-0265-3_8
852. Liman ER. TRPM5. *Handb Exp Pharmacol.* 2014;222:489–502. https://doi.org/10.1007/978-3-642-54215-2_19
853. Pérez CA, Huang L, Rong M, et al. A transient receptor potential channel expressed in taste receptor cells. *Nat Neurosci.* 2002;5(11):1169–1176. <https://doi.org/10.1038/nn952>
854. Zhang Y, Hoon MA, Chandrashekhar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. *Cell.* 2003;112(3):293–301. [https://doi.org/10.1016/s0092-8674\(03\)00071-0](https://doi.org/10.1016/s0092-8674(03)00071-0)
855. Liman ER. TRPM5 and taste transduction. *Handb Exp Pharmacol.* 2007;179: 287–298. https://doi.org/10.1007/978-3-540-34891-7_17
856. Kaske S, Krasteva G, König P, et al. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. *BMC Neurosci.* 2007;8:49. <https://doi.org/10.1186/1471-2202-8-49>
857. Keshavarz M, Faraj Tabrizi S, Ruppert AL, et al. Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. *Sci Immunol.* 2022;7(69): eabf6734. <https://doi.org/10.1126/sciimmunol.abf6734>
858. Perniss A, Liu S, Boonen B, et al. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. *Immunity.* 2020;52(4):683–699.e11. <https://doi.org/10.1016/j.immuni.2020.03.005>
859. Wiederhold S, Papadakis T, Chubanov V, Gudermann T, Krasteva-Christ G, Kummer W. A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva. *Int Immunopharmacol.* 2015;29(1):45–50. <https://doi.org/10.1016/j.intimp.2015.06.027>
860. Soultanova A, Voigt A, Chubanov V, et al. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. *Int Immunopharmacol.* 2015;29(1):143–147. <https://doi.org/10.1016/j.intimp.2015.06.005>
861. Deckmann K, Krasteva-Christ G, Rafiq A, et al. Cholinergic urethral brush cells are widespread throughout placental mammals. *Int Immunopharmacol.* 2015;29(1):51–56. <https://doi.org/10.1016/j.intimp.2015.05.038>
862. Krasteva-Christ G, Soultanova A, Schütz B, et al. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. *Int Immunopharmacol.* 2015;29(1):158–165. <https://doi.org/10.1016/j.intimp.2015.05.028>
863. Schütz B, Jurastow I, Bader S, et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. *Front Physiol.* 2015;6:87. <https://doi.org/10.3389/fphys.2015.00087>
864. Pannec AR, Rafiq A, Schütz B, et al. Cholinergic epithelial cell with chemosensory traits in murine thymic medulla. *Cell Tissue Res.* 2014;358(3): 737–748. <https://doi.org/10.1007/s00441-014-2002-x>
865. Deckmann K, Filipski K, Krasteva-Christ G, et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. *Proc Natl Acad Sci U S A.* 2014;111(22):8287–8292. <https://doi.org/10.1073/pnas.1402436111>
866. Krasteva G, Hartmann P, Papadakis T, et al. Cholinergic chemosensory cells in the auditory tube. *Histochem Cell Biol.* 2012;137(4):483–497. <https://doi.org/10.1007/s00418-012-0911-x>
867. Hollenhorst MI, Nandigama R, Evers SB, et al. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. *J Clin Invest.* 2022;132(13):e150951. <https://doi.org/10.1172/JCI150951>
868. Kotas ME, O'Leary CE, Locksley RM. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. *Annu Rev Pathol Mech Dis.* 2023;18(1):311–335. <https://doi.org/10.1146/annurev-pathol-042320-112212>
869. Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. *Nat Rev Immunol.* 2019;19(9):584–593. <https://doi.org/10.1038/s41577-019-0176-x>
870. Schneider C, O'Leary CE, von Moltke J, et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. *Cell.* 2018;174(2):271–284.e14. <https://doi.org/10.1016/j.cell.2018.05.014>
871. von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. *Nature.* 2016;529(7585): 221–225. <https://doi.org/10.1038/nature16161>
872. Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. *Nature.* 2016;529(7585):226–230. <https://doi.org/10.1038/nature16527>
873. Howitt MR, Lavoie S, Michaud M, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. *Science.* 2016;351(6279): 1329–1333. <https://doi.org/10.1126/science.aaf1648>
874. Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a Type 2 innate immune circuit. *Immunity.* 2018;49(1):33–41.e7. <https://doi.org/10.1016/j.immuni.2018.06.016>
875. Lei W, Ren W, Ohmoto M, et al. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. *Proc Natl Acad Sci U S A.* 2018;115(21):5552–5557. <https://doi.org/10.1073/pnas.1720758115>
876. Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. *Proc Natl Acad Sci U S A.* 2021;118(45): e2112814118. <https://doi.org/10.1073/pnas.2112814118>
877. Krasteva G, Canning BJ, Hartmann P, et al. Cholinergic chemosensory cells in the trachea regulate breathing. *Proc Natl Acad Sci U S A.* 2011;108(23): 9478–9483. <https://doi.org/10.1073/pnas.1019418108>
878. Abdel Wadood N, Hollenhorst MI, Elhawy MI, et al. Tracheal tuft cells release ATP and link innate to adaptive immunity in pneumonia. *Nat Commun.* 2025;16(1):584. <https://doi.org/10.1038/s41467-025-55936-5>
879. Dymert DA, Terhal PA, Rustad CF, et al. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. *Eur J Hum Genet.* 2019;27(10): 1611–1618. <https://doi.org/10.1038/s41431-019-0462-x>
880. Roelens R, Peigneur ANF, Voets T, Vriens J. Neurodevelopmental disorders caused by variants in TRPM3. *Biochim Biophys Acta Mol Cell Res.* 2024;1871(5):119709. <https://doi.org/10.1016/j.bbamcr.2024.119709>
881. Van Hoeymissen E, Held K, Nogueira Freitas AC, Janssens A, Voets T, Vriens J. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. *eLife.* 2020;9:e57190. <https://doi.org/10.7554/eLife.57190>
882. Burglen L, Van Hoeymissen E, Qebibio L, et al. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. *eLife.* 2023;12:e81032. <https://doi.org/10.7554/eLife.81032>
883. Lines MA, Goldenberg P, Wong A, et al. Phenotypic spectrum of the recurrent TRPM3 p.(Val837Met) substitution in seven individuals with global developmental delay and hypotonia. *Am J Med Genet A.* 2022;188(6):1667–1675. <https://doi.org/10.1002/ajmg.a.62673>
884. Becker LL, Horn D, Boschann F, et al. Primidone improves symptoms in TRPM3-linked developmental and epileptic encephalopathy with spike-and-

- wave activation in sleep. *Epilepsia*. 2023;64(5):e61–e68. <https://doi.org/10.1111/epi.17586>
885. Friedman M, Hatcher G, Watson L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. *Lancet*. 1967;1(7492):703–705. [https://doi.org/10.1016/s0140-6736\(67\)92181-2](https://doi.org/10.1016/s0140-6736(67)92181-2)
886. Milla PJ, Aggett PJ, Wolff OH, Harries JT. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. *Gut*. 1979;20(11):1028–1033. <https://doi.org/10.1136/gut.20.11.1028>
887. Woodard JC, Webster PD, Carr AA. Primary hypomagnesemia with secondary hypocalcemia, diarrhea and insensitivity to parathyroid hormone. *Am J Dig Dis*. 1972;17(7):612–618. <https://doi.org/10.1007/BF02231747>
888. Schlingmann KP, Sassen MC, Weber S, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. *J Am Soc Nephrol*. 2005;16(10):3061–3069. <https://doi.org/10.1681/ASN.2004110989>
889. Cartwright JH, Aziz Q, Harmer SC, Hayyil S, Tinker A, Munroe PB. Genetic variants in TRPM7 associated with unexplained stillbirth modify ion channel function. *Hum Mol Genet*. 2020;29(11):1797–1807. <https://doi.org/10.1093/hmg/ddz198>
890. Hug L, You D, Blencowe H, et al. Global, regional, and national estimates and trends in stillbirths from 2000 to 2019: a systematic assessment. *Lancet*. 2021;398(10302):772–785. [https://doi.org/10.1016/S0140-6736\(21\)01112-0](https://doi.org/10.1016/S0140-6736(21)01112-0)
891. Stritt S, Nurden P, Favier R, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. *Nat Commun*. 2016;7:11097. <https://doi.org/10.1038/ncomms11097>
892. Gualdani R, Gailly P, Yuan JH, et al. A TRPM7 mutation linked to familial trigeminal neuralgia: omega current and hyperexcitability of trigeminal ganglion neurons. *Proc Natl Acad Sci U S A*. 2022;119(38):e2119630119. <https://doi.org/10.1073/pnas.2119630119>
893. Vargas-Poussou R, Claverie-Martin F, Prot-Bertoye C, et al. Possible role for rare TRPM7 variants in patients with hypomagnesemia with secondary hypocalcaemia. *Nephrol Dial Transplant*. 2023;38(3):679–690. <https://doi.org/10.1093/ndt/gfac182>
894. Lei M, Wang P, Li H, et al. Case Report: recurrent Hemiplegic Migraine Attacks Accompanied by Intractable Hypomagnesemia due to a de novo TRPM7 Gene Variant. *Front Pediatr*. 2022;10:880242. <https://doi.org/10.3389/fped.2022.880242>
895. Bosman W, Butler KM, Chang CA, et al. Pathogenic heterozygous TRPM7 variants and hypomagnesemia with developmental delay. *Clin Kidney J*. 2024;17(8):sfae211. <https://doi.org/10.1093/ckj/sfae211>
896. Kruse M, Schulze-Bahr E, Corfield V, et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. *J Clin Invest*. 2009;119(9):2737–2744. <https://doi.org/10.1172/JCI38292>
897. Daumy X, Amarouch MY, Lindenbaum P, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. *Int J Cardiol*. 2016;207:349–358. <https://doi.org/10.1016/j.ijcard.2016.01.052>
898. Liu H, Chatel S, Simard C, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. *PLoS One*. 2013;8(1):e54131. <https://doi.org/10.1371/journal.pone.0054131>
899. Janin A, Bessière F, Georgescu T, Chanavat V, Chevalier P, Millat G. TRPM4 mutations to cause autosomal recessive and not autosomal dominant Brugada type 1 syndrome. *Eur J Med Genet*. 2019;62(6):103527. <https://doi.org/10.1016/j.ejmg.2018.08.008>
900. Gualandi F, Zaraket F, Malagù M, et al. Mutation load of multiple ion channel gene mutations in Brugada syndrome. *Cardiology*. 2017;137(4):256–260. <https://doi.org/10.1159/000471792>
901. Li KHC, Lee S, Yin C, et al. Brugada syndrome: a comprehensive review of pathophysiological mechanisms and risk stratification strategies. *Int J Cardiol Heart Vasc*. 2020;26:100468. <https://doi.org/10.1016/j.ijcha.2020.100468>
902. Syam N, Chatel S, Ozhathil LC, et al. Variants of transient receptor potential melastatin Member 4 in childhood atrioventricular block. *J Am Heart Assoc*. 2016;5(5):e001625. <https://doi.org/10.1161/JAH.114.001625>
903. Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H. Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. *Front Physiol*. 2018;9:177. <https://doi.org/10.3389/fphys.2018.00177>
904. Stallmeyer B, Zumhagen S, Denjoy I, et al. Mutational spectrum in the Ca(2+)-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. *Hum Mutat*. 2012;33(1):109–117. <https://doi.org/10.1002/humu.21599>
905. Xiong WH, Brown RL, Reed B, Burke NS, Duvoisin RM, Morgans CW. Voriconazole, an antifungal triazol that causes visual side effects, is an inhibitor of TRPM1 and TRPM3 channels. *Invest Ophthalmol Vis Sci*. 2015;56(2):1367–1373. <https://doi.org/10.1167/iovs.14-15270>
906. Held K, Kichko T, De Clercq K, et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. *Proc Natl Acad Sci U S A*. 2015;112(11):E1363–E1372. <https://doi.org/10.1073/pnas.1419845112>
907. Krügel U, Straub I, Beckmann H, Schaefer M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. *Pain*. 2017;158(5):856–867. <https://doi.org/10.1097/j.pain.0000000000000846>
908. Straub I, Mohr F, Stab J, et al. Citrus fruit and Fabaceae secondary metabolites potently and selectively block TRPM3. *Br J Pharmacol*. 2013;168(8):1835–1850. <https://doi.org/10.1111/bph.12076>
909. Straub I, Krügel U, Mohr F, et al. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. *Mol Pharmacol*. 2013;84(5):736–750. <https://doi.org/10.1124/mol.113.086843>
910. Chubanov V, Gudermann T. Mapping TRPM7 function by NS8593. *Int J Mol Sci*. 2020;21(19):7017. <https://doi.org/10.3390/ijms21197017>
911. Chubanov V, Ferioli S, Gudermann T. Assessment of TRPM7 functions by drug-like small molecules. *Cell Calcium*. 2017;67:166–173. <https://doi.org/10.1016/j.ceca.2017.03.004>
912. Sun HS, Horgen FD, Romo D, et al. Waixeninic A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. *Acta Pharmacol Sin*. 2020;41(12):1519–1524. <https://doi.org/10.1038/s41401-020-00512-4>
913. Chubanov V, Mederos Y, Schnitzler M, Meißner M, et al. Natural and synthetic modulators of SK (K^{Ca})2 potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. *Br J Pharmacol*. 2012;166(4):1357–1376. <https://doi.org/10.1111/j.1476-5381.2012.01855.x>
914. Zierler S, Yao G, Zhang Z, et al. Waixeninic A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. *J Biol Chem*. 2011;286(45):39328–39335. <https://doi.org/10.1074/jbc.M111.264341>
915. Rössig A, Hill K, Nörenberg W, et al. Pharmacological agents selectively acting on the channel moieties of TRPM6 and TRPM7. *Cell Calcium*. 2022;106:102640. <https://doi.org/10.1016/j.ceca.2022.102640>
916. Guan Z, Chen X, Fang S, Ji Y, Gao Z, Zheng Y. CCT128930 is a novel and potent antagonist of TRPM7 channel. *Biochem Biophys Res Commun*. 2021;560:132–138. <https://doi.org/10.1016/j.bbrc.2021.04.119>
917. Qin X, Yue Z, Sun B, et al. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. *Br J Pharmacol*. 2013;168(6):1294–1312. <https://doi.org/10.1111/bph.12012>
918. Suzuki S, Fleig A, Penner R. CBGA ameliorates inflammation and fibrosis in nephropathy. *Sci Rep*. 2023;13(1):6341. <https://doi.org/10.1038/s41598-023-33507-2>
919. Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Canabigerolic acid (CBGA) inhibits the TRPM7 ion channel through its kinase domain. *Function*. 2024;5(1):zqad069. <https://doi.org/10.1093/function/zqad069>
920. Hofmann T, Schäfer S, Linseisen M, Sytki L, Gudermann T, Chubanov V. Activation of TRPM7 channels by small molecules under physiological conditions. *Pflügers Arch*. 2014;466(12):2177–2189. <https://doi.org/10.1007/s00424-014-1488-0>
921. Schäfer S, Ferioli S, Hofmann T, Zierler S, Gudermann T, Chubanov V. Mibepridil represents a new class of benzimidazole TRPM7 channel agonists. *Pflügers Arch*. 2016;468(4):623–634. <https://doi.org/10.1007/s00424-015-1772-7>
922. Song C, Bae Y, Jun J, et al. Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. *Biochim Biophys Acta Gen Subj*. 2017;1861(4):947–957. <https://doi.org/10.1016/j.bbagen.2017.01.034>
923. Busey GW, Manjegowda MC, Huang T, et al. Analogs of FTY720 inhibit TRPM7 but not S1PRs and exert multimodal anti-inflammatory effects. *J Gen Physiol*. 2024;156(1). <https://doi.org/10.1085/jgp.202313419>
924. Alatrag F, Amoni M, Kelly-Lauscher R, Gwanyanya A. Cardioprotective effect of fingolimod against calcium paradox-induced myocardial injury in the isolated rat heart. *Can J Physiol Pharmacol*. 2022;100(2):134–141. <https://doi.org/10.1139/cjpp-2021-0381>
925. Shin MK, Mitrut R, Gu C, et al. Pharmacological and genetic blockade of Trpm7 in the carotid body treats obesity-induced hypertension. *Hypertension*. 2021;78(1):104–114. <https://doi.org/10.1161/HYPERTENSIONHA.120.16527>
926. Sisquella X, Nebl T, Thompson JK, et al. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. *eLife*. 2017;6:e21083. <https://doi.org/10.7554/eLife.21083>
927. Khalil A, Shekh-Ahmad T, Kovac S, et al. Drugs acting at TRPM7 channels inhibit seizure-like activity. *Epilepsia Open*. 2023;8(3):1169–1174. <https://doi.org/10.1002/epi4.12773>
928. Turlova E, Wong R, Xu B, et al. TRPM7 mediates neuronal cell death upstream of calcium/calmodulin-dependent protein kinase II and calcineurin mechanism in neonatal hypoxic-ischemic brain injury. *Transl Stroke Res*. 2021;12(1):164–184. <https://doi.org/10.1007/s12975-020-00810-3>
929. Wong R, Gong H, Alanazi R, et al. Inhibition of TRPM7 with waixeninic A reduces glioblastoma cellular functions. *Cell Calcium*. 2020;92:102307. <https://doi.org/10.1016/j.ceca.2020.102307>
930. Suzuki S, Penner R, Fleig A. TRPM7 contributes to progressive nephropathy. *Sci Rep*. 2020;10(1):2333. <https://doi.org/10.1038/s41598-020-59355-y>
931. Li Q, Lei X, Liu H, et al. Transient receptor potential melastatin 7 aggravates necrotizing enterocolitis by promoting an inflammatory response in children. *Transl Pediatr*. 2022;11(12):2030–2039. <https://doi.org/10.21037/tp-22-633>
932. Wang X, Wang M, Zhu TT, et al. The TRPM7 chanzyme in smooth muscle cells drives abdominal aortic aneurysm in mice. *Nat CardioVasc Res*. 2025;4(2):216–234. <https://doi.org/10.1038/s44161-025-00613-5>
933. Zong P, Li CX, Feng J, et al. TRPM7 channel activity promotes the pathogenesis of abdominal aortic aneurysms. *Nat CardioVasc Res*. 2025;4(2):197–215. <https://doi.org/10.1038/s44161-024-00596-9>

934. Correia L, Shalygin A, Erbacher A, Zaisserer J, Gudermann T, Chubanov V. TRPM7 underlies cadmium cytotoxicity in pulmonary cells. *Arch Toxicol.* 2025;99(8):3269–3281. <https://doi.org/10.1007/s00204-025-04058-4>
935. Egawa M, Schmücke E, Grimm C, Gudermann T, Chubanov V. Expression profiling identified TRPM7 and HER2 as potential targets for the combined treatment of cancer cells. *Cells.* 2024;13(21):1801. <https://doi.org/10.3390/cells13211801>
936. Kraft R, Grimm C, Frenzel H, Harteneck C. Inhibition of TRPM2 cation channels by N-(*p*-amylcinnamoyl)anthranilic acid. *Br J Pharmacol.* 2006;148(3):264–273. <https://doi.org/10.1038/sj.bjp.0706739>
937. Shimizu S, Yonezawa R, Hagiwara T, et al. Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca(2+) entry. *Eur J Pharmacol.* 2014;742:22–30. <https://doi.org/10.1016/j.ejphar.2014.08.023>
938. Hill K, McNulty S, Randall AD. Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. *Naunyn Schmiedebergs Arch Pharmacol.* 2004;370(4):227–237. <https://doi.org/10.1007/s00210-004-0981-y>
939. Fourgeaud L, Dvorak C, Faouzi M, et al. Pharmacology of JNJ-28583113: a novel TRPM2 antagonist. *Eur J Pharmacol.* 2019;853:299–307. <https://doi.org/10.1016/j.ejphar.2019.03.043>
940. Starkus JG, Poerzgen P, Layugan K, et al. Scalaradial is a potent inhibitor of transient receptor potential melastatin 2 (TRPM2) ion channels. *J Nat Prod.* 2017;80(10):2741–2750. <https://doi.org/10.1021/acs.jnatprod.7b00515>
941. Zhang H, Liu H, Luo X, et al. Design, synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors. *Eur J Med Chem.* 2018;152:235–252. <https://doi.org/10.1016/j.ejmech.2018.04.045>
942. Moreau C, Kirchberger T, Swarbrick JM, et al. Structure-activity relationship of adenosine 5'-diphosphoribose at the transient receptor potential melastatin 2 (TRPM2) channel: rational design of antagonists. *J Med Chem.* 2013;56(24):10079–10102. <https://doi.org/10.1021/jm401497a>
943. Luo X, Li M, Zhan K, et al. Selective inhibition of TRPM2 channel by two novel synthesized ADPR analogues. *Chem Biol Drug Des.* 2018;91(2):552–566. <https://doi.org/10.1111/cbdd.13119>
944. Cruz-Torres I, Backos DS, Herson PS. Characterization and optimization of the novel transient receptor potential melastatin 2 antagonist tatM2NX. *Mol Pharmacol.* 2020;97(2):102–111. <https://doi.org/10.1124/mol.119.117549>
945. Bandell M, Dubin AE, Petrus MJ, et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. *Nat Neurosci.* 2006;9(4):493–500. <https://doi.org/10.1038/nn1665>
946. McKemy DD, Neuhauser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. *Nature.* 2002;416(6876):52–58. <https://doi.org/10.1038/nature719>
947. Bödding M, Wissenbach U, Flockerzi V. Characterisation of TRPM8 as a pharmacophore receptor. *Cell Calcium.* 2007;42(6):618–628. <https://doi.org/10.1016/j.ceca.2007.03.005>
948. Becker J, Ellermann CS, Schmelzer H, et al. Optical control of TRPM8 channels with photoswitchable menthol. *Angew Chem Int Ed Engl.* 2025;64(5):e202416549. <https://doi.org/10.1002/anie.202416549>
949. Sui Y, Li S, Zhao Y, et al. Identification of a natural compound, sesamin, as a novel TRPM8 antagonist with inhibitory effects on prostate adenocarcinoma. *Fitoterapia.* 2020;145:104631. <https://doi.org/10.1016/j.fitote.2020.104631>
950. Sanechika S, Shimobori C, Ohbuchi K. Identification of herbal components as TRPA1 agonists and TRPM8 antagonists. *J Nat Med.* 2021;75(3):717–725. <https://doi.org/10.1007/s11418-021-01515-z>
951. Lashinger ESR, Steiginga MS, Hieble JP, et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. *Am J Physiol Renal Physiol.* 2008;295(3):F803–F810. <https://doi.org/10.1152/ajprenal.90269.2008>
952. Almeida MC, Hew-Butler T, Soriano RN, et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. *J Neurosci.* 2012;32(6):2086–2099. <https://doi.org/10.1523/JNEUROSCI.5606-11.2012>
953. Tamayo NA, Bo Y, Gore V, et al. Fused piperidines as a novel class of potent and orally available transient receptor potential melastatin type 8 (TRPM8) antagonists. *J Med Chem.* 2012;55(4):1593–1611. <https://doi.org/10.1021/jm2013634>
954. Horne DB, Biswas K, Brown J, et al. Discovery of TRPM8 antagonist (S)-6(((3-fluoro-4-(trifluoromethoxy)phenyl)(3-fluoropyridin-2-yl)methyl)carbamoyl)nicotinic acid (AMG 333), a clinical candidate for the treatment of Migraine. *J Med Chem.* 2018;61(18):8186–8201. <https://doi.org/10.1021/acs.jmedchem.8b00518>
955. Ohmi M, Shishido Y, Inoue T, et al. Identification of a novel 2-pyridyl-benzensulfonamide derivative, RQ-00203078, as a selective and orally active TRPM8 antagonist. *Bioorg Med Chem Lett.* 2014;24(23):5364–5368. <https://doi.org/10.1016/j.bmcl.2014.10.074>
956. Parks DJ, Parsons WH, Colburn RW, et al. Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. *J Med Chem.* 2011;54(1):233–247. <https://doi.org/10.1021/jm101075v>
957. González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent progress in TRPM8 modulation: an update. *Int J Mol Sci.* 2019;20(11):2618. <https://doi.org/10.3390/ijms20112618>
958. Izquierdo C, Martín-Martínez M, Gómez-Monterrey I, González-Muñiz R. TRPM8 channels: advances in structural studies and pharmacological modulation. *Int J Mol Sci.* 2021;22(16):8502. <https://doi.org/10.3390/ijms22168502>
959. Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. *Int J Oncol.* 2012;40(5):1431–1440. <https://doi.org/10.3892/ijo.2012.1340>
960. Grand T, Demion M, Norez C, et al. 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. *Br J Pharmacol.* 2008;153(8):1697–1705. <https://doi.org/10.1038/bjp.2008.38>
961. Kovács ZM, Dienes C, Hézső T, et al. Pharmacological modulation and (patho) physiological roles of TRPM4 channel-part 1: modulation of TRPM4. *Pharmaceuticals.* 2022;15(1):81. <https://doi.org/10.3390/ph15010081>
962. Ozhathil LC, Delalande C, Bianchi B, et al. Identification of potent and selective small molecule inhibitors of the cation channel TRPM4. *Br J Pharmacol.* 2018;175(12):2504–2519. <https://doi.org/10.1111/bph.14220>
963. Vandewiele P, Pironet A, Jacobs G, et al. TRPM4 inhibition by meclofenamate suppresses Ca2+-dependent triggered arrhythmias. *Eur Heart J.* 2022;43(40):4195–4207. <https://doi.org/10.1093/eurheartj/ehac354>
964. Leitner MG, Michel N, Behrendt M, et al. Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. *Br J Pharmacol.* 2016;173(16):2555–2569. <https://doi.org/10.1111/bph.13538>
965. Takezawa R, Cheng H, Beck A, et al. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. *Mol Pharmacol.* 2006;69(4):1413–1420. <https://doi.org/10.1124/mol.105.021154>
966. Fu W, Wang J, Li T, et al. Persistent activation of TRPM4 triggers necrotic cell death characterized by sodium overload. *Nat Chem Biol.* 2025;21(8):1238–1249. <https://doi.org/10.1038/s41589-025-01841-3>
967. Palmer RK, Atwal K, Bakaj I, et al. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. *Assay Drug Dev Technol.* 2010;8(6):703–713. <https://doi.org/10.1089/adt.2010.0334>
968. Philippaert K, Pironet A, Mesuere M, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. *Nat Commun.* 2017;8:14733. <https://doi.org/10.1038/ncomms14733>
969. Barilli A, Aldegheri L, Bianchi F, et al. From high-throughput screening to target validation: Benzo [d] isothiazoles as potent and selective agonists of human transient receptor potential cation channel subfamily M Member 5 possessing *in vivo* gastrointestinal prokinetic activity in rodents. *J Med Chem.* 2021;64(9):5931–5955. <https://doi.org/10.1021/acs.jmedchem.1c00065>
970. Sabat M, Ravagli LF, Aldegheri L, et al. The discovery of (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile, a potent and selective agonist of human transient receptor potential cation channel subfamily m member 5 (TRPM5) and evaluation of as a potential gastrointestinal prokinetic agent. *Bioorg Med Chem.* 2022;76:117084. <https://doi.org/10.1016/j.bmc.2022.117084>
971. Arullampalam P, Preti B, Ross-Kaschitzka D, Lochner M, Rougier JS, Abriel H. Species-specific effects of cation channel TRPM4 small-molecule inhibitors. *Front Pharmacol.* 2021;12:712354. <https://doi.org/10.3389/fphar.2021.712354>
972. Talavera K, Yasumatsu K, Yoshida R, et al. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. *FASEB J.* 2008;22(5):1343–1355. <https://doi.org/10.1096/fj.07-9591com>
973. Zarin DA, Tse T, Williams RJ, Calif RM, Ide NC. The ClinicalTrials.gov results database – update and key issues. *N Engl J Med.* 2011;364(9):852–860. <https://doi.org/10.1056/NEJMsa1012065>
974. Zhou Y, Zhang W, Sun F, Alcrtoren: the first TRPM8 agonist approved for the treatment of dry eye disease. *Drug Discov Ther.* 2025;19(3):210–211. <https://doi.org/10.5582/ddt.2025.01048>
975. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. *J Biol Chem.* 2011;286(44):38168–38176. <https://doi.org/10.1074/jbc.M111.288993>
976. Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. *Nature.* 2015;520(7548):511–517. <https://doi.org/10.1038/nature14367>
977. Suo Y, Wang Z, Zubcovic L, et al. Structural insights into electrophile irritant sensing by the human TRPA1 channel. *Neuron.* 2020;105(5):882–894.e5. <https://doi.org/10.1016/j.neuron.2019.11.023>
978. Christensen AP, Akyuz N, Corey DP. The outer pore and selectivity filter of TRPA1. *PLoS One.* 2016;11(11):e0166167. <https://doi.org/10.1371/journal.pone.0166167>
979. Woll KA, Skinner KA, Gianti E, et al. Sites contributing to TRPA1 activation by the anesthetic propofol identified by photoaffinity labeling. *Biophys J.* 2017;113(10):2168–2172. <https://doi.org/10.1016/j.bpj.2017.08.040>
980. Liu C, Reese R, Vu S, et al. A non-covalent ligand reveals biased agonism of the TRPA1 ion channel. *Neuron.* 2021;109(2):273–284.e4. <https://doi.org/10.1016/j.neuron.2020.10.014>
981. Staruschenko A, Jeske NA, Akopian AN. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. *J Biol Chem.* 2010;285(20):15167–15177. <https://doi.org/10.1074/jbc.M110.16153>
982. Weng H-J, Patel KN, Jeske NA, et al. Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. *Neuron.* 2015;85(4):833–846. <https://doi.org/10.1016/j.neuron.2014.12.065>
983. Zimova L, Barvikova K, Macikova L, et al. Proximal C-terminus serves as a signaling hub for TRPA1 channel regulation via its interacting molecules and

- supramolecular complexes. *Front Physiol.* 2020;11:189. <https://doi.org/10.3389/fphys.2020.00189>
984. Hinman A, Chuang H-H, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. *Proc Natl Acad Sci USA.* 2006;103(51):19564–19568. <https://doi.org/10.1073/pnas.0609598103>
985. Zsidó BZ, Börzsei R, Pintér E, Hetényi C. Prerequisite binding modes determine the dynamics of action of covalent agonists of ion channel TRPA1. *Pharmaceuticals.* 2021;14(10):988. <https://doi.org/10.3390/ph14100988>
986. Trevisani M, Siemens J, Materazzi S, et al. 4-hydroxyxonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. *Proc Natl Acad Sci U S A.* 2007;104(33):13519–13524. <https://doi.org/10.1073/pnas.0705923104>
987. Hill K, Schaefer M. Ultraviolet light and photosensitising agents activate TRPA1 via generation of oxidative stress. *Cell Calcium.* 2009;45(2):155–164. <https://doi.org/10.1016/j.ceca.2008.08.001>
988. Bellono NW, Kammel LG, Zimmerman AL, Oancea E. UV light photo-activation activates transient receptor potential A1 ion channels in human melanocytes. *Proc Natl Acad Sci U S A.* 2013;110(6):2383–2388. <https://doi.org/10.1073/pnas.1215555110>
989. Nishio N, Taniguchi W, Sugimura YK, et al. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. *Neuroscience.* 2013;247:201–212. <https://doi.org/10.1016/j.neuroscience.2013.05.023>
990. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca²⁺. *Nat Neurosci.* 2007;10(3):277–279. <https://doi.org/10.1038/nn1843>
991. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. *J Biol Chem.* 2008;283(47):32691–32703. <https://doi.org/10.1074/jbc.M803568200>
992. Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. *J Biol Chem.* 2007;282(18):13180–13189. <https://doi.org/10.1074/jbc.M607849200>
993. Hill RZ, Morita T, Brem RB, Bautista DM. S1PR3 mediates itch and pain via distinct TRP channel-dependent pathways. *J Neurosci.* 2018;38(36):7833–7843. <https://doi.org/10.1523/JNEUROSCI.1266-18.2018>
994. Maher SA, Dubuis ED, Belvisi MG. G-protein coupled receptors regulating cough. *Curr Opin Pharmacol.* 2011;11(3):248–253. <https://doi.org/10.1016/j.coph.2011.06.005>
995. Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. *Cell.* 2003;112(6):819–829. [https://doi.org/10.1016/s0092-8674\(03\)00158-2](https://doi.org/10.1016/s0092-8674(03)00158-2)
996. Bautista DM, Jordt S-E, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. *Cell.* 2006;124(6):1269–1282. <https://doi.org/10.1016/j.cell.2006.02.023>
997. Chen J, Kang D, Xu J, et al. Species differences and molecular determinant of TRPA1 cold sensitivity. *Nat Commun.* 2013;4:2501. <https://doi.org/10.1038/ncomms3501>
998. Zhang H, Wang C, Zhang K, et al. The role of TRPA1 channels in thermosensation. *Cell Insight.* 2022;1(6):100059. <https://doi.org/10.1016/j.cellin.2022.100059>
999. Moparthi L, Sinica V, Moparthi VK, et al. The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. *Nat Commun.* 2022;13(1):6113. <https://doi.org/10.1038/s41467-022-33876-8>
1000. Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. *Biophys J.* 2010;98(5):773–783. <https://doi.org/10.1016/j.bpj.2009.11.007>
1001. Bobkov YV, Corey EA, Ache BW. The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings. *Biochim Biophys Acta.* 2011;1808(4):1120–1128. <https://doi.org/10.1016/j.bbamem.2010.12.024>
1002. Alam A, Shi N, Jiang Y. Structural insight into Ca²⁺ specificity in tetrameric cation channels. *Proc Natl Acad Sci U S A.* 2007;104(39):15334–15339. <https://doi.org/10.1073/pnas.0707324104>
1003. Chen J, Kim D, Bianchi BR, et al. Pore dilation occurs in TRPA1 but not in TRPM8 channels. *Mol Pain.* 2009;5:3. <https://doi.org/10.1186/1744-8069-5-3>
1004. Banke TG, Chapman SR, Wickenden AD. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. *Am J Physiol Cell Physiol.* 2010;298(6):C1457–C1468. <https://doi.org/10.1152/ajpcell.00489.2009>
1005. Banke TG. The dilated TRPA1 channel pore state is blocked by amiloride and analogues. *Brain Res.* 2011;1381:21–30. <https://doi.org/10.1016/j.brainres.2011.01.021>
1006. Jordt S-E, Bautista DM, Chuang H-H, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. *Nature.* 2004;427(6971):260–265. <https://doi.org/10.1038/nature02282>
1007. Nozawa K, Kawabata-Shoda E, Doihara H, et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. *Proc Natl Acad Sci U S A.* 2009;106(9):3408–3413. <https://doi.org/10.1073/pnas.0805323106>
1008. Li J, Zhang H, Du Q, et al. Research progress on TRPA1 in diseases. *J Membr Biol.* 2023;256(4–6):301–316. <https://doi.org/10.1007/s00232-023-00277-x>
1009. Kremeyer B, Lopera F, Cox JJ, et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. *Neuron.* 2010;66(5):671–680. <https://doi.org/10.1016/j.neuron.2010.04.030>
1010. Bell JT, Loomis AK, Butcher LM, et al. Differential methylation of the TRPA1 promoter in pain sensitivity. *Nat Commun.* 2014;5:2978. <https://doi.org/10.1038/ncomms3978>
1011. Talavera K, Startek JB, Alvarez-Collazo J, et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. *Physiol Rev.* 2020;100(2):725–803. <https://doi.org/10.1152/physrev.00005.2019>
1012. Hu Z, Zhang Y, Yu W, et al. Transient receptor potential ankyrin 1 (TRPA1) modulators: recent update and future perspective. *Eur J Med Chem.* 2023;257:115392. <https://doi.org/10.1016/j.ejmech.2023.115392>
1013. Yap JMG, Ueda T, Kanemitsu Y, et al. AITC inhibits fibroblast-myofibroblast transition via TRPA1-independent MAPK and NRF2/HO-1 pathways and reverses corticosteroids insensitivity in human lung fibroblasts. *Respir Res.* 2021;22(1):51. <https://doi.org/10.1186/s12931-021-01636-9>
1014. Geiger F, Zeitlmayr S, Staab-Weijnitz CA, et al. An inhibitory function of TRPA1 channels in TGF-β1-driven fibroblast-to-myofibroblast differentiation. *Am J Respir Cell Mol Biol.* 2023;68(3):314–325. <https://doi.org/10.1165/rcmb.2022-0159OC>
1015. Gao S, Kaudimba KK, Guo S, et al. Transient receptor potential ankyrin Type-1 channels as a potential target for the treatment of cardiovascular diseases. *Front Physiol.* 2020;11:836. <https://doi.org/10.3389/fphys.2020.00836>
1016. Moccia F, Montagna D. Transient receptor potential ankyrin 1 (TRPA1) channel as a sensor of oxidative stress in cancer cells. *Cells.* 2023;12(9):1261. <https://doi.org/10.3390/cells12091261>
1017. Takaya J, Mio K, Shiraishi T, et al. A potent and site-selective agonist of TRPA1. *J Am Chem Soc.* 2015;137(50):15859–15864. <https://doi.org/10.1021/jacs.5b10162>
1018. Ryckmans T, Abdool AA, Bodkin JV, et al. Design and pharmacological evaluation of PF-4840154, a non-electrophilic reference agonist of the TrpA1 channel. *Bioorg Med Chem Lett.* 2011;21(16):4857–4859. <https://doi.org/10.1016/j.bmcl.2011.06.035>
1019. Bröne B, Peeters PJ, Marrannes R, et al. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. *Toxicol Appl Pharmacol.* 2008;231(2):150–156. <https://doi.org/10.1016/j.taap.2008.04.005>
1020. Talavera K, Gees M, Karashima Y, et al. Nicotine activates the chemosensory cation channel TRPA1. *Nat Neurosci.* 2009;12(10):1293–1299. <https://doi.org/10.1038/nn.2379>
1021. Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1. *Proc Natl Acad Sci U S A.* 2005;102(34):12248–12252. <https://doi.org/10.1073/pnas.0505356102>
1022. Lee SP, Buber MT, Yang Q, et al. Thymol and related alkyl phenols activate the hTRPA1 channel. *Br J Pharmacol.* 2008;153(8):1739–1749. <https://doi.org/10.1038/bjp.2008.85>
1023. Karashima Y, Damann N, Prenen J, et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. *J Neurosci.* 2007;27(37):9874–9884. <https://doi.org/10.1523/JNEUROSCI.2221-07.2007>
1024. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. *Proc Natl Acad Sci U S A.* 2008;105(25):8784–8789. <https://doi.org/10.1073/pnas.0711038105>
1025. Schulze A, Oehler B, Urban N, Schaefer M, Hill K. Apomorphine is a bimodal modulator of TRPA1 channels. *Mol Pharmacol.* 2013;83(2):542–551. <https://doi.org/10.1124/mol.112.081976>
1026. Hatanaka N, Suzuki H, Muraki Y, Muraki K. Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin. *Am J Physiol Cell Physiol.* 2013;304(4):C354–C361. <https://doi.org/10.1152/ajpcell.00096.2012>
1027. Escalera J, von Hehn CA, Bessac BF, Sivila M, Jordt SE. TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. *J Biol Chem.* 2008;283(35):24136–24144. <https://doi.org/10.1074/jbc.M710280200>
1028. Hu H, Tian J, Zhu Y, et al. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. *Pflugers Arch Eur J Physiol.* 2010;459(4):579–592. <https://doi.org/10.1007/s00424-009-0749-9>
1029. Schulze A, Hartung P, Schaefer M, Hill K. Transient receptor potential ankyrin 1 (TRPA1) channel activation by the thienopyridine-type drugs ticlopidine, clopidogrel, and prasugrel. *Cell Calcium.* 2014;55(4):200–207. <https://doi.org/10.1016/j.ceca.2014.02.014>
1030. Macpherson LJ, Dubin AE, Evans MJ, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. *Nature.* 2007;445(7127):541–545. <https://doi.org/10.1038/nature05544>
1031. Macpherson LJ, Xiao B, Kwan KY, et al. An ion channel essential for sensing chemical damage. *J Neurosci.* 2007;27(42):11412–11415. <https://doi.org/10.1523/JNEUROSCI.3600-07.2007>
1032. McNamara CR, Mandel-Brehm J, Bautista DM, et al. TRPA1 mediates formalin-induced pain. *Proc Natl Acad Sci U S A.* 2007;104(33):13525–13530. <https://doi.org/10.1073/pnas.0705924104>
1033. Chen J, Joshi SK, DiDomenico S, et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. *Pain.* 2011;152(5):1165–1172. <https://doi.org/10.1016/j.pain.2011.01.049>
1034. Petrus M, Peier AM, Bandell M, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. *Mol Pain.* 2007;3:40. <https://doi.org/10.1186/1744-8069-3-40>

1035. Broad LM, Suico JG, Turner PK, et al. Preclinical and clinical evaluation of a novel TRPA1 antagonist LY3526318. *Pain*. 2025;166(8):1893–1908. <https://doi.org/10.1097/j.pain.00000000000003570>
1036. Schenkel LB, Olivieri PR, Boezio AA, et al. Optimization of a novel quinazolinone-based series of transient receptor potential A1 (TRPA1) antagonists demonstrating potent in vivo activity. *J Med Chem*. 2016;59(6):2794–2809. <https://doi.org/10.1021/acs.jmedchem.6b00039>
1037. Mesch S, Walter D, Laxx-Biehlmann A, et al. Discovery of BAY-390, a selective CNS penetrant chemical probe as transient receptor potential ankyrin 1 (TRPA1) antagonist. *J Med Chem*. 2023;66(2):1583–1600. <https://doi.org/10.1021/acs.jmedchem.2c01830>
1038. Balestrini A, Joseph V, Dourado M, et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. *J Exp Med*. 2021;218(4):e20201637. <https://doi.org/10.1084/jem.20201637>
1039. Xu H, Blair NT, Clapham DE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. *J Neurosci*. 2005;25(39):8924–8937. <https://doi.org/10.1523/JNEUROSCI.2574-05.2005>
1040. Nagata K, Duggan A, Kumar G, García-Áñoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. *J Neurosci*. 2005;25(16):4052–4061. <https://doi.org/10.1523/JNEUROSCI.0013-05.2005>
1041. Bandell M, Story GM, Hwang SW, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. *Neuron*. 2004;41(6):849–857. [https://doi.org/10.1016/s0896-6273\(04\)00150-3](https://doi.org/10.1016/s0896-6273(04)00150-3)
1042. Macpherson LJ, Geerstanger BH, Viswanath V, et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. *Curr Biol*. 2005;15(10):929–934. <https://doi.org/10.1016/j.cub.2005.04.018>
1043. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. *J Neurosci*. 2008;28(39):9640–9651. <https://doi.org/10.1523/JNEUROSCI.2772-08.2008>
1044. Alpizar YA, Gees M, Sanchez A, et al. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1. *Pflügers Arch Eur J Physiol*. 2013;465(6):853–864. <https://doi.org/10.1007/s00424-012-1204-x>
1045. Bessac BF, Sivila M, CAV H, Escalera J, Cohn L, Jordt S-E. TRPA1 is a major oxidant sensor in murine airway sensory neurons. *J Clin Invest*. 2008;118(5):1899–1910. <https://doi.org/10.1172/JCI34192>
1046. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. *J Neurosci*. 2008;28(10):2485–2494. <https://doi.org/10.1523/JNEUROSCI.5369-07.2008>
1047. Oehler B, Kistner K, Martin C, et al. Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. *Sci Rep*. 2017;7(1):5447. <https://doi.org/10.1038/s41598-017-05348-3>
1048. Babes A, Sauer SK, Moparthi L, et al. Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1. *J Neurosci*. 2016;36(19):5264–5278. <https://doi.org/10.1523/JNEUROSCI.4268-15.2016>
1049. Lin King JV, Emrick JJ, Kelly MJS, et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. *Cell*. 2019;178(6):1362–1374.e1316. <https://doi.org/10.1016/j.cell.2019.07.014>
1050. Lam P-Y, Thawani AR, Balderas E, et al. TRPswitch – a step function chemooptogenetic ligand for the vertebrate TRPA1 channel. *J Am Chem Soc*. 2020;142(41):17457–17468. <https://doi.org/10.1021/jacs.0c06811>
1051. Qiao Z, Luo J, Tang Y-Q, et al. Photosensitive and photoswitchable TRPA1 agonists optically control pain through channel desensitization. *J Med Chem*. 2021;64(21):16282–16292. <https://doi.org/10.1021/acs.jmedchem.1c01579>
1052. McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. *Mol Pain*. 2010;6:14. <https://doi.org/10.1186/1744-8069-6-14>
1053. Mukhopadhyay I, Kulkarni A, Aranake S, et al. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic. *PLoS One*. 2014;9(5):e97005. <https://doi.org/10.1371/journal.pone.0097005>
1054. Tomsen N, Ortega O, Alvarez-Berdugo D, Rofes L, Clavé P. A comparative study on the effect of acute pharyngeal stimulation with TRP agonists on the biomechanics and neurophysiology of swallow response in patients with oropharyngeal dysphagia. *Int J Mol Sci*. 2022;23(18):10773. <https://doi.org/10.3390/ijms231810773>
1055. Chen Q, She J, Zeng W, et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. *Nature*. 2017;550(7676):415–418. <https://doi.org/10.1038/nature24035>
1056. Fine M, Li X. A structural overview of TRPML1 and the TRPML family. *Handb Exp Pharmacol*. 2023;278:181–198. https://doi.org/10.1007/164_2022_602
1057. Hirschi M, Herzik MA, Wie J, et al. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. *Nature*. 2017;550(7676):411–414. <https://doi.org/10.1038/nature24055>
1058. Li M, Zhang WK, Benvin NM, et al. Structural basis of dual Ca²⁺/pH regulation of the endolysosomal TRPML1 channel. *Nat Struct Mol Biol*. 2017;24(3):205–213. <https://doi.org/10.1038/nsmb.3362>
1059. Schmiege P, Fine M, Blobel G, Li X. Human TRPML1 channel structures in open and closed conformations. *Nature*. 2017;550(7676):366–370. <https://doi.org/10.1038/nature24036>
1060. Song X, Li J, Tian M, et al. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. *J Biol Chem*. 2022;298(2):101487. <https://doi.org/10.1016/j.jbc.2021.101487>
1061. Zhou X, Li M, Su D, et al. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. *Nat Struct Mol Biol*. 2017;24(12):1146–1154. <https://doi.org/10.1038/nsmb.3502>
1062. Spix B, Castiglioni AJ, Remis NN, et al. Whole-body analysis of TRPML3 (MCOLN3) expression using a GFP-reporter mouse model reveals widespread expression in secretory cells and endocrine glands. *PLoS One*. 2022;17(12):e0278848. <https://doi.org/10.1371/journal.pone.0278848>
1063. Venugopal B, Browning MF, Curcio-Morelli C, et al. Neurologic, gastric, and ophthalmologic pathologies in a murine model of mucolipidosis type IV. *Am J Hum Genet*. 2007;81(5):1070–1083. <https://doi.org/10.1086/521954>
1064. Micsenyi MC, Dobrenis K, Stephney G, et al. Neuropathology of the Mcolin1 (-/-) knockout mouse model of mucolipidosis type IV. *J Neuropathol Exp Neurol*. 2009;68(2):125–135. <https://doi.org/10.1097/NEN.0b013e3181942cf0>
1065. Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S. Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. *J Biol Chem*. 2012;287(27):22701–22708. <https://doi.org/10.1074/jbc.M112.368876>
1066. Shen D, Wang X, Li X, et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. *Nat Commun*. 2012;3:731. <https://doi.org/10.1038/ncomms1735>
1067. Chen C-C, Keller M, Hess M, et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. *Nat Commun*. 2014;5:4681. <https://doi.org/10.1038/ncomms5681>
1068. Sahoo N, Gu M, Zhang X, et al. Gastric acid secretion from parietal cells is mediated by a Ca²⁺ efflux channel in the tubulovesicle. *Dev Cell*. 2017;41(3):262–273.e6. <https://doi.org/10.1016/j.devcel.2017.04.003>
1069. Rinkenberger N, Schoggins JW. Mucolipin-2 cation channel increases trafficking efficiency of endocytosed viruses. *mBio*. 2018;9(1):e02314–e02317. <https://doi.org/10.1128/mBio.02314-17>
1070. Grimm C, Cuajungco MP, van Aken AFJ, et al. A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. *Proc Natl Acad Sci U S A*. 2007;104(49):19583–19588. <https://doi.org/10.1073/pnas.0709846104>
1071. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S. Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. *J Biol Chem*. 2007;282(50):36138–36142. <https://doi.org/10.1074/jbc.C700190200>
1072. Xu H, Delling M, Li L, Dong X, Clapham DE. Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. *Proc Natl Acad Sci U S A*. 2007;104(46):18321–18326. <https://doi.org/10.1073/pnas.0709096104>
1073. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, García-Áñoveros J. The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. *Proc Natl Acad Sci U S A*. 2008;105(1):353–358. <https://doi.org/10.1073/pnas.0707963105>
1074. Grimm C, Jörs S, Heller S. Life and death of sensory hair cells expressing constitutively active TRPML3. *J Biol Chem*. 2009;284(20):13823–13831. <https://doi.org/10.1074/jbc.M809045200>
1075. Böck J, Krogsgaeter E, Passon M, et al. Human genome diversity data reveal that L564P is the predominant TPC2 variant and a prerequisite for the blond hair associated M484L gain-of-function effect. *PLoS Genet*. 2021;17(1):e1009236. <https://doi.org/10.1371/journal.pgen.1009236>
1076. Kim SW, Kim MK, Hong S, et al. The intracellular Ca²⁺ channel TRPML3 is a PI3P effector that regulates autophagosome biogenesis. *Proc Natl Acad Sci U S A*. 2022;119(43):e220085119. <https://doi.org/10.1073/pnas.2200851119>
1077. Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. *Nat Rev Mol Cell Biol*. 2022;23(12):797–816. <https://doi.org/10.1038/s41580-022-00490-x>
1078. Harteneck C, Plant TD, Schultz G. From worm to man: three subfamilies of TRP channels. *Trends Neurosci*. 2000;23(4):159–166. [https://doi.org/10.1016/s0166-2236\(99\)01532-5](https://doi.org/10.1016/s0166-2236(99)01532-5)
1079. Fine M, Schmiege P, Li X. Structural basis for PtdInsP2-mediated human TRPML1 regulation. *Nat Commun*. 2018;9(1):4192. <https://doi.org/10.1038/s41467-018-06493-7>
1080. Krogsgaeter E, Rosato AS, Grimm C. TRPMLs and TPCs: targets for lysosomal storage and neurodegenerative disease therapy? *Cell Calcium*. 2022;103:102553. <https://doi.org/10.1016/j.ceca.2022.102553>
1081. Chen C-C, Krogsgaeter E, Butz ES, et al. TRPML2 is an osmo/mechanosensitive cation channel in endolysosomal organelles. *Sci Adv*. 2020;6(46):eabb5064. <https://doi.org/10.1126/sciadv.abb5064>
1082. Plesch E, Chen C-C, Butz E, et al. Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. *eLife*. 2018;7:e39720. <https://doi.org/10.7554/eLife.39720>
1083. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K. Mutations in Mcolin3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. *Proc Natl Acad Sci U S A*. 2002;99(23):14994–14999. <https://doi.org/10.1073/pnas.222425399>
1084. Kim HJ, Li Q, Tjon-Kon-Sang S, et al. A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. *EMBO J*. 2008;27(8):1197–1205. <https://doi.org/10.1038/emboj.2008.56>

1085. Grimm C, Jörs S, Saldanha SA, et al. Small molecule activators of TRPML3. *Chem Biol*. 2010;17(2):135–148. <https://doi.org/10.1016/j.chembiol.2009.12.016>
1086. Jörs S, Grimm C, Becker L, Heller S. Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice. *PLoS One*. 2010;5(12):e14317. <https://doi.org/10.1371/journal.pone.0014317>
1087. Grimm C, Holdt LM, Chen CC, et al. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. *Nat Commun*. 2014;5:4699. <https://doi.org/10.1038/ncomms5699>
1088. Spix B, Butz ES, Chen C-C, et al. Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. *Nat Commun*. 2022;13(1):318. <https://doi.org/10.1038/s41467-021-27860-x>
1089. Shen D. *Regulation of TRPML1 by Lipids in Lysosomes*. University of Michigan; 2012.
1090. Yu L, Zhang X, Yang Y, et al. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. *Sci Adv*. 2020;6(6):eaa2736. <https://doi.org/10.1126/sciadv.aaz2736>
1091. Zhang X, Chen W, Li P, et al. Agonist-specific voltage-dependent gating of lysosomal two-pore Na^+ channels. *eLife*. 2019;8:e51423. <https://doi.org/10.7554/eLife.51423>
1092. Rautenberg S, Keller M, Leser C, Chen C-C, Bracher F, Grimm C. Expanding the toolbox: novel modulators of endolysosomal cation channels. In: *Endolysosomal Voltage-Dependent Cation Channels*. Springer; 2022:249–276.
1093. Leser C, Keller M, Gerndt S, et al. Chemical and pharmacological characterization of the TRPML calcium channel blockers ML-SI1 and ML-SI3. *Eur J Med Chem*. 2021;210:112966. <https://doi.org/10.1016/j.ejmech.2020.112966>
1094. Krieger K, Leser C, Mayer P, Bracher F. Effective chiral pool synthesis of both enantiomers of the TRPML inhibitor trans-ML-SI3. *Arch Pharm (Weinheim)*. 2022;355(2):e2100362. <https://doi.org/10.1002/ardp.202100362>
1095. Rühl P, Rosato AS, Urban N, et al. Estradiol analogs attenuate autophagy, cell migration and invasion by direct and selective inhibition of TRPML1, independent of estrogen receptors. *Sci Rep*. 2021;11(1):8313. <https://doi.org/10.1038/s41998-021-87817-4>
1096. Dong X-P, Cheng X, Mills E, et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. *Nature*. 2008;455(7215):992–996. <https://doi.org/10.1038/nature07311>
1097. Chen C-C, Cang C, Fenske S, et al. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. *Nat Protoc*. 2017;12(8):1639–1658. <https://doi.org/10.1038/nprot.2017.036>
1098. Chandra M, Zhou H, Li Q, Muallem S, Hofmann SL, Soyombo AA. A role for the Ca^{2+} channel TRPML1 in gastric acid secretion, based on analysis of knockout mice. *Gastroenterology*. 2011;140(3):857–867. <https://doi.org/10.1053/j.gastro.2010.11.040>
1099. Grishchuk Y, Peña KA, Coblenz J, et al. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. *Dis Models Mech*. 2015;8(12):1591–1601. <https://doi.org/10.1242/dmm.021154>
1100. Cheng X, Zhang X, Gao Q, et al. The intracellular Ca^{2+} channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. *Nat Med*. 2014;20(10):1187–1192. <https://doi.org/10.1038/nm.3611>
1101. Remis NN, Wiwatpanit T, Castiglioni AJ, Flores EN, Cantú JA, García-Añoveros J. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning. *PLoS Genet*. 2014;10(12):e1004833. <https://doi.org/10.1371/journal.pgen.1004833>
1102. Sun L, Hua Y, Vergara Jaregui S, Diab HI, Puertollano R. Novel role of TRPML2 in the regulation of the innate immune response. *J Immunol*. 2015;195(10):4922–4932. <https://doi.org/10.4049/jimmunol.1500163>
1103. Li X, Rydzewski N, Hider A, et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. *Nat Cell Biol*. 2016;18(4):404–417. <https://doi.org/10.1038/ncb3324>
1104. Bargal R, Avidan N, Olender T, et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. *Hum Mutat*. 2001;17(5):397–402. <https://doi.org/10.1002/humu.1115>
1105. Edelmann L, Dong J, Desnick RJ, Kornreich R. Carrier screening for mucolipidosis type IV in the American Ashkenazi Jewish population. *Am J Hum Genet*. 2002;70(4):1023–1027. <https://doi.org/10.1086/339519>
1106. Miao Y, Li G, Zhang X, Xu H, Abraham SN. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. *Cell*. 2015;161(6):1306–1319. <https://doi.org/10.1016/j.cell.2015.05.009>
1107. Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. *Nat Cell Biol*. 2015;17(3):288–299. <https://doi.org/10.1038/ncb3114>
1108. Scotto Rosato A, Montefusco S, Soldati C, et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the $\text{CaMKK}\beta/\text{VPS34}$ pathway. *Nat Commun*. 2019;10(1):5630. <https://doi.org/10.1038/s41467-019-13572-w>
1109. Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. *Science*. 2011;332(6036):1429–1433. <https://doi.org/10.1126/science.1204592>
1110. Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. *Hum Mol Genet*. 2011;20(19):3852–3866. <https://doi.org/10.1093/hmg/ddr306>
1111. Zhang X, Cheng X, Yu L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. *Nat Commun*. 2016;7:12109. <https://doi.org/10.1038/ncomms12109>
1112. Dayam RM, Saric A, Shilliday RE, Botelho RJ. The phosphoinositide-gated lysosomal Ca^{2+} channel, TRPML1, is required for Phagosome maturation. *Traffic (Copenhagen Den)*. 2015;16(9):1010–1026. <https://doi.org/10.1111/tra.12303>
1113. Zhang N, Zhang Z, Ozden I, Ding S. Imaging mitochondrial Ca^{2+} uptake in astrocytes and neurons using genetically encoded Ca^{2+} indicators (GEICs). *J Vis Exp*. 2022;179. <https://doi.org/10.3791/62917>
1114. Cao Q, Yang Y, Zhong XZ, Dong X-P. The lysosomal Ca^{2+} release channel TRPML1 regulates lysosome size by activating calmodulin. *J Biol Chem*. 2017;292(20):8424–8435. <https://doi.org/10.1074/jbc.M116.772160>
1115. Samie M, Wang X, Zhang X, et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. *Dev Cell*. 2013;26(5):511–524. <https://doi.org/10.1016/j.devcel.2013.08.003>
1116. Di Paola S, Medina DL. TRPML1-/TFEB-dependent regulation of lysosomal exocytosis. *Methods Mol Biol (Clifton NJ)*. 2019;1925:143–144. https://doi.org/10.1007/978-1-4939-9018-4_12
1117. Scotto Rosato A, Krogsgaeter EK, Jaślan D, et al. TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann-Pick type C1, and Batten disease. *EMBO Mol Med*. 2022;14(9):e15377. <https://doi.org/10.15252/emmm.202115377>
1118. Rodríguez A, Webster P, Ortego J, Andrews NW. Lysosomes behave as Ca^{2+} -regulated exocytic vesicles in fibroblasts and epithelial cells. *J Cell Biol*. 1997;137(1):93–104. <https://doi.org/10.1083/jcb.137.1.93>
1119. Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. *Nat Rev Mol Cell Biol*. 2007;8(8):622–632. <https://doi.org/10.1038/nrm2217>
1120. LaPlante JM, Falardeau J, Sun M, et al. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. *FEBS Lett*. 2002;532(1–2):183–187. [https://doi.org/10.1016/s0014-5793\(02\)03670-0](https://doi.org/10.1016/s0014-5793(02)03670-0)
1121. Medina DL, Fraldi A, Bouche V, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. *Dev Cell*. 2011;21(3):421–430. <https://doi.org/10.1016/j.devcel.2011.07.016>
1122. Tsunemi T, Perez-Rosello T, Ishiguro Y, et al. Increased lysosomal exocytosis induced by lysosomal Ca^{2+} channel agonists protects human dopaminergic neurons from α -synuclein toxicity. *J Neurosci*. 2019;39(29):5760–5772. <https://doi.org/10.1523/JNEUROSCI.3085-18.2019>
1123. Xu Y, Du S, Marsh JA, et al. TFEB regulates lysosomal exocytosis of tau and its loss of function exacerbates tau pathology and spreading. *Mol Psychiatry*. 2021;26(10):5925–5939. <https://doi.org/10.1038/s41380-020-0738-0>
1124. Xu M, Dong X-P. Endolysosomal TRPMLs in Cancer. *Biomolecules*. 2021;11(1):65. <https://doi.org/10.3390/biom11010065>
1125. Dong X-P, Wang X, Shen D, et al. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. *J Biol Chem*. 2009;284(46):32040–32052. <https://doi.org/10.1074/jbc.M109.037184>
1126. Park S, Ahuja M, Kim MS, et al. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. *EMBO Rep*. 2016;17(2):266–278. <https://doi.org/10.15252/embr.201541542>
1127. Chao Y-K, Chang S-Y, Grimm C. Endo-lysosomal cation channels and infectious diseases. *Rev Physiol Biochem Pharmacol*. 2023;185:259–276. https://doi.org/10.1007/112_2020_31
1128. Spix B, Chao Y-K, Abrahamian C, Chen C-C, Grimm C. TRPML, TRPML Cation channels in inflammation and immunity. *Front Immunol*. 2020;11:225. <https://doi.org/10.3389/fimmu.2020.00225>
1129. Grimm C, Barthmes M, Wahl-Schott C. TRPML. In: Nilius B, Flockerzi V, eds. *Mammalian Transient Receptor Potential (TRP) Cation Channels*. Springer Berlin Heidelberg; 2014:659–674.
1130. Nakamura S, Shigeyama S, Minami S, et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. *Nat Cell Biol*. 2020;22(10):1252–1263. <https://doi.org/10.1038/s41556-020-00583-9>
1131. Galione A, Davis LC, Morgan AJ. A cellular protection racket: how lysosomal Ca^{2+} fluxes prevent kidney injury. *Cell Calcium*. 2021;93:10238. <https://doi.org/10.1016/j.ceca.2020.10238>
1132. Li G, Li P-L. Lysosomal TRPML1 channel: implications in cardiovascular and kidney diseases. *Adv Exp Med Biol*. 2021;1349:275–301. https://doi.org/10.1007/978-981-16-4254-8_13
1133. Li G, Huang D, Li N, Ritter JK, Li P-L. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. *Redox Biol*. 2021;43:102013. <https://doi.org/10.1016/j.redox.2021.102013>
1134. Li G, Huang D, Zou Y, et al. Impaired autophagic flux and dedifferentiation in podocytes lacking Asah1 gene: role of lysosomal TRPML1 channel. *Biochim Biophys Acta Mol Cell Res*. 2023;1870(1):119386. <https://doi.org/10.1016/j.bbamcr.2022.119386>
1135. Prat Castro S, Kudrina V, Jaślan D, Böck J, Scotto Rosato A, Grimm C. Neurodegenerative lysosomal storage disorders: TPC2 comes to the rescue!. *Cells*. 2022;11(18):2807. <https://doi.org/10.3390/cells11182807>
1136. Mepyans M, Andrzejczuk L, Sosa J, et al. Early evidence of delayed oligodendrocyte maturation in the mouse model of mucolipidosis type IV. *Dis Models Mech*. 2020;13(7):dmm044230. <https://doi.org/10.1242/dmm.044230>

1137. DeRosa S, Salani M, Smith S, et al. MCOLN1 gene therapy corrects neurologic dysfunction in the mouse model of mucolipidosis IV. *Hum Mol Genet*. 2021;30(10):908–922. <https://doi.org/10.1093/hmg/ddab093>
1138. Capurro MI, Greenfield LK, Prashar A, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. *Nat Microbiol*. 2019;4(8):1411–1423. <https://doi.org/10.1038/s41564-019-0441-6>
1139. Khan N, Lakpa KL, Halcrow PW, et al. BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. *Sci Rep*. 2019;9(1):12285. <https://doi.org/10.1038/s41598-019-48777-y>
1140. Gibbs KD, Wang L, Yang Z, et al. Human variation impacting MCOLN2 restricts *Salmonella* Typhi replication by magnesium deprivation. *Cell Genomics*. 2023;3(5):100290. <https://doi.org/10.1016/j.xgen.2023.100290>
1141. Xu M, Zhong XZ, Huang P, et al. TRPML3/BK complex promotes autophagy and bacterial clearance by providing a positive feedback regulation of mTOR via PI3K. *Proc Natl Acad Sci U S A*. 2023;120(34):e2215777120. <https://doi.org/10.1073/pnas.2215777120>
1142. Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. *Pflugers Arch Eur J Physiol*. 2016;468(2):177–192. <https://doi.org/10.1007/s00424-015-1732-2>
1143. Goodridge JP, Jacobs B, Saetersmoen ML, et al. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. *Nat Commun*. 2019;10(1):514. <https://doi.org/10.1038/s41467-019-08384-x>
1144. Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. TPC functions in the immune system. *Handb Exp Pharmacol*. 2023;278:71–92. https://doi.org/10.1007/164_2022_634
1145. Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal cation channels and lung disease. *Cells*. 2022;11(2):304. <https://doi.org/10.3390/cells11020304>
1146. Li G, Huang D, Hong J, Bhat OM, Yuan X, Li P-L. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. *Am J Physiol Cell Physiol*. 2019;317(3):C481–C491. <https://doi.org/10.1152/ajpcell.00150.2019>
1147. Sui Z, Wang M-M, Xing Y, Qi J, Wang W. Targeting MCOLN1/TRPML1 channels to protect against ischemia-reperfusion injury by restoring the inhibited autophagic flux in cardiomyocytes. *Autophagy*. 2022;18(12):3053–3055. <https://doi.org/10.1080/15548627.2022.2072657>
1148. Xing Y, Sui Z, Liu Y, et al. Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. *Basic Res Cardiol*. 2022;117(1):20. <https://doi.org/10.1007/s00395-022-00930-x>
1149. Medina DL. Lysosomal calcium and autophagy. *Int Rev Cell Mol Biol*. 2021;362:141–170. <https://doi.org/10.1016/bs.ircmb.2021.03.002>
1150. Zhang L, Fang Y, Cheng X, Lian Y, Xu H. Interaction between TRPML1 and p62 in regulating autophagosome-lysosome fusion and impeding neuro-axonal dystrophy in Alzheimer's disease. *Oxid Med Cell Longev*. 2022;2022:8096009. <https://doi.org/10.1155/2022/8096009>
1151. Morelli MB, Nabissi M, Amantini C, et al. Overexpression of transient receptor potential mucolipin-2 ion channels in gliomas: role in tumor growth and progression. *Oncotarget*. 2016;7(28):43654–43668. <https://doi.org/10.18632/oncotarget.9661>
1152. Grimm C, Bartel K, Vollmar AM, Biel M. Endolysosomal cation channels and cancer-A link with great potential. *Pharmaceuticals (Basel, Switzerland)*. 2018;11(1):4. <https://doi.org/10.3390/ph11010004>
1153. Jung J, Cho KJ, Naji AK, et al. HRAS-driven cancer cells are vulnerable to TRPML1 inhibition. *EMBO Rep*. 2019;20(4):e46685. <https://doi.org/10.15252/embr.201846685>
1154. Jung J, Venkatachalam K. TRPML1 and RAS-driven cancers – Exploring a link with great therapeutic potential. *Channels*. 2019;13(1):374–381. <https://doi.org/10.1080/19336950.2019.1666457>
1155. Jung J, Venkatachalam K. TRPML1 the homeostatic alarm - Melanoma cells are selectively vulnerable to TRPML1 deletion. *Cell Calcium*. 2019;84:102082. <https://doi.org/10.1016/j.ceca.2019.102082>
1156. Kasitinon SY, Eskiocak U, Martin M, et al. TRPML1 promotes protein homeostasis in melanoma cells by negatively regulating MAPK and mTORC1 signaling. *Cell Rep*. 2019;28(9):2293–2305.e2299. <https://doi.org/10.1016/j.celrep.2019.07.086>
1157. Morelli MB, Amantini C, Tomassoni D, Nabissi M, Arcella A, Santoni G. Transient receptor potential mucolipin-1 channels in glioblastoma: role in Patient's survival. *Cancers*. 2019;11(4):525. <https://doi.org/10.3390/cancers11040525>
1158. Xu M, Almasi S, Yang Y, et al. The lysosomal TRPML1 channel regulates triple negative breast cancer development by promoting mTORC1 and purinergic signaling pathways. *Cell Calcium*. 2019;79:80–88. <https://doi.org/10.1016/j.ceca.2019.02.010>
1159. Faris P, Shekha M, Montagna D, Guerra G, Moccia F. Endolysosomal Ca²⁺ signalling and cancer hallmarks: two-pore channels on the move, TRPML1 lags behind. *Cancers*. 2018;11(1):27. <https://doi.org/10.3390/cancers11010027>
1160. Yang Y, Zhai X. TRPML1-emerging roles in cancer. *Cells*. 2020;9(12):2682. <https://doi.org/10.3390/cells9122682>
1161. Abrahamian C, Grimm C. Endolysosomal cation channels and MITF in melanocytes and melanoma. *Biomolecules*. 2021;11(7):1163. <https://doi.org/10.3390/biom11071021>
1162. Du W, Gu M, Hu M, et al. Lysosomal Zn²⁺ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. *Cell Rep*. 2021;37(3):109848. <https://doi.org/10.1016/j.celrep.2021.109848>
1163. Xing H, Tan J, Miao Y, Lv Y, Zhang Q. Crosstalk between exosomes and autophagy: a review of molecular mechanisms and therapies. *J Cell Mol Med*. 2021;25(5):2297–2308. <https://doi.org/10.1111/jcmm.16276>
1164. Xing Y, Wei X, Liu Y, et al. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway. *Autophagy*. 2022;18(8):1932–1954. <https://doi.org/10.1080/15548627.2021.2008752>
1165. Rautenberg S, Keller M, Leser C, Chen C-C, Bracher F, Grimm C. Expanding the toolbox: novel modulators of endolysosomal cation channels. *Handb Exp Pharmacol*. 2023;278:249–276. https://doi.org/10.1007/164_2022_605
1166. Wang W, Gao Q, Yang M, et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. *Proc Natl Acad Sci U S A*. 2015;112(11):E1373–E1381. <https://doi.org/10.1073/pnas.1419669112>
1167. Kim SW, Kim DH, Park KS, et al. Palmitoylation controls trafficking of the intracellular Ca²⁺ channel MCOLN3/TRPML3 to regulate autophagy. *Autophagy*. 2019;15(2):327–340. <https://doi.org/10.1080/15548627.2018.1518671>
1168. Zou J, Hu B, Arpag S, et al. Reactivation of lysosomal Ca²⁺ efflux rescues abnormal lysosomal storage in FIG4-deficient cells. *J Neurosci*. 2015;35(17):6801–6812. <https://doi.org/10.1523/JNEUROSCI.4442-14.2015>
1169. Edgar JR, Ho AK, Laurá M, et al. A dysfunctional endolysosomal pathway common to two sub-types of demyelinating Charcot-Marie-Tooth disease. *Acta Neuropathol Commun*. 2020;8(1):165. <https://doi.org/10.1186/s40478-020-01403-z>
1170. Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong X-P, BK. BK Channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca²⁺ release. *Dev Cell*. 2015;33(4):427–441. <https://doi.org/10.1016/j.devcel.2015.04.010>
1171. Zhong XZ, Sun X, Cao Q, Dong G, Schiffmann R. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases. *Sci Rep*. 2016;6:33684. <https://doi.org/10.1038/srep33684>
1172. Sasazawa Y, Souma S, Furuya N, et al. Oxidative stress-induced phosphorylation of JIP4 regulates lysosomal positioning in coordination with TRPML1 and ALC2. *EMBO J*. 2022;41(22):e11476. <https://doi.org/10.15252/embj.2022111476>
1173. Zhang L, Fang Y, Zhao X, et al. miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. *Mol Ther Nucleic Acids*. 2021;24:822–831. <https://doi.org/10.1016/j.mtn.2021.02.010>
1174. Somogyi A, Kirkham ED, Lloyd-Evans E, et al. The synthetic TRPML1 agonist, ML-SA1, rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. *J Cell Sci*. 2023;136(6):jcs259875. <https://doi.org/10.1242/jcs.259875>
1175. Bae M, Patel N, Xu H, et al. Activation of TRPML1 clears intraneuronal A^β in preclinical models of HIV infection. *J Neurosci*. 2014;34(34):11485–11503. <https://doi.org/10.1523/JNEUROSCI.0120-14.2014>
1176. Wu L-K, Agarwal S, Kuo C-H, et al. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP⁺/MPTP-induced Parkinson's disease. *Phytomed Int J Phytother Phytopharmacol*. 2022;104:15420. <https://doi.org/10.1016/j.phymed.2022.154250>
1177. Lee KP, Nair AV, Grimm C, et al. A helix-breaking mutation in the epithelial Ca(2+) channel TRPV5 leads to reduced Ca(2+)-dependent inactivation. *Cell Calcium*. 2010;48(5):275–287. <https://doi.org/10.1016/j.ceca.2010.09.007>
1178. Lie PPY, Yoo L, Goulnabre CN, et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca²⁺ efflux and disrupted by PSEN1 loss of function. *Sci Adv*. 2022;8(17):eabj5716. <https://doi.org/10.1126/sciadv.abj5716>
1179. Fernández B, Olmedo P, Gil F, et al. Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. *Cell Death Dis*. 2022;13(12):1047. <https://doi.org/10.1038/s41419-022-05504-2>
1180. Busch T, Kottgen M, Hofherr A. TRPP2 ion channels: critical regulators of organ morphogenesis in health and disease. *Cell Calcium*. 2017;66:25–32. <https://doi.org/10.1016/j.ceca.2017.05.005>
1181. Esarte Palomero O, Larmore M, DeCaen PG. Polycystin channel complexes. *Annu Rev Physiol*. 2023;85:425–448. <https://doi.org/10.1146/annurevophys-031522-084334>
1182. Palmer CP, Aydar E, Djamgoz MBA. A microbial TRP-like polycystic-kidney-disease-related ion channel gene. *Biochem J*. 2005;387(1):211–219. <https://doi.org/10.1042/BJ20041710>
1183. Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. *Science*. 1996;272(5266):1339–1342. <https://doi.org/10.1126/science.272.5266.1339>
1184. International-PKD-Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. *Cell*. 1995;81(2):289–298. [https://doi.org/10.1016/0092-8674\(95\)90339-9](https://doi.org/10.1016/0092-8674(95)90339-9)
1185. Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J. Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. *Genomics*. 2000;64(3):241–251. <https://doi.org/10.1006/geno.2000.6131>

1186. Hughes J, Ward CJ, Aspinwall R, Butler R, Harris PC. Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. *Hum Mol Genet*. 1999;8(3):543–549. <https://doi.org/10.1093/hmg/8.3.543>
1187. Li A, Tian X, Sung SW, Somlo S. Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. *Genomics*. 2003;81(6):596–608. [https://doi.org/10.1016/s0888-7543\(03\)00048-x](https://doi.org/10.1016/s0888-7543(03)00048-x)
1188. Nomura H, Turco AE, Pei Y, et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. *J Biol Chem*. 1998;273(40):25967–25973. <https://doi.org/10.1074/jbc.273.40.25967>
1189. Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). *Eur J Hum Genet*. 1999;7(8):860–872. <https://doi.org/10.1038/sj.ejhg.5200383>
1190. Wu G, Hayashi T, Park JH, et al. Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. *Genomics*. 1998;54(3):564–568. <https://doi.org/10.1006/geno.1998.5618>
1191. Hofherr A, Wagner C, Fedele S, Somlo S, Kötting M. N-glycosylation determines the abundance of the transient receptor potential channel TRPP2. *J Biol Chem*. 2014;289(21):14854–14867. <https://doi.org/10.1074/jbc.M114.562264>
1192. Cai Y, Maeda Y, Cedzich A, et al. Identification and characterization of polycystin-2, the PKD2 gene product. *J Biol Chem*. 1999;274(40):28557–28565. <https://doi.org/10.1074/jbc.274.40.28557>
1193. Čelić A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ. Domain mapping of the polycystin-2 C-terminal tail using *de novo* molecular modeling and biophysical analysis. *J Biol Chem*. 2008;283(42):28305–28312. <https://doi.org/10.1074/jbc.M802743200>
1194. Čelić AS, Petri ET, Benbow J, Hodsdon ME, Ehrlich BE, Boggon TJ. Calcium-induced conformational changes in C-terminal tail of polycystin-2 are necessary for channel gating. *J Biol Chem*. 2012;287(21):17232–17240. <https://doi.org/10.1074/jbc.M112.354613>
1195. Giamarchi A, Feng S, Rodat-Despoix L, et al. A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. *EMBO J*. 2010;29(7):1176–1191. <https://doi.org/10.1038/embj.2010.18>
1196. Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. *Nature*. 2000;408(6815):990–994. <https://doi.org/10.1038/35050128>
1197. Kötting M, Benzing T, Simmen T, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. *EMBO J*. 2005;24(4):705–716. <https://doi.org/10.1038/sj.emboj.7600566>
1198. Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. *Nat Cell Biol*. 2002;4(3):191–197. <https://doi.org/10.1038/ncb754>
1199. Petri ET, Čelić A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca^{2+} -dependent regulation of polycystin-2 channel activity. *Proc Natl Acad Sci U S A*. 2010;107(20):9176–9181. <https://doi.org/10.1073/pnas.0912295107>
1200. Vien TN, Ng LCT, Smith JM, et al. Disrupting polycystin-2 EF hand Ca^{2+} affinity does not alter channel function or contribute to polycystic kidney disease. *J Cell Sci*. 2020;133(24):jcs255562. <https://doi.org/10.1242/jcs.255562>
1201. Fu X, Wang Y, Schetle N, et al. The subcellular localization of TRPP2 modulates its function. *J Am Soc Nephrol*. 2008;19(7):1342–1351. <https://doi.org/10.1681/asn.2007070730>
1202. Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. *Nat Cell Biol*. 2005;7(12):1202–1212. <https://doi.org/10.1038/ncb1326>
1203. Plotnikova OV, Pugacheva EN, Golemis EA. Aurora A kinase activity influences calcium signaling in kidney cells. *J Cell Biol*. 2011;193(6):1021–1032. <https://doi.org/10.1083/jcb.201012061>
1204. Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. *Hum Mol Genet*. 2006;15(9):1465–1473. <https://doi.org/10.1093/hmg/ddl070>
1205. Streets AJ, Needham AJ, Gill SK, Ong AC. Protein kinase D-mediated phosphorylation of polycystin-2 (TRPP2) is essential for its effects on cell growth and calcium channel activity. *Mol Biol Cell*. 2010;21(22):3853–3865. <https://doi.org/10.1091/mbc.e10-04-0377>
1206. Streets AJ, Wessely O, Peters DJ, Ong AC. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. *Hum Mol Genet*. 2013;22(10):1924–1939. <https://doi.org/10.1093/hmg/ddt031>
1207. Cai Y, Anyatowu G, Okuhara D, et al. Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. *J Biol Chem*. 2004;279(19):19987–19995. <https://doi.org/10.1074/jbc.m312031200>
1208. Chen XZ, Vassilev PM, Basora N, et al. Polycystin-L is a calcium-regulated channel permeable to calcium ions. *Nature*. 1999;401(6751):383–386. <https://doi.org/10.1038/43907>
1209. Murakami M, Ohba T, Xu F, et al. Genomic organization and functional analysis of murine PKD2L1. *J Biol Chem*. 2005;280(7):5626–5635. <https://doi.org/10.1074/jbc.m411496200>
1210. Zheng W, Yang J, Beauchamp E, et al. Regulation of TRPP3 channel function by N-terminal domain palmitoylation and phosphorylation. *J Biol Chem*. 2016;291(49):25678–25691. <https://doi.org/10.1074/jbc.m116.756544>
1211. Park EYJ, Kwak M, Ha K, So I. Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. *Pflügers Arch*. 2018;470(3):505–516. <https://doi.org/10.1007/s00424-017-2095-7>
1212. Grieben M, Pike AC, Shintre CA, et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). *Nat Struct Mol Biol*. 2017;24(2):114–122. <https://doi.org/10.1038/nsmb.3343>
1213. Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE. Cryo-EM structure of the polycystin-2 I1 ion channel. *elife*. 2018;7:e36931. <https://doi.org/10.7554/elife.36931>
1214. Shen PS, Yang X, DeCaen PG, et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. *Cell*. 2016;167(3):763–773.e11. <https://doi.org/10.1016/j.cell.2016.09.048>
1215. Su Q, Hu F, Liu Y, et al. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. *Nat Commun*. 2018;9(1):1192. <https://doi.org/10.1038/s41467-018-03606-0>
1216. Wilkes M, Madej MG, Kreuter L, et al. Molecular insights into lipid-assisted Ca^{2+} regulation of the TRP channel Polycystin-2. *Nat Struct Mol Biol*. 2017;24(2):123–130. <https://doi.org/10.1038/nsmb.3357>
1217. Numata T, Tsumoto K, Yamada K, et al. Integrative approach with electrophysiological and theoretical methods reveals a new role of S4 positively charged residues in PKD2L1 channel voltage-sensing. *Sci Rep*. 2017;7(1):9760. <https://doi.org/10.1038/s41598-017-10357-3>
1218. Vien TN, Wang J, Ng LCT, Cao E, DeCaen PG. Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain. *Proc Natl Acad Sci U S A*. 2020;117(19):10329–10338. <https://doi.org/10.1073/pnas.1920777117>
1219. DeCaen PG, Liu X, Abiria S, Clapham DE. Atypical calcium regulation of the PKD2-L1 polycystin ion channel. *elife*. 2016;5:e13413. <https://doi.org/10.7554/elife.13413>
1220. Shimizu T, Higuchi T, Toba T, et al. The asparagine 533 residue in the outer pore loop region of the mouse PKD2L1 channel is essential for its voltage-dependent inactivation. *FEBS Open Bio*. 2017;7(9):1392–1401. <https://doi.org/10.1002/2211-5463.12273>
1221. Allen MD, Qamar S, Vadivelu MK, Sandford RN, Bycroft M. A high-resolution structure of the EF-hand domain of human polycystin-2. *Protein Sci*. 2014;23(9):1301–1308. <https://doi.org/10.1002/pro.2513>
1222. Molland KL, Paul LN, Yernool DA. Crystal structure and characterization of coiled-coil domain of the transient receptor potential channel PKD2L1. *Biochim Biophys Acta*. 2012;1824(3):413–421. <https://doi.org/10.1016/j.bbapap.2011.12.002>
1223. Zhu J, Yu Y, Ulbrich MH, et al. Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. *Proc Natl Acad Sci U S A*. 2011;108(25):10133–10138. <https://doi.org/10.1073/pnas.1017669108>
1224. Yang Y, Keeler C, Kuo IY, Lolis EJ, Ehrlich BE, Hodsdon ME. Oligomerization of the polycystin-2 C-terminal tail and effects on its Ca^{2+} -binding properties. *J Biol Chem*. 2015;290(16):10544–10554. <https://doi.org/10.1074/jbc.m115.641803>
1225. Semmo M, Kötting M, Hofherr A. The TRPP subfamily and polycystin-1 proteins. *Handb Exp Pharmacol*. 2014;222:675–711. https://doi.org/10.1007/978-3-642-54215-2_27
1226. Kötting M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. *J Cell Biol*. 2008;182(3):437–447. <https://doi.org/10.1083/jcb.200805124>
1227. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. PKD1 interacts with PKD2 through a probable coiled-coil domain. *Nat Genet*. 1997;16(2):179–183. <https://doi.org/10.1038/ng0697-179>
1228. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. *Proc Natl Acad Sci U S A*. 1997;94(13):6965–6970. <https://doi.org/10.1073/pnas.94.13.6965>
1229. Hofherr A, Kötting M. Polycystic kidney disease: Cilia and mechanosensation revisited. *Nat Rev Nephrol*. 2016;12(6):318–319. <https://doi.org/10.1038/nrneph.2016.61>
1230. Kim S, Nie H, Nesin V, et al. The polycystin complex mediates Wnt/ Ca^{2+} signalling. *Nat Cell Biol*. 2016;18(7):752–764. <https://doi.org/10.1038/ncb3363>
1231. Nauli SM, Alenghat FJ, Liao Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. *Nat Genet*. 2003;33(2):129–137. <https://doi.org/10.1038/ng1076>
1232. Qian F, Wei W, Germino G, Oberhauser A. The nanomechanics of polycystin-1 extracellular region. *J Biol Chem*. 2005;280(49):40723–40730. <https://doi.org/10.1074/jbc.m509650200>
1233. Ibraghimov-Beskrovny O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM. Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. *Hum Mol Genet*. 2000;9(11):1641–1649. <https://doi.org/10.1093/hmg/9.11.1641>
1234. Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovny O, Ong AC. Functional analysis of PKD1 transgenic lines reveals a direct role for

- polycystin-1 in mediating cell-cell adhesion. *J Am Soc Nephrol*. 2003;14(7): 1804–1815. <https://doi.org/10.1097/01asn.0000076075.49819.9b>
1235. Langenhan T, Aust G, Hamann J. Sticky signaling—adhesion class G protein-coupled receptors take the stage. *Sci Signal*. 2013;6(276):re3. <https://doi.org/10.1126/scisignal.2003825>
1236. Qian F, Boletta A, Bhunia AK, et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. *Proc Natl Acad Sci U S A*. 2002;99(26):16981–16986. <https://doi.org/10.1073/pnas.252484899>
1237. Wei W, Hackmann K, Xu H, Germino G, Qian F. Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. *J Biol Chem*. 2007;282(30):21729–21737. <https://doi.org/10.1074/jbc.m703218200>
1238. Qu X, Qiu N, Wang M, et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. *Nature*. 2022;604(7907):779–785. <https://doi.org/10.1038/s41586-022-04580-w>
1239. Pawnikar S, Magenheimer BS, Munoz EN, Maser RL, Miao Y. Mechanism of tethered agonist-mediated signaling by polycystin-1. *Proc Natl Acad Sci U S A*. 2022;119(19):e2113786119. <https://doi.org/10.1073/pnas.2113786119>
1240. Pawnikar S, Magenheimer BS, Joshi K, et al. Activation of polycystin-1 signaling by binding of stalk-derived peptide agonists. *elife*. 2024;13: RP95992. <https://doi.org/10.7554/elife.95992>
1241. Su Q, Chen M, Wang Y, et al. Structural basis for Ca(2+) activation of the heteromeric PKD1L3/PKD2L1 channel. *Nat Commun*. 2021;12(1):4871. <https://doi.org/10.1038/s41467-021-25216-z>
1242. Su Q, Hu F, Ge X, et al. Structure of the human PKD1-PKD2 complex. *Science*. 2018;361(6406):eaat9819. <https://doi.org/10.1126/science.aat9819>
1243. Yu Y, Ulbrich MH, Li MH, et al. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. *Proc Natl Acad Sci U S A*. 2009;106(28): 11558–11563. <https://doi.org/10.1073/pnas.0903684106>
1244. Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. *Pflugers Arch*. 2005;451(1):286–293. <https://doi.org/10.1007/s00424-005-1417-3>
1245. Cantiello HF. Regulation of calcium signaling by polycystin-2. *Am J Physiol Renal Physiol*. 2004;286(6):F1012–F1029. <https://doi.org/10.1152/ajprenal.00181.2003>
1246. Wegierski T, Steffl D, Kopp C, et al. TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. *EMBO J*. 2009;28(5):490–499. <https://doi.org/10.1038/embj.2008.307>
1247. Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. *J Biol Chem*. 2005;280(50):41298–41306. <https://doi.org/10.1074/jbc.m510082200>
1248. DeCaen PG, Delling M, Vien TN, Clapham DE. Direct recording and molecular identification of the calcium channel of primary cilia. *Nature*. 2013;504 (7479):315–318. <https://doi.org/10.1038/nature12832>
1249. Kleene SJ, Kleene NK. The native TRPP2-dependent channel of murine renal primary cilia. *Am J Physiol Renal Physiol*. 2017;312(1):F96–F108. <https://doi.org/10.1152/ajprenal.00272.2016>
1250. Arif Pavel M, Lv C, Ng C, et al. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. *Proc Natl Acad Sci U S A*. 2016;113 (17):E2363–E2372. <https://doi.org/10.1073/pnas.1517066113>
1251. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. *Curr Biol*. 2002;12(11):R378–R380. [https://doi.org/10.1016/s0960-9822\(02\)00877-1](https://doi.org/10.1016/s0960-9822(02)00877-1)
1252. Kleene SJ, Kleene NK. Inward Ca(2+) current through the polycystin-2-dependent channels of renal primary cilia. *Am J Physiol Renal Physiol*. 2021;320(6):F1165–F1173. <https://doi.org/10.1152/ajprenal.00062.2021>
1253. Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. *elife*. 2018;7:e33183. <https://doi.org/10.7554/elife.33183>
1254. Staudner T, Geiges L, Khamsekaew J, Sure F, Korbmacher C, Illyaskin AV. Disease-associated missense mutations in the pore loop of polycystin-2 alter its ion channel function in a heterologous expression system. *J Biol Chem*. 2024;300(8):107574. <https://doi.org/10.1016/j.jbc.2024.107574>
1255. Ha K, Nobuhara M, Wang Q, et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. *elife*. 2020;9:e60684. <https://doi.org/10.7554/elife.60684>
1256. Delmas P, Nauli SM, Li X, et al. Gating of the polycystin ion channel signaling complex in neurons and kidney cells. *FASEB J*. 2004;18(6): 740–742. <https://doi.org/10.1096/fj.03-0319fje>
1257. Wang Z, Ng C, Liu X, et al. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. *EMBO Rep*. 2019;20(11):e48336. <https://doi.org/10.15252/embr.201948336>
1258. Ha K, Mundt-Machado N, Bisignano P, et al. Cilia-enriched oxysterol 7β,27-DHC is required for polycystin ion channel activation. *Nat Commun*. 2024;15(1):6468. <https://doi.org/10.1038/s41467-024-50318-9>
1259. Field S, Riley KL, Grimes DT, et al. Pkd111 establishes left-right asymmetry and physically interacts with Pkd2. *Development*. 2011;138(6):1131–1142. <https://doi.org/10.1242/dev.058149>
1260. Kamura K, Kobayashi D, Uehara Y, et al. Pkd111 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. *Development*. 2011;138(6):1121–1129. <https://doi.org/10.1242/dev.058271>
1261. Yoshiha S, Shiratori H, Kuo IY, et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. *Science*. 2012;338 (6104):226–231. <https://doi.org/10.1126/science.1222538>
1262. Yuan S, Zhao L, Brueckner M, Sun Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. *Curr Biol*. 2015;25(5):556–567. <https://doi.org/10.1016/j.cub.2014.12.051>
1263. Takaо D, Nemoto T, Abe T, et al. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. *Dev Biol*. 2013;376(1):23–30. <https://doi.org/10.1016/j.ydbio.2013.01.018>
1264. Vetrini F, D'Alessandro LC, Akdemir ZC, et al. Bi-allelic Mutations in PKD1L1 Are Associated with Lateralization Defects in Humans. *Am J Hum Genet*. 2016;99 (4):886–893. <https://doi.org/10.1016/j.ajhg.2016.07.011>
1265. Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM. Functional characterization of PKDREJ, a male germ cell-restricted polycystin. *J Cell Physiol*. 2006;209(2):493–500. <https://doi.org/10.1002/jcp.20755>
1266. Shimizu T, Higuchi T, Fujii T, Nilius B, Sakai H. Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. *Pflugers Arch*. 2011;461(5):507–513. <https://doi.org/10.1007/s00424-011-0934-5>
1267. Shimizu T, Janssens A, Voets T, Nilius B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. *Pflugers Arch*. 2009;457 (4):795–807. <https://doi.org/10.1007/s00424-008-0558-6>
1268. Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE. Primary cilia are specialized calcium signalling organelles. *Nature*. 2013;504(7479): 311–314. <https://doi.org/10.1038/nature12833>
1269. Chen P, Wu JZ, Zhao J, et al. PKD2L1/PKD1L3 channel complex with an alkali-activated mechanism and calcium-dependent inactivation. *Eur Biophys J*. 2015;44(6):483–492. <https://doi.org/10.1007/s00249-015-1040-y>
1270. Kawaguchi H, Yamanaka A, Uchida K, et al. Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. *J Biol Chem*. 2010;285(23):17277–17281. <https://doi.org/10.1074/jbc.c110.132944>
1271. Fujimoto C, Ishimaru Y, Katano Y, et al. The single pore residue Asp523 in PKD2L1 determines Ca2+ permeation of the PKD1L3/PKD2L1 complex. *Biochem Biophys Res Commun*. 2011;404(4):946–951. <https://doi.org/10.1016/j.bbrc.2010.12.086>
1272. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. *Proc Natl Acad Sci USA*. 2006;103(33): 12569–12574. <https://doi.org/10.1073/pnas.0602702103>
1273. Xiao Y, Lv X, Cao G, et al. Overexpression of Trpp5 contributes to cell proliferation and apoptosis probably through involving calcium homeostasis. *Mol Cell Biochem*. 2010;339(1–2):155–161. <https://doi.org/10.1007/s11010-009-0379-8>
1274. Orts-Del'Immagine A, Wanaverbecq N, Tardivel C, Tillement V, Dallaporta M, Trouslard J. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. *J Physiol*. 2012;590(16):3719–3741. <https://doi.org/10.1113/jphysiol.2012.227959>
1275. Patel V, Williams D, Hajarnis S, et al. miR-17-92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. *Proc Natl Acad Sci USA*. 2013;110(26):10765–10770. <https://doi.org/10.1073/pnas.1301693110>
1276. Sun H, Li QW, Lv XY, et al. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. *Mol Biol Rep*. 2010;37(6):2951–2958. <https://doi.org/10.1007/s11033-009-9861-3>
1277. Tran U, Zakin L, Schweickert A, et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. *Development*. 2010;137(7):1107–1116. <https://doi.org/10.1242/dev.046045>
1278. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW. The *Caenorhabditis elegans* autosomal dominant polycystic kidney disease gene homologs *lov-1* and *pkd-2* act in the same pathway. *Curr Biol*. 2001;11(17): 1341–1346. [https://doi.org/10.1016/s0960-9822\(01\)00423-7](https://doi.org/10.1016/s0960-9822(01)00423-7)
1279. Barr MM, Sternberg PW. A polycystic kidney-disease gene homologue required for male mating behaviour in *C. elegans*. *Nature*. 1999;401(6751): 386–389. <https://doi.org/10.1038/43913>
1280. Gao Z, Ruden DM, Lu X. PKD2 cation channel is required for directional sperm movement and male fertility. *Curr Biol*. 2003;13(24):2175–2178. <https://doi.org/10.1016/j.cub.2003.11.053>
1281. Hofherr A, Seger C, Fitzpatrick F, et al. The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. *PLoS Biol*. 2018;16(8):e2005651. <https://doi.org/10.1371/journal.pbio.2005651>
1282. Kottgen M, Hofherr A, Li W, et al. Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels. *PLoS One*. 2011;6(5):e20031. <https://doi.org/10.1371/journal.pone.0020031>
1283. Watnick TJ, Jin Y, Matunis E, Kernan MJ, Montell C. A flagellar polycystin-2 homolog required for male fertility in *Drosophila*. *Curr Biol*. 2003;13(24): 2179–2184. <https://doi.org/10.1016/j.cub.2003.12.002>
1284. Yoder BK. Role of primary cilia in the pathogenesis of polycystic kidney disease. *J Am Soc Nephrol*. 2007;18(5):1381–1388. <https://doi.org/10.1681/asn.2006111215>
1285. Hofherr A, Kottgen M. TRPP channels and polycystins. *Adv Exp Med Biol*. 2011;704:287–313. https://doi.org/10.1007/978-94-007-0265-3_16
1286. Lin CC, Kurashige M, Liu Y, et al. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and

- function when heterologously expressed. *Sci Rep.* 2018;8(1):2743. <https://doi.org/10.1038/s41598-018-20856-6>
1287. Lin CC, Menezes LF, Qiu J, et al. In vivo Polycystin-1 interactome using a novel Pkd1 knock-in mouse model. *PLoS One.* 2023;18(8):e0289778. <https://doi.org/10.1371/journal.pone.0289778>
1288. Onuchic L, Padovano V, Schena G, et al. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. *Nat Commun.* 2023;14(1):1790. <https://doi.org/10.1101/2021.12.21.473680>
1289. Cai Y, Fedele SV, Dong K, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. *J Clin Invest.* 2014;124(12): 5129–5144. <https://doi.org/10.1172/jci67273>
1290. Su X, Wu M, Yao G, et al. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site. *J Cell Sci.* 2015;128(22):4063–4073. <https://doi.org/10.1242/jcs.160556>
1291. Geng L, Okuhara D, Yu Z, et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. *J Cell Sci.* 2006;119(Pt 7): 1383–1395. <https://doi.org/10.1242/jcs.02818>
1292. Hoffmeister H, Babinger K, Gurster S, et al. Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. *J Cell Biol.* 2011;192(4): 631–645. <https://doi.org/10.1083/jcb.201007050>
1293. Rezi CK, Aslanyan MG, Diwan GD, et al. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. *EMBO Rep.* 2024;25(7):3040–3063. <https://doi.org/10.1038/s44319-024-00170-1>
1294. Wyatt A, Wartenberg P, Candlish M, Kravtseva-Christ G, Flockerzi V, Boehm U. Genetic strategies to analyze primary TRP channel-expressing cells in mice. *Cell Calcium.* 2017;67:91–104. <https://doi.org/10.1016/j.ceca.2017.05.009>
1295. Kottgen M. TRPP2 and autosomal dominant polycystic kidney disease. *Biochim Biophys Acta.* 2007;1772(8):836–850. <https://doi.org/10.1016/j.bbadi.2007.01.003>
1296. Bisgrove BW, Snarr BS, Emrazian A, Yost HJ. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. *Dev Biol.* 2005;287(2):274–288. <https://doi.org/10.1016/j.ydbio.2005.08.047>
1297. Obara T, Mangos S, Liu Y, et al. Polycystin-2 immunolocalization and function in zebrafish. *J Am Soc Nephrol.* 2006;17(10):2706–2718. <https://doi.org/10.1681/asn.2006040412>
1298. Pennekamp P, Karcher C, Fischer A, et al. The ion channel polycystin-2 is required for left-right axis determination in mice. *Curr Biol.* 2002;12(11): 938–943. [https://doi.org/10.1016/s0960-9822\(02\)00869-2](https://doi.org/10.1016/s0960-9822(02)00869-2)
1299. Wu G, D'Agati V, Cai Y, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. *Cell.* 1998;93(2):177–188. [https://doi.org/10.1016/s0092-8674\(00\)81570-6](https://doi.org/10.1016/s0092-8674(00)81570-6)
1300. Garcia-Gonzalez MA, Outeda P, Zhou Q, et al. Pkd1 and Pkd2 are required for normal placental development. *PLoS One.* 2010;5(9):E12821. <https://doi.org/10.1371/journal.pone.0012821>
1301. Lu W, Peissel B, Babakhanlou H, et al. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. *Nat Genet.* 1997;17(2):179–181. <https://doi.org/10.1038/ng1097-179>
1302. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. *Cell.* 2003;114(1):61–73. [https://doi.org/10.1016/s0092-8674\(03\)00511-7](https://doi.org/10.1016/s0092-8674(03)00511-7)
1303. Katoh TA, Omori T, Mizuno K, et al. Immotile cilia mechanically sense the direction of fluid flow for left-right determination. *Science.* 2023;379(6627): 66–71. <https://doi.org/10.1126/science.abq8148>
1304. Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. *Proc Natl Acad Sci USA.* 2001;98(21):12174–12179. <https://doi.org/10.1073/pnas.211191098>
1305. Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA. Polycystin 1 is required for the structural integrity of blood vessels. *Proc Natl Acad Sci USA.* 2000;97(4):1731–1736. <https://doi.org/10.1073/pnas.040550097>
1306. Kuo IY, Chapman AB. Polycystins, ADPKD, and cardiovascular disease. *Kidney Int Rep.* 2020;5(4):396–406. <https://doi.org/10.1016/j.ekir.2019.12.007>
1307. Anyatongwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. *Proc Natl Acad Sci U S A.* 2007;104(15):6454–6459. <https://doi.org/10.1073/pnas.0610324104>
1308. Márquez-Nogueras KM, Elliott B, Thuo P, et al. Cardiac localized polycystin-2 in the natriuretic peptide signaling pathway and hypertension. *J Am Soc Nephrol.* 2025;36(1):34–47. <https://doi.org/10.1681/asn.00000000000000490>
1309. Bulley S, Fernandez-Pena C, Hasan R, et al. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. *eLife.* 2018;7:e42628. <https://doi.org/10.1101/320200>
1310. Narayanan D, Bulley S, Leo MD, et al. Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. *J Physiol.* 2013;591(20):5031–5046. <https://doi.org/10.1113/jphysiol.2013.258319>
1311. MacKay CE, Leo MD, Fernandez-Pena C, et al. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. *eLife.* 2020;9:e56655. <https://doi.org/10.7554/elife.56655.sa1>
1312. Sharif-Naeini R, Folgering JH, Bichet D, et al. Polycystin-1 and -2 dosage regulates pressure sensing. *Cell.* 2009;139(3):587–596. <https://doi.org/10.1016/j.cell.2009.08.045>
1313. Yao G, Luo C, Harvey M, et al. Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability. *Hum Mol Genet.* 2016;25(3): 448–458. <https://doi.org/10.1093/hmg/ddv484>
1314. Orts-Del'Immagine A, Seddik R, Tell F, et al. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. *Neuropharmacology.* 2016;101:549–565. <https://doi.org/10.1016/j.neuropharm.2015.07.030>
1315. Sternberg JR, Prendergast AE, Brosse L, et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. *Nat Commun.* 2018;9(1):3804. <https://doi.org/10.1101/373589>
1316. Huang AL, Chen X, Hoon MA, et al. The cells and logic for mammalian sour taste detection. *Nature.* 2006;442(7105):934–938. <https://doi.org/10.1038/nature05084>
1317. Wilson CE, Vandenbeuch A, Kinnamon SC. Physiological and behavioral responses to optogenetic stimulation of PKD2L1(+) type III taste cells. *eNeuro.* 2019;6(2):ENEURO.0107-0119. <https://doi.org/10.1523/eneuro.0107-19.2019>
1318. Horio N, Yoshida R, Yasumatsu K, et al. Sour taste responses in mice lacking PKD channels. *PLoS One.* 2011;6(5):e20007. <https://doi.org/10.1371/journal.pone.0020007>
1319. Chen Y, Zhang Z, Lv XY, et al. Expression of Pkd2l2 in testis is implicated in spermatogenesis. *Biol Pharm Bull.* 2008;31(8):1496–1500. <https://doi.org/10.1248/bpb.31.1496>
1320. Corne Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. *Lancet.* 2019;393(10174):919–935. [https://doi.org/10.1016/s0140-6736\(18\)32782-x](https://doi.org/10.1016/s0140-6736(18)32782-x)
1321. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. *Nat Rev Dis Primers.* 2018;4(1):50. <https://doi.org/10.1038/s41572-018-0047-y>
1322. Corne Le Gall E, Audrezet MP, Chen JM, et al. Type of PKD1 mutation influences renal outcome in ADPKD. *J Am Soc Nephrol.* 2013;24(6): 1006–1013. <https://doi.org/10.1681/asn.2012070650>
1323. Qian F, Germino GG. "Mistakes happen": somatic mutation and disease. *Am J Hum Genet.* 1997;61(5):1000–1005. <https://doi.org/10.1086/301618>
1324. Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. *Cell.* 1996;87(6):979–987. [https://doi.org/10.1016/s0092-8674\(00\)81793-6](https://doi.org/10.1016/s0092-8674(00)81793-6)
1325. Zhang Z, Bai H, Blumenfeld J, et al. Detection of PKD1 and PKD2 somatic variants in autosomal dominant polycystic kidney cyst epithelial cells by whole-genome sequencing. *J Am Soc Nephrol.* 2021;32(12):3114–3129. <https://doi.org/10.1681/asn.2021050690>
1326. Wang Z, Chen M, Su Q, et al. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. *Proc Natl Acad Sci USA.* 2024;121(12):2316230121. <https://doi.org/10.1073/pnas.2316230121>
1327. Dai XQ, Ramji A, Liu Y, Li Q, Karpinski E, Chen XZ. Inhibition of TRPP3 channel by amiloride and analogs. *Mol Pharmacol.* 2007;72(6):1576–1585. <https://doi.org/10.1124/mol.107.037150>
1328. Davis PB, Yasothan U, Kirkpatrick P, Ivacaftor. *Nat Rev Drug Discov.* 2012;11(5):349–350. <https://doi.org/10.1038/nrd3723>