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Abstract
Purpose of Review  Cardiovascular diseases (CVDs) encompass a wide range of conditions affecting the heart and vascu-
lature and remain the leading cause of mortality worldwide. The pathogenesis of CVDs is related to complex molecular, 
cellular, and systemic interactions, involving dysregulated signaling pathways, inflammatory responses, genetic predisposi-
tions, and intercellular communication. Despite significant advancements, the precise mechanisms underlying CVDs remain 
only partially understood. This review aims to explain how single-cell and single-nucleus transcriptomics facilitate our 
understanding of CVD pathogenesis. It focuses on their integration with genomic and epigenomic approaches, cellular het-
erogeneity, intercellular communication, regulatory networks, and genetic associations.
Recent Findings  Recent applications of single-cell and single-nucleus transcriptomics in cardiovascular research have 
already revealed significant alterations in cellular composition and gene expression profiles associated with dilated cardio-
myopathy (DCM), arrhythmogenic cardiomyopathy (ACM), and hypertrophic cardiomyopathy (HCM). Furthermore, spatial 
transcriptomic technologies have provided critical insights into human cardiac development, the conduction system, and 
region-specific molecular changes in myocardial infarction, advancing our understanding of cardiac structure and function. 
Integrating single-cell transcriptomics with epigenomics further enhances our understanding of cell type- and state-spe-
cific regulatory landscapes, which can be validated through single-cell perturbation technologies. Additionally, combining 
genomic studies with single-cell technologies helps to recover causal relationships between genetic variants, gene expression 
patterns, and cellular phenotypes.
Summary  Single-cell and single-nucleus transcriptomics technologies have enhanced our understanding of CVD mecha-
nisms, uncovering cardiac cellular diversity and elucidating key regulatory processes in disease states. With larger datasets, 
more robust multi-omics integration, and advanced computational frameworks, transcriptome studies at single cell level will 
significantly enhance the ability to explore disease mechanisms and identify therapeutic targets. Integrating individualized 
transcriptomes into the medical routine will furthermore facilitate more precise and effective interventions in cardiovascular 
medicine.
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Opinion Statement

The application of single-cell/single-nucleus transcriptomics 
in cardiovascular medicine hold transformative potential to 
advance the diagnosis, monitoring, and treatment of cardio-
vascular diseases. Detailed molecular profiling of individual 
cells, including genes and signaling pathways, generated 
through single-cell/single-nucleus transcriptomics could 
allow for more accurate diagnoses, refined disease classifi-
cation, and early detection of pathological changes.

Another promising avenue is the correlation of tissue-
specific signatures with circulating biomarkers found in bio-
fluids such as exosomes and microvesicles, and circulating 
cell-free nucleic acids. This could facilitate the development 
of liquid biopsies to diagnosis and monitor diseases with 
minimal invasion.

Moreover, by characterizing single-cell-specific muta-
tions, therapies can be tailored to individual patients, 
enhancing treatment precision and efficacy.

Single-cell/single-nucleus sequencing also plays an 
important role in immunological profiling, enhancing 
understanding of immune cell dynamics in cardiovascu-
lar disease, such as myocarditis and transplant rejection. 
These advances could facilitate the development of targeted 
immunotherapies, including engineered regulatory T cells, 
with improved specificity and reduced systemic toxicity.

In regenerative medicine, single-cell/single-nucleus tech-
nologies could guide stem cell differentiation and enable 
real-time surveillance of transplanted cells integrating into 
cardiac tissues. These capabilities are essential for advanc-
ing myocardial repair and tissue engineering.

Introduction

Heart diseases, collectively termed as cardiovascular dis-
ease (CVD), represents a diverse range of conditions that 
impair the structure and function of the heart and its associ-
ated vasculature. CVDs remain the leading cause of mor-
tality worldwide, accounting for approximately 30% of all 
deaths in 2012 in the United States alone and affecting an 
estimated 17.5 million people [1, 2]. The mechanisms driv-
ing CVDs remain incompletely understood. This is primar-
ily due to the complex interplay of molecular, cellular, and 
systemic factors that not only occur within the heart but also 
involve other organs and systems throughout the body.

The human heart is a complex organ composed of four 
anatomically and functionally distinct chambers, conduction 
system and valves, and a dynamic microenvironment 
of diverse cell types [3, 4]. Gene expression and cellular 

interactions regulate these components, ensuring proper 
heart function, while a functioning heart, in turn, shapes gene 
expression and cellular dynamics [5]. Throughout normal 
development and life, the heart demonstrates remarkable 
adaptability, responding to physiological and hemodynamic 
changes by altering structure and function to maintain 
uninterrupted contraction and blood flow. However, under 
disease conditions, harmful stimuli, such as ischemic, 
mechanical, electrical, or chemical injuries, disrupt the 
balanced processes, altering cellular microenvironments 
and transcriptional landscapes, ultimately leading to the 
pathogenesis and progression of CVDs.

CVDs encompass various conditions with specific 
pathophysiological mechanisms, clinical challenges, and 
prognostic implications. The most common cardiovascular 
disease (CVD) is coronary artery disease (CAD), which 
arises from coronary atherosclerosis [6, 7]. CAD can lead 
to symptoms such as angina pectoris or dyspnea, as well 
as more severe outcomes like myocardial infarction and 
ischemic cardiomyopathy [8, 9]. Another major category of 
CVDs is non-ischemic cardiomyopathies, which impair the 
heart muscle’s ability to contract effectively and circulate 
blood adequately [10]. These conditions include (ischemic 
and non-ischemic) dilated hypertrophic, arrhythmogenic, 
and restrictive cardiomyopathies. As these diseases 
progress, they can lead to advanced heart failure (HF), 
characterized by fatigue, dyspnea, and fluid overload. In 
end-stage cases, the only definitive treatment options remain 
heart transplantation or implantation of a mechanical assist 
device.

Advancements in early diagnosis and medical treatment 
have significantly improved outcomes for CVDs. However, 
CVDs remain a major global health challenge, requiring 
deeper insights into their underlying mechanisms. Recent 
breakthroughs in single-cell and spatial technologies have 
revolutionized our understanding of CVDs by characterizing 
the transcriptional and functional states of individual cardiac 
cell types [11–18]. These single cell and spatial omics high-
resolution approaches have uncovered novel biomarkers, 
disease-specific transcriptional signatures, and intricate 
cellular communication networks, offering a transformative, 
cell-centric perspective on cardiac health and disease 
progression. As genomics, transcriptomics, and epigenetics 
continue to evolve, these cutting-edge technologies hold 
immense promise for improving diagnostic accuracy, refining 
patient risk classification, and developing targeted therapies. 
The seamless integration of scientific innovation with clinical 
research and patient care is poised to drive transformative 
progress in cardiovascular medicine, ultimately reducing the 
global burden of heart disease.
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Single-Cell Transcriptomics Sequencing

Bulk RNA sequencing has significantly contributed to our 
understanding of the molecular mechanisms underlying heart 
disease by providing an averaged gene expression profile 
across all cardiac cell types [5, 19]. However, this approach 
masks crucial cell-to-cell variability, which is essential for 
understanding both normal and diseased hearts. To overcome 
this limitation, single-cell RNA sequencing (scRNA-seq) and 
single-nucleus RNA sequencing (snRNA-seq) have emerged 
as powerful tools, enabling transcriptomics analysis at the 
level of individual cells or nuclei. These methods enable the 
identification of distinct cardiac cell populations, uncovering 
cellular heterogeneity and differential gene expression that 
would otherwise be masked in bulk analysis [5].

The process of single cell experiments targeting 
cardiovascular system begins with transcriptomic profiling 
of heart tissues through scRNA-seq/snRNA-seq. The 
downstream analysis includes clustering and annotation to 
identify different cardiac cell populations, compositional 
analysis to quantify the changes in abundance of different 
cell types or states, and trajectory analysis along with RNA 
velocity to infer continuous transitions between cell states. 
In addition, gene regulatory networks capture transcriptional 
regulatory interactions, and cell–cell communication analysis 
reveals intercellular signaling and functional coordination. 
Taken together, single cell downstream analysis provides 
comprehensive understanding of the cellular landscape, 
regulatory mechanisms, and dynamic processes within 

healthy and diseased heart tissues. Figure 1, retrieved from 
BioRender scRNA-seq/snRNA-seq experiments begin 
with the enzymatic digestion of biological tissue samples 
to dissociate cells for single-cell experiments using fresh 
tissues or the isolation of nuclei from cells for single-
nucleus experiments using frozen tissues. This is followed 
by reverse transcription of mRNA into complementary DNA 
(cDNA), cDNA amplification, library construction, and high-
throughput sequencing. scRNA-seq/snRNA-seq protocols 
include plate-based and droplet-based methods. Plate-based 
protocols, such as SMART-seq, isolate single cells into 
wells of multi-well plates, allowing for full-length transcript 
analysis [20]. High-throughput droplet-based methods, 
including platforms like Chromium (10X Genomics), 
ddSEQ (Bio-Rad/Illumina), Nadia (Dolomite), and inDrop 
(1CellBio), use microfluidic droplets to encapsulate cells or 
nuclei with barcoded beads, enabling scalable single-cell or 
single-nucleus transcriptomics capture [21–24]. For example, 
the 10X Genomics Chromium platform employs high-
throughput droplet-based encapsulation to isolate single cells 
or nuclei, lyse them within droplets to release mRNAs, and 
construct cDNA libraries from 3’ or 5’ poly-A tails [5].

scRNA-seq/snRNA-seq is able to generate the transcrip-
tomics landscape of thousands to millions of cardiac single 
cells or nuclei. Importantly, since cardiomyocytes, the most 
functionally important cardiac cell type, are too large for 
microfluidics-based single-cell methods, snRNA-seq is 
particularly advantageous, allowing for studying cardio-
myocytes’ transcriptional profiles through isolated nuclei. 

Fig. 1  Comprehensive methods for downstream analysis of scRNA-seq/snRNA-seq data
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which rely on pre-trained models from previous datasets 
[33, 34]. Automated cell-type annotation also includes ref-
erence mapping techniques like scArches, Symphony, and 
Azimuth, which match new data to annotated references 
using label transfer algorithms [35, 36].

Another important aspect of single-cell/single-
nucleus analysis is the identification of distinct cell 
states (cell subtypes) within a given cell type, indicating 
further heterogeneity of one cell type. For example, in 
cardiomyocytes, single-cell/single-nucleus transcriptomics 
can reveal different subpopulations, stress-responsive 
CMs (with marker genes of MYH9, NEXN and CNN1) or 
metabolic-active CMs (with marker genes of NDUFB11, 
NDUFA4, COX7C and COX5B) [11], based on specific gene 
expression patterns.

Furthermore, changes in the relative abundance of 
different cell types or states, referred to as compositional 
changes, are indicators of cell types/states involved in 
biological processes and pathological conditions. Univariate 
statistical models, such as Poisson regression or Wilcoxon 
rank-sum tests, analyze the changes in abundance for each 
cell type individually [37]. Univariate statistical models 
can mistakenly interpret changes in cell populations as 
significant due to compositional bias, which occurs because 
the data represents proportions rather than absolute values. 
This bias can increase false positives and lead to incorrect 
conclusions. Tools like the Centered LogRatio (CLR) 
transformation and scCODA enhance cell compositional 
analysis. CLR normalizes data by converting raw counts into 
log-ratios relative to the geometric mean, while scCODA, a 
Bayesian framework, accounts for interdependence among 
cell types, enabling robust modeling of their relationships 
[15, 38].

Continuous Transitions Between Discrete Cell States

scRNA-seq/snRNA-seq techniques provide static views of 
cell states. However, in biological systems, cells transition 
smoothly between states [39]. This transition occurs through 
gradual changes in gene activity, specifically in the process of 
transcription [40]. Computational trajectory inference methods, 
including Monocle, Slingshot, RaceID/StemID, and PAGA, 
have been developed to reconstruct the continuous progres-
sion of cell states [41–44]. These trajectory inference methods 
could infer complex structures, including linear progressions, 
cyclic patterns and intricate branching structures that denote 
divergent cellular differentiation fates [41, 42]. Beyond gen-
erating a lineage structure representing cellular progression, 
mathematical models also enable the identification of key regu-
latory genes that drive and define lineage progression [41, 45].

RNA velocity analysis enhances these trajectory infer-
ences by introducing directional information based on 

scRNA-seq/snRNA-seq enable various downstream com-
putational analysis to understand cellular heterogeneity, 
rare cell types, and dynamic biological processes, such as 
cardiac development, disease progression, and therapeutic 
response. The downstream analysis following single cell 
experiments include cell type annotation, compositional 
analysis, trajectory analysis, RNA velocity, gene regulatory 
network inference, and cell–cell communication modeling 
(Fig. 1). Each of these techniques provides unique perspec-
tives on cellular behavior and interaction, which together 
drive progress in the development of targeted treatments, 
and prediction of drug responses.

Clustering Cells based on Single-Cell 
Transcriptomics Profiles and Composition Changes 
in Cell Types and States of Clustered Cells

scRNA-seq/snRNA-seq have advanced the study of gene activ-
ity in individual cells. This tool allows researchers to examine 
complex heart tissues in detail, revealing the different types of 
cells and their various states [25, 26]. A fundamental step of 
understanding tissue diversity is identifying unique groups of 
cells, such as specific cell types and their different conditions. 
This step is accomplished by clustering individual cells based 
on their gene expression profiles, thereby grouping cells with 
similar transcriptional profiles [27].

Cell clustering is performed using k-nearest neighbor 
(KNN) graph based community detection algorithms, such 
as Louvain algorithm and Leiden algorithm [28–31]. Fur-
ther cell type annotation can be performed through manual 
or automated approaches. Manual annotation relies on 
cluster-specific gene signatures, referred to as marker genes 
[32]. Canonical marker genes, which are well-established 
and commonly used for identifying major cardiac cell types, 
are summarized in Table 1. Automated cell-type annotation 
uses classifier-based methods like CellTypist and Clustifyr, 

Table 1  Canonical marker genes of cardiac cell types
Cell type Marker genes
Cardiomyocytes RYR2, TTN, MYBPC3, TNNT2, PLN, 

SLC8A1, MHRT, MYH6
Endothelial cells VWF, PECAM1, CDH5, CCDC85A, 

BTNL9
Fibroblasts DCN, GSN, PDGFRA, PCDH9, BMPER
Smooth muscle cells MYH11, ACAT2, CDH6
Neurons NRXN1
Macrophages FCGR1, F13A1, ADGRE1
Adipocytes ADIPOQ, TSHR, PLIN1
Pericytes PDGFRB, TRPC3, VTN
Endocardial cells PECAM1, NPR3, TMEM108, PLVAP
Epicardial cells MSLN, PCDH15, MUC16
Schwann cells PLP1, GFRA3, PCDH9
B cells PAX5, LY6D
T cells NKG7, THEMIS, CD3E, ITK
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Cellular Communications

In multicellular organisms, cells work together within and 
across tissue niches to maintain homeostasis and respond to 
external and internal perturbations [55]. This coordination 
is achieved through cell-to-cell signaling, which in turn 
affects intracellular activities, such as gene regulatory 
processes within each cell [55]. Cell–cell communication 
(CCC) refers to a subset of cell–cell interactions (CCIs) 
that involve biochemical signals exchanged between or 
within cells, which further generate intracellular effects 
[55]. CCC research mainly focuses on protein-mediated 
interactions, such as ligand-receptor, extracellular matrix-
receptor interactions, and receptor-receptor [55]. CCC 
inference involves analyzing gene expression in sender and 
receiver cells, with communication quantitatively defined 
by the expression of ligands and their corresponding 
receptors [56, 57]. Tools such as CellChat, CellPhoneDB, 
and ICELLNET are widely used to infer CCC between 
cell clusters by assigning communication scores to 
ligand-receptor pairs and evaluating their statistical 
significance [56–58]. Notably, platforms like CellChat 
and CellPhoneDB consider the role of multisubunit 
protein complexes in ligand-receptor interactions [56, 
58]. Furthermore, tools such as Nichenet and Cytotalk 
complement CCC analysis by providing additional 
insights, such as induced gene expression changes, thereby 
increasing confidence in predicted interactions.

Advances in Spatial Transcriptomics

Advancements in genomic technologies have enabled spa-
tially resolved transcriptomics profiling, allowing for the 
simultaneous assessment of gene expression while maintain-
ing cellular location information within tissues [59]. Integrat-
ing transcriptomics data with spatial localization, spatially 
resolved transcriptomics (SRT) provides crucial insights into 
cell-type-specific and region-specific gene expression pat-
terns, intercellular interactions, and the influence of the tissue 
microenvironment on cellular function [60].

The spatially resolved transcriptomics workflow 
involves carrier design, tissue treatment and RNA capture, 
reverse transcription and cDNA amplification, library 
construction and followed sequencing to generate data [61, 
62]. The carrier design, integrated with spatial probes, has 
advanced to enhance resolution, progressing from multi-
cell to single-cell/single-nucleus and even subcellular levels 
[63]. Tissue treatment is an important step in the workflow, 
ensuring optimal RNA extraction and hybridization, 
with fresh-frozen and formalin-fixed, paraffin-embedded 
(FFPE) tissues being the two common preparation methods. 
Both methods rely on enzymatic permeabilization, using 

splicing kinetics, using tools like scVelo and velocyto [46, 
47]. RNA velocity predicts a cell’s future transcriptional 
state by analyzing the ratio of unspliced to spliced RNA 
reads. Since unspliced RNA represents newly transcribed 
molecules, an excess of unspliced RNA suggests gene upreg-
ulation, while a decline indicates downregulation, reveal-
ing dynamic changes in gene activity over time [46]. This 
approach offers dynamic insights into cell fate transitions 
[46]. Under conditions where RNA kinetics are variable or 
multiple transcriptional dynamics coexist, lineage-specific 
modeling approaches can further improve the accuracy of 
trajectory inference [48–50]. It is worth noting that applying 
RNA velocity on snRNA-seq data is challenging, due to the 
technology characteristics of focusing on nuclear RNA [5]. 
Compared to scRNA-seq/snRNA-seq, snRNA-seq is biased 
toward capturing unspliced pre-mRNA, as mature mRNA 
is predominantly located in the cytoplasm, increasing the 
complexity of the analysis [48].

Gene Regulatory Networks

Transcriptomics data enables the inference of regulatory 
interactions between genes by analyzing co-expression 
patterns, and transcription factor activity. Gene regulatory 
networks (GRNs) serve as comprehensive frameworks to 
study the interactions between gene and gene expression 
regulators, such as transcription factors (TFs), regulatory 
RNAs, and RNA-binding proteins (RBPs), and their 
target genes. scRNA-seq/snRNA-seq further facilitates the 
construction of GRNs specific to distinct cell types or states, 
particularly in disease contexts, providing deeper insights 
into cell-type-specific regulatory mechanisms and their 
alterations between healthy and diseased conditions.

Many network inference methods, which were developed 
for bulk RNA sequencing, such as GENIE3 and ARACNE 
[51, 52], have been applied to scRNA-seq/snRNA-seq 
datasets. GENIE3 uses random forest models to predict 
regulatory genes for a target gene by assessing how well 
regulatory gene expression can predict the target’s expression 
[51]. ARACNE, an information-theoretic method, infers 
regulatory networks based on Mutual Information (MI), 
which measures the dependency between two variables [52]. 
In addition to bulk RNA sequencing, single-cell-specific 
approaches, such as Partial Information Decomposition 
and Context (PIDC) and Single-cell rEgulatory Network 
Inference and Clustering (SCENIC) have been developed 
[53, 54]. PIDC leverages multivariate information to 
quantify dependencies among variables, decomposing them 
into redundant, unique, and synergistic components [53]. 
SCENIC combines GENIE3-based network inference with 
downstream pruning to identify active regulatory networks 
and corresponding cell states [54].
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with coronary syndromes and circulating CD31 + cells from 
heart failure patients [78, 79].

Large-scale scRNA-seq/snRNA-seq has been instrumental 
in profiling myocardial tissues, providing insights into 
both healthy human hearts and a broad spectrum of cardiac 
diseases including dilated cardiomyopathy (DCM), 
hypertrophic cardiomyopathy (HCM), arrhythmogenic 
cardiomyopathy (ACM), ischemic cardiomyopathy (ICM), 
cardiac hypertrophy and heart failure, heart failure in patients 
with left ventricular assist devices (LVADs), or cardiac 
complications associated with COVID-19 (Table 2).

A notable study by Reichart et al. (2022) investigated 
genotype-specific mechanisms underlying DCM and ACM, 
focusing on pathogenic variants in LMNA, RMB20, TTN, 
and PKP2 [15]. Their analysis identified 10 major cardiac 

proteases like proteinase K for fresh-frozen tissues and 
a combination of heat-induced antigen retrieval (HIAR) 
and enzymatic treatment for FFPE tissues—to break down 
cell membranes and cross-links [64, 65]. A wide range of 
spatial transcriptomics technologies has been developed. 
For example, Slide-seqV2 and DBiT-seq improve upon 
this by reaching a nearly single-cell resolution of 10 µm, 
while Visium HD provides a resolution of 2–8 µm, being 
suitable for analyzing tissue-level gene expression patterns 
[66, 67]. For applications requiring subcellular resolution, 
technologies such as Pixel-seq, Seq-Scope, and Stereo-
seq push the boundaries by achieving spatial resolutions 
as fine as 0.5  µm, allowing researchers to study gene 
expression at the level of individual organelles and cellular 
compartments [61, 68].

The downstream analysis of spatially resolved tran-
scriptomics data mainly involves spatial matrix generation, 
image registration, cell segmentation, deconvolution, gene 
imputation, and cell–cell communication analysis [69]. 
Sequencing-based and imaging-based SRT methods require 
accurate spatial barcode assignment and fluorescence signal 
processing [70]. Lower-resolution SRT relies on deconvo-
lution algorithms, such as Robust cell type decomposition 
(RCTD) and Tangram to infer single-cell gene expression, 
with challenges remaining in resolving rare cell types [71, 
72]. Moreover, SRT enables direct spatially constrained 
cell–cell interaction analysis using tools like CellChat and 
NICHES [56, 73]. Despite the advancements in offering an 
extra layer of position information, downstream analysis of 
SRT data is still challenging, particularly in resolution, data 
integration, and computational scalability. Addressing these 
limitations requires innovations in deep learning and proba-
bilistic modeling to enhance spatial transcriptomics analysis 
and advance its applications in disease research.

Single Cell Transcriptomics Profiles of 
Cardiovascular Systems

In recent years, scRNA-seq/snRNA-seq technologies have 
emerged as essential tools in cardiovascular research, offer-
ing unprecedented resolution in studying the cellular and 
molecular mechanisms driving the pathogenesis and pro-
gression of CVDs [74, 75].

These technologies have been applied across a wide 
range of cardiac disease models, including cell-based mod-
els, such as cardiac cell lines and human embryonic stem 
cell (hESC)-derived cardiac cells, patient-specific models, 
where induced pluripotent stem cells (iPSCs) are used to 
generate cardiac cells for personalized studies, animal mod-
els, including mice, rats, zebrafish, and pigs, providing 
insights into disease mechanisms in vivo [13, 14, 76, 77], 
or patient biofluids, such as blood samples from individuals 

Table 2  Single cell transcriptomics data of human heart conditions
Dataset Condition Sample size Reference
Healthy 
human hearts

Healthy hearts 7 healthy human 
hearts

[32]

Human heart 
atlas

Healthy hearts 14 healthy 
human hearts

[11]

DCM/ACM Genotyped DCM and 
ACM patients

61 failing, non-
ischemic human 
hearts and 18 
controls

[15]

DCM/HCM DCM or HCM com-
pared with non-failing 
donors

12 DCM, 16 
HCM, 16 
controls

[80]

DCM DCM compared with 
nonfailing donors

17 DCM and 28 
controls

[74]

ICM Non-infarct region 
of ICM compared to 
non-failing controls

7 ICM and 8 
controls

[81]

Pressure-
induced 
hypertrophic 
heart

Hypertrophic cardiac 
tissues compared 
with regionmatched 
healthy cardiac tissue 
data from human 
heart atlas

5 aortic stenosis 
samples

[82]

End stage 
heart failure

Patients with 
advanced HF with 
LVADs implantation

13 HF with 
LVAD, 13 HF 
without LVAD 
and 14 controls

[83]

Inflammatory 
cardiomy-
opathies after 
COVID

Patients with myocar-
ditis related and unre-
lated to COVID-19

8 Non-
COVID-19 
related myo-
carditis and 
10 COVID-
19 related 
myocarditis

[84]

Long 
COVID 
effects

Blood draws to 
generate iPSCs 
for iPSC-derived 
endothelial cells and 
cardiomyocytes

4 mild long 
COVID, 4 severe 
long COVID and 
5 controls

[85]

DCM dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy; 
ACM arrhythmogenic cardiomyopathy: ICM ischemic cardiomyopa-
thy; LVAD left ventricular assist devices
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The additional integration of transcriptome profiling helps 
to further understand the regulation of genes. Transcriptome 
profiling reveals gene expression patterns, while chromatin 
accessibility offers insights into the regulatory elements 
controlling them [92]. These processes are interconnected, 
as chromatin accessibility governs transcription factor and 
chromatin remodeler access to DNA, driving cis-regulatory 
activities and cell-type-specific gene expression [92–94]. 
Gene expression and chromatin accessibility profiles can 
be obtained by performing separate scRNA-seq/snRNA-seq 
and scATAC-seq experiments on split portions of the sample 
or by using e.g. the advanced 10X Genomics EpiMultiome 
platform, which enables simultaneous profiling from the 
same cell [95].

Transcriptomics and chromatin accessibility data could 
facilitate the recovery of regulatory interactions between 
genes as GRNs [96]. Through single cell transcriptomics 
data, TF genes are identified from external databases to 
distinguish their regulatory genes, and TF–gene interactions 
are inferred by modeling gene expression as a function of TF 
abundance [54]. Chromatin accessibility data are processed 
to identify accessible peaks, creating a peak accessibility 
matrix that encodes the openness of CREs [93]. CREs are 
associated with nearby genes based on genomic proximity, 
and TF binding to CREs is predicted using motif databases 
and algorithms [97]. This results in TF–CRE–gene triplets, 
which are subsequently simplified into TF–gene interactions 
and can be further aggregated into GRNs.

Genomics and its Combination with Single 
Cell Technology

Combination of Genomics with Transcriptome Data

Genome-Wide Association Studies (GWAS) are large-
scale analyses examining genetic variants across the 
whole genome to identify associations with specific traits 
or diseases, linking genotypes to phenotypes [98]. GWAS 
studies focus on single nucleotide polymorphisms (SNPs), 
which are single-base variations in DNA that can influence 
biological functions and disease susceptibility [98].

The major limitation of GWAS studies is their difficulty 
to determine the biological function of causal variants, as 
over 90% of genome-wide significant single nucleotide 
polymorphisms (SNPs) lie in noncoding regions, often within 
regulatory elements that might influence distant genes [98]. 
This makes identifying causal genes and disease mechanisms 
particularly challenging. To address this, post-GWAS 
approaches integrate in silico analyses with experimental 
validation to link variants to molecular phenotypes. 
Molecular quantitative trait loci (QTL) analyses, including 

cell types and 71 distinct transcriptional states, revealing 
key alterations in cellular composition and gene expres-
sion associated with heart failure. Key findings included 
a significant depletion of cardiomyocytes and a notable 
increase of immune cell populations, extensive extracellu-
lar matrix remodeling, driven by fibroblast activation, and 
a genotype-specific alterations in intercellular signaling, 
such as enhanced endothelin signaling in LMNA-variant 
hearts and dysregulated TNF signaling in PKP2-associated 
cardiomyopathy.

Similarly, Chaffin et al. (2022) performed trajectory 
analysis on fibroblasts from DCM and HCM patients, 
uncovering a continuous transition from quiescent to 
activated fibroblast states. Their findings highlighted 
dynamic transcriptional changes, with upregulation of 
LC44A5, COL22A1, POSTN, AEBP1, and THBS4, and 
downregulation of PDGFRA, NEGR1, and COL4A4 along 
the fibroblast activation trajectory [80].

Beyond single-cell sequencing, spatial transcriptomics 
has been increasingly applied to map cardiac structures, 
providing insights into heart development, conduction 
systems, and infarct tissue remodeling [86–88]. Kanemaru 
et al. integrated single-cell transcriptomics, epigenomics, 
and spatial transcriptomics to create a spatially resolved 
multiomic atlas of the human heart, highlighting FOXP2 
as a key regulator in pacemaker cells and detailing the 
compartmentalization of the sinoatrial node [87]. In addition, 
Kuppe et al. (2022) utilized spatial transcriptomics to study 
tissue organization during infarct healing, identifying 
molecular pathways that regulate fibrotic and regenerative 
processes [88].

These groundbreaking technologies continue to refine 
our understanding of cardiac biology, disease progression, 
and potential therapeutic targets, paving the way for more 
precise diagnostics and treatment strategies in cardiovascu-
lar medicine.

Single Cell Multi-Omics Integrating 
Transcriptomics and Open Chromatin 
Accessibility

Beyond the transcriptomics information, the complexity 
of cellular phenotypes also arises from intricate regulatory 
mechanisms [89]. Epigenetic mechanisms such as DNA 
methylation, histone modifications, and chromatin acces-
sibility orchestrate gene regulation, influencing processes 
ranging from development and differentiation to disease 
pathogenesis [90]. Chromatin accessibility profiling, using 
methods like single-cell Assay for Transposase-Accessible 
Chromatin (scATAC-seq), identifies active regulatory ele-
ments driving cell-type-specific gene expression [91].
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modifications, disease progression, or environmental stim-
uli, affect cellular physiology and molecular pathways.

One of the applications of single cell perturbation of com-
bining single-cell CRISPR screening with GWAS enables 
the functional investigation of genetic variants by perturb-
ing GWAS-identified target genes. STING-seq (Systematic 
Targeting and Inhibition of Noncoding GWAS Loci with 
Single-Cell Sequencing) integrates large-scale GWAS data, 
CRISPR screens, and single-cell sequencing to identify 
causal variants, map target genes in cis and trans regions, 
and uncover regulatory networks influencing disease risk 
[116].

Application of Genomics and Integrated Single Cell 
Functional Genomics in Cardiovascular Disease 
Research

Building on the advances of GWAS studies, Weng et al. (2025) 
conducted large-scale meta-analyses of GWAS involving 
more than 1.3 million individuals, including 30,000 cases 
from ten studies, with robust phenotypic definitions of sinus 
node dysfunction (SND), distal conduction disease (DCD), 
and pacemaker implantation (PM) based on diagnostic 
codes, procedural data, and electrocardiograms [117]. Rare-
variant association tests performed on exome-sequencing 
data from 460,000 participants, combined with Mendelian 
randomization and cell-type enrichment analyses, identified 
13 loci for SND, 31 for DCD, and 21 for PM [117]. Jurgens 
et al. (2024) conducted large-scale GWAS and multitrait 
analysis of dilated cardiomyopathy with 9,365 cases and 
946,368 controls, identifying 70 significant loci mapped to 
63 prioritized genes [118]. Enrichment analyses highlighted 
the central role of cardiomyocytes and the contractile 
apparatus in DCM pathogenesis, while polygenic risk 
scores (PRS) predicted DCM risk across diverse ancestries 
and genetic backgrounds [118].

The V2G2P framework was specifically applied to CAD, 
revealing that 43 CAD-associated GWAS signals con-
verge on the CCM signaling pathway, highlighting its role 
in CAD risk [119]. The V2G2P framework comprises five 
steps [119]. Through this framework, 306 CAD-associated 
GWAS signals were mapped to their potential target genes 
within enhancers, coding regions, and splice sites. To func-
tionally validate these associations, Perturb-seq was applied 
to knock down candidate genes located within ± 500  kb 
of the 306 GWAS signals. The perturbed cellular effects 
were analyzed through scRNA-seq/snRNA-seq, followed 
by unsupervised machine learning to identify gene pro-
grams. CAD loci were found to converge onto five gene 
programs related to the cerebral cavernous malformations 

expression QTLs (eQTLs), protein QTLs (pQTLs), and 
splicing QTLs (sQTLs), provide insights into how genetic 
variation influences gene regulation [99, 100].

A key post-GWAS strategy is the study of gene expression. 
Genetic determinants and their relationship between 
gene expression can be systematically examined through 
expression quantitative trait loci (eQTL) analysis [101]. 
eQTLs are specific genomic regions where genetic variants, 
such as SNPs, are statistically associated with variations in 
gene expression levels [102–104]. By integrating single-
cell RNA sequencing with genotype data, single-cell 
expression quantitative trait loci (sc-eQTL) analysis enables 
the precise mapping of genetic regulatory effects within 
distinct cellular contexts, revealing genetic regulation that 
operates in specific cellular states or conditions that may be 
obscured in bulk analyses [105]. A significant breakthrough 
in the field of conducting single-cell expression quantitative 
trait loci (sc-eQTL) analysis was achieved by Cuomo et al. 
(2020), who conducted the study to investigate how genetic 
variants influence gene expression dynamics during the 
differentiation of induced pluripotent stem cells (iPSCs) 
[106]. By integrating scRNA-seq with genotype data, 
their study revealed context-dependent genetic regulatory 
effects that vary across developmental states, highlighting 
the dynamic nature of eQTL influences on gene expression. 
Their study discovered that certain eQTL effects were 
activated or repressed at specific differentiation stages, 
shaping cellular identity and function in a stage-specific 
manner [106].

Combination of Genomics with 
Transcriptome Data with Single Cell 
Functional Genomics

Recent advancements in genetic engineering and molecu-
lar biology, especially with the development of CRISPR 
technology, have enhanced the field of functional genomics 
[107, 108]. Single-cell CRISPR screening technologies, by 
combining high-throughput genetic perturbation with sin-
gle-cell resolution phenotypic analysis, allow simultaneous 
capture of genetic alterations and their corresponding high-
dimensional phenotypes [109]. Early iterations of these 
approaches, such as Perturb-seq and CROP-seq, focused 
primarily on transcriptomics phenotypes [110–113]. Subse-
quent advances have extended their applicability to epigen-
etic features, imaging-based phenotypes, and multimodal 
datasets [109, 114, 115]. The combination of single-cell 
technologies and perturbation modeling enables a deeper 
understanding of how external factors, such as genetic 
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of cell-specific mechanisms, biomarkers, and therapeutic 
targets. These perspectives drive precision medicine, regen-
erative therapies, and next-generation diagnostics, revolu-
tionizing cardiovascular care (Fig. 2).

Single-cell technologies facilitate the identification of 
distinct cell types, cellular states, and rare or disease-driving 
cell populations. By analyzing individual cells, this tech-
nology enables more precise diagnoses, improves disease 
classification, and allows for early detection of health condi-
tions. scRNA-seq/snRNA-seq provides detailed molecular 
profiles of each cell, helping researchers discover cell-spe-
cific biomarkers, including genes, proteins, and signaling 
pathways, that reflect disease states. Furthermore, con-
sidering the correlation between tissue-specific signatures 
and biofluids, scRNA-seq/snRNA-seq studies can improve 
non-invasive diagnostic and monitoring techniques. By ana-
lyzing circulating cells and extracellular vesicles, such as 
exosomes and microvesicles, liquid biopsies offer a promis-
ing approach for disease detection and progression tracking 
[122].

Single-cell technologies are transforming personalized 
medicine by generating patient-specific cellular profiles, 
enabling tailored treatments based on e.g. sc-SNPs. These 
technologies facilitate targeted therapies for specific cell 
types, enhance treatment response prediction, and improve 
therapeutic precision.

In regenerative medicine, single-cell technologies plays 
an important role in guiding stem cell differentiation for 
heart repair and tissue engineering. It also enables real-time 
monitoring of transplanted stem-cell-derived cells, ensuring 
proper development, function, and integration into cardiac 
tissue [123].

In addition, single-cell sequencing holds great promise 
for immune system analysis in cardiovascular diseases. By 
distinguishing immune cell subtypes and rare cell popula-
tions, it provides a deeper understanding of immune dynam-
ics in disease progression and therapeutic responses. This 
technology aids in detecting drug-resistant immune pheno-
types, offering insights into immune evasion and therapy 
resistance in conditions like myocarditis, atherosclerosis, 
and transplant rejection [124]. It can also drive the develop-
ment of personalized immunotherapies, such as engineered 
regulatory T cells (CAR-Tregs), for treating cardiovascular 
and inflammatory diseases [125].

The integration of large language AI models with single-
cell technologies enhances data analysis, enabling efficient 
multi-omics integration and deeper biological insights. AI-
driven predictive modeling further supports the identifica-
tion of biomarkers for disease diagnosis, patient monitoring, 
and therapy response prediction.

(CCM) signaling pathway, which regulates vascular devel-
opment [119]0.41 genes were identified as potential media-
tors of CAD risk through endothelial cell function. Notably, 
TLNRD1 and CCM2 knockdown mimicked atheroprotec-
tive laminar flow, and TLNRD1 was identified as a novel 
regulator of the CCM pathway.

Integrating Multi-Omics Single-Cell 
Profiles to Unravel Cardiovascular Disease 
Mechanisms

Large-cohort single-cell profiling of genomics, transcrip-
tomics, epigenomics, proteomics, and metabolomics will 
provide a more comprehensive molecular landscape of CVD 
pathogenesis and progression. Firstly, integrating multi-
omics data by combining genomics with single-cell tran-
scriptomics provides a more comprehensive understanding 
of gene regulation in CVDs. Especially, sc-eQTL studies 
in the cardiovascular field offer insights into how genetic 
variants influence gene expression at the cellular level 
within the heart [101]. By mapping these genetic variants 
to specific cell types, sc-eQTL analyses can uncover cell 
type-specific regulatory mechanisms that contribute to dis-
ease pathogenesis [106]. Further integrating sc-eQTL data 
with Mendelian randomization, where gene expression lev-
els serve as exposures, enables the establishment of causal 
relationships between genetic variants, gene expression, and 
CVD phenotypes [120]. Secondly, the integration of single-
cell transcriptomics and epigenomics will help reconstruct 
cell-type-specific regulatory landscapes, providing a mech-
anistic understanding of gene regulation in distinct cardiac 
cell types/states [92]. These regulatory interactions can be 
further validated through functional genomics approaches 
[121]. Additionally, integrating spatial transcriptomics and 
spatial multi-omics sequencing provides a detailed view of 
the spatial organization of cells within cardiac tissue, cap-
turing the precise localization of distinct cell types and their 
molecular states to reveal how cellular heterogeneity, sig-
naling networks, and microenvironmental interactions con-
tribute to heart diseases [60].

Future Direction of Application of Single Cell 
Technologies

The future of single cell technologies in cardiovascular 
medicine lies in the advancements of disease understanding, 
diagnosis, and treatment. By dissecting cellular and molecu-
lar complexities, this technology enables the identification 
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Findings from this study genotype-specific mecha-
nisms and cell type/cell state proportion changes 
of dilated cardiomyopathy and arrhythmogenic 
cardiomyopathy.

	● Litviňuková M, Talavera-López C, Maatz H, Reich-
art D, Worth CL, Lindberg EL, Kanda M, Polanski K, 
Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, 
Fasouli ES, DeLaughter DM, McDonough B, Wakimoto 
H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy 
K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, 
Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, 
Noseda M, Hubner N, Teichmann SA. Cells of the adult 
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This study generated human heart atlas at single-cell 
resolution to generate comprehensive map of cell 
types, cell states, and cellular communication inter-
actions of hearts to enhance our understanding of 
cardiac biology.
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