

Advancing Cardiovascular Medicine: Innovative Therapeutic Pathways with Single-Cell Technologies

Jiahui Ji^{1,2,3,4} · Eric L. Lindberg^{1,2,3,4} · Daniel Reichart^{1,2,3,4}

Accepted: 25 June 2025
© The Author(s) 2025

Abstract

Purpose of Review Cardiovascular diseases (CVDs) encompass a wide range of conditions affecting the heart and vasculature and remain the leading cause of mortality worldwide. The pathogenesis of CVDs is related to complex molecular, cellular, and systemic interactions, involving dysregulated signaling pathways, inflammatory responses, genetic predispositions, and intercellular communication. Despite significant advancements, the precise mechanisms underlying CVDs remain only partially understood. This review aims to explain how single-cell and single-nucleus transcriptomics facilitate our understanding of CVD pathogenesis. It focuses on their integration with genomic and epigenomic approaches, cellular heterogeneity, intercellular communication, regulatory networks, and genetic associations.

Recent Findings Recent applications of single-cell and single-nucleus transcriptomics in cardiovascular research have already revealed significant alterations in cellular composition and gene expression profiles associated with dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM), and hypertrophic cardiomyopathy (HCM). Furthermore, spatial transcriptomic technologies have provided critical insights into human cardiac development, the conduction system, and region-specific molecular changes in myocardial infarction, advancing our understanding of cardiac structure and function. Integrating single-cell transcriptomics with epigenomics further enhances our understanding of cell type- and state-specific regulatory landscapes, which can be validated through single-cell perturbation technologies. Additionally, combining genomic studies with single-cell technologies helps to recover causal relationships between genetic variants, gene expression patterns, and cellular phenotypes.

Summary Single-cell and single-nucleus transcriptomics technologies have enhanced our understanding of CVD mechanisms, uncovering cardiac cellular diversity and elucidating key regulatory processes in disease states. With larger datasets, more robust multi-omics integration, and advanced computational frameworks, transcriptome studies at single cell level will significantly enhance the ability to explore disease mechanisms and identify therapeutic targets. Integrating individualized transcriptomes into the medical routine will furthermore facilitate more precise and effective interventions in cardiovascular medicine.

Keywords Single-cell sequencing technologies · Cardiovascular diseases · Transcriptomics · Bioinformatics

✉ Daniel Reichart
Daniel.Reichart@med.uni-muenchen.de

Jiahui Ji
Jiahui.Ji@med.uni-muenchen.de

Eric L. Lindberg
Eric.Lindberg@med.uni-muenchen.de

¹ Department of Medicine I, University Hospital Munich, Munich, Germany

² Gene Center, University Hospital Munich, Munich, Germany

³ Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany

⁴ DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany

Opinion Statement

The application of single-cell/single-nucleus transcriptomics in cardiovascular medicine hold transformative potential to advance the diagnosis, monitoring, and treatment of cardiovascular diseases. Detailed molecular profiling of individual cells, including genes and signaling pathways, generated through single-cell/single-nucleus transcriptomics could allow for more accurate diagnoses, refined disease classification, and early detection of pathological changes.

Another promising avenue is the correlation of tissue-specific signatures with circulating biomarkers found in biofluids such as exosomes and microvesicles, and circulating cell-free nucleic acids. This could facilitate the development of liquid biopsies to diagnosis and monitor diseases with minimal invasion.

Moreover, by characterizing single-cell-specific mutations, therapies can be tailored to individual patients, enhancing treatment precision and efficacy.

Single-cell/single-nucleus sequencing also plays an important role in immunological profiling, enhancing understanding of immune cell dynamics in cardiovascular disease, such as myocarditis and transplant rejection. These advances could facilitate the development of targeted immunotherapies, including engineered regulatory T cells, with improved specificity and reduced systemic toxicity.

In regenerative medicine, single-cell/single-nucleus technologies could guide stem cell differentiation and enable real-time surveillance of transplanted cells integrating into cardiac tissues. These capabilities are essential for advancing myocardial repair and tissue engineering.

Introduction

Heart diseases, collectively termed as cardiovascular disease (CVD), represents a diverse range of conditions that impair the structure and function of the heart and its associated vasculature. CVDs remain the leading cause of mortality worldwide, accounting for approximately 30% of all deaths in 2012 in the United States alone and affecting an estimated 17.5 million people [1, 2]. The mechanisms driving CVDs remain incompletely understood. This is primarily due to the complex interplay of molecular, cellular, and systemic factors that not only occur within the heart but also involve other organs and systems throughout the body.

The human heart is a complex organ composed of four anatomically and functionally distinct chambers, conduction system and valves, and a dynamic microenvironment of diverse cell types [3, 4]. Gene expression and cellular

interactions regulate these components, ensuring proper heart function, while a functioning heart, in turn, shapes gene expression and cellular dynamics [5]. Throughout normal development and life, the heart demonstrates remarkable adaptability, responding to physiological and hemodynamic changes by altering structure and function to maintain uninterrupted contraction and blood flow. However, under disease conditions, harmful stimuli, such as ischemic, mechanical, electrical, or chemical injuries, disrupt the balanced processes, altering cellular microenvironments and transcriptional landscapes, ultimately leading to the pathogenesis and progression of CVDs.

CVDs encompass various conditions with specific pathophysiological mechanisms, clinical challenges, and prognostic implications. The most common cardiovascular disease (CVD) is coronary artery disease (CAD), which arises from coronary atherosclerosis [6, 7]. CAD can lead to symptoms such as angina pectoris or dyspnea, as well as more severe outcomes like myocardial infarction and ischemic cardiomyopathy [8, 9]. Another major category of CVDs is non-ischemic cardiomyopathies, which impair the heart muscle's ability to contract effectively and circulate blood adequately [10]. These conditions include (ischemic and non-ischemic) dilated hypertrophic, arrhythmogenic, and restrictive cardiomyopathies. As these diseases progress, they can lead to advanced heart failure (HF), characterized by fatigue, dyspnea, and fluid overload. In end-stage cases, the only definitive treatment options remain heart transplantation or implantation of a mechanical assist device.

Advancements in early diagnosis and medical treatment have significantly improved outcomes for CVDs. However, CVDs remain a major global health challenge, requiring deeper insights into their underlying mechanisms. Recent breakthroughs in single-cell and spatial technologies have revolutionized our understanding of CVDs by characterizing the transcriptional and functional states of individual cardiac cell types [11–18]. These single cell and spatial omics high-resolution approaches have uncovered novel biomarkers, disease-specific transcriptional signatures, and intricate cellular communication networks, offering a transformative, cell-centric perspective on cardiac health and disease progression. As genomics, transcriptomics, and epigenetics continue to evolve, these cutting-edge technologies hold immense promise for improving diagnostic accuracy, refining patient risk classification, and developing targeted therapies. The seamless integration of scientific innovation with clinical research and patient care is poised to drive transformative progress in cardiovascular medicine, ultimately reducing the global burden of heart disease.

Single-Cell Transcriptomics Sequencing

Bulk RNA sequencing has significantly contributed to our understanding of the molecular mechanisms underlying heart disease by providing an averaged gene expression profile across all cardiac cell types [5, 19]. However, this approach masks crucial cell-to-cell variability, which is essential for understanding both normal and diseased hearts. To overcome this limitation, single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have emerged as powerful tools, enabling transcriptomics analysis at the level of individual cells or nuclei. These methods enable the identification of distinct cardiac cell populations, uncovering cellular heterogeneity and differential gene expression that would otherwise be masked in bulk analysis [5].

The process of single cell experiments targeting cardiovascular system begins with transcriptomic profiling of heart tissues through scRNA-seq/snRNA-seq. The downstream analysis includes clustering and annotation to identify different cardiac cell populations, compositional analysis to quantify the changes in abundance of different cell types or states, and trajectory analysis along with RNA velocity to infer continuous transitions between cell states. In addition, gene regulatory networks capture transcriptional regulatory interactions, and cell–cell communication analysis reveals intercellular signaling and functional coordination. Taken together, single cell downstream analysis provides comprehensive understanding of the cellular landscape, regulatory mechanisms, and dynamic processes within

healthy and diseased heart tissues. Figure 1, retrieved from BioRender scRNA-seq/snRNA-seq experiments begin with the enzymatic digestion of biological tissue samples to dissociate cells for single-cell experiments using fresh tissues or the isolation of nuclei from cells for single-nucleus experiments using frozen tissues. This is followed by reverse transcription of mRNA into complementary DNA (cDNA), cDNA amplification, library construction, and high-throughput sequencing. scRNA-seq/snRNA-seq protocols include plate-based and droplet-based methods. Plate-based protocols, such as SMART-seq, isolate single cells into wells of multi-well plates, allowing for full-length transcript analysis [20]. High-throughput droplet-based methods, including platforms like Chromium (10X Genomics), ddSEQ (Bio-Rad/Illumina), Nadia (Dolomite), and inDrop (1CellBio), use microfluidic droplets to encapsulate cells or nuclei with barcoded beads, enabling scalable single-cell or single-nucleus transcriptomics capture [21–24]. For example, the 10X Genomics Chromium platform employs high-throughput droplet-based encapsulation to isolate single cells or nuclei, lyse them within droplets to release mRNAs, and construct cDNA libraries from 3' or 5' poly-A tails [5].

scRNA-seq/snRNA-seq is able to generate the transcriptomics landscape of thousands to millions of cardiac single cells or nuclei. Importantly, since cardiomyocytes, the most functionally important cardiac cell type, are too large for microfluidics-based single-cell methods, snRNA-seq is particularly advantageous, allowing for studying cardiomyocytes' transcriptional profiles through isolated nuclei.

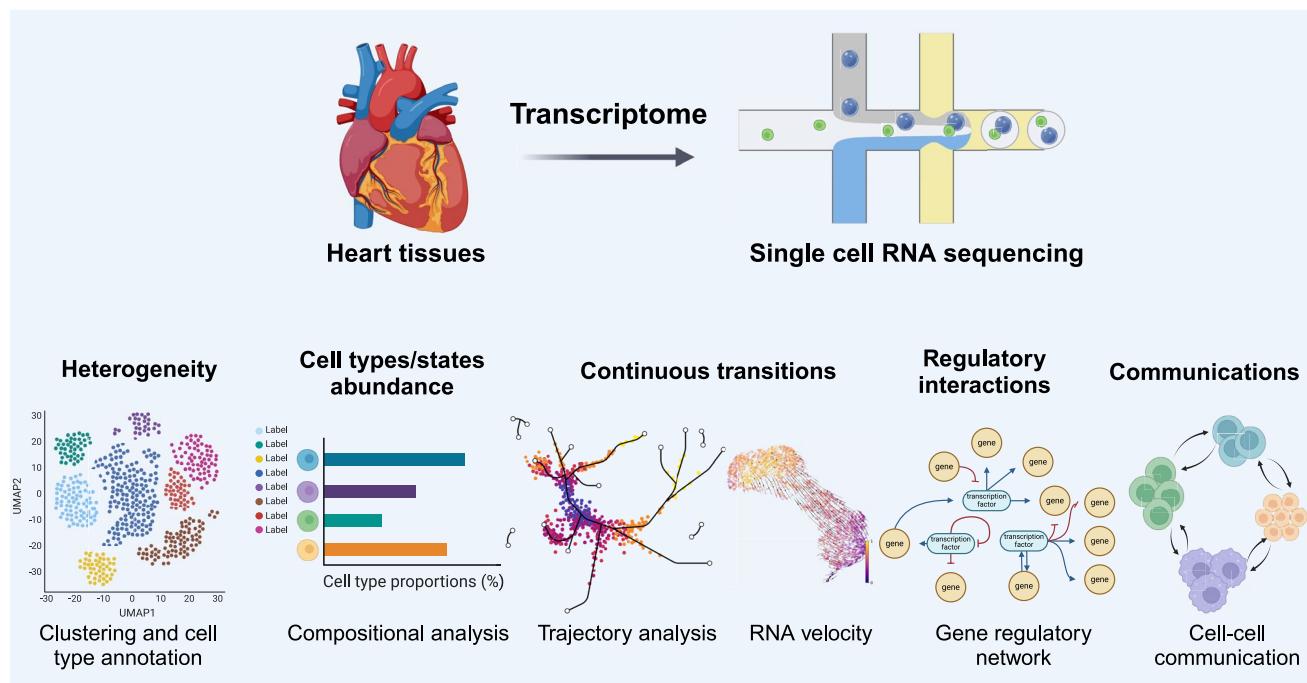


Fig. 1 Comprehensive methods for downstream analysis of scRNA-seq/snRNA-seq data

scRNA-seq/snRNA-seq enable various downstream computational analysis to understand cellular heterogeneity, rare cell types, and dynamic biological processes, such as cardiac development, disease progression, and therapeutic response. The downstream analysis following single cell experiments include cell type annotation, compositional analysis, trajectory analysis, RNA velocity, gene regulatory network inference, and cell-cell communication modeling (Fig. 1). Each of these techniques provides unique perspectives on cellular behavior and interaction, which together drive progress in the development of targeted treatments, and prediction of drug responses.

Clustering Cells based on Single-Cell Transcriptomics Profiles and Composition Changes in Cell Types and States of Clustered Cells

scRNA-seq/snRNA-seq have advanced the study of gene activity in individual cells. This tool allows researchers to examine complex heart tissues in detail, revealing the different types of cells and their various states [25, 26]. A fundamental step of understanding tissue diversity is identifying unique groups of cells, such as specific cell types and their different conditions. This step is accomplished by clustering individual cells based on their gene expression profiles, thereby grouping cells with similar transcriptional profiles [27].

Cell clustering is performed using k-nearest neighbor (KNN) graph based community detection algorithms, such as Louvain algorithm and Leiden algorithm [28–31]. Further cell type annotation can be performed through manual or automated approaches. Manual annotation relies on cluster-specific gene signatures, referred to as marker genes [32]. Canonical marker genes, which are well-established and commonly used for identifying major cardiac cell types, are summarized in Table 1. Automated cell-type annotation uses classifier-based methods like CellTypist and Clustifyr,

Table 1 Canonical marker genes of cardiac cell types

Cell type	Marker genes
Cardiomyocytes	<i>RYR2, TTN, MYBPC3, TNNT2, PLN, SLC8A1, MHRT, MYH6</i>
Endothelial cells	<i>VWF, PECAM1, CDH5, CCDC85A, BTNL9</i>
Fibroblasts	<i>DCN, GSN, PDGFRA, PCDH9, BMPER</i>
Smooth muscle cells	<i>MYH11, ACAT2, CDH6</i>
Neurons	<i>NRXN1</i>
Macrophages	<i>FCGR1, F13A1, ADGRE1</i>
Adipocytes	<i>ADIPOQ, TSHR, PLIN1</i>
Pericytes	<i>PDGFRB, TRPC3, VTN</i>
Endocardial cells	<i>PECAM1, NPR3, TMEM108, PLVAP</i>
Epicardial cells	<i>MSLN, PCDH15, MUC16</i>
Schwann cells	<i>PLP1, GFRA3, PCDH9</i>
B cells	<i>PAX5, LY6D</i>
T cells	<i>NKG7, THEMIS, CD3E, ITK</i>

which rely on pre-trained models from previous datasets [33, 34]. Automated cell-type annotation also includes reference mapping techniques like scArches, Symphony, and Azimuth, which match new data to annotated references using label transfer algorithms [35, 36].

Another important aspect of single-cell/single-nucleus analysis is the identification of distinct cell states (cell subtypes) within a given cell type, indicating further heterogeneity of one cell type. For example, in cardiomyocytes, single-cell/single-nucleus transcriptomics can reveal different subpopulations, stress-responsive CMs (with marker genes of *MYH9*, *NEXN* and *CNN1*) or metabolic-active CMs (with marker genes of *NDUFB11*, *NDUFA4*, *COX7C* and *COX5B*) [11], based on specific gene expression patterns.

Furthermore, changes in the relative abundance of different cell types or states, referred to as compositional changes, are indicators of cell types/states involved in biological processes and pathological conditions. Univariate statistical models, such as Poisson regression or Wilcoxon rank-sum tests, analyze the changes in abundance for each cell type individually [37]. Univariate statistical models can mistakenly interpret changes in cell populations as significant due to compositional bias, which occurs because the data represents proportions rather than absolute values. This bias can increase false positives and lead to incorrect conclusions. Tools like the Centered LogRatio (CLR) transformation and scCODA enhance cell compositional analysis. CLR normalizes data by converting raw counts into log-ratios relative to the geometric mean, while scCODA, a Bayesian framework, accounts for interdependence among cell types, enabling robust modeling of their relationships [15, 38].

Continuous Transitions Between Discrete Cell States

scRNA-seq/snRNA-seq techniques provide static views of cell states. However, in biological systems, cells transition smoothly between states [39]. This transition occurs through gradual changes in gene activity, specifically in the process of transcription [40]. Computational trajectory inference methods, including Monocle, Slingshot, RaceID/StemID, and PAGA, have been developed to reconstruct the continuous progression of cell states [41–44]. These trajectory inference methods could infer complex structures, including linear progressions, cyclic patterns and intricate branching structures that denote divergent cellular differentiation fates [41, 42]. Beyond generating a lineage structure representing cellular progression, mathematical models also enable the identification of key regulatory genes that drive and define lineage progression [41, 45].

RNA velocity analysis enhances these trajectory inferences by introducing directional information based on

splicing kinetics, using tools like scVelo and velocyto [46, 47]. RNA velocity predicts a cell's future transcriptional state by analyzing the ratio of unspliced to spliced RNA reads. Since unspliced RNA represents newly transcribed molecules, an excess of unspliced RNA suggests gene upregulation, while a decline indicates downregulation, revealing dynamic changes in gene activity over time [46]. This approach offers dynamic insights into cell fate transitions [46]. Under conditions where RNA kinetics are variable or multiple transcriptional dynamics coexist, lineage-specific modeling approaches can further improve the accuracy of trajectory inference [48–50]. It is worth noting that applying RNA velocity on snRNA-seq data is challenging, due to the technology characteristics of focusing on nuclear RNA [5]. Compared to scRNA-seq/snRNA-seq, snRNA-seq is biased toward capturing unspliced pre-mRNA, as mature mRNA is predominantly located in the cytoplasm, increasing the complexity of the analysis [48].

Gene Regulatory Networks

Transcriptomics data enables the inference of regulatory interactions between genes by analyzing co-expression patterns, and transcription factor activity. Gene regulatory networks (GRNs) serve as comprehensive frameworks to study the interactions between gene and gene expression regulators, such as transcription factors (TFs), regulatory RNAs, and RNA-binding proteins (RBPs), and their target genes. scRNA-seq/snRNA-seq further facilitates the construction of GRNs specific to distinct cell types or states, particularly in disease contexts, providing deeper insights into cell-type-specific regulatory mechanisms and their alterations between healthy and diseased conditions.

Many network inference methods, which were developed for bulk RNA sequencing, such as GENIE3 and ARACNE [51, 52], have been applied to scRNA-seq/snRNA-seq datasets. GENIE3 uses random forest models to predict regulatory genes for a target gene by assessing how well regulatory gene expression can predict the target's expression [51]. ARACNE, an information-theoretic method, infers regulatory networks based on Mutual Information (MI), which measures the dependency between two variables [52]. In addition to bulk RNA sequencing, single-cell-specific approaches, such as Partial Information Decomposition and Context (PIDC) and Single-cell rEgulatory Network Inference and Clustering (SCENIC) have been developed [53, 54]. PIDC leverages multivariate information to quantify dependencies among variables, decomposing them into redundant, unique, and synergistic components [53]. SCENIC combines GENIE3-based network inference with downstream pruning to identify active regulatory networks and corresponding cell states [54].

Cellular Communications

In multicellular organisms, cells work together within and across tissue niches to maintain homeostasis and respond to external and internal perturbations [55]. This coordination is achieved through cell-to-cell signaling, which in turn affects intracellular activities, such as gene regulatory processes within each cell [55]. Cell-cell communication (CCC) refers to a subset of cell-cell interactions (CCIs) that involve biochemical signals exchanged between or within cells, which further generate intracellular effects [55]. CCC research mainly focuses on protein-mediated interactions, such as ligand-receptor, extracellular matrix-receptor interactions, and receptor-receptor [55]. CCC inference involves analyzing gene expression in sender and receiver cells, with communication quantitatively defined by the expression of ligands and their corresponding receptors [56, 57]. Tools such as CellChat, CellPhoneDB, and ICELLNET are widely used to infer CCC between cell clusters by assigning communication scores to ligand-receptor pairs and evaluating their statistical significance [56–58]. Notably, platforms like CellChat and CellPhoneDB consider the role of multisubunit protein complexes in ligand-receptor interactions [56, 58]. Furthermore, tools such as Nichenet and Cytotalk complement CCC analysis by providing additional insights, such as induced gene expression changes, thereby increasing confidence in predicted interactions.

Advances in Spatial Transcriptomics

Advancements in genomic technologies have enabled spatially resolved transcriptomics profiling, allowing for the simultaneous assessment of gene expression while maintaining cellular location information within tissues [59]. Integrating transcriptomics data with spatial localization, spatially resolved transcriptomics (SRT) provides crucial insights into cell-type-specific and region-specific gene expression patterns, intercellular interactions, and the influence of the tissue microenvironment on cellular function [60].

The spatially resolved transcriptomics workflow involves carrier design, tissue treatment and RNA capture, reverse transcription and cDNA amplification, library construction and followed sequencing to generate data [61, 62]. The carrier design, integrated with spatial probes, has advanced to enhance resolution, progressing from multi-cell to single-cell/single-nucleus and even subcellular levels [63]. Tissue treatment is an important step in the workflow, ensuring optimal RNA extraction and hybridization, with fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) tissues being the two common preparation methods. Both methods rely on enzymatic permeabilization, using

proteases like proteinase K for fresh-frozen tissues and a combination of heat-induced antigen retrieval (HIAR) and enzymatic treatment for FFPE tissues—to break down cell membranes and cross-links [64, 65]. A wide range of spatial transcriptomics technologies has been developed. For example, Slide-seqV2 and DBiT-seq improve upon this by reaching a nearly single-cell resolution of $10\ \mu\text{m}$, while Visium HD provides a resolution of $2\text{--}8\ \mu\text{m}$, being suitable for analyzing tissue-level gene expression patterns [66, 67]. For applications requiring subcellular resolution, technologies such as Pixel-seq, Seq-Scope, and Stereo-seq push the boundaries by achieving spatial resolutions as fine as $0.5\ \mu\text{m}$, allowing researchers to study gene expression at the level of individual organelles and cellular compartments [61, 68].

The downstream analysis of spatially resolved transcriptomics data mainly involves spatial matrix generation, image registration, cell segmentation, deconvolution, gene imputation, and cell-cell communication analysis [69]. Sequencing-based and imaging-based SRT methods require accurate spatial barcode assignment and fluorescence signal processing [70]. Lower-resolution SRT relies on deconvolution algorithms, such as Robust cell type decomposition (RCTD) and Tangram to infer single-cell gene expression, with challenges remaining in resolving rare cell types [71, 72]. Moreover, SRT enables direct spatially constrained cell-cell interaction analysis using tools like CellChat and NICHEs [56, 73]. Despite the advancements in offering an extra layer of position information, downstream analysis of SRT data is still challenging, particularly in resolution, data integration, and computational scalability. Addressing these limitations requires innovations in deep learning and probabilistic modeling to enhance spatial transcriptomics analysis and advance its applications in disease research.

Single Cell Transcriptomics Profiles of Cardiovascular Systems

In recent years, scRNA-seq/snRNA-seq technologies have emerged as essential tools in cardiovascular research, offering unprecedented resolution in studying the cellular and molecular mechanisms driving the pathogenesis and progression of CVDs [74, 75].

These technologies have been applied across a wide range of cardiac disease models, including cell-based models, such as cardiac cell lines and human embryonic stem cell (hESC)-derived cardiac cells, patient-specific models, where induced pluripotent stem cells (iPSCs) are used to generate cardiac cells for personalized studies, animal models, including mice, rats, zebrafish, and pigs, providing insights into disease mechanisms *in vivo* [13, 14, 76, 77], or patient biofluids, such as blood samples from individuals

with coronary syndromes and circulating CD31+ cells from heart failure patients [78, 79].

Large-scale scRNA-seq/snRNA-seq has been instrumental in profiling myocardial tissues, providing insights into both healthy human hearts and a broad spectrum of cardiac diseases including dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), ischemic cardiomyopathy (ICM), cardiac hypertrophy and heart failure, heart failure in patients with left ventricular assist devices (LVADs), or cardiac complications associated with COVID-19 (Table 2).

A notable study by Reichart et al. (2022) investigated genotype-specific mechanisms underlying DCM and ACM, focusing on pathogenic variants in LMNA, RMB20, TTN, and PKP2 [15]. Their analysis identified 10 major cardiac

Table 2 Single cell transcriptomics data of human heart conditions

Dataset	Condition	Sample size	Reference
Healthy human hearts	Healthy hearts	7 healthy human hearts	[32]
Human heart atlas	Healthy hearts	14 healthy human hearts	[11]
DCM/ACM	Genotyped DCM and ACM patients	61 failing, non-ischemic human hearts and 18 controls	[15]
DCM/HCM	DCM or HCM compared with non-failing donors	12 DCM, 16 HCM, 16 controls	[80]
DCM	DCM compared with nonfailing donors	17 DCM and 28 controls	[74]
ICM	Non-infarct region of ICM compared to non-failing controls	7 ICM and 8 controls	[81]
Pressure-induced hypertrophic heart	Hypertrophic cardiac tissues compared with regionmatched healthy cardiac tissue data from human heart atlas	5 aortic stenosis samples	[82]
End stage heart failure	Patients with advanced HF with LVADs implantation	13 HF with LVAD, 13 HF without LVAD and 14 controls	[83]
Inflammatory COVID	Patients with myocarditis related and unrelated to COVID-19	8 Non-COVID-19 related myocarditis and 10 COVID-19 related myocarditis	[84]
Long COVID effects	Blood draws to generate iPSCs for iPSC-derived endothelial cells and cardiomyocytes	4 mild long COVID, 4 severe long COVID and 5 controls	[85]

DCM dilated cardiomyopathy; *HCM*: hypertrophic cardiomyopathy; *ACM* arrhythmogenic cardiomyopathy; *ICM* ischemic cardiomyopathy; *LVAD* left ventricular assist devices

cell types and 71 distinct transcriptional states, revealing key alterations in cellular composition and gene expression associated with heart failure. Key findings included a significant depletion of cardiomyocytes and a notable increase of immune cell populations, extensive extracellular matrix remodeling, driven by fibroblast activation, and a genotype-specific alterations in intercellular signaling, such as enhanced endothelin signaling in LMNA-variant hearts and dysregulated TNF signaling in PKP2-associated cardiomyopathy.

Similarly, Chaffin et al. (2022) performed trajectory analysis on fibroblasts from DCM and HCM patients, uncovering a continuous transition from quiescent to activated fibroblast states. Their findings highlighted dynamic transcriptional changes, with upregulation of LC44A5, COL22A1, POSTN, AEBP1, and THBS4, and downregulation of PDGFRA, NEGR1, and COL4A4 along the fibroblast activation trajectory [80].

Beyond single-cell sequencing, spatial transcriptomics has been increasingly applied to map cardiac structures, providing insights into heart development, conduction systems, and infarct tissue remodeling [86–88]. Kanemaru et al. integrated single-cell transcriptomics, epigenomics, and spatial transcriptomics to create a spatially resolved multiomic atlas of the human heart, highlighting FOXP2 as a key regulator in pacemaker cells and detailing the compartmentalization of the sinoatrial node [87]. In addition, Kuppe et al. (2022) utilized spatial transcriptomics to study tissue organization during infarct healing, identifying molecular pathways that regulate fibrotic and regenerative processes [88].

These groundbreaking technologies continue to refine our understanding of cardiac biology, disease progression, and potential therapeutic targets, paving the way for more precise diagnostics and treatment strategies in cardiovascular medicine.

Single Cell Multi-Omics Integrating Transcriptomics and Open Chromatin Accessibility

Beyond the transcriptomics information, the complexity of cellular phenotypes also arises from intricate regulatory mechanisms [89]. Epigenetic mechanisms such as DNA methylation, histone modifications, and chromatin accessibility orchestrate gene regulation, influencing processes ranging from development and differentiation to disease pathogenesis [90]. Chromatin accessibility profiling, using methods like single-cell Assay for Transposase-Accessible Chromatin (scATAC-seq), identifies active regulatory elements driving cell-type-specific gene expression [91].

The additional integration of transcriptome profiling helps to further understand the regulation of genes. Transcriptome profiling reveals gene expression patterns, while chromatin accessibility offers insights into the regulatory elements controlling them [92]. These processes are interconnected, as chromatin accessibility governs transcription factor and chromatin remodeler access to DNA, driving cis-regulatory activities and cell-type-specific gene expression [92–94]. Gene expression and chromatin accessibility profiles can be obtained by performing separate scRNA-seq/snRNA-seq and scATAC-seq experiments on split portions of the sample or by using e.g. the advanced 10X Genomics EpiMultiome platform, which enables simultaneous profiling from the same cell [95].

Transcriptomics and chromatin accessibility data could facilitate the recovery of regulatory interactions between genes as GRNs [96]. Through single cell transcriptomics data, TF genes are identified from external databases to distinguish their regulatory genes, and TF–gene interactions are inferred by modeling gene expression as a function of TF abundance [54]. Chromatin accessibility data are processed to identify accessible peaks, creating a peak accessibility matrix that encodes the openness of CREs [93]. CREs are associated with nearby genes based on genomic proximity, and TF binding to CREs is predicted using motif databases and algorithms [97]. This results in TF–CRE–gene triplets, which are subsequently simplified into TF–gene interactions and can be further aggregated into GRNs.

Genomics and its Combination with Single Cell Technology

Combination of Genomics with Transcriptome Data

Genome-Wide Association Studies (GWAS) are large-scale analyses examining genetic variants across the whole genome to identify associations with specific traits or diseases, linking genotypes to phenotypes [98]. GWAS studies focus on single nucleotide polymorphisms (SNPs), which are single-base variations in DNA that can influence biological functions and disease susceptibility [98].

The major limitation of GWAS studies is their difficulty to determine the biological function of causal variants, as over 90% of genome-wide significant single nucleotide polymorphisms (SNPs) lie in noncoding regions, often within regulatory elements that might influence distant genes [98]. This makes identifying causal genes and disease mechanisms particularly challenging. To address this, post-GWAS approaches integrate *in silico* analyses with experimental validation to link variants to molecular phenotypes. Molecular quantitative trait loci (QTL) analyses, including

expression QTLs (eQTLs), protein QTLs (pQTLs), and splicing QTLs (sQTLs), provide insights into how genetic variation influences gene regulation [99, 100].

A key post-GWAS strategy is the study of gene expression. Genetic determinants and their relationship between gene expression can be systematically examined through expression quantitative trait loci (eQTL) analysis [101]. eQTLs are specific genomic regions where genetic variants, such as SNPs, are statistically associated with variations in gene expression levels [102–104]. By integrating single-cell RNA sequencing with genotype data, single-cell expression quantitative trait loci (sc-eQTL) analysis enables the precise mapping of genetic regulatory effects within distinct cellular contexts, revealing genetic regulation that operates in specific cellular states or conditions that may be obscured in bulk analyses [105]. A significant breakthrough in the field of conducting single-cell expression quantitative trait loci (sc-eQTL) analysis was achieved by Cuomo et al. (2020), who conducted the study to investigate how genetic variants influence gene expression dynamics during the differentiation of induced pluripotent stem cells (iPSCs) [106]. By integrating scRNA-seq with genotype data, their study revealed context-dependent genetic regulatory effects that vary across developmental states, highlighting the dynamic nature of eQTL influences on gene expression. Their study discovered that certain eQTL effects were activated or repressed at specific differentiation stages, shaping cellular identity and function in a stage-specific manner [106].

Combination of Genomics with Transcriptome Data with Single Cell Functional Genomics

Recent advancements in genetic engineering and molecular biology, especially with the development of CRISPR technology, have enhanced the field of functional genomics [107, 108]. Single-cell CRISPR screening technologies, by combining high-throughput genetic perturbation with single-cell resolution phenotypic analysis, allow simultaneous capture of genetic alterations and their corresponding high-dimensional phenotypes [109]. Early iterations of these approaches, such as Perturb-seq and CROP-seq, focused primarily on transcriptomics phenotypes [110–113]. Subsequent advances have extended their applicability to epigenetic features, imaging-based phenotypes, and multimodal datasets [109, 114, 115]. The combination of single-cell technologies and perturbation modeling enables a deeper understanding of how external factors, such as genetic

modifications, disease progression, or environmental stimuli, affect cellular physiology and molecular pathways.

One of the applications of single cell perturbation of combining single-cell CRISPR screening with GWAS enables the functional investigation of genetic variants by perturbing GWAS-identified target genes. STING-seq (Systematic Targeting and Inhibition of Noncoding GWAS Loci with Single-Cell Sequencing) integrates large-scale GWAS data, CRISPR screens, and single-cell sequencing to identify causal variants, map target genes in *cis* and *trans* regions, and uncover regulatory networks influencing disease risk [116].

Application of Genomics and Integrated Single Cell Functional Genomics in Cardiovascular Disease Research

Building on the advances of GWAS studies, Weng et al. (2025) conducted large-scale meta-analyses of GWAS involving more than 1.3 million individuals, including 30,000 cases from ten studies, with robust phenotypic definitions of sinus node dysfunction (SND), distal conduction disease (DCD), and pacemaker implantation (PM) based on diagnostic codes, procedural data, and electrocardiograms [117]. Rare-variant association tests performed on exome-sequencing data from 460,000 participants, combined with Mendelian randomization and cell-type enrichment analyses, identified 13 loci for SND, 31 for DCD, and 21 for PM [117]. Jurgens et al. (2024) conducted large-scale GWAS and multitrait analysis of dilated cardiomyopathy with 9,365 cases and 946,368 controls, identifying 70 significant loci mapped to 63 prioritized genes [118]. Enrichment analyses highlighted the central role of cardiomyocytes and the contractile apparatus in DCM pathogenesis, while polygenic risk scores (PRS) predicted DCM risk across diverse ancestries and genetic backgrounds [118].

The V2G2P framework was specifically applied to CAD, revealing that 43 CAD-associated GWAS signals converge on the CCM signaling pathway, highlighting its role in CAD risk [119]. The V2G2P framework comprises five steps [119]. Through this framework, 306 CAD-associated GWAS signals were mapped to their potential target genes within enhancers, coding regions, and splice sites. To functionally validate these associations, Perturb-seq was applied to knock down candidate genes located within ± 500 kb of the 306 GWAS signals. The perturbed cellular effects were analyzed through scRNA-seq/snRNA-seq, followed by unsupervised machine learning to identify gene programs. CAD loci were found to converge onto five gene programs related to the cerebral cavernous malformations

(CCM) signaling pathway, which regulates vascular development [119]. 0.41 genes were identified as potential mediators of CAD risk through endothelial cell function. Notably, TLNRD1 and CCM2 knockdown mimicked atheroprotective laminar flow, and TLNRD1 was identified as a novel regulator of the CCM pathway.

Integrating Multi-Omics Single-Cell Profiles to Unravel Cardiovascular Disease Mechanisms

Large-cohort single-cell profiling of genomics, transcriptomics, epigenomics, proteomics, and metabolomics will provide a more comprehensive molecular landscape of CVD pathogenesis and progression. Firstly, integrating multi-omics data by combining genomics with single-cell transcriptomics provides a more comprehensive understanding of gene regulation in CVDs. Especially, sc-eQTL studies in the cardiovascular field offer insights into how genetic variants influence gene expression at the cellular level within the heart [101]. By mapping these genetic variants to specific cell types, sc-eQTL analyses can uncover cell type-specific regulatory mechanisms that contribute to disease pathogenesis [106]. Further integrating sc-eQTL data with Mendelian randomization, where gene expression levels serve as exposures, enables the establishment of causal relationships between genetic variants, gene expression, and CVD phenotypes [120]. Secondly, the integration of single-cell transcriptomics and epigenomics will help reconstruct cell-type-specific regulatory landscapes, providing a mechanistic understanding of gene regulation in distinct cardiac cell types/states [92]. These regulatory interactions can be further validated through functional genomics approaches [121]. Additionally, integrating spatial transcriptomics and spatial multi-omics sequencing provides a detailed view of the spatial organization of cells within cardiac tissue, capturing the precise localization of distinct cell types and their molecular states to reveal how cellular heterogeneity, signaling networks, and microenvironmental interactions contribute to heart diseases [60].

Future Direction of Application of Single Cell Technologies

The future of single cell technologies in cardiovascular medicine lies in the advancements of disease understanding, diagnosis, and treatment. By dissecting cellular and molecular complexities, this technology enables the identification

of cell-specific mechanisms, biomarkers, and therapeutic targets. These perspectives drive precision medicine, regenerative therapies, and next-generation diagnostics, revolutionizing cardiovascular care (Fig. 2).

Single-cell technologies facilitate the identification of distinct cell types, cellular states, and rare or disease-driving cell populations. By analyzing individual cells, this technology enables more precise diagnoses, improves disease classification, and allows for early detection of health conditions. scRNA-seq/snRNA-seq provides detailed molecular profiles of each cell, helping researchers discover cell-specific biomarkers, including genes, proteins, and signaling pathways, that reflect disease states. Furthermore, considering the correlation between tissue-specific signatures and biofluids, scRNA-seq/snRNA-seq studies can improve non-invasive diagnostic and monitoring techniques. By analyzing circulating cells and extracellular vesicles, such as exosomes and microvesicles, liquid biopsies offer a promising approach for disease detection and progression tracking [122].

Single-cell technologies are transforming personalized medicine by generating patient-specific cellular profiles, enabling tailored treatments based on e.g. sc-SNPs. These technologies facilitate targeted therapies for specific cell types, enhance treatment response prediction, and improve therapeutic precision.

In regenerative medicine, single-cell technologies play an important role in guiding stem cell differentiation for heart repair and tissue engineering. It also enables real-time monitoring of transplanted stem-cell-derived cells, ensuring proper development, function, and integration into cardiac tissue [123].

In addition, single-cell sequencing holds great promise for immune system analysis in cardiovascular diseases. By distinguishing immune cell subtypes and rare cell populations, it provides a deeper understanding of immune dynamics in disease progression and therapeutic responses. This technology aids in detecting drug-resistant immune phenotypes, offering insights into immune evasion and therapy resistance in conditions like myocarditis, atherosclerosis, and transplant rejection [124]. It can also drive the development of personalized immunotherapies, such as engineered regulatory T cells (CAR-Tregs), for treating cardiovascular and inflammatory diseases [125].

The integration of large language AI models with single-cell technologies enhances data analysis, enabling efficient multi-omics integration and deeper biological insights. AI-driven predictive modeling further supports the identification of biomarkers for disease diagnosis, patient monitoring, and therapy response prediction.

Future direction of applying single cell sequencing in cardiovascular medicine

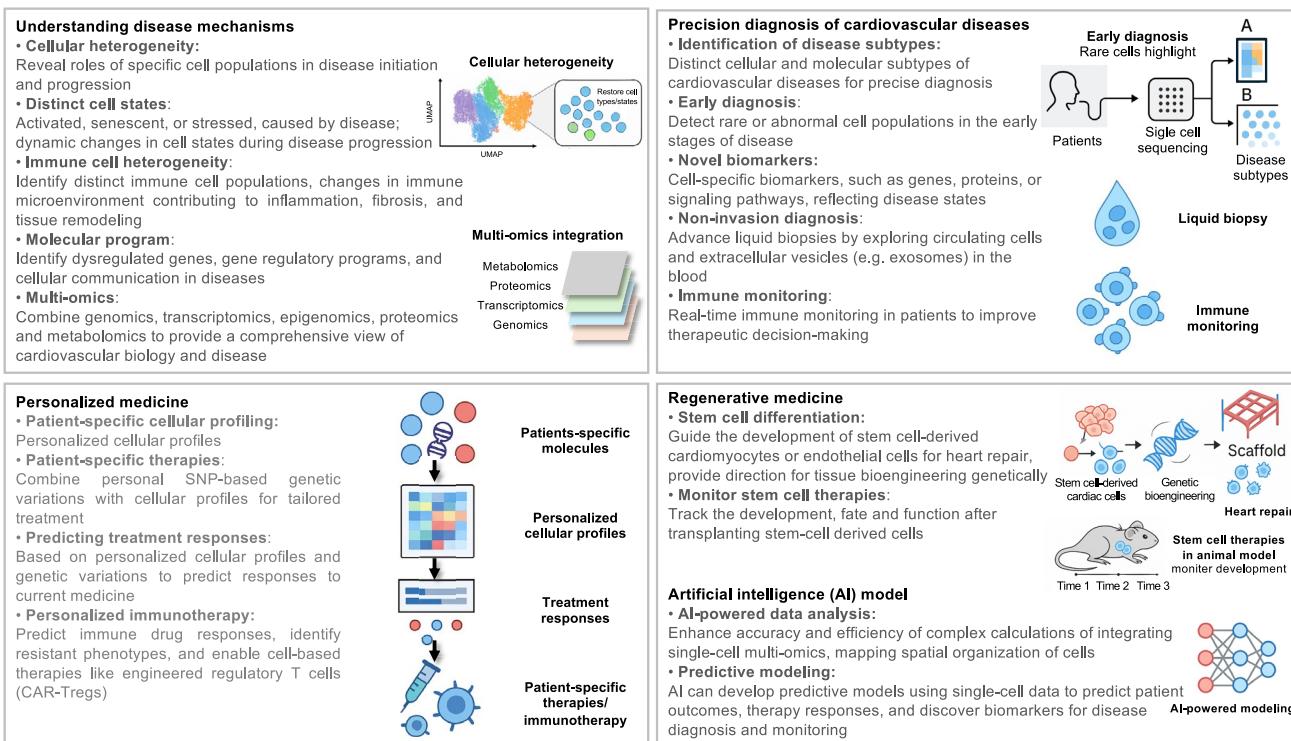


Fig. 2 Future direction of single cell technologies application in cardiovascular medicine. This figure outlines the potential applications of single-cell technologies in advancing cardiovascular medicine

These innovations collectively pave the way for more precise, personalized, and effective treatments in cardiovascular medicine.

Key References

- Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerd A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. *Science*, 377(6606):eab01984, 2022.

Findings from this study genotype-specific mechanisms and cell type/cell state proportion changes of dilated cardiomyopathy and arrhythmogenic cardiomyopathy.

- Litvinuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA. Cells of the adult human heart. *Nature*, 588(7838):466–472, 2020.

This study generated human heart atlas at single-cell resolution to generate comprehensive map of cell types, cell states, and cellular communication interactions of hearts to enhance our understanding of cardiac biology.

Author Contributions Jiahui Ji conducted the literature review, drafted the manuscript, and created the figures and tables. Eric L. Lindberg contributed to manuscript editing and content refinement. Daniel Reichart contributed to manuscript revisions, provided critical feedback, and supervised the overall work.

Funding Open Access funding enabled and organized by Projekt DEAL. Emmy Noether-Program (528598067). Medical & Clinician Scientist Program (MCSP) of the LMU University Hospital (MS-205).

Data Availability No datasets were generated or analysed during the current study.

Declarations

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. *J Am Coll Cardiol.* 2019;74(20):2529–2532.
2. Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL, Kelli HM, Ferdinand KC, Echols MR, Weintraub H. Ten things to know about ten cardiovascular disease risk factors. *Am J Prev Cardiol.* 2021;5:100149.
3. Mesquita T, Zhang R, Cho JH, Zhang R, Lin Y-N, Sanchez L, Goldhaber JI, Yu JK, Liang JA, Liu W. Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. *Circulation.* 2022;145(1):45–60.
4. Pugsley MK, Tabrizchi R. The vascular system: An overview of structure and function. *J Pharmacol Toxicol Method.* 2000;44(2):333–40.
5. Almet AA, Cang Z, Jin S, Nie Q. The landscape of cell–cell communication through single-cell transcriptomics. *Curr Opin Syst Biol.* 2021;26:12–23.
6. Liga R, Colli A, Taggart DP, Boden WE, De Caterina R. Myocardial revascularization in patients with ischemic cardiomyopathy: for whom and how. *J Am Heart Association.* 2023;12(6):e026943.
7. Sekulic M, Zacharias M, Medalion B. Ischemic cardiomyopathy and heart failure: consideration for fibromuscular dysplasia with intimal fibroplasia of coronary arteries. *Circ Heart Fail.* 2019;12(6):e006006.
8. Scattie A, Dellegrottaglie S. Cardiac magnetic resonance in ischemic cardiomyopathy: present role and future directions. *Eur Heart J Suppl.* 2023;25(Supplement C):C58–62.
9. Del Buono MG, Moroni F, Montone RA, Azzalini L, Sanna T, Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. *Curr Cardiol Rep.* 2022;24(10):1505–15.
10. Braunwald E. Cardiomyopathies: an overview. *Circ Res.* 2017;121(7):711–21.
11. Litvinukova M, Talavera-Lopez C, Maatz H, Rechart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA. Cells of the adult human heart. *Nature.* 2020;588(7838):466–472.
12. Suryawanshi H, Clancy R, Morozov P, Halushka MK, Buyon JP, Tuschi T. Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block. *Cardiovasc Res.* 2020;116(8):1446–57.
13. Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JDJ, Ostel P. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. *Cell Stem Cell.* 2018;23(4):586–98.
14. Churko JM, Garg P, Treutlein B, Venkatasubra-manian M, Wu H, Lee J, Wessells QN, Chen SY, Chen WY, Chetal K, Mantalas G, Neff N, Jabart E, Sharma A, Nolan GP, Salomonis N, Wu JC. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. *Nat Commun.* 2018;9(1):4906.
15. Rechart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtnner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaert A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. *Science.* 2022;377(6606):eab01984.
16. Liu CF, Ni Y, Moravec CS, Morley M, Ashley EA, Cappola TP, Margulies KB, Tang WHW. Whole-transcriptome profiling of human heart tissues reveals the potential novel players and regulatory networks in different cardiomyopathy subtypes of heart failure. *Circ Genom Precis Med.* 2021;14(1):e003142.
17. Liu Y, Morley M, Brandimarto J, Hannenhalli S, Hu Y, Ashley EA, Tang WHW, Moravec CS, Margulies KB, Cappola TP. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. *Genomics.* 2015;105(2):83–9.
18. Hartman RJG, Kapteijn DMC, Haitjema S, Bekker MN, Mokry M, Pasterkamp G, Civelek M, den Ruijter HM. Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. *Sci Rep.* 2020;10(1):12367.
19. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A. mRNA-Seq whole-transcriptome analysis of a single cell. *Nat Method.* 2009;6(5):377–82.
20. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. *Nat Method.* 2013;10(11):1096–8.
21. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. *Exp Mol Med.* 2020;52(9):1419–27.
22. Choi BG, Novoselsky CA, Vilahur G, Viles-Gonzalez JF, Zafar MU, Ibanez B, Fuster V, Badimon JJ. Validation study of a semi-automated program for quantification of atherosclerotic burden. *J Cardiovasc Magn Reson: Off J Soc Cardiovasc Magn Reson.* 2007;9(3):615–20.

23. Salomon R, Kaczorowski D, Valdes-Mora F, Nordon RE, Neild A, Farbhei N, Bartonicek N, Gallego-Ortega D. Droplet-based single cell RNAseq tools: a practical guide. *Lab Chip*. 2019;19(10):1706–27.

24. Juzenas S, Goda K, Kiseliolas V, Zvirblyte J, Quintinal-Villalonga A, Siurkus J, Nainys J, Mazutis L. inDrops-2: a flexible, versatile and cost-efficient droplet microfluidic approach for high-throughput scRNA-seq of fresh and preserved clinical samples. *Nucleic Acids Res*. 2025;53(2):gkae1312.

25. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. *Science*. 2014;343(6172):776–9.

26. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. *Science*. 2017;356(6335):eaah4573.

27. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med*. 2018;50(8):1–14.

28. Dong W, Moses C, Li K. Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th international conference on World wide web. 2011;577–586.

29. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. *Nat Mammun*. 2019;10(1):390.

30. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. *J Stat Mech: Theo Exp*. 2008;2008(10):P10008.

31. Traag VA, Waltman L, Van Eck NJ. From louvain to leiden: guaranteeing well-connected communities. *Sci Rep*. 2019;9(1):1–12.

32. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Jr Bedi KC, Akkad AD, Herndon CN, Arduini A, Papangeli I. Transcriptional and cellular diversity of the human heart. *Circulation*. 2020;142(5):466–482.

33. Xu C, Prete M, Webb S, Jardine L, Stewart BJ, Hoo R, He P, Meyer KB, Teichmann SA. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. *Cell*. 2023;186(26):5876–91.

34. Fu R, Gillen AE, Sheridan RM, Tian C, Daya M, Hao Y, Hesselberth JR, Riemondy KA. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. *F1000 Res*. 2020;9:223.

35. Kang JB, Nathan A, Weinand K, Zhang F, Millard N, Rumker L, Moody DB, Korsunsky I, Raychaudhuri S. Efficient and precise single-cell reference atlas mapping with symphony. *Nat Commun*. 2021;12(1):5890.

36. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M. Integrated analysis of multimodal single-cell data. *Cell*. 2021;184(13):3573–87.

37. Quinn TP, Erb I, Richardson MF, Crowley TM. Understanding sequencing data as compositions: an outlook and review. *Bioinformatics*. 2018;34(16):2870–8.

38. Buttner M, Ostner J, Muller CL, Theis FJ, Schubert B. scCODA is a Bayesian model for compositional single-cell data analysis. *Nat Commun*. 2021;12(1):6876.

39. Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zaparia L, Lucken MD, Strobl DC, Henao J, Curion F. Best practices for single-cell analysis across modalities. *Nat Rev Gen*. 2023;24(8):550–572.

40. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. *Nat Method*. 2017;14(10):979–82.

41. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. *Nat Biotechnol*. 2014;32(4):381–6.

42. Street K, Rissi D, Fletcher RB, Das D, Ngai J, Yosef N, Purdom E, Dudoit S. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC Genomics*. 2018;19(1):477.

43. Grun D, Muraro MJ, Boisset JC, Wiebrans K, Lyubimova A, Dharmadhikari G, van den Born M, Van Es J, Jansen E, Clevers H. De novo prediction of stem cell identity using single-cell transcriptome data. *Cell Stem Cell*. 2016;19(2):266–77.

44. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Gottgens B, Rajewsky N, Simon L, Theis FJ. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. *Gen Biol*. 2019;20:1–9.

45. Van den Berge K, de B'ezieux HR, Street K, Saelens W, Cannoodt R, Saeys Y, Dudoit S, Clement L. Trajectory-based differential expression analysis for single-cell sequencing data. *Nat Commun*. 2020;11(1):1201.

46. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A. RNA velocity of single cells. *Nature*. 2018;560(7719):494–8.

47. Volker Bergen, Marius Lange, Stefan Peidli, F Alexander Wolf, and Fabian J Theis. Generalizing RNA velocity to transient cell states through dynamical modeling. *Nature biotechnology*, 38(12):1408–1414, 2020.

48. Li S, Zhang P, Chen W, Ye L, Brannan KW, Le NT, Abe JI, Cooke JP, Wang G. A relay velocity model infers cell-dependent RNA velocity. *Nat Biotechnol*. 2024;42(1):99–108.

49. Forrow A, Schiebinger G. LineageOT is a unified framework for lineage tracing and trajectory inference. *Nat Commun*. 2021;12(1):4940.

50. Cui H, Maan H, Vladoiu MC, Zhang J, Taylor MD, Wang B. DeepVelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics. *Gen Biol*. 2024;25(1):27.

51. Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. *PLoS ONE*. 2010;5(9):e12776.

52. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In: *BMC bioinformatics*, vol 7, p S7. Springer. 2006.

53. Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. *Cell Syst*. 2017;5(3):251–67.

54. Aibar S, González-Blas CB, Moerman T, HuynhThu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S. SCE-NIC: single-cell regulatory network inference and clustering. *Nat Method*. 2017;14(11):1083–1086.

55. Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell–cell interactions and communication from gene expression. *Nat Rev Gen*. 2021;22(2):71–88.

56. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, Myung P, Plikus MV, Nie Q. Inference and analysis of cell–cell communication using cell chat. *Nat Commun*. 2021;12(1):1088.

57. Noel F, Massenet-Regad L, Carmi-Levy I, Cappuccio A, Grand-claudon M, Trichot C, Kieffer Y, MechtaGrigoriou F, Soumelis V. Dissection of intercellular communication using the transcriptome-based framework ICELLNET. *Nat Commun*. 2021;12(1):1089.

58. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. *Nat Protocol*. 2020;15(4):1484–506.

59. Marx V. Method of the Year: spatially resolved transcriptomics. *Nat Methods*. 2021;18(1):9–14.

60. Tam Vu, Vallmitjana A, Joshua Gu, La K, Qi Xu, Flores J, Zimak J, Shiu J, Hosohama L, Jie Wu. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. *Nat Commun.* 2022;13(1):169.

61. Chen Ao, Liao S, Cheng M, Ma K, Liang Wu, Lai Y, Qiu X, Yang J, Jiangshan Xu, Hao S. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. *Cell.* 2022;185(10):1777–92.

62. Liu Z, Bian X, Luo L, Bjorklund AK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C. Spatiotemporal single-cell roadmap of human skin wound healing. *Cell Stem Cell.* 2025;32(3):479–498.

63. Cassella L, Ephrussi A. Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs. *Nat Commun.* 2022;13(1):6355.

64. Yamashita S, Okada Y. Application of heat-induced antigen retrieval to aldehyde-fixed fresh frozen sections. *J Histochem Cytochem.* 2005;53(11):1421–32.

65. Liu Y, Enninfu A, Deng Y, Fan R. Spatial transcriptome sequencing of FFPE tissues at the cellular level. *bioRxiv.* 2020;2020–10.

66. Villacampa EG, Larsson L, Mirzazadeh R, Kvastad L, Andersson A, Mollbrink A, Kokaraki G, Monteil V, Schultz N, Appelberg KS. Genome-wide spatial expression profiling in formalin-fixed tissues. *Cell Gen.* 2021;1(3):100065.

67. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science.* 2016;353(6294):78–82.

68. Fu X, Sun L, Dong R, Chen JY, Silakit R, Condon LF, Lin Y, Lin S, Palmiter RD, Gu L. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. *Cell.* 2022;185(24):4621–33.

69. Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D, Aijo T, Bonneau R, Bergenstrahle L, Navarro JF. High-definition spatial transcriptomics for *in situ* tissue profiling. *Nat Method.* 2019;16(10):987–90.

70. Wong K, Navarro JF, Bergenstrahle L, Stahl PL, Lundeberg J. ST Spot Detector: a web-based application for automatic spot and tissue detection for spatial Transcriptomics image datasets. *Bioinformatics.* 2018;34(11):1966–8.

71. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA. Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat Biotechnol.* 2022;40(4):517–26.

72. Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, Tokcan N, Vanderburg CR, Segerstolpe A, Zhang M. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. *Nat Method.* 2021;18(11):1352–62.

73. Raredon MSB, Yang J, Kothapalli N, Lewis W, Kaminski N, Niklason LE, Kluger Y. Comprehensive visualization of cell-cell interactions in single-cell and spatial transcriptomics with NICHEs. *Bioinformatics.* 2023;39(1):btac775.

74. Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, Bajpai G, Bredemeyer A, Smith G, Jones C, Terrebonne E, Rentschler SL, Artyomov MN, Lavine KJ. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. *Nat Cardiovasc Res.* 2022;1(3):263–80.

75. Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, Ruden DM, Levy PD. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. *Front Cardiovasc Med.* 2019;6:173.

76. Stewart KMR, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. *Cardiovasc Res.* 2022;118(7):1667–79.

77. Wang F, Ding P, Liang X, Ding X, Brandt CB, Sjostedt E, Zhu J, Bolund S, Zhang L, de Rooij LPMH. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. *Nat Commun.* 2022;13(1):3620.

78. Pekayvaz K, Losert C, Knottenberg V, Gold C, van Blokland IV, Oelen R, Groot HE, Benjamins JW, Brambs S, Kaiser R. Multiomic analyses uncover immunological signatures in acute and chronic coronary syndromes. *Nat Med.* 2024;30(6):1696–710.

79. Abplanalp WT, John D, Cremer S, Assmus B, Dorsheimer L, Hoffmann J, Becker-Pergola G, Rieger MA, Zeiher AM, Vasan-Nicotera M. Single-cell RNA-sequencing reveals profound changes in circulating immune cells in patients with heart failure. *Cardiovasc Res.* 2021;117(2):484–94.

80. Chaffin M, Papangeli I, Simonson B, Akkad A-D, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. *Nature.* 2022;608(7921):174–80.

81. Simonson B, Chaffin M, Hill MC, Atwa O, Guedira Y, Bhasin H, Hall AW, Hayat S, Baumgart S, Bedi KC Jr. Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure. *Cell Rep.* 2023;42:112086.

82. Nicin L, Schroeter SM, Glaser SF, Schulze-Bruning R, Pham M-D, Hille SS, Yekelchyk M, Kattih B, Abplanalp WT, Tombor L. A human cell atlas of the pressureinduced hypertrophic heart. *Nat Cardiovasc Res.* 2022;1(2):174–85.

83. Amrute JM, Lai L, Ma P, Koenig AL, Kamimoto K, Bredemeyer A, Shankar TS, Kuppe C, Kadyrov FF, Schulte LJ. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. *Nat Cardiovasc Res.* 2023;2(4):399–416.

84. Maatz H, Lindberg EL, Adami E, L'opez-Anguita N, Perdomo-Sabogal A, Ortega LC, Patone G, Reichart D, Myronova A, Schmidt S. The cellular and molecular cardiac tissue responses in human inflammatory cardiomyopathies after SARS-CoV-2 infection and COVID-19 vaccination. *Nat Cardiovasc Res.* 2025;1–16.

85. Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, Ramadoss GN, Flanigan WR, Fozouni P, Li H. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. *Sci Transl Med.* 2021;13(590):eabf7872.

86. Asp M, Giacomello S, Larsson L, Wu C, Furth D, Qian X, Wardell E, Custodio J, Reimegård J, Salmen F. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. *Cell.* 2019;179(7):1647–60.

87. Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, Pett JP, Polanski K, Richardson L, Litvinukova M. Spatially resolved multiomics of human cardiac niches. *Nature.* 2023;619(7971):801–10.

88. Kuppe C, Flores ROR, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wunnemann F, Nagai JS. Spatial multi-omic map of human myocardial infarction. *Nature.* 2022;608(7924):766–77.

89. Gibney ER, Nolan CM. Epigenetics and gene expression. *Heredity.* 2010;105(1):4–13.

90. Yan-Lin Wu, Lin Z-J, Li C-C, Lin X, Shan S-K, Guo B, Zheng M-H, Li F, Yuan L-Q, Li Z-H. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. *Signal Transduct Target Ther.* 2023;8(1):98.

91. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation. *Nature.* 2015;523(7561):486–90.

92. D'Oliveira Albanus R, Kyono Y, Hensley J, Varshney A, Orchard P, Kitzman JO, Parker SCJ. Chromatin information content landscapes inform transcription factor and DNA interactions. *Nat Commun.* 2021;12(1):1307.

93. Li Z, Kuppe C, Ziegler S, Cheng M, Kabgani N, Menzel S, Zenke M, Kramann R, Costa IG. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. *Nat Commun.* 2021;12(1):6386.

94. Chen H, Lareau C, Andreani T, Vinyard ME, Garcia SP, Clement K, Andrade-Navarro MA, Buenrostro JD, Pinello L. Assessment of computational methods for the analysis of single-cell ATAC-seq data. *Gen Biol*. 2019;20(1):241.

95. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. *Science*. 2018;361(6409):1380–5.

96. Mompel PB, Wessels L, Muller-Dott S, Trimbour R, Flores ROR, Argelaguet R, Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. *Nat Rev Gen*. 2023;24(11):739–54.

97. Pratt HE, Andrews GR, Phalke N, Huey JD, Purcaro MJ, van der Velde A, Moore JE, Weng Z. Factor-book: an updated catalog of transcription factor motifs and candidate regulatory motif sites. *Nucleic Acids Res*. 2022;50(D1):D141–9.

98. Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. *Amer J Hum Gen*. 2018;102(5):717–30.

99. Wu Y, Qi T, Wray NR, Visscher PM, Zeng J, Yang J. Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes. *Cell Genomics*. 2023;3(8).

100. Mapel XM, Kadri NK, Leonard AS, He Q, Lloret-Villas A, Bhati M, Hiltbold M, Pausch H. Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle. *Nat Commun*. 2024;15(1):674.

101. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. *Science*. 2020;369(6509):1318–1330.

102. Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, Kirsten H, Saha A, Kreuzhuber R, Yazar S, Brugge H. Large-scale cis-and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. *Nat Genet*. 2021;53(9):1300–1310.

103. Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, Wang G, Jiang Z, Zhou D, Hormozdiari F. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. *Genome Biol*. 2021;22:1–24.

104. Yao DW, O’Connor LJ, Price AL, Gusev A. Quantifying genetic effects on disease mediated by assayed gene expression levels. *Nature genetics*. 2020;52(6):626–33.

105. van der Wijst MGP, De Vries DH, Groot HE, Trynka G, Hon CC, Bonder MJ, Stegle O, Nawijn MC, Idaghdour Y, Van Der Harst P. The single-cell eQTLGen consortium. *elife*. 2020;9:e52155.

106. Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, Garcia-Bernardo J, Amatya S, Madrigal P, Isaacson A, Buettner F. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. *Nat Commun*. 2020;11(1):810.

107. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. *Science*. 2018;361(6405):866–9.

108. Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. *Cell*. 2024;187(5):1076–100.

109. Metzner E, Southard KM, Norman TM. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. *Cell Syst*. 2025;16(1).

110. Adamson B, Norman TM, Jost M, Cho MY, Nunez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. *Cell*. 2016;167(7):1867–82.

111. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D, Bock C. Pooled CRISPR screening with single-cell transcriptome readout. *Nat Method*. 2017;14(3):297–301.

112. Dixit AA, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. *Cell*. 2016;167(7):1853–66.

113. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A, Amit I. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. *Cell*. 2016;167(7):1883–96.

114. Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, Mumbach MR, Ji AL, Kim DS, Cho SW. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. *Cell*. 2019;176(1):361–76.

115. Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A, Garrity AJ, Zhang F, Blainey PC. Optical pooled screens in human cells. *Cell*. 2019;179(3):787–99.

116. Morris JA, Caragine C, Damiloski Z, Domingo J, Barry T, Lu L, Davis K, Ziosi M, Glinos DA, Hao S. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. *Science*. 2023;380(6646):eadh7699.

117. Weng L-C, Ramo JT, Jurgens SJ, Khurshid S, Chaffin M, Hall AW, Morrill VN, Wang X, Nauffal V, Sun YV. The impact of common and rare genetic variants on bradyarrhythmia development. *Nat Gen*. 2025;57:53–64.

118. Jurgens SJ, Wang X, Choi SH, Weng L-C, Koyama S, Pirruccello JP, Nguyen T, Smadbeck P, Jang D, Chaffin M. Rare coding variant analysis for human diseases across biobanks and ancestries. *Nat Gen*. 2024;56(9):1811–20.

119. Schwaerzer G. A new approach connects GWAS variants to genes and convergent transcriptional programs. *Nat Cardiovasc Res*. 2024;3(3):264.

120. Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, Palmer T, Schooling CM, Wallace C, Zhao Q. Mendelian randomization. *Nat Rev Method Prim*. 2022;2(1):6.

121. Ishikawa M, Sugino S, Masuda Y, Tarumoto Y, Seto Y, Taniyama N, Wagai F, Yamauchi Y, Kojima Y, Kiryu H. RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations. *Commun Biol*. 2023;6(1):1290.

122. Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. *Nat Rev Cardiol*. 2024;21(8):556–73.

123. Jebran A-F, Seidler T, Tiburcy M, Daskalaki M, Kutschka I, Fujita B, Ensminger S, Bremmer F, Moussavi A, Yang H. Engineered heart muscle allografts for heart repair in primates and humans. *Nature*. 2025;639:503–511.

124. Zhuang L, Wang Y, Chen Z, Li Z, Wang Z, Jia K, Zhao J, Zhang H, Xie H, Lin Lu. Global characteristics and dynamics of single immune cells after myocardial infarction. *J Am Heart Assoc*. 2022;11(24):e027228.

125. Rurik JG, Tombacz I, Yadegari A, Fernandez POM, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK. CAR T cells produced in vivo to treat cardiac injury. *Science*. 2022;375(6576):91–6.