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1 Introduction

The final state reached by stars with a mass larger than the Tolman-Oppenheimer-Volkoff
limit at the end of the gravitational collapse is generally expected to be a black hole. However,
black holes have several peculiar properties that are not yet fully understood. For example,
the presence of the singularity indicates a breakdown of general relativity, and it is generally
assumed that this singularity will be resolved by a theory of quantum gravity. Furthermore,
the presence of an event horizon causally separates the exterior from the interior at the classical
level. However, when quantum effects are taken into account, this feature becomes problematic
giving rise to the information paradox [1, 2]. Due to these and other paradoxical properties
of black holes, significant effort has been devoted to exploring potential alternative models
that could describe the final state of a gravitationally collapsed object, while remaining
consistent with current observational bounds.

To be a good candidate for a black hole mimicker, any such object must concentrate
its mass in a radius Rs ≳ 2GN M , while avoiding the formation of the event horizon and of
the singularity. Based on these and other considerations [3–7], Mazur and Mottola proposed
the model of a “gravitational vacuum star”, also called gravastar [8, 9]. As a star undergoes
gravitational collapse, the quantum vacuum undergoes a phase transition at or near the
location where the event horizon is expected to form, similar to the quantum liquid-vapor
critical point of an interacting Bose fluid [6, 7]. The interior of the critical surface at the
horizon is sustained by a fluid with negative pressure p = −ρ, separated from the exterior
Schwarzschild metric by a shell of material with equation of state p = +ρ.

For static and spherically symmetric solutions the exterior metric of a gravastar is the
same as that of a black hole down to the length scale of the shell. Therefore, it is very
difficult to tell them apart experimentally. For example, since the radius of a gravastar is
arbitrarily close to its Schwarzschild radius, the light it emits will be largely redshifted [10],
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to the point that a gravastar is essentially indistinguishable from a black hole if we look
at electromagnetic radiation only.

Nonetheless, there are several proposed observational tests to differentiate between these
objects [11]. For example, in [12] the stability against axial perturbations was studied and it
was found that the eigenfrequencies of quasinormal modes indeed differ for the two objects.
Although the literature on these observational tests is extensive and growing larger [13–17],
as of now the question regarding the existence of gravastars remains unanswered.

In this work, we will add to this line of research by showing that the exterior metric of a
gravastar differs from that of a black hole, once the leading corrections from quantum gravity
are taken into account. In particular, we will focus on the unique effective action of quantum
gravity developed by Vilkovisky and Barvinsky [18–21], for which it has been pointed out that
the non-locality of this action gives rise to quantum gravitational hair [22–24]. More precisely,
we will show that the exterior geometry contains information about the equation of state in the
interior geometry. In contrast to earlier examples within this formalism, it turns out that this
type of quantum gravitational hair appears already at order r−3 in the asymptotic expansion.

This feature will in principle allow to distinguish various types of dark energy stars that
differ by their equation of state. Moreover, since Schwarzschild black holes do not receive
quantum corrections at second order in curvature [25, 26], this opens the door to a set of
new measurements to distinguish black holes from gravastars. As metric components are not
observable by themselves, we will also translate these metric corrections into corrections to
observables in the field of gravitational lensing [27–30], finding deviations from classical results.

This paper is organized as follows. In section 2, we introduce the gravastar and dark
energy star models. In section 3, we briefly review the quantum gravity effective action and
the modified Einstein field equations. In section 4, we find perturbative solutions to the
equations of motion, showing the presence of quantum hair in gravastars and dark energy
stars. Finally, in section 5, we compute the quantum corrected photon sphere radius of
gravastars and dark energy stars and also the angle by which light rays passing near these
objects are bent. We reserve section 6 for the conclusions.

2 Gravastars and dark energy stars

In the model proposed by Mazur and Mottola [8, 9], gravastars are composed of three
distinguished regions, with two infinitesimally thin layers at the junction surfaces.

The innermost region is described by the de Sitter metric:

ds2 = (1 − H2r2)dt2 − (1 − H2r2)−1dr2 − r2dΩ2, (2.1)

with
H2 = 8πGN ρ

3 = Λ
3 , (2.2)

where Λ is the cosmological constant and the horizon is located at r = H−1. This core is
characterized by an equation of state with negative pressure p = −ρ, which counteracts
the gravitational pull and removes the singularity at the origin, since the strong energy
condition is not satisfied [31].
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Figure 1. Representation of the three-layer dark energy star model. Region I in blue is the interior
dark energy region (p = ωρ, ω < −1/3), region II in gray and delimited by the two dashed lines is
the thin shell (p = +ρ), region III in white is the exterior Schwarzschild region (p = ρ = 0). The
thick lines correspond to the Schwarzschild and de Sitter horizons. The star radius is such that
2GN M ≲ Rs ≲ H−1.

The exterior region is assumed to be vacuum, and thus, due to Birkhoff’s theorem,
described by the Schwarzschild metric:

ds2 =
(

1 − 2GN M

r

)
dt2 −

(
1 − 2GN M

r

)−1
dr2 − r2dΩ2, (2.3)

where M is the total ADM mass of the star.
The third region is given by a thick shell of material acting as a boundary between the

interior and exterior regions. The material has equation of state p = +ρ and is located
at a position such that we avoid the formation of both the Schwarzschild (RH = 2GN M)
and de Sitter (RH = H−1) horizons.

Several variations of gravastars have been extensively studied throughout the years [32–34].
In particular, a simplified model was proposed by Visser and Wiltshire [35], where the thick
shell of matter and the two junction surfaces are combined in a single infinitesimally thin shell.

In this work, we will be interested in a particular extension of the single thin-shell
gravastar model which gives rise to the concept of dark energy stars [7, 36]. In this model,
the de Sitter interior is generalized to a region governed by an equation of state

p = ωρ, with ω < −1/3. (2.4)

The motivation for this model comes from the observed accelerated expansion of the uni-
verse [37–42], which suggests the existence of a cosmic fluid parameterized by an equation of
state with ω < −1/3. We note that current observations suggest a value of ω close to −1, in
which case the model reduces to the gravastar model discussed above.

Summarizing, we consider a three layer star, cf. figure 1, with:

I. an interior dark energy region, with equation of state p = ωρ and ω < −1/3;
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II. a single thin shell p = +ρ, with a radius Rs such that 2GN M ≲ Rs ≲ H−1, in order to
avoid the formation of the event horizon;

III. an exterior Schwarzschild region, ρ = p = 0.

We take the interior energy density to be homogeneous. The total ADM mass M of the star
is given not only by the de Sitter vacuum but also receives a contribution from the thin
shell. Hence, M = MI + MII , where MI , MII denote the mass concentrated in regions I,II
respectively. In the remainder, we will assume that the latter contribution is negligible, such
that we can write M = MI . The interior metric is then given by [36]

ds2 =
(

1 − 2GN M

R3
s

r2
)−(1+3ω)/2

dt2 −
(

1 − 2GN M

R3
s

r2
)−1

dr2 − r2dΩ2. (2.5)

We can now proceed to compute the quantum corrected metric components of the
dark energy star.

3 Quantum gravity effective action

General relativity is perturbatively non-renormalizable [43, 44]. However, at energy scales
below the Planck mass Mp = 2.4 × 1018 GeV, one can use the effective field theory to make
generic quantum gravity predictions. Here, we will employ the unique effective action of
quantum gravity developed by Barvinsky and Vilkovisky [18–21]. This effective action is
obtained by integrating out the quantum fluctuations of the graviton and possibly other
massless fields, and it is given by

Γ = Γm + ΓL + ΓNL. (3.1)

The first term is the usual matter action:

Γm =
∫

d4x
√

−g Lm. (3.2)

The local term, at second order in curvature, reads

ΓL =
∫

d4x
√

−g

[
M2

p

2 R + c1(µ)R2 + c2(µ)RµνRµν + c3(µ)RµναβRµναβ + O(M−2
p )

]
, (3.3)

where the prefactors ci are the Wilson coefficients and µ is the renormalization scale. The
non-local part is

ΓNL = −
∫

d4x
√

−g

[
αR ln

(
□
µ2

)
R + βRµν ln

(
□
µ2

)
Rµν

+γRµναβ ln
(
□
µ2

)
Rµναβ + O(M−2

p )
]

, (3.4)

where □ := gµν∇µ∇ν . A discussion of the non-local operator ln
(
□/µ2) acting on radial

functions can, for example, be found in [45, 46].
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α β γ

Scalar 5(6ξ − 1)2 −2 2
Fermion −5 8 7
Vector −50 176 −26

Graviton 250 −244 424

Table 1. Non-local Wilson coefficients for different fields. All numbers should be divided by 11520π2.
ξ is the value of the non-minimal coupling for a scalar theory.

The last term of the local action (3.3), containing the contraction of two Riemann tensors,
can be rewritten as a function of the Ricci tensor and Ricci scalar using the Gauss-Bonnet
topological invariant:∫

d4x
√

−g(R2 − 4RµνRµν + RµναβRµναβ) = 32π2χ(M), (3.5)

where χ(M) is the Euler characteristic of the manifold. Being a topological term, it does not
affect the equations of motion. In this way we may simplify the local action to

ΓL =
∫

d4x
√

−g

[
R

16πGN
+ c̄1R2 + c̄2RµνRµν

]
, (3.6)

where c̄1 = c1 − c3 and c̄2 = c2 + 4c3.
The values of the Wilson coefficients ci of the local part depend on the UV completion of

quantum gravity, and follow from a matching of the effective action to the UV-completion, see
e.g. [47]. The values of the non-local part are instead independent of the UV-completion [18,
19, 48] and can be calculated in a gauge invariant manner. The values for various types of
matter are listed in table 1. Denoting by Ns, Nf , Nv, Ng the number of scalar, fermionic,
vector and graviton fields in the theory, we have in general

α = Nsαs + Nf αf + Nvαv + Ngαg . (3.7)

By varying the effective action with respect to the metric, one obtains the equations
of motion, see e.g. [46],

Gµν + 16πGN (HL
µν + HNL

µν ) = 8πGN Tµν , (3.8)

where
Gµν = Rµν − 1

2Rgµν (3.9)

is the usual Einstein tensor and Tµν the energy-momentum tensor. The local part is given by

HL
µν = c̄1

(
2RRµν − 1

2gµνR2+2gµν□R−2∇µ∇νR

)
+c̄2

(
2Rα

µRνα− 1
2gµνRαβRαβ +□Rµν + 1

2gµν□R−∇α∇µRα
ν −∇α∇νRα

µ

)
,

(3.10)

and the non-local part is

HNL
µν = −2α

(
Rµν − 1

4gµνR+gµν□−∇µ∇ν

)
ln
(
□
µ2

)
R
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−β

(
2δα

(µRν)β − 1
2gµνRα

β +δα
µgνβ□+gµν∇α∇β −δα

µ∇β∇ν −δα
ν ∇β∇µ

)
ln
(
□
µ2

)
Rβ

α

−2γ

(
δα

(µRβ
ν)στ − 1

4gµνRαβ
στ +(δα

µgνσ +δα
ν gµσ)∇β∇τ

)
ln
(
□
µ2

)
Rαβ

στ . (3.11)

Note that variations of the ln
(
□/µ2) terms yield terms of higher order in curvature which

can then be neglected at second order in the curvature expansion [49].
We solve the equations of motion (3.8) perturbatively in the Planck length. That is,

we consider perturbations of the above metrics of the form

g̃µν = gµν + hµν , (3.12)

where gµν is the classical background metric and the perturbation hµν is taken to be of order
O(l2p). Additionally, we linearize the equation, such that the equations of motion (3.8) become

GL
µν [h] + 16 π l2p (HL

µν [g] + HNL
µν [g]) = 0, (3.13)

where the linearized Einstein tensor is given by

2 GL
µν = □hµν − gµν□h + ∇µ∇νh − ∇µ∇βhνβ − ∇ν∇βhµβ

+ gµν∇α∇βhαβ + 2Rα
µ

β
νhαβ, (3.14)

and HL
µν [g] and HNL

µν [g] are given, respectively, by (3.10) and (3.11). Once we have chosen
a given background we can solve for the perturbation.

4 Quantum hair in dark energy stars

We impose that the perturbation is spherically symmetric and time-independent as the
background metric and use the gauge freedom to set hθθ = 0. We then find corrections
hµν = δgint

µν to the interior metric (2.5) given by

δgint
tt = [α + β + 3γ − 3ω(α − γ)]

192 π l2p GN M

R3
s

ln
(

R2
s

R2
s − r2

)

+ C1
r

+ C2 + l2p O(G2
N M2) + O(l4p), (4.1)

δgint
rr = [(α − γ) − ω(3α + β + γ)]

384π l2p GN M r2

R3
s(R2

s − r2) + C1
r

+ l2p O(G2
N M2) + O(l4p) , (4.2)

where the integration constants Ci can be set to zero if we require limr→0 δgint = 0, which
ensures that the metric is regular at the origin and that there is no rescaling of the time
coordinate. Moreover, O(l4p) terms are due to the cut-off of the effective action, whereas
l2p O(G2

N M2) terms come from linearizing the equations of motion.
By a similar calculation we obtain corrections hµν = δgext

µν to the exterior metric (2.3) with

δgext
tt = [α + β + 3γ − 3ω(α − γ)]

192 π l2p GN M

R3
s

[
2Rs

r
+ ln

(
r − Rs

r + Rs

)]
+ C3

r
+ C4 + l2p O(G2

N M2) + O(l4p) , (4.3)

δgext
rr = [(α − γ) − ω(3α + β + γ)]

384 π l2p GN M

r(r2 − R2
s) + C3

r
+ l2p O(G2

N M2) + O(l4p) , (4.4)
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where the integration constants Ci can be set to zero if we require limr→∞ δgext
µν = 0, which

ensures that M is the ADM mass and that t is the time measured by a stationary observer
at infinity, as usual.

Far away from the star, that is for r ≫ Rs, the exterior metric corrections reduce to

δgext
tt = − [α + β + 3γ − 3ω(α − γ)]

128 π l2p GN M

r3 + l2p O(G2
N M2) + O(l4p) , (4.5)

δgext
rr = [(α − γ) − ω(3α + β + γ)]

384 π l2p GN M

r3 + l2p O(G2
N M2) + O(l4p) , (4.6)

whereas deep inside the star, that is for r ≪ Rs, the interior corrections vanish at this order:

δgint
tt = δgint

rr = l2p O(G2
N M2) + O(l4p) . (4.7)

All the metric corrections diverge in the limit ϵ ≡ |r − Rs| → 0+. This is because we act
with ln(□), which is an infinite derivative operator, on a metric that is only once continuously
differentiable. The divergences are of two types:

d1 ∼
l2pGN M

R3
s

ln
(

ϵ

2 Rs

)
, (4.8)

d2 ∼
l2pGN M

R2
s

1
ϵ

. (4.9)

However, since we obtained these corrections solving the modified Einstein equations per-
turbatively in l2p, we should require that these terms are small with respect to the classical
metric coefficients, namely:

V ∼ GN M

r
. (4.10)

Hence, requiring d1 ≲ V leads to

l2p
R2

s

ln
( |r − Rs|

2 Rs

)
≲ 1, (4.11)

whereas for d2, one obtains the condition

l2p
Rs|r − Rs|

≲ 1. (4.12)

These two conditions are satisfied for ϵ ≲ lp, since for a star we obviously have Rs ≫ lp.
Hence, the metric corrections should be considered to apply only outside a layer of thickness
ϵ ≳ lp around the star surface. Consequently, the corrected metric described above cannot
be used to study the stability of the model in the Israel-Lanczos-Sen junction condition
formalism [50–52], which aims to find the equilibrium position of the freely moving transition
layer at Rs, as is often done for gravastars. Indeed, such an analysis would require to study
a more refined model, where the density smoothly decays.

One expects that the divergences disappear, when the sharp transition between the
interior and exterior region is replaced by a smooth transition. Considering figure 1, this

– 7 –
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would amount to extending the region II such that it smoothly interpolates between region
I and III. In this case we can no longer approximate MII = 0, which will affect the
quantum corrections, leading to modifications of eqs. (4.1), (4.2), (4.3) and (4.4). These
modifications will be given by a distribution that peaks around the transition region II. Thus,
the modifications of these results will be significant in and close to region II. However, they
will be suppressed by the thickness of region II in the deep interior and far exterior, such
that the results (4.5), (4.6) and (4.7) are recovered in the limit of vanishing thickness.

In order to estimate the effects of a finite thickness of region II on our main results (4.5)
and (4.6), we may distinguish two scenarios: a scenario where region I and II have the same
equation of state and a scenario where the equation of state is different in the two regions,
as for example proposed in the gravastar model. In both scenarios, the modifications can
easily be estimated due to linearization of the Einstein equations.

In the first scenario, one can approximate the effects by replacing the sharp transition
with a nested star model with radii Rk and densities ρk for k ∈ N, such that ρk > ρk+1,
limk→∞ ρk = 0, R1 = RI , Rk < Rk+1 and limk→∞ Rk = RII . This scenario was discussed
in ref. [23] where the effects on the subleading corrections at order l2p O(G2

N M2)/r4 were
calculated. Following the same reasoning, it is clear that the leading corrections at order
l2pGN M/r3 will not be affected in this scenario. In the second scenario, on the other hand,
this leading term in the corrections (4.5) and (4.6) will be affected. Using the linearized
Einstein equations one finds that such a modification will be given by

δgext
tt =−[(α+β+3γ)M−3(ωI MI +ωIIMII)(α−γ)]

128πl2pGN

r3 +l2pO(G2
N M2)+O(l4p),

(4.13)

δgext
rr =[(α−γ)M−(ωI MI +ωIIMII)(3α+β+γ)]

384πl2pGN

r3 +l2pO(G2
N M2)+O(l4p), (4.14)

where ωI , ωII , MI , MII are the equation of state parameters and mass contained in regions
I and II. In the limit of vanishing thickness of region II, one obtains MII = M − MI → 0,
such that eqs. (4.5) and (4.6) are recovered, as discussed above.

In the remainder of this work, we will focus on the limit of vanishing thickness of region
II and the region r ≫ Rs observed by an asymptotic observer. Taking the corrections (4.5)
and (4.6) as a proxy for the entire geometry, the asymptotic observer will find a shifted horizon
radius, which may affect the model as discussed in the previous section. The gravitational
radius RH can be found by solving the condition

grr(RH) = 0 . (4.15)

For our case this implies

r − 2 GN M = −
384 π l2p GN M [(α − γ) − ω(3α + β + γ)]

r2 . (4.16)

We solve this equation perturbatively, which yields the shifted radius

RH = 2 GN M −
96 π l2p
GN M

[
(α − γ) − ω (3α + β + γ)

]
. (4.17)

– 8 –
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The extra terms are subleading with respect to the classical result and will not affect the
basic features of the model described in figure 1. We emphasize, however, that this analysis
is performed using the asymptotic expansion for which the linearized Einstein equations
provide a good approximation. It is thus difficult to make definite statement about the
stability of the model within our approximation.

We highlight the important result that all of the corrections depend on the parameter
ω of the equation of state. This is a clear example of a quantum gravitational hair: an
outside observer can recover information about the equation of state of the interior fluid by
probing metric corrections in the weak field region. This confirms that quantum hair is a
generic feature of the effective action of quantum gravity [22–24]. Remarkably, this type of
hair, that is the dependence on the equation of state of the star, appears already at order
(l2pGN M)/r3. In previous works, on the other hand, the quantum corrections appeared at
the same order (l2pGN M)/r3, but the hair, that is the dependence on the density of the
star, was only apparent at order (l2pGN MR2

s)/r5. Note that the latter type of hair can
also be found for the dark energy stars discussed in this paper, if different density profiles
are studied. However, it will be subleading compared to the former type of hair, i.e. the
dependence on the equation of state.

From an observational perspective this feature is potentially interesting, as it allows to
distinguish dark energy stars with a different equation by evaluating the quantum corrections
to the gravitational potential at infinity. We note that for ω = 0 we recover the corrections to
the ball of dust studied in [46], as expected. Similarly, for ω = −1, one obtains the gravastar
model. Since there are no quantum corrections to the potential for a Schwarzschild black
hole at this order in the expansion [25, 26], this would also allow to distinguish gravastars
from black holes by measuring the quantum corrections to the weak field metric.

5 Observables in gravitational lensing

Metric components are not measurable by themselves, therefore we will now calculate the
induced corrections to observable quantities. Here, we will be particularly interested in the
quantum corrections to gravitational lensing, that is the collection of all the effects caused by
a gravitational field on the propagation of electromagnetic radiation.

5.1 Photon sphere

Motivated by the images of the black holes Sgr A* at the center of the Milky Way [53–58]
and M87* at the center of the galaxy Messier 87 [59–62], we start by analyzing the quantum
correction to the photon spheres [30], that is photons moving along the unstable circular
orbit around the source.

Let us write the generic line element for a static and spherically symmetric metric as

ds2 = f(r)dt2 − g(r)−1dr2 − r2(dθ2 + sin2 θdϕ2). (5.1)

The two Killing vectors k⃗ = ∂⃗t (associated to time translation invariance) and n⃗ = ∂⃗ϕ
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(associated to rotations around the z-axis) imply the existence of the two integrals of motion

E = −kµuµ = f(r) dt

dλ
, (5.2)

L = nµuµ = r2 sin2(θ)dϕ

dλ
, (5.3)

where uµ ≡ dxµ/dλ is the photon four-momentum. Without loss of generality, we can
restrict the motion to be on the equatorial plane θ = π/2. Using then the condition
gµνuµuν = 0, we find

f(r)
g(r)

(
dr

dλ

)2
+ V (r, E, L) = 0 , (5.4)

where the effective potential is given by

V (r, E, L) = f(r)L2

r2 − E2 . (5.5)

Circular orbits are obtained from
dr

dλ
= d2r

dλ2 = 0 , (5.6)

which translates into the conditions for the potential

V (rp) = V ′(rp) = 0 . (5.7)

This defines the so called photon sphere at rp that gives raise to a gravitational lensing
generating infinitely-many images [63, 64]. Solving the first equation (5.7) for the impact
parameter b ≡ L/E and then plugging it into the second equation we find that the latter
is satisfied when

f ′(rp)rp − 2f(rp) = 0 . (5.8)

It can be shown that any spherically symmetric and static spacetime with an horizon at
r = RH and which is asymptotically flat must have a light sphere at a radius between the
horizon radius and infinity [65]. For the classical Schwarzschild metric (2.3) this is located at

rp = 3GN M . (5.9)

For the quantum corrected dark energy star we have

f(r) = 1 − 2GN M

r
−

128 π l2p GN M

r3 [α + β + 3γ − 3ω(α − γ)] , (5.10)

leading to

r − 3 GN M = [α + β + 3γ − 3 ω (α − γ)]
320 π l2p GN M

r2 . (5.11)

We can solve this equation perturbatively around the classical result rp = 3GN M and obtain
the modified photon sphere radius

rp = 3GN M +
[
α + β + 3γ − 3ω(α − γ)

] 320 π l2p
9 GN M

. (5.12)

We emphasize that the above shift depends on the parameter ω, allowing, in principle, to
observationally distinguish dark energy stars with different equations of state. Moreover,
as black holes do not receive corrections at second order in GN , the location of the photon
sphere also allows to distinguish gravastars from black holes.
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5.2 Bending of light rays

Light rays passing near a massive object will be bent by an angle ϕ with respect to their
original trajectory. Using the metric (5.1) and working on the equatorial plane, we may
rewrite the condition that light rays move along null geodesics, i.e. gµνuµuν = 0, as [28]

d2u

dϕ2 + uf(u) + u2

2
df

du
= 0, (5.13)

where u = r−1. For the classical Schwarzschild metric we find

d2u

dϕ2 + u = 3GN Mu2. (5.14)

We solve this differential equation perturbatively, i.e. we first set the right-hand side to zero
and obtain the zeroth-order solution

u = sin ϕ

R
, (5.15)

where R is the distance of closest approach to the origin. We can then plug this result in
the right-hand side of (5.14) and solve to obtain the first-order solution

u = sin ϕ

R
+ 3GN M

2R2

(
1 + 1

3 cos 2ϕ

)
. (5.16)

At large distances r → ∞, u → 0 and the deflection angle becomes small ϕ → ϕ∞. We
can thus expand (5.16) as

0 = ϕ∞
R

+ 2GN M

R2 , (5.17)

and the total deflection ∆ϕ∞ = 2|ϕ∞| is

∆ϕ∞ = 4GN M

R
, (5.18)

which is the very well known result of general relativity.
Repeating the calculation for the quantum corrected dark energy star, in the limit

r ≫ Rs, we find the total deflection angle

∆ϕ∞ = 4GN M

R
+

1024 π l2p GN M [α + β + 3γ − 3ω(α − γ)]
3R3 . (5.19)

As the result depends on the parameter ω, this deviation can also be used to observationally
distinguish dark energy stars with different equations of state, and to distinguish gravastars
from Schwarzschild black holes.

6 Conclusions

In this letter, we used the effective action of quantum gravity at second order in curvature
to compute corrections to the metric of gravastars and dark energy stars. This gives rise
to the presence of hair in the leading quantum gravitational corrections to these models,
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showing explicitly how the corrections to the exterior metric depend on the equation of
state of the interior fluid.

We then proceeded to study implications of the metric corrections for the gravitational
lensing, analysing how the modified metrics affect the radius of the photon sphere and the
deflection angle of light rays passing near a gravitational lens. We found that these quantities
deviate from the classical results by terms of order O(l2pGN M). The fact that these deviations
depend on the equation of state parameter ω allows to observationally distinguish dark energy
stars with different equations of state from classical black holes.

It must be noted, however, that these effects are Planck scale suppressed with respect to
the classical results and therefore undetectable with current technology. It would thus be
interesting to investigate the possibility of the accumulation of such corrections, for example
over cosmological time scales. The study of such an accumulation will likely require to go
beyond the linear approximation employed in this work.

Moreover, we note that the results apply only to the case of non-rotating objects, whereas
the exterior of astrophysical black holes is better described by the Kerr metric. Extending our
results to this more general case is a non-trivial exercise, which requires a better understanding
of the ln

(
□/µ2) operator on Kerr spacetimes. Furthermore, the equations that need to be

solved for finding the components of the perturbation hµν in the rotating case will form a
system of coupled differential equations both in the radial and angular coordinate. In future
work, it would be interesting to see if the quantum corrections for rotating objects can become
comparable to the classical results, in the case of very large angular momentum. Nonetheless,
the results for the non-rotating objects studied in this paper will still apply as a leading order
(in angular momentum) approximation to the case of a slowly rotating black hole.

Despite these two limitations, we conclude that the results presented in this work provide
a very clear example of quantum gravitational hair that is independent of the UV-completion
of quantum gravity. Moreover, the presence of this hair could not only help in tackling
theoretical questions [66, 67], but also opens up a new avenue towards distinguishing gravastars
from black holes. This could thus shed a new light on the viability of gravastar models as
alternative to black holes. Moreover, it opens up the possibility of performing similar studies
for other black hole mimickers, e.g. [68–70].
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