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ABSTRACT
We bound the number of electrons Q that an atom can bind in excess of neutrality for density functionals generalizing the classical Thomas-
Fermi-Weizsäcker functional: instead of the classical power 5/3 more general powers p are considered. For 3/2 < p < 2 we prove the excess
charge conjecture, i.e., that Q is uniformly bounded in the atomic number Z. The case p = 3/2 is critical: the behavior changes from a uniform
bound in Z to a linear bound at the critical coupling 4

√

π of the nonlinear term. We also improve the linear bound for all p ≥ 6/5.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0264498

I. INTRODUCTION
Density functionals have been essential tools for analyzing the physical properties of atoms, molecules, and physics. In quantum mechan-

ics, one can trace them back to Thomas16 and Fermi.6,7 Weizsäcker17 added an inhomogeneity correction meant to improve the behavior of
the density in regions of rapid change of the external potential. Benguria et al.2 generalized the classical Thomas-Fermi-Weizsäcker functional
to a more general functional and initiated its mathematical analysis. Written in the square root ψ of the electron density ρ it reads

Ep : H1
(R3 : R)→ R,

ψ ↦ A∫
R3
∣∇ψ∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T[ψ]∶=

+
γ
p∫R3

∣ψ∣2p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F[ψ]∶=

− ∫
R3

Vψ2

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

A[ψ]∶=

+
1
2∫R3

dx∫
R3

dy
ψ(x)2ψ(y)2

∣x − y∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D[ψ2
]∶=

, (1)

with p ≥ 1, γ > 0, and

V(x) =
K

∑

k=1

Zk

∣x − Rk∣
, (2)

where Z ∶= (Z1, . . . , ZK) ∈ RK
+ and R ∶= (R1, . . . , RK) ∈ R3K .

Note that we will not include Dirac-type terms. Functionals of this type have the peculiar property that the energy is—even with vanishing
external potential—unbounded from below forming—poetically speaking—an neblua of self-attracting electrons. Thus the definition of the
electron state of a saturated atom as the absolute minimizer is not true meaning that our line of attack would fail right from the beginning.
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The generalized Thomas-Fermi term F arises by a semiclassical approximation from a many electron Hamiltonian with kinetic energy
operator ∣ − i∇∣α. The relation between the exponents is

p =
α + 3

3
(3)

with the prefactor given by
γ = (3π2

)

α
3 . (4)

The range 2 > p > 4/3 corresponds to 3 > α > 1. [Note that the upper bound on p arises from the Proof of Lemma 2 and also later from
bounding the potential φ uniformly in Z by Sommerfeld-type solutions: For p→ 2 the coefficients b(p) and σ(p) of the Sommerfeld solutions
as defined in (A17) blow up.]

The Euler equation for the minimizer ψ reads

− AΔψ + [γ∣ψ∣2p−2
− (V − ∣ψ∣2 ∗ ∣ ⋅ ∣−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φ∶=

)]ψ = 0 (5)

weakly in H1
(R3 : R+).

For p > 3/2 we can scale the Euler equation by making the ansatz

ψ(x) = apψ̃(bpx), Zk = cpZ̃k, Rk = R̃k/bp (6)

with

ap ∶=
A

1
4p−6

γ
1

2p−3
, bp ∶=

A
2−p

4p−6

γ
1

4p−6
, cp ∶=

A
3p−4
4p−6

γ
1

4p−6
. (7)

Then
−Δψ̃ + [∣ψ̃∣2p−2

− (VR̃,Z̃ − ∣ψ̃∣
2 ∗ ∣ ⋅ ∣−1

)]ψ̃ = 0. (8)

Thus, we may assume for p > 3/2 that A = γ = 1 and retrieve the general case by (6).
If ψ minimizes Ep(H1

(R3 : R)) then we write N ∶= ∫R3 ψ2 for its particle number Z ∶= Z1 + ⋅ ⋅ ⋅ + ZK and

Q ∶= N − Z (9)

for its excess charge. The excess charge has previously been studied. Lower bounds on the excess charge are Q ≥ 0 for p ≥ 4/32 (Lemma 12)
and Q > 0 for p > 5/3 and K = 12 (Lemma 13).

The following is known about upper bounds: In the classical case, Benguria and Lieb3 [formula (43)] showed Q ≤ 270.74K. Solovej14

(Proposition 14) improved this value to Q ≤ 178.03 K. Based on an immediate generalization of an argument of Lieb10 it is clear that Q < Z
for all p.

The focus of this work will be on generalizing and sharpening those upper bounds. We will start in Sec. II with the improvement
Q ≤ 0.5211Z for rather general p.

We will also generalize the bound uniform in the nuclear charge Z similar to Ref. 3 [formula (43)] and Solovej14 (Proposition 14). We
will carry these results through for p ∈ (3/2, 2) in Sec. IV.

The value p = 3/2 is critical, since the energetic dominance shifts from the Thomas-Fermi term for p > 3/2 to the Weizsäcker term for
p < 3/2. We will treat the critical case by different methods and will show for γ < γc ∶= 4

√

π a bound proportional to Z whereas for γ ≥ γc we
have Q = 0. This is done in Sec. V.

II. IMPROVING THE BOUND Q ≤ Z FOR EXPONENTS p ≥ 6/5
We consider the atomic case, i.e., K = 1. Because of translational invariance we can and will assume R1 = 0 throughout this section.

Following Benguria and Tubino4 we will improve (A2). We begin with an inequality by Nam,12

β ∶= inf
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2∫R3

∣x∣2+∣y∣2

∣x−y∣ ψ(x)2ψ(y)2 dxdy

∫R3 ψ(x)2 dx∫R3 ∣x∣ ψ(x)2 dx

RRRRRRRRRRRRR

0 ≠ ψ ∈ H1
(R3 : R)

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

≥ 0.8218. (10)

Theorem 1. Let ψ be a non-vanishing solution of (5) for K = 1 in H1
(R3
). Then, for all γ ≥ 0 and all p ≥ 6/5,

∫
R3
ψ(x)2 dx ≤

5
4β

Z ≤ 1.5211 Z. (11)
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Proof. Since the groundstate energy of hydrogen is −1/4 {Schrödinger13 [Eq. (19)]}, we have for any positive nuclear charge Z̃,

∫
R3
∣∇ f ∣2 − ∫

R3

Z̃
∣x∣
∣ f (x)∣2dx ≥ −

Z̃ 2

4 ∫R3
∣ f ∣2 (12)

for any f ∈ H1
(R3
). Picking f ∶= ψ this can be recast as

1
Z

A[ψ] ≤
1
Z̃

T[ψ] +
Z̃
4

N (13)

using the notation for the various parts of the energy in (1). Optimizing in Z̃ yields

(
A
Z
)

2
≤ K N. (14)

Now, from (A6) and (14) we get

A ≤
1
3

N Z2. (15)

If we define

I = ∫R
3 ∣x∣ ψ(x)2 dx

∫R3 ψ(x)2 dx
=

1
N ∫R3

∣x∣ ψ(x)2 dx (16)

and use the Schwarz inequality, we get

N2
= (∫

R3
ψ(x)2 dx)

2
≤ ∫

R3
∣x∣ ψ(x)2 dx∫

R3

ψ(x)2

∣x∣
dx ≤ (I N)

A
Z

. (17)

Using (15) and (17) we finally get

I ≥
3
Z

. (18)

To conclude we use Nam’s method.12 We multiply (5) by ψ ⋅ ∣x∣2 and integrate over R3. From Nam’s result we have

(−Δψ, ∣x∣2ψ) ≥ −
3
4
(ψ,ψ) = −

3
4

N. (19)

Also, γ∫R3 ∣ψ(x)∣2p−2ψ(x)2
∣x∣2 dx ≥ 0. Hence,

∫
R3
φ(x)∣x∣2ψ(x)2 dx ≥ −

3
4

N, (20)

and using

φ(x) =
Z
∣x∣
− ∫

R3

ψ(y)2

∣x − y∣
dy,

we get

Z∫
R3
∣x∣ ψ(x)2 dx −

1
2∫R3 ∫R3

∣x∣2 + ∣y∣2

∣x − y∣
ψ(x)2ψ(y)2 dxdy ≥ −

3
4

N, (21)

where we did the standard symmetrization in the second integral. Moreover, from (16), the first term in (21) is given by ZNI.
From the definition of β, N, and I, we have

1
2∫R3

∣x∣2 + ∣y∣2

∣x − y∣
ψ(x)2ψ(y)2 dxdy ≥ βN2I. (22)

From (21), (22), and the definition of I, we get

ZNI ≥ βN2I −
3
4

N ≥ βN2I −
1
4

NZI, (23)

where the last inequality follows from (18). Rearranging (23), we get

5
4

ZNI ≥ βN2I
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yielding

N ≤
5

4β
Z. (24)

Using Nam’s numerical lower bound (10) on β in (24) gives

N ≤ 1.5211Z. (25)

◻

III. SOME PREPARATORY RESULTS
We start with a central observation keeping the constant γ in this section, since we will use the result also for p = 3/2 where it cannot be

scaled out. Set

Definition 1.
P : R3

/{R1, . . . , RK}→ R+,

x ↦
√

4πψ(x)2
+ φ(x)2.

(26)

The following allows us to bound the excess charge from above.

Lemma 1. The function P is subharmonic, and, for K = 1 and R1 = 0, the function rP(r) is convex, monotone decreasing in r, and
limr→∞rP(r) = Q. In particular, for all r > 0,

rP(r) ≥ Q. (27)

Note that we write – in abuse of notation – P(r) instead of P(x) in the radial case.

Proof. We compute
2PΔP + 2(∇P)2

= ΔP2
= 8πψΔψ + 8π(∇ψ)2

+ 2φΔφ + 2(∇φ)2

=8πψ2
(γψ2p−2

− φ) + 8π(∇ψ)2
+ 8πφψ2

+ 2(∇φ)2

=8πψ2γψ2p−2
+ 8π(∇ψ)2

+ 2(∇φ)2,

(28)

where we used the TFW Eq. (5). By Schwarz’s inequality (∇P)2
≤ 4π(∇ψ)2

+ (∇φ)2 and therefore (28) implies ΔP ≥ 0. This shows the
subharmonicity.

Since

ΔP(x) =
1
r

d2

dr2 rP(r), (29)

the convexity and monotonicity statements follow.
By Lemma 5 rψ(r)→ 0 and by Newton’s lemma rφ(r)→ −Q as r →∞. This shows the limiting statement. – Inequality (27) is an

immediate consequence of the monotonicity and the limiting statement. ◻

Lemma 2. For λ ∈ (0, 1) and 3/2 < p < 2, every minimizer ψ of Ep with φ and V given by (1) and (2) respectively, satisfies

λγψ2p−2
≤ φ + cp(λ)γ1/(3−2p), (30)

with

cp(λ) =
(2π)

p−1
2p−3

λ
p−1

2p−3 (1 − λ)
2−p

2p−3

(2p − 3)
(2 − p)

2−p
2p−3

(p − 1)
2p−2
2p−3

. (31)

Note that when p = 5/3, i.e., in the case of non-relativistic TFW theory,

c 5
3
(λ) =

9
4
π2 1
λ2
(1 − λ)

(32)

as in Ref. 3 [formula (13)].

Proof. Put u ∶= ψ2p−2. Then (5) implies that
−Δu + (2p − 2)(γu − φ)u ≤ 0, (33)
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provided p ≥ 3/2. On the other hand, (2) and (5) imply

−Δφ = −4πψ2
= −4πu1/(p−1), (34)

away from Rk, k = 1, 2, . . .K. Now, set
v ∶= γλu − φ − d, (35)

with d a constant to be chosen later. Then, from (34) and (35) we get

−Δv = −γλΔu + Δφ ≤ −γλ(2p − 2)(γu − φ)u + 4πu
1

p−1 . (36)

Set S = {x∣v > 0}. It follows from (35) and (2) that Rk ∉ S, all k = 1, 2, . . ., K. On S,

φ = γλ u − d − v ≤ −d + γλ u, (37)

and replacing in (36), on S,
−Δv ≤ −γλ(2p − 2)γ(1 − λ)u2

− γλ(2p − 2)d u + 4πu
1

p−1 .

Now, if 3/2 < p < 2, then 1/2 < p − 1 < 1, 1 < 1/(p − 1) < 2, and

4πu
1

p−1 ≤ γ2u2λ(1 − λ)(2p − 2) + b u,

i.e.,
4πu

2−p
p−1 ≤ γ2uλ(1 − λ)(2p − 2) + b.

Consider the function
f (u) = 4πu

2−p
p−1 − γ2uλ(1 − λ)(2p − 2), (38)

with (2 − p)/(p − 1) < 1, i.e., p > 3/2. Since (2 − p)/(p − 1) < 1, the function f (u) for u > 0 has only one maximum, say û, on the interval
(0,∞). û is given by

û = [
γ2
(p − 1)2λ(1 − λ)

2π(2 − p)
]

(p−1)/(3−2p)

and
f (û) = (2π)

p−1
2p−3 (γ2λ(1 − λ))

2−p
3−2p 2(2p − 3)(p − 1)

1
3−2p (2 − p)

2−p
2p−3 .

Now choose b = f (û), which in turn implies choosing d = b/(γλ(2p − 2)). With that choice of b, −Δv ≤ 0 on S. Hence v is subharmonic on
S. Since v = 0 on ∂S, we conclude that v < 0 on S. This in turn implies that S is empty and we are done. ◻

Corollay 1. For 3/2 < p < 2 we have

− cp(λ0) = −
2

p−1
2p−3 π

p−1
2p−3 (2p − 3)

(p − 1)
3(p−1)

2p−3

< φ(x). (39)

Moreover, if φ(x) ≤ 0, then

ψ(x) ≤
2

4p−3
4p−6 π

p−1
2p−3 (2p − 3)

1
2p−2

(3p − 4)
3p−4

2(p−1)(2p−3)
,

P(x) ≤P−p ∶=

¿

Á
Á
ÁÀmax

⎧
⎪⎪
⎨
⎪⎪
⎩

4π(
cp(λ1) − cp(λ0)

λ1
)

1
p−1

+ cp(λ0)
2, 4π(

cp(λ1)

λ1
)

1
p−1
⎫
⎪⎪
⎬
⎪⎪
⎭

(40)

with λ0 ∶= p − 1 and λ1 ∶= (3p − 4)/(2p − 2).

Proof. For the first claim, estimate the left side of (30) from below by zero and minimize in λ. The minimum occurs at λ0 = p − 1.
To prove the claim on ψ drop φ in (30), move all λ to the right, and minimize the right side in λ. The minimum occurs at λ1 = (3p −

4)/(2p − 2). The minimal value is the right hand side of (40).
Finally, we pick λ = λ1 in (30) and maximize over all possible negative values of φ(x) given by (39). Since the function is convex, the

maximum occurs at the boundary, i.e., φ = 0 or φ = cp(λ0). ◻
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We also have the bound

Lemma 3. For p ≥ 3/2 and positive γ we have
ψ2p−2

≤ γ−1V. (41)

Proof. First we note that V is harmonic outside the positions of the nuclei R1, . . . , RK . We set

f ∶= γ−1V − ψ2p−2. (42)

We wish to show that f ≥ 0 and therefore consider the exceptional set

S ∶= {x ∈ R3
∣ f (x) < 0}. (43)

Certainly neither of the R1, . . . , RK is in S, since ψ is finite everywhere. On S we get from (5),

Δ f = −Δψ2p−2
= −(2p − 2)(2p − 3)ψ2p−4

(∇ψ)2
− (2p − 2)ψ2p−3Δψ

≤ (2p − 2)ψ2p−3
(φ − γψ2p−2

)ψ ≤ (2p − 2)ψ2p−2
(V − γψ2p−2

) < 0 (44)

on S. Hence Δ f < 0 on S, i.e., f is superharmonic on S. Since f vanishes on the boundary of S, the exceptional set S is empty which implies the
claim. ◻

For R > 0 define DR as the complement of the union of the balls of radius R around the positions of the nuclei R1, . . . , RK , i.e., BR(R1) ∪

⋅ ⋅ ⋅ ∪ BR(RK).

Lemma 4. For 3/2 < p < 2, γ > 0 and R > 0, let ψ be the positive solution of (5) with V given by (2), φ by (5), and Sp,R by (A26). Then for
all x ∈ DR,

φ(x) ≤
π2

R2 +
K

∑

k=1
sp,R(∣x − Rk∣). (45)

Proof. Let W = γ ρp−1
− φ, ρ = ψ2 and consider the Hamiltonian H = −Δ +W. The operator H is non-negative, since its ground state,

the function ψ, has zero energy. In particular,

∫
R3
(∣∇eR,a∣

2
+W∣eR,a∣

2
) ≥ 0, (46)

where eR,a is the positive normalized groundstate of the Dirichlet Laplacian on BR(a), a ∈ R3, extended by 0 to the complement of BR(a), i.e.,

eR,a(x) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1
R

3
2
√

2π
sin (π∣x − a∣/R)
∣x − a∣/R

, ∣x − a∣ < R,

0, ∣x − a∣ ≥ R.
(47)

Obviously eR,a ∈ H1
(R3
), is spherically symmetric about a, is decreasing, and has compact support. With gR,a ∶= e2

R,a and gR ∶= gR,0 we have

∫
R3
∣∇eR,x∣

2
= (

π
R
)

2
. (48)

Thus, (46) implies for all R > 0 and all x ∈ R3,

∫
R3

W(y)eR,x(y) dy ≥ −(
π
R
)

2
. (49)

Note that ∫R3 W(y)gR,x(y) dy = (gR ∗ W)(x) where ∗ denotes convolution. Define

ϕ̃ = φ ∗ gR − (
π
R
)

2
. (50)

Since φ ∈ L3+ϵ
+ L3−ϵ, ϵ > 0 (Ref. 2, Proof of Lemma 7) and gR ∈ Ls for all s ≥ 1, ϕ̃ is continuous and tends to −(π/R)2 at infinity (see Ref. 9,

Lemma 3.1). Using Hölder’s inequality, we have for all x,

(gR ∗ ρp−1
)(x) ≤ [(gR ∗ ρ)(x)]p−1

(∫ gR(y) dy)
2−p
= [(gR ∗ ρ)(x)]p−1, (51)
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provided 1 ≤ p ≤ 2. Here we used ∫R3 gR = 1. Let us also define

ρ̃ = gR ∗ ρ. (52)

From Eqs. (49)–(52) we obtain for all x,

(
π
R
)

2
≥ (φ ∗ gR)(x) − γ(gR ∗ ρp−1

)(x) ≥ ϕ̃(x) + (
π
R
)

2
− γρ̃(x)p−1. (53)

In other words,
ϕ̃ ≤ γρ̃ p−1, (54)

provided 1 ≤ p ≤ 2. Notice that φ is subharmonic away from the nuclei and that φ̃ = gR ∗ϕ − (π/R)2 with gR being spherically symmetric,
positive, of total mass one, and having support in a ball of radius R. From this it follows that

φ(x) ≤ ϕ̃(x) + (
π
R
)

2
, (55)

for all x such that ∣x − Rk∣ > R, for all k. To prove (45) we need a bound on ϕ̃. From (2) and (50), using the bound (54), and the fact that the
Laplacian commutes with convolution, we compute

−
1

4π
Δϕ̃ = Ṽ − ρ̃ ≤ Ṽ − γ−1/(p−1)

[ϕ̃+(x)]
1/(p−1) (56)

with
Ṽ = V ∗ gR (57)

and with ϕ̃+(x) = max (ϕ̃(x), 0). Let ϕ̂ be the minimizer of the Thomas-Fermi functional with external potential Ṽ . It fulfills the equation

−
1

4π
Δϕ̂ = Ṽ − [

ϕ̂+(x)
γ
]

1/(p−1)

. (58)

By the maximum principle we have for all x,
ϕ̃(x) ≤ ϕ̂(x). (59)

The next step is to bound ϕ̂. We treat first the radial case with V(x) = Z/∣x∣. Since the Sommerfeld solution Sp,R of the generalized TF
model defined in (A26) fulfills for p ∈ (3/2, 2),

1
4π
ΔSp,R ≤ γ−1/(p−1) S1/(p−1)

p,R (60)

for r > R and ϕ̂ satisfies there
1

4π
Δϕ̂ = γ−1/(p−1) ϕ̂ 1/(p−1). (61)

We can again use a comparison argument. Since sp,R(R) − ϕ̂(R) =∞ we conclude that

ϕ̂(r) ≤ sp,R(r) for r > R. (62)

This, together with (55) and (59), proves (45) in the radial case.
For the non radial case, let ϕ̂j(x) be the solution to (58) for an atom of smeared nuclear charge at Rj. By another comparison argument

[see Lieb and Simon11 (Theorem V.12) or Lieb9 (Corollary 3.6)] we get

ϕ̂(x) ≤
K

∑

j=1
ϕ̂j(x).

This, together with the definition of Sp,R in (A26) and (55) implies (45). ◻
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IV. BOUND ON THE EXCESS CHARGE UNIFORM IN THE ATOMIC NUMBER FOR EXPONENTS p ∈ (3/2, 2)
Next we turn to bounds on Q that are uniform in the atomic number. That such bounds exist is the content of the excess charge

conjecture. We will prove it for p ∈ (3/2, 2) following Ref. 3 and start with the atomic case where we get

Theorem 2. Assume p ∈ (3/2, 2) and B(p) as given in (66). Then the atomic excess charge Q of the generalized TFW functional is bounded
as follows:

0 ≤ Q ≤ B(p)
A

3p−4
4p−6

γ
1

4p−6
. (63)

Proof. We recall that φ = V − ρ ∗ ∣ ⋅ ∣−1 with ρ the minimizer of Ep is the electric mean-field potential of the generalized TFW minimizer
[see (5)]. Similarly we write

ϕ̂ = Ṽ − ρTF ∗ ∣ ⋅ ∣−1, (64)

where ρTF is the minimizer of ETF
p with external potential Ṽ .

We have the following simple bound in terms of sp,R,

Q
φ(r)≥0
≤ r

¿

Á
ÁÀ4π(

φ + cp(λ)
λ

)

1
p−1

+ φ2
≤ r

¿

Á
Á
Á
ÁÀ4π

⎛

⎝

ϕ̂ + π2

R2 + cp(λ)
λ

⎞

⎠

1
p−1

+ (ϕ̂ +
π2

R2 )

2

≤ r

¿

Á
Á
Á
ÁÀ4π

⎛

⎝

sp,R(r) + π2

R2 + cp(λ)
λ

⎞

⎠

1
p−1

+ (sp,R(r) +
π2

R2 )

2

=: F(p, λ, R, r),

Q
φ(r)<0
≤ rP−p =: G(r, p).

(65)

(Using Lemma 12 instead of Lemma 10 would improve the numerical result. However, to keep the numerical evaluation simple we refrain
from doing so.) Thus, picking a triple λ, r, R such that 0 < λ < 1 and 0 < R < r (which we numerically optimize) we have

Q ≤ B(p) ∶= max{F(p, λ, R, r), G(r, p)}. (66)

The result is displayed in Fig. 1.
The parameters A and γ are restored by the scaling relations (6). ◻

The general case is more or less a corollary of the atomic case and merely yields a factor K, i.e.,

Q ≤ B(p)
A

3p−4
4p−6

γ
1

4p−6
K. (67)

Technically it amounts to localized estimates around each nucleus which we accomplished above and patching them together in the same way
as in the case p = 5/3 (see Ref. 3). We refrain from exhibiting the details again here.

V. THE CRITICAL EXPONENT p = 3/2
We turn to the critical exponent p = 3/2. We will keep the parameter γ in Ep in this section, since it cannot be scaled out in this case. In

fact our result will depend on γ. Lemma 3 allows us to prove the following bound.

Theorem 3. Let ψ be the positive solution of (5) for p = 3/2. Then

Q ≤
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0, γ ≥ γc ∶= 4
√

π,
γc − γ
γ

Z, γ < γc.
(68)

Altough one might suspect that the linear growth of Q might be linear in Z, since the fermionic part of the kinetic energy is dominated
by the bosonic part, our bound is not optimal: (i) In the purely bosonic case, i.e., γ = 0 it is known the Q→ 0.21 as Z →∞ (Baumgartner1).
(ii) For all p we have Q ≤ Z by adapting Lieb’s argument.10 Moreover, strictly speaking, it is not even clear that Q > 0 for p < 5/3.

Proof. We set
g ∶= φ + aV − bψ (69)
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FIG. 1. Upper bound B(p) on the excess charge. Minimum at pmin ≈ 1.8431 with B(pmin) ≈ 100.14.

with non-negative constants a and b to be suitably specified later. We want to show that g is nonnegative on all of R3. Again, we use a
subharmonic argument and define an exceptional set

S ∶= {x ∈ R3
∣g(x) < 0}. (70)

As in the Proof of Lemma 3, the positions of the nuclei R1, . . . , RK ∉ S. On S we have

Δg = 4πψ2
− bΔψ = 4πψ2

+ bφψ − bγψ2. (71)

Because of Lemma 3 we have on S,
φ < bψ − aV ≤ bψ − aγψ. (72)

Combining this with (71) yields
Δg ≤ 4πψ2

+ b2ψ2
− baγψ2

− bγψ2

=ψ2
[4π + (b −

γ
2
(1 + a))

2
−
γ2

4
(1 + a)2

]

=ψ2
(4π −

γ2

4
(1 + a)2

) =
ψ2

4
(γ2

c −
γ2

4
(1 + a)2

),

(73)

where we completed the square in b and picked b = γ(1 + a)/2.
We will make different choices of a depending whether γ ≥ γc or γ < γc:

1. γ ≥ γc: We chose a = 0 which implies that Δg ≤ 0, i.e., g is superharmonic, on S. Since g vanishes ∂S, g ≥ 0 on S, eventually implying
S =∅. Thus,

φ ≥ bψ (74)

and therefore
Q = N − Z = − lim

x→∞
∣x∣φ(x) ≤ 0, (75)

yielding the first claim.
2. 0 ≤ γ < γc we pick a ∶= (γc − γ)/γ > 0 and carry out the same subharmonic argument as before yielding

φ ≥ bψ −
γc − γ
γ

V. (76)

Since ψ(x)∣x∣→ 0 as x →∞ by Lemma 5, we have

Q = − lim
x→∞
∣x∣φ(x) ≤

γc − γ
γ

Z, (77)

which proves the claimed inequality for γ < γc. ◻
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APPENDIX: MINIMIZERS OF GENERALIZED TF(W) FUNCTIONALS AND ASSOCIATED SOMMERFELD FORMULAE

We collect a few known facts for Ep mostly from Benguria et al.2) and generalize the Sommerfeld formula with a remainder term from
p = 5/3 [see Solovej15 (Lemma 4.4)] to p ∈ (4/3, 2).

1. No sign change of minimizers
Since T[ψ] ≥ T[∣ψ∣] (Kato’s inequality8) with equality, if and only if ψ does not change the sign, and since all other terms of Ep are

unchanged under the substitution ψ → ∣ψ∣ any minimizer of the functional is either non-negative or non-positive.

2. Existence of TFW minimizers and strict positivity or negativity
By standard compactness methods one shows that E has a minimizer ψ ∈ H1

(R3 : R). By unique continuation this implies that any
minimizer of the functional is strictly positive or strictly negative. Conversely any positive solution of (5) minimizes E.

3. Uniqueness of the minimizer and spherical symmetry for atoms
Since Ep(ψ) = Ep(−ψ) it is enough to study on nonnegative functions. However, the functional restricted to nonnegative functions can

be written in terms of the density ρ with √ρ ∶= ψ which makes it strictly convex. This implies uniqueness of the minimizer ψ among the
non-negative functions (and also among the negative functions). Thus Ep has exactly two minimizers [and (5) has exactly two non-vanishing
solutions] in H1

(R3 : R), one positive and one negative. – Moreover in the atomic case, i.e., K = 1 and R1 = 0, uniqueness implies that the
minimizers are spherically symmetric.

4. Decay of the minimizers

Lemma 5. Suppose p ∈ [1, 3] and ψ ∈ H1
(R3 : R) is a nonnegative minimizer of Ep for the atomic case. Then ψ(x)∣x∣→ 0 as x →∞.

Proof. Lieb9 (Theorem 2.12) shows that the atomic Thomas-Fermi energy decreases under spherically symmetric rearrangement. How-
ever, this is also true of ρ

5
3 is replaced by ρp, since all Lp-norms are invariant under spherical symmetric rearrangements and it also holds if

∫ ∣∇
√ρ∣2 is added. Thus, by uniqueness ψ is spherically symmetric and decreasing. – In abuse of notation, we will write also ψ(r) instead of

ψ(x) with r ∶= ∣x∣ in the remainder of this proof.
Now, suppose the claim would not be true. Then there exists a sequence r1, r2, . . . such rn →∞ as n→∞ and B ∶= limn→∞ψ(rn)rn > 0.

Thus there exists n0 such that for all n ≥ n0 we have ψ(rn)rn ≥ B/2. Thus we have

∞ > ∫
R3
∣ψ∣2 ≥

∞

∑

n=n0

4π
3
(r3

n − r3
n−1)ψ(rn)

2
≥ πB2

∞

∑

n=n0

r3
n − r3

n−1

r2
n

≥πB2
∞

∑

n=n0

(rn − rn−1)
r2

n + rnrn−1 + r2
n−1

r2
n

=∞,
(A1)

where the first inequality uses that ψ is monotone decreasing. However, this is a contradiction. ◻
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5. The excess charge
We know that Q ∈ (−Z,∞) for all p ≥ 1. If p ≥ 4/3, then Q ∈ [Z,∞), and if p ≥ 5/3, i.e., the power of the classical Thomas-Fermi-

Weizsäcker functional, then Q > 0 [Benguria et al.2 (Theorem 1)].
Moreover, for all γ ≥ 0 and p > 1,

Q < Z (A2)

(see Lieb,9 Theorem 7.23).

6. Virial theorems
There are two virial theorems that relate K, F, A, and R. Assume ψ to be a minimizer of Ep. Then

T[ψ] + p F[ψ] − A[ψ] + 2R[ψ] = 0 (A3)

and
T[ψ] + 3F[ψ] − 2A[ψ] + 5R[ψ] = 0. (A4)

Multiplying (A3) by 5, (A4) by 2, and subtracting the results we obtain

0 = 3T[ψ] + (5p − 6)F[ψ] − A[ψ] (A5)

and, if p ≥ 6/5,
3T[ψ] ≤ A[ψ]. (A6)

To prove (A3) set f (t) ∶= Ep(tψ). Since f has a minimum at t = 1, we have f ′(1) = 0. However, the left side of (A3) is simply f ′(1)/2.
To prove (A4) introduce g(t) ∶= Ep(ψt) with ψt(x) ∶= ψ(x/t). Again, g has a minimum for t = 1. Thus,

0 = g′(1) = T[ψ] + 3F[ψ] − 2A[ψ] + 5R[ψ], (A7)

which proves (A4).

7. Basics on existence, uniqueness, and excess charge in generalized TF theory
In this section we are interested in the asymptotic behavior of the minimizing density of Thomas-Fermi type functionals, however, with

a more general power p and also a more general external potential

V ∶= ∣ ⋅ ∣−1 ∗μ (A8)

with μ ∈ M where we have the following.

Definition 2. M is the set of measures such that supp(μ) compact, and μ(x) = ∑K
k=1 Zkδ(x − Rk)dx + σ(x)dx with Z1, . . . , Zk ≥ 0,

X1, . . . , Xk ∈ R3, and D[σ] <∞.

Note that the molecular case as defined in (2) is recovered by the choice σ = 0. The functional is defined as

D
TF
p ∶= {ρ ∈ Lp

(R3
)∣ρ ≥ 0, D[ρ] ∶= R[

√
ρ] <∞}. (A9)

The generalized Thomas-Fermi functional is
ETF

p : DTF
p → R,

ρ↦
1
p∫R3

ρp
− ∫

R3
Vρ +D[ρ].

(A10)

Since in the atomic and molecular case the functional is unbounded from below for p ≤ 3/2, we are mainly interested in p > 3/2. Before
we continue, note that D(⋅, ⋅), the sesquilinear form associated with the quadratic form D[⋅], is a scalar product on the set of all tempered
distributions μ for which ∫R3 dξ∣F(μ)(ξ)∣2/∣ξ∣2 <∞. In the following we will use η ∶= δ(∣x∣ − R)/(4πR2

). We also write p′ ∶= p/(p − 1) for the
dual power of p. Then

Lemma 6. Assume p > 3/2, μ ∈ M, and V = μ ∗ ∣ ⋅ ∣−1. Then ETF
p is bounded from below and coercive in the p-norm and the Coulomb

norm. More precisely,

ETF
p (ρ) ≥

γ
p
∥ρ∥p

p −
4πZ

3 − p′
∥ρp∥ − 2Z

√

D[ρ] +D[ρ]. (A11)
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Proof. Write V> ∶= η ∗ ∣ ⋅ ∣−1 and V< ∶= ∣ ⋅ ∣−1
− V>. By Hölder’s and Schwarz’s inequality we have

∫
R3

dxV(x)ρ(x) =
K

∑

k=1
Zk∫

R3
dx(V<(x − Rk)ρ(x) + V>(x − Rk)ρ(x)) + 2D(ρ, σ)

≤

K

∑

k=1
Zk(∥V<∥p′∥ρ∥p + 2ZkD(η, ρ)) + 2D(σ, ρ) (A12)

and thus by the Schwarz inequality

ETF
p (ρ) ≥

γ
p
∥ρ∥p

p − Z∥V<∥p′∥ρ∥p − Z
√

D[η]D[ρ] −
√

D[ρ]D[σ] +D[ρ] (A13)

from which the claim follows, since 0 ≤ V<(x) ≤ 1/∣x∣, and therefore in Lp′. ◻

The Euler equation for the minimizer ρTF of (A10)—generalizing the classical Thomas-Fermi equation—reads

ρp−1
= ϕ+, ϕ = V − ρ ∗ ∣ ⋅ ∣−1. (A14)

Lemma 7. Assume p > 3/2. Then ETF
p has a unique minimizer ρTF in Dp. The minimizer fulfills (A14). Moreover, any solution ρTF

∈ Dp

of (A14) minimizes ETF
p .

As the proof is a standard compactness and convexity argument similar to the classical Thomas-Fermi case (Lieb and Simon11) we skip
its proof and remark that it holds also for the molecular case.

Lemma 8. If ρTF is a minimizer of ETF
p for p > 3/2. Then ∫R3 ρTF

= Z and φ ≥ 0. Moreover ρTF is spherically symmetric in the atomic case.

Proof. The well known proof of the classical case using subharmonicity transcribes to the general case. Instead we give a simple varia-
tional proof for the atomic case: Suppose Q < 0. Then, by (A14), there are R, ϵ > 0 such that φ(x) ≥ ϵ/∣x∣ for ∣x∣ ≥ R. Thus ρTF

(x) ≳ ρR(x) ∶=
∣x∣−

1
p−1 for ∣x∣ > R. But

D[ρR] ≳ ∫

∞

R
dr∫

∞

R
ds

r2s2

max{r
1

p−1 , s
1

p−1 }

=∞ (A15)

for p ≥ 4/3.
Suppose Q > 0. Then, pick R ∶= inf{s∣∫∣x∣<s dxρTF

(x) ≥ Z}. By assumption R <∞. Now, define ρR(x) ∶= ρ
TF
(x)θ(R − ∣x∣) and ρ

>
∶= ρTF

−

ρR which by uniqueness of ρTF are spherically symmetric. We compute

ETF
p (ρR) − ETF

p (ρ
TF
) < −∫

R3
dx
ρ>(x)
∣x∣
+ 2D(ρR, ρ>) −D[ρ>] = −D[ρ>] < 0, (A16)

where the last equality holds because of Newton’s theorem. Thus ρTF cannot be a minimizer which is a contradiction.
By spherical symmetry and Newton’s theorem it follows that φ ≥ 0. ◻

Note that we proved Lemma 8 by a simple and direct variational argument using the spherical symmetry; however, the theorem can be
also be proven in the molecular case using subharmonic estimates like Lieb and Simon11 did. Since this amounts to a mere transcriptions we
skip it here.

8. The Sommerfeld solution of generalized Thomas-Fermi theory and bounds on the physical solution
In this appendix we allow for more general external potentials than (2).

The classical atomic Sommerfeld solution S 5
3
(x) = 9γ3

/(π2
∣x∣4) solves ΔS 5

3
= 4πS

3
2
5
3

on Ṙ 3
∶= R3

/{0} and bounds the classical atomic
Thomas-Fermi potential from above. This generalizes to more general p:

Lemma 9. Pick p ∈ (3/2, 2),

b(p) ∶= (
(p − 1)(3p − 4)

2π(2 − p)2 )

p−1
2−p

, and σ ∶=
2(p − 1)

2 − p
. (A17)

Then
Sp(x) ∶= sp(∣x∣) ∶= b(p)∣x∣−σ (A18)
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solves the generalized differential Thomas-Fermi equation

ΔSp = 4πS
1

p−1
p (A19)

on Ṙ 3 and for the atomic case, i.e., μ = Zδ,
ϕ ≤ Sp (A20)

on Ṙ 3.

Proof. Inserting (A18) into (A19) yields

b(p)

r
2(p−1)+4−2p

2−p

[
2(p − 1)

2 − p
2p − 2 + 2 − p

2 − p
− 2

2(p − 1)
2 − p

] = 4πb(p)
1

p−1 r−
2

2−p , (A21)

which is equivalent with

b(p)[
2(p − 1)

2 − p
p

2 − p
− 2

2(p − 1)
2 − p

] = 4πb(p)
1

p−1 (A22)

or
2(p − 1)(3p − 4)
(2 − p)2 = 4πb(p)

2−p
p−1 . (A23)

Inserting the definition of b(p) from (A18) gives identical left and right sides of (A19).
The bound (A20) follows then from the maximum principle, since the inequality is certainly true in a neighborhood of zero, since

ϕ(x) ≤ Z/∣x∣ and both ϕ(x), Sp(x)→ 0 as x →∞. ◻

Lemma 10. Suppose p ∈ (3/2, 2), V as in Lemma 6, ρTF is the minimizer of ETF
p , ϕ ∶= V − ρTF ∗ ∣ ⋅ ∣−1, and

a(p) ∶= (
(p − 1)p

2π(2 − p)2 )

p−1
2−p

, and σ ∶=
2(p − 1)

2 − p
. (A24)

Then for ∣x∣ > R,
Δϕ = 4πϕ

1
p−1 (A25)

and

ϕ(x) ≤ Sp,R(x) ∶= sp,R(∣x∣) ∶=
a(p)

(∣x∣ − R)σ
. (A26)

Proof. The generalized Thomas-Fermi Eq. (A14) and Poisson’s equation Δφ = 4πρTF imply (A25).
To show (A26) we first show that on the complement of BR(0),

ΔSp,R ≤ 4πS
1

p−1
p,R : (A27)

s′′p,R(r) +
2
r

s′p,R(r) = σ(σ + 1)
a(p)

(r − R)σ+2 − 2σ
a(p)

r(r − R)σ+1

≤
σ(σ + 1)

4π
a(p)−

2−p
p−1 4πsp,R(r)

1
p−1 = 4πsp,R(r)

1
p−1

(A28)

and that the inequality is true on ∂BR(0) and both Sp,R and ϕ tend to zero at infinity. Thus, the inequality follows for all ∣x∣ > R by
subharmonicity. ◻

Now we turn the Sommerfeld solution with a leading remainder term extending a result by Brezis and Lieb,5 Solovej14 (Lemma 11)15

(Lemma 4.4). We will largely follow his proof.

Lemma 11. Pick p ∈ (3/2, 2), V as in Lemma 6,

ζ ∶=
−5p + 6 +

√

p2
+ 20p − 28

2(2 − p)
, (A29)
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and a smooth function π on BR(0)c fulfilling

Δϕ = 4πϕ
1

p−1 . (A30)

Moreover, define

a(R) ∶= lim inf
r↘

sup
∣x∣=r

⎡
⎢
⎢
⎢
⎢
⎣

(
ϕ(x)

sp,γ(∣x∣)
)

− 1
2

− 1
⎤
⎥
⎥
⎥
⎥
⎦

∣x∣ζ , (A31)

A(R) ∶= lim inf
r↘

sup
∣x∣=r
[
ϕ(x)

sp,γ(∣x∣)
− 1]∣x∣ζ. (A32)

Then on BR(0)c,

(1 + a(R)∣x∣−ζ)−
p−1
p−2 sp,γ(∣x∣) ≤ ϕ(x) ≤ (1 + A(R)∣x∣−ζ)sp,γ(∣x∣). (A33)

Note that for the classical exponent p = 5/3, ζ = (
√

73 − 7)/2 which agrees with15 (Lemma 4.4).

Proof. We start by proving that ϕ tends to zero at infinity. To this end, pick L > 4R and define the function f (x) ∶= C(sp,γ(r − L/4) +
sp,γ(L − r)) on (L/4, L) writing r ∶= ∣x∣:

Δ f (x) = C(S′′(r − L/4) +
2
r

S′(r − L/4) + S′′(L − r) −
2
r

S′(L − r))

= Cb(p)γ
1

2−p

⎡
⎢
⎢
⎢
⎢
⎣

2(p − 1)(2p − 2 + 2 − p)
(2 − p)2

1

(r − L
4 )

2p−2+4−2p
2−p

−
2
r

2(p − 1)
2 − p

1

(r − L
4 )

p
2−p

+
2(p − 1)(2p − 2 + 2 − p)

(2 − p)2
1

(L − r)
2p−2+4−2p

2−p

+
2
r

2(p − 1)
2 − p

1

(L − r)
p

2−p

⎤
⎥
⎥
⎥
⎥
⎦

= Cb(p)γ
1

2−p
2(p − 1)

2 − p

×

⎡
⎢
⎢
⎢
⎢
⎣

p
2 − p

1

(r − L
4 )

2
2−p
−

2
r

1

(r − L
4 )

p
2−p
+

p
2 − p

1

(L − r)
2

2−p
+

2
r

1

(L − r)
p

2−p

⎤
⎥
⎥
⎥
⎥
⎦

. (A34)

We wish to estimate the sum of the second and fourth term of the last bracket by a multiple of the third one, i.e., show that

−
2
r

1

(r − L
4 )

p
2−p
+

2
r

1

(L − r)
p

2−p
≤ D

1

(L − r)
2

2−p
. (A35)

By scaling it is sufficient to show this for L = 1, i.e.,

−
2
r

1

(r − 1
4)

p
2−p
+

2
r

1

(1 − r)
p

2−p
≤ D

1

(1 − r)
2

2−p
, (A36)

which is equivalent with

−2(1 − r)
2

2−p + 2(1 − r)(r −
1
4
)

p
2−p ≤ Dr(r −

1
4
)

p
2−p (A37)

or

−2(1 − r)
2

2−p + 2(r −
1
4
)

p
2−p ≤ (D − 2)r(r −

1
4
)

p
2−p , (A38)

which is fulfilled if

−2(1 − r)
2

2−p + 2(r −
1
4
)

p
2−p ≤

D − 2
4
(r −

1
4
)

p
2−p (A39)

holds, since r > L/4. This is equivalent with

−2(1 − r)
2

2−p ≤ (
D
4
−

5
2
)(r −

1
4
)

p
2−p = 0, (A40)
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which is true, since we picked D = 10. Thus we get altogether

Δ f (x) ≤ Cb(p)γ
1

2−p
2(p − 1)

2 − p

⎡
⎢
⎢
⎢
⎢
⎣

p
2 − p

1

(r − L
4 )

2
2−p
+

20 − 10p + p
2 − p

1

(L − r)
2

2−p

⎤
⎥
⎥
⎥
⎥
⎦

= Cb(p)γ
1

2−p
2(p − 1)
(2 − p)2

⎡
⎢
⎢
⎢
⎢
⎣

p
1

(r − L
4 )

2
2−p
+ (20 − 9p)

1

(L − r)
2

2−p

⎤
⎥
⎥
⎥
⎥
⎦

. (A41)

Moreover, for p ∈ (1, 2),

f (r)
1

p−1 ≥ C
1

p−1 (sp,γ(r − L/4)
1

p−1 ). (A42)

Thus, for each p and γ there is a constant C such that for all L > 4R f is a supersolution of the generalized differential TF equation, i.e.,

Δ f ≤ 4π f
1

p−1 (A43)

on ML ∶= BL(0)/BL/4(0). Thus the maximum principle implies f ≥ ϕ on AL and sup∣x∣=L/2ϕ (x) ≲p L
2(p−1)

2−p . Thus ϕ(x)∣x∣
2(p−1)

2−p is bounded for
∣x∣ > R.

Next we turn to the main estimate. For any k ∈ R we define

ω+k (x) ∶= (1 + k∣x∣−ζ)sp(∣x∣), (A44)

ω−k (x) ∶= (1 + k∣x∣−ζ)−
p−1
p−2 sp(∣x∣). (A45)

If we pick R′ > R and set k = A′ ∶= A(R′) and k = a′ ∶= a(R′) then ω+A′ and ω+a′ are right and left side of the main estimate (A33) but at R′

instead of R.
We claim that

Δω+k ≤ 4π(ω+k /γ)
1

p−1 and Δω−k ≥ 4π(ω−k /γ)
1

p−1 . (A46)

[The first inequality for p = 5/3 was known to Brezis and Lieb (first inequality above Proposition A.5 in Ref. 5).]
Since ω+A′(R

′
) = ϕ(R′) = ω−a′(R

′
) and since both functions tend to zero at infinity, this would imply the claim is true by a standard

application of the maximum principle and taking the limit R′ → R.
Thus it remains to show that (A46) is really true. We compute starting with the supersolution:

Δω+k (x) = (S′′(∣x∣) +
2
∣x∣

S′(∣x∣))(1 +
k
∣x∣ζ
) − 2S′(∣x∣)k

ζ
∣x∣ζ+1 + sp,γ(∣x∣)k

ζ(ζ + 1) − 2ζ
∣x∣ζ+2

= 4π(
sp,γ(r)
γ
)

1
p−1

(1 +
k
rζ
) + sp,γ(r)kζr−ζ−2

(22 p − 1
p − 2

+ ζ − 1)

= 4π(
sp,γ(r)
γ
)

1
p−1

(1 +
k
rζ
) + sp,γ(r)kζ

⎛

⎝

sp,γ(r)

b(p)γ
1

2−p

⎞

⎠

2−p
p−1

r−ζ(
5p − 6
p − 2

+ ζ)

= 4π(
sp,γ(r)
γ
)

1
p−1
⎡
⎢
⎢
⎢
⎢
⎣

1 +
k
rζ
+

kζ

4πb(p)
2−p
p−1 rζ
(

5p − 6
p − 2

+ ζ)
⎤
⎥
⎥
⎥
⎥
⎦

= 4π(
ω+k
γ
)

1
p−1 1 + k

rζ
[1 + 2π(p−2)2ζ

4π(p−1)(3p−4)(
5p−6
p−2 + ζ)]

(1 + kr−ζ)
1

p−1
. (A47)

Thus, the claim would follow if the big fraction of the last line is not bigger than one. Since p − 1 ≤ 1, it suffices to show that

1 +
k
rζ
[1 +

(p − 2)2

2(p − 1)(3p − 4)
ζ(

3p − 2
p − 2

+ ζ)] ≤ 1 + (p − 1)−1kr−ζ (A48)

or
(p − 2)2

2(3p − 4)
ζ(

5p − 6
p − 2

+ ζ) ≤ 2 − p, (A49)
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which is fulfilled, if

ζ2
+

5p − 6
2 − p

ζ = 2
3p − 4
2 − p

, (A50)

which true for the chosen ζ.
Next we treat the subsolution

Δω−a′(x) ≥ (S′′(r) +
2
∣x∣

S′(r))(1 +
a′

rζ
)

−
p−1
2−p

+ 2S′(r)
p − 1
2 − p

(1 +
a′

rζ
)

− 1
2−p a′ζ

rζ+1

+ sp,γ(r)
p − 1
2 − p

⎡
⎢
⎢
⎢
⎢
⎣

−(1 +
a′

rζ
)

− 1
2−p a′ζ(ζ + 1)

rζ+2 + 2(1 +
a′

rζ
)

− 1
2−p a′ζ

rζ+2

⎤
⎥
⎥
⎥
⎥
⎦

=
4π

γ
1

p−1
sp,γ(r)

1
p−1 (1 +

a′

rζ
)

−
p−1
2−p

+
sp,γ(r)

r2
(p − 1)

2 − p

⎡
⎢
⎢
⎢
⎢
⎣

−
4(p − 1)

2 − p
(1 +

a′

rζ
)

− 1
2−p a′ζ

rζ
− (1 +

a′

rζ
)

− 1
2−p a′ζ(ζ − 1)

rζ

⎤
⎥
⎥
⎥
⎥
⎦

=
4π

γ
1

p−1
sp,γ(r)

1
p−1

⎧
⎪⎪
⎨
⎪⎪
⎩

(1 +
a′

rζ
)

−
p−1
2−p

+
2π(2 − p)2

4π(p − 1)(3p − 4)
(p − 1)

2 − p

×

⎡
⎢
⎢
⎢
⎢
⎣

−
4(p − 1)

2 − p
(1 +

a′

rζ
)

− 1
2−p a′ζ

rζ
− (1 +

a′

rζ
)

− 1
2−p a′ζ(ζ − 1)

rζ

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪
⎬
⎪⎪
⎭

=
4π

γ
1

p−1
sp,γ(r)

1
p−1

⎧
⎪⎪
⎨
⎪⎪
⎩

(1 +
a′

rζ
)

−
p−1
2−p

+
1
2

2 − p
3p − 4

⎡
⎢
⎢
⎢
⎢
⎣

−
4(p − 1)

2 − p
(1 +

a′

rζ
)

− 1
2−p a′ζ

rζ
− 2(1 +

a′

rζ
)

− 1
2−p a′ζ(ζ − 1)

rζ

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪
⎬
⎪⎪
⎭

=
4π

γ
1

p−1
ω−a′(r)

1
p−1 {1 + [1 − 2

p − 1
3p − 4

ζ −
1
2

2 − p
3p − 4

ζ(ζ − 1)]
a′

rζ
} =

4π

γ
1

p−1
ω−a′(r)

1
p−1 , (A51)

where we drop a non-negative summand containing (a′ζ)2 in the first inequality and use (A29) in the last step. Thus ω−a′ is indeed a
subsolution. The result follows by taking the limits limr′↘r a(r′) and limr′↘r A(r′). ◻

Equipped with two atomic supersolutions, namely Sp,R and ω+k , of the generalized Thomas-Fermi equation suggests that the pointwise
minimum bounds ϕ from above. This would improve the bound for large r, since the coefficient a(p) of the leading term of Sp,R for large r is
larger than the coefficient b(p) of the leading term of ω+k . In fact this is true:

Lemma 12. Assume p ∈ (3/2, 2), r > R > 0, k ∈ R3, ζ as in (A29), and ω+k as defined in (A44). Then

ϕ(r) ≤ σp(r) ∶= min{sp,R(r),ω+k (r)}. (A52)

Proof. Both functions are supersolutions of the Thomas-Fermi equation and sp,R(r) ≥ ϕ(r). Moreover, the two function have exactly
one point of intersection r0 for r > R. Thus ω+k (r0) = sp,R(r0) ≥ ϕ(r0). Since ω+k (r)→ 0 as r →∞ we have ω+k (r) ≥ ϕ(r) for r ≥ r0. ◻
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