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Abstract

Purpose of Review Cardiovascular diseases (CVDs) encompass a wide range of conditions affecting the heart and vascu-
lature and remain the leading cause of mortality worldwide. The pathogenesis of CVDs is related to complex molecular,
cellular, and systemic interactions, involving dysregulated signaling pathways, inflammatory responses, genetic predisposi-
tions, and intercellular communication. Despite significant advancements, the precise mechanisms underlying CVDs remain
only partially understood. This review aims to explain how single-cell and single-nucleus transcriptomics facilitate our
understanding of CVD pathogenesis. It focuses on their integration with genomic and epigenomic approaches, cellular het-
erogeneity, intercellular communication, regulatory networks, and genetic associations.

Recent Findings Recent applications of single-cell and single-nucleus transcriptomics in cardiovascular research have
already revealed significant alterations in cellular composition and gene expression profiles associated with dilated cardio-
myopathy (DCM), arrhythmogenic cardiomyopathy (ACM), and hypertrophic cardiomyopathy (HCM). Furthermore, spatial
transcriptomic technologies have provided critical insights into human cardiac development, the conduction system, and
region-specific molecular changes in myocardial infarction, advancing our understanding of cardiac structure and function.
Integrating single-cell transcriptomics with epigenomics further enhances our understanding of cell type- and state-spe-
cific regulatory landscapes, which can be validated through single-cell perturbation technologies. Additionally, combining
genomic studies with single-cell technologies helps to recover causal relationships between genetic variants, gene expression
patterns, and cellular phenotypes.

Summary Single-cell and single-nucleus transcriptomics technologies have enhanced our understanding of CVD mecha-
nisms, uncovering cardiac cellular diversity and elucidating key regulatory processes in disease states. With larger datasets,
more robust multi-omics integration, and advanced computational frameworks, transcriptome studies at single cell level will
significantly enhance the ability to explore disease mechanisms and identify therapeutic targets. Integrating individualized
transcriptomes into the medical routine will furthermore facilitate more precise and effective interventions in cardiovascular
medicine.
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Opinion Statement

The application of single-cell/single-nucleus transcriptomics
in cardiovascular medicine hold transformative potential to
advance the diagnosis, monitoring, and treatment of cardio-
vascular diseases. Detailed molecular profiling of individual
cells, including genes and signaling pathways, generated
through single-cell/single-nucleus transcriptomics could
allow for more accurate diagnoses, refined disease classifi-
cation, and early detection of pathological changes.

Another promising avenue is the correlation of tissue-
specific signatures with circulating biomarkers found in bio-
fluids such as exosomes and microvesicles, and circulating
cell-free nucleic acids. This could facilitate the development
of liquid biopsies to diagnosis and monitor diseases with
minimal invasion.

Moreover, by characterizing single-cell-specific muta-
tions, therapies can be tailored to individual patients,
enhancing treatment precision and efficacy.

Single-cell/single-nucleus sequencing also plays an
important role in immunological profiling, enhancing
understanding of immune cell dynamics in cardiovascu-
lar disease, such as myocarditis and transplant rejection.
These advances could facilitate the development of targeted
immunotherapies, including engineered regulatory T cells,
with improved specificity and reduced systemic toxicity.

In regenerative medicine, single-cell/single-nucleus tech-
nologies could guide stem cell differentiation and enable
real-time surveillance of transplanted cells integrating into
cardiac tissues. These capabilities are essential for advanc-
ing myocardial repair and tissue engineering.

Introduction

Heart diseases, collectively termed as cardiovascular dis-
ease (CVD), represents a diverse range of conditions that
impair the structure and function of the heart and its associ-
ated vasculature. CVDs remain the leading cause of mor-
tality worldwide, accounting for approximately 30% of all
deaths in 2012 in the United States alone and affecting an
estimated 17.5 million people [1, 2]. The mechanisms driv-
ing CVDs remain incompletely understood. This is primar-
ily due to the complex interplay of molecular, cellular, and
systemic factors that not only occur within the heart but also
involve other organs and systems throughout the body.

The human heart is a complex organ composed of four
anatomically and functionally distinct chambers, conduction
system and valves, and a dynamic microenvironment
of diverse cell types [3, 4]. Gene expression and cellular
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interactions regulate these components, ensuring proper
heart function, while a functioning heart, in turn, shapes gene
expression and cellular dynamics [5]. Throughout normal
development and life, the heart demonstrates remarkable
adaptability, responding to physiological and hemodynamic
changes by altering structure and function to maintain
uninterrupted contraction and blood flow. However, under
disease conditions, harmful stimuli, such as ischemic,
mechanical, electrical, or chemical injuries, disrupt the
balanced processes, altering cellular microenvironments
and transcriptional landscapes, ultimately leading to the
pathogenesis and progression of CVDs.

CVDs encompass various conditions with specific
pathophysiological mechanisms, clinical challenges, and
prognostic implications. The most common cardiovascular
disease (CVD) is coronary artery disease (CAD), which
arises from coronary atherosclerosis [6, 7]. CAD can lead
to symptoms such as angina pectoris or dyspnea, as well
as more severe outcomes like myocardial infarction and
ischemic cardiomyopathy [8, 9]. Another major category of
CVDs is non-ischemic cardiomyopathies, which impair the
heart muscle’s ability to contract effectively and circulate
blood adequately [10]. These conditions include (ischemic
and non-ischemic) dilated hypertrophic, arrhythmogenic,
and restrictive cardiomyopathies. As these diseases
progress, they can lead to advanced heart failure (HF),
characterized by fatigue, dyspnea, and fluid overload. In
end-stage cases, the only definitive treatment options remain
heart transplantation or implantation of a mechanical assist
device.

Advancements in early diagnosis and medical treatment
have significantly improved outcomes for CVDs. However,
CVDs remain a major global health challenge, requiring
deeper insights into their underlying mechanisms. Recent
breakthroughs in single-cell and spatial technologies have
revolutionized our understanding of CVDs by characterizing
the transcriptional and functional states of individual cardiac
cell types [11-18]. These single cell and spatial omics high-
resolution approaches have uncovered novel biomarkers,
disease-specific transcriptional signatures, and intricate
cellular communication networks, offering a transformative,
cell-centric perspective on cardiac health and disease
progression. As genomics, transcriptomics, and epigenetics
continue to evolve, these cutting-edge technologies hold
immense promise for improving diagnostic accuracy, refining
patient risk classification, and developing targeted therapies.
The seamless integration of scientific innovation with clinical
research and patient care is poised to drive transformative
progress in cardiovascular medicine, ultimately reducing the
global burden of heart disease.
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Single-Cell Transcriptomics Sequencing

Bulk RNA sequencing has significantly contributed to our
understanding of the molecular mechanisms underlying heart
disease by providing an averaged gene expression profile
across all cardiac cell types [5, 19]. However, this approach
masks crucial cell-to-cell variability, which is essential for
understanding both normal and diseased hearts. To overcome
this limitation, single-cell RNA sequencing (scRNA-seq) and
single-nucleus RNA sequencing (snRNA-seq) have emerged
as powerful tools, enabling transcriptomics analysis at the
level of individual cells or nuclei. These methods enable the
identification of distinct cardiac cell populations, uncovering
cellular heterogeneity and differential gene expression that
would otherwise be masked in bulk analysis [5].

The process of single cell experiments targeting
cardiovascular system begins with transcriptomic profiling
of heart tissues through scRNA-seq/snRNA-seq. The
downstream analysis includes clustering and annotation to
identify different cardiac cell populations, compositional
analysis to quantify the changes in abundance of different
cell types or states, and trajectory analysis along with RNA
velocity to infer continuous transitions between cell states.
In addition, gene regulatory networks capture transcriptional
regulatory interactions, and cell-cell communication analysis
reveals intercellular signaling and functional coordination.
Taken together, single cell downstream analysis provides
comprehensive understanding of the cellular landscape,
regulatory mechanisms, and dynamic processes within
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healthy and diseased heart tissues. Figure 1, retrieved from
BioRender scRNA-seq/snRNA-seq experiments begin
with the enzymatic digestion of biological tissue samples
to dissociate cells for single-cell experiments using fresh
tissues or the isolation of nuclei from cells for single-
nucleus experiments using frozen tissues. This is followed
by reverse transcription of mRNA into complementary DNA
(cDNA), cDNA amplification, library construction, and high-
throughput sequencing. scRNA-seq/snRNA-seq protocols
include plate-based and droplet-based methods. Plate-based
protocols, such as SMART-seq, isolate single cells into
wells of multi-well plates, allowing for full-length transcript
analysis [20]. High-throughput droplet-based methods,
including platforms like Chromium (10X Genomics),
ddSEQ (Bio-Rad/Illumina), Nadia (Dolomite), and inDrop
(1CellBio), use microfluidic droplets to encapsulate cells or
nuclei with barcoded beads, enabling scalable single-cell or
single-nucleus transcriptomics capture [21-24]. For example,
the 10X Genomics Chromium platform employs high-
throughput droplet-based encapsulation to isolate single cells
or nuclei, lyse them within droplets to release mRNAs, and
construct cDNA libraries from 3’ or 5’ poly-A tails [5].
scRNA-seq/snRNA-seq is able to generate the transcrip-
tomics landscape of thousands to millions of cardiac single
cells or nuclei. Importantly, since cardiomyocytes, the most
functionally important cardiac cell type, are too large for
microfluidics-based single-cell methods, snRNA-seq is
particularly advantageous, allowing for studying cardio-
myocytes’ transcriptional profiles through isolated nuclei.
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Fig. 1 Comprehensive methods for downstream analysis of sScRNA-seq/snRNA-seq data
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scRNA-seq/snRNA-seq enable various downstream com-
putational analysis to understand cellular heterogeneity,
rare cell types, and dynamic biological processes, such as
cardiac development, disease progression, and therapeutic
response. The downstream analysis following single cell
experiments include cell type annotation, compositional
analysis, trajectory analysis, RNA velocity, gene regulatory
network inference, and cell-cell communication modeling
(Fig. 1). Each of these techniques provides unique perspec-
tives on cellular behavior and interaction, which together
drive progress in the development of targeted treatments,
and prediction of drug responses.

Clustering Cells based on Single-Cell
Transcriptomics Profiles and Composition Changes
in Cell Types and States of Clustered Cells

scRNA-seq/snRNA-seq have advanced the study of gene activ-
ity in individual cells. This tool allows researchers to examine
complex heart tissues in detail, revealing the different types of
cells and their various states [25, 26]. A fundamental step of
understanding tissue diversity is identifying unique groups of
cells, such as specific cell types and their different conditions.
This step is accomplished by clustering individual cells based
on their gene expression profiles, thereby grouping cells with
similar transcriptional profiles [27].

Cell clustering is performed using k-nearest neighbor
(KNN) graph based community detection algorithms, such
as Louvain algorithm and Leiden algorithm [28-31]. Fur-
ther cell type annotation can be performed through manual
or automated approaches. Manual annotation relies on
cluster-specific gene signatures, referred to as marker genes
[32]. Canonical marker genes, which are well-established
and commonly used for identifying major cardiac cell types,
are summarized in Table 1. Automated cell-type annotation
uses classifier-based methods like CellTypist and Clustifyr,

Table 1 Canonical marker genes of cardiac cell types
Cell type

Marker genes

RYR2, TTN, MYBPC3, TNNT2, PLN,
SLC8A41, MHRT, MYH6

Cardiomyocytes

Endothelial cells VWF, PECAM1, CDH5, CCDC85A4,
BTNLY
Fibroblasts DCN, GSN, PDGFRA, PCDH9, BMPER

Smooth muscle cells MYHI11, ACAT2, CDH6

Neurons NRXN1

Macrophages FCGRI,F1341, ADGRE]
Adipocytes ADIPOQ, TSHR, PLINI
Pericytes PDGFRB, TRPC3, VTN

Endocardial cells PECAMI1, NPR3, TMEM108, PLVAP

Epicardial cells MSLN, PCDH15, MUCI16
Schwann cells PLPI1, GFRA3, PCDH9

B cells PAXS5, LY6D

T cells NKG7, THEMIS, CD3E, ITK
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which rely on pre-trained models from previous datasets
[33, 34]. Automated cell-type annotation also includes ref-
erence mapping techniques like scArches, Symphony, and
Azimuth, which match new data to annotated references
using label transfer algorithms [35, 36].

Another important aspect of single-cell/single-
nucleus analysis is the identification of distinct cell
states (cell subtypes) within a given cell type, indicating
further heterogeneity of one cell type. For example, in
cardiomyocytes, single-cell/single-nucleus transcriptomics
can reveal different subpopulations, stress-responsive
CMs (with marker genes of MYH9, NEXN and CNNI) or
metabolic-active CMs (with marker genes of NDUFBII,
NDUFA4, COX7C and COX5B) [11], based on specific gene
expression patterns.

Furthermore, changes in the relative abundance of
different cell types or states, referred to as compositional
changes, are indicators of cell types/states involved in
biological processes and pathological conditions. Univariate
statistical models, such as Poisson regression or Wilcoxon
rank-sum tests, analyze the changes in abundance for each
cell type individually [37]. Univariate statistical models
can mistakenly interpret changes in cell populations as
significant due to compositional bias, which occurs because
the data represents proportions rather than absolute values.
This bias can increase false positives and lead to incorrect
conclusions. Tools like the Centered LogRatio (CLR)
transformation and scCODA enhance cell compositional
analysis. CLR normalizes data by converting raw counts into
log-ratios relative to the geometric mean, while scCODA, a
Bayesian framework, accounts for interdependence among
cell types, enabling robust modeling of their relationships
[15, 38].

Continuous Transitions Between Discrete Cell States

scRNA-seq/snRNA-seq techniques provide static views of
cell states. However, in biological systems, cells transition
smoothly between states [39]. This transition occurs through
gradual changes in gene activity, specifically in the process of
transcription [40]. Computational trajectory inference methods,
including Monocle, Slingshot, RacelD/StemID, and PAGA,
have been developed to reconstruct the continuous progres-
sion of cell states [41—44]. These trajectory inference methods
could infer complex structures, including linear progressions,
cyclic patterns and intricate branching structures that denote
divergent cellular differentiation fates [41, 42]. Beyond gen-
erating a lineage structure representing cellular progression,
mathematical models also enable the identification of key regu-
latory genes that drive and define lineage progression [41, 45].

RNA velocity analysis enhances these trajectory infer-
ences by introducing directional information based on
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splicing kinetics, using tools like scVelo and velocyto [46,
47]. RNA velocity predicts a cell’s future transcriptional
state by analyzing the ratio of unspliced to spliced RNA
reads. Since unspliced RNA represents newly transcribed
molecules, an excess of unspliced RNA suggests gene upreg-
ulation, while a decline indicates downregulation, reveal-
ing dynamic changes in gene activity over time [46]. This
approach offers dynamic insights into cell fate transitions
[46]. Under conditions where RNA kinetics are variable or
multiple transcriptional dynamics coexist, lineage-specific
modeling approaches can further improve the accuracy of
trajectory inference [48—50]. It is worth noting that applying
RNA velocity on snRNA-seq data is challenging, due to the
technology characteristics of focusing on nuclear RNA [5].
Compared to scRNA-seq/snRNA-seq, snRNA-seq is biased
toward capturing unspliced pre-mRNA, as mature mRNA
is predominantly located in the cytoplasm, increasing the
complexity of the analysis [48].

Gene Regulatory Networks

Transcriptomics data enables the inference of regulatory
interactions between genes by analyzing co-expression
patterns, and transcription factor activity. Gene regulatory
networks (GRNs) serve as comprehensive frameworks to
study the interactions between gene and gene expression
regulators, such as transcription factors (TFs), regulatory
RNAs, and RNA-binding proteins (RBPs), and their
target genes. sScCRNA-seq/snRNA-seq further facilitates the
construction of GRNs specific to distinct cell types or states,
particularly in disease contexts, providing deeper insights
into cell-type-specific regulatory mechanisms and their
alterations between healthy and diseased conditions.

Many network inference methods, which were developed
for bulk RNA sequencing, such as GENIE3 and ARACNE
[51, 52], have been applied to scRNA-seq/snRNA-seq
datasets. GENIE3 uses random forest models to predict
regulatory genes for a target gene by assessing how well
regulatory gene expression can predict the target’s expression
[51]. ARACNE, an information-theoretic method, infers
regulatory networks based on Mutual Information (MI),
which measures the dependency between two variables [52].
In addition to bulk RNA sequencing, single-cell-specific
approaches, such as Partial Information Decomposition
and Context (PIDC) and Single-cell rEgulatory Network
Inference and Clustering (SCENIC) have been developed
[53, 54]. PIDC leverages multivariate information to
quantify dependencies among variables, decomposing them
into redundant, unique, and synergistic components [53].
SCENIC combines GENIE3-based network inference with
downstream pruning to identify active regulatory networks
and corresponding cell states [54].

Cellular Communications

In multicellular organisms, cells work together within and
across tissue niches to maintain homeostasis and respond to
external and internal perturbations [55]. This coordination
is achieved through cell-to-cell signaling, which in turn
affects intracellular activities, such as gene regulatory
processes within each cell [55]. Cell—cell communication
(CCC) refers to a subset of cell-cell interactions (CCls)
that involve biochemical signals exchanged between or
within cells, which further generate intracellular effects
[55]. CCC research mainly focuses on protein-mediated
interactions, such as ligand-receptor, extracellular matrix-
receptor interactions, and receptor-receptor [55]. CCC
inference involves analyzing gene expression in sender and
receiver cells, with communication quantitatively defined
by the expression of ligands and their corresponding
receptors [56, 57]. Tools such as CellChat, CellPhoneDB,
and ICELLNET are widely used to infer CCC between
cell clusters by assigning communication scores to
ligand-receptor pairs and evaluating their statistical
significance [56—58]. Notably, platforms like CellChat
and CellPhoneDB consider the role of multisubunit
protein complexes in ligand-receptor interactions [56,
58]. Furthermore, tools such as Nichenet and Cytotalk
complement CCC analysis by providing additional
insights, such as induced gene expression changes, thereby
increasing confidence in predicted interactions.

Advances in Spatial Transcriptomics

Advancements in genomic technologies have enabled spa-
tially resolved transcriptomics profiling, allowing for the
simultaneous assessment of gene expression while maintain-
ing cellular location information within tissues [59]. Integrat-
ing transcriptomics data with spatial localization, spatially
resolved transcriptomics (SRT) provides crucial insights into
cell-type-specific and region-specific gene expression pat-
terns, intercellular interactions, and the influence of the tissue
microenvironment on cellular function [60].

The spatially resolved transcriptomics workflow
involves carrier design, tissue treatment and RNA capture,
reverse transcription and cDNA amplification, library
construction and followed sequencing to generate data [61,
62]. The carrier design, integrated with spatial probes, has
advanced to enhance resolution, progressing from multi-
cellto single-cell/single-nucleus and even subcellular levels
[63]. Tissue treatment is an important step in the workflow,
ensuring optimal RNA extraction and hybridization,
with fresh-frozen and formalin-fixed, paraffin-embedded
(FFPE) tissues being the two common preparation methods.
Both methods rely on enzymatic permeabilization, using
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proteases like proteinase K for fresh-frozen tissues and
a combination of heat-induced antigen retrieval (HIAR)
and enzymatic treatment for FFPE tissues—to break down
cell membranes and cross-links [64, 65]. A wide range of
spatial transcriptomics technologies has been developed.
For example, Slide-seqV2 and DBiT-seq improve upon
this by reaching a nearly single-cell resolution of 10 um,
while Visium HD provides a resolution of 2—8 um, being
suitable for analyzing tissue-level gene expression patterns
[66, 67]. For applications requiring subcellular resolution,
technologies such as Pixel-seq, Seq-Scope, and Stereo-
seq push the boundaries by achieving spatial resolutions
as fine as 0.5 um, allowing researchers to study gene
expression at the level of individual organelles and cellular
compartments [61, 68].

The downstream analysis of spatially resolved tran-
scriptomics data mainly involves spatial matrix generation,
image registration, cell segmentation, deconvolution, gene
imputation, and cell-cell communication analysis [69].
Sequencing-based and imaging-based SRT methods require
accurate spatial barcode assignment and fluorescence signal
processing [70]. Lower-resolution SRT relies on deconvo-
lution algorithms, such as Robust cell type decomposition
(RCTD) and Tangram to infer single-cell gene expression,
with challenges remaining in resolving rare cell types [71,
72]. Moreover, SRT enables direct spatially constrained
cell—cell interaction analysis using tools like CellChat and
NICHES [56, 73]. Despite the advancements in offering an
extra layer of position information, downstream analysis of
SRT data is still challenging, particularly in resolution, data
integration, and computational scalability. Addressing these
limitations requires innovations in deep learning and proba-
bilistic modeling to enhance spatial transcriptomics analysis
and advance its applications in disease research.

Single Cell Transcriptomics Profiles of
Cardiovascular Systems

In recent years, scRNA-seq/snRNA-seq technologies have
emerged as essential tools in cardiovascular research, offer-
ing unprecedented resolution in studying the cellular and
molecular mechanisms driving the pathogenesis and pro-
gression of CVDs [74, 75].

These technologies have been applied across a wide
range of cardiac disease models, including cell-based mod-
els, such as cardiac cell lines and human embryonic stem
cell (hESC)-derived cardiac cells, patient-specific models,
where induced pluripotent stem cells (iPSCs) are used to
generate cardiac cells for personalized studies, animal mod-
els, including mice, rats, zebrafish, and pigs, providing
insights into disease mechanisms in vivo [13, 14, 76, 77],
or patient biofluids, such as blood samples from individuals
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with coronary syndromes and circulating CD31 +cells from
heart failure patients [78, 79].

Large-scale scRNA-seq/snRNA-seq has been instrumental
in profiling myocardial tissues, providing insights into
both healthy human hearts and a broad spectrum of cardiac
diseases including dilated cardiomyopathy (DCM),
hypertrophic  cardiomyopathy (HCM), arrhythmogenic
cardiomyopathy (ACM), ischemic cardiomyopathy (ICM),
cardiac hypertrophy and heart failure, heart failure in patients
with left ventricular assist devices (LVADs), or cardiac
complications associated with COVID-19 (Table 2).

A notable study by Reichart et al. (2022) investigated
genotype-specific mechanisms underlying DCM and ACM,
focusing on pathogenic variants in LMNA, RMB20, TTN,
and PKP2 [15]. Their analysis identified 10 major cardiac

Table 2 Single cell transcriptomics data of human heart conditions

Dataset Condition Sample size Reference
Healthy Healthy hearts 7 healthy human [32]
human hearts hearts
Human heart Healthy hearts 14 healthy [11]
atlas human hearts
DCM/ACM  Genotyped DCM and 61 failing, non-  [15]
ACM patients ischemic human
hearts and 18
controls
DCM/HCM DCM or HCM com- 12 DCM, 16 [80]
pared with non-failing HCM, 16
donors controls
DCM DCM compared with 17 DCM and 28  [74]
nonfailing donors controls
ICM Non-infarct region 71CM and 8 [81]
of ICM compared to  controls
non-failing controls
Pressure- Hypertrophic cardiac 5 aortic stenosis ~ [82]
induced tissues compared samples
hypertrophic ~ with regionmatched
heart healthy cardiac tissue
data from human
heart atlas
End stage Patients with 13 HF with [83]
heart failure  advanced HF with LVAD, 13 HF
LVADs implantation ~ without LVAD
and 14 controls
Inflammatory Patients with myocar- 8 Non- [84]
cardiomy- ditis related and unre- COVID-19
opathies after lated to COVID-19 related myo-
COVID carditis and
10 COVID-
19 related
myocarditis
Long Blood draws to 4 mild long [85]
COVID generate iPSCs COVID, 4 severe
effects for iPSC-derived long COVID and
endothelial cells and 5 controls

cardiomyocytes

DCM dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy;
ACM arrhythmogenic cardiomyopathy: /CM ischemic cardiomyopa-
thy; LVAD left ventricular assist devices
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cell types and 71 distinct transcriptional states, revealing
key alterations in cellular composition and gene expres-
sion associated with heart failure. Key findings included
a significant depletion of cardiomyocytes and a notable
increase of immune cell populations, extensive extracellu-
lar matrix remodeling, driven by fibroblast activation, and
a genotype-specific alterations in intercellular signaling,
such as enhanced endothelin signaling in LMNA-variant
hearts and dysregulated TNF signaling in PKP2-associated
cardiomyopathy.

Similarly, Chaffin et al. (2022) performed trajectory
analysis on fibroblasts from DCM and HCM patients,
uncovering a continuous transition from quiescent to
activated fibroblast states. Their findings highlighted
dynamic transcriptional changes, with upregulation of
LC44A5, COL22A1, POSTN, AEBP1, and THBS4, and
downregulation of PDGFRA, NEGR1, and COL4A4 along
the fibroblast activation trajectory [80].

Beyond single-cell sequencing, spatial transcriptomics
has been increasingly applied to map cardiac structures,
providing insights into heart development, conduction
systems, and infarct tissue remodeling [86—88]. Kanemaru
et al. integrated single-cell transcriptomics, epigenomics,
and spatial transcriptomics to create a spatially resolved
multiomic atlas of the human heart, highlighting FOXP2
as a key regulator in pacemaker cells and detailing the
compartmentalization of the sinoatrial node [87]. In addition,
Kuppe et al. (2022) utilized spatial transcriptomics to study
tissue organization during infarct healing, identifying
molecular pathways that regulate fibrotic and regenerative
processes [88].

These groundbreaking technologies continue to refine
our understanding of cardiac biology, disease progression,
and potential therapeutic targets, paving the way for more
precise diagnostics and treatment strategies in cardiovascu-
lar medicine.

Single Cell Multi-Omics Integrating
Transcriptomics and Open Chromatin
Accessibility

Beyond the transcriptomics information, the complexity
of cellular phenotypes also arises from intricate regulatory
mechanisms [89]. Epigenetic mechanisms such as DNA
methylation, histone modifications, and chromatin acces-
sibility orchestrate gene regulation, influencing processes
ranging from development and differentiation to disease
pathogenesis [90]. Chromatin accessibility profiling, using
methods like single-cell Assay for Transposase-Accessible
Chromatin (scATAC-seq), identifies active regulatory ele-
ments driving cell-type-specific gene expression [91].

The additional integration of transcriptome profiling helps
to further understand the regulation of genes. Transcriptome
profiling reveals gene expression patterns, while chromatin
accessibility offers insights into the regulatory elements
controlling them [92]. These processes are interconnected,
as chromatin accessibility governs transcription factor and
chromatin remodeler access to DNA, driving cis-regulatory
activities and cell-type-specific gene expression [92-94].
Gene expression and chromatin accessibility profiles can
be obtained by performing separate scRNA-seq/snRNA-seq
and scATAC-seq experiments on split portions of the sample
or by using e.g. the advanced 10X Genomics EpiMultiome
platform, which enables simultaneous profiling from the
same cell [95].

Transcriptomics and chromatin accessibility data could
facilitate the recovery of regulatory interactions between
genes as GRNs [96]. Through single cell transcriptomics
data, TF genes are identified from external databases to
distinguish their regulatory genes, and TF—gene interactions
are inferred by modeling gene expression as a function of TF
abundance [54]. Chromatin accessibility data are processed
to identify accessible peaks, creating a peak accessibility
matrix that encodes the openness of CREs [93]. CREs are
associated with nearby genes based on genomic proximity,
and TF binding to CREs is predicted using motif databases
and algorithms [97]. This results in TF—CRE—gene triplets,
which are subsequently simplified into TF—gene interactions
and can be further aggregated into GRNs.

Genomics and its Combination with Single
Cell Technology

Combination of Genomics with Transcriptome Data

Genome-Wide Association Studies (GWAS) are large-
scale analyses examining genetic variants across the
whole genome to identify associations with specific traits
or diseases, linking genotypes to phenotypes [98]. GWAS
studies focus on single nucleotide polymorphisms (SNPs),
which are single-base variations in DNA that can influence
biological functions and disease susceptibility [98].

The major limitation of GWAS studies is their difficulty
to determine the biological function of causal variants, as
over 90% of genome-wide significant single nucleotide
polymorphisms (SNPs) lie in noncoding regions, often within
regulatory elements that might influence distant genes [98].
This makes identifying causal genes and disease mechanisms
particularly challenging. To address this, post-GWAS
approaches integrate in silico analyses with experimental
validation to link wvariants to molecular phenotypes.
Molecular quantitative trait loci (QTL) analyses, including
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expression QTLs (eQTLs), protein QTLs (pQTLs), and
splicing QTLs (sQTLs), provide insights into how genetic
variation influences gene regulation [99, 100].

Akey post-GWAS strategy is the study of gene expression.
Genetic determinants and their relationship between
gene expression can be systematically examined through
expression quantitative trait loci (eQTL) analysis [101].
eQTLs are specific genomic regions where genetic variants,
such as SNPs, are statistically associated with variations in
gene expression levels [102—-104]. By integrating single-
cell RNA sequencing with genotype data, single-cell
expression quantitative trait loci (sc-eQTL) analysis enables
the precise mapping of genetic regulatory effects within
distinct cellular contexts, revealing genetic regulation that
operates in specific cellular states or conditions that may be
obscured in bulk analyses [105]. A significant breakthrough
in the field of conducting single-cell expression quantitative
trait loci (sc-eQTL) analysis was achieved by Cuomo et al.
(2020), who conducted the study to investigate how genetic
variants influence gene expression dynamics during the
differentiation of induced pluripotent stem cells (iPSCs)
[106]. By integrating scRNA-seq with genotype data,
their study revealed context-dependent genetic regulatory
effects that vary across developmental states, highlighting
the dynamic nature of eQTL influences on gene expression.
Their study discovered that certain eQTL effects were
activated or repressed at specific differentiation stages,
shaping cellular identity and function in a stage-specific
manner [106].

Combination of Genomics with
Transcriptome Data with Single Cell
Functional Genomics

Recent advancements in genetic engineering and molecu-
lar biology, especially with the development of CRISPR
technology, have enhanced the field of functional genomics
[107, 108]. Single-cell CRISPR screening technologies, by
combining high-throughput genetic perturbation with sin-
gle-cell resolution phenotypic analysis, allow simultaneous
capture of genetic alterations and their corresponding high-
dimensional phenotypes [109]. Early iterations of these
approaches, such as Perturb-seq and CROP-seq, focused
primarily on transcriptomics phenotypes [110—113]. Subse-
quent advances have extended their applicability to epigen-
etic features, imaging-based phenotypes, and multimodal
datasets [109, 114, 115]. The combination of single-cell
technologies and perturbation modeling enables a deeper
understanding of how external factors, such as genetic

@ Springer

modifications, disease progression, or environmental stim-
uli, affect cellular physiology and molecular pathways.

One of the applications of single cell perturbation of com-
bining single-cell CRISPR screening with GWAS enables
the functional investigation of genetic variants by perturb-
ing GWAS-identified target genes. STING-seq (Systematic
Targeting and Inhibition of Noncoding GWAS Loci with
Single-Cell Sequencing) integrates large-scale GWAS data,
CRISPR screens, and single-cell sequencing to identify
causal variants, map target genes in cis and trans regions,
and uncover regulatory networks influencing disease risk
[116].

Application of Genomics and Integrated Single Cell
Functional Genomics in Cardiovascular Disease
Research

Building onthe advances of GWAS studies, Wengetal. (2025)
conducted large-scale meta-analyses of GWAS involving
more than 1.3 million individuals, including 30,000 cases
from ten studies, with robust phenotypic definitions of sinus
node dysfunction (SND), distal conduction disease (DCD),
and pacemaker implantation (PM) based on diagnostic
codes, procedural data, and electrocardiograms [117]. Rare-
variant association tests performed on exome-sequencing
data from 460,000 participants, combined with Mendelian
randomization and cell-type enrichment analyses, identified
13 loci for SND, 31 for DCD, and 21 for PM [117]. Jurgens
et al. (2024) conducted large-scale GWAS and multitrait
analysis of dilated cardiomyopathy with 9,365 cases and
946,368 controls, identifying 70 significant loci mapped to
63 prioritized genes [118]. Enrichment analyses highlighted
the central role of cardiomyocytes and the contractile
apparatus in DCM pathogenesis, while polygenic risk
scores (PRS) predicted DCM risk across diverse ancestries
and genetic backgrounds [118].

The V2G2P framework was specifically applied to CAD,
revealing that 43 CAD-associated GWAS signals con-
verge on the CCM signaling pathway, highlighting its role
in CAD risk [119]. The V2G2P framework comprises five
steps [119]. Through this framework, 306 CAD-associated
GWAS signals were mapped to their potential target genes
within enhancers, coding regions, and splice sites. To func-
tionally validate these associations, Perturb-seq was applied
to knock down candidate genes located within+500 kb
of the 306 GWAS signals. The perturbed cellular effects
were analyzed through scRNA-seq/snRNA-seq, followed
by unsupervised machine learning to identify gene pro-
grams. CAD loci were found to converge onto five gene
programs related to the cerebral cavernous malformations
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(CCM) signaling pathway, which regulates vascular devel-
opment [119]0.41 genes were identified as potential media-
tors of CAD risk through endothelial cell function. Notably,
TLNRDI1 and CCM2 knockdown mimicked atheroprotec-
tive laminar flow, and TLNRD1 was identified as a novel
regulator of the CCM pathway.

Integrating Multi-Omics Single-Cell
Profiles to Unravel Cardiovascular Disease
Mechanisms

Large-cohort single-cell profiling of genomics, transcrip-
tomics, epigenomics, proteomics, and metabolomics will
provide a more comprehensive molecular landscape of CVD
pathogenesis and progression. Firstly, integrating multi-
omics data by combining genomics with single-cell tran-
scriptomics provides a more comprehensive understanding
of gene regulation in CVDs. Especially, sc-eQTL studies
in the cardiovascular field offer insights into how genetic
variants influence gene expression at the cellular level
within the heart [101]. By mapping these genetic variants
to specific cell types, sc-eQTL analyses can uncover cell
type-specific regulatory mechanisms that contribute to dis-
ease pathogenesis [106]. Further integrating sc-eQTL data
with Mendelian randomization, where gene expression lev-
els serve as exposures, enables the establishment of causal
relationships between genetic variants, gene expression, and
CVD phenotypes [120]. Secondly, the integration of single-
cell transcriptomics and epigenomics will help reconstruct
cell-type-specific regulatory landscapes, providing a mech-
anistic understanding of gene regulation in distinct cardiac
cell types/states [92]. These regulatory interactions can be
further validated through functional genomics approaches
[121]. Additionally, integrating spatial transcriptomics and
spatial multi-omics sequencing provides a detailed view of
the spatial organization of cells within cardiac tissue, cap-
turing the precise localization of distinct cell types and their
molecular states to reveal how cellular heterogeneity, sig-
naling networks, and microenvironmental interactions con-
tribute to heart diseases [60].

Future Direction of Application of Single Cell
Technologies

The future of single cell technologies in cardiovascular
medicine lies in the advancements of disease understanding,
diagnosis, and treatment. By dissecting cellular and molecu-
lar complexities, this technology enables the identification

of cell-specific mechanisms, biomarkers, and therapeutic
targets. These perspectives drive precision medicine, regen-
erative therapies, and next-generation diagnostics, revolu-
tionizing cardiovascular care (Fig. 2).

Single-cell technologies facilitate the identification of
distinct cell types, cellular states, and rare or disease-driving
cell populations. By analyzing individual cells, this tech-
nology enables more precise diagnoses, improves disease
classification, and allows for early detection of health condi-
tions. scRNA-seq/snRNA-seq provides detailed molecular
profiles of each cell, helping researchers discover cell-spe-
cific biomarkers, including genes, proteins, and signaling
pathways, that reflect disease states. Furthermore, con-
sidering the correlation between tissue-specific signatures
and biofluids, scRNA-seq/snRNA-seq studies can improve
non-invasive diagnostic and monitoring techniques. By ana-
lyzing circulating cells and extracellular vesicles, such as
exosomes and microvesicles, liquid biopsies offer a promis-
ing approach for disease detection and progression tracking
[122].

Single-cell technologies are transforming personalized
medicine by generating patient-specific cellular profiles,
enabling tailored treatments based on e.g. sc-SNPs. These
technologies facilitate targeted therapies for specific cell
types, enhance treatment response prediction, and improve
therapeutic precision.

In regenerative medicine, single-cell technologies plays
an important role in guiding stem cell differentiation for
heart repair and tissue engineering. It also enables real-time
monitoring of transplanted stem-cell-derived cells, ensuring
proper development, function, and integration into cardiac
tissue [123].

In addition, single-cell sequencing holds great promise
for immune system analysis in cardiovascular diseases. By
distinguishing immune cell subtypes and rare cell popula-
tions, it provides a deeper understanding of immune dynam-
ics in disease progression and therapeutic responses. This
technology aids in detecting drug-resistant immune pheno-
types, offering insights into immune evasion and therapy
resistance in conditions like myocarditis, atherosclerosis,
and transplant rejection [124]. It can also drive the develop-
ment of personalized immunotherapies, such as engineered
regulatory T cells (CAR-Tregs), for treating cardiovascular
and inflammatory diseases [125].

The integration of large language Al models with single-
cell technologies enhances data analysis, enabling efficient
multi-omics integration and deeper biological insights. Al-
driven predictive modeling further supports the identifica-
tion of biomarkers for disease diagnosis, patient monitoring,
and therapy response prediction.
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These innovations collectively pave the way for more
precise, personalized, and effective treatments in cardiovas-
cular medicine.
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