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Abstract
We present a set of noncommuting tetrad-shift symmetries in 4D gravity in
tetrad-connection variables, which allow expressing diffeomorphisms as com-
posite transformations. Working on the phase space level for finite regions,
we pay close attention to the corner piece of the generators, discuss various
possible charge brackets, relative definitions of the charges, coupling to spinors
and relations to other charges. What emerges is a picture of the symmetries
and edge modes of gravity that bears local resemblance to a Poincare group
SO(1,3)nR1,3, but possesses structure functions. In particular, we argue that
the symmetries and charges presented here are more amenable to discretisation,
and sketch a strategy for this charge algebra, geared toward quantum gravity
applications.
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1. Introduction

In the search for quantum formulations of gravitational physics, several recent approaches
emphasize the role of special transformations of the fields known as corner symmetries [1–
15]. These transformations, coming in typically two flavours respectively at finite distance and
asymptotic boundaries, arise from the intrinsic structure of most gauge theories. In principle, a
gauge symmetry, such as diffeomorphisms in gravity, is conventionally labelled a redundancy
of the theory. This is due to the fact that the free time-dependence of transformation parameters
can change any solutions of the (classical) theory into another solution with the same initial
data; this makes the time evolution indeterministic at face value.

In this sense, it appears that one can readily discard the physical content of gauge transform-
ations. However, when the Cauchy slice Σ that is being evolved has a boundary (or corner)
∂Σ (asymptotic or finite distance), gauge transformations with support on it are physical trans-
formations that permute between states. These corner symmetries are at the heart of why gauge
theories featuring diffeomorphism invariance (such as gravity, BF theory or Chern–Simons
theory) all have vastly larger state spaces when boundaries are present.

From this perspective alone, it is worth to closely investigate the full set of corner sym-
metries admitted by gravity in aid of finding interesting sets of observables, which, in the pure
bulk theory, are rare at best. The asymptotic case of these symmetries has seen intense research
activity both in the Anti-deSitter [16–19] and asymptotically flat [20–22] sectors of General
Relativity (GR), where asymptotic diffeomorphism symmetries allow for the organization,
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analysis and even reconstruction of several elements of gravitational physics. On the other
hand, in the finite distance case, particularly in 3D gravity, research has focused on the use of
finite distance symmetry charges to aid quantization [23–26].

The main idea of this approach, sometimes referred to as local holography, is the recon-
struction of small bulk regions from corner data alone in a similar spirit to the AdS/CFT cor-
respondence, but at finite distance.

Upon achieving such (re-)constructions, larger regions may be built in several ways, the
most conservative being a direct glueing of spatial or spatiotemporal regions with appropri-
ate fusion rules. Alternatively, one might forego the bulk description for a picture of corner
degrees of freedom as ‘molecules’, whose hydrodynamic, macroscopic dynamics is possibly
equivalent to the continuum bulk physics.

Additionally, even without the microscopic holography perspective, one nowadays appre-
ciates the fact that any conventional calculations of von Neumann entropies in gauge theories
include contributions from edge mode degrees of freedom [1].

Therefore, it is crucial to understand precisely which gauge symmetries, and therefore edge
modes, gravity has, and establish a link between the work done in the 3D and the 4D case. Here,
we do so by providing a 4D analogue of an internal gauge symmetry of 3D gravity that can be
understood as being a constituent of diffeomorphisms. Let us illustrate these symmetries here.

In the tetrad formulation in 3D [27], we begin from the action (see appendix A for notation)

S3D =

ˆ
M
(⋆θ)∧Fω (1)

modelled by a triad θ, a spin connection ω for SO(1,2) and ⋆ : R1,2 → so(1,2) denoting the
internal dual. This action, being of BF-type, enjoys 2 sets of symmetries known as Lorentz
transformations

Xα [ω] = dωα Xα [θ] =−α · θ α ∈ Ω0 (M,g) , (2)

and Kalb–Ramond shifts

Yµ [ω] = 0 Yµ [θ] = dωµ µ ∈ Ω1 (M,g) . (3)

On the phase space of a sliceΣ, one can associate generators to these symmetries which encap-
sulate a lot of the degrees of freedom of finite regions in 3D gravity; respectively,

Cα =

ˆ
Σ

⋆θ∧ dωα≈
˛
∂Σ

⋆θ ·α

Kµ =−
ˆ
Σ

µ ·Fω +

˛
∂Σ

µ ·ω ≈
˛
∂Σ

µ ·ω
(4)

where weak equality ≈ indicates using the constraints of the theories, given respectively by

dωθ ≈ 0≈ Fω. (5)

Given this set of transformations, diffeomorphisms of 3D gravity can be understood as
effective combinations of these two, and charges thereof are quadratic combinations of these
more fundamental symmetries [28].

This offers a useful way to bring diffeomorphism invariance also to the discrete level,
as exemplified in state sum models for 3D gravity such as the Ponzano–Regge model [29].
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In these models, diffeomorphism invariance is commonly understood through triangulation
invariance, which in turn is captured by invariance under the 3D Pachner moves. Furthermore,
it has been demonstrated that this invariance can be understood as a geometric one where ver-
tices of a given triangulation may be freely translated. This, however, can be expressed through
labels of the triangulation only, and therefore makes no reference to a background embedding
of the triangulation cells. In this way, one can abstractly realize the action of diffeomorphisms
on discretized gravity in such a way that no mention of points or vector fields generating the
diffeomorphisms is necessary.

Therefore, a natural question arises about the existence of similar transformations in 4D
gravity in tetrad variables. While Lorentz transformations are perfectly well-known, the case
of shift charges is much less obvious. For example, it is well-known [30] that Regge calculus,
as a discrete path integral for the metric, admits a partial vertex translation symmetry akin to
the one found in 3D, but this pertains only to the flat sector. Quite clearly, the transformation
that would replace the 3D symmetry must be modified to include effects of curvature and
torsion.

It is the goal of the present note to elaborate on this issue and propose a useful generaliza-
tion of the 3-dimensional shift charges. We do not have in mind any changes to the covariant
phase space description of tetrad gravity itself, which has been well understood in a variety of
facets already. Instead, we intend to switch the focus of such analyses from diffeomorphisms
to the proposed internal gauge transformations which mirror the 3D shifts. We wish to distin-
guish ourself from Montesinos’ [31] work by highlighting that there is a difference between
symmetries of the Lagrangian and of the phase space, and focusing primarily on the phase
space, which is relevant to canonical quantization. We also want to go beyond Schiavina and
Cattaneo’s [32] study of the symmetries by not performing a split into different internal direc-
tions, therefore staying fully covariant. In the end, our main goal is to understand the corner
structure of tetrad gravity, which is where we will study the symmetries the most.

To begin, we review the phase space structure of gravity in tetrad variables, highlighting
some important complications that require us to restrict the set of dynamical fields on the phase
space. Then, with this background, we present phase space non-linear Kalb–Ramond shifts for
4D gravity, and discuss their complicated relationship with transformations of the spacetime
fields. Further, we consider two obvious corner extensions of their generators and discuss the
relation to Brown–York charges before evaluating them in the simple case of a Schwarzschild
geometry. Finally, we give an extended discussion in which we focus on the effects we can
expect on edge modes, together with modifications due to the inclusion of matter. We close
with an outlook on several possible applications of the charges.

2. The phase space of gravity in tetrad variables

In this section, we provide necessary technical setup: We specify the set of fields, its canonical
structure and highlight that the symplectic form is degenerate, leading to the crucial require-
ment of fixing the so-called ‘structural gauge’. This is in stark contrast to the case in 3D grav-
ity, where no such degeneracy is present. In contrast, in the 4D case the degeneracy forms an
obstacle in relating the spacetime and phase space versions of the transformations we want to
discuss, so we need to give a bit of intuition for the restriction we need to impose on the set of
fields. Ultimately, it simply reflects the fact that the Hamiltonian evolution does not determ-
ine the connection field sufficiently, which must therefore be seen as having additional gauge
freedom that is not apparent in the Lagrangian formulation.
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We will work with the following presentation of gravity as Einstein–Cartan–Holst theory5

with cosmological constant Λ:

S [θ,ω] =
ˆ
M
(⋆+β)

(
θ2
)
∧Fω − 2Λ

4!
θ2 ∧ ⋆θ2 (6)

in which θ represents the tetrad, ω the Lorentzian (Lie algebra g) spin connection, β = 1
γ the

Immirzi parameter [33] and the ⋆ indicates the internal Hodge dual. For simplicity, we will
also use a shorthand for Lie algebra map appearing in the action,(

θ2
)
(β)

:= (⋆+β)
(
θ2
)
, θ2 := θ∧ θ. (7)

We will use the covariant phase space approach [2, 3, 10, 32, 34–36], although a canonical
analysis along the same lines is equally possible. We will study the phase space of the theory
on some fixed Cauchy slice Σ, and the off-shell (pre)phase space will be

C̃Σ =Ω1
nd (Σ,V)×A(Σ,g) (8)

the product of nondegenerate pullbacks of tetrads (equivalently, maps into the fake tangent
bundle V whose image at all points of Σ spans a 3D subspace of V) with the space of g-
connections on the slice. Out of this phase space we will select then the physical (pre)phase
space of solutions of the Einstein–Cartan equations

E = δθI ∧
(
Gω −Λ ⋆ θ3

)I− dωθ
2
(β) ∧ δω GI

ω := (Fω)
IJ
(β) ∧ θJ (9)

where we introduce the Einstein tensor Gω.
In order to turn the set (8) into a phase space, we equip it with the presymplectic potential

coming from the boundary variation of the action (6):

δS=
ˆ
M
E + dθ. (10)

In general, one can split the variation of the action into a local bulk term E (the equations of
motion), and a total derivative/total divergence dθ which gives rise to the symplectic potential
of the theory. This is, in its integrated form

ΘΣ =

ˆ
Σ

(
θ2
)
β
∧ δω =−

ˆ
Σ

θI ∧ δωIJ(β) ∧ θJ. (11)

The presymplectic form is produced by taking another variational derivative δ, leading to the
degenerate expression

Ω̃Σ =

ˆ
Σ

δ
(
θ2
)
β
∧ δω =

ˆ
Σ

−δθI ∧ δωIJ(β) ∧ θJ (12)

which has non-trivial kernel given by the vector fields [32]

X∆̄ = ∆̄
δ

δω
∆̄IJ

(β) ∧ θJ = 0 (13)

5 We will generically refer to these theories, regardless of their values for β,Λ, simply as tetrad gravity throughout
this work. This is meant to emphasize the methods presented here over the specific theory they are applied to, as well
as evading issues of nomenclature.
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which we will refer to as kernel vector fields or more simply as ∆̄-vector fields. So, in fact,
one needs to ‘fix a gauge’ even on this kinematical level6. The optimal way to do this has been
found to be the so-called structural constraint on ω [32, 37]. To state it, we first complete the
(3-dimensional) image of the pullback of the tetrad to Σ, θ̃, to a 4-dimensional frame for the
fake tangent bundle V. We do so with a fixed kinematical section ν,δν = 0 (chosen normalized
to 1 in the internal space metric) which can be chosen functionally independent of the fields as
long as θ̃ induces a nondegenerate metric on Σ7.Then, the structural constraint can be stated
as that ν ∨ d̃ω θ̃ satisfies

ν ∨ d̃ω θ̃ = τ ∧ θ̃ (14)

for some τ ∈ Ω1(Σ,V)8. The left hand side has 3 · 6 components acting as constraints, of
which 3 · 4 are alleviated by allowing for τ to be arbitrary. Therefore, overall 6 constraints
are imposed, fixing the kernel gauge precisely.

This yields a unique separation of any connection into a ‘reduced connection’ and ∆̄-part

ω = ω̂+∆̄. (15)

Given a point (ω,θ), one can then flow along the ∆̄ orbits to a unique (ω̂,θ), where the specific
reduced connection ω̂ depends of course on the starting point.

With respect to the coordinate split (θ,ω) = (θ, ω̂,∆̄), the gauge fixing is done simply by
restricting to ∆̄ = 0. Then, any observable on the phase space will be a functional of θ and
ω̂ only, and extended by constancy to the ∆̄-orbits. Naturally, the vector fields tangent to this
gauge fixed phase space are then also of the form

X= X [θ] (θ, ω̂)
δ

δθ
+X [ω̂] (θ, ω̂)

δ

δω̂
, (16)

and the now nondegenerate symplectic form is

ΩΣ =−
ˆ
Σ

δθI ∧ δω̂IJ(β) ∧ θJ. (17)

The phase space itself is then the total space of an affine vector bundle

CΣ → Ω1
nd (Σ,V) (18)

whose fibres are the spaces of reduced connectionsAred(θ) satisfying the structural constraint.
An obvious basepoint for the affine fibres is the torsion-free Levi-Civita connection γ[θ],

so we can write all points in the fibre as

ω̂ = γ [θ] +κ, κ ∈ Ω1 (Σ,g) ν ∨ q= τ ∧ θ̃,qI = κIJ∧θ̃J. (19)

We can interpret κ as a contorsion 1-form which, by virtue of the structural constraint, is
kinematically restricted to be of a certain form. This restriction, however, is only relevant off-
shell or in the presence of matter.

6 Usually, gauge fixing is only necessary on-shell of the constraints in order to have a nondegenerate Poisson structure.
Here, however, we already need to do this off-shell.
7 For notational simplicity, for the majority of the paper we will work on the phase space level and drop the tilde as a
restriction to the slide Σ is implicit.
8 A∨B denotes the internal wedge product of in Λ•V.
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The general solution to the structural constraint can be given after decomposing κ and τ
with respect to the internal ν:

κ= κ⊥ ∨ ν− ⋆
(
κ∥ ∨ ν

)
κI∥ = VIJθ

J
∥

τ I = τ I∥ + νIτ⊥ θI = θI∥ + νIθ⊥.
(20)

In this, the tangential κI∥, τ
I
∥ and normal κI⊥, τ

I
⊥ components to the spatial slice (seeing ν as

the time direction) are subject to relations under the structural constraint. By expressing κ∥ via
some tensor VIJ in the tetrad basis, we can solve it for τ

τ⊥ = ϵABCDθ
A
∥V

BCνD τ∥ =−κ⊥ (21)

under the condition that

V(IJ) = 0. (22)

In this, κ is constrained to only have degrees of freedom encoded in some antisymmetric tensor
V IJ orthogonal to ν (which makes it effectively a spatial 3× 3 matrix with 3 degrees of free-
dom). With this restriction, one can then solve for τ in the form presented, meaning the struc-
tural constraint is fulfilled.

This selects contorsions of the form

κ= κ⊥ ∨ ν+Qn ∨ θ∥ QI
n ∈ Ω0 (Σ,V) ,Qn · ν = 0. (23)

We can get an even better idea of the form of these contorsions when using not a kinematical
normal, but the adapted normal uΣ to the slice, which is field-dependent:

UI = Vµ
I nµ uΣ =

U
||U||

. (24)

It is defined only from the normal 1-form n to the slice Σ and the tetrad (and its inverse V). In
this decomposition, the solutions are all of the form

κ= in̂ (Q∨ θ) Q ∈ Ω1 (M,V) (25)

where n̂ is the vector field associated to n via the metric. Matching to the above, we have Q̃=
−κ⊥,Qn = Qn. Ostensibly, this means that the solutions break spacetime covariance, but only
on the slice Σ, which does so by itself. In terms of the torsion TI = dωθI, we can understand
the restriction as the parallel part of the torsion, when expressed in the tetrad basis,

TI∥
Σ
=: AIJ ∧ θJ (26)

being diagonal:

AIJ = RδIJ R ∈ Ω1 (Σ) . (27)

This is perhaps the simplest characterization of the phase space of tetrad variable GR. We
stress that this discussion shows an in-principle mismatch between the spacetime and phase
space configuration variables of the theory:Only equivalence classes of connections constitute

7
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physical data even off-shell9. On-shell in vacuum, the solution sets are the same, but as we are
concerned with off-shell symmetries of the system, this distinction is crucial. In fact, we will
see that the Kalb–Ramond shifts we are seeking are sensitive to this mismatch.

It is extremely useful to pick an arbitrary reference connection ω̂0 and introduce the ADM
momentum ‘aspect’ [9] 2-form as

pI :=−(ω̂− ω̂0)
IJ
(β) ∧ θJ (28)

which, due to the structural constraint gauge fixing, is 1-to-1 with the reduced connections ω̂
for given ω0 as a basepoint.

With this, we can rewrite the symplectic form as simply

ΩΣ =

ˆ
Σ

δθI ∧ δpI. (29)

So upon a choice of (arbitrary!) basepoint section in the affine bundle CΣ → Ω1
nd, we can realize

the phase space as the cotangent bundle [32, 37]

CΣ ∼= T∗Ω1
nd (30)

and the basepoint changes act on this cotangent bundle. Notice, however, that as ω0 is not a
phase space coordinate, it does not transform under Lorentz transformations. In turn, p does
then not transform as a Lorentz vector. We will revisit this point in section 4.2, where we offer
an improved formulation of this variable.

3. Phase space shift symmetries

We can now present the symmetry as it acts on the canonical phase space: With symbols to
be introduced below, the vector field Yϕ is parametrized by a 0-form internal vector ϕI and
acts as

Yϕ [θ] = dω̂ϕ+Tϕ Yϕ [ω̂] = Fϕ −ΛLϕ (31)

which contains implicit expressions Tϕ, Fϕ and Lϕ that we purposefully wish to distinguish
from other quantities and which stem from the implicit definitions

ϕ∨ dωθ = Tϕ ∧ θ

Fϕ ∧ θ = ϕ∨Fω,

(Lϕ)(β) = ⋆(ϕ∨ θ) .

(32)

Ki can be easily solved for asLϕ = 1+β⋆
1+β2 (ϕ∨ θ), but we keep it implicit for the same reason as

Fϕ—it rarely appears on its own, rather in the form found in the implicit definitions. Similarly,
given the contorsion κ from before, we have

9 This is directly related to the notion of primary constraints in canonical analysis, which, in the covariant phase space
formalism, are encoded in off-shell identities and gauge invariances on the configuration space.
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TI
ϕ =−1

3
κIJϕJ (33)

whereas the expression for Fϕ involves the inverse triad in principle.
In most calculations, one does not need the explicit forms of these objects. Instead, we can

express their properties through the expressions

Yϕ [ω̂](β) ∧ θ =−
(
(Fω)(β) −Λ ⋆ θ2

)
·ϕ, (34)

and

Yϕ [θ∧ θ] = dω (ϕ∨ θ) , (35)

which are in fact sufficient to fully define Yϕ.
We first present a simple derivation of this transformation from a canonical Ansatz charge.

After this, we discuss the relation to symmetries of the Lagrangian and highlight that there is
a discrepancy between the above phase space transformation and the appropriate analogous
symmetry of the Lagrangian. This explains the need to consider the phase space and properly
account for the gauge fixing of the ∆̄ vector fields.

3.1. Canonical derivation

By starting from the Einstein constraint as a function on phase space for a closed slice Σ, we
will be able to find relevant symplectic vector fields on the phase space.

We have to first note that Gω −Λ ⋆ θ3 = 0, unlike the Gauss constraint, is not constant
across the kernel foliation (not left constant by the ∆̄-vector fields). Therefore, the functions

Gω 6= Gω̂ (36)

(where the latter is constant across orbits by definition) are not the same on the spacetime
configuration space CM or the prephase space C̃Σ. This is not an accident: Together with the
Gauss constriant, Gω −Λ ⋆ θ3 = 0 selects a unique representative of each orbit in the kernel
foliation. Therefore, on the on-shell phase space itself, there is no redundancy in the sym-
plectic form. In a way, the Einstein constraint comes ‘equipped’ with a gauge fixing for the
∆̄-transformations. However, when writing the offshell phase space using the gauge fixing of
the structural constraint, the restriction to the onshell phase space is correctly performed by
setting Gω̂ = Λ ⋆ θ3 [32, 37].

We can take the variation of the Einstein tensor directly, keeping in mind that the variations
are constrained to preserve the structural constraint,

ϕIδG
I
ω̂ = (ϕ∨ θ)(β) ∧ dω̂δω̂− δθI (Fω̂)

IJ
(β)ϕJ. (37)

For the cosmological constant contribution, we also have

ϕIδ
(
⋆θ3

)I
=

1
3
δθI

(
⋆θ2

)IJ
ϕJ. (38)

We can partially integrate this and for now neglect the boundary term to study which vec-
tor field will actually be Hamiltonian coming from the constraint. We therefore suppose
δϕ = 0 and

9
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−IYΩ=

ˆ
Σ

δ
(
−ϕ ·

(
Gω̂ −Λ ⋆ θ3

))
=−
ˆ

(dω̂ϕ∧ θ+ϕ∨ dω̂θ)∧ δω̂(β)

− δθI (Fω̂)
IJ
(β)ϕJ− δθIΛ ⋆ (ϕ∨ θ)

IJ
θJ

=

ˆ
(dω̂ϕ+Tϕ)I ∧ δω̂IJ(β) ∧ θJ+ δθI

(
(Fω̂)

IJ
(β)ϕJ+Λ ⋆ (ϕ∨ θ)

IJ
θJ

)
.

(39)

Using equation (212) from appendix B, one can see that it generates the Hamiltonian vector
field

Yϕ [θ] = dω̂ϕ+Tϕ Yϕ [ω̂] = Fϕ −ΛLϕ. (40)

So what is correctly shifted in 4-dimensional gravity by a derivative is not the tetrad, but
the gravitational flux θ2, showing that this symmetry is a remnant from BF theory10 after
imposition of the simplicity constraints to arrive at gravity. Using the adapted normal (24) for
decompositions (see appendix D.1 for details on convention), we can express the action of
this vector field on the triad and the normal using the inverse triad v̂ and the extrinsic curvature
K= dωu= Kαdxα:

Yϕ [u]I =−v̂αI
(
∂αϕ⊥ − 2

3
KIα

(
ϕ∥

)
I
− 1

3

(
Kγ[θ]

)I
α

(
ϕ∥

)
I

)
Ỹϕ [ẽ]∥ = dΓϕ∥ +

2
3
ϕ⊥K− 1

3

[
Γ∥ − γ [θ]∥

]
×ϕ∥ +

1
3
ϕ⊥Kγ[θ].

(41)

In particular, we can see the presence of a dΓϕ∥ term for the triad, which is the usual Kalb–
Ramond-type shift piece, as also used for the shifts on the phase space of Loop Quantum
Gravity [38]. However less straightforwardly, the timelike shifts instead mix the triad and the
extrinsic curvature. Particularly, on-shell of the Gauss constraint,

Yϕ [u]I =−v̂αI
(
∂αϕ⊥ −

(
Kγ[θ]

)I
α

(
ϕ∥

)
I

)
Ỹϕ [ẽ]∥ = dγ[θ]∥ϕ∥ +ϕ⊥Kγ[θ]

(42)

we only have the Levi-Civita connection and the extrinsic curvature is that of the Cauchy
surface in the dynamical metric. In particular, for moment-of-time symmetric slices Kγ[θ] = 0,
the timelike shifts are trivial on the triad—as expected, as this also implies vanishing of the
ADM momentum. However still the timelike normal u is affected nontrivially.

This way of constructing a symmetry has an analogy in other gauge theories of differential
forms, where the equations of motion can be pulled back to spatial slices to give constraints.
Characteristically, the canonical generators created from these constraints take the form

Pϕ =

ˆ
Σ

Cϕ +

˛
∂Σ

qϕ (43)

where the bulk constraint vanishes on-shell Cϕ ≈ 0, so that at most a corner charge qϕ remains
non-zero. The bulk piece then characterises the gauge structure of the theory, whereas the
corner charge gives an additional set of true symmetries labelling the theory when spatial
boundaries are present.

10 In 4D BF theory, the 2-form Kalb–Ramond field B is shifted as B 7→ B+ dωµ with a Lie algebra-valued 1-form µ.
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3.2. Contrast to symmetries of the Lagrangian

The presence of such constraints comes, by Noether’s second theorem in a 1-to-1 way, with
gauge symmetries of the theory. However, we need to be careful in invoking said theorem as we
have not made use of Lagrangians so far. In fact, the vector field we presented is not the phase
space pushforward of a transformation acting on the spacetime fields θ,ω appearing in the
Lagrangian. There is still an analogue of it, which has been previously studied by Montesinos
et al [31], where by use of Noether identities, one obtains a symmetry of the Lagrangian that
looks very similar. For this, we simply take derivatives of the Einstein tensor (this time in
spacetime),

dωG
I
ω = (Fω)

IJ
(β) ∧ dωθJ (44)

and weigh it by an arbitrary internal 4-vector ϕI to arrive at the Noether identity

d
(
ϕIG

I
ω

)
= dωϕI ∧GI

ω +(ϕ∨ dωθ)∧ (Fω)(β) . (45)

For the cosmological constant part, we will also need

d
(
ϕI ⋆

(
θ3
)I)

= dωϕI ∧ ⋆
(
θ3
)I
+(ϕ∨ dωθ)∧ ⋆θ2. (46)

This can be used to find vector fields which satisfy the characteristic relation of local symmet-
ries,

IXE = dC. (47)

Here, C is a codimension 1 form that vanishes on-shell of the equations of motion, and is
referred to as the constraint form. For this, we need to rewrite the torsion term. There are
essentially two options for this, which we can combine in a general way. First, note that the
general contraction is

IXE = Xϕ [θ]I ∧
(
Gω −Λ ⋆ θ3

)I− dωθ
2
(β) ∧Xϕ [ω] (48)

The first of the two ways is to rewrite

ϕ∨ dωθ = Tϕ ∧ θ. (49)

The second option is to use Fϕ such that

(Fϕ)
IJ
(β) ∧ θJ =−(Fω)

IJ
(β)ϕJ, (50)

which reproduces the torsion term in the contraction. Also useful is Lϕ for the cosmological
constant terms. We can then see by mixing and matching these ingredients that the family of
vector fields for s ∈ R

Xϕ,s [θ] = dωϕ + sTϕ Xϕ,s [ω] = (1− s)Fϕ +Λ
(
1− s

3

)
Lϕ (51)

11
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are all local symmetries:

IXE = d
(
ϕI
(
Gω −Λ ⋆ θ3

)I)
(52)

Xϕ,s [L] = d
(
ϕI
(
Gω −Λ ⋆ θ3

)I
+ θ2(β) ∧Xϕ [ω]

)
∀s,ϕ. (53)

These are associated to the Noether currents

jϕs = ϕI
(
Gω −Λ ⋆ θ3

)I
. (54)

which all vanish on-shell. However, we can already see that the pushforward of this vector
field to the phase space CΣ will have issues: By analysing the symplectic form in detail, as we
do in appendix B, we can find criteria for a vector field to be symplectic. Then the vector fields
here will not be symplectic in general.

This means, in particular, that the symmetry of the Lagrangian can not be canonically rep-
resented. In a potential quantization, this is unfortunate on a technical level and it is unclear
how to realize such the action of a symmetry on the system through (unitary) operators. That
the two transformations do not agree is perhaps more than an unlucky coincidence: It is known
from careful BV-BFV studies [37, 39] that the spacetime formulation (BV) of tetrad gravity
and the phase space (BFV) formulation, while separately equivalent to the Einstein–Hilbert
formulations, are not equivalent in a more strict sense (BV-BFV). What this means is the fol-
lowing: The Hamiltonian evolution structure of ECH and its Lagrangian equations of motion
are ‘incompatible” in the sense that there is a discrepancy in configuration spaces:

CLagr
M =Ω1

nd (M,V)×A(M,g)

CHam
M =Ω1

nd (M,V)×Ared (M,g) .
(55)

The ‘reduced’ connections Ared are simply the ones satisfying the structural constraint with
respect to a given local foliation of the spacetimeM into spatial slices. So, while the Lagrangian
equations of motion are defined for all possible spin connections, the Hamiltonian evolution is
only sensible for their equivalence class under the ∆̄-transformations. BV-BFV compatibility
states now, in essence, that taking a covariant spacetime dynamics, restricting it to an initial
slice Σ, and then evolving canonically on a cylinder Σ×R returns one to the same spacetime
dynamics. Clearly, this is not the case in ECH as presented here.

This can in principle be remedied by restricting the spacetime configurations ω to ω̂, but this
cannot be done in a covariant way. Overall, we can see that it is no surprise that the spacetime
covariant symmetries X do not descend necessarily to the phase space. Therefore, as long as
we want to perform phase space studies, we will want to stick to the vector fields Y, as these
are the ones canonically represented.

We can actually make this point clear by studying the time evolution on the phase space:
by splitting the equations of motion

Gω = 0= dωθ∧ θ (56)

into their horizontal (constraint) and vertical (evolution) parts, we can find the evolution
equations of the canonical variables of the slice. We find, in particular, that they entail

Ln̂θ̃ ≈ d̃ωθn+ τθn −ωn · θ̃
Ln̂ω̃ ≈ d̃ωωn+Yθn [ω̃] + ∆̄

(57)

12
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where ωn = in̂ω,θn = in̂θ and the ∆̄ piece is arbitrary and precisely of the type that is removed
by the kernel quotient ω̃ 7→ [ω̃] 3 ω̂—its presence states that the time evolution of ω̃ under this
equation is gauge invariant under the kernel foliation, and so, for the reduced connection, well
defined. In principle, then, one must fix this gauge freedom in order to have well-posed time
evolution. The Y-piece is precisely the vector field from the previous section, so in practice we
have that

Ln̂ ≈ Cωn +Yθn (58)

or in other words, time evolution in tetrad gravity is pure gauge and a combination of Lorentz
transformations and the new, nonlinear Kalb–Ramond transformations.

If, instead, we decompose the action of general diffeomorphisms on the spacetime fields in
a similar way, by appealing to the split of diffeomorphisms into Lorentz transformations and
covariant diffeomorphisms

Lξ θ = dωiξθ− iξω · θ+ iξ dωθ

Lξω = iξ Fω + dω (iξω) ,
(59)

then regular diffeomorphisms can then be rewritten as yet different field-dependent shifts

Zϕ [θ]
I
= dωϕ

I+ϕJiV̂Jdωθ
I Zϕ [ω]

IJ
= ϕKiV̂KF

IJ
ω (60)

together with Lorentz transformations Cα

Lξ = Ciξω +Ziξ θ. (61)

While these other shifts Zϕ might superficially look similar to the Yϕ ones, the latter are dif-
ferent due to the contraction pattern of ϕ. They are also not symmetries of the Lagrangian
like Xϕ,s.

We can therefore see that unlike in the case of 3D gravity, there are a multitude of shift sym-
metries depending on the motivation. The presence of canonical generators and compatibility
with time evolution singles out the transformation Yϕ as the optimal choice for generators,
leaving a schism between the Lagrangian and Hamiltonian formulation. Nevertheless, these
transformations are genuine gauge symmetries of the Hamiltonian theory and can be used to
rewrite diffeomorphisms as effective, field-dependent transformations like in 3D gravity.

3.3. Bulk Poisson brackets

We now calculate the commutation relations of these new, nonlinear Kalb–Ramond shifts and
find (as expected) that they close with structure functions. On the phase space of a closed slice
Σ, the vector field Yϕ is generated by the Einstein constraint

Pϕ =−
ˆ
Σ

ϕI
(
Gω −Λ ⋆ θ3

)I
. (62)

In this, and from now on, we mostly drop the hat ω̂ from the reduced connections and work
entirely on the slice, so that we can also suppress pullbacks.

13
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We can directly calculate its Poisson brackets with itself via the action of the vector field
on the charge:

Yϕ
[
Pϕ̃

]
=−
ˆ
Σ

(
ϕ̃∨ θ

)
(β)

dω (Yϕ [ω])+ ϕ̃IYϕ [θ]J

(
(Fω)(β) −Λ

(
⋆θ2

))IJ
(63)

=−
ˆ
Σ

ϕ̃IYϕ [θ]J

(
(Fω)(β) −Λ

(
⋆θ2

))IJ
+ dω

(
ϕ̃∨ θ

)
(β)

(Yϕ [ω]) (64)

=−
ˆ
Σ

ϕ̃IYϕ [θ]J

(
(Fω)(β) −Λ

(
⋆θ2

))IJ
+
(
Yϕ̃ [θ]∧ θ

)
· (Yϕ [ω])(β) (65)

=−
ˆ
Σ

ϕ̃IYϕ [θ]J

(
(Fω)(β) −Λ

(
⋆θ2

))IJ
(66)

−
ˆ
Σ

Yϕ̃ [θ]I

(
(Fω)

IJ
(β)ϕJ+Λ ⋆ (ϕ∨ θ)

IJ
θJ

)
(67)

=−
ˆ
Σ

ϕ̃IYϕ [θ]J (Fω)
IJ
(β) +Yϕ̃ [θ]I (Fω)

IJ
(β)ϕJ (68)

+

ˆ
Σ

ΛYϕ̃ [θ]I ⋆ (ϕ∨ θ)
IJ
θJ+ ϕ̃IYϕ [θ]JΛ

(
⋆θ2

)IJ
(69)

=−
ˆ
Σ

(
ϕ̃∨Yϕ [θ] + Yϕ̃ [θ]∨ϕ

)
· (Fω)(β) (70)

+

ˆ
Σ

Λ
(
ϕ̃∨Yϕ [θ] + Yϕ̃ [θ]∨ϕ

)
·
(
⋆θ2

)
(71)

=
{
Pϕ,Pϕ̃

}
= PΦ(ϕ,ϕ̃). (72)

In this, we integrated by parts in the first line, used the identities of Tϕ in the second, and the
ones of Fϕ, Lϕ in the third. The charges therefore close with structure functions Φ which are
implicitly defined via

Φ
(
ϕ, ϕ̃

)
∨ θ = ϕ̃∨Yϕ [θ] + Yϕ̃ [θ]∨ϕ. (73)

This is clearly not a simple translation algebra like in 3D gravity, but this is of no surprise as
4D gravity is much richer. On-shell in vacuo, the above relation simplifies to

Φ
(
ϕ, ϕ̃

)
∨ θ = dω

(
ϕ̃∨ϕ

)
= dγ[θ]

(
ϕ̃∨ϕ

)
(74)

involving only the Levi-Civita covariant derivative. This allows us to see simplification of the
Poisson relations when torsion is absent. By using the expression of Tϕ =− 1

3κ ·ϕ through
the contorsion κ, we can rewrite

ϕ̃∨Yϕ [θ] + Yϕ̃ [θ]∨ϕ = dω
(
ϕ̃∨ϕ

)
+

[
ϕ̃∨ϕ,

1
3
κ

]
(75)

which gives us the more explicit expression of the Poisson bracket as{
Pϕ,Pϕ̃

}
=

ˆ
Σ

Λ ⋆ θ2 ∧
(
dω

(
ϕ̃∨ϕ

)
+

[
ϕ̃∨ϕ,

1
3
κ

])
−
ˆ
Σ

(Fω)(β) ∧
(
dω

(
ϕ̃∨ϕ

)
+

[
ϕ̃∨ϕ,

1
3
κ

])
.

(76)
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So technically, if we defined the functions

Rα :=−
ˆ
Σ

(
(Fω)(β) −Λ ⋆ θ2

)
∧
(
dωα+

[
α,

1
3
κ

])
(77)

we would have {Pϕ,Pϕ̃}= Rϕ̃∨ϕ. However, when κ= 0, as happens in vacuum on-shell, this
simplifies to familiar expressions due to the Bianchi identity dωFω = 0:

Rα
κ=0
= Λ

ˆ
Σ

θ2(β) ∧ dωᾱ−
ˆ
Σ

d
(
(Fω)(β) ·α

)
(78)

where ᾱ := 1+β⋆
1+β2 α. This shows that for closed slices ∂Σ= ∅, the curvature term drops out and

the only noncommutativity is due to the cosmological constant term:{
Pϕ,Pϕ̃

}
κ=0
= ΛC 1+β⋆

1+β2 (ϕ̃∨ϕ) = Λ

ˆ
Σ

⋆θ2 ∧ dω
(
ϕ̃∨ϕ

)
. (79)

So we an see that when we are on the torsion-free subspace, two shifts give rise to a Lorentz
transformation. As a special case, the shifts become commutative when the cosmological con-
stant vanishes. We can therefore see the complications in the structure functions as not due to
the presence of curvature, but instead due to torsion.

We also report that, by similar calculation, the Poisson brackets with the Lorentz charges

Cα =

ˆ
Σ

θ2(β) ∧ dωα (80)

is much simpler:

{Cα,Pϕ}= Pα·ϕ (81)

which is the action of Lorentz transformations on shifts. Therefore, up to the above structure
functions, the gauge algebra present in 4D tetrad gravity is very similar to a Poincare/deSitter
one, mirroring the spacetime transformation result found byMontesinos et al [31] In fact, once
we go onto the torsion-free subspace, we recover a Poincare or deSitter type algebra directly.

3.4. Path systems and integrability on corners

Having motivated our choice for the covariant shifts, we will proceed with a construction of
the canonical charges. For this, we will work with the vector field Yϕ as it is the one with a
candidate Hamiltonian generator which, as required of gauge generators, vanishes in the bulk
on-shell. As stated before, Yϕ is the Hamiltonian vector field on CΣ associated to the generator
given by the Einstein constraint when the slice has no corner, and the parameter ϕ is field-
independent:

IYϕΩΣ + δP(0)
ϕ = 0

P(0)
ϕ =−

ˆ
Σ

(ϕ∨ θ)∧
(
(Fω)(β) −Λ ⋆ θ2

)
.

(82)

We are now interested in the case with corner, and particularly in which corner terms are added
to the generator. We see that with corners,
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δP(0)
ϕ −P(0)

δϕ + IYϕΩ=−
˛
∂Σ

(ϕ∨ θ)(β)∧δω =−
˛
∂Σ

ϕIα
I (83)

αI :=−δωIJ(β) ∧ θJ. (84)

This signals a generic non-integrability of the shift symmetry on corners. In general, there
exist methods to deal with nonintegrable phase space transformations, most commonly known
from diffeomorphisms normal to the corner. We will turn to these methods in a moment, but
first consider the options we have for strict integrability. The non-exact term on the corner
immediately seems to require an extension of the charge. Let us take inspiration from the fact
that tetrad gravity can be written as a constrained BF theory [40], starting from

L= B∧Fω − Λ

2
B∧Ψ(B) (85)

where Ψ is some constant Lie algebra homomorphism. The bulk charge resembles that of the
1-form Kalb–Ramond shifts of BF theory, which has full form

Kµ =−
ˆ
Σ

µ∧ (Fω −ΛΨ(B))−
˛
∂Σ

µ∧ω (86)

where we would need to equate µ= (ϕ∨ θ)(β). Then, it appears the charges we should try are
given by

Pϕ =−
ˆ
Σ

(ϕ∨ θ)(β) ∧Fω̂ −
˛
∂Σ

(ϕ∨ θ)(β) ∧ ω̂. (87)

This improves the situation mildly, but leaves us with another nonintegrable term:

δPϕ −Pδϕ + IYϕΩ=

˛
∂Σ

ϕIω
IJ
(β) ∧ δθJ =:

˛
∂Σ

ϕIγ
I. (88)

So quite directly, we can give charges for Dirichlet boundary conditions on either ω̂ (no corner
term) or θ (the corner term above) this way. However, this is not satisfactory in general as this
charge only pertains to a subsector of gravity.

In principle, α is not even closed, which is the origin of the integrability issues. Strict integ-
rability therefore only holds when

δαI = δωIJ(β) ∧ δθJ
∂Σ
= 0. (89)

This imposes conditions on allowed (field-dependent) values of ϕ,α in shifts and Lorentz
transformations. While the most general conditions seem out of reach, we will exemplify
some proper Poisson brackets of charges for Dirichlet boundary conditions on θ and ω̂. For
ω̂-Dirichlet conditions the relevant restrictions of parameters are(

(Fω)(β) −Λ ⋆ θ2
)
·ϕ ∂Σ

= 0 (90)

whereas for θ-Dirichlet they are

dω (ϕ∨ θ)
∂Σ
= 0 or on-shell: dωϕ

∂Σ
= 0. (91)

Clearly, these are quite restrictive unless specific boundary conditions are chosen, for example
in the former situation that ω̂ is of constant curvature Λ, in which case all ϕ are admissible, but
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the shift corner charges vanish regardless and we only have the Lorentz charges. In the latter,
however, restrictions of the values of ϕ seem unavoidable.

In the ω̂-Dirichlet case, the Poisson commutation relations are almost unchanged from the
previous section. The action of Lorentz transformations on shifts is the same, and for shifts
themselves, bulk and corner terms cancel to give{

Pϕ,Pϕ̃

}
κ=0
= −Λ

ˆ
Σ

dω ⋆ θ2 ·
(
ϕ̃∨ϕ

)
κ=0
= 0 (92)

so that in fact, it also takes the form of a Lorentz bulk term. So in the end, when Λ = 0, with
these boundary conditions we again find commuting translations, and with Λ 6= 0 we find a
resulting bulk Lorentz transformation, which is trivial on-shell. So effectively, for any choice
ofΛ, if ω̂-Dirichlet boundary conditions hold, translations are commuting on-shell of theGauss
constraint.

In the θ-Dirichlet case we find instead, due to the new corner term,{
Pϕ,Pϕ̃

}
κ=0
= −Λ

ˆ
Σ

dω ⋆ θ2 ·
(
ϕ̃∨ϕ

)
−
˛
∂Σ

(
ϕ̃∨ϕ

)
(β)

·Fω. (93)

So, we find that the corner translations become noncommutative when the tetrad is fixed.
However, we must keep in mind the constancy condition dωϕ = 0 coming from the bound-
ary condition. On-shell of the Gauss constraint, this corner term is effectively central.

Interestingly, we also find

{Cα,Pϕ}= Pα·ϕ −
˛
∂Σ

(ϕ∨ θ)(β) ∧ dα (94)

by using that θ must also be Lorentz-preserved in these boundary conditions. This is quite
similar to the situation in 3D gravity, where

{Cα,Pϕ}= Pα·ϕ −
˛
∂Σ

⋆ϕ · dα (95)

also shows a similar central extension on corners. Unlike the 3D case, though, there now is
also an extension for the translations.

So in fact, for these boundary conditions on θ, the true corner symmetry algebra is essen-
tially the set11

Stab
(
θ,SO(1,3)∂Σ

)
×
(
R1,3

)∂Σ
dγ[θ]ϕ=0

(96)

but equipped with the Poisson bracket of the corner charges, in particular with noncommuting
translation charges. This is as close to a Poincare or deSitter algebra as we can get12. This is

11 Note here that this is the set of nontrivial symmetry parameters, which are supported on codimension 2 corners.
To connect to the symmetry parameters on an extended codimension 1 slice (for example a null or timelike one), one
needs to prescribe an evolution rule by which the parameters at initial time are evolved. In many instances, such a rule
is determined by requiring charge conservation, see e.g. the discussion around equation (189).
12 We note that this is the set of on-shell, boundary condition preserving gauge symmetries. These are to be contrasted
with gauge transformations that have either vanishing generator (in which case they are a redundancy) and transform-
ations not preserving the boundary condition (in which case they are not canonically represented on a given single
phase space for a closed system).
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to be contrasted with the ω̂-Dirichlet case, where the corner symmetry is, due to vanishing
charges for the translations,

Stab
(
ω̂,SO(1,3)∂Σ

)
. (97)

It should be clear that both of these boundary conditions are quite restrictive and requiring
strict integrability is limiting.

These simple examples give hints that the full extent of (nonitegrable) corner symmetries
is close to a Poincare or deSitter algebra. This statement refers to finite distance corners and
must be qualified carefully in the alternative setting of asymptotic boundaries, for example
asymptotically flat ones.

It is not entirely straightforward to obtain the asymptotic symmetries from the finite distance
ones, in particular due to possible additional symmetries under Weyl rescalings that are only
possible at conformal boundaries. However, in the 3D gravity case, it is known how to find
embedded Virasoro and BMS algebras in the equivalent 3D Poincare loop algebra. This is
done through a twisting of boundary diffeomorphisms by a radial one [26] (see for example
section (I.D.) of the reference).

Still, we can integrate the −IYΩ above along a phase space curve. If we choose a curve at
constant θ, e.g. a linear

γ (t) = (ω0 + t(ω̂−ω0) ,θ) t ∈ [0,1] (98)

then the resulting integrals are
ˆ
γ

αI = pI := (ω̂−ω0)
IJ
(β) ∧ θJ (99)

so just the ADM momentum aspect we defined earlier. The resulting function is then

−
ˆ
γ

IYϕΩΣ =

ˆ
Σ

(ϕ∨ θ)(β) ∧Fω̂ − (ϕ∨ θ)(β) ∧Fω0 −
˛
∂Σ

ϕIp
I

= Pϕ (ω̂,θ)−Pϕ (ω0,θ)

(100)

where

Pϕ (ω̂,θ) :=

ˆ
Σ

(ϕ∨ θ)(β) ∧Fω̂ −
˛
∂Σ

(ϕ∨ θ)(β) ∧ ω̂. (101)

This is the same function we originally proposed from the form of the BF charges. So, in a
restricted sense, it is possible to find charges: One needs to define them along some path in
phase space which does not change the value of θ, and with respect to some reference con-
nection. These are therefore more like ‘relative’ translation charges. This is already common
in gravity—the Iyer-Wald diffeomorphism charges in most of the literature are similarly non-
integrable and require an offset, at the very least for finiteness [2, 34, 36, 41]. The obvious
questions are what effects the choice of path system has in this, as well as which subset of
phase space features integrability of the charges, so independence of the path.

For this, let us start over with an a priori fixed path system {γ(θ,ω)}. Then, we can equally
well define p as

pIγ (θ, ω̂) :=
ˆ
γ(θ,ω̂)

αI. (102)
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For the linear path system above, we get back the already-used definition. We can then also
define again the integrated charge with respect to this path system, given by

Pϕ;γ (θ, ω̂) :=

ˆ
γ(θ,ω̂)

−IYϕΩΣ. (103)

How should such a path system be chosen? The linear one is appealing for its simplicity. Yet
still, we might want to be more thoughtful here. In particular, we should ask for constancy of
the function along the flow lines of the vector field Yϕ. This is necessary for it to be ‘conserved
along its flow’, if it did have a flow.

However, the calculations below show that quite luckily, the thus defined charges with
respect to the linear path system are conserved along their flow in the sense that the Poisson
bracket {Pϕ,Pϕ}= 0 vanishes always. So, this choice of path system seems warranted. So
overall, we could use Pϕ with the implicit caveat that the charges should be used as relative
ones.

We can also take the viewpoint that the nonintegrability represents some flux of data leaving
the system. In this sense, the problem becomes analogous to that of diffeomorphism charges:
We need to find an appropriate split between integrable (Qϕ) and nonintegrable (Fϕ) corner
pieces [2, 10, 13, 21, 22, 36]

−IYϕΩ= δP(0)
ϕ + δQϕ −Fϕ. (104)

With such a split made, one can then find an adapted charge bracket{
Qϕ,Qϕ̃

}
c
:= Yϕ

[
Qϕ̃

]
− IYϕ̃Fϕ −K

(
ϕ, ϕ̃

)
(105)

which features a 2-cocycle K which we will determine shortly. This is an on-shell bracket in
that it is only antisymmetric on-shell. It is convenient to use the Noether charge as Qϕ when
possible, in which case one speaks of the Noetherian split [10]. The procedure of choosing the
Noetherian split does not work here, however, due to the aforementioned schism between the
Lagrangian and the Hamiltonian symmetry.We therefore need to find other criteria to argue for
the ‘correct’ charge bracket and/or split, and in particular the form of the corner charge. The
simplest ‘charge bracket’ one can come up with is just the double contraction of the symplectic
form: {

Pϕ,Pϕ̃

}
dc
:= IYϕ̃IYϕΩ= P(0)

Φ(ϕ,ϕ̃)
(106)

which reproduces only the bulk part of the charge; Therefore, if we want to relate it to the
above notion of an adapted bracket, the suitable split is to regard the corner charge as Qϕ = 0
and the flux as Fϕ =−ϕ ·α. In particular, one would need to fix the cocycle K:

K
(
ϕ, ϕ̃

)
=

˛
∂Σ

(
ϕ∨ ϕ̃

)
·
(
(Fω)(β) −Λ ⋆ θ2

)
. (107)

This split and cocycle choice then correctly implies that the charge bracket of vanishing corner
charges vanishes.

If instead we choose the BF-inspired corner charge, and use the same cocycle,

Qϕ =−(ϕ∨ θ)(β) ∧ω

Fϕ = ϕ · γ,
(108)
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we get {
Qϕ,Qϕ̃

}
c
= QΦ(ϕ,ϕ̃) (109)

which represents the gauge algebra exactly. Quite interestingly, the cocycle vanishes in the
‘ground state’ of tetrad GR given by (Anti)deSitter spacetime (or flat Minkowski for Λ = 0).
In principle, these cocycles can havemultiple origins such as non-covariance of the Lagrangian
under the gauge transformation. The correct interpretation of it here is, however, up for debate.
Yet another definition of an ‘effective bracket’ is the antisymmetric flow of the charges

{
Pϕ,Pϕ̃

}
as
:=

1
2

(
Yϕ

[
Pϕ̃

]
−Yϕ̃ [Pϕ]

)
(110)

which, if applied to the pure bulk charges, yields{
P(0)
ϕ ,P(0)

ϕ̃

}
as
= P(0)

Φ(ϕ,ϕ̃)
−K

(
ϕ, ϕ̃

)
(111)

which admits an interpretation as an adapted charge bracket if one chooses a cocycle
Kas(ϕ, ϕ̃) = 2K(ϕ, ϕ̃) and Qϕ = 0,Fϕ =−ϕ ·α. If instead applied to the BF-like charges, we
get full closure of the algebra:{

Pϕ,Pϕ̃

}
as
= PΦ(ϕ,ϕ̃). (112)

So we can interpret, for the BF-like charges, the antisymmetric flow bracket as the adapted
charge bracket for the same charges.

Overall we can see that due to the nonintegrability of the vector field Yϕ, the usual subtleties
regarding charge commutation relations arise that are already well-known from diffeomorph-
isms. In particular, a cocycle is needed in the on-shell charge bracket for consistency. It remains
to be established which charge bracket is the most meaningful to use, a task which we leave
to future work.

Finally, if we apply the adapted charge bracket to the Lorentz/Translation commutation
relations, we can fix the cocyle K(α,ϕ) to be zero for consistency when Qα = 0, and find for
the BF-like charges

{Cα,Pϕ}c = Pα·ϕ −
˛
∂Σ

(ϕ∨ θ)(β) ∧ dα (113)

which is again somewhat reminiscent of the corner algebra in 3D.
In summary, we have presented the phase space canonical transformation Yϕ in tetrad grav-

ity and its properties. We showed that it is generated by the Einstein constraint and that it
generates the correct time evolution on the phase space, when combined with Lorentz trans-
formations. Furthermore, it is not simply the pushforward of a transformation on the space-
time configurations. We also presented that the transformations and charges close with struc-
ture functions, and that care must be taken when dealing with nonintegrable contributions on
corners.

We now proceed with analyzing the corner piece of the translation charges in detail.
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4. Analysis of the corner charge and example

We thus have charges which form an analogue of a Poincare algebra, and which are manifestly
Lorentz covariant. Given that the charges and transformations we gave are intimately related
to diffeomorphisms, an obvious question is how the corner piece relates to other ones found
in the literature. There is an immediate way to do this for the charges corresponding to spatial
translations: Adopting a 3+1 internal decomposition along the adapted internal normal uΣ to
a slice Σ (see appendix D.1 for notational details), we can expand the momentum pI into (here
for now without the ω̄ offset to highlight certain features)

pI =−(ω)
IJ
(β) ∧ θJ

=−β
((
Γ∥ − γK

)
× θ

)I− (
Γ∥ +βK

)I ∧ (u · θ)+ uI
(
Γ∥ +βK

)
J
∧ θJ.

(114)

In this expression, the combinations of the spatial spin connection Γ∥ and the extrinsic
curvature K

A= Γ∥ − γK C= Γ∥ +βK (115)

are recognisable as the Ashtekar–Barbero–Sen (ABS) connection and its counterpart which is
needed to reconstruct the full spin connection. What’s noteworthy is that because these objects
are connections, neither of the terms above can be Lorentz vectors. However, as soon as we
subtract the ω̄ offset, this is no longer an issue. We will only be interested in the value on

spatial slices and particular on corners. On a given spatial slice (with u2Σ = 1), θ̃
Σ
= ẽ reduces

to the spatial triad, and we have

p̃I
Σ
=−β

((
Γ̃∥ − γK̃

)
× ẽ

)I
+ uI

(
Γ̃∥ +βK̃

)
J
∧ ẽJ. (116)

Let us also further decompose the fields on a (closed, isolated) corner surface S⊂ Σ, and
decompose the triad there with respect to a spacelike 1-form s of the surface when included
in Σ. Let v̂Ii denote the inverse triad, and ςI = v̂Iisi the internal adapted radial normal, then we
decompose

ẽ
S
= ē− ςs (117)

into a zweibein ē and the radial piece. This implies through some calculations that the gravit-
ational flux E= 1

2 (ẽ× ẽ) splits similarly as

ẼI
S
= ĒI− s∧Er (118)

=−w ς I− s(ς × ē)I (119)

where w is the area density 2-form of the zweibein ē on S, defined as

w= |det
(
ēIa
)
|d2x. (120)

As S is 2-dimensional, any 2-dimensional 2-form must be related tow through some prefactor.
We can write this prefactor for pI by first splitting

AI
S
= AIJe

J CI
S
= CIJe

J, (121)
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then it is simply

p̄I
S
=
[
βςJ

(
A C
C η̃IJ−AJI

)
+ uIϵ̃UVWςUCVW

]
w. (122)

This is interesting as it suggests that the only nonzero components of p on the corner are the
timelike u and radial ς ones, unless AIJ has off-diagonal elements as a 3× 3 matrix. It is worth
comparing this to the corner Lorentz charge of tetrad gravity, evaluated in the same way, which
reads

θ2(β) ·α
S
= (u∨ ς) · (1−β⋆)αw (123)

and which also only picks up the internal directions normal to the surface S.
To get a better interpretation of this object, we go on-shell of the Gauss constraint, bringing

us closer to metric gravity. In principle, this means that we replace Γ∥ = γ[ẽ] by the 3D Levi-
civita spin connection

γIi [e] =
1
2
v̂IjẽiK

(
∂tẽ

K
j − ∂ju

K
)

(124)

which one obtains via the Koszul formula [8] for the full 4D Levi-civita spin connection. On
a slice Σ, it implies rather

d̃Γ∥ ẽ= 0= ẽI ∧ K̃I. (125)

By remembering that we should take differences of connections, we then can drop the Γ∥ × e
and KIeI terms in (116), and the expression simplifies to

p̄I
S∼=
[(
KJI− η̃IJK C

C

)
ςJ+ uIϵ̃UVWςUγ [ẽ]VW

]
w (126)

and

γ [ẽ]IJ =
1
2
v̂ jI η̃JK

(
∂tẽ

K
j − ∂ju

K
)
. (127)

The object (KJI− η̃IJK C
C ) is simply the usual gravitational ADM momentum built from the

extrinsic curvature tensor, so the term with ς is just the Brown–York charge [8, 42]. In partic-
ular, for timelike translations, this term will not contribute and only the term involving γ[ẽ] is
going to be relevant.

A litmus test for the charges is whether they are nonzero for timelike translations: This is
not the case for many other possible generalizations of the charges in 3D. The full ‘timelike’
charge takes the form

Pf u =−
ˆ
Σ

f(u∨ θ)(β)∧Fω̂ −
˛
∂Σ

f (u∨ θ)(β) ∧ ω̂ (128)

=−
ˆ
Σ

fH−
˛
∂Σ

f
[
βKI ∧ ẽI− ẽI ∧ΓI∥

]
(129)
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where the bulk piece is the Hamiltonian constraint and the boundary piece is the boost piece
of the torsion constraint, plus a nonzero piece:

˛
∂Σ

f ẽI ∧ΓI∥. (130)

This involves only the 3D spin connection and the triad on the slice.
For the timelike translation corner charge, we can use the identity

dΓE= dE−
(
Γ∥ · e

)
∧ e (131)

together with the Boost constraint dΓe= 0 to get an alternative, on-shell expression of the
charge:

p⊥ ≈ ρIE
I = dive (v̂I)E

I. (132)

So, it is given by the scalar product of the gravitational flux with the internal vector ρ whose
components are given by the divergence of the inverse triad v̂I. This has the advantage of only
depending on the triad itself and not on the connection. Then, on S the timelike translation
charge is

i∗Sp⊥ ≈−dive (v̂I) ς
Iw. (133)

Note that even though this divergence form looks like one could extract a codimension 3 term
from it using Stokes’ theorem, the resulting puncture density would be proportional to

ς Iv̂radI (134)

and so we should typically expect it to vanish. rad here refers to the radial (spacetime) direction
normal to a puncture, so within S. In principle, this does not immediately yield a geometric
interpretation of the timelike charge, but is better than the off-shell form as it is expressed fully
through tetrad data in a mostly uncomplicated form.

4.1. Schwarzschild corner charge density

In order to illustrate the content of this charge, we can calculate the full corner charge for
example for the usual Schwarzschild spacetime. For this, we let

pI =− ⋆ωIJ ∧ θJ (135)

be the ‘bare’ ADM momentum aspect. Let

f(r) :=

√
1− 2M

r
. (136)

We then find in the diagonal Lorentz gauge, and in Schwarzschild coordinates:

p0 =
cosθ
f(r)

dr∧ dϕ − 2rsinθf(r)dθ∧ dϕ (137)

p1 =−cosθf(r)dt∧ dϕ (138)
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p2 =

(
1− 3M

r

)
sinθdt∧ dϕ (139)

p3 =−
(
1− 3M

r

)
dt∧ dθ. (140)

So we can see that this momentum is nonzero even in flat spacetime when M= 0. We can
then do the usual subtraction procedure and integrate it over different surfaces, most notably
a sphere at spatial infinity. For this we first subtract the flat space contribution, and obtain

˛
S2,R

pI− pIflat = δI0

˛
S2,R

2r [1− f(R)]sinθdθ∧ dϕ (141)

= δI08πR [1− f(R)]
I=0
= 8πM+ 4π

M2

R
+O

(
1
R

2)
. (142)

So for a sphere at infinity, the renormalized momentum aspect p− pflat points along the time-
like direction (so describes an object at rest) and gives the black hole (ADM) mass up to a
factor. Also, as expected, the subtracted θ−ϕ component of p0 agrees up to a factor of two
with the Brown–York quasilocal surface energy density [42]. It should be clear that this object
depends on a reference connection to be evaluated, just like these other charges.

In particular, on finite surfaces, the momentum can be integrated and vanishes on surfaces
of constant θ,ϕ and of constant t,ϕ. It also satisfies the fact noted above that, if evaluated on
any surface, the only nonzero components of the momentum are in the directions normal to
the surface. E.g. for a t−ϕ plane, the only nonzero components are p1 and p2 corresponding
to directions r and θ. On the horizon, the renormalized momentum is ‘internal-angular’ only:

(p− pflat)
0
= 0 (143)

(p− pflat)
1
= 0 (144)

(p− pflat)
2
=−3

2
sinθ dt∧ dϕ (145)

(p− pflat)
3
=

3
2
dt∧ dθ. (146)

We can also overall tell that for this coulombic/nonradiative type of gravitational field, the
charge has a peeling property in that up to a constant term picked up as the ADM mass, the
remainder is subleading and scales as∼ 1

r . Also, we point out that a very similar type of expres-
sion to our corner charge has been previously linked at asymptotic spacelike corners more gen-
erally to the ADM charges [15]. It would also be interesting to study the relation between the
momentum charges described here and in the reference and the standard gravitational charges
on null surfaces, in particular to verify whether the charges here can be interpreted as the
momenta of some gravitational radiation. We leave this task to future work.

4.2. Dynamical reference frames and hydrodynamics

Motivated by the form of the translation charges and form of their dependence on the con-
nection ω̂, we will now show that they are better behaved on a certain phase space which is a
slight extension of that of tetrad gravity. The theory can be given a spacetime Lagrangian as
follows:

L= θ2(β) ∧Fω̄+∆ −B∧Fω̄ (147)
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so consists of a flat BF Lagrangian for a connection ω̄ and the Einstein–Cartan–Holst piece
for an effective connection

ω := ω̄+∆ (148)

where ∆ is treated as an independent variable. By design, the equations for the tetrad and for
∆ reproduce those of tetrad gravity, so that the theory contains gravity as a subsector.

The part that we have extended by is a flat connection ω̄ by which we dynamically split
the usual spin connection ω. In this sense, we are providing, on a dynamical basis, a reference
frame of a certain type. As per equivalence principle, this is locally always possible at a point.
We will see that on this slightly extended phase space, which on-shell of the BF-constraints
only differs from the tetrad gravity one on corners, we can find a parametrization which trans-
forms in a useful way, once we restrict back to the tetrad gravity phase space. This behaviour
is also inherited by the charges. We believe that this theory is a useful starting point for dis-
cretization of the charges we presented here13.

To begin the analysis, we have the presymplectic form of the theory:

Ω̃Σ =

ˆ
Σ

δ
(
θ2(β) −B

)
∧ δω̄+ δθ2(β) ∧ δ∆. (149)

The form has a kernel, which may be found by the full contraction with a vector field X:

0
!
=−IXΩΣ =

ˆ
Σ

−δθI

[
X [ω̄](β) ∧ θ+X [∆](β) ∧ θ

]I
− δB∧X [ω̄] +

[
X [B]−X

(
θ2
)
(β)

]
∧ δω̄

−X
[
θ2
]
(β)

∧ δ∆.

(150)

The kernel then consists only of the ∆̄-vector fields from before (see (13)), with

X [∆](β) ∧ θ = 0. (151)

We can gauge fix this again by the structural constraint, applied toω = ω̄+∆. This then allows
us to do the following inversion: Given a vector-valued 2-form pI on Σ, there exists a unique
∆ in the ∆̄-equivalence class such that the structural constraint holds for ω and

p=−∆(β) ∧ θ. (152)

This uniqueness allows, in particular, that we replace

−δ∆(β) ∧ θ 7→ δp (153)

in the (now nondegenerate) symplectic form, which includes our gauge fixing:

ΩΣ =

ˆ
Σ

δC∧ δω̄+ δθδp. (154)

13 It is noteworthy that the theory has certain similarities with teleparallel gravity [43], where the usual affine connec-
tion of gravity is flattened and curvature is equivalently stored in additional degrees of freedom. However, there is no
immediate reason to interpret the variable p as torsion here.
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Here, we defined the coordinate

C := θ2(β) −B. (155)

The important point is that (θ,p, ω̄,C) are independent coordinates for the phase space,
whereas ∆,B are functions of them.

The equations of motion of the theory are also easily found:

E =−δB∧Fω̄ − dω̄
(
θ2(β) −B

)
∧ δω̄+ δθ∧Gω − dωθ

2
(β) ∧ δ∆ (156)

The first two fix the connection to be flat and B to be the gravitational flux up to covariant
ω̄-derivatives, so no new local degrees of freedom are added. The last two are simply the usual
tetrad gravity equations. From these, we can find the following four sets of charges, associated
with their own gauge invariance each:

Jα =

ˆ
Σ

C∧ dω̄α (157)

Kµ =−
ˆ
Σ

µ∧Fω̄ −
˛
∂Σ

µ∧ ω̄ (158)

Cα =

ˆ
Σ

θ2 ∧ dωα=

ˆ
Σ

θ2(β) ∧ dω̄α− (θ∧ p) ·α (159)

Pϕ =−
ˆ
Σ

(ϕ∨ θ)(β) ∧Fω −
˛
∂Σ

ϕ · p. (160)

The nontrivial transformations induced by these are, in order,

{Jα, ω̄}= dω̄α {Jα,B}=
[
B− θ2(β),α

]
or {Jα,C}= [C,α] (161)

{Kµ,B}=−dω̄µor {Kµ,C}= dω̄µ (162)

{Cα,θ}=−α · θ {Cα, ω̄}= dω̄α {Cα,p}=−α · p (163){
Pϕ,θ

2
}
= dω (ϕ∨ θ) {Pϕ,p}=−(Fω)(β) ·ϕ (164)

which in particular shows that by switching from ∆ to p, we have made the new translation
transformations explicit, rather than implicit.∆, as a matter of fact, still transforms as we saw
it before:

{Cα,∆}= [∆,α] {Pϕ,∆}= Fϕ (165)

with the same Fϕ as we had before. In order to make the charges above the Hamiltonian gener-
ators of these transformations, we have to deal with the Pϕ corner term as before. The relevant
point is that we need to remove the ‘flux’ term

˛
∂Σ

(ϕ∨ δθ)(β) ∧∆− (ϕ∨ θ)(β) δω̄. (166)

The first term is the same integrability condition we had before, which is unavoidable due
to the open nature of the system. The second term, however, we can remove e.g. by impos-
ing Dirichlet boundary conditions for our dynamical reference frame ω̄. This means that we
provide a partial reference frame on the corner and its time evolution, but inside the region Σ,
it is determined dynamically from the flatness condition.
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The picture presented here has the following advantage: Previously, it was unclear how to
interpret the corner term of the translation charges due to the connection being present, and
furthermore it was not Lorentz invariant. Due to the specific (dynamical!) splitting here, we
could write a Lorentz covariant corner piece in a way that does not jeopardise the nature of
the phase space. Instead of fixing a generic connection ω0 as a reference point to define p,
which would lead to p not transforming as a Lorentz vector, we here have a dynamical split
that does not restrict or add significantly to our phase space. Furthermore, this splitting of the
connection into a flat piece and a momentum piece can be productive in studying different
effects in gravity: Topological, BF-like effects can be encapsulated in the ω̄-terms, while the
local degrees of freedom are contained in the θ,p pair. In this way, we get the best of both the
connection and the ADM momentum formulations of gravity.

We also want to highlight that now there is another clear analogue of the translations of 3D
gravity, generated by the commuting charges

Tϕ =−
ˆ
Σ

p∧ dω̄ϕ (167)

{Tϕ,θ}= dω̄ϕ, {Tϕ,B}= p∨ϕ +(dω̄ϕ∧ θ)(β) . (168)

In fact, under the Lorentz generators Cα (not to be confused with the ‘fake Lorentz’ generators
Jα), these charges are vectors, so we have a true ultralocal Poincare algebra. What is now clear
is that this Poincare algebra, while aesthetically simpler, is not a gauge algebra: The bulk term
of the charges Tϕ amounts to dω̄p, which is not the Einstein constraint, but only a linearised
version of it. So these charges do not generate the gauge dynamics of gravity. Instead, one
might see the ‘true’ charges Pϕ as a ‘collective’ momentum charge since it involves ω as a
function of ω̄ and p. This idea is strengthened further by the shape of the Einstein constraint
when expanded into the new variables,

−GI
ω = dω̄p

I−∆IJ
(β) ∧ dω̄θJ−

1
2
∆I
J ∧

(
∆(β)

)J
K
θK− 1

2

(
∆(β)

)I
J
∧∆J

Kθ
K

= dωp
I−∆IJ

(β) ∧ dωθJ−
1
2

(
[∆,∆](β)

)I
J
θJ

(169)

which has explicitly the form of a conservation equation for p up to a nonlinear term quadratic
in ∆ and a contribution which vanishes on-shell of the true Gauss constraint14. Weighing this
by the gauge parameter, the above turns into

0≈−ϕIG
I
ω = d

(
ϕIp

I
)
−Yϕ [θ]I ∧ p

I− 1
2

(
[∆,∆](β)

)
∧ (ϕ∨ θ) (170)

which demonstrates explicitly that the constraint is a nonconservation/flux-balance law for the
charge ϕ · p, which should hold on codimension 1 surfaces. This is reminiscent of ideas from
the fluid/gravity correspondence, in particular the membrane paradigm and AdS/CFT [44–
50]. From this point of view, the charges Tϕ,Cα provide a simple ‘microscopic’ description
of the system, whereas Pϕ,Cα describe its ‘effective macroscopics’. The relation between the
charges Pϕ and Tϕ is intriguing and requires further study, which we postpone to future work.

14 In fact, as is visible from the form we presented the second line in, the nonlinearity arises from the coefficient 1
2

in the definition of the curvature. In other words, if the curvature was dω+ [ω,ω], the Einstein equations would be
exactly a conservation equation (still with implicit nonlinearities).
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In summary, we have analysed the content of the corner translation charge ϕIpI on a 2-
dimensional corner and related it to the Brown–York charge. Importantly, there is a difference
for timelike translations. In particular, it is nonvanishing for timelike translations. We then
evaluated the charge on the familiar Schwarzschild geometry and demonstrated the typical
peeling property, yielding the ADM mass at spacelike infinity. Building on the fact that the
charge requires an offset to be meaningful, we extended tetrad gravity by a flat connection as
a dynamical reference frame to use as an offset, and presented the adjusted charges and trans-
formations. We also noted, finally, that there seems to be a simpler version of the translation
generators in a specific regime.

We now move forward with an extended discussion.

5. Discussion

Various approaches to quantization and discretization of gravity have used 3D tetrad gravity
as a benchmark for many technical and conceptual issues of the field. Of course, due to the
simplicity of the 3D case, many properties of it are commonly held to not carry over to the
more physically interesting 4D case. Chief among them is the presence of nontrivial local (per-
point) degrees of freedom given by gravitons. The 4D case becomes the most similar to 3D
when global flatness is imposed [51], in which case the theory is exactly solvable in-vacuo.
The only degrees of freedom in this sector are edge modes: Lorentz group elements g from the
connection and R1,3 elements ϕ from the tetrad. This demonstrates elementarily that there is
an analogue of the triad shifts from 3D also in the 4D case. What is remarkable is that there is
indeed an analogue of these transformations on the entire phase space of tetrad gravity in 4D,
rather than just in special cases like the flat sector. In this paper, we have presented a careful
examination of these transformations in order to make them more accessible to further studies
in classical and quantum gravity, agnostic of approach.

In this extended discussion, we first make some general remarks before illustrating some
implications for the edge modes of tetrad gravity, understood as dynamical reference frames
living on boundaries that are evolutions of corners. These edge modes generically carry rep-
resentations of the corner symmetry group, which is what we focus on. After that, we discuss
the inclusion of matter, in particular the previously untreated case of Dirac spinors, for whose
curved spacetime treatment the connection+tetrad formalism is indispensible. We then close
by mentioning possible avenues of extension for this work.

Curiously enough, the charges of tetrad gravity derived in the way we presented here are
still quadratic in the sense of being constructed from two copies of θ and ω, unlike in the 3D
case where the corner charges are linear in the fields. We could therefore imagine also a set of
charges which has corner value weighted by 1-forms,

˛
∂Σ

θI ∧ ρI
˛
∂Σ

ω ∧µ. (171)

However, the latter is actually the corner charge of BF theory’s flatness constraints, and there-
fore can only be differentiable in certain sectors; and the former can be understood as a dressed
version of the Lorentz charges which use θ2(β). Therefore we needn’t worry about the lack of
linear θ-charges, while the lack of linear ω-charges is quite possibly a feature of tetrad gravity.

We would like to highlight the technical complexity necessary to study these new ‘non-
linear translations’: If one were coming from a purely Lagrangian point of view, one would
have falsely assumed that the symmetry was no good due to its lack of a corner charge, its
complexity, and the failure of projectability onto the phase space of any Cauchy slice. On the
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other hand, the phase space situation is similarly involved and carries integrability issues with
it that would have frustrated many that would like to use them. Even having said that, the res-
ulting transformations and charges are complicated and require various implicit definitions. It
is therefore, in our view, not surprising that they have so far received only limited attention.

Also, it is worth stressing that the status of the translations as ‘symmetries’ of tetrad GR
is subtle: Due to the mismatch of Lagrangian and phase space transformations, the canonical
translations are certainly not ‘symmetries of the Lagrangian’. However, they are used in writing
the Hamiltonian of the theory as

H= Dn̂ = Cin̂ω +Pin̂θ (172)

which suggests that they may have the status of a ‘symmetry of the Hamiltonian’ instead. Care
must be taken to distinguish the two notions here. In particular, the charges are not conserved
generically due to their nonintegrable nature.

However, we stress their implicit usefulness: Control over the 4D translations, as presen-
ted here, means control over the dynamics of GR. They are in several ways analogous to the
Bergmann-Komar algebra of the ADM formalism [52, 53] in that their action is complicated,
but specifically tied to a certain form of dynamics.

5.1. Implications for edge modes

There are a few immediate implications from the existence of the above charges. The first
is that the full corner symmetry modes of internal gauge transformations of tetrad gravity is
on-shell some variation of (e.g. for Λ = 0)

so(1;3)∂Σ nH (173)

where H is the set (R1,3)∂Σ equipped with the structure functions we found. Naively, this
would lead to an overall corner potential for the pure-gauge corner degrees of freedom of the
form ˛

∂Σ

pIχ(ϕ)
I
(ω̂,θ)+ θ2(β) ·χ(g) (174)

where χ(g),χ(ϕ) are Maurer–Cartan forms on the Lie group corresponding to the corner sym-
metries, parametrized by a Lorentz group element per point g and an element ϕ ofH. χ(g) does
not depend on the other fields, incorporating the field independence of the structure constants
of the Lorentz symmetry. However, χ(ϕ) is allowed to depend on the fields as to reproduce
the field-dependent structure functions. The densities θ2(β) and p=−ω̂(β) ∧ θ are then the pen-
dents of left-invariant vector fields on the infinite-dimensional corner symmetry group.

We can make this more precise by doing a split of the symplectic potential a la Gomes et
Riello: [3, 54] We split any differential (as a 1-form on field space) into horizontal and vertical
parts, the former of which has only non-gauge variations in it. This is possible by introduction
of additional structure in the form of a field space connection χ for the gauge group G (valued
in Lie(G) ) satisfying for the gauge vector fields Xα

IXα
χ =−α, LXα

χ =−δχα :=−
(
δα+ [χ,α]G

)
∀α ∈ Lie(G) . (175)

These properties allow to define the horizontal derivative

δχV := δV+LXχ
V =⇒ IXα

δχV= 0 (176)
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which only contains the non-gauge variations. This allows for a neat split of the symplectic
potential

θ2(β) ∧
(
δχ ω̂−LXχ

ω̂
)

(177)

which for our case has a gauge group with parameters for Lorentz and translation transform-
ations, and we can split χ = (ζ,η) into Lorentz and translation parts. Then the gauge piece is
(here for simplicity with Λ = 0)

LXχ
ω̂ = dωζ +Fη (178)

which yields the pure-gauge potential

θg = (η ∨ θ)(β) ∧Fω − θ2(β) ∧ dωζ. (179)

Any other polarisation of the potential differs by a differential δf for some function f on field
space, so that the full general gauge potential is

θg−LXχ
f. (180)

An interesting choice of this might be

f =−θ2(β) ∧ (ω̂−ω0) δω0 = 0 (181)

which gives the gauge potential

θg =
[
θ2(β), ζ

]
∧ (ω̂−ω0)+ dω (η ∨ θ)(β) ∧ (ω̂−ω0) . (182)

While the form for f = 0 has a corner piece −θ2(β) · ζ for Lorentz transformations, this other
form suggests a corner term for translations of the form

(η ∨ θ)(β) ∧ (ω̂−ω0) = ηIp
I (183)

where the momentum aspect p is here with respect to ω0. This is precisely as advertised in the
beginning—the momentum p becomes the corner generator for translations, while it is θ2(β) for
Lorentz transformations. With this split (which has in general provided additional data to the
theory in the form of a gauge fixing procedure), we isolate the non-gauge data in the horizontal
piece and pick out the edge mode data in an easily readable fashion. We can also apply it to the
symplectic form straightforwardly and pick out the corner terms, which yields the 1-parameter
family15

ωc =−δχ θ
2
(β) · ζ + θ2(β) ·

1
2
[ζ,ζ]− (η ∨ θ)(β) · δχ ω̂− (η ∨ η)(β) ·Fω

+λ(η ∨ θ)(β) ∧ dωζ +(1−λ)dω (η ∨ θ)(β) · ζ.
(184)

This expression contains, in principle, all there is to know about the edge modes: The expres-
sion for their charges, their commutation relations, and their couplings to the non-gauge
degrees of freedom. In particular, we know that gravity in 4D has locally propagating degrees
of freedom, which will couple kinematically via the δχ θ,δχω terms here. In particular, the
commutation relations of the supposed charges are

15 The 1-parameter freedom is due to the ambiguity in integrating a term of the form dα∧ dβ into d(α∧ dβ) or
d(dα∧β).
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IX(α̃,ϕ̃)
IX(α,ϕ)

ωc = θ2(β) · [α,α̃]−
(
ϕ∨ ϕ̃

)
(β)

·Fω

+λ

[
(ϕ∨ θ)(β) ∧ dωα̃−

(
ϕ̃∨ θ

)
(β)

∧ dωα
]

+(1−λ)

[
dω (ϕ∨ θ)(β) · α̃− dω

(
ϕ̃∨ θ

)
(β)

·α
]

=̂
{
Q(α,ϕ),Q(α̃,ϕ̃)

}
(185)

which shows clearly that on the corner, the bulk translations should not commute, but give
a corner term of the form (ϕ∨ ϕ̃)(β) ·Fω. Also, we can directly get hints for the form of the
corner charges, as

IX(α,ϕ)
ωc = δ

(
θ2(β) ·α

)
+(ϕ∨ θ)(β) ∧ δω̂− d

(
(ϕ∨ θ)(β) · ζ

)
. (186)

If, once again, we manage to handle the issue of the θδω-term, the first two terms suggest once
again

Q(α,ϕ) = θ2(β) ·α+ pIϕ
I (187)

and the codimension 3 piece drops out in integration.We can therefore be reasonably confident
in saying that this is an appropriate general form for the corner charges of tetrad gravity in order
to reproduce the correct commutation relations.

We stress here that this pertains only to the part of phase space regarding the gauge edge
modes, and that there are non-gauge corner degrees of freedom which have nontrivial Poisson
brackets with the edge modes; case in point, we can see that non-gauge variations of θ2 can
have a nontrivial generator on the corner that possibly involves the edge mode ζ.

As a second point, we can use this information to ask for boundary conditions that allow
the edge modes to be unrestricted. This requires noncovariant conditions in the form of

ω̂t = F [ωa,θa]

θt = G [ωa,θa]
(188)

where the hat, so the gauge fixing, is important. These boundary conditions are in service of
allowing θa,ωa for indices a= θ,φ tangential to the surface ∂Σ to be free, and similarly for
pθ,φ. With these degrees of freedom unrestricted, so is (θ2)θ,φ, and so the corner charges have
no restrictions on their densities.

Furthermore, we can then also study the set of edge mode parameters ϕ,α on the timelike16

screen ∂Σ×R such that the corner charges Cα,Pϕ are conserved. This will yield PDEs for
the edge mode fields that depend on the exact boundary conditions F,G and are always of the
form

qθφ · ∂tf = L [f;θa,ωa] (189)

where q denotes the corner charge density and L some spatial pseudodifferential operator. The
easiest option isF= G= 0 in which case we can expect L= 0, so all time-constant edgemodes
can be used as parameters to get conserved charges (assuming integrability).

16 The same thing would apply to a null boundary.

31



Class. Quantum Grav. 42 (2025) 075010 S Langenscheidt and D Oriti

The appearance of structure functions signals that perhaps a purely ‘abstract’ treatment of
edge modes and corner symmetries is insufficient for complicated theories like gravity. Either,
the phase space of corners must include geometric, non-gauge variables θa,ωa as well as edge
modes, or the structure functions must emerge at an effective level, for instance after a coarse
graining procedure. The former could for example be realized on the on-shell level by having
a corner metric be part of the phase space, and the non-gauge parts of θ,ω as functions of it.

5.2. Coupling to spinning matter

Wewould like to make a few remarks about the coupling to spinoral and other torsion-sourcing
matter and its influence on the symmetry presented here. It is known fromMontesinos et al [31]
that the translation symmetry is highly sensitive to the addition of matter, particularly nonmin-
imally coupled types. Additionally, due to the field-dependence of the structure functions, once
nontrivial torsion is present on-shell, we have in principle different structure functions from
the uncoupled case. For the purpose of illustrating this, we introduce the following Lagrangian
for Dirac spinor fields Ψ,Ψ̄:

LD =
(
⋆θ3

)
I
∧ Ψ̄iγIdωΨ −mΨ̄Ψθ2 ∧ ⋆θ2. (190)

The variations with respect to the spinors lead to 4-form equations of motion which do not
entail new gauge invariances. However, the Einstein constraint receives a dynamical source:

Gω −Λ ⋆ θ3 +N≈ 0

NI :=
(
⋆θ2

)IJ ∧ Ψ̄iγJdωΨ −mΨ̄Ψ ⋆ θ3.
(191)

In particular, a condensate of massive fermions can mimic a cosmological constant. Similarly,
the Gauss constraint receives a spin source:

S− dωθ
2
(β) ≈ 0

SIJ :=
(
⋆θ3

)
K
∧ Ψ̄iγKΣIJΨ

(192)

where ΣIJ are the spin generators of the Clifford algebra. By modifying the constraint func-
tions appropriately, we can get the appropriate modification of the translation and Lorentz
symmetries. However first, we need to take into account, again, the possible presence of a
nontrivial kernel in the symplectic form. We find by the same analysis that the same kernel
for X(ω) is present, and by making use of Clifford relations, that there is no nontrivial kernel
for the spinors17. We can therefore use the same structural constraint as before. The Lorentz
generator takes the form

Cα =

ˆ
Σ

θ2(β) ∧ dωα+ ⋆θ3I Ψ̄iγ
I (α ·Σ)Ψ (193)

and generates the expected

Xα [Ψ] = (α ·Σ)Ψ Xα

[
Ψ̄
]
= Ψ̄(Σ ·α) , (194)

17 The corresponding analysis involves using the fact that uΣ has nonzero square, making uΣ · γ invertible. If it were
not, there would be a nontrivial kernel for the spinors. If so, this also affects X(ω) to contain a certain term in order
to stay in the kernel.
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the rest being unchanged. For the translations, we now have

Pϕ =

ˆ
Σ

(ϕ∨ θ)(β) ∧Fω̂ −Λϕ · ⋆θ3 +ϕ ·N−
˛
∂Σ

(ϕ∨ θ)(β) ∧ ω̂ (195)

and the resulting transformations are quite different:

Yϕ
[
θ2
]
(β)

= dω (ϕ∨ θ)(β) +Ψ̄
((
⋆θ2

)
· (ϕ∨ γ)

)
iΣΨ

Yϕ [ω]
IJ
(β) ∧ θJ =−

[
(Fω)(β) −Λ

(
⋆θ2

)
+ ⋆

((
Ψ̄iγdωΨ

)
∧ θ

)
−mΨ̄Ψ ⋆ θ2

]IJ
ϕJ

Yϕ [Ψ] = ϕI∇IΨ −m(uΣ ·ϕ)(uΣ · γ)Ψ

(196)

where we expand the covariant derivative

dωΨ =∇IΨθI (197)

and omit the transformation for Ψ̄. Additionally, in the first line, the free indices lie on Σ.
Multiple things are easily noticeable here: The general form of the connection transformation
law stays the same as a

Yϕ [ω]
IJ
(β) ∧ θJ =−MIJϕJ (198)

with Lie algebra valued 2-formM. The transformation law for the gravitational flux θ2 changes
drastically, mixing geometry and spinorial matter, but curiously in the form

Yϕ
[
θ2
]
∼ dω (ϕ∨ θ)+ θ2 ·M (199)

with some 0-form M with 2 pairs of Lie algebra indices. Therefore, the spinorial contribu-
tion acts only internally. Furthermore, the transformation law for the spinor includes the ‘dif-
feomorphism’ term ϕI∇I which has already been noted by Montesinos et al in the case of a
minimally coupled scalar field, but also has unavoidable ‘non-covariant’ contributions coming
from the mass term.

In principle, then, we can also expect the structure functions of the theory to change upon
inclusion of matter. We do not attempt to derive this here. Instead, we highlight that this is
a double-edged sword: The symmetry presented here is quite involved and sensitive to the
details of the theory, but this can be seen as an improvement over diffeomorphisms or Lorentz
transformations: These kinematical symmetries are ‘too generic’ to account for anything that
is particular to GR as a dynamical theory. Therefore, imposing diffeomorphism and Lorentz
invariance for a quantum theory, even with the ‘correct’ set of kinematical data, does not single
out GR as its corresponding dynamics. Yet, the symmetry presented here, if implemented,
would precisely do that.

We stress, to avoid confusion, that this is a generic phenomenon in theories whose evol-
ution is ‘pure-gauge’, so where diffeomorphisms are given as field-dependent gauge trans-
formations. Such theories include all standard topological theories like BF, Chern–Simons,
but also all diffeomorphism-invariant theories of metrics like Lanczos–Lovelock gravities. In
contrast, gauge theories like Maxwell theory or Yang–Mills have additional, non-gauge evol-
ution pieces (known as covariant diffeomorphisms) which do not fall into this class. In the
case of ‘full gauge’ theories like BF and gravity, then, these covariant diffeomorphisms can be
understood as additional gauge symmetries (on top of some generic kinematical symmetry).
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Consider, as an example, BF theory with cosmological constantΛ, where the corresponding
role is played by the Kalb–Ramond translations

Yµ [B] = dωµ Yµ [ω] = Λµ. (200)

Any diffeomorphism can be written on-shell as a combination of the internal gauge group (the
pendent to Lorentz transformations) and these translations. But in contrast to the Lorentz trans-
formations, these symmetries depend sensitively on the bulk term including the cosmological
constant. As such, the concrete form of the symmetry vector field actually singles out a given
dynamics for the theory, unlike the Lorentz symmetry.

The main difference between this simple case and tetrad gravity is, then, that the gauge
group of gravity can not be studied abstractly, but must be understood as acting on a concrete
given phase space of tetrads and connections. This simply reflects that unlike in BF theory,
where all local dynamics is essentially trivial, tetrad gravity has locally propagating degrees
of freedom.

5.3. Outlook

We would like to close by mentioning possible avenues of extending this work. First, more
care is needed to study the behaviour of the nonintegrable (open boundary condition) case.
Also, more light on the relations to existing charges such as diffeomorphism or the SL(2;R)
groups [9, 55] found on corners in various formulations of gravity is needed. Furthermore, the
dynamics of the edge modes of tetrad gravity deserves its own study, which would likely bring
with it much improved understanding of the impact of different boundary conditions on the
integrability of charges.

As a second larger direction, we propose to study various discretizations, truncations and
quantizations of the transformations and charges presented here. One particular advantage of
the new translations is that their parameter is not, like for diffeomorphisms, given by a vector
field. While vector fields are difficult to discretize in an abstract fashion, the 0-form gauge
parameters of the translations can simply be truncated to their values on vertices of whatever
type of discretization used. Being given gauge generators Cα,Pϕ per discretization cell, one
could then reconstruct analogues of diffeomorphism generators as higher order charges.

On the other hand, by employing the right kinds of truncations of the phase space on small
enough regions of space(time), the complications arising in the translations may become more
tractable. This does not need to happen on the level of charges per se, but can also be about
the full phase space of a small region. Additionally, in a ‘local holography’ type approach,
where small regions of space are represented by corner data and complicated macroscopic
configurations like typical gravity arise as a coarse-grained limit of these data [12, 56], the
bulk vanishing of these charges can be taken as imposing the Einstein equations in the bulk of
the elementary, small regions. This has been studied in the setting of asymptotic future null
infinity [22], and possibly can be extended to finite regions, for example in a covariant way
using the charges described here.

In the same direction, we think that the formulation outlined in section 4.2 is particularly
amenable to discretization due to the simple form of its symplectic form—it is part BF theory,
part relativistic particle. We expect that a lattice/triangulation discretization, either in a direct
form or by restriction to distributional configurations à la Regge calculus, will lead to a mixture
of spinfoam and Regge geometry-like data which may be combined in various useful ways.

In particular, we conjecture that discretization of the transformation Yϕ in these variables
is feasible and therefore allows determining a discretization of the charge Pϕ, which includes
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the Hamiltonian and spatial diffeomorphism constraints in a covariant fashion. The data may
therefore be well suited for a discrete, canonical analysis of gravity, but also for establishing
relations to covariant path integrals of the Regge and spin foam types. As these discrete gravity
approaches rely directly on them, it is important to identify the degrees of freedom of finite
regions needed to properly model their dynamics as well as their glueing. In particular, typical
spin foam models (such as the BC and EPRL-FK models) use kinematical Lorentz-BF type
data, but the results here suggest the extension of these data to include edge vectors built from
integrated tetrads.

Finally, these discretizations may lend themselves well to continuations of existing work
in the framework of Group Field Theories [57], which, motivated ab initio from independ-
ent arguments, also present a picture of spacetime as an emergent, hydrodynamical regime
of a system of microscopic constituents [58, 59]. This links together quite naturally with the
interpretation of the Einstein equations as hydrodynamics outlined before, and has been fur-
ther validated in the cosmological subsector [59], where from yet further arguments [60], one
expects such a hydrodynamical interpretation.

Therefore, we believe that a rich confluence of methods and arguments coming from canon-
ical quantization, holographic and fluid/gravity correspondences, lattice gravity path integrals
and Group Field Theories is possible using the results we presented in this work.
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Appendix A. Conventions

We collect here a few important conventions on the notation.
Starting from section 2, we work with fields over a 4-dimensional, pseudo-Riemannian base

M, possibly with boundary. We equip this with a principal bundle P→M with structure group
either the (identity component of the) Lorentz group SO(1,3) or its spin cover SL(2;C), under-
stood as the spin lift of the frame bundle Fr(TM). We then associate a ‘fake’ tangent bundle
V to it via the usual 4D representation ρ of these groups, V := P×ρ R1,3. We can then choose
a local frame {bI}0⩽I⩽3 ∈ Γ(V) for this fake tangent bundle and express V-valued sections
locally through their components with indices I= 0,1,2,3. We equip V with a nondynamical
bundle metric η and assume it is oriented.

We will also denote the Lie algebra of the structure group by g and use several times that
there is an isomorphism

g= so(1,3)∼= Λ2
(
R1,3

)
(201)

between antisymmetric bivectors and the Lie algebra. In this way, we can dispense with the
Lie algebra and mostly work with wedge products in the fibers of V.
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We distinguish, when one of them is a 0-form in spacetime, between the spacetime wedge
product of differential forms, ∧, and the internal wedge product of sections of V, ∨. E.g.

ϕ∨ θ vs. dωϕ∧ θ (202)

has only an internal wedge product on the left, but both internal and spacetime wedge product
on the right.

We heavily use a standard inner product on the Lie algebra g. When writing elements out
in components with respect to a basis MIJ = bI ∨ bJ,

X ·Y=
1
2
XIJYIJ (203)

where indices are raised and lowered with respect to the Lie algebra metric

ηIJ,KL = ηIKηJL− ηILηJK. (204)

As bivector-valued objects A,B are naturally identified with Lie algebra valued objects, we can
apply this inner product whenever two bivectors appear in the same expression. In particular,
when writing wedge products in integrals, we most often want scalar integrands, and adopt the
convention

A∧B :=
1
2
AIJ ∧BIJ (205)

which includes both wedge product and inner product.
We also note the common use of the internal Hodge dual (with suppressed volume form

on V):

(⋆M)IJ =
1
2
ϵIJKLM

KL (206)

and similarly for internal multivectors of other degree. Quite relevant is also the Lie-algebra
commutator (just the matrix commutator)

[A,B]IJ := AIK ∧BKJ− (−1)|A| |B|BIK ∧AKJ (207)

which satisfies [32]

⋆ [A,B] = [⋆A,B] = [A,⋆B] . (208)

We use for Lie algebra actions on vectors the simple matrix-vector product notation

(α · v)I = αIJv
J (209)

which, in context, should not be confused with the Lie algebra inner product, and for covariant
derivatives of vectors

dωv
I = dvI+ωIJ ∧ vJ. (210)

For bivector/Lie algebra valued objects, in turn,

dωA= dA+ [ω,A] . (211)
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Appendix B. Symplectic vector fields

Overall, with the gauge fixing from the structural constraint in place, the phase space of tetrad
gravity is now 24-dimensional and has a nondegenerate symplectic form. We show here the
general form of symplectic vector fields on this phase space. For this, first note the contraction

−IXΩ=

ˆ
Σ

X [θ]I ∧ δω̂IJ(β) ∧ θJ− δθI ∧X [ω̂]IJ(β) ∧ θJ. (212)

X will then be symplectic if δ(IXΩ) = 0. Let us introduce the following shorthands:

AIJ =
δX [θ]I
δθJ

BIRD =
δX [θ]I
δω̂RD

URSK =
δX [ω̂]RS
δθK

VRSAB =
δX [ω̂]RS
δω̂AB

.

(213)

Then, we can fully expand the exterior derivative in differentials to arrive at the following set
of conditions18: (

P(β)

)IJ
KL
BIRDθJ = 0 ∀ [RD] 6= [KL] (214)(

P(β)

)IJ,RS
URSKθJ = 0 ∀I 6= K (215)[

AIK
(
P(β)

)IJ
AB

− ηIK
(
P(β)

)IJ,RS
VRSAB

]
θJ = 0 ∀K, [AB] . (216)

We note that (P(β))
IJ,RS = (⋆+β)IJ,RS can be inverted to simplify these conditions. The third

can be solved this way for AIK as a function of VRSAB. Therefore, there are stringent constraints
on which transformations can be interpreted as canonical ones. However, as can be verified by
a straightforward but tedious calculation, for example the Lorentz transformations

Xα =−α · θ δ

δθ
+ dω̂α

δ

δω̂
(217)

are symplectic, showing that some relevant vector fields can indeed satisfy these conditions.
The vector fields (51) in the main text are not symplectic in general by this measure, as

BIRD 6= 0. An exception may exist though, as Tϕ may contain pieces that cancel the relevant
dependence on ω̂. In that situation, the tetrad’s transformation would be

Xϕ [θ] = dγ[θ]ϕ (218)

which clearly does not depend on the connection. As it turns out, we can write

Tϕ =−1
3
κ ·ϕ (219)

with the contorsion of a general connection, so indeed by choosing s= 3, we have a vector
field with precisely this behavior:

Xϕ,3 [θ] = dγ[θ]ϕ (Xϕ,3 [ω])(β) ∧ θ = 2(Fω)(β) ·ϕ. (220)

18 Here, (P(β))
IJ
KL denotes the component expression of the map ⋆+β on the Lie algebra.
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This, at first, appears to be the only symmetry vector field among them that has a chance at
being symplectic. In general, though, they all feature a bulk nonintegrability. This is similar to
the case of timelike diffeomorphisms, as the bulk obstructions vanish on-shell (on-shell of the
Gauss constraint for s= 0). Unlike diffeomorphisms, however, there is no clear interpretation
of these terms.

Appendix C. Extended phase spaces for integrability

The lack of immediate integrability could make some of our readers squeamish. In general,
for a charge to be useful, one would like a generator which is general enough. From this point
of view, it is well-motivated to seek extensions of the phase space that allow the above charges
to be integrable. To make this clear, let us first illustrate what we mean in the example of the
phase space of BF theory, equipped with the symplectic form

ΩΣ =

ˆ
Σ

δB∧ δω. (221)

As stated above, the Kalb–Ramond translation charges (86) for it have similar form to our new
charges, so the analogy will be useful. In particular, they enjoy a centrally extended commut-
ative Poisson algebra

{Kµ,Kµ̃}=−Λ

˛
∂Σ

µ̃∧Ψ(µ) . (222)

In terms of on-shell charges, this suggests that the connection ω becomes noncommuting on
the corner ∂ΣwhenΛ 6= 0. This ‘change in commutation relation’ is a generic phenomenon for
gauge theories and may be puzzling at first, but can be clarified easily. Let us extend the phase
space by a corner connection η supported only on ∂Σ, with appropriately extended symplectic
form

ΩΣ =

ˆ
Σ

δB∧ δω− 1
2Λ

˛
∂Σ

δη ∧Ψ−1 (δη) . (223)

We can also extend manually the Kalb–Ramond charge to this phase space as

Kµ =−
ˆ
Σ

µ∧ (Fω −ΛΨ(B))−
˛
∂Σ

µ∧ (ω− η) (224)

and require that this vanishes for all parameters on-shell. In this way, the connections become
identified on-shell on the corner. Additionally, it makes the connection piece in the corner
term into a difference of connections, which is a Lorentz tensor. Through adding this contri-
bution from η, the full charge becomes Lorentz covariant. Moreover, though, it also becomes
commutative:

{Kµ,Kµ̃}= 0 (225)

The role of the original corner charges is now played by the pure corner charges

Qµ =

˛
∂Σ

µ∧ η {Qµ,Qµ̃}= Λ

˛
∂Σ

µ̃∧Ψ(µ) . (226)
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We have thus separated out the noncommuting part of the connection cleanly at the kinematical
level by introducing auxiliary corner data. Here, though, this procedure was optional, while for
tetrad gravity we might even need it for integrability. The optionality in this case is encoded
in the fact that there are no extra degrees of freedom on-shell due to the identification ω = η.

The first question for tetrad gravity is which variables to add. The formal similarity to the
BF charges suggests having at least a corner connection, which would allow for a corner piece
of the form

(ϕ∨ θ)(β) ∧ (ω− η) (227)

which is again Lorentz covariant. In other works [61], a corner tetrad ZI (really a zweibein)
was introduced as a means to impose a boundary continuity equation like

θ2(β) = Z2
(β). (228)

This could appear, for example, in charges of the form

Cα =

ˆ
Σ

θ2(β) ∧ dωα−
˛
∂Σ

Z2
(β) ·α (229)

A final possibility comes from including a ‘radial internal vector’ VI into the corner phase
space which, together with a corner zweibein, would allow the reconstruction of the bulk slice
tetrad θ in the radial directions. For simplicity, we do not consider this here.

Even if we include all of these into our corner phase space, we have not yet specified any-
thing about their commutation relations. We could make a conservative Ansatz like

Ω∂Σ =

˛
∂Σ

ω2 =

˛
∂Σ

AIδθ
I+BIδZ

I+C∧ δη (230)

with vector-valued 1-forms A,B, vector valued 2-form D and a Lie algebra valued 1-form C,
which are all 1-forms on phase space. In this, we do not yet assume anything about them, so
the form is not a priori nondegenerate.

At first, then, we only require that the extended charge for translations is differentiable,
meaning that

−ϕ · δα+ δ
(
IYϕω2

)
= dbϕ3 (231)

for some completely arbitrary phase space function bϕ3 . Then, really all we need to focus on
are the δω–δθ terms to cancel the part coming from the bulk.

We can further require of our extended charges to fulfill the same commutation relations as
the pure bulk ones. This fixes, in particular, the transformation behavior of the new variables Z
and η under the bulk gauge transformations. In particular, requiring Lorentz covariance implies
the simple law

Xα [Z] =−α ·Z Xα [η] = dηα (232)

so that Z is a vector and η a connection. For the translation behavior, things are more complic-
ated and we instead only have the highly implicit relation(

ϕ̃∨ θ
)
(β)

·Yϕ [η] =−
(
Yϕ̃ [θ]∨ϕ

)
(β)

· (ω− η) (233)
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and

Yϕ [Z∧Z] = dω (ϕ∨ θ)− 1+β⋆

1+β2

(
ϕ∨ω(β) ∧ θ

)
(234)

which shows that the corner frame needs to transform almost in the same way as the bulk one.
In principle, then, by assuming

1. Given form of the charges Pϕ,Cα

2. Differentiability (implying one can use the antisymmetric flow bracket for the charges)
3. Covariance of the charges under the bulk gauge transformations

we can constrain the possible form of a corner symplectic form for the new variables, as it
must satisfy (similarly for Lorentz)

IYϕΩ+ δPϕ = 0 (235)

of which all elements except the corner symplectic form are fixed. However, the constraints
are still too weak to uniquely identify the forms A,B,C. In particular, terms of the form

AI = · · ·+AI,Jδθ
J (236)

BI = · · ·+BI,JδZ
J (237)

CIJ = · · ·+CIJ,KLδη
KL (238)

may be added without influencing the above conditions. If these contributions are excluded,
then we may in principle solve for the symplectic form19, but its explicit form is most likely
unilluminating.

In principle, therefore, we can add a corner symplectic form to make the extended charges,
which include continuity laws, differentiable (on the part of phase space where one can solve
for the symplectic form). We note, however, that this procedure is not as useful as it may first
appear. Similarly to the idea of extended phase spaces, one has tremendous freedom in modi-
fying the phase space of a theory artificially, as we did here. This freedom may be constrained
by a choice of variables and further conditions, but as above, will leave open further freedom.
Additionally, if such a modification is made, it must be justified for a certain end. Our ori-
ginal hope in this section was to somehow make the vector field Yϕ integrable. However, on
an arbitrary extension of the phase space, this is always possible, so the question is meaning-
less by itself. In fact, if the extension presented here were to turn out to be totally unrelated
to gravity, we would dismiss it immediately. Instead, a more ‘meaningful’ question could be
to not extend the physical phase space and make only minor alterations in order to achieve
integrability. However, we expect that any such alteration would simply amount to imposing
boundary conditions implying (89).

19 The coefficients of the symplectic form enter the conditions above in the general shape of a matrix equationM · x=
b where x contains the unknown coefficient functions, M contains the coefficients of the vector fields X,Y and b
contains the leftover bulk terms that need to be compensated. Generically, then, we expect that over most points in
phase space M is invertible, and therefore the symplectic form is uniquely determined.
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Appendix D. Alternative approaches

We have so far highlighted that even from a purely spacetime covariant viewpoint20, there
are potentially multiple choices of a ‘symmetry transformation’ that mimicks the 3D Kalb–
Ramond translations in various aspects. However, there are potentially even more options for
such generalizations once we relax the requirement of working with Noether identities or
spacetime diffeomorphisms directly. In this section, we will shed some light on three other
ways to generalise the structures of the 3D case and give arguments for why these extensions
are technically equally as cumbersome while providing fewer benefits for studying gravity.

D.1. Covariant Ashtekar translations

The first alternative strategy onemight consider is a direct continuation of translations found on
the phase space of GR parameterized by Ashtekar’s variables. Instead of recapping the extant
literature, we will directly proceed to the implementation and highlight notable differences.

To begin, wemustmake use of the adapted normal uΣ we previously alluded to.We perform
decompositions with respect to the field-dependent adapted normal uΣ to the spacelike slice
Σ as follows. Any internal vector VI has decompostion

VI = VI∥ + uIΣV⊥ V⊥ = V · uΣ (239)

and Lorentz tensors MIJ split into two vectors

M= (M⊥ ∨ uΣ)− ⋆
(
M∥ ∨ uΣ

)
MI

⊥ =MIJuΣ MI
∥ = (⋆M)

IJ
(uΣ)J

. (240)

Meanwhile, if, for the given (spacelike) slice Σ, an associated normal 1-form n is available,
together with some dual vector n̂ satisfying n(n̂) = 1, any differential form B can be decom-
posed into a horizontal piece (denoted by a tilde) and a vertical piece (denotes by an index n
for normal to the slice):

B= B̃+n∧Bn Bn = in̂B. (241)

Similarly, for (multi)vector fields ξ,

ξ = ξ⊥ + n̂∧ ξn n(ξ) = ξn. (242)

Now let us do this for tetrad gravity. The tetrad decomposes as

θ = ẽ+nuΣ ẽ · uΣ = 0, (243)

the spin connection as

ω = (K∨ uΣ)+Γ dΓuΣ = 0,K= dωuΣ

= ((K− du)∨ u)− ⋆
(
Γ∥ ∨ u

) (244)

20 By this, we mean the approach of looking at the spacetime covariant transformations coming from ECH theory
directly.
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and the curvature as

Fω = (dΓK∨ u)+FΓ − (K∧K) . (245)

We can then give a connection A satisfying the following properties:

1. It is a Lorentz connection for the original Lorentz group.
2. It is Poisson commuting.
3. Its Poisson brackets with triads are such that its holonomies can be used to construct a

holonomy-flux algebra.
4. It transforms covariantly under spatial diffeomorphisms, so those with iξn= 0.
5. It reduces, when uΣ takes the value δI0, to the ABS connection.
6. It makes the internal normal uΣ covariantly constant, dAuΣ = 0. This means that it has no

extrinsic curvature, and in particular that its curvature has no perpendicular components.
7. It satisfies ω⊥ −βω∥ =A⊥ −βA∥.

Then in fact, given just requirements 1, 2, 3 and 4 (particularly 2) (or alternatively, 1,6
and 7), there turns out to be a unique solution to this problem, also satisfying the other two
properties [62–65]21. It is given by

A= Γ+ ⋆(γK∨ uΣ) (246)

We then have

A∥ = AABS = Γ∥ − γK, A⊥ =−duΣ (247)

So we have done the replacement

−duΣ +K 7→ −duΣ (248)

Γ∥ 7→ Γ∥ − γK (249)

which means we removed the extrinsic curvature and reshuffled it into the rotation part of the
connection. We can easily see that this is a Lorentz connection as Γ is one and K∨ uΣ is a
Lorentz tensor.

The curvature of this connection is not directly related to the spin connection curvature we
usually associate with gravity.

FA = FΓ + γ ⋆ (dΓK∨ uΣ)+
γ2

2
K∧K. (250)

Compare this to the spin connection, where

Fω = FΓ +(dΓK∨ uΣ)−
1
2
K∧K. (251)

So flatness of A does not imply that the spacetime metric associated to ω is flat.

21 Dropping the commutativity opens up the possibility of spacetime covariance. In fact, this connection is the only
commutative one satisfying 2,3 and 4, and is not timelike diffeomorphism covariant. There is exactly one spacetime
diffeomorphism covariant connection on this phase space, which on-shell of the Gauss constraint coincides with the
spin connection.
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The spin connection itself may be reconstructed from the covariant ABS connection,
as well. To begin, define the torsion of the ABS connection, also referred to as the ABS
momentum:

PI = dAθ
I (252)

which has the simple decomposition

PI = dAe
I+ uIΣdn. (253)

This relates back to the original spin connection torsion as

PI = TI− (1− γ⋆)(K∨ uΣ)IJ ∧ θJ (254)

= TI+n∧KI+ uIΣK
J ∧ eJ− γ (K× e) (255)

where we define the cross product as A×B := ⋆(A∨B) · uΣ. At least on-shell of Gauss, then,

in̂P
I
∥ ≈ KI (256)

and we can reconstruct the spin connection as

ω ≈A+(1− γ⋆)(in̂P∨ uΣ) . (257)

The other parts are for example

P̃I∥ = γpI =−γ (K× e) (258)

which we call the spatial momentum aspect [9], and

in̂P⊥ = KJn ∧ eJ ≈−Ln̂n P̃⊥ = K̃J ∧ eJ ≈ 0 (259)

so onshell of Gauss the first is the acceleration of the slice, while the other vanishes. The ABS
momentum will take on the role of the translation generator density. It is therefore already
possible to see what happens for timelike translations ϕ∼ uΣ: They will have vanishing gen-
erator as P̃⊥ = 0. This points to a crucial deficiency of the approach: It does not feature more
than spatial translations.

With this in mind, we can study the 3-dimensional translations of the frame

Tϕ [ẽ] = dAϕ (260)

Tϕ
[
AIJ

]
=−iêIFJKA ϕK ≈ 0 (261)

Tϕ [uΣ] = 0 (262)

for parameters ϕ with ϕ · uΣ = 0, so with a field dependence reflected in the decomposition

δϕ = (δϕ)⊥ − uΣ (ϕ · δuΣ) . (263)

If we assume (δϕ)⊥ = 022, then these translations are integrable with generator

Tϕ =

ˆ
Σ

βPI ∧ dAϕI (264)

22 or more generally for PI(δϕ)I⊥ − d(ẽI(δϕ)I⊥) = δf .
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which is onshell just

Tϕ ≈
˛
∂Σ

βẽIdAϕ
I. (265)

For this, it is necessary and noteworthy that up to Boost constraint terms, the spatial diffeo
constraint can be rewritten as

dAP≈ 0. (266)

Therefore, the on-shell phase space of tetrad gravity can be equivalently achieved by imposing
the full Gauss constraint, this spatial momentum constraint as well as the usual Hamiltonian
constraint. Their Poisson brackets show a central term, already known from the literature, but
also a corner term involving the curvature,{

Tϕ,Tϕ̃

}
=−
˛
∂SP

β
(
ϕ∨ ϕ̃

)
·FA +

˛
∂SP

βϕIdϕ̃
I. (267)

The translations are therefore bulk-commuting.
We can once again see that the timelike translation charges vanish identically. This is the

main drawback of this approach—it does not allow for uniform/Lorentz covariant treatment
of the charges and transformations. However, we see the appearance of corner noncommuting
curvature-dependent terms as a possibly generic feature.

D.2. Reverse engineered translations

Here, we will approach the issue of translation charges and particularly their covariant form
from the opposite side: If we assume the sought-after type of translations to form a vector
representation of the Lorentz group, we can actually find translation charges directly. The idea
is simple: Knowing an expression for the Lorentz charges on the tetrad gravity phase space,

ˆ
Σ

θ2(β) ∧ dωα, (268)

we can apply a frame translation to it. What then goes into this strategy as an ingredient is the
specific form of transformation, e.g. θ 7→ θ+ dωϕ. If these translations are faithfully repres-
ented on the phase space by Hamiltonian vector fields, then we should have that the change is
given by

{Tϕ,Cα}= Tα·ϕ. (269)

It must be this if indeed the charges are vectors under Lorentz transformations. Then, if we can
write an arbitrary parameter Φ through some ϕ,α, we can reconstruct the appropriate charges
TΦ immediately. Such parameters are easy to achieve for the Poincare algebra; just choose

α=
Φ ∨ϕ

ϕ2
(270)

with some (normalized) reference vector ϕ which is orthogonal to Φ.
What this approach finds is a hint towards the form of these charges. The expressions found

look generically like corner charges from the other strategies, but particularly from the covari-
ant translations. If one tries to specifically find the expression for timelike translation corner
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charges, one can then find that they must all vanish on-shell. In comparison, in the covariant
translation strategy, the charge is

ˆ
∂Σ

ϕ⊥
(
Γ∥ +βK

)
I
ẽI (271)

of which the K− e term certainly matches and vanishes. The additional Γ− e piece, though, is
nonzero and perhaps the true charge we are looking for. Overall, this approach, while almost
algorithmic, has the two immediate deficits of requiring to know the transformation law a
priori, and also that it only produces the corner charge. What it however establishes is that, if
only the naive tetrad translations are used, one cannot find nontrivial time translation corner
charges.
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