RESEARCH ARTICLE | JULY 10 2025
Bound on the excess charge of generalized Thomas-Fermi-
Weizsacker functionals

Rafael D. Benguria © ; Heinz Siedentop &

’ '.) Check for updates ‘

J. Math. Phys. 66, 072103 (2025)
https://doi.org/10.1063/5.0264498

@ B

View Export
Online  Citation

Articles You May Be Interested In

Homogenization of two-dimentional materials in the Thomas—Fermi—von Weizsacker theory

J. Math. Phys. (July 2025)

Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsacker model

Mathematical Physics

Y
o
©
c
p -
-
o
ﬁ

J. Math. Phys. (January 2008)

Equation of state of a dense boron plasma by Thomas—Fermi—Dirac—Weizsacker molecular dynamics

Phys. Plasmas (July 2008)

1P
2_ Publishing

Special Topics Open

for Submissions

AIP
é/_‘. Publishing

Learn More

6V:€1:90 SZ0Z JOGUBNON 90


https://pubs.aip.org/aip/jmp/article/66/7/072103/3352219/Bound-on-the-excess-charge-of-generalized-Thomas
https://pubs.aip.org/aip/jmp/article/66/7/072103/3352219/Bound-on-the-excess-charge-of-generalized-Thomas?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-0696-0876
javascript:;
https://orcid.org/0000-0003-1422-7882
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0264498&domain=pdf&date_stamp=2025-07-10
https://doi.org/10.1063/5.0264498
https://pubs.aip.org/aip/jmp/article/66/7/072106/3356391/Homogenization-of-two-dimentional-materials-in-the
https://pubs.aip.org/aip/jmp/article/49/1/012302/231610/Stability-of-atoms-and-molecules-in-an
https://pubs.aip.org/aip/pop/article/15/7/072704/985699/Equation-of-state-of-a-dense-boron-plasma-by
https://e-11492.adzerk.net/r?e=&s=n_vRJ7MxA0IljWpWEqgCRmW9N7g

Journal of ARTICLE . —
Mathematical Physics pubs.aip.org/aip/jmp

Bound on the excess charge of generalized
Thomas-Fermi-Weizsacker functionals

Cite as: J. Math. Phys. 66, 072103 (2025); doi: 10.1063/5.0264498 @ i @
Submitted: 11 February 2025 « Accepted: 18 June 2025 - :
Published Online: 10 July 2025

Rafael D. Benguria'® ) and Heinz Siedentop”"

AFFILIATIONS

TInstituto de Fisica, Pontificia Universidad Catdlica de Chile, Av. Vicuia Mackenna 4860, Macul, 7820436 Santiago, Chile
2Mathematisches Institut, Ludwig-Maximilians-Universitdt MUnchen, Theresienstr. 39, 80333 Munchen, Germany

2 Electronic mail: rbenguri@uc.cl
b Also at: Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Minchen, Germany.
Author to whom correspondence should be addressed: h.s@/mu.de

ABSTRACT

We bound the number of electrons Q that an atom can bind in excess of neutrality for density functionals generalizing the classical Thomas-
Fermi-Weizsacker functional: instead of the classical power 5/3 more general powers p are considered. For 3/2 < p < 2 we prove the excess
charge conjecture, i.e., that Q is uniformly bounded in the atomic number Z. The case p = 3/2 is critical: the behavior changes from a uniform
bound in Z to a linear bound at the critical coupling 4/7 of the nonlinear term. We also improve the linear bound for all p > 6/5.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0264498

I. INTRODUCTION

Density functionals have been essential tools for analyzing the physical properties of atoms, molecules, and physics. In quantum mechan-
ics, one can trace them back to Thomas'® and Fermi.”” Weizsicker'” added an inhomogeneity correction meant to improve the behavior of
the density in regions of rapid change of the external potential. Benguria et al.” generalized the classical Thomas-Fermi-Weizsicker functional
to a more general functional and initiated its mathematical analysis. Written in the square root y of the electron density p it reads

& :H'(R’:R) > R,

2 2
WA] vl +Zf P 7/ Vy? +1/ dxf 4 YO Vo) o
R pJR R’ 2 JR? R |x — y|
—— ——
Tly]:= Fly]:= Alyl= D[y*]:=
withp > 1,y > 0,and
K
Zx
V(x) = , 2
(x) 2 Ry )

where 3 := (Z,...,Zk) € R and®R = (Ry,...,Rx) € R*X.

Note that we will not include Dirac-type terms. Functionals of this type have the peculiar property that the energy is—even with vanishing
external potential—unbounded from below forming—poetically speaking—an neblua of self-attracting electrons. Thus the definition of the
electron state of a saturated atom as the absolute minimizer is not true meaning that our line of attack would fail right from the beginning.
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The generalized Thomas-Fermi term F arises by a semiclassical approximation from a many electron Hamiltonian with kinetic energy
operator | — iV|". The relation between the exponents is

a+3
= 3
p=" ©)
with the prefactor given by
y= (). @)

The range 2 > p > 4/3 corresponds to 3 > a > 1. [Note that the upper bound on p arises from the Proof of Lemma 2 and also later from
bounding the potential ¢ uniformly in Z by Sommerfeld-type solutions: For p — 2 the coefficients b(p) and (p) of the Sommerfeld solutions
as defined in (A17) blow up.]

The Euler equation for the minimizer y reads

—ADy + [y = (V= [y ] )]y =0 (5)
[ S —
=

weakly in H'(R? : R..).
For p > 3/2 we can scale the Euler equation by making the ansatz

l//(x) = aplg"/(bpx), Zk = Cka, Rk = Rk/bp (6)
With 1 2-p 3p—4
A A A
ap = —— bpi= ——, g i= — (7)
y 2p-3 y ap—6 y ap—6
Then s ,
- 1 2p— - -1 -
=AY+ (917 = (Vag — 91+ )]g=0. (8)

Thus, we may assume for p > 3/2 that A = y = 1 and retrieve the general case by (6).
If y minimizes & (H' (R’ : R)) then we write N := [, y* for its particle number Z := Z; + - - - + Zx and

Q:=N-Z )

for its excess charge. The excess charge has previously been studied. Lower bounds on the excess charge are Q > 0 for p > 4/3” (Lemma 12)
and Q> 0forp>5/3and K = 1° (Lemma 13).

The following is known about upper bounds: In the classical case, Benguria and Lieb’ [formula (43)] showed Q < 270.74K. Solovej'*
(Proposition 14) improved this value to Q < 178.03 K. Based on an immediate generalization of an argument of Lieb'’ it is clear that Q < Z
for all p.

The focus of this work will be on generalizing and sharpening those upper bounds. We will start in Sec. IT with the improvement
Q < 0.5211Z for rather general p.

We will also generalize the bound uniform in the nuclear charge Z similar to Ref. 3 [formula (43)] and Solovej'* (Proposition 14). We
will carry these results through for p € (3/2,2) in Sec. V.

The value p = 3/2 is critical, since the energetic dominance shifts from the Thomas-Fermi term for p > 3/2 to the Weizsicker term for
P < 3/2. We will treat the critical case by different methods and will show for y < y, := 4\/7 a bound proportional to Z whereas for y > y,_ we
have Q = 0. This is done in Sec. V.

Il. IMPROVING THE BOUND Q < Z FOR EXPONENTS p > 6/5

We consider the atomic case, i.e., K = 1. Because of translational invariance we can and will assume R; = 0 throughout this section.
Following Benguria and Tubino® we will improve (A2). We begin with an inequality by Nam,”

Lo BEE () 2y (9)? dxdy

:= inf
g [ v dxfs ] y(x) dx

0+y e H (R :R)} > 08218 (10)

Theorem 1. Let v be a non-vanishing solution of (5) for K = 1 in H'(R?). Then, for all y > 0 and all p > 6/5,

fw y(x)® dx < %Zs 1.5211 Z. (11)
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Proof. Since the groundstate energy of hydrogen is —1/4 {Schrédinger’ [Eq. (19)]}, we have for any positive nuclear charge Z,
V4 z?
Lavse- [ 2P =T [P (12)
R R® || 4 Jr
forany f € H'(R?). Picking f := v this can be recast as
N (13)

using the notation for the various parts of the energy in (1). Optimizing in Z yields

A 2
(2) <K N. (14)
Now, from (A6) and (14) we get
A< %N z. (15)
If we define
s x| w(x)® dx
IR 1, »
.[]R3 l//(x) dx N
and use the Schwarz inequality, we get
2 2
N7 - (f w(x) dx) < [y ax [ VO 4 A, (17)
R’ R’ B x| Zz
Using (15) and (17) we finally get
3
I>—. 1
7 (18)

To conclude we use Nam’s method.'?> We multiply (5) by v - |x|* and integrate over R®. From Nam’s result we have

(A [x*y) > = (1//, y) = —fN (19)
Also, y [ [w(x) [P~y (x)*|x|* dx > 0. Hence,
JREIRORE 3N, (20)
R? 4
and using
z y(»)’
0=z
PO Sl
we get
[+ + _§
z [ Wyt ae- [ f 5 y| " Y0YO) dady > @)

where we did the standard symmetrization in the second integral. Moreover, from (16), the first term in (21) is given by ZNI.
From the definition of 5, N, and I, we have

1 |x[* + |y 2 2 2
z Jiad BN 74 B dxdy > BN“I. 22
2 /Rj X~y v(x)y(y) ly > 8 (22)
From (21), (22), and the definition of I, we get
ZNI > ﬁNZI - ZN > ﬂNZI— iNZI, (23)

where the last inequality follows from (18). Rearranging (23), we get

5
JINI > BN’I

6%:€1:90 G202 19qWianoN 90

J. Math. Phys. 66, 072103 (2025); doi 10.1063/5.0264498 66, 072103-3
© Author(s) 2025


https://pubs.aip.org/aip/jmp

Journal of ARTICLE . —
Mathematical Physics pubs.aip.org/aip/jmp
yielding
Using Nam’s numerical lower bound (10) on 8 in (24) gives
[m]

Ill. SOME PREPARATORY RESULTS

We start with a central observation keeping the constant y in this section, since we will use the result also for p = 3/2 where it cannot be
scaled out. Set

Definition 1.
P:R\{R,,...,Rx} - R,

x o\ 4y (x)’ + o(x)°.

The following allows us to bound the excess charge from above.

(26)

Lemma 1. The function P is subharmonic, and, for K =1 and Ry = 0, the function rP(r) is convex, monotone decreasing in r, and
lim,— oo 7P(r) = Q. In particular, for all r > 0,

rP(r) > Q. (27)
Note that we write - in abuse of notation - P(r) instead of P(x) in the radial case.
Proof. We compute
2PAP +2(VP)? = AP* = 8y Ay + 8n(Vy)” + 20A¢ +2(Vo)
=8y’ (yy™ ™ — 9) + 8n(Vy)” + 8mpy” +2(Vg)’ (28)
=81y’ yy ™ + 81(Vy)” + 2(Ve)’,
where we used the TFW Eq. (5). By Schwarz’s inequality (VP)? < 4(Vy)* + (V¢)* and therefore (28) implies AP > 0. This shows the
subharmonicity.

Since

2
AP(x) - %%rP(r), 29)

the convexity and monotonicity statements follow.
By Lemma 5 ry(r) — 0 and by Newton’s lemma r¢(r) - —Q as r — co. This shows the limiting statement. - Inequality (27) is an
immediate consequence of the monotonicity and the limiting statement. O

Lemma 2. ForA € (0,1) and 3/2 < p < 2, every minimizer y of &, with ¢ and V given by (1) and (2) respectively, satisfies

My < g+ (MO, (30)
with
(2m) 2-p)
) = 5 (P =3) (1)
Az;:fa(l _/1)2;:73 (p_ 1)2p—3

Note that when p = 5/3, i.e., in the case of non-relativistic TFW theory,

9 » 1
cs(M)==-n1"5—— 32
M= A(1-1) (2
as in Ref. 3 [formula (13)].
Proof. Putu := w2 Then (5) implies that
—Au+ (2p-2)(yu—9)u<o, (33)
J. Math. Phys. 66, 072103 (2025); doi: 10.1063/5.0264498 66, 072103-4
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provided p > 3/2. On the other hand, (2) and (5) imply
-Ap = —4711//2 = —47m1/(P_1), (34)

away from Ry, k = 1,2, ... K. Now, set
vi=ylu—¢—d, (35)

with d a constant to be chosen later. Then, from (34) and (35) we get

—Av = —plAu+ Ag < 7y)t(2p72)(yu7(p)u+4nw’%‘. (36)
Set S = {x|v > 0}. It follows from (35) and (2) that Ry ¢ S,allk =1,2,...,K.On S,
p=ylu-d-v<-d+ylu, (37)

and replacing in (36), on S,
—Av < —yA(2p - 2)y(1 = V)u® —yA(2p —2)d u + A,

Now, if3/2<p<2,thenl1/2<p-1<1,1<1/(p-1)<2,and

dnur < YurA(1-1)(2p-2) +bu,

ie.,
2-p

dmurt <y ud(1-1)(2p - 2) +b.

Consider the function -

f(u) = 4mur -y ud(1-21)(2p - 2), (38)
with (2-p)/(p-1) <1,ie, p>3/2.Since (2-p)/(p—1) <1, the function f(u) for u > 0 has only one maximum, say i, on the interval
(0, 00). i1 is given by
y2(p _ I)ZA(I _ A.) (p-1)/(3-2p)

2n(2-p)

o=

and
f(#) = m)% (A0 -1) 7 22p = 3)(p - 1)75 (2 - p) .

Now choose b = f (i), which in turn implies choosing d = b/(yA(2p — 2)). With that choice of b, ~Av < 0 on S. Hence v is subharmonic on
S. Since v = 0 on JS, we conclude that v < 0 on S. This in turn implies that S is empty and we are done. O

Corollay 1. For 3/2 < p < 2 we have
Pl pol
2233 (2p—3
- CP(AO) == (3(51) ) < q)(x) (39)
(p-1)==

Moreover, if ¢(x) <0, then
2 s (2p — 3) %5
(3p-4) e

v(x) <
(40)

1
withdg :=p—Lland A := (3p—4)/(2p - 2).

Proof. For the first claim, estimate the left side of (30) from below by zero and minimize in A. The minimum occurs at 1o = p — 1.

To prove the claim on y drop ¢ in (30), move all A to the right, and minimize the right side in A. The minimum occurs at A; = (3p —
4)/(2p - 2). The minimal value is the right hand side of (40).

Finally, we pick A = A; in (30) and maximize over all possible negative values of ¢(x) given by (39). Since the function is convex, the
maximum occurs at the boundary, i.e., ¢ = 0 or ¢ = ¢, (Ao). ]
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We also have the bound

Lemma 3. For p > 3/2 and positive y we have
v <y (41)

Proof. First we note that V is harmonic outside the positions of the nuclei Ry, . .., Rx. We set
f=yVoyt (42)
We wish to show that f > 0 and therefore consider the exceptional set
S:= {x e R°|f(x) < 0}. (43)

Certainly neither of the Ry, ..., Rx isin S, since v is finite everywhere. On S we get from (5),

Af =-Ay*7 = —(2p-2)(2p - 3y (V) - (2p -2y Ay

<=2y (9= ) -2y (V- py ) <0 (44)
on S.Hence Af <0on S, i.e., f is superharmonic on S. Since f vanishes on the boundary of S, the exceptional set S is empty which implies the
claim. O

For R > 0 define Dy as the complement of the union of the balls of radius R around the positions of the nuclei Ry, . . ., Rk, i.e., B(R;) U

ey BR(RK).

Lemma 4. For3/2<p<2,y>0andR >0, let y be the positive solution of (5) with V given by (2), ¢ by (5), and Spr by (A26). Then for
allx € Dp,

2 K
9(x) < 7 + 2 sl Ri)). (45)
k=1

Proof. Let W =y p?™' — ¢, p = y* and consider the Hamiltonian H = —A + W. The operator H is non-negative, since its ground state,
the function y, has zero energy. In particular,

fRS (IVeral* + Wleral’) = 0, o)

where eg,, is the positive normalized groundstate of the Dirichlet Laplacian on Bg(a), a € R?, extended by 0 to the complement of Bg(a), i.e.,
p g P y p.

1 i —-a|/R
i sin (71]x - al/ )’ —al <R,
era(x)={ R:\2n  |x—al/R (47)
0, |x—al >R

Obviously erq € H'(R?), is spherically symmetric about a, is decreasing, and has compact support. With gra := e, and g, := 8ro We have

fR-‘ |VER,x|2 = (%)2 (48)

Thus, (46) implies forall R > 0 and all x € R?,

2
s
f , W(p)era(y) dy —(*) ~ (49)
R R
Note that [Ls W(y)grx(y) dy = (gr* W)(x) where * denotes convolution. Define
2
¢>:<p*gR—(%)- (50)

Since ¢ € L>* + L*™°, e > 0 (Ref. 2, Proof of Lemma 7) and g, € L forall s > 1, ¢ is continuous and tends to —(77/R)* at infinity (see Ref. 9,
Lemma 3.1). Using Holder’s inequality, we have for all x,

(=) <[P ([ae0) &) = lawep) @I b
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provided 1 < p < 2. Here we used [5: gr = 1. Let us also define

’Z) = gR *p (52)
From Egs. (49)-(52) we obtain for all x,
7\2 -1 - T\ p-1
(ﬁ) > (pxgr) (%) = y(grp’ )(x)2¢(x)+(§) - yp ()" (53)
In other words,
$<yp (54)

provided 1 < p < 2. Notice that ¢ is subharmonic away from the nuclei and that ¢ = gg # ¢ — (7/R)* with g, being spherically symmetric,
positive, of total mass one, and having support in a ball of radius R. From this it follows that

o9 <900+ (7). (55

for all x such that |x — Ry| > R, for all k. To prove (45) we need a bound on gZ) From (2) and (50), using the bound (54), and the fact that the
Laplacian commutes with convolution, we compute

1. e U1y -
_TnA¢: V-p<V-y 1/(p 1)[¢+(x)]l/(p 1) (56)
with

V=Vsg (57)

and with ¢, (x) = max ((Z)(x), O). Let ¢ be the minimizer of the Thomas-Fermi functional with external potential V. It fulfills the equation

2 1/(p-1)
_1A¢;_V_[¢’+(x)] , (58)
4 y
By the maximum principle we have for all x,
$(x) < $(x). (59)

The next step is to bound ¢. We treat first the radial case with V(x) = Z/|x|. Since the Sommerfeld solution Sy of the generalized TF
model defined in (A26) fulfills for p € (3/2,2),

1 -1/(p-1) g1/(p-1)
1 ASr sy Solk (60)
for r > R and ¢ satisfies there
L oy~ Ve-D 31—
A¢ = . 61
=Y ¢ (61)

We can again use a comparison argument. Since spr(R) — $(R) = oo we conclude that
¢(r) < spr(7) forr >R (62)
This, together with (55) and (59), proves (45) in the radial case.

For the non radial case, let ¢;(x) be the solution to (58) for an atom of smeared nuclear charge at R;. By another comparison argument
[see Lieb and Simon'' (Theorem V.12) or Lieb’ (Corollary 3.6)] we get

9(x) <Y $i()
j=1

This, together with the definition of S, r in (A26) and (55) implies (45). m]
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IV. BOUND ON THE EXCESS CHARGE UNIFORM IN THE ATOMIC NUMBER FOR EXPONENTS p € (3/2,2)

Next we turn to bounds on Q that are uniform in the atomic number. That such bounds exist is the content of the excess charge
conjecture. We will prove it for p € (3/2,2) following Ref. 3 and start with the atomic case where we get

Theorem 2. Assumep € (3/2,2) and B(p) as given in (66). Then the atomic excess charge Q of the generalized TFW functional is bounded

as follows:
3p—a
0<Q<B(p) . (63)

pa=s

Proof. Werecall that 9 = V — p«| - | " with p the minimizer of &, is the electric mean-field potential of the generalized TFW minimizer
[see (5)]. Similarly we write
x|, (64)

where p'* is the minimizer of 5';}: with external potential V.
We have the following simple bound in terms of sz,

)20 = A+lz+ M\ X 2\2
Qw(s)>r\‘4ﬂ(‘/’+;1’(”)ﬂ i <r 4ﬂ(¢RACP()) +(¢+%)

ﬂé h) 1ﬁ 2\2
4”(W) +(SP,R(r)+ZZ) — F(p, LR,

(65)

p(r)<0 _
Q < P, = G(np).
(Using Lemma 12 instead of Lemma 10 would improve the numerical result. However, to keep the numerical evaluation simple we refrain
from doing so.) Thus, picking a triple A, r, R such that 0 < A < 1 and 0 < R < r (which we numerically optimize) we have

Q < B(p) := max {F(p,\,R, 1), G(r,p)}. (66)

The result is displayed in Fig. 1.
The parameters A and y are restored by the scaling relations (6). O

The general case is more or less a corollary of the atomic case and merely yields a factor K, i.e.,

3p—4

Q<B(p) k. 67)

pir=e

Technically it amounts to localized estimates around each nucleus which we accomplished above and patching them together in the same way
as in the case p = 5/3 (see Ref. 3). We refrain from exhibiting the details again here.

V. THE CRITICAL EXPONENT p =3/2

We turn to the critical exponent p = 3/2. We will keep the parameter y in &, in this section, since it cannot be scaled out in this case. In
fact our result will depend on y. Lemma 3 allows us to prove the following bound.

Theorem 3. Let y be the positive solution of (5) for p = 3/2. Then

0, Y2 yci= 47,
Q<yy=v, y<y (68)

Altough one might suspect that the linear growth of Q might be linear in Z, since the fermionic part of the kinetic energy is dominated
by the bosonic part, our bound is not optimal: (i) In the purely bosonic case, i.e., y = 0 it is known the Q - 0.21 as Z — oo (Baumgartner’).
(ii) For all p we have Q < Z by adapting Lieb’s argument.'’ Moreover, strictly speaking, it is not even clear that Q > 0 for p < 5/3.

Proof. We set
gi=¢@+aV—by (69)
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FIG. 1. Upper bound B(p) on the excess charge. Minimum at p,,;, ~ 1.8431 with B(p,,,) ~ 100.14.

with non-negative constants @ and b to be suitably specified later. We want to show that g is nonnegative on all of R?. Again, we use a
subharmonic argument and define an exceptional set

Si={xe R|g(x) < 0}. (70)
As in the Proof of Lemma 3, the positions of the nuclei Ry, ..., Rk ¢ S. On S we have
Ag = 4y’ — bAY = 4y’ + boy — byy’. (71)
Because of Lemma 3 we have on S,
@ <by—aV <by-ayy. (72)

Combining this with (71) yields
Ag < 4my” + bPy? — bayy” — byy”
2

:w2[4n+(b-;(1+a)) V4(1+a)2] o)

2 2 2
can Y aay e Y2 Y 2
yn-Lara) =L 0l- T aray),

where we completed the square in b and picked b = y(1 + a)/2.
We will make different choices of a depending whether y > y_or y <y

1. y>y.: We chose a = 0 which implies that Ag <0, i.e., g is superharmonic, on S. Since g vanishes S, g > 0 on S, eventually implying

S =¢. Thus,
92 by (74)
and therefore
Q=N-Z=-1lim |x|p(x) <0, (75)
yielding the first claim.
2. 0<y<y wepicka:=(y —y)/y>0and carry out the same subharmonic argument as before yielding
p2by-r"Yy. (76)
Y

Since y(x)|x| - 0 as x - oo by Lemma 5, we have

Q = -lim |x]|p(x) < YeZVy, (77)
X— 00 y
which proves the claimed inequality for y < y_. O
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APPENDIX: MINIMIZERS OF GENERALIZED TF(W) FUNCTIONALS AND ASSOCIATED SOMMERFELD FORMULAE

We collect a few known facts for £, mostly from Benguria et al.’) and generalize the Sommerfeld formula with a remainder term from
p =5/3 [see Solovej'® (Lemma 4.4)] to p € (4/3,2).

1. No signh change of minimizers

Since T[y] > T[|y|] (Kato’s inequality®) with equality, if and only if ¥ does not change the sign, and since all other terms of &, are
unchanged under the substitution ¥ — |y| any minimizer of the functional is either non-negative or non-positive.

2. Existence of TFW minimizers and strict positivity or negativity

By standard compactness methods one shows that £ has a minimizer v € H'(R’ : R). By unique continuation this implies that any
minimizer of the functional is strictly positive or strictly negative. Conversely any positive solution of (5) minimizes &.

3. Uniqueness of the minimizer and spherical symmetry for atoms

Since &, (y) = & (—v) it is enough to study on nonnegative functions. However, the functional restricted to nonnegative functions can
be written in terms of the density p with |/p := y which makes it strictly convex. This implies uniqueness of the minimizer y among the
non-negative functions (and also among the negative functions). Thus &, has exactly two minimizers [and (5) has exactly two non-vanishing
solutions] in H ! (]R3 : R), one positive and one negative. - Moreover in the atomic case, i.e., K = 1 and Ry = 0, uniqueness implies that the
minimizers are spherically symmetric.

4. Decay of the minimizers

Lemma 5. Supposep € [1,3] and y € H' (R’ : R) is a nonnegative minimizer of , for the atomic case. Then y(x)|x| — 0 as x — oo.

Proof. Lieb’ (Theorem 2.12) shows that the atomic Thomas-Fermi energy decreases under spherically symmetric rearrangement. How-
ever, this is also true of p> is replaced by p?, since all L’-norms are invariant under spherical symmetric rearrangements and it also holds if
/] |V\/;_)\2 is added. Thus, by uniqueness y is spherically symmetric and decreasing. - In abuse of notation, we will write also y(r) instead of
w(x) with 7 := |x| in the remainder of this proof.

Now, suppose the claim would not be true. Then there exists a sequence 11,72, ... such r, = o0 as n — oo and B := limy—co Y(7 )1 > 0.
Thus there exists 79 such that for all n > ny we have w(r,)r, > B/2. Thus we have

6%:€1:90 G202 19qWianoN 90

oo co 3
r,
wos [Pz 3 (@A) 2 e 3

n ny n=ny Tn

(A1)
SaB Z (P — T l)m - oo,
n=ny rn
where the first inequality uses that y is monotone decreasing. However, this is a contradiction. O
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5. The excess charge

We know that Q € (-Z,00) for all p > 1. If p > 4/3, then Q € [Z,00), and if p > 5/3, i.e., the power of the classical Thomas-Fermi-
Weizsicker functional, then Q > 0 [Benguria et al.” (Theorem 1)].
Moreover, forally > 0and p > 1,
Q<Z (A2)

(see Lieb,” Theorem 7.23).
6. Virial theorems
There are two virial theorems that relate K, F, A, and R. Assume y to be a minimizer of £,. Then
Tly]+p Fly] - Aly] +2R[y] =0 (A3)

and

TTy] +3F[y] - 2A[y] + 5R[y] = 0. (A4)
Multiplying (A3) by 5, (A4) by 2, and subtracting the results we obtain
0=3T[y]+ (5p - 6)F[y] - Aly] (A5)

and, if p > 6/5,
3T[y] < Aly]. (A6)

To prove (A3) set f(t) := E(ty). Since f has a minimum at ¢ = 1, we have f(1) = 0. However, the left side of (A3) is simply f'(1)/2.
To prove (A4) introduce g(t) := &, (y:) with y,(x) := w(x/t). Again, g has a minimum for ¢ = 1. Thus,

0=¢'(1) = T[y] +3F[y] - 2A[y] + 5R[y], (A7)
which proves (A4).

7. Basics on existence, uniqueness, and excess charge in generalized TF theory

In this section we are interested in the asymptotic behavior of the minimizing density of Thomas-Fermi type functionals, however, with
a more general power p and also a more general external potential

Vi | ap (A8)
with 4 € M where we have the following.

Definition 2. M is the set of measures such that supp(u) compact, and u(x) = ¥ | Z:8(x = Ry)dx + o(x)dx with Zy,...,Z; >0,
Xi,...,Xx € R? and D[0] < co.

Note that the molecular case as defined in (2) is recovered by the choice ¢ = 0. The functional is defined as

SEF i={p e ’(R*)|p >0, D[p] := R[\/p] < oo}. (A9)

The generalized Thomas-Fermi functional is
EF LT L p

p =P >
pH%fRsp"—fR}VwD[Pl

Since in the atomic and molecular case the functional is unbounded from below for p < 3/2, we are mainly interested in p > 3/2. Before
we continue, note that D(-,-), the sesquilinear form associated with the quadratic form D[-], is a scalar product on the set of all tempered
distributions y for which [, d&| F (u)(§)[*/|€]* < co. In the following we will use 77 := 8(|x| - R)/(47R*). We also write p’ := p/(p — 1) for the
dual power of p. Then

(A10)

Lemma 6. Assume p>3/2, y € M, and V = yx| - |”". Then S;F is bounded from below and coercive in the p-norm and the Coulomb
norm. More precisely,

4nZ
&' () > Vel = 5 ol - 223/Dlp] + Dl (A11)

6%:€1:90 G202 19qWianoN 90
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Proof. Write Vs := x| - | and V< := | - |} = V.. By Holder’s and Schwarz’s inequality we have

[ @) - I L @x(Velx = ROp(x) + Va(x = ROp(x)) +2D(p.0)

<32 (1<l lpls + 2D(1p)) + 2D(a) (12

and thus by the Schwarz inequality
& (p)2 1% lpl} = ZIV<lylply = Zv/DIn1DLp] - /Dlp1Dlo] + Dlp] (A13)
from which the claim follows, since 0 < V<(x) < 1/|x|, and therefore in L*". ]

The Euler equation for the minimizer p'* of (A10)—generalizing the classical Thomas-Fermi equation—reads
Pl=e 6=V —px[|7. (A14)

Lemma 7. Assume p > 3/2. Then Egp has a unique minimizer p'* in D,. The minimizer fulfills (A14). Moreover, any solution p™" € D,
of (A14) minimizes E;F.

As the proof is a standard compactness and convexity argument similar to the classical Thomas-Fermi case (Lieb and Simon'') we skip
its proof and remark that it holds also for the molecular case.

Lemma 8. If p'F is a minimizer of S;Fforp >3/2. Then [ p™ = Z and ¢ > 0. Moreover p™ is spherically symmetric in the atomic case.

Proof. The well known proof of the classical case using subharmonicity transcribes to the general case. Instead we give a simple varia-
tional proof for the atomic case: Suppose Q < 0. Then, by (A14), there are R, e > 0 such that ¢(x) > €/|x| for |x| > R. Thus p™ (x) > pr(x) =

|x|_P%l for |x| > R. But

D[pr] f dr/oods =00 (A15)
max{rP NS 1}

forp > 4/3.
Suppose Q > 0. Then, pick R := inf {s

pg Which by uniqueness of p' are spherically symmetric. We compute

flxl<5 dxp™™ (x) > Z}. By assumption R < co. Now, define p, (x) := p"" (x)0(R - [x[) and p, := p"" —

& (o) - & (") < - [ ax jif‘) +2D(pwp») - Dlp>] = ~Dfps] <0, (A16)

where the last equality holds because of Newton’s theorem. Thus p™ cannot be a minimizer which is a contradiction.
By spherical symmetry and Newton’s theorem it follows that ¢ > 0. O

Note that we proved Lemma 8 by a simple and direct variational argument using the spherical symmetry; however, the theorem can be
also be proven in the molecular case using subharmonic estimates like Lieb and Simon'' did. Since this amounts to a mere transcriptions we
skip it here.

8. The Sommerfeld solution of generalized Thomas-Fermi theory and bounds on the physical solution
In this appendix we allow for more general external potentials than (2).
The classical atomic Sommerfeld solution Ss (x) = 9y°/(7*|x|*) solves AS s = 4782 on R® := R*\{0} and bounds the classical atomic
3

Thomas-Fermi potential from above. This generalizes to more general p:

Lemma 9. Pickp € (3/2,2),

il

6%:€1:90 G202 19qWianoN 90

(p-1)(Bp-4)\* 2(p-1)
b =|— s do:= . Al7
() ( e TR (A17)
Then
Sp(x) == sp(|x]) = b(p)|x° (A18)
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solves the generalized differential Thomas-Fermi equation
1
AS, = 47}
on R? and for the atomic case, i.e., y = Z3,
p<S
onR>.

Proof. Inserting (A18) into (A19) yields

b(p) [2(17—1) 2p-2+2-p ,2(p-1)
p

1 2
=4nb(p)rir v,
2(p—;1+4—2p 2 _ p 2 _ p 2 _ ] (p)

r

which is equivalent with

b(p)[z(zp__pl) 2’_’1) - 22(5__;)] = d7b(p)

" 2(p-1)(3p—4) _ 2
T Gopf 4nb(p)rr.

Inserting the definition of b(p) from (A18) gives identical left and right sides of (A19).

pubs.aip.org/aip/jmp

(A19)

(A20)

(A21)

(A22)

(A23)

The bound (A20) follows then from the maximum principle, since the inequality is certainly true in a neighborhood of zero, since

¢(x) < Z/|x| and both ¢(x), Sp(x) — 0 as x — oo.

Lemma 10. Supposep € (3/2,2), V asin Lemma 6, p'" is the minimizer of £;", ¢:=V —p™ x| - |7, and

P

_( (p-vp \* _2(p-1)
a(p)'_(Zn(Z—p)z) a0y

Then for |x| > R,
Ag = dmpiT

and

B __alp)
9(6) < Spa(x) 1= spe(lxl) 1= (oo

Proof. The generalized Thomas-Fermi Eq. (A14) and Poisson’s equation A = 47p’" imply (A25).
To show (A26) we first show that on the complement of Br(0),

1
ASpr <475y

" 2, a a
spr(r) + ;Sp,R(r) =o(0+1) C 7(5))“2 - ZGr(r 7(5;))0+1
5%“(?)_‘%47'55p,R(r)1ﬁ = 4nsp,R(r)ﬁ

O

(A24)

(A25)

(A26)

(A27)

(A28)

and that the inequality is true on dBr(0) and both S,z and ¢ tend to zero at infinity. Thus, the inequality follows for all |x| > R by

subharmonicity.

O

Now we turn the Sommerfeld solution with a leading remainder term extending a result by Brezis and Lieb,” Solovej'* (Lemma 11)"°

(Lemma 4.4). We will largely follow his proof.
Lemma 11. Pickp € (3/2,2), V asin Lemma 6,

- —5p+6+1/p*+20p—28

2(2-p)

>

(A29)
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and a smooth function 7t on Br(0)° fulfilling
A¢ = dnpi.

Moreover, define

a(R) —11m1nfsup [( $(x) )_2 - l:|x|(,

[xl=r | \ Spoy (1)

A(R) := hm\}nfsup[ o) 1:||x|(.

ixj=r L Spor (1]

Then on Br(0)¢,

(1+ a(R)™) 7 55 (1x]) < $(x) < (1 + AR )5y ([,

Note that for the classical exponent p = 5/3, { = (v/73 — 7) /2 which agrees with'® (Lemma 4.4).

pubs.aip.org/aip/jmp

(A30)

(A31)

(A32)

(A33)

Proof. We start by proving that ¢ tends to zero at infinity. To this end, pick L > 4R and define the function f(x) := C(spy(r — L/4) +

spy(L—7)) on (L/4,L) writing r := |x[:

Af(x) = C(S"(rfL/4) N %S'(rfL/4) +S"(L=1) - %S'(L - r))

| 20D 2v2 ) 1 221
7Cb(p)y [ (z_p)z (1’—%)% r 2-p (r— Lp
L2p-1)(2p-2+2-p) 1 22(p-1)

(2-p)? (L-@W r2-p (L-r)
2(p 1)
=Cb 21)
Py -
o P 1 Z 2 1 . p 1 2 +g P
2P (=) T-pT 2T T (L)

:|. (A34)

We wish to estimate the sum of the second and fourth term of the last bracket by a multiple of the third one, i.e., show that

2 1 2 1 1
- - - + = <D —.
Te-DhTa-nt @0
By scaling it is sufficient to show this for L = 1, i.e.,
2 1 2 1
- = —+= <p— ' |
Te-DEra-n® -0
which is equivalent with
1,2 1,2
2(1-1)F +2(1-r)(r - Z)zp gDr(r-Z)zfp
or
2 1,2 1,2
=2(1-r)>r +2(r- Z)Z_P < (D-2)r(r- Z)Z_P’
which is fulfilled if
» D=2 1,2
2(1-1)7F +2(r - );’ < (r- )
4 4
holds, since r > L/4. This is equivalent with
= D 5 1,2
—2(1-r)2r <|——-= - =) =0,
(=) (4 2)(r ¥

(A35)

(A36)

(A37)

(A38)

(A39)

(A40)
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which is true, since we picked D = 10. Thus we get altogether

1 2(p-1) 1 20710p+p 1
Af(x SCb 2=p 2 2
ORI [2 P(r R (L_r)z_p]

)
—Cb(p)w [ — +(zo—9p>1z]-
Z (L—T)Z‘p

ZP

Moreover, for p € (1,2),

F)FT 2 CFT (5 (r = 1/4)77 ).

(A41)

(A42)

Thus, for each p and y there is a constant C such that for all L > 4R f is a supersolution of the generalized differential TF equation, i.e.,

Afsmfﬁ

(A43)

on My := B1(0)\By/4(0). Thus the maximum principle implies f > ¢ on AL and sup,_; ,¢ (x) <p L =y . Thus ¢(x)|x| =2 is bounded for

|x| > R.
Next we turn to the main estimate. For any k € R we define

Wi (x) = (1+ kx| ™)sp (Jx),

Wi (x) 1= (1+ K ) 77 55 (Jx).

(A44)

(A45)

If we pick R > Rand set k = A" := A(R") and k = 2’ := a(R’) then w}, and w, are right and left side of the main estimate (A33) but at R’

instead of R.
We claim that

Awy < 4n(w,f/y)ﬁ and Aw; > 4n(w;/y)1’%‘.

[The first inequality for p = 5/3 was known to Brezis and Lieb (first inequality above Proposition A.5 in Ref. 5).]

(A46)

Since w},(R") = ¢(R") = w,(R") and since both functions tend to zero at infinity, this would imply the claim is true by a standard

application of the maximum principle and taking the limit R" — R.
Thus it remains to show that (A46) is really true. We compute starting with the supersolution:

((¢+1)-2¢

0 (2 = () 3 J 1+ ) =25 o k2

|| |x

:4n(—5p’yy(r))pj(1+ )+spy(r)k(r“(22§ ; ¢- )

() e bemon{ ) (55

= 471'(5P>V(r) )1H [1 + k{ + kcz—p SP 6 :|
4 r 47Tb(p)ﬁr

2m(p-2)°¢ [ 5p=6
_4n(wk)““ [“471(;» s (35 * )]
Y (1+kr™ ()P*l

Thus, the claim would follow if the big fraction of the last line is not bigger than one. Since p — 1 < 1, it suffices to show that

k (p-2)° 3p - 10
1+#|:1+2(P—1)(3P—4)(( +C)]sl+(p—l) kr

or

(p-2)° (5p-6
2 )52

(A47)

(A438)

(A49)
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which is fulfilled, if
- -4
(%rﬂ(:zL) (A50)
2-p 2-p
which true for the chosen (.
Next we treat the subsolution

G <p—1>[ 4(p- 1)(

Po2-p | 2-p

an(p-1)(3p-4) 2-p

sp-1)(, ad\ Tt "\ (- 1)
*[z—p(“?) (en) <]}

1 "\ —p)? -
= 47,-[51,,),(7)1)—1{(1 + a—() g 2m(2 = p) (p=1)
yr

Jl2-p[ de-n( dY T (L @) ac(c-l)
23p-4 2-p ~ e A S
4

A (r)w{u[l—z 120 )]“'}= At (as1)
A yrt

where we drop a non-negative summand containing (a’()* in the first inequality and use (A29) in the last step. Thus w, is indeed a
subsolution. The result follows by taking the limits lim, , a(r") and lim, ., A(r"). o

Equipped with two atomic supersolutions, namely Spr and w}, of the generalized Thomas-Fermi equation suggests that the pointwise
minimum bounds ¢ from above. This would improve the bound for large r, since the coefficient a(p) of the leading term of Sp,r for large r is
larger than the coefficient b(p) of the leading term of w} . In fact this is true:

Lemma 12. Assumep € (3/2,2),r>R>0,k ¢ R? (asin (A29), and w; as defined in (A44). Then

. +
¢(r) < 0p(r) = min {spr(r), wic (r) }- (A52)
Proof. Both functions are supersolutions of the Thomas-Fermi equation and s, z(r) > ¢(r). Moreover, the two function have exactly
one point of intersection o for r > R. Thus wj (r0) = spr(r0) > ¢(r0). Since wi (r) — 0 as r — oo we have w; (r) > ¢(r) for r > ro. ]
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